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Abstract

Suspension control stands as a fundamental technique in magnetic levitation
(Maglev) trains where ensuring the comfort of passengers is paramount. The
increasing demand for fast, safe, and efficient transportation systems in recent
years has made the design of high-velocity trains, such as Maglevs, inevitable.
This project, first addresses the issue of magnetic pad oscillations. Further, a
state-of-the-art Model Predictive Controller (MPC) is introduced , which relies on
prior knowledge of the system’s states for prediction. Additionally, an augmented
Kalman filter (AKF) is employed to estimate the desired states for control. The
performance of the latter is then compared to experimental results obtained from a
test bench. Ultimately, it is demonstrated that MPC outperforms passive damping
and active suspension with a static gain controller (LQR).
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Chapter 1

Introduction

In recent decades, globalization and growing environmental awareness have cat-
alyzed significant shifts in the mobility landscape. Future transport systems aspire
to seamlessly connect major urban centers using sustainable, rapid, safe, and effi-
cient technologies. Governments worldwide are actively addressing these priorities
through various initiatives. For instance, the Strategic Transport Research and
Innovation Agenda (STRIA) of the European Union focuses on advancing transport
electrification and smart mobility solutions [1].
In this context, the Hyperloop concept has emerged as a promising future trans-
portation system. Inspired by Robert Goddard’s vactrain concept [2], the Hyperloop
involves levitating capsules traveling inside an evacuated tube. Thanks to the
low-pressure environment and advanced levitation technology, the capsules expe-
rience minimal friction with any medium, enabling speeds exceeding 1200 km/h,
Figure 1.1. This remarkable speed capability allows for rapid traversal of vast
distances in relatively short timeframes, effectively bridging the gap between urban
areas. Additionally, the Hyperloop embodies an environmentally-friendly paradigm,
as its levitation and propulsion systems operate on fully electrified principles, con-
tributing to zero-emission mobility. The modern Hyperloop system was introduced
in a white paper published by SpaceX in 2013 and subsequently made available as
an open-source design [3]. This conceptual framework envisioned capsules levitated
through air bearings and propelled by a linear induction motor and axial compres-
sors. The design rationale behind this configuration stems from the impracticality
of employing wheels or any form of mechanical contact with the track at extremely
high speeds. However, the concept underwent further refinement, transitioning to
the utilization of magnetic pads akin to the Inductrack concept, thus enhancing
the system’s operational efficiency and performance.
By replacing air bearings with magnetic pads in the Indutrack this idea became
evolved [4]. This system operates based on the principle of electrodynamic levitation,
where a capsule outfitted with permanent magnets generates a magnetic field that
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Figure 1.1: Hyperloop capsule rendering. Source: www.hyperlooptt.com

interacts with a conducting track. This interaction induces eddy currents within
the track, resulting in lift and drag force components. The levitation architecture
facilitated by this mechanism allows for large air gaps, ensuring self-reliability, a
low component count, and simplicity in design. Moreover, this approach is entirely
passive, eliminating the need for cryogenic cooling systems typically associated
with superconducting electrodynamic levitation methods. The lift-to-drag ratio
increases with speed, rendering the Inductrack technology highly attractive for
very high-speed applications. In this context, the Hyperloop concept emerges as a
compelling and more efficient alternative to traditional transportation systems.
The levitation subsystem serves as a crucial enabling technology in the Hyperloop
concept. Of particular interest is the implementation of stable, passive levitation
achieved through electrodynamic means. In this regard, scientific research con-
ducted in the field of electrodynamic bearings (EDB) for rotating machines serves
as a valuable point of reference.

Several studies have been conducted in identification and modelling of different
configurations of the EDBs and characterization of their unstable behaviour and ap-
proaches to stabilize their dynamic behaviour. This includes the minimum passive
damping required for the task of stabilization [5, 6]. To reproduce the force behavior
in levitation, General Atomics provided a setup using a rotating conductive drum
and a permanent-magnet array. The rig layout described has been replicated and
investigated by numerous research groups with similar objectives. In many of
these studies, significant challenges arise when attempting to reproduce the force
behavior using analytical models, primarily due to heavy nonlinear contributions
observed at high speeds.
Addressing the instability issue of levitating systems, a further study have been
conducted upon increasing the degree of the freedom of the system, using a sec-
ondary mass[7].
For the purpose of suspension several control techniques have been utilized. These
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techniques vary from semi-active control strategies such as skyhook and groundhook
damping, to optimal controllers such as Linear Quadratic Regulator (LQR) and
rule based ones such as fuzzy logic controller.
A well suited control strategy to satisfy the task of robust control is a model based
optimal control strategy, referred to as Model Predictive Control (MPC). MPC
relies on readily available models, prevalent across disciplines, thereby leveraging
existing knowledge without the need for explicitly formulating complex control
laws—a task typically reserved for control experts. Instead, MPC automatically
derives the control law via model-based optimization. Its implicit formulation,
adaptability, and reliance on models stand as the primary advantages of MPC.
These facets advocate for the widespread adoption of MPC within the engineering
community.
The advantage of using MPC in a control system with respect to similar strategies
such as LQR is the its capability in handling external constraints on the system
inputs and outputs. This feature is a key parameter in using such control strategy
where in real world applications often there are physical limitations.
Using the 2 DoF model presented in [7], the present research studies the ability of a
linear MPC in isolating the electrodynamic excitations induced from the track and
transfer into the secondary mass that is referred to as unsprung mass in automotive
fields. However, adopting such advanced strategy requires careful tuning of the
pivotal parameters that overcome the final output of the system. For this reason a
sensitivity analysis on the aforementioned parameters are conducted to result in
the ideal compromise.
In addition to the control a further study is being done on observing the unmea-
surable states of the system. This issue is particularly addressed when a model
based controller such as MPC is employed. This project provides a novel approach
using the augmented Kalman filter for the estimation purpose for case in which the
physical properties of the system change with respect to time. For the validation
purpose, the proposed approach is being tested in the testbench and the experi-
mental results are being compared to that of numerical simulations. Eventually,
the validated estimation model is being employed in the closed loop model using
MPC.
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Chapter 2

Model identification

2.1 Mathematical Model

2.1.1 System Configuration Space
The mathematical model that is describing the system dynamics is a quarter-car

configuration due to its prevalent similarities with conventional automotive systems.
According to [7], a system of one degree of freedom (DoF) exhibits instability and
is the main rational that leads to design of a system of two Dof. In this case, the
system is comprised of two lumped masses, two elastic springs, an actuator (voice
coil), a viscous damper, and the track profile, Figure 2.1.

Figure 2.1: Quarter-car model of electrodynamically levitated pod

To showcase the levitation model, an equivalent circuit of the current path within
the track conductor is utilized, featuring multiple branches in electrical parallel,

5
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Figure 2.2. Each branch contains a resistor and an inductor in series, and the

+

Figure 2.2: Equivalent circuit of the current path inside the track conductor with multiple
branches in electrical parallel

overall branches are parallel together with a voltage generator representing a Back
Electromotive Force (back-emf). Using Kirchhoff’s Voltage Law (KVL) for each
branch, the balance of terms for the k-th branch is indicated in Equation (2.1).

Lk
dik

dt
+ Rkik + Evc = 0 (2.1)

To transform from static to rotating frame through ik = ir,kejwt, the expression of
the current and BEMF through become in terms of direct and quadrature axis
components, since ir,k = id,k + jiq,k. Furthermore, the impedance of the k-th
branch can be described by means of the introduction of the electromagnetic pole
frequency, ωp,k = Rk

Lk
that yields the expression of the current change rates through

Equation (2.2).
did,k

dt
= −ωp,kid,k + ωiq,k − Ed

Lk

diq,k

dt
= −ωp,kiq,k + ωid,k − Eq

Lk

(2.2)

According to Equation (2.2), there is an evident dependency of the direct component
on the quadrature component and vice versa. Using Equation (2.2), one can obtain
a power balance model of the circuits. The governing power balance equations
of the model is comprised of three pair of terms indicating, the rate of change of
stored magnetic energy, the dissipated power by the Jule effect, and the last pair
belonging to the mechanical power developed by the levitation system, from which
lift and drag forces can be computed, Equation (2.3).

Flift = Ed

żp

NbØ
k=1

id,k = ∂Λ
∂zp

NbØ
k=1

id,k

Fdrag = −Ed

v

NbØ
k=1

iq,k = −Λ
γ

NbØ
k=1

iq,k

(2.3)
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2.1 – Mathematical Model

In this context, the investigation excludes considerations related to horizontal
components and rotational forces about the pertaining axes, i.e. the sole focus
remains on understanding and assessing the system’s behavior, specifically concern-
ing its vertical dynamics and stability. Referring to Figure 2.1, Flift denotes the
vertical component of the magnetic force developed by the levitation system. It
can be shown that the lift force depends on the flux linkage, the vertical displace-
ment, pole-pitch ratio, and the direct current that is coupled with the quadrature
component. Due to the nonlinear definition of flux linkage, lift force displays
exponential behavior. In this case, it is possible to substitute the force with an
elastic component through mathematical manipulation. In literature, the levitation
system is usually modeled using an equivalent stiffness representation [7]. This
parameter can be calculated as:

kp = ∂Flift

∂zp

(2.4)

The explicit definition of the kp is independent from the vertical displacement or
the longitudinal speed. It can be shown that kp is depending on the pole-pitch
ratio of the magnets and the system total mass through, Equation (2.5).

kp = 2mtg

γ
(2.5)

This expression affords a complete representation of the system’s behavior in
mechanical domain without losing its generality. Employing an equivalent elastic
single term offers mathematical simplicity and reduces computational overhead.
Figure 2.3, indicates the case that is the lift force is substituted with the elastic
spring, kp. The model represented in Figure 2.3, resembles that of quarter car

Figure 2.3: Quarter-car model of electrodynamically levitated pod using equivalent stiffness kp

model in automotive fields. Using a fully mechanical configuration to represent the
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system must account for the excitation forces due to the imposed lift force. In a
fully mechanical system this term can be modeled as road irregularities likewise to
automotive suspension systems. zin denotes the road profile which in our case is
the track surface curvature that is obtained from a previous measurement. The
absolute displacement of kp due to the instantaneous difference between zp and zin

provides the pertaining force. In order to derive the equations of motion, Newton’s
second law is employed. Isolating each of the masses, and keeping the external
interactions, namely forces, the set of governing differential equations of motion
can be expressed in Equation (2.6).

msz̈s + ks (zs − zp) + Cvc (żs − żp) + uvc (t) = 0
mpz̈p + kuszp + ks (zp − zs) + kp (zp − zin) + Cvc (żp − żs) − uvc (t) = 0

(2.6)

zi, żi,z̈i, denote absolute displacement, absolute velocity, and absolute acceleration
of each mass with respect to an inertial reference frame, respectively. mi denotes
the inertial masses, Cvc, is the damping coefficient of the voice coil due to Eddy
current1, ks, is the stiffness of the elastic element in between the masses, kus, is the
stiffness of the unsprung mass spring, and zin, the measured track irregularities,
where, subscripts s and p refer to the sprung and unsprung masses, respectively.
The model represented in the Equation (2.6), points out the system’s behavior in
dynamic configurations, i.e. it disregards the contribution of the gravitational forces
due to the masses’ weights. It is due to the fact that that fraction of the control force
that is responsible for the attenuation of the dynamic disturbances is independent
from the static force provided to decouple the masses (offset force). The term uvc,
in the model is the control input that is to provide the demanding offset force to
decouple the two masses (static configuration), and to provide the optimal control
force to attenuate the impact of disturbances (dynamic configuration). In a fully
mechanical model, as mentioned the control input is a force. However, to provide
such force, an electromechanical device is needed that is referred to as voice coil.

