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Abstract

Satellite communications have gained significant importance in recent years, due to their
global coverage, versatility across multiple applications, and ability to meet the increasing
demand for connectivity in today’s interconnected society. Among different satellite com-
munication systems, the design of the Low Earth Orbit (LEO) satellite system is becoming
a hot spot in satellite communications, because of its capacity to deliver high-speed in-
ternet connectivity with minimal latency. Nowadays, large LEO satellite communication
constellations (mega-constellations) are very popular.

The major obstacle to the progress of satellite communication technology is the high
cost of research. There is a need for a suitable simulation that can accurately model
satellite networks, especially capable of simulating a great number of satellite constella-
tions, providing a cost-effective means for testing and refining new concepts without the
need for expensive physical infrastructure. Moreover, simulating networks within LEO
mega-constellations presents unique challenges compared to terrestrial networks, primar-
ily due to their substantial spatiotemporal scale, high mobility, and orbital movements.
These distinctive properties can pose significant hurdles for traditional network simula-
tors. To provide insight into the available options, this thesis explores various simulators
and emulators, evaluating their efficacy through a review of the literature. Moreover, the
comparison of different tools is done.

It further examines the scalability of the MATLAB satellite simulation tool, by analyz-
ing its performance in terms of execution time and memory utilization, while considering
the simulation duration as well.
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Chapter 1

Introduction

1.1 Introduction

1.1.1 Overview of satellite communications

The motivation for this research arises from the desire to simulate satellite commu-
nications for mega-constellations. Several satellite network simulators, emulators, and
testbeds are compared in terms of their characteristics, functionalities, capability to sup-
port the modeling and designing of a large number of satellites, and their use cases.
Satellite communications, which involves the transmission of information through artifi-
cial satellites orbiting the earth, serves as a crucial medium for delivering cellular, radio,
television, broadband, and military applications to millions worldwide. With over three
thousand communication satellites operating across various orbits, these satellites play a
pivotal role in relaying information seamlessly across the globe.

How does satellite communication work?

Using microwaves, satellite communications leverage a network of orbiting satellites and
ground stations to transmit and relay information between different points on the earth.
Satellite communication has some important components and concepts, bellow there is a
brief explanation:

Various types of satellites, including communication satellites, are artificial objects
intentionally positioned in orbit around the earth. Communication satellites are specif-
ically equipped with transponders that receive, amplify, and retransmit signals as part
of their functionality. The next important objects are ground stations. Ground stations,
equipped with antennas and other necessary gear, serve as earth-based facilities responsi-
ble for communicating with satellites. These stations transmit signals to satellites, which
subsequently relay the signals either back to other ground stations or directly to termi-
nals on the earth. Next are transponders. Transponders within communication satellites
play a pivotal role in the transmission process. They receive signals from the earth, am-
plify them, and then retransmit them back to the earth. These transponders operate at
precise frequencies within the radio frequency spectrum. Uplink and downlink are two
main links that facilitate communication between ground stations and satellites. The
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uplink refers to the transmission of signals from a ground station to a satellite, while the
downlink involves the reception of signals from the satellite to a ground station. Other
important objects are frequency bands. Satellite communications make use of different
frequency bands that are allocated for specific purposes. Common frequency bands in-
clude C-band, Ku-band, and Ka-band. Each band presents unique advantages and is
well-suited for particular types of communication applications. Moreover, satellite types
of orbits are important in the communication systems. Satellites have the flexibility to
be positioned in different orbits, including Geostationary Orbit (GEO), Medium Earth
Orbit (MEO), or LEO. The selection of orbit depends on the specific purpose of the
satellite and the desired coverage area.

1.1.2 Satellite communication link full connectivity

Access between two ground stations and a satellite in satellite communication is not
always guaranteed; it is contingent upon several factors, including the satellite’s orbit,
the locations of the ground stations, and the design of the communication system. Here
some factors that affect the connectivity is added.

First is the satellite orbit. The type of satellite orbit, whether it is LEO, MEO, or
GEO, significantly influences the visibility and accessibility of a satellite from a ground
station. Geostationary satellites maintain a fixed position above a specific point on earth’s
surface, ensuring continuous line-of-sight to a designated ground station. However, satel-
lites in other orbits may experience varying visibility periods due to their orbital dy-
namics. The second factor is the orbital parameters. Non-geostationary satellites are
influenced by parameters such as inclination, eccentricity, and other orbital character-
istics, which determine when a satellite becomes visible to a particular ground station.
Satellites in polar orbits, for instance, may be observable by a ground station during each
orbit due to the nature of their orbital path. The third one is the ground station location.
The geographical positioning of ground stations is paramount in satellite communication.
These stations must be strategically situated to maintain uninterrupted communication
coverage as satellites traverse the sky. Forth factor is the satellite constellation design.
In constellations comprising multiple satellites, the design often incorporates handovers
of communication responsibilities. These handovers can occur between satellites or be-
tween ground stations to ensure continuous connectivity is maintained. The fifth factor
is link budget and antenna characteristics. The effective communication range between a
satellite and a ground station is influenced by the link budget, which takes into account
factors such as transmitted power, antenna gains, and path losses. The sixth factor is
atmospheric conditions. Atmospheric conditions can impact the quality of the commu-
nication link. For instance, rain, clouds, and other weather phenomena can cause signal
attenuation, affecting the reliability of the connection.

Note that advanced systems often incorporate multiple ground stations or satellites
to ensure redundancy and continuous coverage. Moreover, they may feature designed
handovers between ground stations or satellites to sustain connectivity as the satellite
traverses its orbit.
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1.1 – Introduction

1.1.3 Satellite Keplerian elements

To define a satellite orbit, certain elements are necessary, known as satellite orbital or Ke-
plerian elements, named after Johann Kepler (1571-1630). The Keplerian model, though
simpler than reality, provides a useful framework. It defines an ellipse, orients it around
the earth, and positions the satellite on the ellipse at a specific time. These elements are
collectively referred to as Classical Orbital Elements (COEs). The basic orbital elements
include:

• Semi-major axis
Gives the size of the orbit, denoted as a. It is the average distance from the center of
the earth to the satellite. To understand this parameter, two terms are important,
perigee and apogee. The perigee is the point in the orbit closest to earth’s surface.
The apogee is the point in the orbit farthest from earth’s surface.

a = perigee distance + apogee distance
2 (1.1)

• Eccentricity
Gives the shape of the orbit, denoted as e. Kepler’s first law tolls as that all orbits
are ellipses, either ellipses, circles, or part of one. It is the measure of how much the
orbit deviates from a perfect circle. when e=0.0, the shape is a circle. The closer
the eccentricity gets to 1.0, the flatter the orbit becomes. So it tells how round or
flat the orbit is.

• Orbital inclination
Represented by the symbol i. Inclination defines the angle of the orbit plane relative
to the equator of the central body (usually the earth). It signifies the tilt of the
orbit concerning earth’s equator. The inclination is measured in degrees and ranges
from 0 to 180 degrees. An inclination of 90 degrees indicates a polar orbit, where
the satellite passes over the earth’s poles.

• Right Ascension of Ascending Node (RAAN)
It is denoted as Ω and measured in degrees, it specifies the orientation of the orbit
in the plane of the earth’s orbit. The right ascension of the ascending node is the
angle between the line of nodes (where the satellite’s orbit crosses the reference
plane) and the vernal equinox. Vernal equinox direction is a line or vector from the
center of the earth through the center of the sun on the first day of spring.

• Argument of perigee
It is denoted as ω, and represents the orbital location. It represents the angle
between the ascending node and the satellite’s closest approach to the earth, which
is known as periapsis.

• Time of periapsis passage
It is the time when the element sets of Two Line Element (TLE) are accurate.
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• True anomaly
It is an angular parameter used in orbital mechanics to describe the position of a
satellite. The true anomaly is the angle between the direction of periapsis (closest
approach to the central body, usually earth for satellites) and the current position
of the satellite along its orbit.

Figure 1.1. True anomaly (reproduced from [17])

• Mean motion
The mean motion of a satellite is a key orbital parameter that defines the number
of orbits completed by the satellite in a given unit of time. It is denoted by the
symbol n and is typically measured in revolutions per day or degrees per day.

• Mean anomaly
The mean anomaly represents the position of the satellite along its orbit at a specific
time. Measured in degree, it is an angle that increases uniformly with time and
serves as a time parameter for predicting the satellite’s position.

Figure 1.2. Satellite orbital elements (reproduced from [21])
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Knowing these orbital elements we can see how they are used in real applications. Two
line element sets are used throughout space industries, to list the COEs in a standard
manner. Here is an example of a TLE:

1- 1000U 16001A 17352.66420480 .00000000 00000-0 00000-0 0 11
2- 1000 78.9943 212.9175 0001051 60.5293 54.8812 15.54194944 2971
It consists of two lines, 1 and 2 and that’s why we have the name two lines identifier!
First element (here is 1000U) is catalogue number. Everything that is tracked in the

space has a number, using that it can be more easily managed. The next important
element is the time where the element sets of TLE are accurate. In this example is
17352.66420480. The format is a 2-digit year (17), a 3-digit day (352), decimal, fraction
the day format. Therefore, in this example will be 2017, 352th day (December 18th), at
4:00 pm Coordinated Universal Time (CUT).

In the second line, the second element is inclination which is 78.9943 degrees in this
example.

The next one is RAAN. In this example it is 212.9175 degrees.
The next is the eccentricity, which is 0001051.
Next is argument of perigee, 60.5293 degrees.
Next one is the mean or true anomaly that is the satellite’s location for the given

time. It is 54.8812 degrees.
The semi-major axis is hidden in the next number, called mean motion. For this

example, mean motion is 15.54194944 revolutions per day, which means the object will
orbit the earth 15.5 times a day. We can divide 24 hours or 85.400 seconds by 15.30
revolutions per day, giving us a period of 5574 seconds or 93 minutes. Using Kepler’s
third law, we can determine that the semi-major axis is 6.795 km.

1.1.4 Satellite link budgets

When we design and simulate a satellite communication scenario, we need to be sure that
our design will work. This design is under the effect of several parameters. These param-
eters including frequency, modulation, coding, bandwidth, data rate, required Eb/No,
symbol rate, waveform, antenna size, gain, pointing, polarization, transmit power, re-
ceive sensitivity, noise figure, noise temperature, losses, margins, and availability. ITU
which stands for International Telecommunication Union, which is the United Nations’
specialized agency for information and communication technologies, [24] predicts the var-
ious propagation parameters needed in planning earth-space networks/systems operating
in either the earth-to-space or space-to-earth direction. REC. ITU-R P.618-14 [25] is the
latest published version of the Radiocommunication Sector(08/2023).

1.1.5 DVB-S2 and DVB-RCS2

European Telecommunications Standards Institute (ETSI) in 2005, standardized Digi-
tal Video Broadcasting Second Generation (DVB-S2), primarily for broadcast services,
broadband applications [4]. On the other hand, Digital Video Broadcasting Second Gen-
eration Return Channel Satellite (DVB-RCS2)( [5] represents the second generation of
interactive satellite return channel specifications, aiming to enhance satellite technology’s
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competitiveness by offering modern IP-based services to customers. These standards pro-
vide frameworks for satellite communication systems, with DVB-S2 focusing on forward
links and DVB-RCS2 addressing return links.

