
POLITECNICO DI TORINO

Master’s Degree Thesis

Management Engineering

A.y. 2023/2024

February 23rd, 2024

Enhancing Network Interception
with Mitmproxy

An Open Source Solution for Transparent Proxy Mode
on macOS and Linux

Supervisors

Prof. Marco TORCHIANO

Doc. Maximilian HILS

Candidate

Emanuele MICHELETTI

Summary

Mitmproxy is an open-source tool designed for intercepting and manipulating
HTTPS traffic [1]. It allows users to intercept traffic from an entire machine or a
single, specific process, offering flexibility in a range of operational modes: regular,
reverse, upstream, SOCKS, DNS and transparent. In transparent mode, the tool
operates at the operating system (OS) layer, making it OS-specific and increasing
the complexity of implementation.

On macOS, two possible approaches were examined: the first was to redirect
any packet on the User Tunnel (UTUN) interface: from UTUN packets could
be managed and sent to Mitmproxy. The code was written exclusively in Rust,
leveraging its capabilities to operate at a low level; having only one language
to maintain might be an advantage but on macOS, conditionally redirections of
packets are complex, this forced the redirection of all traffic to Mitmproxy only
filtering requests later. This behavior is suboptimal because Mitmproxy bears the
burden of processing the entire traffic even when it is only concerned with a specific
process.

The second approach, currently taken, involves a combination of Rust and Swift.
Swift side is the actual Redirector: a companion app that exploits Apple Network
Extensions (NE). This allows to read the process identifier (PID) and the process
name of the flow source app, deciding which packet to send to Mitmproxy and
which packet to ignore. Swift is a good choice to have a perfect fit with the Apple
systems. Rust side runs the Redirector sending all configuration details and forward
packets received from the swift side to the core of Mitmproxy.

The initial version of this approach used Unix pipes, a simplex inter-process
communication (IPC) system, but three separate channels are required: one for
configuration details, another for inbound packets from the Rust side to the Swift
Side, and a third for outbound packets from the Swift side to the Rust side. To
enhance communication efficiency, pipes have been replaced with Unix sockets,

ii

which support full-duplex communication, consolidating the three separate pipes
into a single socket.

The serialization and the deserialization of data, both for configuration and
packets, are implemented with Protocol Buffers (Protobuf): a language-neutral,
platform-neutral, extensible mechanism for serializing structured data.

On Linux, the development stage is more immature than on macOS. Because of
the absence of direct APIs, the strategy is to take advantage of the EBPF, allowing
programs to run directly in kernel space [2] and exploiting two particular types of
eBPF programs called: TC and KProbe, making them work together.

iii

Table of Contents

List of Figures viii

Acronyms x

1 Introduction 1

1.1 Context . 1

1.2 Purpose . 2

2 Mitmproxy 3

2.1 General overview . 3

2.2 Modes of operations . 4

2.3 A brief insight into the difference between regular mode and trans-
parent mode . 6

2.4 Installation and Distribution . 7

3 Architecture and Structure 8

3.1 Rust as main language . 8

3.1.1 Rust and its control over low-level system functionalities . . 9

3.1.2 Concurrency . 9

v

3.1.3 Zero-cost abstractions . 10

3.1.4 Compatibility with Python 10

3.2 Repository structure overview . 11

4 MacOS implementation 13

4.1 The Rust side of Mitmproxy: mitmproxy_rs 13

4.1.1 User space network stack . 13

4.1.2 Packet source . 17

4.1.3 Python API . 18

4.1.4 Listing of active processes information 19

4.2 Redirector . 21

4.2.1 First approach forcing traffic redirection to Utun 21

4.2.2 Second approach with Apple Security Extension 21

4.2.3 From extension to system extension 23

4.3 Inter process Communication . 23

4.3.1 Data structures . 24

4.3.2 Unix pipes . 24

4.3.3 Unix sockets . 24

5 Linux implementation 26

5.1 eBPF . 26

5.1.1 XDP program . 28

5.1.2 TC program . 29

5.1.3 Probes . 29

vi

5.1.4 EBPF maps . 30

5.2 Rust AYA . 31

6 Conclusions 32

6.1 Future improvements . 32

6.1.1 MacOS . 32

6.1.2 Linux . 32

6.2 Contributions . 33

A MacOS Certificate Truster with system functions 36

B CI/CD 38

C Windows Named Pipes 40

Bibliography 42

vii

List of Figures

2.1 Mitmproxy in regular operation mode 6

2.2 Mitmproxy in transparent operation mode 6

3.1 Mitmproxy repository structure . 12

4.1 macOS implementation . 14

4.2 MPSC channels between Mitmproxy and the mitmproxy_rs 16

4.3 Packet source module schema . 18

viii

Acronyms

HTTPS
Hypertext Transfer Protocol Secure

HTTP
Hypertext Transfer Protocol

TCP
Transmission Control Protocol

UDP
User Datagram Protocol

SSL
Secure Sockets Layer

TLS
Transport Layer Security

IP
Internet Protocol

DNS
Domain Name System

CPU
Central Processing Unit

x

OS
Operating System

UTUN
User TUNnel

SOCKS
Socket Secure

PID
Process Identifier

Protobuf
Protocol Buffers

IPC
Inter-Process Communication

NE
Network Extensions

eBPF
extended Berkeley Packet Filter

API
Application Programming Interface

FFI
Foreign Function Interface

CI
Continuous Integration

I/O
Input/Output

MPSC
Multi Producers Single Consumer

xi

TCP/IP
Transmission Control Protocol/Internet Protocol

GIL
Global Interpreter Lock

ISO/OSI
International Organization for
Standardization/Open Systems Interconnection

VPN
Virtual Private Network

UDS
Unix Domain Socket

HTML
Hypertext Markup Language

XDP
eXperimental Data Path

TC
Traffic Control

KProbe
Kernel Probe

cgroups
Control Groups

UProbe
User Probe

LSM
Linux Security Module

IoT
Internet of Things

xii

Chapter 1

Introduction

1.1 Context

Proxies are extensively used in a wide range of scenarios: from security to perfor-
mance, from privacy to debugging. Main difference between a regular proxy and a
transparent one is that the transparent proxy does not require any configuration
client side, this means that the network packets can be proxied, also if configuration
can not be changed (e.g. most Android or iOS apps), or if the client does not
have to or does not want to worry about the presence of the proxy (e.g. public or
enterprise network).

The applications of a transparent proxy are diverse, extending beyond its
foundational role. A notable use case involves optimizing and improving local
network efficiency, a subject explored in literature [3]. Additionally, transparent
proxies prove invaluable for debugging networks of applications which do not
allow manual configuration changes, as seen in studies related to application
analysis [4]. Furthermore, their practical utility extends to the analysis of malware
traffic, offering insights into the workings of malicious software and contributing to
effective mitigation strategies [5]. In various scenarios, transparent proxies emerge
as key players, facilitating content filtering and access control without imposing
explicit user configurations. This quality is particularly advantageous in public
Wi-Fi networks, where transparent proxies seamlessly filter undesirable content,
enhancing overall network security without disrupting end-users. In addition, the
transparent proxy proves indispensable in overcoming challenges posed by devices
lacking the capability for manual configuration, crucial in Internet of Things (IoT)

1

Introduction

environments and other specialized systems, ensuring the seamless functionality
and security of networks across a diverse spectrum of devices and applications.

1.2 Purpose

Mitmproxy is a robust network tool meticulously engineered for the interception,
analysis, and manipulation of network traffic, stands as an invaluable asset for users
seeking enhanced control and insight into their network activities. Its multifaceted
capabilities empower users to inspect and modify data as it traverses through the
network, offering a versatile solution for tasks ranging from debugging to security
analysis. With a user-friendly interface and a rich set of features, Mitmproxy
has become a go-to choice for professionals and developers aiming to understand,
troubleshoot, and optimize their network interactions. However, regardless of
its array of capabilities, there exists a specific nuance related to Mitmproxy’s
transparent mode. Transparent mode is currently only partially integrated on the
Windows operating system (OS), and it is not implemented at all on macOS and
Linux. This disparity arises from the inherent operating system-specific nature of
transparent proxy development.

To mitigate this limitation, a deep examination of the software architecture,
system intricacies, and network configurations specific to macOS and Linux is
essential. The primary objective of this thesis is to elucidate the intricacies involved
in enhancing the transparent mode functionality on Mitmproxy, guaranteeing
its adaptability and efficacy across diverse operating systems. This involves in-
depth analyses of networking protocols, kernel-level interactions, and other crucial
elements inherent to these operating systems.

It is noteworthy that the implementation on macOS has been successfully
completed, showcasing a functional transparent mode. However, on the Linux
platform, the implementation remains a work in progress, and efforts are ongoing
to achieve the same level of completeness and robustness.