2.1.2 Voice Coil Actuator
A voice coil actuator (VCA), operates based on the principle of electromagnetic
induction. It consists of a coil of wire (the voice coil) that, when subjected to an
electrical current, generates a magnetic field. This magnetic field interacts with
a permanent magnet’s field, resulting in a force that drives linear motion. These
actuators are prized for their precision, rapid response times, and controlled motion.
Figure 2.4, depicts the scheme of the voice coil. As per definition, a voice coil can
use the input signal, amplify it by means of external power supply and provide
a force that is proportional to the voice coil current. The electrical domain of a
voice coil actuator can be modeled with a simple series circuit characterized by

8
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+
_

Permanent magnets

Coil
Voice coil mover

Voice coil stator

Figure 2.4: Voice coil cross section and circuit. The force Fvc is exerted through the voice coil
mover. Electric circuit with impedences Rvc , Lvc , voltage source V and back electromotive
force Evc,

impedance terms Rvc and Lvc, an input voltage source Vin and a back electromotive
force Evc, [8]. Kirchhoff’s voltage law is applied for the electric circuit of the VCA
leading to the following equation,

Lvc
divc

dt

+ Rvcivc + Evc = Vin

Evc = kv(żs − żp)
(2.7)

Where, kv, is the back electromotive force constant. This equation fully captures
the electrical domain dynamics. However, to account for the electrical domain a
further term is needed to interconnect the two domains. The characteristic equation
linking the actuation force to the current of the VCA is:

uvc = kmivc (2.8)

Where, km, is the force constant with a unit of [N
A

]. Figure 2.5, illustrates the
multidomain model of the levitation system.

2.1.3 State Space Transformation
In the experimental section, the significance of relative velocity between the two
masses will be emphasized, as reliance on the absolute velocity of the masses
necessitates the use of two sensors to yield the velocities. Furthermore, the primary
goal of this project is to estimate the back electromotive force (EMF) in the voice
coil actuator, which is linked with the relative velocity between the two masses. To
tackle this issue, it is essential to move from absolute states, namely, {żp, zp, żs, zs}
to {żr, zr, żs, zs}, in the kinematic domain, where only the kinematic states of
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Figure 2.5: Voice coil section and circuit. The force Fvc is exerted through the voice coil mover.
Electric circuit with impedences Rvc , Lvc , voltage source V and back electromotive force Evc.

Figure 2.6: State space transformation scheme: Linear, nonsigular transformation matrix, T,
mapping the state vector, x(t), to the new state vector, x̄(t).

sprung mass remain absolute. This is accomplished through the utilization of a
Transformation Matrix, Figure 2.6.
Considering the linear time-invariant (LTI), state space model in canonical form as
in Equation (2.9),

ẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)

(2.9)

a state space transformation can be obtained using a biunivocal linear transforma-
tion which links the old state vector x with the new vector x̄:

x = T x̄ (2.10)

where T is a square nonsingular matrix.
Based on the transformed states, the transformed state space matrix becomes:

˙̄x(t) = Āx̄(t) + B̄u(t)
y(t) = C̄x̄(t) + Du(t)

(2.11)
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Accordingly, the state and input matrices can be described as follow:

Ā = T −1AT, B̄ = T −1B, C̄ = CT (2.12)

where Ā, B̄, C̄, represent, state matrix, input matrix, and output matrix, respec-
tively.

2.2 Testbench
Performing a proper test to study the system’s behavior requires a long track

profile. To tackle this issue a circular track is devised that enables the study for
long runs as illustrated in Figure 2.7. The experimental setup features an axial
configuration comprising an aluminum disk with a diameter denoted as Dd. Affixed
to the disk is a copper ring with an average diameter Dt, a width wt, and a thickness
ht. The copper ring is fastened to the disk through screws. The entire assembly
is coupled to a brushless servomotor, specifically the Kollmorgen® AKM model,
which is positioned beneath the primary structure. The speed of the servomotor is
regulated by a power converter, the Kollmorgen® AKD, ensuring precise control.
The rotating components are housed within a protective chamber, bordered by

Figure 2.7: Proposed test bench. (1) Structure; (2) support block for micro-metric stage; (3)
shaft; (4) copper track; (5) aluminum disk; (6) servomotor. Source:[8]

transparent panels to allow visual monitoring. The copper ring functions as a
conductive track, allowing for electrodynamic levitation. To induce levitation,
a Halbach array pad is used. A Halbach array is a particular configuration of
permanent magnets that allows the magnetic field to be strengthened along one face
of the array itself. The adopted configuration in the test rig is composed of eight
N45UH NdFeB permanent magnets with 45-degree turn, fixed to the bench frame.
The arrangement of these magnets follows the magnetization pattern depicted in
Figure 2.8. Pad and track features are enlisted in Table 1.
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Figure 2.8: Halbach configuration of the PM pad used in testbench experimental validation. Fdrag

and Flift, denote the drag and lift forces, respectively, and v, indicates the peripheral speed of
the track. Source:[8]

Component Parameter Symbol Value Unit
N45UH NdFeB PM array Number of PMs Nm 8 -

Length ax 12.7 mm
Width ay 63.5 mm
Height az 12.7 mm
Remanence Bt 1.35 T
Relative magnetic µt 1.05 -
permeability

Copper track Thickness ht 15 mm
Average diameter Dt 940 mm
Width wt 60 mm
Resistivity ρt 1.72 × 10−8 Ω · m

Table 2.1: Electrodynamic levitation system main components.Source:[8]

2.2.1 Dynamic Measuring Device
The dynamic set up is a mechanical device comprised of a sprung mass, an unsprung
mass and a voice coil, decoupling the masses. The stator configuration comprises
two perforated aluminum disks connected through a network of vertical beams.
Each element within this structure features specially designed slotted housings,
facilitating the secure mounting of spring elements. The stator, firmly affixed to the
welded frame using a sledge holder, remains stationary. Conversely, the mechanical
linkage with the unsprung mass is established through eight parallel cantilever
springs. The connection points between these two components are arranged to
restrict any substantial movements, except in the vertical direction. This design
choice is evident in the deployment of springs organized into two parallel groups,
each consisting of four elements distributed circumferentially. This arrangement
inhibits both transversal and rotational motions of the dynamic measuring device,
ensuring stability and precise vertical movement.
The unsprung mass serves as a representative model for the hyperloop’s bogie.
Positioned with the permanent magnets oriented towards the track, the unsprung
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Figure 2.9: Assembly of equipment required for dynamic experiments. (1) Micro-metric stage; (2)
unsprung mass; (3) sprung mass; (4) stator-sprung mass flex hinge; (5) voice coil mover fixed to
the unsprung mass; (6) voice coil stator fixed to the sprung mass; (7) unsprung–sprung mass flex
hinge; (8) sprung mass accelerometer; (9) unsprung mass accelerometer. Source:[8]

mass experiences direct exposure to the lift electrodynamic force. Structurally, it
replicates the design of the stator, featuring two aluminum plates connected by
four vertical beams. By considering the lower disk of the device, the Halbach array
can be seen underneath the disk, facing the copper track. Simultaneously, the
mover of the voice coil is situated on the opposite side. It is essential to highlight
that the unsprung mass is linked to the stator via a series of springs. While
this structural damping is deemed insignificant compared to the electromagnetic
damping introduced by the voice coil, it is crucial to recognize its negligible impact.
However, in scenarios where the voice coil remains inactive, and the system behaves
as a single block mass, the damping effect of the springs becomes significant.
This structural damping can potentially influence electromagnetic suspension
phenomena and act as a preventative measure against instability. Therefore, careful
consideration of these dynamic interactions is essential for the overall stability
and performance of the electromagnetic suspension system. The sprung mass is
designed to emulate the hyperloop pod and includes a ferromagnetic core that
houses the voice coil stator. Enhancing the closure of magnetic field lines, this
substantial block is capped with a ferromagnetic cover on the top.

2.2.2 Track Profile
Due to the imperfections stemming from the manufacturing process, there are
deficiencies with respect to the designed CAD model. The copper track profile
displays surface irregularities due to the mechanical tolerance of the surface finishing,
[8]. The deviations have been measured by a laser probe fixed on the support
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of the test bench. To streamline the representation, the first 5 harmonics of the
road profile have been considered for the simulation purpose. The isolation of the
frequency is extracted from Fourier transform of the obtained track profile, i.e. the
harmonic contribution of the track as a function of the disk angular frequency. This
approach allows for an accurate model of the essential characteristics of the actual
track irregularities, contributing to a more efficient and manageable representation
in the conducted analysis.

(a)

(b)

Figure 2.10: Copper track profile of the testbench using the first 5 harmonics of the spatial
frequencies obtained through measurements. (a) Approximate height of the track centreline (b)
Magnified deviation of track profile (× 5 · 103) (testbench is not accurately scaled )

2.2.3 2D vertical configuration identification
The mathematical model illustrated in Figure 2.3, is a simplified model of the
test bench representing a 2 DoF mechanical system in a vertical configuration.
Considering the analogy between the real system and kinematic scheme of the
system, quantities such as system inertial masses obtained through measuring
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devices. However, for the identification of the elastic components have been
conducted through FEM analysis alongside impact tests, by [9]. The frequency
domain analysis through frequency response function (FRF), yields the natural
frequencies of the component. Using the first natural frequency the stiffness of
each elastic component is obtained having the pertaining mass.
Estimation of the resistance is conducted through evaluating the mean value of the
applied voltage and that of the measured current. The inductance estimation of the
voice coil involves addressing uncertainties related to temperature, offset frequency,
and the contribution of permanent magnets and conductive parts. Experimental
estimation is conducted by exciting the voice coil with reversed power cables
to simplify the system. Step and sinusoidal signals are employed for assessing
static behavior and frequency dependency. Transient and dynamic responses
are computed, and static inductance is estimated through a fitting procedure.
Dynamic inductance is evaluated considering the mover inside its magnetic housing
with sinusoidal signals at various frequencies. The resulting dynamic inductance
shows a non-trivial dependency on the offset. The estimated values serve as
qualitative reference points, with emphasis on the mean dynamic inductance (L̄vc)
as a representative measure, considering contributions from magnets and aluminum
parts. Referring to Figure 2.3, mechanical properties of the system are enlisted in
Table 2.2.