1.1.6 Types of orbits

When the satellite is launched, it will be placed in different kinds of orbits. There are
different factors to decide which orbit to choose for the satellites. For the purpose of this
thesis, the most important ones are GEO, MEO, and LEO.

GEO

Circling earth above the equator from west to east in sync with the earth’s rotation,
satellites in GEO complete one orbit every 23 hours, 56 minutes, and 4 seconds. They
maintain their position relative to earth, giving the impression of being stationary over
a fixed point. The speed of GEO satellites, approximately three km per second, matches
earth’s rotation rate, ensuring their synchronous motion. Positioned at an altitude of
35,786 km, GEO satellites orbit much farther from earth’s surface than many other
satellites. Fig. 1.3 shows the GEO.

Figure 1.3. GEO (reproduced from [22])

MEO

MEO encompasses a diverse range of orbits situated between LEO and GEO. Satellites
in this orbit do not follow specific paths around the earth, and it accommodates a va-
riety of satellites with diverse applications. Navigation satellites, such as the European
Galileo System, commonly utilize MEO. Galileo facilitates navigation communications
across Europe and serves various navigation purposes, from tracking large aircraft to
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providing directions on smartphones. The Galileo system operates through a constella-
tion of multiple satellites, ensuring broad coverage across extensive areas simultaneously.

Figure 1.4. Galileo constellation (reproduced from [22])

LEO

A LEO is, as the name implies, an orbit situated relatively close to earth’s surface.
Typically, LEO is at an altitude of less than 1000 km, but it can be as low as 160 km
above earth. A height considered low compared to other orbital altitudes, yet significantly
distant from earth’s surface. Most commercial airplanes operate at altitudes not much
greater than approximately 14 km, making even the lowest LEO more than ten times
higher. In contrast to satellites in GEO, which must orbit along earth’s equator, LEO
satellites are not confined to a specific path around earth, they can have tilted planes.
Consequently, LEO offers more flexibility in terms of available orbital routes, making it
a widely utilized orbit.

Nevertheless, individual LEO satellites are less practical for tasks like telecommunica-
tion due to their rapid movement across the sky, demanding considerable tracking efforts
from ground stations. To overcome this limitation, communication satellites in LEO
often operate within extensive constellations comprising multiple satellites, which are
called mega-constellations, ensuring continuous coverage. To expand coverage further,
constellations may consist of several identical or similar satellites launched simultane-
ously, effectively creating a ’net’ around earth. This collaborative approach allows them
to collectively cover extensive areas of the earth simultaneously.
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Figure 1.5. Low earth orbit (reproduced from [22])
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Chapter 2

Satellite simulation analysis

Satellite network simulators, emulators, and real testbeds are tools used for different
purposes in education, research, development, and testing. Simulators are software-based
tools that replicate the behavior of satellite networks in a virtual environment. They
simulate network conditions, satellite characteristics, and communication scenarios to
analyze how the network performs under various conditions. Simulators provide a cost-
effective and controlled way to study network behavior without the need for physical
hardware. They are particularly useful for exploring theoretical concepts and conducting
large-scale simulations.

On the other hand, emulators replicate the actual hardware and software of satellite
networks, allowing researchers to test and validate their solutions in an environment that
closely resembles the real system. Unlike simulators, emulators involve real hardware
and software components, enabling more realistic testing and validation of protocols,
applications, and services. Emulators bridge the gap between simulation and real-world
deployment, offering a compromise between cost-effectiveness and realism. They allow for
more accurate assessments of how solutions will perform in actual operational conditions.

Real testbeds involve physical implementation of satellite network components in
a controlled environment to conduct practical experiments and assessments. In a real
testbed, actual satellite equipment, ground stations, and communication links are set up
to mimic a real-world scenario. This provides the most accurate representation of how a
satellite network would behave in practice. Real testbeds offer the highest level of realism
and are essential for validating solutions before deployment. They allow researchers
to assess performance, identify issues, and fine-tune configurations based on real-world
conditions.

2.0.1 Classifications

This chapter represents a comprehensive study of several simulators, emulators, and
testbed in terms of their different features, capabilities, and availability. Not all the tools
are suitable for the modeling of mega-constellations. The reason is that, the design, op-
timization, and operation of mega-constellations pose significant challenges due to their
large-scale and complex nature. Simulation-based analysis plays a crucial role in eval-
uating the performance, reliability, and feasibility of mega constellation systems under
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various scenarios and conditions.
The key features and requirements of simulators used for modeling mega-constellations,

including scalability which is the capability of the simulator to support working with a
large number of satellites, in terms of factors like time and memory. Orbital dynamics
modeling to model the motion of the satellites, communication modeling which is a
simulation of transmission and reception of signals. The ability to model the different
kinds of links which are ground station to satellite, satellite to satellite, and satellite
to ground station, coverage analysis to evaluate the extent of signal coverage, signal
strength, and quality of service metrics such as Bit Error Rate (BER) or Signal-to-Noise
Ratio (SNR) across different geographic locations, constellation management which
refers to the strategic planning, operation, and optimization of a satellite constellation to
ensure its effective and efficient performance in providing desired services, environmen-
tal factors consideration, and visualization.

This chapter provides the classification of the satellite simulation tools, first based on
the type of the tool. The first group is simulators, Sec. 2.1, the second group is emulators,
Sec. 2.2 and the third group is real testbeds, Sec. 2.3.

In each section, the simulators are two types. Satellite simulator without the support
of mega-constellations and satellite simulator with the support of mega-constellations.
It is started with the most powerful ones which in my idea are better choices for the
simulation of mega-constellations based on the criteria mentioned above and then other
satellite simulators are added.

Please note that a comprehensive table of the simulators mentioned in this thesis can
be found at the following link: Link to the table

2.1 Simulators

2.1.1 MATLAB satellite simulation toolbox

Satellite communications toolbox [27] was introduced in March 2021, its first release,
version 1.0, named R2021a, included satellite link budget analysis, introducing satellite
communications toolbox, use of satellite scenario object for simulation, analysis and visu-
alize satellites in orbit, standards-based waveform generation, channel models and Radio
Frequency (RF) propagation loss, signal recovery, C and C++ code generation support.
The last release, until now is R2023b, in which the bugs are fixed and the features are
improved. In the last release, there exist more examples of support for Hardware Descrip-
tion Language (HDL) code generation and over-the-air testing. There are enhancements
to the satellite scenario, support for Consultative Committee for Space Data Systems
(CCSDS) waveform generation, and satellite link budget analyzer app.

MATLAB is a powerful tool, it has excellent capabilities for conducting statistical
analysis and Monte Carlo simulations. A Monte Carlo simulation is used to model the
probability of different outcomes in a process that cannot easily be predicted due to the
intervention of random variables. It is a technique used to understand the impact of risk
and uncertainty. MATLAB satellite simulation toolbox is not open source. It has perfect
documentation online as well as in PDF format, describing in detail the toolbox and its
functions. It contains various examples that can be run online on MATLAB online, which
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2.1 – Simulators

is very effective and fast. There is also the possibility to copy at once the commands and
run them offline.

Input parameters

In MATLAB satellite simulation, input parameters are in fact objects and functions, re-
lated to the location, transmitter, and receiver, characteristics of satellites and ground
stations, as well as atmospheric conditions for links. As an example, if one wants to
simulate a very simple end-to-end communication between two ground stations, via 2
satellites, the possible input parameters are time, satellite, gimbals, receivers, transmit-
ters, antennas, and ground stations.

Time, including start time, stop time, and sample time. The start time is the time the
simulation will start. Different start times will change the result because this changes the
position of the satellite. Stop time is the time to stop the simulation and sample time is
the resolution of your simulation. Satellite is another input object which is needed to be
defined by its Keplerian orbital elements. Keplerian orbital elements correspond to the
scenario start time, for example, semi-major axis, eccentricity, inclination, right ascension
of ascending node, the argument of periapsis, and true anomaly. The satellites can be
inserted with TLE files all at once. Gimbals are a set of pivoted supports that allow an
object to rotate around its axes. Each satellite consists of two gimbals on opposite sides
of the satellite. One gimbal holds the receiver antenna and the other gimbal holds the
transmitter antenna. The mounting location is specified in Cartesian coordinates in the
body frame of the satellite, which is defined by (x,y,z), where x,y, and z are the roll, pitch,
and yaw axes respectively, of the satellite. For the receiver, possible properties are name,
reacquired Eb/No, gain-to-noise temperature ratio (which is the ratio of the antenna
gain to the system noise temperature), pre-receiver loss (which refers to losses that occur
before the signal reaches the actual receiver or the front end of the receiving system),
system loss, mounting location, mounting angles, coordinate axes. Transmitter properties
are name, frequency, bit rate, power, link (the link object defines a link analysis object
belonging to the transmitter), system loss, and antenna pattern. Antennas are another
input. The antenna specifications can be defined, for example, type of antenna, dish
diameter, and aperture efficiency. Ground stations are essential. Their properties are
latitude, longitude, and name. Note that based on the scenario, different parameters
need to be added, but these are the most important ones for a simple scenario.

Output

The output of the simulation includes statistics, analysis and evaluations of communica-
tion link budgets, orbital parameters, and overall system performance, including analyses
of satellite constellations, ground station coverage, mission duration, and resource opti-
mization.

Another output can be live satellite data, means receiving live satellite data streams.
It is possible to use MATLAB’s capabilities for real-time data processing and analysis to
extract insights from the incoming data in real-time. Another outputs are logs, reports,
and calculations. In the above example, the possible output can be link budget analysis,
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including link margin, delays, received power and Doppler shift at the target ground
stations. It can be the time duration at which the link between two ground stations is
established, in a table with the exact start time, and stop time. Another possible output
is the large high dimensional calculations, based on the function you used and the desired
results, you can have complex computations as output. You can have plots, logs, 2D and
3D visualizations as well.

MATLAB satellite simulation toolbox features

The toolbox provides several applications and standards-based tools for designing, simu-
lating, and verifying satellite communications systems and links. The toolbox is capable
of simulation of a large number of satellites, which refers to mega satellite constellations
with reasonable time and memory usage. There is the possibility to measure and visualize
the coverage maps for the constellations. Another feature is satellite-satellite communi-
cation. This provides satellite-to-satellite communication links as well as earth-satellite
and satellite-earth links. The next feature is having the link budget analyzer app, which
can perform link analysis and access calculations. The toolbox provides RF propagation
models as well to calculate atmospheric loss for a signal. It has a satellite waveform gen-
erator app as well. It offers functions to create various standard-based wave-forms, such
as CCSDS, Telecommand (TC), Telemetry (TM), DVB-S2, Digital Video Broadcasting
Satellite Second Generation Extended (DVB-S2X), Global Positioning System (GPS), for
the design, modeling, and verification of satellite communications and navigation systems.
Simulating aircraft-satellite communications is another feature.

The next attribute is channel modeling. Channel modeling refers to an over-the-air
environment for communication systems. To understand the behavior of electromagnetic
waves, it is essential to analyze channel modeling and propagation models. MATLAB
provides the design of earth-space links using ITU-R P.618 [24] propagation loss model,
the possibility to configure a deep space optical link with the Poisson channel. Simulating
end-to-end satellite communications links enables you to configure, simulate, measure,
and analyze end-to-end satellite communications links.

2.1.2 System Tool Kit (STK)

STK is a robust simulation tool enabling the construction and analysis of satellite con-
stellations, exploration of air and spacecraft missions, and modeling of hybrid network
performance. It can be used both for educational and research objectives.