2

Chapter 2

Mitmproxy

2.1 General overview

Mitmproxy is a free and open source interactive proxy. At the moment when this
thesis is written the project is at version 10, and it provides SSL/TLS capabilities
for HTTP/1, HTTP/2 and Web Sockets [1].

The tool is available with different interfaces:

• Command line interface: it is accessible with the command mitmdump.
It is the quicker way to run the proxy, all configurations must be set when the
application is launched, and they can not be changed during the execution

• Textual User Interface: accessible with the command mitmproxy represents
the common way to run the proxy

• Web graphical interface: accessible with the command mitmweb.
It allows user to run the proxy and to interact with it using a Graphical User
Interface on the browser

Mitmproxy core is written in python, and it is available also as a python package,
this means that it can be used as a python library and extended in other projects.

3

Mitmproxy

2.2 Modes of operations

Mitmproxy is a large tool, and it offers users a spectrum of mode of operations [6],
each of which is tailored to a specific use case:

• One of its primary modes is the Regular mode, which functions as the default
operational setting. In this mode, users manually configure the network to
divert traffic through the proxy, enabling comprehensive control over the
interception process.

• In more special situations, users can opt for the Transparent mode, also re-
ferred to as Local mode, eliminating the need for manual configuration on
the client side. In this mode, the proxy adeptly intercepts traffic without
requiring explicit client-side setup, redirecting the network at the foundational
level. This streamlined approach ensures a hassle-free deployment of Mitm-
proxy, particularly useful in scenarios where user intervention for network
configuration is impractical, such as IoT devices or public networks.

• Mitmproxy also introduces the innovative Wireguard mode, leveraging the
capabilities of Wireguard to automate traffic redirection. WireGuard is a
modern and lightweight virtual private network (VPN) protocol known for its
simplicity and high-speed performance. It employs advanced cryptographic
techniques to ensure secure communication while minimizing complexities.
Unlike traditional VPN protocols, WireGuard operates efficiently without the
need for additional complexities in the kernel space, contributing to reduced
resource usage. The Wireguard mode can be compared to the Transparent
mode, the difference is that it does not remove the need for manual configura-
tion completely, it only minimizes it, in fact the user must only configure the
wireguard client and the proxy will take care of the rest.

• In the Reverse mode, Mitmproxy acts as an intermediary, forwarding client
requests to the target server and subsequently relaying the server’s responses
back to the client. This mirrors the functionality of a conventional server,
making it a valuable mode for specific use cases where this behavior is desired.
For instance, in load balancer testing scenarios, Mitmproxy’s Reverse mode
enables the interception and analysis of traffic between the load balancer
and backend servers. By replicating the server’s role, it allows for a detailed
examination of how the load balancer distributes incoming requests and
manages responses. Similarly, in security auditing, Mitmproxy’s Reverse mode
becomes an indispensable tool for simulating potential attacks. By mimicking
the server’s function, it facilitates the inspection of how the system handles

4

Mitmproxy

client requests and responses, aiding in the identification of vulnerabilities and
security risks. This mode is also beneficial in API development and testing,
providing developers with a means to closely monitor and understand how client
requests are processed by the server, ensuring the seamless communication of
data between clients and servers.

• In scenarios involving a chain of proxies, the Upstream mode in Mitmproxy
becomes instrumental for orchestrating a seamless flow of intercepted data
between multiple proxies. One notable use case is in the context of corporate
environments employing multiple layers of security measures. By utilizing the
Upstream mode, administrators can redirect network traffic through specified
proxies, each serving a distinct security purpose. For example, one proxy
might focus on content filtering and malware detection, while another enhances
encryption protocols. This modular approach to proxy chaining allows for
a tailored and layered security infrastructure. Additionally, in large-scale
networks or distributed systems, the Upstream mode proves valuable for load
balancing and optimizing network performance. Redirecting traffic through
designated proxies ensures an efficient distribution of data processing tasks,
contributing to improved overall system responsiveness. Moreover, in sit-
uations where geographical restrictions apply, such as content localization
or compliance with regional data privacy laws, the Upstream mode allows
for the redirection of traffic through proxies strategically located in different
regions. This not only ensures compliance but also enhances user experience
by optimizing content delivery based on geographic proximity.

• In scenarios where a network environment heavily relies on the SOCKS protocol
for communication, Mitmproxy’s socks mode becomes invaluable. For example
an organization that employs SOCKS proxies to enhance security and facilitate
access to restricted resources. Mitmproxy, in socks mode, seamlessly integrates
into this environment, allowing for the interception and analysis of SOCKS
traffic. This proves beneficial for security audits, debugging, and monitoring
SOCKS-based applications.

• Dns mode finds practical application in scenarios where fine-grained control
over DNS queries is essential. For instance, in a cybersecurity context, an
organization may use Mitmproxy to exclusively intercept and inspect DNS
queries for potential malicious activity. By resolving intercepted DNS queries
using the operating system’s resolver, Mitmproxy provides a layer of security
against DNS-related threats without affecting other communication channels.

5

Mitmproxy

2.3 A brief insight into the difference between
regular mode and transparent mode

Since this study is focused on the Transparent mode implementation, is important
to analyze the architectural differences between Transparent mode with Regular
mode. Even if the technical implementation is OS-specific, the general idea is the
same for all OS.

A regular proxy is manually configured to redirect traffic to the proxy, this
practically means that 1. The client sends packets for which the destination field
is the proxy itself. 2. The proxy receives the packets and forward them to the
target server. 3. The server receives the packets and sends back the response to
the proxy. 4. The proxy receives the response and forwards it to the client. This
process is illustrated in Figure 2.1.

mitmproxy:
regular mode

client server

1 2

34

Figure 2.1: Mitmproxy in regular operation mode

A transparent proxy must handle with the redirection without the help of the
manual redirection. This means that 1. The client sends packets for which the
destination field is the target server. 2. The proxy intercepts packets and
drops them after cloning its information. 3. The proxy makes a new packet from
scratch, processes it from the original packet’s information, and sends the new
packet to the destination server. 4. The server sends the response to the client.
5. The proxy intercepts the response packet again and discards it. 6. The proxy
makes a new response packet from scratch with the information from the original
one and sends it to the client. This process is illustrated in Figure 2.2.

mitmproxy:
transparent mode

client server

1
3

4
6

2

5

Figure 2.2: Mitmproxy in transparent operation mode

6

Mitmproxy

2.4 Installation and Distribution

Mitmproxy v10.2 introduced Transparent mode as an official component within
the standard modes of operation for macOS users. This significant enhancement
will be seamlessly integrated by default, obviating the necessity for users to install
supplementary features.

Concurrently, it is pertinent to note that the Linux version of Transparent
mode is currently under development, with the release date yet to be definitively
established. While the specific timeline remains undetermined, the Mitmproxy core
development team is working towards the integration of this feature for Linux users
in due time.

It is imperative to underscore that the entire source code for Mitmproxy, in-
cluding the Transparent mode implementation, is openly accessible. The official
Mitmproxy GitHub repository [7] serves as a central repository for the project’s
codebase, offering a comprehensive insight into the implementation of Transparent
mode.

7

Chapter 3

Architecture and Structure

3.1 Rust as main language

The adoption of Rust as the primary programming language is motivated by
the requirement for precise control over low-level system functionalities. Rust’s
capacity for delivering such control, coupled with high performance through zero-
cost abstractions and meticulous resource management, proves essential in scenarios
necessitating direct manipulation of hardware or system-level components. The
language’s built-in support for concurrent programming further enhances its appeal,
enabling developers to efficiently manage parallel tasks and leverage the full potential
of multicore architectures without compromising safety and reliability.

Additionally, Rust’s compatibility with Python enhances the project’s adapt-
ability. The two languages seamlessly interface, enabling effective communication
between them. This interoperability is advantageous, allowing for the integration
of Rust’s robust performance in low-level tasks with Python’s agility and rapid
development capabilities. In essence, the amalgamation of Rust and Python es-
tablishes a harmonious relationship, leveraging the distinctive strengths of each
language in different facets of the project and resulting in a cohesive and potent
system architecture.

8

Architecture and Structure

3.1.1 Rust and its control over low-level system functional-
ities

Choosing the right programming language is a pivotal aspect in the development
of software systems, especially when targeting low-level functionalities and system
components. Programming languages play a crucial role in shaping a project’s
success, influencing factors such as performance, control over system functionalities,
and overall adaptability.