Parameter Symbol Value Unit
Sprung mass ms 15.82 kg
Unsprung mass mp 4.2 kg
Frame attachment stiffness kus 9700 N/m
Secondary suspension stiffness ks 4422 N/m
Levitation system equivalent stiffness kp 2429 N/m
Voice coil damping Cvc 207 N/(m·s)

Table 2.2: System physical (mechanical & electrical) properties
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Chapter 3

Control Strategy

3.1 Model Predictive Control
MPC is a set of advanced control strategies that uses the explicit model of the

system to predict the future behaviour of the system, within a finite horizon. In
the context of model predictive control, this horizon is denoted as the prediction
horizon, i.e. the interval between the current instant and a predefined future instant
of the system that the prediction windows has been set. The prediction horizon
holds significant importance; it should be tailored to be sufficiently long to represent
the effect of a change in the manipulated variable u on the control variable y while
avoiding excessive computational demands [10].
Taking into consideration this prediction, it obtains the sequence of optimal input
u(t) by solving a constrained optimization problem. Within the prediction horizon,
the optimized input sequence is applied to the prediction model within a predefined
period, referred to as the control horizon. At (k + 1)-th instant, only the first
element of the optimal input sequence computed at k-th instant, is applied to the
system, Figure 3.2.
The cost function that sets the optimization problem, is formulated to minimize
the reference tracking error between the given reference and the system output,
e = y − r. It typically consists of two components: a control performance term,
which penalizes deviations from the desired setpoint or trajectory, and a control
effort term which penalizes excessive changes in the control inputs. Mathematically
speaking, it is often formulated in a quadratic form, rendering a convex problem
optimization, Figure 3.1. This convexity property is crucial as it guarantees the
existence of a unique global minimum, enabling efficient and reliable optimization
algorithms to be employed [11]. In this instance, the cost function of MPC bears
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resemblance to that of the Linear Quadratic Regulator (LQR) controller. How-
ever, the distinguishing feature of MPC lies in its ability to handle constraints,
a capability lacking in methods like LQR. This feature is particularly crucial in
industrial applications where preventing actuator saturation is paramount. By
considering constraints, MPC ensures that control inputs remain within safe oper-
ating limits, enhancing system stability and performance in real-world scenarios [12].

(a)

Non-convex setConvex set

(b)

Figure 3.1: Geometrical representation of quadratic cost function: (a) A generic quadratic cost
function with one global minimum, (b) Convex and non-convex set

Figure 3.2: Function principle of a model-based predictive with horizons N1, Nu, Np

One notable drawback of the MPC strategy is its requirement for full state feed-
back. This arises from the predictive nature of the strategy that relies on observing
all states to accurately forecast system behavior. To mitigate this constraint, an
additional state observer must be deployed to estimate the unmeasured states.
Further elaboration on observation methods will be provided in Chapter 4. This
section aims to present the theory behind MPC and its implementation in the
simulation of the model.
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3.1.1 Methodology
As mentioned, MPC relies on the prediction of the system states to provide the
optimal sequences of inputs. Considering a system with linear time invariant (LTI)
model in discrete time domain which is compatible with our case, can be considered
as follows:

x(k) = Ax(k − 1) + Bu(k − 1) + Gω(k − 1)
y(k) = Cx(k)

(3.1)

where ω(k−1), denotes the disturbance model, i.e. the track irregularities, at instant
t = k − 1. In Equation (3.1), the input vector is decomposed into manipulated
variables (control inputs) and disturbance. This is due to the fact that the
optimization process is applied only on the controllable inputs (VCA voltage).
Using the model, at each consecutive sampling instant k, k = 1,2,3, ..., the vector
of the future increments of the manipulated variables is obtained online.

∆u(k) =


∆u(k|k)

...
∆u(k + Nu − 1|k)

 (3.2)

The expression ∆u(k + p|k), denotes the increment of the control input in the
sampling instant k + p, calculated at the current sampling time k. Nu denotes
the control horizon defining the number of decision variables. According to Equa-
tion (3.2), the increment at the first and last instant within the control horizon is
as follows:

∆u(k|k) = u(k|k) − u(k − 1)
∆u(k + p|k) = u(k + p|k) − u(k + p − 1|k)

(3.3)

for p = 1, ..., Nu − 1, the symbol u(k + p|k) indicates the value of the control input
in the sampling instant k + p obtained in the current instant k. u(k − 1) denotes
value of the control input in the previous sampling instant k − 1.
The task of obtaining the optimal sequences of the control inputs, to reduce the
tracking error is by solving an optimization problem through minimizing an index
performance, J(r, uopt).

J(k) =
NpØ
p=1

∥(r(k + p|k) − ŷ(k + p|k)∥2
Mp

+
Nu−1Ø
p=0

∥∆u(k + p|k)∥2
Λp

(3.4)

Equation (3.4) represents the quadratic cost function used for the optimization
task, defining the norm ∥x∥2

A = xT Ax, being the matrix A square. J(k) can be
decoupled into two components.
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Model

Optimizer Plant

MPC

Figure 3.3: MPC algorithm scheme: The figure represents the general scheme of an MPC
algorithm. The prediction and optimization takes place within the MPC block and the optimal
input is fed into the controlled plant. The measured output is used to update the prediction at
each iteration.

The first component aims to minimize the reference tracking error within the
control horizon, Tsample · Np. Here, Mp represents a diagonal matrix containing the
weighting parameters of the plant’s measured outputs, corresponding to the size of
the output vector. Each entry of Mp corresponds to an individual output, with a
higher value indicating greater importance assigned to the respective output.
The second component penalizes the increment in control input, ∆u, over the
control horizon Nu. The penalty term, Λp, corresponds to the penalization of the
manipulated variables, aimed at minimizing energy consumption. r(k + p|k) is
the future value of the reference input that is already known. ŷ(k + p|k) indicates
the predicted value of the output for the instant k + p at k-th sampling instant,
Figure 3.3.
In the case of VCA, limitations on the supplied voltage result in saturation points
in the input. These limitations can be modeled as input constraints with upper
and lower bounds corresponding to the supply range of the VCA.

umin ≤ u(k + p|k) ≤ umax, p = 0, . . . , Nu − 1 (3.5)

In this context, umin and umax represent the minimum and maximum values of the
manipulated variable, respectively. It is crucial to note that all computed values of
the manipulated variable across the entire control horizon are subject to constraints,
rather than solely focusing on the value at the current sampling instant u(k|k).
Sudden increment or decrement of the actuator control input as well as the actuator
saturation may be problematic. Sudden drop or climax of the force could possibly
damage the actuator. To prevent this it is possible to allow the rate of the
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manipulated variable be within a certain threshold varying between ∆umin and
∆umax, as shown in Equation (3.6).

∆umin ≤ ∆u(k + p|k) ≤ ∆umax p = 0, . . . , Nu − 1 (3.6)

The predicted values of the outputs may as well be limited. In the case of the model
under discussion, considering a limited range for the amplitude of the oscillations of
the unsprung mass due to design specifications, the displacement of the unsprung
mass can’t be deliberate. To account for this limitation, it is possible to set
constraints for the output values.

ymin ≤ ŷ(k + p|k) ≤ ymax, p = 1, . . . , N (3.7)

Referring to the first two sets of constraints, namely, Equations (3.2) and (3.5),
the possible solutions of the optimization problem becomes limited. Furthermore,
imposing constraints on the predicted outputs, Equation (3.7), may cause some
important problems. Often the model is a rough approximation of the actual plant
and the process may be affected by a strong disturbance. Being obligated to find
an optimal solution, the imposed constraints my bring invisibility issues hindering
the process of finding a solution. To tackle this issue, mathematically it is possible
to soften the hard constraints on the output variables, Equation (3.7) , when they
are not satisfied. Therefore, the predicted values of the outputs may temporarily
violate the hard constraints. Softening the constraints on the predicted output
variables, the rudimentary MPC optimization problem becomes:

min
∆u(k),ϵmin(k),ϵmax(k)

J(k) =
NpØ
p=1

k∥r(k + p|k) − ŷ(k + p|k)∥2
2Mp

+
NuØ
p=0

∥∆u(k + p|k)∥2
2Λp + ρmin∥ϵmin(k)∥2

2

+ ρmax∥ϵmax(k)∥2
2

(3.8)

subject to

umin ≤ u(k + p|k) ≤ umax, p = 0, . . . , Nu − 1 (3.9)
∆umin ≤ ∆u(k + p|k) ≤ ∆umax, p = 0, . . . , Nu − 1 (3.10)

ymin − ϵmin(k) ≤ ŷ(k + p|k) ≤ ymax + ϵmax(k), p = 1, . . . , N (3.11)
ϵmin(k) ≥ 0ny×1, ϵmax(k) ≥ 0ny×1 (3.12)

When the original hard constraints Equation (3.7), cannot be met, they are
temporarily relaxed. This relaxation involves adjusting the minimal and maximal
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predicted values of the controlled variables by ϵmin(k) and ϵmax(k), respectively. In
addition to computing the future control increments ∆u(k), the MPC algorithm
also determines vectors ϵmin(k) and ϵmax(k), each of length ny, to account for these
relaxations.
In Figure 3.3, the schematic representation of a generic plant controlled using MPC
is shown. Given the reference input, r⃗, iteratively based on the sampling time Ts,
the controller provides the optimal control action. The control loop is closed with
the feedback from measurements. A more comprehensive representation of the
MPC algorithm is shown in Algorithm 1.
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Algorithm 1 Model Predictive Control (MPC) Algorithm
1: Initialize:
2: Set initial state of the system, k = 0
3: Define parameters: Ts, N , Nu, Mp, Λp, ρ
4: Set constraints: umin, umax, ∆umin, ∆umax, ymin, ymax
5: Set initial guesses for manipulated variables (according to initial condition of

the plant): u(k|k), ∆u(k|k)
6: while not converged do
7: k = k + 1
8: Predict:
9: Obtain current state of the system

10: Predict future states using model: r(k + p|k)
11: Predict future manipulated variables and the pertaining rates: u(k + p|k),

∆u(k + p|k)
12: Predict future prediction error: ϵmin(k), ϵmax(k)
13: Cost Function Calculation:
14: Calculate the cost function J(k) using the predicted values of r⃗, ϵ, and

manipulated variables
15: Optimization:
16: Minimize J(k) subject to constraints:
17: umin ≤ u(k + p|k) ≤ umax, for p = 0, . . . , Nu − 1
18: ∆umin ≤ ∆u(k + p|k) ≤ ∆umax, for p = 0, . . . , Nu − 1
19: ymin − ϵmin(k) ≤ ŷ(k + p|k) ≤ ymax + ϵmax(k), for p = 1, . . . , N
20: ϵmin(k) ≥ 0, ϵmax(k) ≥ 0
21: Update Manipulated Variables:
22: Select the optimal control inputs that minimize J(k)
23: Apply Control Action:
24: Apply the calculated control inputs to the system
25: Update State:
26: Measure current state of the system
27: Convergence Check:
28: Check convergence criteria (e.g., change in cost function, iterations)
29: end while
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3.1.2 MPC Setup
The role of the MPC in this study is to attenuate the oscillations of the

sprung mass (capsule). This is analogous to the task of vibration suspension in
the automotive field. Essentially, as discussed in Section 2.2.2, the irregularities
emerging from the track profile, induce perturbations on the electromagnetic pad.
Speaking of passenger comfort in large scale models, this can potentially bring
about discomfort. This is the main rational behind adding an active controller
namely the MPC further to the passive damping component to actively provide
the optimal control input to keep the oscillations of the sprung mass at bellow
the discomfort level. It is worth noting that, this task is done by transferring the
excitation from the track to the unsprung mass to isolate the sprung mass.
At this stage of the project, it is assumed that all the states of the system are
observable and we are able to fully close the feed back loop without any need for
an state observer. All the numerical results are simulated in the Matlab Simulink
environment. For this purpose, Matlab MPC toolbox is served as the controller
agent providing the optimal control input to the plant. The reference input to the
MPC block is a vector containing the signals of the equilibrium setpoints for all
the outputs.
A state space block is used to mimic the behaviour of the test plant in the continuous
time domain. For a system including the transformed electromechanical states,
xEM,T = {żr, zr, żs, zs, ivc}, the state space model is described in Appendix A.4.