Availability

STK is a commercial tool, it is not open source and it is not free. This is the website [19].
Ansys STK consists of 4 different versions, where each includes a set of tools. Different
versions are [20]:

• PRO
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List of tools: STK, STK communications, STK radar, STK Terrain Integrated
Rough Earth Model (TIREM), STK urban propagation, STK analysis workbench,
STK coverage, STK integration, STK engine, STK parallel computing.

• Premium (Air)

PRO + STK analyzer, STK EOIR, STK Real-time Tracking Technology (RT3),
STK Distributed Simulation (DSim), STK aviator.

• Premium (Space)

Premium (Air) except STK aviator and including STK astrogator, STK SatPro,
STK Space Environment and Effects Tool (SEET), STK Conjunction Analysis Tool
(CAT)

• Enterprise

This is the most complete version which includes all of the previous tools plus Test
and Evaluation Tool Kit (TETK) and behavior execution engine.

Features

Ansys STK provides a wide-ranging set of multi-domain, physics-based analysis capabil-
ities tailored specifically for industries like aerospace, defense, telecommunications, and
beyond. Its extensive suite of tools stands out for its ability to simulate and analyze
intricate systems with remarkable precision and accuracy. From space mission planning
and satellite communication to radar systems and missile defense, Ansys STK offers ad-
vanced modeling and simulation features to assist in vital decision-making processes and
enhance system performance across diverse domains. The most important features of
Ansys STK is expressed in the next paragraph.

STK communication tool can be used to simulate RF and optical communications
of real-world events. You can model and analyze link budget reports and graphs, signal
performance contours, visualization tools for dynamic system performance assessment,
detailed rain models, atmospheric loss calculations, RF interference source identifica-
tion, flexibility to integrate custom models or interference sources. The system features
advanced capabilities for multi-beam antennas, where each beam functions as an inde-
pendent antenna with unique attributes including frequency, RF power level, polarization
state, gain, and characteristic type. MATLAB seamlessly integrates with STK, allowing
for two-way communication between the two platforms via TCP/IP sockets. With access
to over 150 native MATLAB commands, users can model orbital, ballistic, and great arc
trajectories and perform analytical functions within the MATLAB workspace. Addition-
ally, MATLAB can parse dynamic data from STK for further mathematical analysis and
optimize parameters using data providers for enhanced functionality.

STK leverages parallel computing to distribute complex analysis tasks across multiple
computing cores. Furthermore, it provides SDKs for .NET, Java, and Python, enabling
parallel execution of custom models and algorithms. STK facilitates real-time Geographic
Information System (GIS) display and analysis by seamlessly integrating with ArcGIS.
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With features like ArcGIS tracking analyst, users can receive, process, analyze, and visu-
alize real-time data, including GPS data. This integration enables conducting temporal
and spatial GIS analyses, visualizing data in both STK and ArcGIS, and understanding
the spatial relationships of moving objects within the GIS environment. Moreover, it
supports mega-constellation simulation.

Example scenarios implemented in STK

The newer versions of STK must be more powerful to implement more complex scenarios,
but no example scenario was found. These examples are from [2] which is published in
2010. The first scenario is launching rockets. To launch a rocket from the Kennedy
Space Center with the objective of rendezvousing with the International Space Station
(ISS) for critical ration resupply, several steps must be followed. This includes mission
planning to calculate the optimal launch window, trajectory, and rendezvous maneuver.
Additionally, orbital dynamics and ISS position must be taken into account for successful
docking. Coordination with ground control and adherence to safety protocols are crucial
throughout the mission.

The second scenario is STK and the solar system. STK offers the capability to
explore and understand the solar system comprehensively. Users can visualize planets and
even simulate becoming planets to observe solar system orbits from various perspectives.
Unique features enhance understanding of planetary motion around the Sun. In this
scenario, the mission involves creating the solar system and observing the orbits of each
planet, the Sun, and the Moon from different vantage points.

Third scenario relates to constellations and chains. During satellite operations, ground
stations command and control satellites, but communication may be hindered when satel-
lites are out of line of sight. In such cases, other satellites act as relays or cross-links,
facilitating communication between ground stations and satellites. STK allows for the
creation of entire constellations, starting with GEO and progressing to MEO and LEO,
with increasing complexity and the need for more satellites as they move closer to the
earth. Completing communication chains becomes more challenging as satellites move
closer to the earth’s surface.

Another example is space and a system of systems. The objective is to establish a
continuous chain linking two ground stations on separate continents using various assets,
including 1 LEO, 1 MEO, 1 HEO, and 1 GEO satellite, along with an aircraft, a ship,
and a ground vehicle. The task involves launching a rocket into the orbital plane of
the LEO satellite before creating it. The mission scenario revolves around relaying vital
information about an ongoing conflict from one ground station to another, with potential
locations including Afghanistan, North Korea, Taiwan, or a chosen site. The challenge
lies in coordinating the assets to ensure seamless communication and data transmission
across the chain.

Last example is using systems tool kit to model possible cubesat orbits. [35]
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Figure 2.1. STK interface example (reproduced from [2])

2.1.3 Hypatia

Hypatia is a LEO framework for LEO satellite networks [36]. Its primary goal is to fulfill
research needs for LEO satellite networks. Hypatia provides a packet-level simulation,
built on top of NS3. It takes into account satellite trajectories, coverage constraints
for ground station satellite connectivity, and the structure of inter-satellite connectivity.
Hypatia consists of visualization to help intuitions. Hypatia uses Cesium to render views
of the trajectories. One of the weak points of Hypatia is that it is not flexible to build
different scenarios and has limited visualization capabilities.

Components

The system comprises three components. The first component is "satgenpy". This compo-
nent is a Python framework designed for generating LEO satellite networks. It facilitates
the creation of satellite networks and the generation of routing information over a speci-
fied period. Additionally, it offers various analysis tools to examine specific cases within
the generated networks.

Next one is "ns3-sat-sim". Built upon the ns-3 simulation framework, this component
leverages the output generated by satgenpy to conduct packet-level simulations over LEO
satellite networks. It takes the network state provided by satgenpy as input and performs
detailed simulations to analyze network behavior and performance.

And third component is "satviz". This component is a Cesium visualization pipeline
that enables the creation of interactive visualizations of satellite networks. It utilizes
Cesium, a platform for 3D mapping and visualization, to generate visually engaging
representations of the satellite network topology and dynamics.
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Input [36]

Five files are needed to analyze/simulate a LEO satellite network. The first file is "ground-
stations.txt" which describes the ground station properties and locations. Next files are
"tles.txt", which are TLEs describing the orbit of all satellites. The third file is "isls.txt",
which is the topology of the inter-satellite links. Forth file is "gsl-interfaces-info.txt"
which gives the number of Ground-to-Satellite Links (GSL) interfaces per node (both
satellites and ground stations). Another file is "description.txt" which contains descriptive
information (in particular, max. ISL/GSL length). And the last one is "dynamic-state",
which is the dynamic state which encompasses (a) forwarding state (fstate) and (b) gsl
interface bandwidth (gsl-if-bandwidth).

Output

Outputs of the Hypatia simulator include plots to analyze Round Trip Time(RTT), traffic,
bandwidth, etc, as well as visualization, showing link utilization or traffic matrix.

Example scenario implemented in Hypatia

In [36] the scenario demonstrates Hypatia’s utility in understanding the behavior of LEO
satellite networks rather than solving the topology design, routing, or transport prob-
lems that arise due to the high dynamicity of LEO satellite networks. The experimental
setup contains satellite network setup. The network will be first shell of kuiper(K1),
Starlink(S1) or Telesat(T1). Another setup is to set the inter-satellite connectivity. The
inter-satellite connectivity will be "+Grid", which is a north-south, east-west connectiv-
ity pattern. You need to set the ground station locations which are the top ten most
populated cities in 2025. Another setup is time step intervals, which are the intervals at
which the states are calculated are 50 ms, 100 ms (default), and 1s, and the paper has a
comparison between the three. You need to set the network device rate. The bandwidth
is set to 10 Mb/s for both the ground satellite and the inter-satellite network devices.

The report of the results of the scenario is presented in the following.

Results on RTT fluctuations:

It shows how the end-to-end RTTs vary over time. These experiments use the Kuipler
K1 shell, which consists of 34 orbits and 34 satellites for each orbit, and operates at the
height of 630 km and an inclination of 1.90 degrees. The analysis is run for 200 seconds
and time resolution is 100 ms and the shortest path is computed using the Floyd-Warshall
algorithm. They examined an end-to-end path from Rio de Janeiro in Brazil to Saint
Petersburg in Russia. Fig 2.2 shows the result.

The x-axis is the elapsed time and the y-axis is the RTT. If you look at the blue line,
st t=33 s, the path has changed, and the fluctuation is due to these path changes over
time. At t = 166 s the path has a disruption, which is shown as the pink in the plot. In
this period, Saint Petersburg does not have any visible satellites at sufficiently high angle
of elevation, so the network path is disconnected. At the end, in ns3, a TCP newReno
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Figure 2.2. RTT fluctuations (reproduced from [36])

flow between the two locations is run. The TCP RTTs fluctuate over time (green curve),
because of the changing of the queuing delay.

Congestion control, absent congestion

How does the congestion control work when the path is changed? First, the setting is
congestion-free. The network is free and the one which is measured is only one sending
traffic. In Fig 2.3, you can see the TCP congestion window.

Figure 2.3. TCP congestion window evolution (reproduced from [36])

This time, the x-axis is the elapsed time and the y-axis is the number of packets.
The instantaneous Bandwidth Delay Product (BDP) plus the queue capacity, that is
BDP+Q, is shown at each point in time. This is the maximum number of packets that
can be transmitted without drops. Note that there exists one bottleneck. During pe-
riods when the product of the BDP and the number of packets in transit (Q) remains
stable, TCP exhibits a predictable pattern of behavior. It consistently reaches this sta-
ble threshold, leading to congestion and subsequent packet drops, prompting TCP to
reduce its transmission rate before gradually increasing it again. However, fluctuations
in the RTT, and consequently in the BDP+Q metric, cause TCP to adapt its behavior
accordingly. The disconnection is clear in the Rio de Janeiro to St.Petersburg.

The paper compares how loss-based and delay-based transport with the same experi-
ment. Moreover, to analyze constellation-scale behavior, they utilize the initially planned
deployments for Starlink and Kuiper, as well as the first shell for Telesat. They also inves-
tigate the configuration of the underlying paths. For each connection, they quantify the
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frequency of path changes throughout the simulation period. A path change is recorded
whenever the forwarding state computed in two consecutive time steps indicates different
satellites comprising the path. They aggregate these path changes across connections and
analyze their Cumulative Distribution Function (CDF). Furthermore, for each connec-
tion, they compute both the maximum and minimum number of satellite hops observed
within the path throughout the simulation duration.

In addition to examining the structure and latency of paths and the response of indi-
vidual TCP connections, the aim is to understand the outcomes of interactions between
traffic flows within such networks. To achieve this objective, they conduct a straightfor-
ward experiment involving the transmission of long-running TCP flows between pairs of
ground stations over their shortest paths.

2.1.4 Space Networking Kit (SNK)

SNK, is a novel networking platform for LEO mega-constellations, presented in January
2024.

