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Summary

In recent years, the persistent boost in the New Space Economy is allowing more
and more European realities to develop their different ideas: building their reusable
launcher, miniaturized fleets of satellites, or commercial-off-the-shelf space compo-
nents. Since the competition is growing exponentially, time is increasingly one of
the most critical factors in the development process, particularly during the satellite
subsystems’ integration and testing phase. In addition, the increasing number of
Space suppliers results in both a broader opportunity of choice during the design of
a satellite and also in a wide variety of protocols and interfaces, which is necessary
to deal with higher complexity, cost, and, again, longer time of development.
According to these demands, the primary objectives of this work are to enhance
the reliability and validate the performances of a modular avionics test bench by
implementing and testing a CubeSat software solution embedded into an On-Board
Computer unit, capable of communicating with different components provided by
various suppliers available in the market. The focus is to set up, integrate, and
test a modular architecture on the bench for one of the most crucial subsystems of
a satellite: the ADCS.
The choice to focus on CubeSat applications is based on the direction of the New
Space Economy towards more cost-effective, flexible, agile, and technologically ad-
vanced solutions. Following Modular design principles aims to reduce development
time and cost by designing individual building blocks or modules, which must be
interchangeable and adaptable to accommodate various mission concepts.
The choice to test an ADCS application concerns the high level of complexity in
the relative integration and testing phases, which involve different components from
several European suppliers that have to cooperate and communicate with each
other to meet the expected performance within the timeline available. For these
purposes, the modular avionic test bench is an indispensable tool for rapid
system integration and testing, providing a controlled and repeatable environment
for any subsystem of small satellite applications. The Cubesat OBC unit also
represents cutting-edge technology to ensure the capability to communicate with
all the components integrated on the bench easily.
Hardware-in-the-loop (HIL) simulations, involving both software and hardware
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setup to be tested, have allowed us to thoroughly assess the system’s performance,
resilience, and responsiveness, guaranteeing the system’s robustness under varying
conditions and scenarios.
In conclusion, the outcomes of this work contribute to the advancement of CubeSat
testing technologies by offering a versatile and cost-efficient solution for ADCS de-
velopment that is not limited to this application. Moving forward, further research
may be needed to extend even more the possible applications and implications that
this technology could have in the future Space Economy, increasing the degree of
accuracy that could be provided. Overall, the study underscores the importance
of technology’s evolution in improving testing methodologies and tools for space
projects.
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Chapter 1

Introduction

To introduce properly the work that will be presented, it is crucial to have an
overview of the most important fields that are going to be touched throughout
the following chapters: starting with the CubeSats environment, the Attitude
Determination and Control subsystem, the importance of Test Bench, up to the
projects taken as a reference for the study.
There will be presented also the main objectives and the outline of the discussion,
to give an idea of what will be the logical flow followed.

1.1 General Contest
The Attitude Determination and Control System (ADCS) plays a crucial role in the
successful operation of CubeSats. It is responsible for accurately determining and
controlling the satellite’s attitude or orientation in space. As CubeSats continue to
gain popularity due to their compact size and low cost, the need for reliable and
efficient ADCS solutions becomes paramount. In order to ensure the effectiveness
and reliability of ADCS software, rigorous testing is essential.

1.1.1 The CubeSat Standard and Model

The aim of this section is to understand the "CubeSat" designation, compared to
the other satellites’ categories, using [1] as a reference.
A Small Satellite is generally considered to be any satellite that weighs less than
300 kg (1,100 lb). A CubeSat, however, must conform to specific criteria that
control factors such as its shape, size, and weight. The very specific standards for
CubeSats help reduce costs and make it possible for companies to mass-produce
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components and offer off-the-shelf parts. As a result, the engineering and develop-
ment of CubeSats becomes less costly than highly customized small satellites. The
standardized shape and size also reduce costs associated with transporting to, and
deploying them into, space.
CubeSats come in several sizes, which are based on the standard CubeSat “unit”,
referred to as a 1U. A 1U CubeSat is a 10 cm cube with a mass of approximately 1
to 1.33 kg. In the years since the CubeSat’s inception, larger sizes have become
popular, such as the 1.5U, 2U, 3U, 6U, and 12U.
One example of a set of general requirements for all Cubesats is CDS, CubeSat
Design Specification.
Examples of a 1U and 3U are shown in figure 1.1.

Figure 1.1: 1U Cubesat CP1 (left) and 3U Cubesat CP10 (right) [1]

1.1.2 Introduction to ADCS
The focus of the study, as already specified, will be in particular on the Attitude
Determination and Control System, therefore it is important to have a clear idea
of what it is aimed at.
Every spacecraft has 6 degrees of freedom (DOF): three of them are displacement,
and the rest of them are rotation. The attitude determination and control system
(ADCS) is responsible for the 3 DOF rotational control of the spacecraft.
The control of the satellite can be achieved passively or actively, and the present
work will be focused on the second one.
Passive ADCS can be enough for CubeSats that do not need accurate positioning
in their orbit, but the more complex missions require precise ADCS. Traditional
ADCS, designed for full-scale satellites, cannot be used for nanosatellite needs due
to their sizes, price, or power consumption.
CubeSat developers have to build ADCS using standard hardware or design their
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own system.
To perform its assigned functions, the system consists of both hardware and soft-
ware.
First, it is necessary to know what is the actual orientation of the vehicle: this
process is called attitude determination. Then, a torque has to be applied to rotate
the satellite to the desired orientation, called attitude control.
The first thing to notice in attitude determination is the “reference frame”.
The spacecraft’s attitude refers to its rotational relationship to some other reference
frames adhered to an inertial frame like Earth-Centered Earth-Fixed Frame (ECEF)
or Earth-Centered Inertial Frame (ECI), that will be discussed in the following
chapter 2.
The most common attitude sensors used for satellites orbiting the earth are mainly
(Coarse/Fine) Sun sensor, Earth sensor, IMU, Star tracker, and Geomagnetic
sensor.
Regarding attitude control, the reaction wheel, Control Moment Gyro (CMG),
thruster, and magnetorquer are the most popular actuators on the market. The
main purposes of these actuators are to provide torque to compensate the distur-
bance torques on-orbit for stabilization, such as gravity-gradient torque, radiation
pressure torque, aerodynamic drag torque, etc. and to apply yaw, roll, and pitch
angle control for a satellite.
All the components listed are part of the hardware. As far as the software is
concerned, this is divided into two sub-parts: the attitude determination algorithm,
used to determine the current attitude of the satellite, starting from the input
from the sensors, and the control algorithm, which takes the current attitude
of the satellite as an input, processes it and, by comparing the current position
with the desired one, calculates the actuation to bring the error between the two
configurations to zero.
These two parts of the software are interdependent and constitute the control loop,
for which an example is reported in figure 1.2.
The state-of-the-art for this subsystem is well and widely discussed in [3].
The future of this subsystem is going to be directed to an integrated solution, in
order to satisfy most of the mission requirements while providing reliability and
shortening up customer development time.
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Figure 1.2: ADCS logic loop [2]

1.1.3 Test Bench for ADCS
A ‘test bench’ allows the overall working of the mission implementation to be
simulated with software. When a particular piece of equipment is completed it can
be plugged into this virtual mission platform to be tested.
An example from BepiColombo Engineering Test Bench (ETB) currently based in
Airbus Defence and Space’s Friedrichshafen facility can be seen in figure 1.3.

Figure 1.3: Example of Satellite Test Bench [4]

Such test benches offer many prospects for ground testing of CubeSats and their
subsystems, and first of all Attitude Determination and Control System (ADCS).
The test bench serves as a controlled environment for evaluating the performance
and functionality of the ADCS software in simulated space conditions. It allows
for comprehensive testing, verification, and validation of the software, ensuring its
suitability for deployment in actual CubeSat missions.
The difficulty of ground satellite tests is to create conditions simulating the space
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environment with given accuracy while limiting the effects that occur on ground
facilities. For nanosatellites, particularly, the accuracy of ground tests has to be
very high due to the reduced capability of actuators and high sensitivity to external
forces.
This kind of test is essential especially for ADCS, as it is a sophisticated system
which needs validation testing to prove its operability and verify software compati-
bility with hardware and other subsystems.
This procedure is widely used for full-size satellites, but testing of nanosatellites
comes with many difficulties. The efforts required to set up nanosatellite ADCS
ground testing are generally comparable to the efforts needed for building a Cube-
Sat. Although every element of the system can be individually verified before
flight and computer simulations can be made, only satellite operation in the space
environment shows if all components work together correctly. Otherwise, one small
mistake often leads to mission failure. Despite a CubeSat is relatively inexpensive,
one failure on the orbit is costly in terms of money and time due to payload prepa-
ration and launch. After several CubeSats have been lost in orbit, the necessity of
efficient ground testing system for nanosatellite-class ADCS became evident.
Full-scale satellite developers have arrived at the same conclusion when the first
generation of satellites with complex orientation systems was built some fifty years
ago. Since then, the technology of ADCS ground testing evolved and has become a
common procedure for full-size satellites. For correct operation and valid results of
the testing, the precision of the ADCS test bench has to correlate with the accuracy
of the satellite control system, the capabilities of its actuators and the magnitudes
of disturbing torques acting on the satellite in its orbit. Unfortunately, it cannot
be simply scaled down. Due to this limitation, test benches designed for full-scale
satellites are not efficient for CubeSats.
Further details about that matter can be found on [5].

1.2 SPiN Projects
It is undoubtedly important also to give context to the work presented, since it has
been started from the previous development of the following projects described.

1.2.1 Multipurpose Adapter Generic Interface Connector
(MA61C)

The Multipurpose Adapter Generic Interface Connector (MA61C) is an intelligent
system that can scan connections, detect incoming data, route and convert them
between interfaces. The bus interface allows connecting different subsystems to the
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onboard computer without driver installation or user configuration. The adapter
monitors data on the bus and sends it to connected units via a USB interface.
The core of MA61C is the GR712RC LEON3-FT SPARC V8 processor which
supports multiple interfaces that can be used as both inputs and outputs. The
processor has a built-in timer based on an onboard oscillator.
The MA61C holds a database of drivers, enabling plug-and-play functionalities,
such as device recognition, self-configuration and driver installation. The MA61C
is equipped with an internal memory of 64Mbit of SRAM and 64Mbit of FLASH
for storage of onboard software, drivers, and data.
Ma61C is bundled with an Application Programming Interface (API) to command
and monitor the units connected directly to the spacecraft onboard computer or
connected to a PC through a USB interface. A Graphical User Interface (GUI)
for Windows is developed to monitor and command connected sub-systems more
easily.
Basically, the MA61C is an interface to the satellite subsystems, such as AOCS
sensors and actuators, communication, power and payload subsystems, etc.
It adapts the communication interface and protocol standards of different suppliers
to the unique standard of the onboard computer.
For further information regarding the initial problem statement, the motivation,
the approach adopted in the choice of designing this solution and its first space
application, it is useful to refer to [6] and [7].
It is crucial, as well, to choose the MA61C version that corresponds precisely to
the particular project of interest, to connect all the subsystems in a plug-and-play
fashion through the most commonly used space interfaces, without losing time and
money on the integration. For that reason, there are mainly four versions:

• MA61C Cubesat, solution for 1U to 16U satellites, that automatically adapts
between the communication interfaces and protocol standards of different
suppliers to the unique standard of the onboard software. This simplifies
the communication between the onboard software of the CubeSat and its
subsystems such as AOCS sensors and actuators, communication, power and
payload.