In the context of Mitmproxy, and in particular of the transparent mode, the need
for precise control over the network is a key aspect but not the only one. Rust, with
its emphasis on performance, safety, and zero-cost abstractions, emerges as a valuable
tool for developers seeking to enhance their control over network interactions.
Beyond its utility in network programming, Rust proves beneficial for inter-process
communication (IPC), providing a reliable and efficient means for different processes
to exchange data seamlessly. Furthermore, Rust’s capability to interoperate at
the kernel level directly with kernel functions opens up new possibilities for fine-
tuned control and optimization in networking applications. Rust’s commitment to
safety-first programming also ensures that developers can confidently build robust
and secure network applications, while its concurrency model makes it easy to
handle communication between different and separated component and companion
apps involved in Mitmproxy’s transparent mode, enhancing the scalability and
responsiveness of the entire project.

3.1.2 Concurrency

Concurrency involves the execution of multiple tasks or processes concurrently,
allowing for parallel execution and enhanced performance in software applications.
In the case of Mitmproxy, a proxy tool inherently designed to handle simultaneous
network requests and responses, concurrency is a fundamental requirement.

Mitmproxy operates concurrently by default to efficiently intercept, analyze,
and manipulate network traffic. However, the complexity of its functionality goes
beyond simple interception, since the tool incorporates companion applications
such as redirectors and makes calls to kernel functions, these things must also
be handled concurrently. Rust allows these kinds of operations to be performed
without sacrificing code readability and especially performance.

Rust’s strength in concurrency is notably attributed to its sophisticated borrow

9

Architecture and Structure

checker, a dynamic analysis tool integral to the language’s ownership model. The
borrow checker operates during the compilation process, enforcing stringent rules
on ownership, borrowing, and lifetimes. By scrutinizing the code for potential
conflicts, it prevents issues such as data races and null pointer dereferences, which
are prevalent challenges in concurrent programming. This feature ensures that
multiple threads or processes can interact with shared data safely, eliminating
the need for runtime checks and making concurrency-related errors detectable at
compile-time.

3.1.3 Zero-cost abstractions

Zero-cost abstraction is a fundamental concept in modern programming languages
like Rust, emphasizing the ability to use high-level abstractions without incurring
any runtime overhead. In essence, it means that developers can leverage expressive
and abstract constructs in their code, such as advanced data structures or complex
algorithms, without sacrificing runtime performance.

This is achieved through the compiler’s optimization capabilities, which eliminate
the abstraction overhead during the compilation process, resulting in highly efficient
machine code.

In expansive collaborative environments like Mitmproxy, ensuring code clarity,
readability, and efficiency is paramount, contributing significantly to the project’s
scalability, maintainability, and overall collaborative success.

3.1.4 Compatibility with Python

The choice of Rust as the primary language for the low-level components of
Mitmproxy is also driven by its seamless compatibility with Python.

This compatibility facilitates a smooth transition between the existing Python
codebase and the newly incorporated Rust components, ensuring a cohesive and
synergistic development environment. Rust’s interoperability with Python enables
the two languages to work in tandem, leveraging the strengths of both.

The Rust programming language provides Foreign Function Interface (FFI)
capabilities that allow developers to create bindings and call Rust functions from
Python, and vice versa. This interoperability ensures that Rust and Python

10

Architecture and Structure

components can work together cohesively, enabling developers to leverage the
strengths of each language where it is most beneficial.

To achieve this, Rust exploits the capabilities of PyO3, a Rust crate that provides
bindings to the Python interpreter, allowing a Rust program to call Python code
and vice versa. The implementation is very simple, it is sufficient to mark the
function with the pyfunction macro and the pymodule macro to mark the module.
PyO3 functions refers to a Rust function callable from Python as if it were a native
Python function, a PyO3 module is a Rust module that contains one or more
functions, which can then be imported and used in Python as extension module.

3.2 Repository structure overview

The organizational structure of the repository is designed to ensure a clear separation
between the Rust core and its companion applications. Each operating system
(OS) has its dedicated folder, facilitating an organized arrangement. The Rust
core, constituting the primary project, is situated in the conventional src folder,
adhering to the typical structure of a Rust project.

For the macOS companion application, both binaries and source code are con-
tained within the mitmproxy-macos folder. On MacOS, distribution of applications
are allowed only after a signature process. This is done through private, non-
sharable keys, which is why the Redirector app is available both as precompiled
and as source code. The compilation process is entrusted to the GitHub CI system,
and the compiled code is then uploaded to the wheel. Similarly, the Windows
companion app resides in the mitmproxy-windows folder, encompassing both binary
executables and the corresponding source code. In the case of the Linux companion
app, the mitmproxy-linux folder exclusively houses the source code. This approach
is facilitated by the GitHub actions system, which streamlines the compilation
process.

The Foreign Function Interface (FFI) components are consolidated in the
mitmproxy-rs folder, maintaining consistency with the naming convention of the
corresponding Python module, mitmproxy-rs. This section encapsulates the inter-
operability between Rust and Python.

This hierarchical organization enhances clarity, ease of navigation, and modular-
ity, allowing developers to efficiently work on distinct components while maintaining
a cohesive structure.

11

Architecture and Structure

mitmproxy-macos mitmproxy-win mitmproxy-linux

binaries binaries

source code source code
source code

mitmproxy-rs (ffi)

main crate

Figure 3.1: Mitmproxy repository structure

12

Chapter 4

MacOS implementation

MacOS implementation consists of three main parts: the first, called mitmproxy_rs,
is responsible for forwarding packets to and from the Mitmproxy core, and it sits
between the Redirector and the Python part of Mitmproxy. The second part, called
Redirector, is the part that communicates with the OS, it is responsible for the
interception and reinjection of packets. The third part deals with Inter Process
Communication between the first two. The general architecture is illustrated in
Figure 4.1.

4.1 The Rust side of Mitmproxy: mitmproxy_rs

It can be seen from figure 4.1 that mitmproxy_rs is divided into three parts: macOS
Transparent mode, Python API and User space network stack

4.1.1 User space network stack

This part receives raw IP packets and processes them by creating UDP datagrams
and TCP segments to be sent to the proxy core and vice versa. The two main
crates used in this module are Tokio [8] and Smoltcp [9].

13

MacOS implementation

Python API

user space
network stack
(smoltcp)

MacOS
Transparent
mode

Mitmproxy

mitmproxy

mitmproxy_rs

macos-redirector app

main
Network
System
Extension

p
id

#
1

p
id

#
3

p
id

#
2

p
id

#
1

p
id

#
2

p
id

#
3

p
id

#
4

p
id

#
4

spec: socket

Raw IP packets

Transport event

TCP Streams
UDP Datagrams
(smoltcp)

Intercepted
flows

Ignored
flows

R
ein

jected

packet flows
sockets

Figure 4.1: macOS implementation

14

MacOS implementation

Tokio

Tokio is an event driven and non-blocking I/O platform designed to write asyn-
chronous applications. Since in mitmproxy_rs, many tasks are performed asyn-
chronously but need to communicate with each other, Tokio is used with Tokio::Sync
[10] feature that provides synchronization primitives.

The communication methods used are essentially Broadcast Channels and Multi
Producers Single Consumer (MPSC) channels: the first one involves multiple
senders sending data to multiple receivers while the second one involves multiple
senders sending data to a single receiver. MPSC channels can be with back-pressure
if there is a congestion control or unbound if there is no congestion control. It is
good to note that they can also be used without any problem for the use case with
a single producer and a single consumer.

Broadcast channels are used to trigger and propagate the shutdown event, while
the main use-case for MPSC channels is the communication between Mitmproxy
and mitproxy_rs.

There is one channel from Mitmproxy to each TCP connection within mitm-
proxy_rs to send commands related to the connection itself and because the
information transmitted is connection-specific, each channel is logically and physi-
cally separated from the others: this is the typical single-producer, single-consumer
use-case.

There is also a channel that departs from the individual connection and is
directed to Mitmproxy for sending datagrams; in this case the information is
primarily useful to Mitmproxy, consequently all connection channels are logically
considered a single-producer and the communication is the standard MPSC use-case.

The figure 4.2 illustrates a simplified diagram of MPSC channels between
Mitmproxy and mitmproxy_rs.

15

MacOS implementation

mitmproxy

conn. #1

conn. #2

conn. #3

conn. #4

mpsc #1: command

mpsc #2: command

mpsc #3: command

mpsc #4: command

mpsc #5: events

Figure 4.2: MPSC channels between Mitmproxy and the mitmproxy_rs

Smoltcp

Smoltcp [9] is an event-driven TCP/IP stack that is designed to be used in bare-
metal, real-time systems with emphasis on simplicity and performance.

In mitmproxy_rs it allows the implementation of the network and socket layers
in user space. Specifically, it is used to create a network I/O that receives and
sends packets to and from the sockets connections.

The network I/O is a structure that contains, among others things, 1. a
std::collections::HashMap::<ConnectionId, SocketData> with all the keys
of the connections coupled to all the sockets that are associated with the connection
itself, 2. a device to buffer packets and to prepare them for transmission and 3. a
MPSC bounded channel to communicate with the proxy core.