SNK empowers constellation manufacturers and network operators to gauge network
performance across diverse constellation options. Through SNK, users can easily con-
struct complex scenarios via configuration files with a single bash command, facilitating
evaluation and visualization of communication processes. Through the utilization of
SNK, assessments and comparisons are carried out between the shortest-path and least-
hop routing algorithms. This process enables the extraction of valuable insights crucial
for optimizing mega-constellation networks.

Availability

The paper [32] mentioned that the simulator will be available open source, to help re-
searchers evaluate their experiments. Nothing except this paper is available so far.

Platform scenario and workflow

SNK includes 4 main modules. They are SNK-Scenario, SNK-Visualizer, SNK-Server,
and SNK-Analyzer. SNK scenario is used to generate data for the satellite network. The
elements such as ground stations, links, satellites, mobile stations, etc. SNK-Visualizer
is used to visualize the scenario. Developed in Cesium, and is a Java web application.

SNK-Server is a network simulator based on Python, that facilitates synchronous
data transmission with SNK-Visualizer via its Application Programming Interface (API)
subsystem. SNK-Analyzer is used to visualize the statistics such as latency of the end-
to-end path and path stretch rates. Fig 2.4 shows an overview of the workflow in SNK.

In the SNK-Server, there exist several procedures. The main procedures are edge2Edge,
conTest, asyncReplay, replay, and "axInstruction. The edge2Edge procedure is the pro-
cedure that performs the communication process between the edge points (nodes), which
can be ground stations or mobile stations. When this procedure is active, a time stamp
and a network policy will be activated and it will be run in 5 steps to find the best
route and establish the communication. At the end, the procedure information will be
kept in a .ins file as the instance data. The conTest procedure is used to establish a
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Figure 2.4. Workflow of SNK (reproduced from [32])

communication link between any 2 satellites. When this procedure is activated, a routing
algorithm and a time list will be initialized, and by doing 6 steps, the communication
is established. At the end, the procedure information will be kept in a .ins file as the
instance data. AsyncReplay procedure is used to visualize the animation of the packet
list and event list by converting the corresponding data. The replay procedure is used
to enable collaborative debugging with external programs through the API subsystem.
AxInstruction is a procedure utilizing the acquired *.ins file to replay its process.

Example scenario

To showcase how SNK enhances routing algorithms and satellite network optimization,
they utilize SNK to assess and contrast the efficiency of the Dijkstra routing algorithm
in intercity scenarios. This allows to gain valuable insights into enhancing constellation
design for better edge-to-edge network performance. The findings underscore the sub-
stantial influence that deliberate choices of routing algorithms and network configurations
can exert on communication dynamics, including factors such as latency, path elongation,
throughput, and network capacity.

2.1.5 Satellite Network Simulator 3 (SNS3)

SNS3 was introduced in 2014, as a modular and flexible satellite model built upon the
open source Network Simulator 3 (NS-3) [28], incorporating DVB-S2 and DVB-RCS2
specifications for forward and return links, respectively. The simulator is still under de-
velopment. It was initially developed by Magister Solutions under ESA contract. SNS3
is a scalable and fast open source packet/system level network simulator for networking
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research and development [31]. SNS3 simulates interactive multi-spot beam satellite net-
works featuring geostationary transparent star payload. It is used to perform simulations
for a full-fledged system that is also used to perform protocol interactions. In terms of
scalability, capable to carry out large-scale network simulations in an efficient way.

Availability

There exist two versions of SNS3. The first version is Magister internal version, which
is used and developed in the research and development projects and is used to provide
commercial services to the customers. The second version is an open source version hosted
by the french space agency CNES.

This is the websites [16], and the GitHub link for the open source version [12], to
access the source code and install. It has a nice documentation available [29].

General architecture of SNS3

The architecture of the satellite module comprises models for various components such
as user terminals, satellites, gateways, network control centers, terrestrial nodes (end
users), and their interactions. Each satellite node requires a new implementation of a
NetDevice called SatNetDevice, inheriting from the NetDevice class, which incorporates
logical link control, medium access control, and physical classes tailored to each node’s
specifications. Additionally, a new implementation of the channel class (SatChannel) is
necessary to support signal power calculations for satellite systems.

For terrestrial links, the access technology (behind user terminals or gateways) can
vary and may include options such as point-to-point, CSMA, or WiFi, with current helper
structures assuming CSMA. The network control center is modeled as a shared module
among all gateway nodes.

The satellite module accommodates both spherical and geodetic coordinate systems
(WGS80 and GRS84) for latitude, longitude, and altitude, in addition to the default
Cartesian coordinate system. Introducing a new coordinate system is essential for satel-
lite domain nodes (user terminals, GEO satellites, and gateways). It supports both
ground station-to-satellite and satellite-to-satellite communication. Fig 2.5 shows the
architecture of this simulator.

Figure 2.5. General architecture of SNS3 (reproduced from [16])
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Other features

Key features encompass [16] first the simulation of the physical channel. The simulator
can simulate land mobile satellite channels, Free Space Loss (FSL), propagation delay
as well as antenna gain patterns, receiver power calculation, weather traces, noise, link
budget parameters, and error modeling. In terms of Medium Access Control (MAC), In
forward link, FWD link scheduler, and baseband (BB) frame container can be modeled
as well as simulation of random access (slotted ALOHA, contention resolution diversity
slotted ALOHA (CRDSA) in return link. Related to Logical Link Control (LLC), mod-
eling of GSE encapsulator, RLE decapsulator, Automatic Repeat Request(ARQ), and
packet queues in the forward link plus DAMA request manager, RLE encapsulator, GSE
decapsulator, ARQ, and packet queues on the return link. It is capable of simulating
packet classifier, and mapping Differentiated Services Code Point (DSCP) to flow iden-
tifiers. Modeling satellites is another feature. Transparent star, non-flexible payload can
be modeled. In terms of Network Control Centre (NCC), it can model RTN link burst
scheduler in return link. The simulator is capable of modeling the network layer. Model
IPv4 and IPv6 , plus Internet message protocol (ICMP) and the support of Mobil IP and
Open Shortest Path First (OSPF) through Direct Code Execution (DCE) framework of
NS3.

SNS3 can model transport layer. Support of modeling TCP, UDP and stream con-
trol transmission protocol. Traffic models include modeling Hypertext Transfer Protocol
(HTTP), Near-Real Time Video (NRTV), and Constant Bit Rate (CBR). Statistics,
which is the support of calculation of the throughput, delay, error probability, Signal-
to-Interference-plus-Noise Ratio (SINR), frame load, signaling load, requested resources,
and granted resources, etc. Terrestrial network modeling encompasses modeling Wi-Fi,
CSMA, Point-to-Point, LTE, Wimax. SNS3 can be integrated with a real-life testbed
environment, achieved through specialized network layer to device interfaces. This in-
tegration enables the connection of the simulator to the network interfaces of the host
machine, leveraging features inherent to ns-3 and ensuring compatibility with real net-
work protocols like IP.

Example scenario implemented in SNS3

A simulation campaign was conducted to showcase example statistics derived from SNS3 [16].
The simulation case involved a single simulated spot-beam with a variable number of user
terminals , each representing one end user, and varying traffic loads. The spot-beam was
configured with a 125 MHz bandwidth in both forward and return links. The number of
user terminals ranged from 25 to 250, with each user terminal offering a load of 1-3 Mbps
CBR in either the forward or return direction. Key Performance Indicators (KPIs) such
as spectral efficiency and average user throughput were collected. Channel conditions
were modeled using channel (weather) time traces.

Example simulation results from SNS3 in the FWD link are shown in Fig 2.6 and in
return link in Fig 2.7. The scenarios are the same, except in the RTN link, the frame
configuration is different. These are the configuration for the RTN link:

1- 625 KHz carriers (in total 200 carriers)
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2- 1.25 MHz carriers (in total 100 carriers)
3- 2.5 MHz carriers (in total 50 carriers)

FWD link

The maximum spectral efficiency in the FWD link, with a 125 MHz bandwidth, reached
saturation at 3.3 b/s/Hz. This reflects the advantages of Adaptive Coding and Modu-
lation (ACM), as well as the high probability of favorable channel conditions (Line-of-
Sight), leading to a high likelihood of using 32APSK, which is the MODCOD with the
highest efficiency. The FWD link was able to support more than 250 users at 1 Mbps,
approximately 200 users at 2 Mbps, and around 125 users at 3 Mbps, with no significant
degradation in user throughput.

Figure 2.6. Spectral efficiency and throughput in FWD link (reproduced from [16])

Figure 2.7. Spectral efficiency and throughput in RTN link (reproduced from [16])

RTN link

The spectral efficiency of the RTN link stabilizes at approximately 1.7 b/s/Hz. This
indicates a predominant utilization of 16QAM, the most efficient MODCOD in the RTN
link. Comparatively, the spectral efficiency of the RTN link is notably lower than that
of the FWD link. This discrepancy arises due to several factors which are the utilization
of 16QAM instead of 32APSK in the FWD link, the presence of carrier spacing in the
RTN link to prevent interference between consecutive carriers, and the limitation of UT
scheduling to a single carrier at a time, thereby restricting peak throughput for individual

26



2.1 – Simulators

user terminals. However, even with narrower carriers, the system maintains the same peak
spectral efficiency when the number of user terminals is sufficiently increased.

2.1.6 OS3 OMNET++

OS3 [14], is an open source satellite simulator based on OMNET++, which was developed
at the Communication Networks Institute in TU Dortmund, Germany. Its initial commit
on GitHub was on 14th August 2013, and the development was finished in 2015.

OMNET++ is an extensible, modular, and component-base C++ simulator library
[13]. It is expandable and easily adaptive. It is not objected to a special satellite system,
but it can be used for arbitrary constellations, so it can be deployed for a variety of
applications. The integration of up-to-date TLE files (a collection of parameters detailing
a satellite’s position over time), altitude (height above sea level), and live weather data
gives good end effective connections.

Although OMNET++ has a clear website and documentation and tutorial, unfor-
tunately, It does not have any specific specifications for OS3, and the website link is
unreachable on the date of this thesis.

OS3 is used for systems-level simulation and testing procedures. Complementing the
INET framework which allows the release under public license as well as a platform
independent-implementation. Its focus has been on satellite mobility, satellite constella-
tions, and the inclusion of weather data and channel models, but not on satellite commu-
nication protocols. The simulator is an event-driven, reliable TCP/IP stack with close to
real systems networking models and it is often used as a reference for academic works.

OS3 enables testing new protocols or satellite orbits and evaluating the resulting
performance pertaining to SNR, bit error rate, packet loss, round trip time, jitter, reach-
ability, and other measures [37]. Os3 features a graphical user interface, including visu-
alization options. It can be used to transfer VOIP over a satellite transmission.

Architecture

As the main goal of OS3 is to provide a modular simulation framework for a variety of
satellite signal evaluation processes, the class hierarchy is also designed respectively. It
includes a graphical user interface based on Java to help simulate set-up processes for the
user.

Input

Inputs of the simulation include user-specific parameters which the user may select the
satellites and parameters of interest for the whole simulation setup (for example fu-
ture Galileo constellation, ordinary dipole receiver, and heavy rain). Simulation-specific
parameters, up-to-date TLE data, up-to-date position-specific weather data, and high
resolutive elevation data.
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Figure 2.8. Visualization of OS3 simulation (reproduced from [37])

Output

Outputs of the simulation include visualization. There are two kinds of views, "sky-
view", and "map-view" as well as channel properties. Channel properties that can be
under analysis are signal-to-noise ratio and FSL. Another output relates to constellation
setup. This refers to the distance of the satellite to the receiver and the elevation or
azimuth of the satellite moving.