• MA61C SmallSat, solution for satellites up to 150 kg, that plays the same
role as the version above but for SmallSats.

• MA61C cPCI, a solution for satellites designed with cPCI serial backplane
technology, an industrial standard for modular computer systems.

• MA61C EGSE, a USB to some different interfaces adapter that holds
electronic data sheet (EDS) to perform plug-and-play functionalities and could
be used as a Swiss knife tool for early digital validation in different projects.

6



Introduction

For more details of this solution, interesting insights are presented in [8].

Figure 1.4: Block Diagram of MA61C EGSE to Subsystems [9]

In particular the study will be focused on the first version, related to the CubeSat
solution, represented in figure 1.5.

Figure 1.5: MA61C Cubesat version [10]

To have a clearer understanding of what will be described in 3, an overview of its
embedded software is presented below, describing the most relevant parts, from
the firmware to the processor.

MA61C Firmware

It is an abstraction layer between the application and the lower-level hardware
control: it can be mounted directly on an embedded operating system such as
RTEMS (Real-Time Executive for Multiprocessor Systems, an open source Real
Time Operating System), and support one or more applications running in parallel.
In the current design, the firmware is passive and only works when it is called upon
by the main application.
The use of that firmware is open to all applications with no limitations and includes
the following databases:
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• Telecommand, which contains all commands and parameters needed to
compose commanding packets or frames for the connected subsystems;

• Telemetry, which contains all the telemetry parameters and any command
needed to pull those parameters;

• Generic, or PnP(Plug and Play), database, which contains all configuration
settings for the interfaces, the subsystems and any auxiliary information;

• Packet database, which defines the packet composition, including which pa-
rameters of which subsystem to include in the packet;

• ADCS database, which holds all the calibration values, parameter settings
and other auxiliary information needed by the ADCS application.

Electronic Data Sheets (EDS)

The EDS are written in JSON (JavaScript Object Notation) files, a lightweight
data interchange format easy for humans to read and write, and for machines to
parse and generate. It is usually used to transmit data between a server and a web
application or between different parts of an application.
The structure of the file is based on a subset of the JavaScript programming
language, but it is language-independent and can be used with virtually any pro-
gramming language.
The possible applications are wide and extended: the most useful in this case are
for storage and for the serialization/deserialization process.
In particular, the latter has been exploited in the work presented, on the pro-
gramming side: first the data have been converted to JSON format for storage
and transmission (serialization), and then converted back, via a proper Python
script, to specific databases (deserialization), used in the embedded functions of
the software.
Coming back to the EDS, using that format, they can be easily processed by
programming languages such as C and Python, and they store the following
parameters:

• Device ID;

• Meta Data;

• Subsystem information such as name, interface, protocol, address, commands,
telemetry, arguments, etc.

As mentioned before, Python code is used to process these sheets and convert them
into a format accepted by the onboard software. This process can be seen in the
following figure 1.6 and can be used both on the ground and in orbit for updating
parameters.
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Figure 1.6: Processing Software [11]

Protocol definition

As introduced in the previous chapter, section 2.2.3, understanding and managing
protocols of the different subsystems is essential to handle the communication
within a satellite.
In this particular case, the protocols have to follow the defined template shown
below; to understand it better it would be useful to describe the parameters
involved:

• interface, which represents the type of interface that the protocol is applicable
to;

• interaction method, which is the topology on which the protocol is based, e.g.
bus or point-to-point;

• character encoding, about how the data is encoded;

• packet header, which means the function that composes the start of the packet;

• additional, or any added features between the header and the data;
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• packet data, the actual internal definition of the content;

• packet footer, which identifies each packaging, CRC and CS.

Figure 1.7: Protocol Internal definition [11]

MA61C API and GUI

These two important interfaces are both really useful for the onboard software
itself.
The Application Program Interface, or API, is used in the application software to
know which functions have to be used to send commands, get telemetry or change
the settings of the device.
The Graphical User Interface, or GUI, instead, is introduced to provide easy
usage, allowing to command and monitor the subsystems: it displays the devices
connected to the board and all the commands available to be sent.
This interface could be used also for early verification of the subsystem with the
OBC unit before assembling it to the MATB chain.

GR712RC and GRMON

It could be also useful to have a better insight and comprehension of the processor
with which the main Cubesat OBC board, that has been used, is made of.
Described in [12], the radiation-hard GR712RC Dual-Core LEON3FT SPARC
V8 processor, is based on LEON3FT and IP cores from the GRLIB IP library,
implemented with the Ramon RadSafe 180 nm cell library on Tower Semiconductors
180nm CMOS process. Among all the numerous on-chip features present, it
is interesting to highlight the six SpaceWire Links, six UARTs, two CAN 2.0
controllers, SPI and I2C master controller, 2x32 bits General Purpose I/O, a JTAG
debug link and more others. In the figure below it is possible to see a block diagram
with all the interfaces and features highlighted. GRMON instead, as described in
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Figure 1.8: GR712RC Block Diagram [12]

[13], is a general debug monitor for the LEON processor, and for system-on-chip
(SOC) designs based on the GRLIB IP library; it has several different functions
such as read/write access to all system registers and memory, support for USB,
JTAG, RS232, PCI, Ethernet and SpaceWire debug links and so on.
The monitor connects to a dedicated debug interface on the target hardware,
through which it can perform read and write cycles on the on-chip bus (AHB). The
debug interface can be of various types: the LEON3/4 processor supports debugging
over a serial UART, 32-bit PCI, JTAG, Ethernet and SpaceWire (using the GRESB
Ethernet to SpaceWire bridge) debug interfaces. On the target system, all debug
interfaces are realized as AHB masters with the Debug protocol implemented in
hardware. There is thus no software support necessary to debug a LEON system,
and a target system does in fact not even need to have a processor present.
GRMON can operate in two modes: command-line mode and GDB mode. In
command-line mode, GRMON commands are entered manually through a terminal
window. In GDB mode, GRMON acts as a GDB gateway and translates the GDB
extended-remote protocol to debug commands on the target system. In the case of
interest, only the command-line mode has been used.
The image displays a concept overview of the relationship between the debug
monitor described and a general LEON SOC Target system.
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Figure 1.9: GRMON concept overview [13]

1.2.2 Modular Avionic Test Bench (MATB)

The modular avionics test bench serves as the platform for implementing and
testing the ADCS software. It consists of hardware components, simulation tools,
and software interfaces that collectively enable the emulation of CubeSat’s onboard
avionics systems and the simulation of space conditions. The test bench facilitates
the execution of various test scenarios, including nominal operations, fault detection
and recovery, and anomaly response.
By employing a modular avionics test bench, the software’s functionality and
performance in a controlled environment can be verified before deploying it on an
actual CubeSat. The test bench allows for iterative testing and debugging, ensuring
the identification and resolution of any software issues or deficiencies prior to the
operational phase.
The purpose of the Modular Avionics Test Bench Project in particular is to map
all the interconnectivity technologies offered by European suppliers, design the
Central Data Handling System (CDHS) hardware and software to match those
technologies, test the design against the supplier’s components and provide a final
product that is 80 % compatible with the EU Cubesat subsystem suppliers.
To do this, 3 flatsats are set up with components from more than 10 suppliers and
validate the CDHS based on plug-and-play (PnP) technology.
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The design of the flatsat will revolve around MA61C-CubeSat.
The final flatsat hardware and support library software, which is MA61C-CubeSat
Software, is tested and validated against fully qualified off-the-shelf Cubesat sub-
systems (power, communications, attitude, thermal, payload, etc.).
The flatsat facilitates a modular plug-and-play system, is easy to use, and is recon-
figurable to support different mission scenarios.

Figure 1.10: MATB Reference Setup [11]

The CAD model of the test benches designed are shown in the figure below.

Figure 1.11: Test Bench CAD model [11]
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1.2.3 Modular ADCS
Modularity is a key aspect when developing ADCS software for CubeSats. The
software is typically composed of various modules, each responsible for specific tasks
such as sensor data processing, attitude estimation algorithms, control algorithms,
and actuator commands. Modular software architecture offers flexibility, reusability,
and ease of maintenance, allowing for efficient development and evolution of the
ADCS software.
The implementation and testing of modular ADCS software on the test bench
involve the integration and evaluation of individual software modules. Each module
is tested independently to ensure its proper functioning and compatibility with other
modules. Integration testing is then performed to verify the seamless operation
and communication between the modules within the ADCS software.
The Modular ADCS project, taken as a reference for the study, is focused on a
modular integrated Attitude Determination and Control Subsystem (ADCS) for
Small Satellites based on MA61C adapter and ADCS software, developed by an
external company. The architecture is composed of a multipurpose hardware board
that holds 7 different communication interfaces, a plug-and-play adaptive software
and universal ADCS software.
The system has the following capabilities:

• Attitude determination;

• Attitude control;

• Boot and self-recovery;

• Plug and play interface to sensor and actuators;

• Fault Detection, Isolation & Recovery (FDIR);

• Data management and storage;

• External control interface.

The system can connect to multiple sensors and actuators that exist in the new space
SmallSat market and provide an independent ADCS subsystem that is compatible
with multisession, including but not limited to Telecommunication, Navigation,
In-situ measurements, Earth observation, and Space exploration.
The design is based on existing components from the consortium partners which
need only little modification and verification. So it is possible to create a cost-
efficient, short lead time and COTS integrated ADCS system for small satellites.
Further information about the mission scenarios considered, the tests done and the
relative performance results can be found in [9].
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Figure 1.12: Starting Point of the Modular ADCS software [9]

In figure 1.12 it is shown the first approach on the Modular ADCS software.
As it has been done for MA61C in section 1.2.1, especially for this reference project

is interesting and important to provide an overview of the software under exam
and to report the changes applied between the two different versions, from both
the hardware and software side, of a modular Attitude Determination and Control
System, one for SmallSat, already finalized and tested properly in the previous
project 1.2.3, and the other for CubeSat applications, the focus of this study.
The following insight would be useful to understand the main differences between
the two models and the corrections and updates that have to be applied to the new
version in order to be implemented and tested, once completed, using the modular
avionic test bench available.

Models Comparison

First of all, it could be worth providing a deeper view into these models:

• SmallSat mADCS: this version is part of a project 1.2.3 focused on SmallSats,
with the aim to create a modular ADCS subsystem, offering quick solutions
to mission designers; the most important thing to highlight is that the setup
of this version, represented in figure 1.13, is composed by:

– an external company simulation desktop, used to get and analyse data;
– a SPiN test desktop, for initializing the test procedure;
– a MA61C EGSE, which holds the emulated equipment model of sensors

and actuators;
– an Arduino board, to send input data to the emulator;
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– a MA61C Modular ADCS Node, that is the main core of the test, con-
taining both the model of the satellite and the ADC embedded software.

It is important to focus, between all these elements, on the importance of the
MA61C EGSE device: it allows to connect, test and validate all the digital
inputs and outputs before integrating the final system, removing the need for
dedicated hardware for hardware-in-the-loop tests, and to cover the functional
verification fully.

Figure 1.13: SmallSat mADCS setup [9]

• Cubesat mADCS: this new version is meant as an extension and evolution
of the previous model with a few major changes applied:

– the focus is moved to the CubeSat model, with the relative changes in
the Software and Hardware aspects;

– the idea is not to use the MA61C EGSE unit to emulate the equipment
models of sensors and actuators but to implement and test it in the avionic
test bench with real space components, provided by external suppliers.