Figure 3.4: Simulink base model used for the MPC setup

As shown in Figure 3.4, the base model that is used for the simulation purpose
is comprised of the MPC block, the plant, road profile serving as the disturbance
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signal, and the reference input. In a fully observable system without process and
measurement noise it is possible to feedback all the Measured Outputs (MO) to the
block at each sample. In the model that is used for the test as already mentioned
the track profile data exists. This allows for a more precise prediction of the future
states of the system, where it is referred to as Measured Disturbance (MD) in the
MPC block. Moreover, the case without feeding the track profile signal will be
discussed in Section 5.2.
The reference input used in the simulation is a signal vector of size 5 × 1 with
all zero entries. It should be remarked that this is for the case where there is no
static forces existing, i.e. the analysis considers the dynamic behaviour of the two
masses. In the real case where a lift force is needed to decouple the two masses,
this assumption loses its validity due to the constant offset voltage applied to the
VCA. For this case the constant value of the VCA current should be fed to the
MPC block and the offset displacement of the sprung and unsprung masses should
be considered.
Manipulated Variable (MV) port denotes the optimal control input applied to the
plant. As can be seen in Figure 3.4, the control input and the disturbance should
be discriminated. For this purpose, in the definition of the MPC model, prior to
simulation, the input matrix is divided into two columns of MV and MD.
Other parameters that should be set are the sampling time Ts, the prediction
horizon Np, and the control horizon Nu. The choice of sampling time depends on
several parameters. Larger sampling time may neglect the essential frequencies
that are present in the system. Significantly small sampling time can bring about
computational overhead as MPC iteratively should solve an optimization problem
at each step. Therefore, the best compromise is to consider the systems dynamics
for the selection of an appropriate sampling time. Considering the largest essential
frequency of the track profile equal to 287 rad/sec, setting Ts = 103 Hz proved to
be an appropriate choice for the simulation. The prediction horizon similar to the
sampling time should be long enough to cover the time window that the influence of
control input is observable, and short enough not to become computationally time
consuming. The choice of control horizon follows the same rational. Accordingly,
Np = 30 and Nu = 2 are chosen obeying these remarks.
Provided that the VCA can provide up to 250 N of force, the constraints for the
voltage input is considered to range between, -10 and 10 volts. Results of the
passive damping case show that the amplitude of oscillations for both sprung and
unsprung mass is quite negligible with respect to the designed constraints, i.e. the
amplitudes are not violating the physical constraints even in the case of passive
damping. Therefore, for the output variables no constraints are considered. As
a result, the absence of hard constraints on the output variables eliminates the
necessity for softening parameters. Moreover, the demanding force for the vibration
control of the sprung mass is much smaller than the capability of the VCA to
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increment the force at each sampling instant. This further cancels out the need for
setting constraints for manipulated variable rates.

3.1.3 Initial Parameter Selection
The choice of appropriate weighting parameters as apposed to the previous pa-
rameters needs meticulous analysis of the system. It is possible to mathematically
find the optimal set of weighting parameters, however, in practice it is possible
to directly search for the relatively optimal parameters through the sensitivity
analysis of the system target output with respect to each variable.
Initially, it is supposed that all the parameters hold an even importance in the
MPC optimization problem. Accordingly, the weighting parameters of the MPC
cost function are defined as 1. It is crucial to point that Simulink uses a term to
penalize the absolute value of control input u further to ∆u. This is due to the fact
that the controller must keep selected manipulated variables at or near specified
target values.

Parameter Weight

żr 1
zr 1
żs 1
zs 1
ivc 1
Vvc 1
∆Vvc 1

Table 3.1: Weighting values of parameters for the initial setup

Using the values from Section 3.1.3, the performance of the MPC is compared to
that of passive damping in Figure 3.5. Observing the results in Figure 3.5, it can
be seen that without proper tuning of the MPC parameters not only the system is
not capable of attenuating the vibration of sprung mass, its performance is poor
with respect to that of passive damping case. In Section 3.1.4, a practical approach
based on searching of optimal parameters is elaborated to tackle this issue.
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(a)

(b)

Figure 3.5: Comparison of MPC and passive damping for vibration control of sprung mass: (a)
sprung mass displacement comparison, zs (b) sprung mass acceleration comparison, z̈s
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3.1.4 Sensitivity Analysis
The performance of Model Predictive Control (MPC) hinges significantly on the

design of its cost function. Within the framework of a quadratic cost function incor-
porating both output and input vectors, the specification of weighting parameters
becomes paramount. When considering a diagonal matrix for the output weights,
each entry in this matrix dictates the significance attributed to its corresponding
target output. Elevating the weight assigned to a particular output amplifies its
influence on the overall cost function value. Consequently, the optimization problem
seeks a solution to penalize the aforementioned output more than others.
Determining the optimal weighting parameters is often of cumbersome task. As
the degree of the freedom for the tunable parameters increase, finding the optimal
compromise becomes more challenging, specially in the cases where the output
parameters are not mutually independent. In the context of electromagnetic levita-
tion control, dealing with two interlinked domains, through voice coil current, ivc,
and relative velocity between the two masses, żr, this issue is apparent.
To tackle this problem, one possible solution is to assess the influence of each
tunable parameter on the performance of the system for the specific target output
based on a criteria. This task is done through the search of different parameter
values within a range which is referred to as Grid Search. According to the system,
the grid windows can be fixed intervals of linear spacing, one decade apart spacing,
or randomly chosen intervals. Choosing the grid range and spacing is a pivotal
task. An improper choice may create a situation where no significant change of the
target output is sensed. Even in a worse case, it can cause phase shift that leads
to instability. In the case of oscillatory systems, the Root Mean Square (RMS) of
the output often is an appropriate metric indicating the amplitude of the overall
deviation from the static equilibrium point.
Showing a high dependency on the variation of the weighting parameters of ivc
and ∆u, the sensitivity analysis is conducted upon the aforementioned parameters,
providing the fact that the system has no sensitivity on the remaining output
variables. In Section 3.1.5, the process of the variable tuning is elaborated.

3.1.5 Optimal Parameter Selection
To find the optimal parameters for the tunable variables, despite being a straight

forward method, it demands a proper grid searching of the parameters. The inter-
vals in which the search for the optimal weights is based on, should be properly
chosen. The employed method to do proper grid searching in this project is divided
into two stages. The first stage uses a variable grid window that the spacing between
each interval is one decade apart. Using large window size initially, facilitates the
search for the zone that the optimal parameters can be found. However, bigger
grid size cannot yield the exact location of the optimal solution. This sets the
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motivation to conduct a secondary analysis with a smaller fixed window size in the
vicinity of the optimal solution.
The benchmark for the assessment of the performance of the system is the nor-
malized (offset) RMS of the sprung mass displacement zs. Having known that
the system oscillates about a static equilibrium point below zero, to make a fair
comparison of the amplitude of oscillation, at each run, the mean value of the
zs, is subtracted from the absolute RMS value. Equation (3.13), illustrates the
mathematical representation of the metric. The simulation is considered to be 10
seconds, long enough to overcome the impact of transient response. Algorithm 2,
illustrates the process that the sensitivity analysis done. The algorithm holds true
for both stages except for the change in weighting parameters. The simulation
results are summarized in Figure 3.7.

RMS(zs) =
ó

1
n

Øn

i=1 (zsi
− z̄s)

2
, n = Tsample · Tsim (3.13)

Grid Points Stage 1 Stage 2
w∆u wivc w∆u wivc

P1 0.01 0.01 0.8 17
P2 0.1 0.1 0.9 18
P3 1 1 0.95 19
P4 10 10 1 20
P5 20 20 1.05 21
P6 30 30 1.1 22
P7 50 50 1.2 23

Table 3.2: Grid search parameters of sensitivity analysis: Stage 1: Initially provides the proximity
of the optimal weighting parameters. Stage 2: Yields the precise location of the optimal solution
based on the results from Stage 1

Referring to Figure 3.7, according to the spectrum of the colors, the region
(contour) presented in navy blue indicted the proximity of the optimal parameters
using the metric RMS(zS). As can be seen, a mesh size of 70 × 70 along with an
interpolation is done for the 3D surface, based on the the initial 7 × 7 data points.
The same post processing with a mesh size of 100 × 100 is employed for the contour
map. It can be roughly estimated in the region where w∆u is around 1 and wivc is
around 20, the system has the minimum value. According to these in the second
stage the value of the tuning parameters should be placed in the proximity of these
values. The tuning parameters of stage 2 are enlisted in Table 3.2.
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Algorithm 2 Sensitivity Analysis Algorithm
1: Define the grid elements w⃗∆u, w⃗ivc

2: Define the grid lengths L∆u and Livc

3: for i = 1 to Livc do
4: for k = 1 to L∆u do
5: Set MPC output variables weights = diag([0, 0, 0, 0, wivc(i)])
6: Set MPC Manipulated variable weight = w∆u(k)
7: Simulate the model
8: Extract zs as timeseries data
9: Calculate RMS(zS)

10: end for
11: end for

Following the same steps for performance assessment, in stage 2 the exact location
of the optimal parameters is obtained. Eventually, the final results from sensitivity
analysis yield the optimal parameters for the MPC tuning. The final results are
enlisted in Section 3.1.5. Having found the optimal parameters, the performance of

Parameter Tuned
Value

żr 0
zr 0
żs 0
zs 0
ivc 23
V 1
∆V 1.2

Table 3.3: Tuned values of parameters

the control strategy is being compared to the case of passive damping.

3.1.6 MPC Optimal Performance Results with Fullstate
Feedback

As depicted in Figure 3.8, fine-tuning the weighting parameters has yielded
notable distinctions. Notably, there has been a 80% reduction in the amplitude of
the sprung mass displacement with MPC in comparison to the passive damping
setup. Similarly, there has been an approximate 55% decrease in the amplitude
of the sprung mass acceleration under the same conditions. Figure 3.9, depicts
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(a)

(b)

Figure 3.6: Sensitivity analysis of the tunable parameters w∆u and wivc in stage 1:(a) Exhibits
the performance index of tuning parameters based on offset RMS values of zs (b) Exhibits the
contour map of the pertaining 3D surface

the alteration in the profile of the unsprung mass displacement under optimal
control conditions. As anticipated, compared to the passive damping scenario,
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(a)

(b)

Figure 3.7: Sensitivity analysis of the tunable parameters w∆u and wivc in stage 2:(a) Exhibits
the performance index of tuning parameters based on offset RMS values of zs (b) Exhibits the
contour map of the pertaining 3D surface

the unsprung mass demonstrates poorer performance with optimal control. This
outcome arises from the track excitations primarily being absorbed by the unsprung
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(a)

(b)

Figure 3.8: Comparison of MPC and passive damping for vibration control of sprung mass
with optimal tuning of MPC: (a) sprung mass displacement comparison, zs (b) sprung mass
acceleration comparison, z̈s
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Figure 3.9: Comparison of MPC and passive damping for the displacement of unsprung mass
with optimal tuning of MPC

mass. It’s important to recognize that due to the unsprung mass’s oscillations
having an amplitude roughly 10 times greater than that of the sprung mass, even
significant reductions in the displacement of the sprung mass don’t notably impact
the displacement of the unsprung mass.
Analyzing the forces acting on the sprung mass provides valuable insights into the
system’s dynamics. Specifically, in an ideal scenario, the actuation force should be
equal in magnitude but 180◦ out of phase with the residual force, effectively canceling
out the inertial force mz̈s. However, in reality, there is typically a phase delay,
even though the amplitudes are equal. Figure 3.10 serves as evidence supporting
this assertion. It demonstrates a slight phase delay between the actuation force
and the internal forces. This phase delay results in a non-zero residual force,
albeit with a small enough amplitude to avoid significant accelerations. n a fully
mechanical system where the source of the optimal actuation force is indifferent,
the actuation and control force are typically treated as a single entity. However,
in a realistic scenario like the one proposed in this project, achieving the optimal
actuation force involves a medium transfer function between the control input V
and the control force uvc = kmivc. This transfer function incorporates the electrical
domain equation of the VCA that is often referred to as the internal loop, must
account for the transient phase of the input force. In other words, the optimal
actuation force provided by VCA is the output of a first-order model electrical
system. Consequently, there exists a further phase delay of the actuation force in
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Figure 3.10: Acting forces on the sprung mass: The figure shows the sum of internal forces arising
from the viscous damper and elastic spring (blue line), the actuation force coming from the VCA,
kmivc, (red line), and the residual force remaining in the sprung mass as the difference between
the internal and actuation force (orange dashed line).