Link budget analysis

To evaluate the quality of the received satellite signal, link budgets are used. To calculate
the signal-to-noise ratio

(︂
C
No

)︂
, transmitter power and transmit antenna gain as well as

receiver antenna characteristics need to be defined by the user for the given case and then
free space loss can be calculated with the following formula:

FSL =
(︃4πd

λ

)︃2
(2.1)

with the atmospheric influences, atmospheric loss can be calculated as well. In addition,
to consider the performance of the receiver equipment, figure of merit is used. The figure
of merit depends on the antenna noise temperature, here is the formula.

GR
TS

(2.2)

Where the GR is the receiver antenna gain and Ts is the noise temperature of the system.

Performance evaluation of OS3

In [37] is expressed that experimental and simulation tests were conducted to validate
satellite movements, comparing real-world and simulated positions provided by DLR who
is a German aerospace center, which involves storing first and last visible points of each
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pass, considering time, elevation, and azimuth. Direct comparison using == operators
is impractical due to inherent inaccuracies, so testing code verifies differences within
specified tolerances. Fig 2.9 illustrates the probability density function of deviations in
azimuth and elevation for the International Space Station (ISS) from 2012-09-15 to 2012-
09-21, showing similarity between simulated and actual data. Further validation scenarios

Figure 2.9. reproduced from [37]

are conducted to corroborate simulation accuracy, with similar results observed across
different time frames despite inherent limitations.

Additionally, simulated channel characteristics were compared with actual measure-
ments using high-end GPS receivers for experimental validation.

Example scenario implemented in OS3

As an example, [37] shows an example scenario involving using OS3 to simulate a voice
transmission over a satellite. In this scenario, it is assumed that all the terrestrial networks
are unavailable or damaged. The challenge lies in ensuring connectivity and assessing the
impact of signal degradation factors like shadowing and diffraction on voice transmissions.
The simulation, coupled with OMNeT++, evaluates SNR to calculate Packet Error Rate
(PER), crucial for assessing the usability of satellite links for voice communication. To
generate voice packets, as you can see in Fig 2.10, OMNET++ is used which is coupled
with OS3 to get an estimation of the current SNR. Based on the SNR, the PER is
determined, indicating the satellite link’s suitability for voice communication. Jitter,
caused by internal buffering, is addressed by increasing packet size to reduce its impact.
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Figure 2.10. Communication model used in OMNET++ (reproduced from [37])

2.1.7 QualNet

It was developed in 2000, and it is still under development, developed by Scalable Net-
work Technologies, Inc. It is widely used for modeling, simulating, and analyzing the
performance of communication networks, especially in scenarios where communication
endpoints, such as mobile phones, vehicles, aircraft, or satellites, are constantly changing
their position relative to each other or to fixed infrastructure. QualNet can be used in
modeling satellite networks. Paper [1] aims to tackle the network modeling challenge by
integrating an open source satellite mobility model called SatMob into the QualNet net-
work simulation tool. This integration specifically targets LEO/MEO satellites, enhanc-
ing the simulation capabilities of QualNet in the context of satellite-based communication
networks.

Availability

QualNet is a commercial simulator.

QualNet’s architecture

Fig 2.11 shows the architecture of the QualNet’s platform. As can be seen, it consists
of a command line interface, as well as a graphical user interface. The graphical user
interface provides a range of visualization tools to aid in understanding and analyzing
network behavior during simulation. It has the ability to visualize different types of
packet flows as the scenario runs. This feature allows users to observe the movement
of data packets through the network in real-time, providing an operational view of how
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the network is functioning. Additionally, dynamic statistics can be displayed while the
scenario is running. These statistics provide real-time information on various performance
metrics such as throughput, packet loss, delay, and others. By monitoring these dynamic
statistics as the simulation progresses, users can gain insights into the performance of the
network under different conditions and identify any potential issues or bottlenecks.

Figure 2.11. Architecture of QualNet (reproduced from [26])

QualNet offers extensive capabilities for post-simulation analysis through its analyzer
tool. QualNet’s analyzer allows users to plot hundreds of metrics post-simulation. This
feature enables detailed analysis of various performance parameters such as throughput,
latency, packet loss, path loss, connectivity among nodes, and more. Users can visualize
the behavior of these metrics over time or across different simulation scenarios to gain
insights into network performance. QualNet enables the generation of detailed time-
stamped tables in an SQL database. These tables contain comprehensive information
about the simulation, including metrics such as connectivity among nodes, throughput,
latency, path loss, packet drop, and others. QualNet allows for seamless integration with
third-party tools such as Tableau. Users can export data from the statistics database into
formats compatible with external analysis tools like Tableau. This enables the creation of
advanced reports, visualizations, and dashboards for in-depth analysis and presentation
of simulation results.

QualNet offers versatile interfaces to enhance user interaction and integration with
other simulation environments such as: Human-In-The-Loop (HITL) interface and VR-
Link interface. QualNet’s HITL interface allows for dynamic interactions during a simu-
lation. Users can modify the operations of a running scenario in real-time by activating
or deactivating nodes, adjusting traffic rates for specific applications, or making other
changes through the interface.

The QualNet VR-Link interface enables seamless integration with other construc-
tive simulators, virtual reality applications, and Computer-Generated Force (CGF) tools.
This interface supports industry-standard protocols such as High-Level Architecture (HLA)
or Distributed Interaction Simulation (DIS), allowing QualNet to network with external
simulation environments like OneSAF Testbed Baseline (OTB) and One Semi-Automated
Forces (OneSAF). Through VR-Link, QualNet can exchange data and synchronize simu-
lation events with these external tools, enabling interoperability and collaboration across
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different simulation platforms.

QualNet’s example scenario

A typical scenario [26] is comprised of nodes, links, environment, mobility patterns and
applications, and other sources of traffic operating on the network. Nodes represent the
various network elements and endpoints that are part of the simulated network. These
nodes can include a wide range of devices and components such as routers, switches,
radios, sensors, PCs, servers, satellites, ground stations, mobile phones, access points,
and more plus the protocols running on them. Links, connect the nodes in different
types, buses, LAN segments, radio transmissions, Wi-Fi signals, LTE connections, etc.
The environment in which the network operates (indoors, rural, or urban environment,
weather, etc), and the mobility patterns (if any) of the communication devices.

2.1.8 GSSF (The Galileo System Simulation Facility)

It was developed in 2004 and its last update is on 30 September 2010. The simulation’s
environment is designed to replicate the functional and performance characteristics of the
Galileo system, offering inherent flexibility to cater to the system’s simulation require-
ments throughout its entire program life cycle. Primarily, it focuses on providing global
coverage analysis for the upcoming Galileo navigation system. It was developed on be-
half of the European Space Agency (ESA)/ESTEC, in collaboration with other partners
involved in the program.

Availability

GSSF is not an open source software. No GitHub, specifications and software are avail-
able.

Features

It takes as input the start date and time (constellation reference time), simulation dura-
tion, time step, Galileo constellation, and GPS Constellation. GSSF SVS enables users
to evaluate key performance indicators such as visibility, coverage, geometry, Dilution
of Precision (DOP), navigation precision, integrity, and service (including critical satel-
lites) on both global or regional grids and individual positions. Additionally, it provides
associated metrics like availability and continuity figures for comprehensive assessment.

GSSF V2.0 offers support for performance analyses and early validation of ground
segment algorithms. Additionally, it provides GPS/Galileo global interference analysis,
Link Budget, and error budget analysis. With the export feature, users can ingest data
produced by GSSF into other tools like RINEX/IGSSP3 for further analysis. GSSF of-
fers a reporting feature allowing users to export simulation configuration reports in RTF
and PDF formats. This feature enables the auto-generation of comprehensive documents
containing the complete simulation/scenario definition and parameter settings for easy
documentation and sharing. GSSF offers a modern and flexible user interface featuring
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context-sensitive elements like the property grid, along with 2D and 3D figures for en-
hanced visualization and usability. Fig 2.12 shows an example of the GSSF User Interface.

Figure 2.12. The GSSF user interface (workspace view)(reproduced from [6])

Example scenarios

• Coverage analysis subject to ground station failures: GSSF offers a coverage
analysis that calculates the number of ground stations globally visible from each
satellite position throughout the simulation period, typically displayed on a global
map. Two simulations were conducted over ten days: the first with all specified
Uplink Stations (ULSs) operational, and the second assuming the failure of ULS
Hartebeesthoek. As a result, the visibility cone associated with this ground station
disappears over South Africa in the second simulation, reducing the depth of cover-
age by one station in this area. This analysis aids in identifying regions where the
density of the ground station network is insufficient for global coverage and informs
station location configuration decisions.

• Independent integrity path coverage analysis: The independent integrity
path coverage analysis in GSSF evaluates the number of available independent
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integrity paths globally or regionally during each time step. It assesses whether
satellites are within the control range of the ULS network and can receive integrity
information. This analysis aims to identify regions with limited independent in-
tegrity paths, impacting the availability of Galileo integrity. By considering the
reference Galileo constellation and ULS network, the analysis reveals the distribu-
tion of independent integrity paths across different regions. For example, Europe
demonstrates coverage from 4 independent integrity paths, while South Africa main-
tains a minimum of 2. [6]

2.1.9 OPNET

It was developed in 2005 and It is still under development. It can be used to simulate
any type of network [34]. For systems-level simulation and testing procedures, OPNET
offers robust capabilities for modeling communication nodes, links, and network models
of satellite communication systems efficiently and effectively. OPNET supports various
types of nodes, including fixed, mobile, and satellite nodes, with the flexibility for one
node to support multiple types simultaneously. Data generation and processing within
nodes are seamlessly integrated into OPNET, facilitating comprehensive simulation. The
node editor feature allows easy construction of the internal structure of nodes, enabling
modeling of on-the-ground gateways, satellite communication nodes, and routing nodes.
OPNET also provides several pipe phases to simulate the transmission process of actual
data frames in the channel, enhancing the accuracy of simulation results. They mentioned
that they developed more than 80 projects and the strength of OPNET is the flexibility,
reliability, scalability, and mobility access. OPNET does not support mega-constellation.
It can be used both for research and educational purposes.

Availability

OPNET is a free and open source software. The website [34] and the specifications are
available.

OPNET features

In terms of modeling capabilities, the tool boasts a straightforward yet robust modeling
approach, employing a hierarchical network model alongside support for finite state ma-
chines. Furthermore, it offers a hybrid modeling mechanism and operates as a fully open
system, ensuring adaptability and versatility for users.

In terms of analysis tools, this software provides specialized applications tailored
for statistical analysis, facilitating interactive exploration of data. Users benefit from
graphical specifications and animation functionalities, enhancing their ability to visualize
and interpret results effectively.

Referring to customization and integration, the tool excels with an API, empowering
users to develop custom models with unparalleled flexibility. Specialization in network
and systems enables tailored solutions to complex problems, while automatic simulation
generation streamlines workflow processes for increased efficiency.
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2.1.10 General Mission Analysis Tool (GMAT)

It was developed in 2007, the last version is R2022 and it is still under development. It
is not suitable for simulation of terrestrial networks. It works like MATLAB. It is used
for mission planning and orbit propagation analysis and optimization for satellites, being
under development by NASA [38] and is used for real-world mission support, engineering
studies, as a tool for education, and public engagement [33]. It offers a robust visualization
tool tailored for modeling and analyzing missions, particularly focusing on space missions
within earth’s orbit or the solar system. GMAT supports a graphical user interface. It
can be used both for education and research purposes. Users can interact with it using a
scripting language similar to the MATLAB system.