Overall, besides the version considered, the structure of the software is kept the
same and is composed of the following main items:

• ADCS_performance.cpp file represents the main file, which includes all the
useful folders, compiled and run to test the performance of the solution
proposed under different scenarios and operating modes.
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• src (source) folder includes all the c files needed for the correct operation of
the Ma61c OBC Unit, from databases to parser files.

• lib folder includes all the header files related to the correspondent source
folder.

• components folder includes all the functions related to attitude determination,
guidance, control algorithms and models for Sun and Earth Magnetic Field.

• executables folder includes all the functions related to the modes available.

To conclude the Modular ADCS Software presentation, although it has not been
part of the development process, since it was already designed and tested in a
previous project, it is appropriate to provide a brief overview of the ADCS design
choices and operational modes.
Figure 1.14 briefly summarizes the main design choices for the subsystem.

Figure 1.14: ADCS Design Choices

In figure 1.15 instead, a brief description of the modes considered is presented.
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Figure 1.15: ADCS Modes Description

1.3 Objectives of the study
Given all the information provided in the previous sections, this discussion aims to
pursue the following objectives:

• develop and implement a modular ADCS software architecture that encom-
passes different software modules responsible for tasks such as sensor data
processing, attitude estimation algorithms, control algorithms, and actuator
commands, to create a flexible and modular software framework that allows
for easy integration and scalability;

• design and set up a modular avionics test bench that replicates the onboard
avionics systems of a CubeSat and simulates space conditions. This involves
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selecting appropriate hardware components, simulation tools, and software
interfaces to create a controlled testing environment;

• implement and integrate ADCS software modules within the test bench en-
vironment. Each module should be developed and tested independently to
ensure its proper functioning and compatibility with other modules. Inte-
gration testing should be conducted to verify the seamless operation and
communication between the modules;

• perform comprehensive testing and validation of the ADCS software using the
modular avionics test bench. This includes executing various test scenarios.
The objective is to evaluate the solution’s performance, robustness, and
adherence to specified requirements;

• analyze and evaluate the results obtained from the modular avionics test
bench, to assess the software’s performance, identify any anomalies or deficien-
cies, and propose improvements or optimizations if necessary. This analysis
should demonstrate the effectiveness and reliability of the implemented ADCS
software.

In conclusion, the implementation and testing of modular ADCS software using a
modular avionics test bench for CubeSats are vital aspects of ensuring the reliability
and effectiveness of the ADCS system. The test bench provides a controlled
environment that emulates space conditions, enabling comprehensive evaluation
and validation of the ADCS software. Through modular software architecture and
the utilization of a test bench, developers can enhance the development process,
verify module compatibility, and detect and rectify any software anomalies.
The following chapters will delve further into the details of the test bench setup,
testing methodologies, and the significance of rigorous testing for ADCS software
in CubeSat missions.

1.4 Outline
In this last introductory section it has been chosen to present how the work will be
developed into the different chapters:

• Chapter 2: Preliminaries, giving an overview of all the main concepts,
terminologies and tools that are going to be exploited during all the work;

• Chapter 3: Software Development and Implementation, providing an
introduction about the MA61C Cubesat SW and the reference Modular ADCS
software, then presenting the changes in the adapted software version, to
conclude with the explanation of the development of the Simulator;
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• Chapter 4: Modular Avionics Test Bench Design and Setup, explaining
the requirements and design of the bench, the selection and the integration of
hardware components;

• Chapter 5: Testing Process Description, presenting the test scenarios,
the testing methodologies employed for the space environment simulation,
describing the assumptions and limitations taken into consideration, explaining
the execution of the tests, and the software interfaces used for debugging;

• Chapter 6: Results and Analysis, presenting the different tests gradually
performed and the results obtained, analyzing the performance of the software
and discussing any anomalies or deficiencies observed;

• Chapter 7: Conclusion, summarizing the key findings, discussing the im-
plications of the research, highlighting the limitations and challenges and
providing recommendations for improving the architecture tested, suggesting
enhancements or modifications to the test bench setup.
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Preliminaries

The aim of this chapter is mainly to give a brief but complete overview of the
concepts that have to be known before going deeper into the work that will be
presented in the following chapters.

2.1 Spacecraft and Orbital Mechanics
To develop and implement ADCS software and the relative orbital simulator
needed for the Hardware in the Loop simulation, it is important to have a clear
understanding of how the spacecraft mechanics work, along the orbit: starting from
the reference frames taken into consideration for the simulation, then presenting
the attitude representations used in the software and concluding with the orbital
and satellite state models implemented in the Simulator. For this section, the main
reference has been taken by the complete discussions presented in [14], [15] and [16].
It is suggested to consult them for further details about the subjects presented.

2.1.1 Reference Frames
To perform attitude analysis there are several reference frames to be taken into
account according to the particular application or phase of the mission. In general,
a reference frame is defined by the location of its origin and the orientation of its
coordinate axis.
In Figure 2.1 the most significant ones for the application are represented.
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Figure 2.1: Main reference frames for satellites orbiting around Earth [16]

Inertial Reference Frame
An inertial reference frame is a frame in which Newton’s laws of motion are valid;
furthermore, any frame moving at constant velocity and without rotation with
respect to an inertial frame is also inertial.
Celestial reference frames with their axes fixed relative to distant "fixed" stars are
the best realization of inertial frames. The current standard is the International
Celestial Reference System(ICRF), with its axes fixed with respect to the
positions of several hundred distant extra-galactic sources of radio waves, determined
by very long baseline interferometry. The z axis of this frame is aligned with the
Earth’s North pole, and the x axis with the vernal equinox, the intersection of
the Earth’s equatorial plane with the plane of the Earth’s orbit around the Sun, in
the direction of the Sun’s position relative to the Earth on the first day of spring.
Since neither the polar axis nor the ecliptic plane are inertially fixed, the ICRF
axes are defined to be the mean orientation of the pole and the vernal equinox at
some fixed epoch time. The origin of the ICRF is located at the center of mass of
the solar system.
An approximate inertial frame, known as the Geocentric Inertial Frame(GCI)
or Earth-Centered Inertial, has its origin at the center of mass of the Earth
and has a linear acceleration because of the Earth’s circular orbit around the Sun,
negligible for attitude analysis. The axes of a "mean of epoch" GCI frame are
aligned with the mean North pole and mean vernal equinox at some epoch.
A variation of this frame is the Earth-Centered/Earth-Fixed frame, which
is similar to the GCI frame with the same z axis, but with the x axis pointing
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in the direction of the Earth’s prime meridian, and the y axis completing the
right-handed system. Unlike the GCI frame, the ECEF one rotates with the Earth
and the rotation angle is known as the Greenwich Mean Sidereal Time(GMST)
angle, denoted by αG in 2.1. This angle represents the time elapsed since the
Greenwich meridian passed through the vernal equinox.
Determining the GMST angle requires the Julian Date (JD), which could be
calculated using the following equation: for a given year Y (between 1901 and
2099), month M , day D, hour h, minute m and second s

JD(Y, M, D, h, m, s) = 1,721,013.5 + 367 · Y − INT
;7

4 ·
5
Y + INT

3
M + 9

12

46<
+ INT

3275 · M

9

4
+ D +

60 · h + m + s
60∗

1440
(2.1)

with INT denoting the integer part and 60∗ denoting the use of 61 s for days with
a leap second.
After JD, it is needed to compute T0, the number of Julian centuries elapsed from
epoch J2000, taken as a reference, to zero hours of the date in question:

T0 = JD(Y, M, D,0,0,0) − 2,451,545
36,525 (2.2)

The Greenwich sidereal time αG0 at 0 h UT can be found, expressed in degrees,
using this formula:

αG0 = 100.4606148 + 36,000.77004 · T0 + 0.000387933 · T 2
0 − 2.583 · 10−8 · T 3

0 (2.3)

The Greenwich sidereal time αG, at the end, is found using the relation

αG = αG0 + 360.98564724 · UT

24 (2.4)

with UT defined as
UT = h + minutes

60 + seconds

3600 (2.5)

Local Orbital Frame
This frame is commonly used to describe motions with respect to the moving
position and direction towards the center of the Earth of an orbiting body. The use
of this reference is mainly convenient for Earth-pointing spacecraft. Also known as
Local Vertical/Local Horizontal Frame, it has the z axis radial and pointing from
the spacecraft center of mass to the Earth’s center, the y axis normal to the orbital
plane and pointing in the opposite direction of the angular momentum vector of
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the orbit and the x axis defined to complete the right-handed system. For circular
orbits, this axis is aligned with the orbital velocity vector.
The origin is located at the center of the mass of the spacecraft.
Spacecraft Body Frame
A spacecraft body frame is defined by an origin at a specified point in the spacecraft
body and three Cartesian axes, and it is used to align the various components
during spacecraft assembly. As shown in 2.1, this frame is used to describe all
rotations of the spacecraft and the attitude with respect to the Local Orbital frame.
Usually, the origin is the center of mass of the spacecraft and its axes are defined
with the z one pointing in the direction of the face where the observation payload
is located, the x nominally pointing in the direction of the orbital velocity vector
and the y completing the right-handed system.
For nanosatellites, the center of mass rarely moves from the nominal point, so this
frame could be considered fixed.
Sensor Frame
A sensor frame for space satellites is a coordinate system that is attached to a
specific sensor on the satellite, such as a camera or an attitude sensor. The sensor
frame defines the orientation of the sensor relative to the satellite body frame, fixed
to the satellite structure. The sensor frame is useful for calibrating the sensor mea-
surements and relating them to other reference frames, such as the Earth-centered
inertial (ECI) frame. The sensor frame is important for attitude determination and
control, especially during the process of estimating and controlling the satellite
orientation using sensors and actuators.

2.1.2 Attitude Representations
To describe the attitude of the satellite and its evolution over time, it is necessary to
introduce an attitude representation and Euler’s equation of motion. The position
of the spacecraft body frame with respect to the local orbital frame, previously
described, completely defines the attitude of the spacecraft. Mathematically this
orientation can be described using a coordinate transformation matrix, defined by
3 parameters.
Euler Angles
One of the possible solutions is the one based on the Euler angles set, which defines
a sequence of rotations to make the starting reference frame coincide with the body
reference frame: this sequence of rotations is not unique and the rotations are not
commutative.
The sequence originally proposed by Euler, so-called "Proper Euler" or 3-1-3, shown
in figure 2.2 is based on the three following rotations to make the starting frame,
defined by the unit vectors Ê1, Ê2, Ê3, coincide with the body frame, defined by
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the unit vectors ê1, ê2, ê3:

• The first rotation is about the third axis of the initial frame Ê3; the rotation
angle is called precession angle Ψ;

• The second rotation is about the first axis transformed after the first rotation
ê1

′ ; the rotation angle is called nutation angle Θ;

• The final rotation is about ê3; the rotation angle is called spin angle Φ.