relation to the control input, which needs to be considered. This phase delay is not
a concern when dealing with a fully mechanical system.
However, with the 5-state configuration integrating both electrical and mechanical
domains, this issue is already addressed, and the control force is designed to
be outputted as the desired actuation force. This assertion is demonstrated in
Figure 3.11. To elucidate the provided force, let’s convert the input voltage to
force terms: Fin is calculated as km · Vin

Rvc
. It becomes apparent from Figure 3.11

that the actuation force kmivc exhibits a distinct profile compared to the converted
input force. By comparing the sprung mass displacement zs with the control and
actuation force, it is evident that the control input is provided in a manner such
that the actuation force attenuates the oscillations of zs at each time step.
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Figure 3.11: The Comparison of the effectiveness of the actuation force on the the sprung mass
displacement zs

3.1.7 MPC Performance Comparison with LQR Controller
As demonstrated, Model Predictive Control (MPC) is considered a more so-

phisticated iteration of the Linear Quadratic Regulator (LQR) controller, with the
capability to handle constraints within the control framework. For this purpose,
a comparison of performance is conducted to evaluate the performance of each
controller and compare it to passive damping control.
Figure 3.12, represents the sprung mass displacement for each of the three cases.
It can be observed that MPC outperforms LQR. However, when it comes to the
comparison of the acceleration, as can be seen in Figure 3.13, the amplitude of
the acceleration profile in MPC is slightly greater than the case with LQR control.
Eventually, the comparison of the control forces are being made. Figure 3.14,
represents the input forces for both MPC and LQR controller. The comparison
shows that MPC uses greater force for the task of vibration isolation.
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Figure 3.12: Performance comparison of MPC, LQR, and passive damping control, based on
sprung mass displacement, zs

Figure 3.13: Performance comparison of MPC, LQR, and passive damping control, based on
sprung mass acceleration, z̈s
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Figure 3.14: Comparison of the input force for the case of MPC and LQR controller

The comparison between the two strategies reveals that, for the purpose of
passenger comfort, which depends on the sprung mass displacement and acceleration
profile, the overall performance of MPC surpasses that of LQR. However, the
comparison of the control forces demonstrates that LQR consumes less energy
compared to MPC.
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Chapter 4

State Observer

In control systems, controllers that operate based on the explicit model of the
system rely on complete state feedback from the system’s outputs. Model Predictive
Control (MPC) similarly utilizes all system states to predict its behavior based on
measured outputs. However, in practical applications, accessing all system states
is often unfeasible. Sensors used to measure outputs introduce noise, resulting
in imperfect measurements. Furthermore, in some cases, certain states cannot
be measured at all. To address this challenge, mathematical approaches can be
employed. One common strategy involves using high-pass filters to mitigate the
influence of certain frequencies. These filters selectively permit frequencies below a
specified cutoff frequency to pass through, effectively removing higher frequency
contributions from the signal. Another set of approaches involves filters that are
tailored to the specific model of the system, referred to as State Observers. The
Kalman filter, for instance, is a prominent example of an state observer. It lever-
ages the explicit model of the system and incorporates measurements of available
states to generate refined data through estimation techniques. This enables the
filter to effectively account for noise and uncertainties, yielding more accurate and
reliable outputs. Indeed, the augmentation of Kalman filters takes the process a
step further by estimating unmeasured quantities as well. Augmented Kalman
Filters (AKF) extend the capabilities of traditional Kalman filters by incorporating
additional states into the estimation process. This allows the filter to effectively
handle scenarios where certain states cannot be directly measured, enhancing the
overall accuracy and robustness of the filtering process.
In In this project, obtaining the relative velocity between the sprung mass and
unsprung mass necessitates the use of accelerometers to capture the acceleration
of these respective masses. However, converting these acceleration measurements
into velocities through numerical integration introduces drift over time, primarily
due to the integration of a constant term. This issue motivates the exploration
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of alternative techniques for estimating relative velocity, ones that rely solely on
measuring the electrical properties of the system. By doing so, the goal is to develop
a method for estimating relative velocity that is not susceptible to drift and provides
more reliable results. This chapter discusses the approach taken to achieve this goal.

4.1 Kalman Filter
Kalman filter (KF) was initially introduced in 1960 by Rudolf Emil Kalman,

[13], marking a pivotal moment in the advancement of filtering methodologies.
Unlike conventional filters, the Kalman filter operates without the constraint of
assuming stationary stochastic processes for both measured signals and noise, [14].
Instead, it models the signal process as the outcome of a linear system subjected
to white noise disturbances.
One of the distinctive features of the Kalman filter is its ability to deliver optimal
estimation with minimal mean squared error, particularly adept at handling linear
filters applied to non-stationary stochastic processes. This capability makes it
exceptionally valuable in scenarios where the relationships between inputs and out-
puts are described by linear equations, despite the underlying stochastic processes
exhibiting time-varying characteristics. By embracing this adaptive paradigm,
the Kalman filter offers a robust and efficient solution, capable of navigating the
complexities of dynamic systems with fluctuating uncertainties. The following
section is dedicated to presenting the mathematical framework of the Kalman filter
algorithm.

4.1.1 Mathematical Statement
Assuming an LTI system with the process noise of wd and the measurement

noise of wn, the states of system at time instant t, evolved from a prior state at
time t − 1, is as follows:

xt = Atxt−1 + Btut + wd (4.1)
yt = Ctxt + wn (4.2)

The process and measurement noises are assumed to be zero mean Gaussian white
noise, with covariance of Qt and RT , respectively.
The Kalman filter serves as a crucial tool for estimating the true state (xt) of a
system, especially when direct observation is impractical or unavailable. Instead,
it leverages a combination of system models and noisy measurements to derive
an estimate (x̂t) of the state. Importantly, these estimates are no longer discrete
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values but are represented as probability density functions (pdfs), reflecting the
uncertainty inherent in the estimation process.
Central to the Kalman filter’s operation are Gaussian pdfs, which provide a
complete description of the probability distribution. The key parameters defining
these Gaussian pdfs are the variances and covariances, collectively stored in the
covariance matrix Pt. Specifically, the diagonal elements of Pt correspond to
the variances associated with each state variable, while the off-diagonal elements
represent the covariances between different state variables.
In scenarios where the system dynamics can be accurately modeled as a one-
dimensional linear system with measurement errors conforming to a zero-mean
Gaussian distribution, the Kalman filter stands out as the optimal estimator.
Through a recursive process, the Kalman filter equations facilitate the calculation of
the updated state estimate (x̂t) by integrating prior knowledge, system predictions,
and noisy measurements.
The Kalman filter algorithm involves two stages. The first one is the prediction
stage using the model of the system. The latter being the measurement update.
For the standard Kalman filter the equations defining the prediction stage are

x̂t|t−1 = Atx̂t−1|t−1 + Btut (4.3)
Pt|t−1 = AtPt−1|t−1A

T
t + Qt (4.4)

The variance associated with the prediction x̂t|t−1 of an unknown true value xt is
given by Equation (4.5)

Pt|t−1 = E[(xt − x̂t|t−1)(xt − x̂t|t−1)T ] (4.5)

where E[.] denotes the expectation operator.
Noting the fact that state estimation errors and process noise have no correlation,
one can obtain the following relation .

Pt|t−1 = APt−1|t−1A
T + Qt (4.6)

Furthermore, the measurement update equations are given by

x̂t|t = x̂t|t−1 + Kt(yt − Ctx̂t|t−1) (4.7)
Pt|t = Pt|t−1 − KtCtPt|t−1 (4.8)

where
Kt = Pt|t−1C

T
t (CtPt|t−1C

T
t + Rt)−1 (4.9)

It is possible to mathematically represent the aforementioned equations using the
Gaussian pdfs. In this case for a given state, r, the prediction and measurement
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update stages are defined as following

f1(r; µ1, σ2
1) = 1ñ

2πσ2
1

exp
A

−(r − µ1)2

2σ2
1

B
(4.10)

f2(r; µ2, σ2
2) = 1ñ

2πσ2
2

exp
A

−(r − µ2)2

2σ2
2

B
(4.11)

The state estimation in the Kalman filter involves fusing two probability density
functions (pdfs) by multiplication. It’s noteworthy that the fused model remains a
Gaussian PDF. This aspect is pivotal because it facilitates the multiplication of an
infinite number of Gaussian pdfs over time without escalating the complexity or
the number of terms in the resultant function. With each time epoch, the new pdf
continues to be fully represented by a Gaussian function. This inherent property
underscores the elegant recursive nature of the Kalman filter [15].The fusion model
that is the product of two pdfs is given by

f(r; µfused, σ2
fused) = 1ñ

2πσ2
fused

exp
A

−(r − µfused)2

2σ2
fused

B
(4.12)

where
µfused = µ1σ2

2 + µ2σ1
2

σ12 + σ22 (4.13)

and
σfused = σ2

1σ2
2

σ2
1 + σ2

2
. (4.14)

The graphical representation of the Equations (4.10) to (4.12), is illustrated in
Figure 4.1.
To enable the multiplication of prediction and measurement pdfs, it’s necessary
to transform one into the domain of the other. A common approach is to map
predictions into the measurement domain using the transformation matrix Ct. This
matrix facilitates the conversion of predicted states into measurements, aligning
them in the same domain for comparison and fusion. This practice ensures that
both prediction and measurement pdfs are represented in a common space, allowing
for meaningful combination and estimation within the Kalman filter framework.
After the domain adaptation the converted relations are as following

µfused = µ1 + K · (µ2 − Cµ1) (4.15)
σ2

fused = σ2
1 − KCσ2

1 (4.16)

where
K = Cσ2

1
C2σ2

1 + σ2
2

(4.17)
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Figure 4.1: Probability density functions associated with the prediction (blue), measurement
update (red), and the fusion (green) stages of Kalman filter algorithm for an individual state

Certain terms resulting from this scalar derivation can now be compared with the
standard vectors and matrices used in the Kalman filter algorithm.