Resources, which are objects in programming languages with properties, can be tai-
lored to fulfill the requirements of specific applications and missions within GMAT. These
resources encompass a wide array of functionalities, which can be categorized into physical
model resources and analysis model resources.

Physical resources comprise spacecraft, thrusters, tanks, ground stations, formations,
impulsive burns, finite burns, planets, comets, asteroids, moons, barycenters, and libra-
tion points.

Analysis model resources consist of differential correctors, propagators, optimizers,
estimators, 3D graphics, x-y plots, report files, ephemeris files, user-defined variables,
arrays, strings, coordinate systems, custom subroutines, MATLAB functions, and data.
Commands within GMAT function akin to functions in programming languages, enabling
users to execute various operations. The capability for evaluating communication link
performance in GMAT is limited. Moreover, GMAT features analysis "objects" including
propagators, plots, and reports.

Availability

GMAT is open source, extendable and customizable. The specification, GitHub, and
website links are available.

Features [18]

GMAT offers external interfaces to MATLAB and Python, allowing for the execution of
MATLAB functions within simulations. It finds application in orbit design and optimiza-
tion, event detection and prediction, maneuver planning and calibration, fuel consumption
monitoring, navigation, and more. It facilitates spacecraft mission design and navigation.
GMAT provides full mission life-cycle support.

It enables optimized maneuver and trajectory design. Furthermore, supports opera-
tional orbit determination with measurement simulation capability.

Example scenarios implemented in GMAT

The first scenario is about mission simulation. The mission is to discover the presence
of water in permanently-shadowed creators at the lunar south pole. The goal is optimal
lunar flyby to perform phasing and plane change resulting in lunar impact.
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The second example scenario is "safty ellips relative motion simulation". This shows
a leader spacecraft, and a follower spacecraft, we want to design the relative motion such
that if you lose control of the follower, it does not impact the leader.

2.1.11 Gpredict

It was developed in 2007, while the last release on GitHub was on January 21, 2018, and
the last update was in 2022. Gpredict is a program for the Linux desktop that provides
real-time satellite tracking and orbit prediction. It utilizes the SGP4/SDP4 propagation
algorithms along with NORAD TLE to achieve this functionality.

Availability

Gpredict is open source, licensed under the GNU General Public License [23], with the
specification available [7], website and GitHub are available as well.

Features

Key functionalities of Gpredict include utilizing multiple ground stations, predicting up-
coming passes, displaying tracking data through various formats such as lists, maps,
polar plots, or any combination thereof, the tracking numerous satellites, limited only
by the computer’s memory and processing capabilities. Supporting multiple modules si-
multaneously, whether within a notebook or in separate windows, including the option
for full-screen mode. It can be adapted to provide information in both real-time and
non-real-time modes. It is capable of operating in real-time, simulated real-time (with
fast forward and backward options), and manual time control modes. It enables Doppler
tuning of radios and the last feature is facilitating control of antenna rotators.

Figure 2.13. An interface of Gpredict tool (reproduced from [7])
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2.1.12 NS2

It is a very old network simulator released in 1989, it is not under development anymore.
NS2 is not a finalized and refined product, rather, it is the outcome of continuous research
and development efforts.

NS2 is a discrete event simulator that offers significant support for simulating TCP,
routing, and multicast protocols across wired and wireless networks, including both local
and satellite networks. One drawback of NS2 is its absence of a graphical user interface,
requiring users to navigate through a complex TCL script-based configuration. NS2 sup-
ports MAC, link layer, routing, and transport protocols. It is used in research objectives.

Availability

NS2 is available in open source, while the specification, website and source code are
available as well [30].

Other Features

NS2 provides network emulation capabilities, allowing for the simulation of various net-
working scenarios and protocols. It facilitates the generation of network topologies, en-
abling users to create diverse and realistic network structures for simulation purposes. It
provides meaningful studies of networking issues such as protocol interaction, congestion
control, and scalability, requiring simulation of appropriate scenarios. NS2 supports the
creation of scenarios encompassing topology size, density distribution, traffic generation,
and more, allowing for comprehensive analysis. Another feature is topology animator.
NS2 includes "Nam", a Tcl/TK-based animation tool for visualizing network simulation
traces and real-world packet traces. Nam supports features like topology layout, packet-
level animation, and various data inspection tools, enhancing the simulation experience.

Example scenarios implemented in NS2

Extensions within NS2 enable the simulation of satellite networks, allowing NS2 to model
the traditional geostationary "bent-pipe" satellites with multiple users per uplink/down-
link and asymmetric links, geostationary satellites with processing payloads, including
regenerative payloads or full packet switching capabilities, polar orbiting LEO constella-
tions like Iridium and Teledesic.

2.2 Emulators

2.2.1 Advanced IP Network Emulator (AINE)

AIEN is an IP network emulator that was developed in 2008 and is still under develop-
ment.
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Use-case

AIEN serves as emulation software designed to construct a laboratory environment for
real-time performance characterization of networks and systems, with a particular focus
on satellite communication systems. While initially conceived for satellite network em-
ulation, AIEN functions as a generic IP emulation tool capable of emulating link layer
algorithms as well. This versatility allows AIEN to accommodate various network configu-
rations and system architectures, making it a valuable tool for evaluating the performance
of both satellite and terrestrial communication systems.

Availability

AIEN is a commercial emulator. The GitHub, specification and websites are not available.

Features

AIEN was designed for the emulation of the satellite packet systems, the emulation of
connection-oriented networks, and the emulation of different encapsulation schemes for
DVB-RCS networks. In AIEN, on-demand custom-made modules are available.

It is scalable. AIEN’s modularity and non-proprietary nature enable easy expansion
with new block types and functions, making it adaptable to diverse testing scenarios.
Additionally, it is based on an open source platform, so it facilitates cost-effective imple-
mentation of custom modifications to the standard IP protocol suite. AIEN is built using
C/C++ language and operates on a Linux platform, leveraging open source software
for optimal performance. Its architecture is optimized to maximize efficiency, ensuring
streamlined IP packet handling and inter-block communication. It can emulate layer
two protocols, although the external interfaces are at IP level. The emulator simulates
the encapsulation of IP packets on lower layer protocols which are used on DVB-RCS
networks.

AIEN’s emulation library features blocks to simulate common communication link
impairments like delay, asymmetric bandwidth, bit errors, and packet errors. These im-
pairments allow for thorough testing of network performance under realistic conditions,
ensuring system reliability. AIEN supports a distributed architecture for handling com-
plex systems, allowing emulation models to be subdivided into independent subsystems.

2.2.2 OpenSand (PLATINE)

OpenSand was developed in 2005 and the GitHub activity shows that it is still under
development. Its objective is to provide an engineering tool and a research tool that is
capable of validating access and network functionalities. It can provide analysis tools and
measurement points for performance evaluation. It also ensures connectivity with actual
networks and applications for demonstration purposes [3]. The key factors of this platform
are its user-friendly operation, flexibility to meet scientific needs, easy addition of new
features, provision of various measurement points, and comprehensive documentation.

38



2.2 – Emulators

Availability

OpenSand is an open source free satellite network emulator. Its specifications, GitHub
link and website are available.

Features

OpenSand supports network-to-network interconnections. Furthermore, it supports IPv4,
IPv6 and ethernet connectivity. It is able to link with physical equipment and diverse
IP-based networks, spanning terrestrial, satellite, or internet backbone setups. It can
map IP-to-MAC queue. OpenSand is capable of implementing the Quality of Service
(QoS) architecture to provide differentiated QoS on a satellite network.

An example scenario

The depicted scenario in Fig 2.14 offers a comprehensive view of an architecture than
can be implemented in OpenSand. The left side represents the end-user aspect, while the

Figure 2.14. OpenSand example scenario (reproduced from [3])

right side depicts the provider/enterprise/internet aspect. Additionally, a distinction is
made between the satellite network side (in the middle) and the IP network sides (on the
left and right ends), which are interconnected by satellite terminals.

It comprises a geostationary satellite network equipped with onboard switching capa-
bilities, utilizing Ka MF-TDMA (Multiple Frequency Time Division Multiple Access) for
uplinks and Ku TDM (Time Division Multiplexed) for downlinks. With regenerative ca-
pabilities, the satellite enables direct interconnection between end users with just a single
hop. Satellite Terminals grant access to the network for individual PCs or LANs, while
Gateways facilitate connections to internet core networks. Uplink access from each RCST

39



Satellite simulation analysis

is managed through DVB-RCS interfaces. Both Stations and gateways act as boundary
devices between satellite and terrestrial links, crucial for ensuring QoS provisioning by
efficiently utilizing satellite resources. These devices implement IP routing and possess
an IP interface on the satellite segment, highlighting IP as the common protocol bridging
the satellite and terrestrial networks. Consequently, the satellite network is perceived as
a distinct link within a traditional network framework.

2.3 Real testbeds

2.3.1 OPENC3

It was founded in June 2022, and it is still under development. OPENC3 comprises a
suite of applications designed for managing various embedded systems. These systems
encompass a wide range, including test equipment like power supplies, oscilloscopes, and
switched power strips, as well as development boards such as Arduino, Raspberry Pi,
Beaglebone, and even satellites.

Availability

The tool is available both open source and in the commercial version, as an enterprise
edition. The specification is available as well as the GitHub [10] for the source code and
the website link [15].

Features

OPENC3 COSMOS is a tool for integration, testing and operations. In the case of
working with satellite systems, the live satellite data can be tracked. Anything with a
software interface can quickly be connected to COSMOS. TCP, UDP, Serial, MQTT and
more are ready to go out of the box. It is the glue that allows you to interconnect and
coordinate all the different pieces of the system and is perfect for companies of all sizes.
You can command and control the satellites from the web browser of your PC. It has a
GUI as well.

2.4 Comparison among satellite network simulators

In this section, we will present a summary of the simulators in different tables with some
of their properties in order to group and summarize them.

In the Table 2.1, the first column is the name of the simulator that was presented in
this thesis. The second column is the published year, which is found in the published
paper or on their website. The third column discusses whether the simulator is still
supported, updated, bug fixed and under development. If yes, it is ✓, if not, it is -.
The forth column is the last update date, which for the open source simulators, can be
derived from their activities and updates on their GitHub, while for others by checking the
corresponding website and documentation. The next column expresses if the simulator
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simulator publish still last open document source
year under update source support code

develop date link
NS2 1989 - 2015 ✓ High [30]

OPNET 2005 ✓ - ✓ High [34]
OpenSand 2005 ✓ 2023 ✓ High [9]

GMAT 2007 ✓ 2022 ✓ High [18]
Gpredict 2007 ✓ 2023 ✓ High [8]

NS3 2011 ✓ 2024 ✓ High [28]
OS3 2013 - 2015 ✓ Low [14]

Hypatia 2020 ✓ 2022 ✓ High [11]
SNK 2024 ✓ - ✓ - -
SNS3 2014 ✓ 2023 two versions High [12]

open source-commercial
OpenC3 2022 ✓ 2024 two versions High [10]

open source-commercial
QualNet 2000 ✓ 2022 No Low

GSSF 2004 - 2010 No Low
AIEN 2008 ✓ - No Low
STK - ✓ 2024 No High

MATLAB 2021 ✓ 2023 No High

Table 2.1. The practice guidance of network simulators covered in this thesis

is available open source and free of charge. If yes, it is ✓, and the link to download is
available. If not, represented with No and without any link.