Figure 2.2: Euler angles and rotations [16]

The three angles represent the attitude of the body frame with respect to the initial
frame. It is possible to obtain the transformation matrix, describing the attitude
of the satellite, by properly multiplying the rotation matrices for the sequence of 3
elementary Euler rotations, defined as

A3(Ψ) =

 cos Ψ sin Ψ 0
− sin Ψ cos Ψ 0

0 0 1

 (2.6)

A1(Θ) =

1 0 0
0 cos Θ sin Θ
0 − sin Θ cos Θ

 (2.7)
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A3(Φ) =

 cos Φ sin Φ 0
− sin Φ cos Φ 0

0 0 1

 (2.8)

Therefore the coordinate transformation matrix is

A3,1,3(Ψ, Θ, Φ) = A3(Φ) · A1(Θ) · A3(Ψ) (2.9)

The weakest feature of this representation is that singularities could occur: this
means that there may be situations in which the relative attitude between the
two reference frames can be described in different ways and not uniquely; when a
singularity occurs, some angles go to infinity causing serious consequences in the
attitude representation. For that reason, in some applications, quaternions are
usually preferred.
Quaternions
To avoid and overcome singularity issues, the spacecraft attitude is parameterized
using 4 parameters known as quaternions.
A quaternion can be represented in two forms

q =
C
q0
q⃗

D
q =


q0
q1
q2
q3


Stating the Euler Eigenaxis rotation theorem, as it is possible to rotate a fixed frame
onto another frame with a simple rotation around an axis â fixed in both frames,
it is possible to use quaternions to describe changes in attitude: the rotation from
the inertial frame to the body one is then the rotation of the inertial frame about
the unit vector â through angle α. According to this statement, the quaternion
can be also defined as

q =


cos α

2
a1 · sin α

2
a2 · sin α

2
a3 · sin α

2

 (2.10)

It is possible to demonstrate that the coordinate transformation matrix between
the two frames is

AB
i = (q2

0 − q⃗ · q⃗) · 1 + 2 · (q⃗) · (q⃗)T − 2 · q0 · S(q⃗) (2.11)

where S(q⃗) is the cross-product matrix equivalent, or skew matrix, defined as

S(q⃗) =

 0 −q3 q2
q3 0 −q1

−q2 q1 0

 (2.12)
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Coordinate Transformations
Having defined the reference frames and two different ways of representing the
attitude, it is possible to consider and define the transformation matrices that allow
one reference frame to be rotated on another, bringing them to coincide.
The most interesting rotations to be considered for the work are:

• rotation from ECEF to ECI, for which it is necessary to know the rotation
angle, or the GMST already defined.

• rotation from Sensor frame to Spacecraft Body frame, for which is necessary
to calculate the Direction Cosine Matrix(DCM) from the current quaternion
detected.

2.1.3 Orbit and Reference Models
To understand fully how the orbital simulator has been built, it is interesting to
give an insight also about the characteristics of the orbital propagator and the
reference models used.
Two-Body Problem
This represents the classical and simplest problem of determining the motion of two
bodies due solely to their own mutual gravitational attraction and it is resolved by
Newton’s law of Universal Gravitation. As well discussed in [16], by considering
an inertial frame, such as the ECI defined, making some simplifying assumptions,
and by applying Newton’s second law, the path of one of the masses relative to the
other is a conic section, i.e. circle, ellipse, parabola or hyperbola, whose shape is
determined by the eccentricity.
The key vector differential equation of the relative motion for the problem presented
is the following

r̈ = −G(M + m)
r3 · r (2.13)

where G is the universal gravitational constant, M is the mass of the main body
and m is the mass of the secondary body.
In the case of interest, the main body is represented by the Earth and the secondary
body by the spacecraft, therefore the mass m is much less than M , so it follows

G(M + m) ≃ GM ≡ µ (2.14)

where µ is defined as the gravitational parameter and for Earth is

µ⊕ = 3.986004418 · 1014 m3

s2 (2.15)
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According to this simplification, the Equation 2.13 becomes

r̈ = − µ

r3 · r (2.16)

Defining the state vector of the spacecraft, which includes its position r and
its velocity v, the time derivative of the state vector returns the velocity and
acceleration that is provided by 2.16. By integrating the six components of this
vector, the instantaneous position and velocity of the spacecraft relative to the
inertial frame can be calculated to define the characteristics of the orbit: the six
components of the state vector are sufficient to uniquely determine an orbit.
A valid alternative to the six components of the state vector is represented by the
six classical orbital parameters, represented in figure 2.3, which can be used to
describe the orbit and the position of the spacecraft:

• a, semi-major axis, constant defining the size of the orbit;

• e, eccentricity, constant defining the shape of the orbit;

• i, inclination, angle between the K̂ unit vector and the angular momentum
vector h;

• Ω, longitude of the ascending node, or RAAN angle, in the fundamental
plane, between the Î unit vector and the point where the spacecraft crosses
through the fundamental plane in a northerly direction measured counter-
clockwise when viewed from the north side of the fundamental plane;

• ω, argument of periapsis, angle, in the plane of the spacecraft’s orbit,
between the ascending node and the periapsis point, measured in the direction
of the satellite’s motion;

• ν, true anomaly at epoch, angle, in the plane of the spacecraft’s orbit,
between the periapsis and the position of the spacecraft at a particular time,
t, called the "epoch".

Five of them (a, e, i, Ω, ω) are sufficient to define the shape, size and orientation of
the orbit, while the sixth (ν) is required to specify the position of the spacecraft
along the orbit.
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Figure 2.3: Classical Orbital elements [16]

An orbit that can be described by these six parameters, constant over time
(except for ν), is called a Keplerian orbit. This type of orbit is the closed-form
solution of the two-body equation of relative motion, based on the following
assumptions:

• only two bodies in space are considered;

• their gravitational fields are spherically symmetric;

• the only source of interaction between the bodies taken into account is the
mutual gravitational attraction.

Any kind of effect that causes the motion to deviate from a Keplerian trajectory is
known as a perturbation, added in the equation 2.16

r̈ = − µ

r3 · r + ap (2.17)

where the vector ap is the net perturbative acceleration from all sources other than
the spherically symmetric gravitational attraction between the two bodies. An
example of perturbations of two-body motion could be

• gravitational interactions with celestial objects like the moon and the sun;

• non-spherical central body;

• solar radiation pressure;
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• atmospheric drag.

There are two main categories of perturbation techniques:

• Special perturbations: techniques which deal with the direct numerical integra-
tion of the equations of motion including all necessary perturbing accelerations,
e.g. Cowell, Encke, Variation elements techniques;

• General perturbations which involve an analytic integration of series expansions
of the perturbing accelerations, e.g. SGP, SGP4, BL.

In the thesis work presented, in the Orbital Simulator developed, attention has
been focused on General Perturbations and in particular in the SGP4 method.
Further details can be found in the relative section 3.2.1 and in the dedicated
reference [17].

2.1.4 Attitude Dynamics and Kinematics
In this final section of the Spacecraft Mechanics introduction, the focus is on the
kinematics and dynamics of a satellite.
The whole rigorous discussion is clear and complete in [14], while here there are
going to be reported only the most interesting results and equations for the work.
Attitude Kinematics
To retrieve and understand the equation for the evolution of the quaternion in
time, first of all, it is necessary to define the different angular velocities involved,
taking into consideration the reference frames presented in 2.1:

• ωB
OB represents the angular velocity of the spacecraft relative to the local

orbital frame expressed in the Body frame;

• ωB
IB represents the angular velocity of the spacecraft relative to the inertial

frame expressed in the Body frame;

• ωO
IO represents the angular velocity of the orbital frame relative to the inertial

frame expressed in the orbital frame and is defined as

ωO
IO =

è
0 −ω0 0

é
(2.18)

with ω0, the scalar value of the angular velocity of the spacecraft about the
Earth’s center, calculated as

ω0 =
ò

µ⊕

r3 (2.19)

These three angular velocities are correlated via the following equation

ωB
IB = ωB

OB + AB
O · ωO

IO (2.20)
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with AB
O transformation matrix needed to convert ωO

IO expressed in orbital frame,
into body frame.
Considering the definitions provided and using quaternions as attitude representa-
tion, the attitude evolution is given by integrating the following equations:

q̇0 = −1
2 · ωB

OB · q⃗

˙⃗q = 1
2 · q0 · ωB

OB + 1
2 · q⃗ x ωB

OB

(2.21)

where q⃗ and q0 are respectively the vector and scalar part of the quaternion, as
previously defined.
Attitude Dynamics
For the study of the dynamics, instead, besides the introduction of the angular
velocities, it is essential to define the angular momentum of the spacecraft, measured
in the body frame:

h
B = I · ωB

IB (2.22)

where I is the inertia matrix of the spacecraft.
Assuming the spacecraft as a rigid body, it implies that the time derivative of
the inertia matrix is equal to zero, therefore the time derivative of the angular
momentum is given by

ḣ
B

= I · ω̇
B
IB (2.23)

This expression would be more useful after having introduced the well-known
Euler′s equation, which characterizes the dynamic of a rigid body about its center
of mass with respect to an inertial frame, indicating how the angular momentum
varies over time, taking into account the variations due to the applied torques:

ḣ
B

+ ωB
IB × h

B = T
B (2.24)

where T
B includes all the external torques acting on the spacecraft with respect to

its center of mass expressed in body frame.
By substituting the expression 2.23 in 2.24, the following equation for the angular
acceleration is retrieved:

ω̇
B
IB = I−1 (T B − ωB

IB × I ωB
IB) (2.25)

Integrating 2.25 over time allows to get the angular velocity of the spacecraft.
Disturbance torques
As introduced in 2.24, external torques acting on the spacecraft contribute to its
dynamic, therefore, it is important to take into account all the torques, generated
by the space environment, which perturbs the satellite’s dynamic. Some of these
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disturbances generate forces which in turn yield non-negligible perturbation torques.
For the orbits of interest and satellites orbiting around Earth, usually four of them
are taken into consideration, which are the ones due to gravity, Earth’s magnetic
field, solar radiation and aerodynamic drag effects.
How these will be modeled is presented in the dedicated section 3.2 in chapter 3.
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2.2 Data Transmission
After having given a brief introduction to the Orbital mechanics and Space en-
vironment, since the work concerns even communication aspects between space
devices inside a satellite, it is fundamental to discuss also the basic concepts of
data transmission.
The first point to be introduced is how the communication between the board and
the components is managed, starting from the explanation of the communication
models and ending with the description of the different most used protocols.

2.2.1 Communication models
Two communication models allow to describe the network access to resources and
communication:

• Master/Slave: one device acts as a master device establishing the timing
and controlling communication. The master initiates communications with
the other devices, the slave cannot do the same with the master device nor
can it communicate with the other slave devices;

• Peer-to-Peer: the devices behave equally, so any device/node can initiate
communication; depending on the network connections, the data is exchanged
with one peer or all the peers. When the number of nodes increases, the re-
source also increases but the performance suffers during heavy communication
loads.

2.2.2 Serial and Parallel Communication
There are two ways of transmitting a byte between devices:

•

Serial: the bits are transmitted
as a series of pulses; these inter-
faces have low data rates and high
reliability. Usually used for de-
vice control. Figure 2.4: Series Interface [18]

•

Figure 2.5: Parallel Interface
[18]

Parallel: each bit has a single
wire devoted to it and all the bits
are transmitted at the same time;
these interfaces have high data
rates. Usually used for large data
usage like image sensor or cam-
era.
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Serial Communication
There are two types of serial data transmission:

• Synchronous Data Transmission: data is transmitted one bit at a time, using
a clock to maintain integrity between words. The main advantages are that
only one (half) or two (full duplex) wires are required to send/receive data
and low cost due to low number of wires. The main disadvantages are lower
speeds than parallel transmissions and difficulty in maintaining data integrity
due to problems with synchronizing clocks.
The sender sends a clock signal along with data at every rising/falling edge of
the clock, so the data value is read by the receiver.