• µfused → x̂t|t: the state vector estimated using fusion data

• µ1 → x̂t|t−1: state vector predicted prior to data fusion

• σ2
fused → Pt|t: covariance matrix associated with the data fusion

• σ2
fused → Pt|t−1: covariance matrix associated prior to the data fusion

• µ2 → yt: vector of measurements (outputs)

• σ2
2 → Rt: the uncertainty matrix associated with a noisy set of measurements

• C: the transformation matrix mapping the states to the outputs

Using the analogy between the scalar and multi-state domains one can move
from the scalar relations, Equations (4.3) and (4.9) to the vectorial relations in
Equations (4.15) and (4.17).
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4.1.2 Augmented Kalman Filter
In the context of state observing, the Augmented Kalman Filter (AKF) extends

the classic Kalman filter framework by incorporating additional state variables,
known as augmented states, into the estimation process [16]. These augmented
states represent unobservable quantities or dynamics that influence the system’s
behavior but cannot be directly measured. By augmenting the state vector with
these additional variables, the AKF enables the estimation of both observable
and unobservable states, resulting in more accurate and comprehensive state
estimation.
Considering an LTI system with outputs depending only on states (no direct
feedthrough), a full-state estimator is a dynamic system designed to generate an
estimate x̂ for the full state x solely based on the information derived from noisy
sensor measurements y, actuation input u, and a model representing the dynamics
of the process [17]. In a continuous time domain analogous to Equations (4.1)
and (4.2), the estimates states can be defined given by

ˆ̇x = Ax̂ + Bu + Kf (y − ŷ) (4.18)
ŷ = Cx̂ (4.19)

ẋ = (A − KfC)x̂ + [Kf B]
C
y
u

D
(4.20)

For observable systems, it is possible to arbitrarily position the eigenvalues of the
estimator dynamics A − KfC, resulting in stable convergence of the estimate x̂ to
the true state x. To demonstrate that stable dynamics A − KfC lead to a stable
estimator that converges to the full-state x, consider the time dynamics of the
estimation error ε = x − x̂. In this case one can show the following relation

d

dt
(ε) = (A − KfC)ε + wd − Kfwn (4.21)

Therefore, as long as A − KfC is stable, the estimate x̂ will converge to the true
state x. Similar to the scenario in Linear Quadratic Regulator (LQR), there exists
a trade-off between over-stabilization and the amplification of noise.
The Kalman filter, serving as an optimal full-state estimator, aims to minimize the
following cost function:

J = lim
t→∞

E
è
(xt − x̂)(xt − x̂)T

é
(4.22)

Implicitly encoded within this cost function are the noise and disturbance covari-
ances, crucial for determining the optimal balance between aggressive estimation
and noise attenuation. The mathematical derivation of an optimal solution closely
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parallels that of LQR. Consequently, this problem is often referred to as linear
quadratic estimation (LQE) due to its dual formulation. Like wise to the classic
Kalman, the optimal Kalman filter gain Kf for an augmented system is obtained
through the solution of the algebraic Riccati equation stated in Equation (4.9). In
Figure 4.2, the working principle of the augmented Kalman filter is illustrated. As
can be seen the observer is fed with measured states of the plant along with the
inputs given to the system.

+

+

+
-

+

-

Figure 4.2: Closed loop feedback control of a generic LTI system scheme augmented with state
estimator: x̂ and x denote the estimated states and real states, and ẑ and z represent the
estimated outputs and measured outputs.
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4.2 Relative velocity Estimation
The state vector described in Appendix A.4 encompasses four mechanical

states represented in terms of velocity and displacement, along with one electrical
property, namely current. However, measuring mechanical quantities presents
challenges. Direct measurement of displacement and velocity using optical sensors
can be unreliable, especially in systems with high oscillation frequencies. In such
cases, accelerometers offer a more reliable solution with easy installation and high
reliability. Yet, deriving velocity and displacement from acceleration data requires
integration over time, which can introduce errors, particularly when employing
numerical techniques in discrete time domains. Additionally, integration constants
may lead to drift in computed integrated quantities. On the contrary, measuring
electrical quantities like voltage and current is comparatively easier and offers
high accuracy to a significant extent. Moreover, the interconnection between the
electrical and mechanical domains via the definition of back electromotive force
(emf), which involves relative velocity, serves as the primary motivation in this
project to estimate żr through the measurement of electrical quantities.

4.2.1 Estimation Model
The mathematical model employed to provide the estimation of relative velocity

żr, is the electrical model presented in Section 2.1.2 through Equation (2.7). In this
model the resistance of the VCA is considered to be constant1. Using the canonical
form of the Equation (2.7), being the derivative of the VCA current in the left side
of the equation yields

d

dt
ivc = ( 1

Lvc

)V − (Rvc

Lvc

)ivc − ( 1
Lvc

)Evc (4.23)

This method’s drawback lies in utilizing the derivative of the measured current,
leading to the introduction of noise in the calculated back-EMF signal. Employing
this signal as a feedback variable for active damping control could lead to less-than-
optimal vibration attenuation,[8]. As a result, a disturbance observer, based on the
Kalman filter, is developed to mitigate model parameter uncertainty and external
disturbance signals, as illustrated in Figure 4.3. Assuming the induced voltage Evc

acts as a disturbance with a zero derivative [18], the following expression can be
formulated:

d

dt
Evc = 0 (4.24)

The derivative of the back-EMF tends towards zero due to the assumption that the

1Considering a constant resistance for the VCA model will results in a drift in the estimation
of the relative velocity. This issue is addressed in Section 4.2.4.
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Figure 4.3: State observer model for the estimation of relative velocity through estimation of
induced voltage, Evc

relative velocity variation caused by the mechanical dynamics of the electrodynamic
levitation system is slower than the electrical dynamics of the VCA. Consequently,
the induced voltage, intertwined with the relative velocity variable via the VCA
velocity constant Kv, exhibits quasi-static behavior [8]. Fusing Equation (4.23) and
Equation (4.24), the continuous state space model of the estimation model is as
follows

dη

dt
= Avcη + Bvcu (4.25)

y = Cvcη (4.26)

Where

η = {ivc Evc}T (4.27)
u = {V } (4.28)
y = {ivc} (4.29)

Avc =
C−Rvc

Lvc

−1
Lvc

0 0

D
(4.30)

Bvc = { −1
Lvc

0}T (4.31)

Cvc = [1 0] (4.32)
D = [0]. (4.33)

The augmented plant model that is employed in the observer, is obtained using
the generic AKF model described in Equation (4.20). The new augmented model
holds the same stats as the one indicated in Equation (4.30). For the augmented
model following the same notation as in Equation (4.30) and Equation (4.3), the
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estimated states are being denoted with η̂. The new input matrix is augmented
with the measured outputs, namely, the voice coil current, ivc. Eventually, both
state are considered as the outputs of the observer using and identity matrix for
the transition matrix Caug. As a result the state space model of the augmented
system is given by

dη̂

dt
= Aaugη̂ + Baugū (4.34)

yaug = Caugη̂ (4.35)

where

η̂ = {̂ivc Êvc}T (4.36)
ū = {V ivc} (4.37)

yaug = {̂ivc Êvc} (4.38)
Aaug = Avc − KfCvc (4.39)
Baug = {Bvc Kf}T (4.40)

Cvc =
C
1 0
0 1

D
(4.41)

D =
C
0 0
0 0

D
. (4.42)

Noise pertaining to both states and measurements is taken into account within the
covariance matrices Q and R, where they serve as adjustment parameters.

Q =
C
w2

i 0
0 w2

E

D
and R = v2

i (4.43)

where, the weighting parameter wi pertains to noise affecting the estimated current,
while vi accounts for noise in the measured current. Parameter wE addresses noise
related to the back-EMF. The numerical parameters of the KAlman filter are
enlisted in Table 4.1.2

4.2.2 Data Acquisition Setup
To evaluate the performance of the designed Kalman filter in estimating relative

velocity, a dedicated data acquisition setup has been developed to collect experi-
mental results from the testbench. Data acquisition setup (DSA), is designed to

2The value of the resistance is initially considered to be 1.65 Ohms. The true value of the
resistance must be tuned after the data acquisition.
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Parameter Value
Rvc 1.65 Ω
Lvc 0.0152 H
Kv 25 Vs/m
wi 0.001 A
wE 0.0075 V
vi 0.001 A

Table 4.1: Kalman filter parameters

acquire the estimated velocity and current in real-time to visually compare with
that of the simulated results. The setup can be broken down into hardware and
software setup. Figure 4.4, illustrates the data acquisition setup (DSA) that is used
in the project. As shown in Figure 4.4, the testbench is controlled by two PCs.

Track

DMD

M

VCA
Launchpad

Driver

PC1

PC2

Torque/Speed

Power
(I,V)

Force

Power

Power

Inverter AKD 
Kolmorgan

Kolmorgan 
Workbench

MATLAB 
Simulink

Testbench

Electromagnetic Levitation

Grid

E-COM

Serial
Communication

Figure 4.4: Hardware setup for the data acquisition from testbench

The first computer having the estimator and the plant model, is used to provide
the offset voltage command, acquire the measured data, namely the VCA current,
and provide the estimated back-emf. These commands are transfered through a
serial communication to the launchpad. The launchpad is a LAUNCHXL-F28379D

The first PC serves as the host , that is using Matlab Simulink to provide the
commands to the launchpad. A Matlab Simulink file that has the estimator model
is provided for this purpose. Through serial communication the commands are
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transferred to LAUNCHXL-F28379D microcontroller, Figure 4.5. The LAUNCHXL-
F28379D is a microcontroller development kit designed by Texas Instruments. It
features the TMS320F28379D microcontroller, which belongs to the C2000 Delfino
series. This microcontroller is based on the high-performance, floating-point
Delfino core, making it well-suited for real-time control applications. It offers
various peripherals and interfaces, including analog-to-digital converters (ADCs),
pulse-width modulation (PWM) modules, and serial communication interfaces
(such as UART, SPI, and I2C). The control commands become amplified through
the driver that is hardwired to a power supply to deliver electrical power to the
VCA.
The secondary computer is tasked with overseeing the operation of the actuation

Figure 4.5: Detailed view of the LAUNCHXL-F28379D microcontroller

motor responsible for manipulating the copper track. It is responsible for defining
the desired acceleration and deceleration rates of the motor, as well as setting the
target angular velocity. To achieve this, the Kolmorgan Workbench software is
utilized. This software enables users to regulate the motor’s performance parameters
by providing power and generating torque through an inverter powered by an
electrical source from the grid.
In addition to the physical setup introduced earlier, there is the software component
managed within PC1. As illustrated in Figure 4.6, PC1 serves as the core of the
system, transmitting the input voltage signal to the estimator. A pulse width
modulation (PWM) module is utilized to set the duty cycles of the system. Analog
signals representing the measured current are converted into digital bits using
an analog-to-digital converter (ADC). For updating resistance values, a clock
mechanism provides the necessary indexing parameter for the updated state space
model of the estimator. Eventually the scale factor Kv, converts the estimated Evc
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to the relative velocity.

Estimator

PWM

ADC

Driver

Kv

Scale factor for
velocityCurrent Est.

Evc Est.

Clock

Voltage
Measured 

Current

Serial
Communication

Figure 4.6: Software setup for the data acquisition from testbench

4.2.3 Experimental Results Considering a Constant VCA
Resistance (Rvc = cte)

Considering the resistance as a constant parameter, the estimation of the back-
EMF is tested using the experimental setup. The test is conducted at constant
disk angular velocity of 500 RPM. The masses are positioned on the micrometric
stage such that any pre-deformation of the flex hinges are prevented. To decouple
the two masses, an offset voltage of 10 volts is applied, creating a force to oppose
the static force due to the the mass of the sprung mass. The results from real-time
estimation of żr and ivc are being compared with the numerical simulations.