In the Table 2.2 expresses the general characteristic and use case of network simulators
covered in this thesis. The first column is the name of the simulators that are present in
this thesis. The second column is the programming language that is used to work with
the simulator. The third column is the supported operating system, which will be found
in the general requirements of the installation of the simulator. The last column briefly
shows the use case.

Table 2.3 presents the support for some of the key simulation functionalities of existing
simulators which was not mentioned in the previous tables.

The first column is the name of all the simulators in this thesis. The second column
is the protocols and the network layer which can be modeled using these simulators.
The third column, will define whether the simulator supports the simulation of mega-
constellations or not. If yes, it is ✓, if not, it is -. The last column identifies the support
of the simulator for the GUI.

The development timeline of the reviewed simulators in this thesis is shown in Fig 2.15.
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simulator programming supported use-case
language OS

NS2 NS scripts Linux multicast, TCP and routing protocol simulations
QualNet C++ Linux,Windows evaluation of mobile communication

Solaris,Mac networks, such as mobile phones,
vehicles, aircraft, or satellites

GSSF C, C++ Galileo system simulation
OPNET C, C++ Windows,Linux systems-level simulation and testing procedures

OpenSand C++ Linux simulate communication channels, protocol testing,
DVB-RCS, IPv6 network features,Voip

GMAT GMAT Syntax Linux,Mac, mission planning, orbit propagation analysis
Windows

Gpredict C,C++ Linux,Mac real time satellite tracking
Windows and orbit prediction program

AIEN C, C++ Linux generic IP emulation tool to
emulate link layer algorithms

NS3 C++, Python Linux,Mac
OS3 C++ Linux,Mac, satellite mobility, satellite constellations

Windows channel models, systems-level
simulation and testing procedures

SNS3 C++ Linux geostationary multi-spot beam satellite networks,
DVB-RCS2,DVB-S2 simulation

STK Java,C,C++ Linux,Windows, build and analyse satellite
.NET framework Mac on constellations, model performance of

STK cloud hybrid networks
Hypatia Python, C++ Linux routing and visualization of mega-constellations

MATLAB MATLAB script,C Linux,Mac, link budget analysis, visualization, routing,
C++, VHDL Windows channel modeling, protocol simulation and testing

OpenC3 commands Linux to control a set of embedded
systems, like satellites

SNK modules Linux optimizing satellite networks, routing
developed in via mega-constellations visualization,
Python-Java build large-scale complex scenarios

Table 2.2. General characteristic and use case of network simulators covered in this thesis
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simulator network support mega GUI
layer/protocols constellation module

MATLAB physical layer ✓ ✓
Hypatia packet level ✓ ✓

SNK edge of network ✓ ✓
STK physical layer ✓ ✓
NS2 link layer, routing, and transport protocols - -

QualNet almost all layers - ✓
GSSF Galileo satellite navigation system - ✓

OPNET almost all layers - ✓
OpenSand physical layer ✓

GMAT physical layer - ✓
Gpredict satellite tracking and prediction - ✓

AIEN IP, ethernet - ✓
NS3 network layer - -
OS3 physical layer - ✓
SNS3 network, link layer, packet level - -

OpenC3 command and control, no layers - ✓

Table 2.3. Key simulation functionalities of existing simulators

Figure 2.15. Development timeline from 1988 to 2024
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Chapter 3

Experimental/Numerical
evaluation

3.1 Methodology

• Execution time measurement
To see the execution time of running the code, which is the time the code needs to
be run on my PC, the tic − toc function of MATLAB is used. The tick is added at
the top of the code and the toc at the bottom of the code. This is not the CPU time.
The simulation has run 10 times, and the minimum and average time is considered.
Note that the CPU time is <= min execution time.

• Memory usage measurement
It is not easy to know exactly how much memory is used by the program when
running the code. The approach was to firstly, grabbing the process ID of MATLAB
using the pidofMATLAB command. Fig 3.1 shows the command with the result,
which is the process ID.

Figure 3.1. Outcome of pidof command

Then pmap is used. The pmap returns how a process is mapped in memory. The
following command returns information in 6 columns:
sudo pmap PID -x
Fig 3.2 shows the result of the pmap command. The columns are:
Address: The beginning memory address allocation
Kbytes: Memory allocation in Kilobytes
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Figure 3.2. Outcome of pmap command

RSS: Resident Set Size, is the portion of memory occupied by a process that is
held in main memory (RAM)

Dirty: Is memory representing data on disk that has been changed but has not yet
been written out to disk.

Mode: Access mode and privileges

Mapping: The user-facing name of the application or library

The last row returns the total in Kilobytes in three columns. The first number
is total amount of memory mapped to files, the second is the amount of private
address space and the third number is the amount of address space this process
is sharing with others. The memory map before running the code and then the
memory map during and after running the code was captured, then the difference
between the two was computed. Here are the exact commands were used:

– pidof MATLAB
– sudo pmap -x PID | tail -n 1

Memory allocation in MATLAB [27]
Memory allocation in MATLAB is quite sufficient for arrays. It stores the array
data into contiguous blocks of memory along with important information of class
and, in a header block. Header blocks bring overheads, but it is possible to reduce
the number of headers by consolidating large data into smaller ones. Although the
overhead is negligible for most arrays, still there could be some benefits.

When elements are removed, MATLAB maintains contiguous storage by compacting
the array within its original memory lactation.

Moreover, when new elements are added to an existing array, MATLAB maintains
contiguous by finding a large memory block, then copies the array content in the
new memory block and deallocates the original memory.
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• Workspace size
The whos function, returns the number of bytes each variable occupies in the
workspace. The following code example was used to return the size of the workplace
in Bytes:
ListOfVariables = whos ;
NumberOfBytes = 0 ;
for k = 1:length(ListOfVariables)

NumberOfBytes = NumberOfBytes + ListOfVariables(k).bytes;

Experimental setup
The computer on which the following numerical results have been obtained was

equipped with the processor Corei7, CPU @ 1.80GHz x 8, 8 GB of memory and was
running on Linux, Ubuntu 22.04.

3.2 Numerical results

3.2.1 MATLAB performance analysis

In this section, the scalability and performance of the satellite simulation toolbox are
under analysis. The goal is to analyze MATLAB satellite toolbox performance in terms
of execution time, memory usage and simulation duration, using a scenario in mega-
constellation system.

Scenario: Path selection through large satellite constellation

Overview of the scenario

In this scenario, two ground stations, one in Boston in the United States and the other
in India, will be connected through satellite constellations with different numbers of
satellites. A TLE file is used to add the constellation to the scenario. On the simulation
start time, the path will be determined and then we must determine the times over the
next hours (which is the simulation time) when the path can be used. After determining
the path, gimbals, transmitters, receivers, and antennas are added to the satellites in the
path and then we plot the link margin at the receiver antenna. Here is the input and
output objects and their properties used in this scenario:

Input objects

A satellite scenario is an object in the toolbox, which is a 3D arena consisting of satellites,
ground stations, and the interactions between them. Times are input, including start
time, stop time, sample time, and simulation time. All in Universal Time Coordinated
(UTC). You can set "auto simulate" to true or false, which is an option to simulate the
satellite scenario automatically. If false, the scenario will be running only by calling
the "advance" function. In our scenario, at the start time the "auto simulate" is false
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to prevent the scenario from advancing automatically through the time steps, when the
path is found, it will become true again. Satellites are another input. A satellite is an
object with properties such as name, ID, conical sensors, gimbals, and orbit object, etc.
To add satellite "satellite" function is used. For large constellations, a TLE file is used.

The Ground station is an input object. Ground station object has properties such as
name, ID, latitude, longitude, altitude, minimum elevation angle (values between -90 and
90 degrees, the minimum elevation angle for the satellite to be visible from the ground
station, and for the ground station to be visible from the satellite, specified as a scalar or
row vector [27]). To add ground station, the "groundStation" function is used. Auto show
setup is an option to show the graphics automatically. With the help of the graphics,
you can visualize the constellation and the path. Other inputs are gimbals, transmitters,
receivers, and antennas.

Output

The outputs are nodes of the path, tables, and link margin plot. After the nodes are
determined, you will output the satellites that are included in the path from Gs1 to Gs2.
Using the "link" object, which defines a link analysis object, the nodes in the path are
linked. Then it returns a table of intervals during which the times when ground station
Gs1 can send data to ground station Gs2 via the satellites. The columns of the table are
source (first node), target (last node), interval number, start time, end time, duration (in
seconds), start orbit (if the source or target are satellite or an object which is connected
to the satellite directly or indirectly, start orbit and end orbit are associated to that),
end orbit. At the end, the Eb/No in dB is calculated as [27].

EbNo = txPower + txAntennaGain − txSystemLoss − pathloss
+ rxAntGaintoNoiseTempRatio − 10 log10(K) − rxSystemLoss
− 10 log10(bitRate) − 60

(3.1)

where:

txPower is the transmitter power in dBW.
txAntennaGain is the transmitter antenna gain in dB.
txSystemLoss is the transmitter system loss in dB.
pathloss is the path loss in dB.
rxAntGaintoNoiseTempRatio is the receiver antenna gain to noise temperature ratio.
K is the Boltzmann constant.
rxSystemLoss is the receiver system loss in dB.
bitRate is the bit rate in Mbps.

The link margin is computed at the receiver, as the difference between "energy per bit to
noise power spectral density ratio (Eb/No)" and the "required EbNo". To be sure that
the link is closed between GS1 and GS2, the link margin must be positive at all receiver
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nodes. The quality of the link depends on the link margin, the higher the link margin,
the better the quality.

To determine the link margin at the final node which is ground station 2 receiver, the
Eb/No history at the ground station 2 receiver is computed and then subtracted from
the required Eb/No from this value to obtain the link margin. Then it can be plotted.

Explanation of the scenario in detail with the parameters used

To explain the scenario steps are used.

• Step 1: Create satellite scenario

Using the "satelliteScenario" function, the scenario will be created. Start time, end
time, and sample time are shown in the table shown in Fig 3.3:

Figure 3.3. Simulation parameters of the scenario

• Step 2: Add large constellation of satellites

Using a TLE file, different numbers of satellites are added for each experiment,
including 10, 20, 40, 80, 100, etc.

• Step 3: Add ground stations

Two fixed ground station are added, the parameters are shown in tables of the
Fig 3.4 and Fig 3.5:

• Step 4: Determine elevation angles of satellites concerning ground sta-
tions

Why this step is needed? Because for access to exist between two satellites, the
Line Of Sight (LOS) must exist. For access to exist between a ground station and
a satellite, the LOS must exist and in addition, the elevation angle of the satellite
and the ground station must be greater than the minimum elevation angle of the
ground station. So, we need to find the elevation angles of the satellite concerning
the source and target ground stations. It is assumed that for the initial routing,
the elevation angle of the first satellite in the path with respect to source ground
station and the last satellite in the path with respect to target ground station must
be at least 30 degrees. Therefore, the elevation angles greater than 30 degrees are
retrieved.