Going down the TCP/IP stack, smoltcp provides the ability to build IP packets,
check their validity and build TCP segments and UDP datagrams from IP packets
and vice versa.

16

MacOS implementation

4.1.2 Packet source

This step of the mitmproxy_rs module is the one responsible for direct communica-
tion with the Redirector.

This module begins by creating the Unix socket with which communication with
the Redirector app will take place.

After this step, the socket officially runs the Redirector app, which must be
located in the Applications/ folder, this particular requirement of the macOS
implementation is due to the fact that on macOS there is a subtle restriction for
some APIs that allows them to run correctly only if the .app executor is located
within the Applications/ folder.

The Redirector app is started by passing via arguments also the path to the
Unix socket that allows the inter process communication between the two.

After the application startup, the packet_sources module creates two types of
structures:

1. The parent structure responsible for the redirector app communications and
for creating and initiating the connections. It runs a loop that, with the help
of the tokio crate, listens for the arrival of new and possible configurations to
be sent to the redirector, listens for the arrival of new transport commands
to handle existing connections, and listens for the arrival of new connections
to be created and launched by the redirector. Specifically, this structure
stores each packet flow in a std::collections::HashMap with the corresponding
ConnectionId, the unique key in the map.

2. The connection structure that allows the single connection to be managed by
storing the socket and MPSC channel to communicate with the proxy core.
This structure is created when the Redirector app sends a packet that belongs
to a connection that has not yet been registered.

The figure 4.3 illustrates a simplified schema of the packet_source module:

17

MacOS implementation

broadcast receiver
(shutdown event)

mpsc undounded receiver
(commands)

mpsc bounded sender
(commands confirm.)

mpsc undounded receiver
(Interception conf.)

unix socket
(Interception conf.)

unix socket
(packet flows)

main task

tcp connection tasks
id

id

id

mpsc sender

mpsc sender

mpsc sender

udp connection tasks
dst

dst

dst

mpsc sender

mpsc sender

mpsc sender

redirector
app

proxy

Figure 4.3: Packet source module schema

4.1.3 Python API

The communication with mitmproxy is handled with the PyO3 [11] crate, which
provides Rust bindings for the Python interpreter for the purpose of allowing native
Python modules to be written directly in Rust.

PyO3 provides the ability to create Python functions and modules in Rust and
to call them from Python very trivially: marking them only with specific macros.
It handles the conversion of data between the two languages independently by
automatically converting Python objects to Rust counterparts and vice versa (e.g.
PyString in String and Python List in Rust Vec).

It allows a correct error propagation between the two languages: Python
Exceptions are converted in Rust Result::Err and Result::Err are converted
in Python Exceptions.

Moreover, it deals with the memory management of Python objects, counting
the references to objects and dropping them when the reference count reaches zero

Among other things, it takes care of the Global Interpreter Lock (GIL) [12],
a mechanism used by the CPython [13] interpreter: it is a mutex that prevents
multiple native threads from executing Python byte codes at the same time,
normally this is a performance constraint in Python, since the lock makes it easier
for the interpreter to be multithreaded, at the expenses of the true parallelism.

18

MacOS implementation

For this reason with the PyO3 crate it is possible to release the GIL and to
reacquire it when needed, thus executing truly parallel Python byte codes directly
and simply using Rust code.

4.1.4 Listing of active processes information

Process selection is another challenging but parallel part that is not directly inherent
to the proxy itself, but competes with a feature that mimtproxy provides.

In fact, the user can directly specify the processes he or she wishes to intercept.

The idea is to have a constantly updated list of active processes showing some
information about each process.

To further enhance the user experience it was chosen to also show the application
icon, obviously only if present.

Processes information

Information about processes and icons are stored in two different structures and
are handled separately.

The process structure stores some useful information such as the path to the
executable, the display_name string, the boolean variable is_visible which indicates
whether the process has a visible opened window and the boolean variable is_system
which indicates whether the process is a system process or not.

The first and the second variable are obtained by using the sysinfo [14] crate.
This crate allows obtaining system’s information for all major OS, and it allows
listing all processes installed and running on the machine. On macOS the sysinfo
crate obtains the details of each process by calling proc_pidbsdinfo [15]: a system
call that returns a lot of data about a specific process, including information such
as resource usage, process execution status, and other attributes.

Through the sysinfo crate is it possible to obtain all the necessary information
directly, except for the is_visible attribute, in fact of macOS systems this variable
is bound to the window element and not to the process itself.

For this reason it is necessary to go to a lower level and use the Core Graphics

19

MacOS implementation

[16] API, wrapped in the core_graphics crate in rust [17], which provides a lot of
functions to manage windows and screens.

The core_graphics crate provides the ability to get the list of all windows and
the process identifier that owns each visible window; all given PIDs are then stored
in a std::collections::HashSet, when it is desired to know whether a process
is visible or not just check if the PID of the process is present the set.

Processes icons

The icons are not directly reachable from the proc_pidbsdinfo system call, so a
different approach must be used. Of course, the icons are not files stored in the
.app folder but are embedded directly in the compiled binary file of the application.

The appkit macOS framework provides the class NSRunningApplication, with
an important property called icon that returns the application icon as NSImage,
this property though is only accessible using the Swift or Objective-C language,
i.e., the language underlying all Apple systems.

In Rust, there is the objc crate, a wrapper of the objective-c language, with
which it is possible to call the icon method on the NSRunningApplication class
obtaining the icon as Id, a generic object in Objective-C.

It is then necessary to convert the Id to an NSImage and convert the NSImage
to a TIFFRepresentation, which is a representation of an image in memory using
the TIFF data format: the standard format used by macOS to store icons image.

Finally, it is possible to convert the TIFFRepresentation to a Vec<u8> that is
the raw representation of the icon in memory.

Since Mitmproxy uses PNG icons, it is needed to convert the icons from TIFF to
PNG, this is done with the use of image crate [18] which provides many functions
to manipulate raw images. Conversion is also possible using objective-c functions,
but the image crate is faster 1

1The complete process of getting the PNG data using the image crate for conversion takes
about [57.228 ms 58.251 ms 59.329 ms] while the process with objective-c only takes [69.748 ms
70.997 ms 72.255 ms], benchmarks have been done on 100 iterations with criterion [19] crate

20

MacOS implementation

4.2 Redirector

The Redirector is the actual core of the macOS implementation, it is responsible
for the interception and reinjection of packets.

The initial idea was to keep the codebase in Rust, to avoid communication issues
between processes and to avoid big complications in the implementation.

This approach was abandoned because the macOS ecosystem is easier to handle
with Swift or Objective-C than with Rust, above all the interaction with the system
APIs.

4.2.1 First approach forcing traffic redirection to Utun

TUN/TAP interfaces [20] are virtual network devices at kernel layer. They were
originated as Universal TUN/TAP Driver in 2000 as a merge of the corresponding
drivers in Solaris, Linux and BSD [21]. The driver is still maintained and currently
part of the Linux and FreeBSD kernel.

The key difference between TUN and TAP interfaces is that a TUN interface is
at Network Layer of the ISO/OSI model while the TAP interface is at Data Link
Layer.

On macOS, only the TUN interface is natively supported, and it is called UTUN.
This approach was discarded because it was not possible to force a little and specific
portion of the traffic to go through the UTUN interface, but the filter was applied
to all the traffic only after the interception and this is not optimal.

The ideal situation would be to have a filter that intercepts the traffic before it
is sent, in this way it should be possible to simply ignore the packets that are not
of interest without sending them to the proxy and reinjecting them immediately
afterward.

4.2.2 Second approach with Apple Security Extension

The approach with Apple Security Extension is definitely the most intricate from
an intuitive point of view but also the smoothest from a technical perspective.

21

MacOS implementation

It assumes to use as much as possible what Apple provides without finding
shortcuts and giving up the idea of having a standard, common approach for all
Unix based systems.

The language used to implement this approach is Swift, a standard, along with
Objective-C, for Apple OSs.

The key of this approach is the Apple Network Extension [22]: a framework that
provides a set of APIs to customize and extend the core networking features of
Apple OSs.

The framework is very big and to implement the Redirector app only the part
related to the Virtual Private Network (VPN) is used with a particular focus on
the different Provider types: the Packet Tunnel Provider [23] and the App Proxy
Provider [24].

Packet Tunnel Provider

This Packet Tunnel provider allows the management of packets at the Network
Layer. To use it is necessary to include the network extension entitlement and add
the corresponding capability within the Redirector app.

Before launching the provider it is necessary to set a proper configuration by
setting the NETunnelProviderManager [25] object, in this object is it possible to
set the appRules: a vector of NEAppRule elements, that will be used to filter the
traffic.

The problem with NEAppRule is that the rule cannot be specified during the
interception of the flow, but it must be set before the interception.

This new approach is better than the former because it is managed with official
APIs, but it is still not optimal.