Figure 2.6: Synchronous Mode [19]

• Asynchronous Data Transmission: data is transmitted one bit at a time
using start bits and stop bits to maintain integrity between words. The main
disadvantage is lower speeds than parallel transmissions.

Figure 2.7: Asynchronous Mode [19]
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Transmission modes
Three main ways to transmit the data:

• One-way transmission

Figure 2.8: One Way Transmission Mode [20]

• Two-way transmission (half-duplex): only one end can communicate at a time;

Figure 2.9: Half-Duplex Transmission Mode [20]

• Two-way transmission (full-duplex): both ends can communicate simultane-
ously.
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Figure 2.10: Full-duplex Transmission Mode [20]

2.2.3 Communication protocols

The concept of protocol itself is nothing new for anyone, as it is used in each field
of everyday life but this section aims to focus on what is a protocol for a space
component.
In the context of space systems and spacecraft, a protocol typically refers to a
set of rules and conventions that dictate how different components or subsystems
communicate with each other. These protocols are crucial for ensuring that various
parts of a spacecraft or space system can work together seamlessly.
So protocols define the standards for communication between different components,
such as sensors, instruments, control systems, and data processors. These standards
specify how data is transmitted, received, and processed, so the format of data
messages, including how data is structured, the encoding used e.g. binary or ASCII,
and any error-checking mechanisms, e.g. checksums, to ensure data integrity.
There is the possibility that protocols also include timing and synchronization
requirements to ensure that data is transmitted and received at the right time and
in the correct sequence, as precise timing is critical for mission success. These
may be used in some cases also to define how errors are detected and handled,
involving the mechanism of re-transmitting data in case of transmission errors or
for notifying the system of errors.
Usually, the details of these protocols are documented in user manuals and Inter-
face Control Documents (ICDs): user manuals provide information to users and
operators of the space component, while ICDs define the interfaces and interactions
between different components within a space system.
Many space agencies and organizations, such as NASA or the European Space
Agency (ESA), develop and adhere to specific communication protocols, e.g. Con-
sultative Committee for Space Data Systems (CCSDS) protocols, MIL-STD-1553,
and SpaceWire among others, to ensure interoperability between different space
components and missions, but sometimes, depending on the specific mission and the
components involved, these may be customized or modified to meet the mission’s
unique requirements.
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Series Interfaces of interest for the work:

• SPI or Serial Peripheral Interface: a synchronous protocol that allows a
master device to initiate communication with a slave device; data is exchanged
between these devices. This interface is both synchronous and full duplex.
There can be multiple nodes in the network: one of them is the master and
the rest are slaves, with the communication always initiated with the master;
the slaves can only communicate with the master.

Figure 2.11: Example of SPI schematics with multiple slaves [21]

The main actors displayed in the schematics in 2.11 are:

– CLK is generated by Master and is used as the mode is synchronous;
– MOSI is Master Out Slave In: Data sent by master to slave;
– MISO is Master In Slave Out: Data sent by slave to master;
– SS is slave select: the slave communicates with master only if this pin is

set as "Low".

The communication protocol works as represented in figure 2.12.
The number of lines in an SPI increases with the number of devices, making
this one of the main disadvantages.
The SPI mode defines which SCLK edge is used for toggling data and which
SCLK edge is used for sampling data.
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Figure 2.12: Example of simple SPI communication [22]

• UART, Universal Asynchronous Receiver-Transmitter, is a simple, asyn-
chronous serial communication protocol used for basic data exchange between
components, used for data rates below 100 kbps for a single device and when
the total quantity of platform having a 1553 interface is less than about 20;
are point-to-point links and require more hardware in the RTU and more
harness for each device than a data bus.
Used for devices where low power consumption and mass is required.
The communication standards used for UART communication are RS-232,
RS-422 and RS-485:

– RS-232 is a common serial communication standard, used for low-speed
data transfer between COTS components in space systems and often used
for configuration, monitoring, and control purposes;

– RS-422/RS-485 are serial communication standards that offer better noise
immunity and longer communication distances compared to RS-232, used
for data transmission between COTS components within a spacecraft;
they specify only the electrical characteristics of the interface.

The main differences between these standards are summarised in table 6.3.
A connection with this bus requires one wire for the transmission of data;
therefore clock line is not used and the data is transferred by pulling down
the line to send data.
The transmission starts with a "start bit" followed by 7 data bits; a parity bit
is included depending on the design and the transmission ends with a ’stop
bit’, as shown in figure 2.13.
The UART’s real data transmission rate is 70 percent.
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Figure 2.13: UART data transmission structure [23]

• I2C, Inter-Integrated Circuit, is a multi-master protocol that uses two signal
lines, called ’serial data’ (SDA) and ’serial clock’; as displayed in figure 2.14,
virtually any number of masters and slaves can be connected to these lines.

Figure 2.14: Example of I2C schematics diagram [24]

These communicate with each other using a protocol that defines: 7-bit slave
addresses, one for each device connected to the bus, data is divided into 8-bit
bytes, a few bits for controlling the communication start, end, direction, and
for acknowledgement.
The SDA and SCL are connected to the entire device on the I2C bus: the
master is the device that drives the SCL clock line, the slaves respond to the
master and cannot initiate a transfer over this bus.

I2C nominal protocol: as shown in figure 2.15, when the master wishes to
talk with the slave, it issues a start sequence on the I2C bus; the start and
the stop sequence are special in a way that it is in these places the SDA is
allowed to change when the SCL line is high. When the data is transferred,
the SDA should not change whilst the SCL is high.

• MIL-STD-1553: traditional choice for a data bus in space, developed by US
and used for data rates below 100 kbps for a single device and when the total
quantity of platform having a 1553 interface is less than about 25 (slow for
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Figure 2.15: I2C protocol [25]

modern satellite applications).
Typical satellite usage today is 10-15 units connected to a 1553 bus.
Used for devices where 3W peak power consumption can be tolerated.

• CAN: Controller Area Network, is a multi-master system, therefore increasing
the complexity of the system; used for data rates below 50 kbps for a single
device and when the total quantity of platform having a 1553 interface is more
than 20/25; used for devices where 3W peak power consumption cannot be
tolerated.
The CAN bus system, in figure 2.16, consists of a bus wire, bus terminations,
and a bus station that contains a micro-controller, CAN controller, and a
bus driver: the micro-controller edits the data received or transmitted and
controls the communication, the CAN controller is an interface to the physical
bus wire, it realizes the functions of CAN bus such as bus arbitration, error
handling, bit stuffing, etc.

Figure 2.16: CAN bus architecture [26]

• Space-Wire: originally developed by ESA to provide data link with a high
bandwidth to complex missions, also defined in ECSS-E-ST-50-12C, used for
most european and american missions.
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It connects different nodes with low latency, full duplex, and point-to-point
connections and it is used for data rates above 100 kbps for a single device
and when the total quantity of platforms having this interface is less than
10-14; to extend beyond this number, large Space Wire routers are needed;
used for devices with low power consumption and low masses.
It is a point-to-point serial data link encoding data using two differential pairs
in each direction, for a total of eight signal wires: two signal pairs are for data
in and out while the other two wire pairs carry data strobe in and out.
Designed and developed to meet the EMC specifications of a satellite.

Figure 2.17: SpaceWire block diagram [27]

• Ethernet: with its associated TCP/IP protocol suite, is increasingly used in
space applications, especially for high-data-rate communication, payload data
handling, and telemetry.

In the work presented, UART interfaces are the most used, therefore it could be
interesting to further highlight the different methods of communication and the
differences between the standards already mentioned.

Comparison between UART TTL communication and RS-232 communi-
cation
Many UARTs (built-in micro-controllers) receive and transmit data serially, they
transmit one bit at a time at a specified data rate: a method called TTL serial.
Serial communication at a TTL level is always between 0 and Vcc which is earlier
5V or 3.3V, a logic high ’1’ is represented by Vc, while a logic low is 0V.
RS-232 signals are similar to microcontrollers with respect to the idea they transmit
one bit at a time, with a specified baud rate, with or without parity and/or stop
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bits; for the RS-232, logic high ’1’ represents a negative voltage between -3 to -25V
and a low logic ’0’ transmits a positive voltage between +3 to +25V.
RS-232 can travel longer distances than the TTL counterparts while providing a
reliable data transmission.
To connect the two ports, one has to invert the signals and also regulate the voltage
so that it does not destroy the microcontroller’s serial pins.
MAX-232 IC uses transistors or inverters to flip the signals and charge pumps for
RS-232 voltage.

Comparison between RS-232, RS-485, RS-422 serial interfaces

Line Configuration Mode of operation Max Data Rate [kbits/s]
RS-232 Single-ended Simple or Full duplex 20
RS-485 Differential Simple or Half duplex 10000
RS-422 Differential Simple of Half duplex 30000

Table 2.1: UART Comparison

When communicating with high data rates or over long distances, single-ended
methods are not enough: differential signals help nullify the effects of ground shits
and induce noise signals that can appear as common mode voltages on the network.

2.3 Simulations
As the last part of the work will involve simulation tools and setups for testing
the modular ADCS application implemented, it is useful to introduce also the
differences between types of simulation available, according to the phase of the
project and the purpose of the activity.

2.3.1 SiL and HiL simulations
Software-in-the-Loop (SIL) and Hardware-in-the-Loop (HIL) simulations are crucial
testing methodologies that help engineers and scientists validate and verify the
functionality and performance of complex systems before they are deployed in
real-world environments, ensuring their reliability and safety.
It is interesting to highlight the differences between them and also the several
reasons why they are so useful, especially in this sector.
Software-in-the-loop simulation involves testing the software component of a
system in a virtual environment without the actual hardware. In other words,
it runs the software on a computer to simulate how it would interact with the
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hardware and external systems. It is very useful for different reasons, e.g. enabling
early development and debugging of software components, for cost-effectiveness
because it does not require physical hardware and so accessible for testing and
development throughout the project’s lifecycle, for the repeatability, essential for
verifying the software’s behavior under various conditions, for the safety, as it helps
ensure that software functions as intended, minimizing the risk of software-related
errors or failures once the hardware is integrated and at the end also for the
scalability, which allows to simulate the behavior of various parts of the space
systems, making it easier also to test complex, interconnected systems.

Figure 2.18: Example of SiL workflow [9]

Hardware-in-the-Loop simulation instead involves testing a system’s hard-
ware components by connecting them to a simulated environment that mimics
the real-world conditions they will encounter. It interfaces real hardware with
simulated or emulated components.
Although it is a more expensive, complex and longer process, enables the testing of
actual hardware components in a controlled, repeatable environment, providing
insights into their performance and reliability and how these interact with each
other before they are physically integrated into the complete space system. Another
interesting aspect is the possibility, with that kind of simulation, to inject faults
or anomalies into the simulated environment to assess how the hardware and the
software respond, helping to identify vulnerabilities and develop fault tolerance
mechanisms.
Furthermore its value concerns also the opportunity to replicate extreme envi-
ronmental conditions that space systems will encounter and also to validate that
the hardware behaves as expected and meets the project’s requirements, ensuring
mission success.
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Figure 2.19: Example of HiL workflow [28]

In conclusion, both the simulations presented are essential to help identify and
mitigate issues early in the development process, increasing the chances of mission
success, the safety of every kind of payload and contributing also to cost savings,
by reducing the need for physical prototypes and allowing for iterative development
and testing.
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Chapter 3

Software Development and
Implementation

Since an overview of the MA61C software has been already discussed in section
1.2.1 and the main design of the reference modular ADCS project has been handled
in section 1.2.3, in this chapter there are going to be discussed all the main actions
applied on the software side for the work, giving also an insight into how the
software works and interacts with the hardware.
First, the focus is going to be on the onboard computer (OBC) software together
with the modular ADCS one, and lastly the Orbital Simulator.