• Step 5: Determine best satellite for initial access to constellation
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Figure 3.4. Parameters of source ground station

Figure 3.5. Parameters of target ground station

Between all the satellites with elevation angles greater than 30 degrees, the best
ones will be chosen. But how? The best satellite needs to satisfy 2 conditions
simultaneously.

– Has the elevation angle greater than 30 with respect to source ground station
– Has the closest (minimum) range to target ground station

This satellite will be the first satellite in the path. Thus up to here, two nodes are
determined, the source ground station and the first satellite.

• Step 6: Determine remaining nodes in path to target ground station
Next nodes are chosen using similar logic. It needs to satisfy these conditions:

– Has the elevation angle greater than or equal to -15 degrees concerning the
current satellite

– Has the closest (minimum) range to target ground station

The elevation value of -15 degrees is chosen because the horizon with respect to
each satellite in the constellation is about -21.9813 degrees. This value can be
derived by assuming a spherical earth geometry and the fact that these satellites
are in near-circular orbits at an altitude of roughly 500 km. Note that the spherical
earth assumption is used only for computing the elevation angle of the horizon.
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The satellite scenario simulation itself assumes a WGS84 ellipsoid model for the
earth [27]. Other satellites will be added continuously to the pass until it reaches
a satellite whose elevation angle is at least 30 degrees with respect to the target
ground station. This is the last node and the routing is finished. Note that this is
not the shortest path between 2 ground stations.

• Step 7: Determine intervals when calculated path can be used
The intervals over the next hours during which the calculated path can be used
need to be determined.

• Step 8: Add gimbals, transmitters, receivers, and antennas to the satel-
lites of the path
When the path is determined, for each satellite involved in the path, the gimbals,
transmitters, receivers, and antennas are added. Fig 3.6 specifies the parameters.

Figure 3.6. Satellite parameters of the scenario in the determined path

Experiment results

The scenario is done for different numbers of satellites in the constellation, different
simulation times, 1-6-12-18-24 hours, and for each of them, 10 times to see the average
time. Note again that the time is not the exact CPU time, but the execution time of
executing the code in my PC, we can conclude that CPU time <= minimum execution
time calculated using tic − toc function in MATLAB.

Table 3.1 shows the minimum time and average time, when increasing the number of
satellites, and with a simulation duration of 1 hour. Time units are in seconds. When the
number of satellites increases, the times will increase as well. The number of satellites is
increased up to 4000 satellites in the TLE file.

Table 3.2 shows the minimum time and average time, when increasing the number of
satellites in a simulation duration of 6 hours.
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Simulation duration = 1 hour

number of sats min time(s) average time(s)
10 0.82 0.92
20 1.12 1.18
40 1.88 2.70
80 3.66 4.73
100 4.84 6.22
200 8.76 9.82
400 15.30 18.17
800 36.70 41.72
1000 39.56 43.30
1600 84.15 82.53
2000 117.84 108.20
3000 177.16 193.61
4000 315.42 327.56

Table 3.1. Min and avg time for simulation duration = 1 hour

Simulation duration = 6 hours

number of sats min time(s) average time(s)
10 2.94 3.92
20 3.42 4.34
40 5.03 6.70
80 9.68 12.02
100 10.89 14.13
200 19.82 22.08
400 38.26 44.81
800 87.25 91.84
1000 95.17 95.64
1600 155.95 170.61
2000 209.94 215.43
3000 344.51 359.79
4000 515.33 531.00

Table 3.2. Min and avg time for simulation duration = 6 hours

Table 3.3 shows the minimum times and average times, when increasing the number
of satellites in a simulation duration of 12 hours. Note that similar to other tables, when
the number of satellites increases, the times will increase as well.
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Simulation duration = 12 hours

number of sats min time(s) average time(s)
10 5.37 6.47
20 6.02 7.54
40 9.58 11.46
80 15.22 18.32
100 20.24 21.96
200 31.60 35.042
400 63.59 69.144
800 137.15 143.99
1000 153.21 155.43
1600 230.89 270.20
2000 357.26 369.30
3000 433.26 464.25
4000 707.75 741.00

Table 3.3. Min and avg time for simulation duration = 12 hours

Table 3.4 is similar to the Tables 3.1, 3.2, 3.3. The difference is, the number of
satellites could be increased up to 2000 satellites. More than that, The system would
run out of memory. This is evident because the simulation duration affects the execution
time and memory usage as well as the number of satellites in the constellation.

Simulation duration = 18 hours

number of sats min time(s) average time(s)
10 7.51 9.26
20 8.47 10.34
40 12.91 15.00
80 21.55 24.74
100 23.20 29.35
200 42.43 46.74
400 79.59 87.18
800 173.44 179.59
1000 198.24 201.48
1600 338.85 345.59
2000 357.26 369.30
3000 - -
4000 - -

Table 3.4. Min and avg time for simulation duration = 18 hours

53



Experimental/Numerical evaluation

Simulation duration = 24 hours

number of sats min time(s) average time(s)
10 10.9 12.84
20 11.34 13.89
40 15.51 18.91
80 27.59 33.52
100 33.41 36.11
200 57.77 62.13
400 109.12 113.63
800 209.74 220.19
1000 240.8 260.46
1600 400.72 449.69
2000 - -
3000 - -
4000 - -

Table 3.5. Min and avg time for simulation duration = 24 hours

Table 3.5 shows the simulation duration of one day. The threshold to add the satellites
to the constellation was 1600 satellites.

Memory usage in simulation duration = 24 hours

number of sats memory usage(MB)
10 436.77
20 451.12
40 473.91
80 596.46
100 611.21
200 935.46
400 1198.58
800 2034.72
1000 2316.65
1600 3485.20
2000 Out of memory
3000 Out of memory
4000 Out of memory

Table 3.6. Performance evaluation in terms of memory usage

Table 3.6 is different from the previous tables. This table shows the amount of memory
usage, calculated in the way explained in Sec 3. What we learn from the data is that,
as the number of satellites increases, memory usage grows as well. Note that, with my
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system’s configuration, and the aforesaid scenario, the threshold to add satellites is 1600.
More than that, leads to running out of memory.

When working with a large constellation of satellites, the increased memory usage can
be attributed to several factors. Here are some reasons:

• Data size: A larger constellation typically involves more data points, and each
satellite might have its own set of parameters, such as position, velocity, and commu-
nication characteristics. Storing and processing this information for a large number
of satellites can lead to increased memory requirements.

• Simulation complexity: Simulating the behavior and interactions of a large num-
ber of satellites can be computationally intensive. The complexity of the simulation
algorithms, especially if they involve detailed physical models, can contribute to
higher memory usage.

• Visualization: If your simulation includes visualization of the satellite constella-
tion, the graphical representation can consume additional memory. This is espe-
cially true if you’re dealing with 3D graphics or complex visualizations.

• MATLAB workspace: In MATLAB, variables stored in the workspace consume
memory. If you are storing information about each satellite as separate variables
or if your simulation involves large matrices or arrays, it can significantly increase
the memory footprint.

• Data structures: The choice of data structures for storing information about each
satellite can impact memory usage. For instance, using cell arrays or structures
might be more memory-efficient than separate arrays or matrices.

3.2.2 Result graphs

In this section, some graphs will be reported. These graphs are interesting since they
show how the execution time and the memory usage of the MATLAB satellite toolbox
change when:

• The number of satellite increases

• The simulation duration increases

Fig 3.7 shows the minimum and average execution time in function of number of
satellites, in a simulation duration of 24 hours and with sample time of 15 seconds. The
x-axis is the number of satellites and the y-axis is the execution time. We could simulate
up to 1600 satellites and greater than this number the PC ran out of memory.

The orange curve shows the average execution time and the blue curve shows the
minimum execution time.
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What we learn?

As it is shown in the graph, the execution time is proportional to the number of satellites
added to the scenario. When we increase the number of satellites by a factor of two,
the execution time will grow almost proportionally. Note that again, the CPU time <=
minimum execution time.

Figure 3.7. Min and avg execution time in function of number of satellites

Fig 3.8 shows the memory usage in MB with respect to the number of satellites. To
plot, we started from 100 and we increased the number of satellites up to 1600 which is
the saturation point in my PC. The simulation duration is 24 hours and the sample time
is 15 seconds.

What we learn?

The x-axis is the number of satellites, the points are important since we tried to double
the number of satellites. In this way, it can be easy to estimate what should be the next
point, even if is not depicted here. The y-axis is the memory usage, in MB. When the
number of satellites increases, memory usage increases as well. Memory is not increasing
proportionally.

Fig 3.9 shows the minimum execution time in function of simulation duration for
different numbers of satellites. The simulation duration includes 1 hour, 6 hours, 12
hours, 18 hours, and 24 hours. The x-axis is the simulation time(h) and the y-axis is the
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Figure 3.8. Memory usage in function of number of satellites

minimum execution time(s).

What we learn?

The plot shows that the execution time depends on both the number of satellites and
the simulation duration. As we increase the number of satellites, the execution time
increases. When we increase the simulation duration, the execution time increases as
well. Note that the sample time is always the same and equal to 15 seconds. If we change
the resolution, it will be similar to increasing the simulation duration, so again it will
affect the execution time.

Note that, for greater than 1600 satellites, you can see the curves are missing some
points. This is because for bigger amounts of the number of satellites, the system has run
out of memory and no results obtained. However, the results can be estimated, based on
the behavior of other curves.

To ensure that the link is closed between ground station 1 and ground station 2, we
used the linkIntervals() object. This outputs the intervals on which the link is closed.
Moreover, we compute the Link margin. Fig 3.10 is the output from linkIntervals()
function of my scenario.

Fig 3.11 is the plot for link margin. It is calculated as explained in Formula 3.1.
The reason why the plot has this shape is that during 24 hours, the link is closed two
times. So there are two curves. The first curve (left side) started from 10-Dec-2021 at
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Figure 3.9. Execution time in function of simulation duration of 1 - 6 - 12 - 18 - 24 hours

Figure 3.10. Output of linkIntervals() function

18:27:57 until 10-Dec-2021 at 18:30:27 for 150 seconds. Note that the quality of the link
depends on the link margin, the higher the link margin, the better the quality. During
this interval, the link margin decreases. It is because the satellite is getting further from
the ground station, so the distance increases, and the link margin decreases.

Second curve the second interval is from 10-Dec-2021 at 20:01:5712 until 10-Dec-2021
at 20:05:27 for 255 seconds. During this interval, the link margin increases. It is because
the satellite is getting closer to the ground station, so the distance decreases, and the link
margin increases.

At all other times, the link is not closed, so nothing can be calculated at the receiver
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side for the link margin.

Figure 3.11. Link margin computed at the receiver at ground station 2
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Chapter 4

Conclusion

In this thesis a comprehensive summary of existing network simulators used for simulating
satellite networks, considering the capability of mega constellation LEO satellite networks
is presented. They were categorized in 3 tables in case of their availability, general
simulator characteristics, and their use cases.

Moreover, the scalability of the MATLAB satellite simulation toolbox was discussed
in a mega-constellation scenario. It was shown that the execution time of the scenario
will increase almost proportionally. As expected, memory usage will increase when we
increase the number of satellites and the simulation time.

It is essential to emphasize, as per the findings of this study, that there exists no single
simulator capable of meeting all modeling requirements. Each simulator is designed for
a particular purpose. Therefore, if a new problem arises and the available simulators
are inadequate, the options are either to combine multiple simulators or to develop one
tailored to the specific needs at hand.
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