One of the goals is to change the InterceptConfig at runtime, then it is
necessary to filter the traffic inside the Network extension and not just at the
beginning.

22

MacOS implementation

App Proxy Provider

The App Proxy Provider allows the management of packets at the Transport Layer,
one layer above the Network Layer.

Even if it could be strange to manage the packets at the Transport Layer instead
of the Network Layer, NEAppProxyProvider is the only Provider that allows a deep
management of packets flows at runtime. Moreover, NEAppProxyProvider provides
the class NETransparentProxyProvider [26]: an inherited class, available on
macOS 11.0 and later, which has a critical benefit: when inside the handleNewFlow
method False is returned, the flow is not rejected and blocked as it happens in
the NEAppProxyProvider, but it simply ignored and processed normally as it be
never intercepted. This is exactly the behavior that is desired.

4.2.3 From extension to system extension

On macOS there is a distinction between extension and system extension, specifically
to NE, the simple extension allows the distribution only through the App Store,
this is a big limitation for the Redirector app, which being only a companion app,
it would be useless to be distributed through the official Apple App Store.

The transition from the extension to the system extension, allow on macOS 10.15
or later a distribution outside the App Store by signing the app with a developer
ID.

Of course both versions are distributable only after signing, and this is the
reason why the Redirector is distributed as binary and not only as source code.

4.3 Inter process Communication

Also, the Inter process communication is OS specific. On Windows named pipes
(more details in appendix C) are used, and this choice affected the adoption, in the
very early version, of Unix pipes on macOS as well. Successively the choice was
changed to Unix sockets and in this section the reasons will be explained.

Serialization and of packets is done using Protocol Buffers [27] on each platform.
After the adoption of deserialization protobuf on macOS version, the Windows
version was also updated accordingly.

23

MacOS implementation

4.3.1 Data structures

Protobuf is a serialization and deserialization mechanism developed by Google [27].
The structure must be written in a PROTO file and then compiled with the protoc
compiler. Protoc compiler translate the PROTO file into a language specific file,
and it is available for all major programming languages. In this case the PROTO
file is compiled in Rust and Swift files.

All the communications between the Redirector and the mitmproxy_rs are
serialized and deserialized using Protobuf. There are structures for the configuration
of the Redirector with the list of the pids, the process_name, and of course there is
the structure to serialize and deserialize inbound and outbound packets.

4.3.2 Unix pipes

Unix-like pipelines are a mechanism for inter-process communication in Unix
systems. A pipeline is unidirectional, and it is composed by two file descriptors,
the read-only end and the write-only end. The unidirectionality is not the only
difference with the named pipes used in the Windows implementation, the main
difference is that Unix pipes survives only as long as the process that created them
is alive, while the named pipes are persistent and can be used by multiple processes.

In the Windows implementation the named pipes are used to communicate
between processes because the communication is quite straightforward, as read
and write operations. On macOS and Linux the main problem is that it is
necessary to create two pipes for each communication between the Redirector and
the mitmproxy_rs, considering configurations and packets, the unidierectionality
of the pipes is a big limitation.

For this reason, a subsequent update altered the behavior to employ Unix sockets
instead of Unix pipes.

4.3.3 Unix sockets

Unix sockets are a mechanism for inter-process communication, they are also known
as IPC Sockets or Unix Domain Sockets (UDS).

UDS are literally handled as files, they are created from a path, and they are

24

MacOS implementation

deleted when the process that created them is terminated.

Main reason for the adoption of UDS is that they are bidirectional, but there
are also three little disadvantages: the first is that in terms of performance they
are a little slower [28], the second is that they are not available on Windows and
the third is that they could be considered a little bit more complicated to use.

Disadvantages are not a huge problem because the performance difference is not
noticeable and since the goal of the Redirector app is not to be cross-platform, but
to be available on macOS, Unix sockets are a good choice.

25

Chapter 5

Linux implementation

On Linux, the development is in an even more initial phase. An official version
hasn’t been released yet, and both the code and the development process could
undergo significant changes.

Unlike macOS, Linux doesn’t have any API that can be used to achieve the
goal. For this reason, it was necessary to leverage a capability of the Linux kernel:
extended Berkeley Packet Filter [29] (EBPF).

5.1 eBPF

Extended Berkeley Packet Filter (EBPF), is a versatile and programmable lightweight
virtual machine deeply integrated into the Linux kernel, initially found its roots
in efficient network packet filtering. Over time, its capabilities have expanded,
transforming it into a technology that facilitates dynamic and secure execution of
custom code within the kernel space. This evolution has positioned EBPF as a
pivotal tool, offering fine-grained visibility and control over system events, thereby
making it instrumental for diverse applications such as performance monitoring,
security enhancement, and network analysis.

EBPF’s programmability, coupled with its minimal performance overhead, has
resulted in its widespread adoption across various domains, contributing signifi-
cantly to advancements in observability and security within modern computing
environments. Its modular and extensible design allows developers to harness

26

Linux implementation

its power for a myriad of purposes, extending beyond its initial focus on packet
filtering.

EBPF programs come in various types, each catering to specific functionalities
within the kernel. Here’s a brief overview:

• Probe Programs: These programs attach to specific kernel functions, enabling
developers to collect data or perform actions when those functions are executed,
there are two different types of probe programs: 1. Kprobe: Kernel probe
programs attach to kernel functions, allowing for the interception of kernel
function calls and the collection of data. 2. Uprobe: User probe programs
attach to user-space functions, enabling the interception of function calls and
the collection of data. A further distinction can be made between Probe and
ProbeRet programs, the first ones are executed before the probed function
while the second ones are executed after the probed function, collecting the
return value of the probed function.

• Tracepoints: Tracepoint programs capture events at predefined points in the
kernel, offering insights into the system’s behavior and performance.

• Socket Programs: Designed for manipulating network sockets, these programs
provide control over network traffic at the kernel level.

• Classifiers or Traffic Control Classifier (TC): eBPF programs can be used with
Traffic Control to classify and manage network traffic based on specific criteria,
Traffic Control enables sophisticated management of network traffic, allowing
administrators to exert fine-grained control over bandwidth allocation, packet
prioritization, and quality of service parameters. EBPF programs used within
Traffic Control serve as dynamic classifiers, facilitating the categorization and
prioritization of network packets based on predefined criteria. This integration
empowers system administrators to optimize network performance, enhance
resource utilization, and enforce tailored traffic management policies.

• Cgroup Programs: Control Groups, commonly referred to as Cgroups, are a
Linux kernel feature that provides a framework for organizing and managing
system resources. Cgroups allow administrators to impose limits, track usage,
and allocate resources such as CPU, memory, and I/O among processes or
groups of processes. This hierarchical and flexible resource management
system enhances system performance, ensures fair resource distribution, and
facilitates the implementation of resource usage policies. By leveraging Cgroups,
developers can achieve better control over system resources, prevent resource
contention, and gain valuable insights into the resource consumption patterns
of various processes, contributing to improved system stability and efficiency.

27

Linux implementation

• Cgroup SKB: These programs specifically operate within the Socket Buffer
subsystem of cgroups,

• eXpress Data Path (XDP): EBPF programs in XDP allow for packet processing
at the earliest point within the networking stack, enhancing performance and
reducing latency.

• Linux Security Modules (LSM): Linux Security Modules, commonly known
as LSM, form an integral part of the Linux kernel’s security architecture.
LSM provides a modular framework that allows the implementation of various
security enhancements and access control mechanisms. Through LSM, the
Linux kernel supports the integration of multiple security modules, each
designed to enforce specific security policies. LSM facilitates the enforcement
of mandatory access controls, integrity checks, and other security measures
by allowing kernel developers to integrate their security modules seamlessly.
These modules can augment or replace the default Linux security mechanisms,
tailoring the security posture of the system to meet specific requirements. The
extensibility of LSM makes it a powerful tool for implementing diverse security
policies, and its integration with EBPF allows for dynamic and programmable
security controls, further fortifying the overall security of the Linux operating
system.

5.1.1 XDP program

The eXpress Data Path (XDP) represents a groundbreaking feature of the EBPF
framework, offering ultra-fast packet processing directly at the network driver layer.
XDP programs are executed extremely early in the network stack, right at the
point of packet reception, allowing for lightning-fast decision-making on incoming
packets.

XDP programs are attached to specific network interfaces and operate as a set
of rules or filters applied to incoming packets. They execute in the kernel space,
offering unprecedented efficiency and speed. These programs can efficiently 1. drop
2. modify 3. redirect 4. pass packets to the networking stack based on customizable
criteria defined within the program logic.

Due to the early nature of packet handling in XDP, extracting details about the
source process—such as Process Identifier (PID) poses significant hurdles. This
limitation stems from the network packets being processed before the Linux kernel
associates them with specific process contexts, requiring alternative strategies to
be employed to achieve the desired functionality.