3.1 OBC and ADCS Software
On the Software side, it could be relevant to report all the main updates applied
with respect to the original SmallSat version of the project.
In particular, it is interesting to focus on the following aspects, which represents
also the different versions of the software that are going to be tested and explained
in chapter 5:

• First of all the necessary changes made to obtain a compilable version of the
code to load and run into the hardware;

• Interfaces, in particular focusing on a code which allows to test the correct
operation of all the interfaces on the on-board computer, that will be used for
the communication with the components.

• With both a compilable file properly modified and an interface test code, it
has been necessary to create a communication test code, trying to send some
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random data and receive the response, even without any component or EGSE
connected, just for checking that the communication line is operating properly.

• After the communication test code, the next step was to update the software
to exchange data with real components integrated on the bench and connected
to the OBC. Proper sections of the code have to be added to receive and
read correctly the outputs from the physical sensors, and eventually to send
commands to the actuators.

• The ultimate step has been to assemble a complete version of the software
which includes all the elements needed to run the simulation, involving also
the communication with the orbital simulator, explained in section 3.2.

• In parallel with the previous activities, there have been followed also other
software developments, such as:

– Json files update;
– Protocols update.

Since the whole code is under the property of the company, there are going to be
discussed, conceptually, all the actions applied to adapt the reference version of
the software, without mentioning or showing the particular functions or sections of
the code.

3.1.1 Simulation Software
The major changes applied to the main code could be summarised in the following
points:

• The files in the source folder of the original version have been compared to
the ones in the CubeSat source folder:

– All the useful databases present in the mADCS project have been added,
including the one containing the main settings for the ADCS software;

– The databases related to commands and telemetries have to be replaced
with the ones from the subsystems of the MATB project, eventually adding
the external ones (refer to 3.1.3).

– The parser files, which manage the communication with all the interfaces
available, have to be modified according to the devices available: initial-
ization, sending, and receiving functions have to be properly customized.

–
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• To modify specific functions of the ADCS software, according to the need, it is
necessary to identify the macro-folder which contains the files of interest, mainly
among executables for mode updates and components for determination and
control algorithms, and then directly apply the modifications into the desired
file.

• In the main file (ADCS_performance.cpp) several changes have been applied:

– Some libraries have been included in the header section at the beginning
of the code, according to the functions added;

– in the recall section of the source files for the board, almost the same files
have been added, changing the name of the relative folders;

– in the section for the configuration of the UART interfaces, the inputs
of the functions have been updated with the correct values for the new
components chosen;

– in the section for setting variables, all the additional required initialization
have been added, according to the new parameters introduced;

– in the section for initializing the third-party ADCS software, a few
changes have to be made:

∗ mode and scenario to be simulated are overwritten;
∗ values of time parameters have been updated according to the orbit

of the scenario chosen;
∗ specific physical components are properly initialized by setting deter-

mined operating modes or configuration parameters.
– in the section to retrieve the telemetry from the connected components,

for each of them, these actions are introduced:
∗ a function to send the adequate command, providing the relative

number, to a specific subsystem, for requesting the telemetry;
∗ a section for processing the data, further explained in chapter ??,

received from the subsystem;
∗ a section for storing the processed data in the variables employed in

the ADCS software itself.
– in the section for calling the ADCS software

∗ the functions to run the software have to be kept as they are;
∗ the displayed output can be changed according to the need for the

specific test;
∗ for the simulation, as will be further discussed later in the work i.e.

3.2.3, it can be also useful to send some computed parameters, from

47



Software Development and Implementation

the OBC hardware to the orbital simulator, since the simulation will
be closed-loop: for this purpose, first these parameters have to be
stored into proper variables, converted into floating values and then
sent via specific functions, through the chosen interface, to the end
user.

• For the compiling of the main file, different commands have been used in the
prompt: for the original version it has been used the following one

"sparc-gaisler-rtems5-g++ -Wall -O2 -I -L components/preprocessor/prePro-
cessor.cpp configuration/control.cpp components/orbitDetermination/*.cpp
components/attitudeDetermination/*.cpp
components/controllers/torqueController/*.cpp components/controllers/mag-
netorquerController/*.cpp tools/math/*.cpp components/models/*.cpp com-
ponents/guidanceModule/*.cpp tools/models/*.cpp components/torqueAllo-
cation/*.cpp components/schmittTrigger/*.cpp spin/*.c
-mcpu=leon3 -qbsp=leon3 ADCS_performance.cpp -o
ADCS_performance_test"

This command has been composed by taking into consideration the user manual
of the RCC, cross-compilation system for LEON processors (for further details
refer to [29]). Besides the add-ons, sparc − gaisler − rtems5 − g + + is the
command to compile .cpp files; after −L all the files needed for the compilation
process are included, both ADCS and OBC related ones; after −o the name
of the compiled file is provided, which will be the output of the command, in
the same folder which collects the main file.
To compile the new version of the software instead, the same command has
been used but without the inclusion of the .c files in the source folder, already
included in the .cpp file to be compiled;

3.1.2 Interface and communication test code
In this section the aim is to report the steps followed to update the Interface Test
code, already existing, in order to test the correct operation of all the interfaces
available, before using them for the communication between the components, inte-
grated on the test bench, and the MA61C Cubesat board, as On-Board Computer.
The previous version of the code already includes the procedures to test the fol-
lowing interfaces: SpaceWire, CANbus, MIL1553B and UART; therefore in this
section, there will be described only the remaining ones:

• I2C;
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• SPI;

• GPIO;

• GPI;

• MT pins.

Not all of them will be useful for this work, but the additional ones may be needed
to extend the range of the future applications of the solution. Focusing on each
interface analyzed, one by one, the procedure followed to develop and test them
with the MA61C Cubesat board is going to be explained.
It is important to point out that for the development of each interface test code,
two main documents have been taken as a reference:

• MA61C CubeSat Verification document: as a guide for the connections between
the interface and the board, and for the former manual test procedure, already
written and used until the automated software version is ready.

• GR712RC User Manual: as a guide for the processor of the board, to un-
derstand the addresses and the functioning of each interface throughout the
board’s point of view.

I2C
Following the order already present in the code, after the UART, there is the I2C
interface.
On the development side, first of all, the starting step has been to create a section
to interact with the user, guiding him to set, through the dedicated GUI for the I2C
interface, the proper parameters of the device connected, such as the address, the
bit rate and the mode. After having done that preliminary setting, it is necessary
to understand if the device has been properly identified by the board, using the
i2cScan function available in the source folder, which also initializes the speed of
the interface.
After scanning, the address identified is returned by the function and a confirmation
is asked to the user, before the writing step.
As it has been done for the scanning, also for the writing it has been used an
embedded function i2cWriteSingle, which takes in input the data that it is desired
to write and the address to which the data has to be sent; the message is sent to
the transaction log of the GUI of the interface and again a confirmation is asked to
the user.
After the writing check, it remains only the reading one, achieved by using the
i2cRead, taking in input the address from which it has to be read, after having
told the user to send a message from the GUI of the interface device to MA61C.
Also for that last step, a confirmation from the user is required to proceed.
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If all the confirmations have gone correctly, the test procedure for that interface is
passed.

SPI
For this interface, the device initially used has been the same as the one for the
I2C interface, since it can be both an I2C and SPI adapter to the computer. Un-
fortunately, after having set it up with the connections for SPI mode, there have
been some issues in the communication with MA61C board, in particular in the
writing action from MA61C to the device.
That issue forced to change the device used to a "Bus pirate v3.6", but unfortunately
even with that one, any communication has been established.
The last and successful attempt has concerned the Arduino UNO device, by setting
it in a Slave Mode, with the proper pinouts available.
Therefore, in Arduino IDE, two different codes have been written: a code to
initialize proper SPI master parameters to Ma61c, to write a test message, send it
to the slave device (Arduino Unit) and after that to read the message sent back
from the slave; the other code refers to the initialization of the SPI slave device,
the receiving process of the message sent from the master and after receiving, the
sending back action to the master.
In that way, both the communication lines, writing and reading, are tested and
validated.
GPIO
The next interface test developed is the GPIO one, for which the testing procedure
is different from the others: voltage measurements, using a multimeter, are neces-
sary to verify the correct operation.
Before entering into details about the development of the procedure, it is necessary
to point out that to allow the enabling and the possibility to use each one of the
available GPIO pins in the board it has been required to disable the interfaces
that operate using the same line, at least while this interface is going to be tested.
To achieve that, the procedure presented on the user manual of the processor,
embedded in the board, to gate the clock for a core has to be followed: first, it has
to be enabled the relative unlock register, then the core reset register, and after
that disable the clock, enable the register of the core of interest, to conclude with
the disabling of the unlock register.
For the test of this interface, there have been disabled the following cores of the
processor: Space Wire, CAN, CCDS Telecommand, MIL-STD-1553.
Starting the development explanation of that code, first of all, since this interface
is present in each one of the versions of the MA61C board, the user has to choose
which board is connected for the test.
The procedure has been prepared only for the case of interest, therefore only for
the Cubesat board.
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The second choice that the user has to make is the GPIO pin that has to be tested:
after that, via a proper function, a precise procedure for each of the different pins
is followed to set at high or low levels the relative register bits and with them
the output and the port direction registers. After all these operations, the user is
requested for a confirmation, to check in the multimeter the voltage measurements
according to the different cases tested.
GPI
The GPI interface is very similar to the previous one, except for the fact that in
this case the communication is only in one direction, the input one.
The setup for this interface testing is a bit different because there is the need for
an ARDUINO board, which has to be connected to the power and it has to provide
the correct voltage to the pin of interest in the board to be tested.
According to the point highlighted above, also the interface test code is simpler
than before and limited to checking for the correct value of the register bit, different
for each case selected (as explained in the previous procedure). In case of power
provided, the register bit has to be set to high, instead of low.

MT pins
The last interface test code added is related to the MT pins, whose procedure is
very similar to the one of the GPIO pins.
Actually, the interface test code developed has the same structure as the one for
the GPIO pins; the main changes are related to the different pins that have to
be tested and with these also the commands that have to be sent to the board in
order to set high or low values to the register bits in the registers of interest.

After having verified and validated that all the interfaces to be used are working
well, the attention has been focused on the communication test code.
The main actions applied could be summarised in the following way:

• the functions useful for sending and receiving packets to and from the hardware,
via UART interfaces, have been updated according to the CubeSat version
protocols, different from the ones of the former SmallSat version;

• in the main file a dedicated section has been added, applying the following
measures:

– The port ID to which the request and the effective data are sent and
received has been set and configured according to the device used for the
data transfer between hardware and computer;

– Due to an internal conflict, before sending and receiving anything, it has
been necessary to disable the UART 5 interface of the hardware, which is
not associated with any interface in the Cubesat version. It is furthermore
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required, after that step, to ensure that the GPIO pin related to the
UART 2 interface (RS485) is correctly enabled;

– since in the new configuration there is only the Ma61c Cubesat hardware,
without the MA61c EGSE connected, it is necessary to set a proper
waiting time between the send and receive packets action; this has been
done just by putting the receive function inside a loop, which allows to
wait enough time to receive the response back.