Referring to Figures 4.7 and 4.8, for an 80 second run of the testbench the com-
parison between the experimental results from the relative velocity and that of the
model simulation are being compared. The comparison between the simulated and
the estimated ivc in Figure 4.7, displays a mismatch as opposed to the expectation.
According to the simulation, VCA current oscillates about a constant value of
approximately 7A that the constant term is due to the offset voltage applied to
keep the two masses separated. Accordingly, the periodic portion of the current
corresponds to the excitations coming from the copper track irregularities. On
the other hand, the acquired data from the experimental test displays a different
behaviour. The discrimination between the simulation and the experimental results
can be divided into two components. The first one is the initial deviation from the
simulated quantity. As can be seen in Figure 4.7, the experimental current initially
starts below the expected current. Disregarding the transient response of the
electrical domain due to the inductive component, Lvc, the relation, V = RvcIvc
not precise enough but roughly can showcase the relation between the input voltage
V and the output current, ivc.
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(a)

(b)

Figure 4.7: VCA Current comparison between the simulation and Kalman filter estimation from
experimental data: (a) the time interval is considered to be 80 seconds to showcase the general
profile of the relative velocity (drift) (b) zoomed view
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(a)

(b)

Figure 4.8: Relative velocity comparison between the simulation and Kalman filter estimation
from experimental data: (a) the time interval is considered to be 80 seconds to showcase the
general profile of the relative velocity (drift) (b) zoomed view
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Knowing the fact that the applied voltage is constant of 10 volts, the smaller initial
value of ivc indicated that the hypothesized initial value for Rvc is larger than the
actual VCA resistance. Due to the same reason the estimated relative velocity as
well has an initial offset with respect to the expected zero relative velocity from
the numerical model, Figure 4.8. To address this issue by means of trial and error
the estimation model is retuned to a value of Rvc = 1.485 Ω. Figure 4.9 represents
the case with retuned value of Rvc.
Retuning the resistance solves the issue of initial mismatch, however, for a long
period of time the results from the experimental tests show that even with a refined
resistance value the profile of the VCa current drifts downwards with respect to
the simulation in time and accordingly the profile of the estimated velocity drifts
upwards. This issue is associated with the physical properties of the VCA. Applying
a constant voltage and letting a constant current run through the terminals of
the VCA, generates heat with respect to time. The resistance of Rvc, increases
as the temperature goes up. This continuous increment in resistance results in
a continuous reduction in the flow of the current that is evident in Figure 4.7.
This phenomenon is in contrast with the initial hypothesis that the resistance
coefficient in Equations (2.7) and (4.23) is considered to be constant, i.e. that
model representing the electrical domain of the system is not LTI. To address
this issue a novel technique is employed that is based on the offline update of the
resistance with respect time.
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(a)

(b)

Figure 4.9: Relative velocity comparison between the simulation and Kalman filter estimation
from experimental data with retuned VCA resistance (Rvc = 1.485Ω): (a) the time interval is
considered to be 80 seconds to showcase the general profile of the relative velocity (drift) (b) one
second snapshot of (a) for profile comparison
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4.2.4 Estimation Model with Offline Resistance Update,
Rvc = Rvc(t)

To address the challenge of drift in estimating relative velocity, it’s crucial
to examine the rise in resistance observed during testing. As mentioned the
reason why the resistance increase is linked with the rise in the temperature of
the resistance due to the constant passage of current through coil. To showcase
this an approximated function of the resistance with respect to the time is drawn
by dividing the input voltage by the measured current. It is obvious that the
contribution of the inductive component and the the back-emf make it less precise
to use such relation (R = V

i
), however, it is still a useful tool to represent the

approximate behaviour of the resistance. Referring to the results from the first test
that are presented in Figure 4.7, and approximate resistance is obtained. In order to
have a more clear representation of the data, they are being further post-processed
by means of a moving average filter and reported in Figure 4.10. According to

Figure 4.10: Approximated resistance of the VCA coil using the relation R = V
I

Figure 4.10, the profile of the resistance exhibits a linear growth. Moreover, the
slope of the graph using a linear interpolator (m = Rf −Ri

∆t
), is 0.0005 Ω/s. Although

for longer runs of the track this assumption might not hold true but for shorter
periods (less than 5 minutes) this assumption is sufficiently accurate. Being a
pivotal factor in the estimation the relative velocity, the resistance change must
be taken into account in the equation of the VCA. Mathematically speaking, the
term Rvc in Equation (4.23) must become a linear function of time. Substituting
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Rvc = mt + R0 into Equation (4.23), one can get

d

dt
ivc =

3 1
Lvc

4
V −

3
mt + R0

Lvc

4
ivc −

3 1
Lvc

4
Evc (4.44)

where R0 is the initial resistance of the resistor and m is the slope of the growth.
Having a time dependant component in the state matrix means that the system of
equations are no more time invariant. Solving Equation (4.44) for ivc, demands the
integrating factor µ(t) = e

s
(mt+R0

Lvc
)dt that is depending on time. In this case one

can write the state space equations of the VCA in the following form.

ẋ(t) = A(ρ(t))x(t) + B(ρ(t))u(t) (4.45)
y(t) = C(ρ(t))x(t) + D(ρ(t))u(t) (4.46)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rm is the input vector, y(t) ∈ Rp

is the output vector, ρ(t) ∈ Rq is the varying parameter vector, and A(ρ(t)),
B(ρ(t)), C(ρ(t)), and D(ρ(t)) are matrices or functions that depend on the varying
parameter ρ(t). The system of state space equations Equations (4.45) and (4.46) is
referred to as Linear Parameter Varying (LPV) systems as the physical properties
of the system depend on a particular parameter.
The solution of such equations is often analytically impossible. However, numerically
speaking, one can regard an LPV system as discrete LTI systems that each LTI
depends on the instantaneous value of ρ(t) and the general model is an interpolation
of the individual LTI systems within the domain. This feature allows for considering
the changes in the resistance of the VCA. However, as discussed, the augmented
Kalman filter uses the LTI model of the system to estimate back-emf. The provided
Kalman gain as well is a constant vector that only depends on the constant state,
input and transition matrix entries. For this reason the model must be updated
according to the update of resistance in the Kalman filter. However, as LQR
approach is used to obtain the gain vector based on a cost function, during the
online test the online update of the model for Kalman filter in real-time might
encounter computational problems due to microprocessor CPU limitations. To
overcome this issue, a novel approach is introduced that is based on the offline
update of the Kalman gain. To abbreviate the notation AKFVG is used in substitute
with augmented Kalman filter with variable gain and AKFCG is used to denote
augmented Kalman filter with constant gain. In this method, considering that
the dynamic of system change significant enough to cause drift in ∆t seconds, a
democratization sampling time is chosen that is equal to this interval, Ts = ∆t.
During this period, similar to the previous case the Kalman gain is obtained for the
specific resistance, R∆ti

vc . For the consecutive sampling interval, the same process is
conducted except for an updated resistance,R∆ti+1

vc = R∆ti
vc + m∆ti. Once all the
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LTI state space models are obtained for a predefined test period, using the nearest
neighbors method, all the individual models are interpolated yielding the final LPV
model. This offline method allows for the the estimator to select the associated LTI
model based on an indexing parameter that is referred to as scheduling parameter.
Algorithm 3, demonstrates the functioning of the aforementioned method. The

Algorithm 3 Updated augmented Kalman gain algorithm
1: Initialize the slope of resistance, mRvc

2: Initialize a 3D matrix for augmented state spaces (A∆ti , B∆ti , C∆ti , D∆ti)
3: Initialize the Kalman gain matrix, Kf

4: Set the sampling time, Ts for the gain update
5: for each iteration do
6: Assign updated state matrix based on R∆ti

vc

7: Obtain K∆ti
f and assign the value

8: Construct the 3D state space to provide LPV model
9: if the results are satisfying then

10: End
11: else
12: Retune the slope of Rvc and continue
13: end if
14: end for

mathematical model of the estimator is flashed into a Simulink model likewise
to the case with the constant resistor. This model is further used in the data
acquisition setup for the case with updated resistance. The Simulink model for
obtaining real-time estimation of ivc and Evc, is shown in Figure 4.11.

Figure 4.11: Simulink model for augmented Kalman filter wit resistance update

58



4.2 – Relative velocity Estimation

As can be seen, the input to the estimator is the offset voltage that is constant
and the measured current across the VCA terminals. The port that is denoted
with "par" is the scheduling parameter. Since the LPV model is based on the
resistance update as a function of time, the scheduling parameter is basically the
index that maps the time to the pertaining index. Essentially, what indexing is
doing is to discretize the time coming from the clock based on the sampling time
for the resistance update. The outputs of the model are the estimated quantities,
namely, the estimated current, ivc and the estimated back-emf, Evc. A gain block is
further added to the second output to convert the back-emf to the relative velocity.
For the experimental validation of the approach that is employed, 5 tests are
performed that the parameters R0, Ts, and m are modified to fine tune the model.
The numerical values of each parameter are reported in Table 4.2.

Test R0[Ω] Ts[s] m[Ω
s
]

Test 1 1.485 30 0.000667
Test 2 1.46 30 0.000417
Test 3 1.46 15 0.0005
Test 4 1.47 5 0.0005
Test 5 1.485 5 0.0005

Table 4.2: Experimental tests parameters

The results from the experimental tests are summarized in Figures 4.12 to 4.16.
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(a)

(b)

Figure 4.12: Relative velocity comparison between the simulation and AKFVG estimation from
experimental data for test 1 (a) the time interval is considered to be 80 seconds to showcase the
general profile of the relative velocity (drift) (b) one second snapshot of (a) for profile comparison
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(a)

(b)

Figure 4.13: Relative velocity comparison between the simulation and AKFVG estimation from
experimental data for test 2 (a) the time interval is considered to be 80 seconds to showcase the
general profile of the relative velocity (drift) (b) one second snapshot of (a) for profile comparison
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(a)

(b)

Figure 4.14: Relative velocity comparison between the simulation and AKFVG estimation from
experimental data for test 3 (a) the time interval is considered to be 80 seconds to showcase the
general profile of the relative velocity (drift) (b) one second snapshot of (a) for profile comparison
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(a)

(b)

Figure 4.15: Relative velocity comparison between the simulation and AKFVG estimation from
experimental data for test 4 (a) the time interval is considered to be 80 seconds to showcase the
general profile of the relative velocity (drift) (b) one second snapshot of (a) for profile comparison
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(a)

(b)

Figure 4.16: Relative velocity comparison between the simulation and AKFVG estimation from
experimental data for test 5 (a) the time interval is considered to be 80 seconds to showcase the
general profile of the relative velocity (drift) (b) one second snapshot of (a) for profile comparison
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In test 1, the sampling time and the slope of resistance are chosen to be high. It
is evident in Figure 4.12, that a sampling time of 30 seconds is not short enough
to compensate the effect of resistance change that results in a saw-tooth pattern.
Furthermore, higher slop of resistance change, pushes the overall trend of relative
velocity downwards causing a drift downwards. For test 2 that is graphically shown
in Figure 4.13, with the same sampling time but lower slope, the upward drift is
not compensated that means the slope is smaller than the actual one. For test 3,
as can be seen in Figure 4.14, a sampling time of 15 seconds performs better than
the previous cases. Moreover the slope is considered 0.0005 Ω

s
that is equal to the

slope obtained based on the results from Figure 4.10. One can witness this is the
optimal slope that keeps the general trend constant without any drift. However,
poor selection of initial resistance, R0 displays a positive offset with respect to the
expected zero mean velocity. In the test 4, all the three parameters are chosen
to exhibit the optimal tuning of the estimator. As illustrated in Figure 4.15, the
profile of the relative velocity has a zero mean with no drift witnessed. It is worth
noting that in Figure 4.15b, there is a mismatch between the simulated profile of
the relative velocity and that of estimation. One pivotal reason is that for the
simulation only first 5 contributing frequencies of the copper track profile considered.
That means higher frequency components are disregarded for the simulation.
Observing the last test, namely the test 5 as shown in Figure 4.16, one interesting
phenomenon can be noticed. After roughly 60 seconds, the trend changes. The
elbow shape after 60 seconds is a proof to this claim. Considering that 5 tests
being conducted consecutively, the resistance has reached its saturation point. For
this reason considering a linear function for the update of the resistance is no more
valid. The overall experimental results from the tests using estimator model with
offline update of the resistance prove to solve the issue of the drift in the estimation
of the relative velocity. This is evident in Figures 4.12 to 4.15. However, choosing
the time as scheduling parameter has two drawbacks. The first one refers to the
tuning of the initial resistance of the VCA, R0, at each consecutive test, since
conducting multiple tests heats up the VCA and accordingly changes the resistance
of coils. The second one is addressed when the tests take long enough time that the
resistance reaches its saturation point where the linear model is not valid anymore.
Nevertheless, it is safe to say that for the short runs, i.e. the tests that resistance
does not reach its saturation point this method performs well and well suits for
control strategies that demand full-state feedback.
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Chapter 5

Evaluation on MPC
Performance using
Estimated Relative Velocity
by AKFVG

In this section, a final evaluation on MPC performance is conducted where
the estimated relative velocity is being fed to the controller. Furthermore, the
performance of the MPC is assessed in a scenario where there is no prior knowledge
about the disturbance. Additionally, an impulse is introduced to evaluate the
MPC’s performance in handling transient responses.