28

Linux implementation

Another limitation of XDP is that it can not operate for egrees packets.

5.1.2 TC program

The Traffic Control (TC) Classifier program is as a sophisticated EBPF tool for
fine-grained control and manipulation of network traffic within the Linux kernel.
Leveraging EBPF’s capabilities, TC Classifier programs extend the traditional
functionalities of Linux’s Traffic Control infrastructure, allowing for intricate packet
classification and processing.

The main difference with XDP is that TC programs operate on both ingress and
egress packets, this bidirectional handling grants TC programs a comprehensive
control over network traffic, enabling them to apply diverse policies and actions
to both incoming and outgoing packets. Unlike XDP, which primarily focuses on
packet processing at the earliest possible stage upon arrival, TC programs offer
a more nuanced approach by allowing manipulation and classification at various
points in the network stack.

This versatility makes TC a valuable tool for implementing the desired function-
ality.

The problem of getting the PID of the process that generated the packet is still
present.

5.1.3 Probes

EBPF probes are a powerful EBPF programs, providing a flexible and non-intrusive
mechanism for debugging and analysis within the Linux kernel. These probes serve
as programmable hooks strategically positioned at crucial junctures in the kernel,
allowing for the interception and observation of diverse events, system calls, and
functions.

Notably, EBPF supports both user-level (UProbe) and kernel-level (KProbe)
probes, each offering distinct advantages.

Leveraging Uprobe facilitates the interception and analysis of function calls at
the user-space level, offering valuable insights into user-space applications. This
capability proves advantageous when aiming to understand and monitor system
behavior during specific events.

29

Linux implementation

With Kprobe is possible to hook a kernel function call and read the function
arguments. This could be useful to get the PID of the process that generated the
packet. A possible approach could be to hook the security_sock_rcv_skb [30]
kernel function, which is called when a packet is received, and read the PID of the
process that generated that packet.

Once the PID is known is it possible to store it in a map, eBPF maps are the
standard way to communicate between two EBPF programs.

5.1.4 EBPF maps

In the intricate landscape of EBPF, one of the key mechanisms facilitating effi-
cient communication between different EBPF programs is the concept of EBPF
maps. These maps serve as dynamic data structures within the kernel that enable
sharing information across various EBPF programs, fostering collaboration and
synchronization in a secure and controlled manner.

EBPF maps can be visualized as shared memory regions accessible by multiple
EBPF programs, providing a means for them to exchange data seamlessly. These
maps come in various types, each tailored to specific use cases and data requirements.
Common types include array maps, hash maps, and CPU maps, each offering unique
advantages in terms of data organization and retrieval efficiency.

Array maps

Array maps [31] in EBPF serve as straightforward, indexed storage structures
accessible by multiple EBPF programs. Each element in the array is indexed by
an integer, allowing for efficient and direct access to stored data. This type of map
is particularly useful in scenarios where a simple numerical index suffices, making
it a pragmatic choice for straightforward data organization and retrieval.

Hash maps

Hash maps [32] provide a more versatile option by allowing the storage of key-
value pairs. This flexibility facilitates the association of data with specific keys,
enabling EBPF programs to manage more complex relationships. Hash maps
are advantageous in situations where the data retrieval pattern is not strictly

30

Linux implementation

numeric, offering a dynamic and efficient means for EBPF programs to exchange
and manipulate information.

CPU maps

CPU maps [33] are designed for scenarios where data needs to be maintained on a per-
CPU basis. This type of map enhances efficiency by minimizing contention between
different CPU cores. By assigning dedicated storage for each CPU, per-CPU maps
enable parallel processing, reducing the need for synchronization mechanisms. This
makes them particularly beneficial in scenarios where scalability and performance
optimization are critical considerations for inter-program communication in EBPF.

In the context of this project, hash maps were leveraged to implement a robust
filter mechanism, allowing for the selective interception of specific process identifiers
(PID) or process names associated with corresponding local port addresses. This
strategic use of hash maps enhances the filtering capabilities within the EBPF
program, enabling the targeted interception of desired processes and contributing
to the project’s overarching goal of tailored and precise packet interception based
on specified criteria.

5.2 Rust AYA

Rust Aya is a specialized EBPF library designed for perfect integration of user-
supplied programs within the Linux kernel. In contrast to other eBPF libraries,
Aya distinguishes itself by being crafted entirely in Rust, without dependencies on
libbpf or bcc [34]. The library prioritizes operability and developer experience while
leveraging Rust’s capabilities and safety features previously discussed.

This is the library chosen for the implementation of the transparent mode on
Mitmproxy and this decision is driven by its synergy with the existing codebase.
Rust’s safety features, expressive syntax, asynchronous support, cross-kernel com-
patibility, and deployment efficiency contribute to a seamless integration process,
fostering code coherence, maintainability, and an overall positive development
experience for the Mitmproxy project.

31

Chapter 6

Conclusions

6.1 Future improvements

6.1.1 MacOS

In the future, as the implementation for the macOS moves beyond the beta version,
users can expect various enhancements in line with the major versions of Mitmproxy.
These improvements will likely fix existing bugs, refining the overall functionality
and user experience. In addition, performance improvements are expected to
optimize the general efficiency.

6.1.2 Linux

At the moment the approach that involves the use of a TC program and a Kprobe
is the most promising but still not tested enough. The goal is to complete the
implementation and test it to obtain a result similar to the one obtained on macOS.
Another missing implementation for Linux is an automatic certificate installer, to
make the Transparent mode truly transparent.

32

Conclusions

6.2 Contributions

Throughout the development process, extensive collaboration with Dr. Maximilian
Hils significantly influenced and enhanced the project. Dr. Hils played a pivotal
role in code reviews, offering valuable feedback, and actively contributing to the
improvement of various aspects. The key contributions include about 7 main pull
requests:

1. The implementation of the first version of the Redirector application [35],
which is responsible for redirecting traffic to the proxy, implemented in swift.

2. The code that handles the compilation process of the application and that
copies the binaries into the wheel [36].

3. The first implementation of the communication mechanism between Rust and
Swift with Protobuf [37] and a later update [38], the integration of protocol
buffer into the codebase, both rust and swift side.

4. The contribution to the Rust wrapper of the Apple NE [39], that are used in
Mitmproxy to manage the automatic installation and trust of certificates.

5. The implementation of the certificate installer [40], written in Rust.

6. The main roadmap for the development of the Transparent mode [41]

7. Tests and first implementation of the Transparent mode for Linux [42]

For the macOS portion, the codebase contribution amounts to an addition of
more than 6,000 lines of code. In parallel, the Linux segment of the project also
saw a substantial increase in its code base, with about 10,000 lines of code added.

About 30% of Mitmproxy users, out of an estimated total of 500,000 users, use
the macOS version of the software. This user estimate is derived from the number
of downloads registered on PyPI [43], which provides an indicator of the adoption
and reach of the software.

The percentage of users using the Linux version, on the other hand, is much
more significant and covers about 60% of the Mitmproxy user community, this is
because the software is also widely used on the server side. As with the macOS
component, the estimated Linux user base is informed by PyPI download statistics.

33

Conclusions

Aside from these main contributions I have been and still am involved in
maintaining the entire repository, as the mitmproxy_rs development leader for
both Linux and macOS, I am involved in code review, bug fixes, and answering
questions and special requests.

34

Appendix A

MacOS Certificate Truster
with system functions

To make the proxy truly transparent, the functionality to automatically install
certificates within macOS systems has been added.

On macOS, the system certificates are stored in the keychain. The keychain is a
password management system that is used to store passwords and other sensitive
data like certificates, private keys, and so on.

Mitmproxy uses the system keychain to store the certificate which allow HTTPS
interception and private key to correctly compile the Redirector app.

Keychain system is part of the Security framework, the security framework is a
set of functions that allow to manage security aspects of the macOS systems.

Rust provides a wrapper for the Security framework [44], but some additional
functions are needed to correctly install certificates: SecCertificateAddToKeychain
and SecTrustSettingsSetTrustSettings.

SecCertificateAddToKeychain

SecCertificateAddToKeychain [45] is a function that allows to add a custom
certificate to the chosen keychain. This function is a system function and for this
reason it has been added to the security_framework_sys crate, the crate that

36

MacOS Certificate Truster with system functions

provides the bindings directly to the system functions.

Its purpose is much wider than the one needed by Mitmproxy, but it has been
added to the crate to make it available to everyone.

For Mitmproxy scope, a caller function has been added to the higher level crate se-
curity_framework, under the certificates crate: add_to_keychain, a new implemen-
tation function for SecCertificate that accepts the desired target SecKeychain
as argument and returns a Result indicating the outcome of the operation.

SecTrustSettingsSetTrustSettings

SecTRustSettingsSetTrustSettings [46] is a function that allows to set the trust
settings to a specific certificate.