After having applied these precautions, the only action remaining is to build the
message or random data in a format recognizable by the software as a good input,
emulating the attitude of a real component.
According to that, it has been necessary to check in the former file, used for the
emulation of the components, with which protocols the commands were sent to
the emulated components, e.g. regarding the fine sun sensors, the protocol used is
the NSP one, therefore data to be sent have to be first encoded according to that
protocol. Having encoded data properly, via a specific debug tool used for UART
interface communication (Termite), it has been possible to see data received and
send a response back to the software every time the correct request data sequence
arrives.

3.1.3 Json files and Protocols update
After having created a new version of the main code that is going to manage the
communication between the onboard computer and the components on the bench,
the next action is related to the update of the JSON file and the protocols of the
devices chosen.
For the JSON file, better explained in the previous chapter, it has been necessary to
take as a reference the interface control documents and the user manuals available
for the components and extract from them the commands and the telemetries for
each of these, to get, via a proper python code, the correct databases for Command
and Telemetry. Since for that work there have been used some of the components
already present in the Modular Avionic Test Bench project, the JSON file for these
has been inherited and integrated with the additional devices required for this
work, such as the analog sun sensor and the magnetometer (for this choice refer to
4.2).
Regarding the protocols, a similar approach has been applied: since most of the
protocols and drivers have already been written for the parallel project, and the
same for the magnetometer, used in previous activities, the only one that has had
to be introduced is the sun sensor one. Therefore, referring to the data sheet of the
specific version of the light sensor procured, it has been possible to understand the
correct sequence of commands needed to send/write and receive/read data to/from
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the device and then implement it on a software level.
After having updated all the protocols, the necessary step is to test them in order
to understand if they allow to communicate in the correct way with the devices.
The outcomes of these tests are reported in the dedicated section 6.1.5.
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3.2 Simulator development
It is necessary also to provide proper inputs to the physical components mounted
on the bench, therefore an orbital simulator has been developed.
This section describes the software components that form the reduced simulative
verification environment. All components are implemented in MathWorks Simulink.
The Simulink model in figure 3.7 does not show the complete ADCS control loop
but it includes only what is needed for the specific application:

• the Plant, which is made of Space Environment, Disturbances and Satellite
State blocks;

• Sensor and Actuator models: since not all the components needed for
the correct operation of the software are physically available on the bench,
some of them have to be properly modeled to provide additional telemetry or
parameters requested.

• Communication blocks: since the data simulated has to be sent to the
software under testing, and the output from the software has to be received
as input into the simulator itself, proper blocks to exchange data between the
hardware and the model need to be included.

All the other elements of the control loop, i.e. filters for navigation, control
algorithms, etc. do not have to be simulated as they are embedded inside the
On-board computer Software, which allows to command, control, and monitor the
system during the simulation.

Figure 3.1: Overview of the Orbital Simulator

For the reasons explained, the main blocks which have been necessary to build are
the following:
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• Space Environment which includes a model for the Sun and Earth location,
Earth Magnetic field and an orbit propagator, to determine the evolution of
position and velocity vectors of the spacecraft along its orbit;

• Disturbances which includes all the external forces applied to the spacecraft
along its orbit, to be evaluated and taken into consideration for the study of
its Dynamic;

• Satellite State which includes Attitude Dynamics and Kinematics, involving
both the external torques calculated and the ones applied by the actuators to
correct the attitude as desired;

• Actuator Models which includes attitude controllers such as Reaction Wheels
and Thrusters;

• Sensor Models which include mainly attitude sensors, such as digital and
analog sun sensors;

• Transmission blocks which include sending and receiving tools, using Serial
Interface.

The sample rate for the plant is continuous and the solver will make the step size
as small as required for the model to fulfill the maximum tolerance of the model,
which is 1E-12.

3.2.1 Plant
SPACE ENVIRONMENT
The Space Environment block designed contains, as already introduced, a time
propagator, useful to update the Julian date; an orbit propagator, implementing
the SGP4 algorithm, for the evolution in time of the state of the satellite into
its orbit; a Sun position and Earth shadow model, determining the normalized
position of the Sun and whether the satellite is under sunlight; and a magnetic
field model, which estimates a magnetic field vector via IGRF model.

Time propagator
To update the Julian date for the simulation it has been enough to simply add to
the Julian date of the starting date (i.e. 22nd of September 2021, the same date
used in the former simulator), each running second, represented by a digital clock
block, divided by the number of seconds in a day. In this way, it is possible to get
the updated value and provide it as an output useful for software operations.

55



Software Development and Implementation

Figure 3.2: Time Propagator

Orbit Propagator
The most important block of the Environment subsystem is surely the propagator
one because it allows to determine for the whole simulation time the current position
and velocity vectors of the satellite along the orbit.
Several methods could be used, which take into consideration more or less factors,
disturbances, perturbations, and in the end differ for the complexity and the accu-
racy that allow to achieve; in the case presented, in particular, the criteria followed
for the choice has been to keep coherence with the project taken as a reference, to
be able to compare the results of the simulation among these two more validly and
loyally.
For this reason, as it was used for the SmallSat version of the project, the SGP4
model has been chosen: the Simplified General Perturbations model is a mathe-
matical model used to calculate orbital state vectors of satellites and space debris
relative to the Earth-centered inertial coordinate system; this model predict the
effect of perturbations caused by the Earth’s shape, drag, radiation and gravitation
effects from other bodies, such as the sun and the moon and can be applied to
near-earth objects with an orbital period of less than 225 minutes. In general,
the model was developed by Ken Cranford in 1970, obtained by simplification
of the more extensive analytical theory of Lane and Cranford, which uses the
solution of Brouwer, for its gravitational model and a power density function for
its atmospheric model. To go more in-depth into the development of this theory
these are some of the references to follow: [30] and [31].
To implement this model, a code developed by professor Meysam Mahooti(2023)
([17]) has been used, inside a Matlab function block, which takes as input the
satellite data and the time since the epoch: the satellite data are provided via
a Two-line element format file, which is a data format encoding a list of orbital
elements of an Earth-orbiting object for a given point in time, the so-called epoch;
the second input is the time since the epoch, as a reference, at which it is requested
to estimate the state of the satellite.
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The TLE used as an input depends on the scenario chosen to be simulated, i.e. for
the Space Tug scenario, referring to Spaceflight Sherpa FX-2, it is the following:
1 48958U 21059CH 21264.60415120 .00000642 00000-0 38926-4 0 9999
2 48958 97.5233 32.3239 0016080 313.6609 46.3289 15.14014873 13280
From this file, it is possible to retrieve the epoch, which in that particular case is
2021-Sep-21 14:29:58.6637 UTC: knowing the epoch and the desired starting date
and time of the simulation, it is easy to determine the time since epoch to provide
to the model, which in minutes is around 1290.7.
As already mentioned, the outputs of the propagator model are the state vectors,
representing the position and velocity at this particular time frame considered, in
TEME, or True Equator Mean Equinox, reference frame, an Earth-centered inertial
coordinate frame, where the origin is placed at the center of the mass of Earth and
the coordinate frame is fixed with respect to the stars.

Figure 3.3: SGP4 Propagator

Since the TEME is an inertial frame but not the most used one, it has been
useful also to convert the state vectors into ECI (Earth Centered Inertial) or ICRF
(International Celestial Reference System, the current standard celestial reference
system adopted by the International Astronomical Union.
For doing that conversion, it has been necessary, in a dedicated subsystem, to
consider the Earth orbital parameters and calculate the precession and nutation
contributions accordingly; after that, rotate the current vectors into the desired
reference frame.
In this way there have been obtained the state vectors both with respect to TEME
and ECI frame, to be used according to the application.
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Figure 3.4: TEME to ECI reference Frame Conversion

Sun Position Model
For the determination of the position of the Sun, with respect to the Earth, two
approaches could be used:

• analytical one: using proper equations to determine an approximate value,
first in the ecliptic coordinate system and then converting it into equatorial
and horizontal ones, for the observer’s local time and location;

• Planetary Ephemeris block, embedded in Simulink toolbox, which uses Cheby-
shev coefficients to implement the position and velocity of the target object
relative to the specified center object for a given Julian Date, taken as the
only input of the block.
For the use of this resource, besides the Julian Date of interest, it is necessary
to specify even the Target parameter or the astronomical object for which we
want to know the position and the Center parameter, the astronomical object
taken as the reference.
The output provided is in the International Celestial Reference Frame.

Both the methods have been implemented and the results have been compared,
noticing that the Planetary Ephemeris model provides values closer to the ones
obtained in the previous project, so this approach has been chosen for the simulator.
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Figure 3.5: Sun model

Eclipse Shadow Model
To determine whether the satellite is under sunlight or in eclipse along its orbit, it
is necessary to build a block that models the Earth Shadow, in order to calculate
the fraction of the solar disk that is visible from the inertial positions, provided as
an input and previously calculated in the Orbit Propagator block.
For this purpose, it has been used the embedded block of Simulink, called the
Eclipse Shadow Model, which considers the assumption of spherical shape for both
occulted bodies and the Sun.
There are two shadow models available to choose from: a dual cone model and
a cylindrical one. The first one differentiates between partial, annular and total
eclipse, identified by specific numbers, which means the spacecraft could be in
sunlight (1), penumbra, antumbra (0 to 1) or umbra(0); with that division, the
eclipse is partial in penumbra, annular in antumbra, and total in umbra.
The second model is the cylindrical one, which differentiates only between total
eclipse (umbra, 0) and full sunlight (1).
For the application presented, contrary to the reference project, it has been chosen
to adopt the dual cone model, in order to exploit the different modes of the Sun
Light Simulator, that has been used for the Hardware in the Loop Simulation, and
will be discussed more in-depth in the dedicated chapter 5.2.
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Figure 3.6: Eclipse Shadow model

Earth Magnetic Field
The last thing remaining for the Space environment is to get measurements of the
Earth’s Magnetic Field varying with the position of the satellite and time. For this
aim, the International Geomagnetic Reference Field block of Simulink has been
used, which calculates the Earth Magnetic Field and secular variation using the
selected IGRF generation, at a particular time and position, provided as an input.
For the time, a reference date has to be introduced, directly inside the block, and
this has been chosen to be the starting date of the simulation; for the position
instead, as Longitude Latitude Altitude coordinates are requested, it is necessary
to convert before the inertial position, in ECI frame, into LLA and then provide
the resulting vector to the block.

Figure 3.7: International Geomagnetic Reference Field model
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The main limits of this block are related to the applicability area, valid between
the heights of -1000 m and 5.6 Earth radii, and the validity in time, because the
model used, IGRF-13, is valid until 2025. Nevertheless, for the application needed,
it has been a good and quite accurate choice.
Two considerations are important to point out about the outputs obtained for the
Magnetic Field vector: these are in nanoTesla unit and in the north-east-down, or
NED, reference frame, so a further step has been necessary to get consistent results.
First converting the output units from nanoTesla to Tesla and then changing the
reference frame from NED to ECI, inertial, and body. Body measurements are
useful to calculate the torque disturbance, relative to the magnetic contribution, in
the body frame.
To do this reference frame conversion, Direction Cosine Matrixes have been used:
first the one from NED to ECEF, then the one from ECEF to ECI in the inertial
case, only the one from NED to Body for the body frame case.