5.1 MPC Performance Assessment in Presence
of Measured Disturbance

In this scenario using the model from Appendix A.4, the performance of the
MPC is evaluated by comparing the sprung mass displacement and acceleration
with the case with passive damping. The main difference in this study is the
feedback from the estimated relative velocity. To be more clear, for the simulation
purpose the measured current from the plant along with the control input from
MPC is fed into the AKFVG. Consequently, the estimated relative velocity is
fedback to the MPC to close the loop. However, the remaining 4 states are assumed
to be all measurable and no further estimation is needed. The results are reported
in Figures 5.1 and 5.2. Comparing the zs profile in Figures 3.8a and 5.1b, there
is slight change in the magnitude and profile of the sprung mass displacement,
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zs. This is due to the fact that using an estimator alters the overall closed-loop
dynamic of the system.
Furthermore, the comparison of the acceleration between the passive damping
case and MPC that is presented in Figure 5.2, indicates the superiority of MPC
over passive damping control from comfort point of view. The results both for
acceleration and displacement of the sprung mass demonstrate that the implemented
AKFVG performs well not only in the case when the input voltage is constant but
also in the case that it varies according to the controller.

5.2 MPC Performance Assessment in Absence of
Measured Disturbance

Unlike the track irregularities in the testbench that are measured, in most real
world cases, often it is impossible to model the disturbance precisely to use in
prediction model. Moreover, unanticipated disturbance such as an abrupt impulse
from the track is not an unusual occurrence. For this reason the performance of
the MPC is evaluated for the case that the measured disturbance is not present
and the plant experiences an impulse with an amplitude of 24 N/s from the track
at t = 4.5s. The simulation results are illustrated in Figure 5.3. It can be seen that
even in the case where the disturbance is unmeasured, MPC outperforms passive
damping. During the transient phase, avoids a large overshoot that is present in
the passive case. This further hinders the abrupt drop after the overshoot. The
settling time is considered to be equal to that passive damping case that is no
more than 0.7 seconds. Eventually, in the steady state phase the amplitude of
oscillations for MPC is roughly 50% of the amplitude of oscillations for the passive
damping case.
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(a)

(b)

Figure 5.1: Sprung mass displacement comparison for the cases with passive damping and MPC
with feedback from estimated relative velocity (a) model simulation for 10 seconds (b) zoomed
view
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(a)

(b)

Figure 5.2: Sprung mass acceleration comparison for the cases with passive damping and MPC
with feedback from estimated relative velocity (a) model simulation for 10 seconds (b) zoomed
view

70



5.2 – MPC Performance Assessment in Absence of Measured Disturbance

(a)

(b)

Figure 5.3: Sprung mass displacement comparison for the cases with passive damping and MPC
with feedback from estimated relative velocity with no measured disturbance (a) model simulation
for 10 seconds (b) zoomed view
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The findings from the simulations highlight the resilience of MPC in real-world
scenarios where disturbances are not explicitly modeled or known in advance. This
robustness is particularly valuable in large-scale models where the track profile
cannot thoroughly be measured.
In such scenarios, MPC’s ability to adapt and maintain stable performance even in
the absence of precise disturbance models ensures reliable control over the system’s
behavior. This resilience to uncertainty allows MPC to effectively handle variations
and unexpected events that may arise during operation. Overall, the ability of
MPC to maintain stability and performance in the face of uncertainties underscores
its effectiveness as a control strategy.
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Chapter 6

Final Remarks

6.1 Conclusions

The present study encompasses the design of an MPC controller to regulate
the vibrations of an electrodynamic pad using a voice coil actuator. Additionally,
it introduces a novel approach for estimating relative velocity based on back-emf
estimation, tailored for scenarios where the physical properties of the system
undergo changes.
Initially, leveraging the analogy between the model under examination and the
quarter-car model utilized in automotive engineering, a 2-DOF model of the plant
is developed, incorporating the electrical domain of the voice coil actuator (VCA).
The primary objective is to mitigate external excitations, such as electrodynamic
disturbances resulting from track irregularities, and isolate the sprung mass. In the
absence of control forces, the voice coil inherently provides a damping effect due to
eddy currents, acting as a passive damper. However, to enhance vibration isolation,
a control strategy grounded in the predictive model of the system is implemented.
MPC facilitates optimal control input by minimizing a quadratic cost function.
To achieve optimal MPC performance, parameter tuning is essential, particularly
weights associated with control input and states. A grid search method is employed
for this purpose, revealing that assigning values of 22, 1, and 1.2 to the weights of
voice coil current, voltage input, and voltage input rate, respectively, results in an
80% reduction in sprung mass displacement amplitude as well as 55% reduction in
its acceleration compared to passive damping. Additionally, MPC’s performance
is contrasted with that of the LQR controller, with MPC demonstrating superior
performance in vibration isolation.
In the second phase of the project, the challenge of measuring mechanical states,
particularly relative velocity, is addressed. To tackle this issue, an augmented
Kalman filter is employed, utilizing the VCA model to estimate back-emf, assuming
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a constant rate of change. However, the results from experimental tests reveal a
drift in the estimated relative velocity profile compared to the expected profile.
This discrepancy arises due to the generation of heat and subsequent increase in
resistance of the coils with the VCA, resulting from providing constant voltage
to decouple the two masses. To mitigate this issue, the initial LTI model for the
Kalman filter is replaced with an LPV model. This LPV model comprises a 3D
matrix of individual LTI models, for which Kalman gain vectors are obtained offline
and then interpolated to form the final model. Careful tuning of three parameters
– the initial resistance of VCA, the slope of resistance growth, and the sampling
time for resistance update – ensures the best estimation model, with final results
aligning with expectations from numerical simulations.
Subsequently, a numerical simulation is conducted using real-time estimation of
relative velocity and closing the loop for MPC with the estimated quantity. As
anticipated, closing the control loop with the estimated quantity exhibits slightly
weaker performance compared to the case with fully observed states. Nonetheless,
the results demonstrate promise and validate the estimation method’s suitability
for use in MPC applications.

6.2 Further Work

Utilizing a linear model to update resistance over time presents practical
challenges that hinder its effectiveness. Firstly, it necessitates manual tuning of the
initial resistance value at the outset of each test, which can be cumbersome and time-
consuming. Secondly, the linear model fails to capture resistance saturation points,
as evidenced by the observed elbow shape in test 5. To overcome these limitations,
a more robust and accurate resistance model is needed, one that correlates with
a measurable quantity. An alternative approach involves establishing a transfer
function that links the temperature of the resistor to its resistance. By integrating
a temperature sensor into the test setup to provide real-time temperature data, this
transfer function facilitates precise resistance updates without the need for manual
tuning. This enhancement ensures greater accuracy and reliability in resistance
modeling, thereby addressing the shortcomings of the linear approach.
An additional aspect to focus on pertains to the MPC. The performance of the
MPC can be evaluated in the testrig to validate the numerical simulations. However,
the final model of the MPC despite having a feedback from the estimated relative
velocity, still depends on the absolute displacement and velocity of the sprung mass.
This opens the route to study whether an estimator is capable of providing accurate
estimations of all the outputs only by having the measured current and voltage. In
case the estimated quantities do not meet the expectations, alternative approaches
such as installing accelerometers on the masses and obtaining the mechanical states
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by means of numerical integration with respect to time. In this regard, a further
refinement of the MPC plant model is needed to properly update the resistance.
By considering the proposed refinements on both controller and the estimator, the
application of the proposed study can be further extended to the large-scale models
and contributes to the passenger comfort where it is the main motivation of the
the present study and the similar research fields.
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Appendix A

Matrices

A.1 State Space for System with Fully Observ-
able Mechanical States (Absolute Kinematic
States)

The state space matrices used in fully mechanical system that the control input is
a force applied to the masses regardless of the actuator source.

xmech = {żp, zp, żs, zs}T

ymech = {żp, zp, żs, zs}T

Amech =


− cvc

mp
− (ks+kp+kus)

mp

cvc
mp

ks

mp

1 0 0 0
cvc
mS

ks

ms
− cvc

ms

−ks

ms

0 0 1 0



Bmech =



1
mp

kp

mp

0 0
−1
ms

0
0 0
0 0



Cmech =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


Dmech =

C
0 0
0 0

D
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A.2 State Space for System with Fully Observ-
able Electromechanical States (Absolute Kine-
matic States

The state space model used for the system fully observable with the absolute
quantities for the kinematic states. Subscript {EM} refers to the electromachnical
matrix (or vector).

xEM = {żp, zp, żs, zs, ivc}T

yEM = {żp, zp, żs, zs, ivc}T

AEM =



− cvc
mp

− (ks+kp+kus)
mp

cvc
mp

ks

mp
− km

mp

1 0 0 0 0
cvc
mS

ks

ms
− cvc

ms

−ks

ms

km

ms

0 0 1 0 0
km

Lvc
0 − km

Lvc
0 −Rvc

Lvc



BEM =



kp

mp
0

0 0
0 0
0 0
0 1

Lvc



CEM =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1



DEM =


0 0
0 0
0 0
0 0
0 0
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A.3 State Transformation Matrix
The transformation matrix used for the transformation from absolute coordinates
of the unsprung mass to the relative coordinates between the two masses.

T =


1 0 −1 0 0
0 1 0 −1 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1



A.4 State Space for System with Fully Observ-
able Electromechanical Transformed States

Using the transformation matrix T , the state space model contains the relative
states. Subscript {EM,T } refers to the electromachnical and transformed matrix (or
vector).

xEM,T = {żr, zr, żs, zs, ivc}T

yEM,T = {żr, zr, żs, zs, ivc}T

AEM,T =


(− cvc

mp
− cvc

ms
) (− ks

ms
− kp+ks+kus

mp
) 0 −kp+kus

mp
(−km

mp
− km

ms
)

1 0 0 0 0
cvc
ms

ks
ms

0 0 km
ms

0 0 1 0 0
km
Lvc

0 0 0 −Rvc
Lvc



BEM,T =



kp
mp 0
0 0
0 0
0 0
0 1

Lvc



CEM,T =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1



DEM,T =


0 0
0 0
0 0
0 0
0 0
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