As for SecCertificateAddToKeychain, this function is a system function, it
has been added to the security_framework_sys crate and the related caller function
set_trust_settings_always has been added to the security_framework crate,
it accepts the desired target SecCertificate as argument and returns a Result
with the outcome of the operation.

37

Appendix B

CI/CD

CI/CD is a practice that allows to automate the process of building, testing and
deploying. Mitmproxy, and in particular mitmproxy_rs uses GitHub Actions [47]
as CI/CD platform and performs auto-fixing, building and docs.

Autofix

Autofix process is triggered by a pull request and it checks the code for formatting
errors. The code is formatted using rustfmt [48] and clippy [49], but the auto-fix
process is also responsible for protocol buffer files compilation.

Auto-fix is performed for each OS, in fact each OS has its own auto-fix job and
when auto-fix is completed, the result is automatically sent to the codebase with a
new commit.

Build

Build process is the most important one, it is triggered by a pull request and, for
each OS, it launches tests and builds the binaries. After compilation process, the
binaries are sent to the artifacts section of the pull request.

Artifacts section is a special section of the pull request that allows to upload
files (in this case the binaries), that can be downloaded by the user but also used

38

CI/CD

by other jobs.

Docs

This process is triggered by a pull request too and its purpose is to build the
documentation and upload the static HTML files as an artifact.

39

Appendix C

Windows Named Pipes

Named pipes are a typical inter-process communication mechanism. On Windows,
named pipes are considered like usual files, and they are managed with same
functions used for files. The first difference between Windows named pipes and
Unix pipes is that Windows named pipes are bidirectional, while Unix pipes are
unidirectional.

In addition, since on Windows, pipes have a persistent file system name, they
can be written and read by different processes at different times.

40

Acknowledgements

To Elena, my unwavering support, trusted shoulder and kindred spirit.

To my family, for their continuous encouragement.

To Professors Torchiano, for his guidance and advice.

To Maximilian Hils, a big thanks for his mentoring on this journey, for his expertise,
kindness and patience.

41

Bibliography

[1] Aldo Cortesi. Mitmproxy docs v10. Introduction paragraph. 2010. url: https:
//docs.mitmproxy.org/archive/v10/ (cit. on pp. ii, 3).

[2] What is eBPF? url: https://ebpf.io/what-is-ebpf/#what-is-ebpf
(cit. on p. iii).

[3] S. Kalarani and G. V. Uma. «Improving the efficiency of retrieved result
through transparent proxy cache server». In: 2013 Fourth International Con-
ference on Computing, Communications and Networking Technologies (IC-
CCNT). July 2013, pp. 1–8. doi: 10.1109/ICCCNT.2013.6726674 (cit. on
p. 1).

[4] Muhammad Ikram, Narseo Vallina-Rodriguez, Suranga Seneviratne, Mo-
hamed Ali Kaafar, and Vern Paxson. «An Analysis of the Privacy and
Security Risks of Android VPN Permission-Enabled Apps». In: Proceed-
ings of the 2016 Internet Measurement Conference. IMC ’16. Santa Mon-
ica, California, USA: Association for Computing Machinery, 2016, pp. 349–
364. isbn: 9781450345262. doi: 10.1145/2987443.2987471. url: https:
//doi.org/10.1145/2987443.2987471 (cit. on p. 1).

[5] Maximilian Hils and Rainer Bohme. «Watching the Weak Link into Your
Home: An Inspection and Monitoring Toolkit for TR-069». In: CoRR abs/2001.02564
(2020). arXiv: 2001.02564. url: http://arxiv.org/abs/2001.02564 (cit.
on p. 1).

[6] Aldo Cortesi. Mitmproxy docs v10. 2018. url: https://docs.mitmproxy.
org/archive/v10/ (cit. on p. 4).

[7] Official mitmproxy repository. url: https : / / github . com / mitmproxy /
mitmproxy (cit. on p. 7).

[8] Tokio crate documentation. url: https://docs.rs/tokio/latest/tokio/
(cit. on p. 13).

42

https://docs.mitmproxy.org/archive/v10/
https://docs.mitmproxy.org/archive/v10/
https://ebpf.io/what-is-ebpf/#what-is-ebpf
https://doi.org/10.1109/ICCCNT.2013.6726674
https://doi.org/10.1145/2987443.2987471
https://doi.org/10.1145/2987443.2987471
https://doi.org/10.1145/2987443.2987471
https://arxiv.org/abs/2001.02564
http://arxiv.org/abs/2001.02564
https://docs.mitmproxy.org/archive/v10/
https://docs.mitmproxy.org/archive/v10/
https://github.com/mitmproxy/mitmproxy
https://github.com/mitmproxy/mitmproxy
https://docs.rs/tokio/latest/tokio/

BIBLIOGRAPHY

[9] Smoltcp crate documentation. url: https://docs.rs/smoltcp/latest/
smoltcp/ (cit. on pp. 13, 16).

[10] Tokio sync module documentation. url: https://docs.rs/tokio/latest/
tokio/sync (cit. on p. 15).

[11] Pyo3 crate documentation. url: https://docs.rs/pyo3/latest/pyo3/
(cit. on p. 18).

[12] Global interpreter lock. url: https://docs.python.org/3/glossary.html#
term-global-interpreter-lock (cit. on p. 18).

[13] Cpython definition. url: https://docs.python.org/3/glossary.html#
term-CPython (cit. on p. 18).

[14] System info crate documentation. url: https://docs.rs/sysinfo/latest/
sysinfo/ (cit. on p. 19).

[15] proc_pidbsdinfo struct. url: https://opensource.apple.com/source/
xnu/xnu-2050.24.15/bsd/kern/proc_info.c (cit. on p. 19).

[16] Apple documentation: core grpahics framework. url: https://developer.
apple.com/documentation/coregraphics?language=objc (cit. on p. 20).

[17] Core graphics crate documentation. url: https://docs.rs/core-graphics/
latest/core_graphics/ (cit. on p. 20).

[18] Image crate documentation. url: https://docs.rs/image/latest/image/
(cit. on p. 20).

[19] Criterion crate documentation. url: https://bheisler.github.io/crite
rion.rs/book/getting_started.html (cit. on p. 20).

[20] Maxim Krasnyansky, Maksim Yevmenkin, and Florian Thiel. Universal TUN/-
TAP device driver. SPDX-License-Identifier: GPL-2.0, include:: <isonum.txt>.
Copyright 1999-2000
Maxim Krasnyansky <max_mk@yahoo.com>, Linux, Solaris drivers;
Copyright 1999-2000
Maksim Yevmenkin <m_evmenkin@yahoo.com>, FreeBSD TAP driver;
Revision of this document 2002
by Florian Thiel <florian.thiel@gmx.net>. 1999-2000 (cit. on p. 21).

[21] Universal Tun Tap driver documentation. url: https://vtun.sourceforge.
net/tun/faq.html (cit. on p. 21).

[22] Apple documentation: Network Extension. url: https://developer.apple.
com/documentation/networkextension (cit. on p. 22).

[23] Packet tunnel provider. url: https://developer.apple.com/documentati
on/networkextension/packet_tunnel_provider (cit. on p. 22).

43

https://docs.rs/smoltcp/latest/smoltcp/
https://docs.rs/smoltcp/latest/smoltcp/
https://docs.rs/tokio/latest/tokio/sync
https://docs.rs/tokio/latest/tokio/sync
https://docs.rs/pyo3/latest/pyo3/
https://docs.python.org/3/glossary.html#term-global-interpreter-lock
https://docs.python.org/3/glossary.html#term-global-interpreter-lock
https://docs.python.org/3/glossary.html#term-CPython
https://docs.python.org/3/glossary.html#term-CPython
https://docs.rs/sysinfo/latest/sysinfo/
https://docs.rs/sysinfo/latest/sysinfo/
https://opensource.apple.com/source/xnu/xnu-2050.24.15/bsd/kern/proc_info.c
https://opensource.apple.com/source/xnu/xnu-2050.24.15/bsd/kern/proc_info.c
https://developer.apple.com/documentation/coregraphics?language=objc
https://developer.apple.com/documentation/coregraphics?language=objc
https://docs.rs/core-graphics/latest/core_graphics/
https://docs.rs/core-graphics/latest/core_graphics/
https://docs.rs/image/latest/image/
https://bheisler.github.io/criterion.rs/book/getting_started.html
https://bheisler.github.io/criterion.rs/book/getting_started.html
https://vtun.sourceforge.net/tun/faq.html
https://vtun.sourceforge.net/tun/faq.html
https://developer.apple.com/documentation/networkextension
https://developer.apple.com/documentation/networkextension
https://developer.apple.com/documentation/networkextension/packet_tunnel_provider
https://developer.apple.com/documentation/networkextension/packet_tunnel_provider

BIBLIOGRAPHY

[24] App proxy provider. url: https://developer.apple.com/documentation/
networkextension/app_proxy_provider (cit. on p. 22).

[25] Apple Documentation: NETunnelProviderManager. url: https://develope
r.apple.com/documentation/networkextension/netunnelprovidermana
ger (cit. on p. 22).

[26] Apple Documentation: NETransparentProxyProvider. url: https://develo
per.apple.com/documentation/networkextension/netransparentproxy
provider (cit. on p. 23).

[27] Protocol buffers documentation. url: https://developers.google.com/
protocol-buffers (cit. on pp. 23, 24).

[28] Inter Process Communication benchmark. url: https://github.com/goldsb
orough/ipc-bench/blob/589146a3f14f7675c2224ed47e414093bba13a69/
README.md (cit. on p. 25).

[29] Berkeley Packet Filter. url: https://en.wikipedia.org/wiki/Berkeley_
Packet_Filter (cit. on p. 26).

[30] security_sock_rcv_skb kernel function signature. url: https://elixir.
bootlin.com/linux/v4.2/source/include/linux/security.h#L1129
(cit. on p. 30).

[31] Array map in ebpf. url: https://docs.kernel.org/bpf/map_array.html
(cit. on p. 30).

[32] Hash map in ebpf. url: https://docs.kernel.org/bpf/map_hash.html
(cit. on p. 30).

[33] CPU map in ebpf. url: https://docs.kernel.org/bpf/map_cpumap.html
(cit. on p. 31).

[34] Tools for BPF-based Linux IO analysis, networking, monitoring, and more.
url: https://github.com/iovisor/bcc (cit. on p. 31).

[35] macos redirector app + CI. url: https://github.com/mitmproxy/mitmpro
xy_rs/pull/66 (cit. on p. 33).

[36] Build app into wheel. url: https://github.com/mitmproxy/mitmproxy_
rs/pull/67 (cit. on p. 33).

[37] Protobuf integration. url: https://github.com/mitmproxy/mitmproxy_
rs/pull/68 (cit. on p. 33).

[38] Swift proto update. url: https://github.com/mitmproxy/mitmproxy_rs/
pull/82 (cit. on p. 33).

[39] Add SecTrustSettingsSetTrustSettings and SecCertificateAddToKeychain. url:
https://github.com/kornelski/rust-security-framework/pull/181
(cit. on p. 33).

44

https://developer.apple.com/documentation/networkextension/app_proxy_provider
https://developer.apple.com/documentation/networkextension/app_proxy_provider
https://developer.apple.com/documentation/networkextension/netunnelprovidermanager
https://developer.apple.com/documentation/networkextension/netunnelprovidermanager
https://developer.apple.com/documentation/networkextension/netunnelprovidermanager
https://developer.apple.com/documentation/networkextension/netransparentproxyprovider
https://developer.apple.com/documentation/networkextension/netransparentproxyprovider
https://developer.apple.com/documentation/networkextension/netransparentproxyprovider
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers
https://github.com/goldsborough/ipc-bench/blob/589146a3f14f7675c2224ed47e414093bba13a69/README.md
https://github.com/goldsborough/ipc-bench/blob/589146a3f14f7675c2224ed47e414093bba13a69/README.md
https://github.com/goldsborough/ipc-bench/blob/589146a3f14f7675c2224ed47e414093bba13a69/README.md
https://en.wikipedia.org/wiki/Berkeley_Packet_Filter
https://en.wikipedia.org/wiki/Berkeley_Packet_Filter
https://elixir.bootlin.com/linux/v4.2/source/include/linux/security.h#L1129
https://elixir.bootlin.com/linux/v4.2/source/include/linux/security.h#L1129
https://docs.kernel.org/bpf/map_array.html
https://docs.kernel.org/bpf/map_hash.html
https://docs.kernel.org/bpf/map_cpumap.html
https://github.com/iovisor/bcc
https://github.com/mitmproxy/mitmproxy_rs/pull/66
https://github.com/mitmproxy/mitmproxy_rs/pull/66
https://github.com/mitmproxy/mitmproxy_rs/pull/67
https://github.com/mitmproxy/mitmproxy_rs/pull/67
https://github.com/mitmproxy/mitmproxy_rs/pull/68
https://github.com/mitmproxy/mitmproxy_rs/pull/68
https://github.com/mitmproxy/mitmproxy_rs/pull/82
https://github.com/mitmproxy/mitmproxy_rs/pull/82
https://github.com/kornelski/rust-security-framework/pull/181

BIBLIOGRAPHY

[40] Add remove certificate. url: https://github.com/mitmproxy/mitmproxy_
rs/pull/70 (cit. on p. 33).

[41] Transparent Proxy Roadmap. url: https://github.com/mitmproxy/mitmp
roxy/issues/6531 (cit. on p. 33).

[42] Mitmporxy transparent mode implementation and tests for linux. url: https:
//github.com/emanuele-em/mitmproxy_linux (cit. on p. 33).

[43] PyPi metrics. url: https://pypistats.org/packages/mitmproxy (cit. on
p. 33).

[44] Rust Security Framework. url: https://github.com/kornelski/rust-s
ecurity-framework/tree/54d905027e50ec4f0969824efa8e34581922a1f4
(cit. on p. 36).

[45] SecCertificateAddToKeychain: Apple documentation. url: https://develop
er.apple.com/documentation/security/1396090-seccertificateaddto
keychain (cit. on p. 36).

[46] SecTrustSettingsSetTrustSettings: Apple documentation. url: https://deve
loper.apple.com/documentation/security/1399119-sectrustsettings
settrustsettings (cit. on p. 37).

[47] Github actions. url: https://resources.github.com/ci-cd/ (cit. on
p. 38).

[48] Run rustfmt. url: https : / / github . com / rust - lang / rustfmt / tree /
2174e6052dcb1802417d686140fe0ab7cbef0df2 (cit. on p. 38).

[49] Run clippy. url: https://github.com/rust-lang/rust-clippy/tree/
87aed038dad5f528f21a6b7baab7039e184386c1 (cit. on p. 38).

45

https://github.com/mitmproxy/mitmproxy_rs/pull/70
https://github.com/mitmproxy/mitmproxy_rs/pull/70
https://github.com/mitmproxy/mitmproxy/issues/6531
https://github.com/mitmproxy/mitmproxy/issues/6531
https://github.com/emanuele-em/mitmproxy_linux
https://github.com/emanuele-em/mitmproxy_linux
https://pypistats.org/packages/mitmproxy
https://github.com/kornelski/rust-security-framework/tree/54d905027e50ec4f0969824efa8e34581922a1f4
https://github.com/kornelski/rust-security-framework/tree/54d905027e50ec4f0969824efa8e34581922a1f4
https://developer.apple.com/documentation/security/1396090-seccertificateaddtokeychain
https://developer.apple.com/documentation/security/1396090-seccertificateaddtokeychain
https://developer.apple.com/documentation/security/1396090-seccertificateaddtokeychain
https://developer.apple.com/documentation/security/1399119-sectrustsettingssettrustsettings
https://developer.apple.com/documentation/security/1399119-sectrustsettingssettrustsettings
https://developer.apple.com/documentation/security/1399119-sectrustsettingssettrustsettings
https://resources.github.com/ci-cd/
https://github.com/rust-lang/rustfmt/tree/2174e6052dcb1802417d686140fe0ab7cbef0df2
https://github.com/rust-lang/rustfmt/tree/2174e6052dcb1802417d686140fe0ab7cbef0df2
https://github.com/rust-lang/rust-clippy/tree/87aed038dad5f528f21a6b7baab7039e184386c1
https://github.com/rust-lang/rust-clippy/tree/87aed038dad5f528f21a6b7baab7039e184386c1

	List of Figures
	Acronyms
	Introduction
	Context
	Purpose

	Mitmproxy
	General overview
	Modes of operations
	A brief insight into the difference between regular mode and transparent mode
	Installation and Distribution

	Architecture and Structure
	Rust as main language
	Rust and its control over low-level system functionalities
	Concurrency
	Zero-cost abstractions
	Compatibility with Python

	Repository structure overview

	MacOS implementation
	The Rust side of Mitmproxy: mitmproxy_rs
	User space network stack
	Packet source
	Python API
	Listing of active processes information

	Redirector
	First approach forcing traffic redirection to Utun
	Second approach with Apple Security Extension
	From extension to system extension

	Inter process Communication
	Data structures
	Unix pipes
	Unix sockets

	Linux implementation
	eBPF
	XDP program
	TC program
	Probes
	ebpf maps

	Rust AYA

	Conclusions
	Future improvements
	MacOS
	Linux

	Contributions

	MacOS Certificate Truster with system functions
	CI/CD
	Windows Named Pipes
	Bibliography