DISTURBANCES
Before entering into the analysis of the dynamics of the satellite, this block is
necessary to determine all the main disturbance torques that affect the attitude
of the satellite, along its orbit. No forces have been evaluated separately because
they affect only the evolution of the position on the orbit, and not properly the
attitude; therefore for the application developed there have been necessary just the
torques involved.
The main contributions taken into consideration are the following:

• gravity gradient torque;

• atmospheric drag torque;

• solar radiation torque;

• residual magnetic dipole torque.

The procedure followed to determine them has been guided by the work done in
[14], refer to that for further details.
Gravity Gradient Torque
The origin of that disturbance arises from the fact that the satellite is travelling in
a non-uniform central force field resulting in slightly different attraction of gravity
across the satellite.
The model used to calculate it is based on the two-body approximation, i.e. Earth
and spacecraft, with the Earth having a spherically symmetric mass distribution
and the spacecraft assumed to be rigid and small compared to its distance from
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the center of the Earth.
The general expression is the following:

TGG = 3 · ω2
0 · [ob

3 × Ib · o3] (3.1)

in which o3 represents the local vertical, third unit base vector of the orbital frame,
in the body frame. This detail implies that the gravity gradient effect is a function
of the attitude and that no torque is exerted about the local vertical direction.
This torque is often expressed in the principal reference system in which some of
the terms related to the products of inertia in the inertia tensor vanish.
It is possible to write the three components of the torque in terms of 3-2-1 Euler
angles, which result in the following form:

TGG,1 = 3µ

2R3 · (I3 − I2) · sin(2ϕ)cos(θ)2 (3.2)

TGG,2 = 3µ

2R3 · (I3 − I1) · sin(2θ)cos(ϕ) (3.3)

TGG,3 = 3µ

2R3 · (I1 − I2) · sin(2θ)sin(θ) (3.4)

Looking at the elements needed to calculate the components of the vector, it is
evident that, besides the constants, the only inputs necessary are the inertia tensor
of the satellite and the current orientation, in terms of Euler angles.

Atmospheric Drag Torque
The reason why this disturbance has to be considered is because satellites, at LEO
altitudes, experience forces and torques which are a result of aerodynamic drag,
since a spacecraft travels along the outer fringe of the Earth’s atmosphere where
the atmospheric density ρ is greater than zero. Relatively to the density profile to
be chosen, there is more than one available but usually the one recommended by
the ECSS standard atmosphere model, MSISE-90, is preferred.
This contribution could be evaluated in different ways: the simplest model consists
of a scalar evaluation of the aerodynamic drag force imposed on the center of
pressure with an offset from the center of gravity, ignoring the fact that the flow
regime at LEO altitudes is far from continuous and considering only normal pressure
forces; for simulation purposes, instead, it is preferable to have a model which
evaluates the secular aerodynamic torque as a vector, expressed in the following
way:

Ta = 1
2cD · ρ · v2 ·

nØ
k=1

⃗rs,k × (nT
k · V ) · V · Ak (3.5)

in which n is equal to 6 and is the number of orthonormal surfaces into which the
convex body shape in exam, a cube, is divided. Therefore the total aerodynamic

62



Software Development and Implementation

torque is obtained by summation of the individual torque contributions.
Ak is the area of the k-th surface, V is the normalized velocity vector in the body
frame, nk is the normal vector of the k-th surface and rs,k is the vector from the
CG to the area center of the k-th surface.
The coefficient of drag cD is predicted via the Newtonian slipstream theory of
rarefied gas dynamics, i.e. exactly 2.0 for a spherically shaped body, slightly higher
for a cubic body; in the exam case, a value of 2.2 has been assumed.
For more realistic results, it could have been also possible to evaluate the torque
considering the velocity relative to the Earth’s atmosphere, vECEF , assuming a
static, Earth-fixed atmosphere.
To conclude, besides the constants, all the input required are the velocity vector,
the orientation of the spacecraft in time and the areas of the different exposed
surfaces.
In the table 3.1 the constant parameters used are reported:

Parameter Value Unit
Air density 3.2586e-12 kg m3

Aerodynamic coefficient 2.5 -
Center of aerodynamic pressure arm 0.02 m

Table 3.1: Atmospheric Drag parameters

Solar Radiation Pressure Torque
Among the contributions to consider, the one from the Sun is not negligible at all:
a spacecraft in LEO receives electromagnetic radiation and the Sun is the hugest
source. These radiations exert normal forces on space objects, known as solar
radiation pressure: this pressure has its origin in photonic momentum exchange
and causes a cyclic disturbance torque which may be modeled in a similar form as
it has been done for the aerodynamic pressure torque:

Tsp = S0

c
(1 + r) ·

nØ
k=1

⃗rs,k × (nT
k · S) · S · Ak (3.6)

in which again the body has been divided into six normalized surfaces.
The solar constant S0 is defined as the normal energy flux onto a unit area per unit
time, outside of the atmosphere, at 1 AU distance to the sun; although it could be
considered as a constant, it varies by approximately 3.4 % during a year, due to
the eccentricity of the Earth’s orbit about the Sun, from 1316 to 1428 W

m2 , with the
nominal value at 1371 W

m2 .
As it is possible to see from the (1 + r) term, the values are strongly dependent on
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the type of surface illuminated; typical values for r are between 0.4 and 0.7, with 0
representing a perfect absorbing surface and 1 a perfect reflecting one.
The other term’s items represent: S the normalized sun vector in the body frame,
Ak, nk, rs,k, as for the previous disturbance, respectively the area, the normal vector
and the vector from CG to the area center of the k-th surface.
Therefore, the only external inputs to provide in that case are again the area of the
surfaces illuminated, the actual orientation of the spacecraft and the Sun vector,
already given normalized from the Space Environment block, properly connected
from ECI frame to the Body one.
It could be interesting also to note that the solar pressure torque is typically a
non-continuous source of disturbance, since the spacecraft may not be exposed
to direct sunlight at all times of the orbit. For that consideration, a reasonable
simplification for LEO satellites is to set the contributions to zero if the spacecraft
is in umbra and consider this disturbance only otherwise.
In the table 3.2 the constant parameters used are reported:

Parameter Value Unit
Reflectance Factor 0.263 -
Solar radiation pressure arm 0.02 m

Table 3.2: Solar radiation parameters

Residual Magnetic Dipole Torque
The last torque taken into account is the one generated by the interaction with the
magnetic field of the Earth. Any residual magnetic field inherent to the spacecraft,
whether generated by a magnetized material or by an electrical current system, will
interact with the geomagnetic field to produce a mechanical torque Tm. Magnetic
fields may be represented by equipotential field lines of a magnetic potential field;
local magnetic flux density vectors are oriented tangentially to these field lines.
The strength of a magnetic field is governed by the magnetic dipole of the body
generating the field.
The simplest model of the geomagnetic field is that of an ideal dipole and is the
one usually used for these applications.
Expressing the net residual magnetic field in terms of residual dipole D, the
disturbance torque imposed on the spacecraft’s structure can be conservatively and
simply written as

Tm = D · B (3.7)

with B representing the geomagnetic flux density.
In that case, the inputs to provide are both the estimation of the residual dipole
of the spacecraft, in [Am2] and the Earth Magnetic field vector in body frame,

64



Software Development and Implementation

determined in the Space Environment block.
In the table 3.3 the constant parameter used is reported:

Parameter Value Unit
SC residual dipole moment (D) 0.08 Am2

Table 3.3: Residual magnetic dipole parameters

SATELLITE STATE
The Satellite State block is the core of the simulator, as it takes as input all
the information previously calculated in the other blocks, Space environment and
Disturbances, to provide as an output the evolution of the satellite’s state, only in
terms of attitude, which includes orientation, current value of the attitude, and
angular velocity, how the attitude is varying in time.
Therefore, in the application presented, only Attitude Dynamics has been considered,
as the focus of the project is the Attitude Determination and Control System,
without focusing on the orbit itself.
For studying the dynamics, as also seen in the other blocks explained, there could
be chosen both the analytical approach, implementing "manually" the equations of
orbital dynamics, and the embedded approach, using directly the block available
in Simulink, which models the rotational dynamics of spacecraft using numerical
integration. Again, it has been preferred to use the embedded block, as it allows to
get results with higher accuracy.

Figure 3.8: Satellite State model

As already mentioned, this block computes the attitude and angular velocity
of the spacecraft introduced over time, using the provided position and velocity
states. Therefore, first of all, it has been necessary to introduce the inertial vectors
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of the current position and velocity of the satellite, calculated for each time frame
of the simulation and then also the torque disturbances in body frame have to be
introduced externally. After that, inside the block, it is requested to introduce all
the relevant data regarding the reference time and the satellite itself: from the
mass type and value, the inertia tensor, the attitude representation and relative
starting values.
The outputs of the block, according to the choices taken, are the quaternions body
to inertial frame and the angular velocity vector body to inertial frame, in rad

s
.

These values are fundamental, for the controller algorithms, to understand whether
the actual state is close or not to the desired value and from that information, to
elaborate the control law to apply, in order to modify and correct them.
In the table 3.4 the satellite’s data used are reported:

Parameter Value Unit
Mass 150 kg
Dimensions 0.6 × 0.6 × 0.6 m3

Inertia

 70.8919 −0.1589 −0.2727
−0.1589 70.8590 −0.3060
−0.2727 −0.3060 25.6712

 kg · m2

Initial quaternion
è
0 0 0 1

é
-

Initial angular velocity
è
0.01 0.01 0.01 0.01

é
rad/s

Table 3.4: Satellites Data

3.2.2 Simulated components
As discussed in the introduction of the section, models to simulate actuators and
sensors physically missing in the bench have to be implemented.
Simulated Sensors
Starting with the sensor ones, for the particular simulation chosen (refer to section
5.2.5), only models for fine and analog sun sensors have to be developed, as the
other attitude and rate sensors needed are available on the bench and the magnetic
field sensor is not required for the specific scenario simulated.
The models used for the two typologies of sun sensors are almost the same: they
both take as input the sun position in the body frame, computed in the Space
Environment block, but they provide different outputs. The fine sun sensors provide
both the 3D measurements for sun position, in the body frame, and the intensity
of the light detected; the analog sun sensors, instead, as photodiodes, provide only
the intensity measurements of the sunlight.
The process used to elaborate the input position is based on the following steps:
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• First of all, a conversion from body to sensor frame is needed, via matrix
multiplication between the sun vector and proper rotation matrix, in order to
manage the measurement in the device relative system of reference.

• Then, with measurements in the sensor frame, it is possible, providing in input
also the field of view of the sensors used, to check if the sunbeam detected is
inside the FoV of the sensor.

• Once checked the measurement, noise and resolution factor need to be added.

• At the end, corrected measurements are converted again in the body frame,
before being sent to the hardware.

Figure 3.9: Fine Sun Sensor Model

Parameter Value Unit
FOV 120 deg

RbsX

0 0 −1
0 1 0
1 0 0

 -

RbsY

1 0 0
0 0 −1
0 1 0

 -

RbsZ

0 0 −1
0 1 0
1 0 0

 -

Bias [0.05 0.05 0.05] deg
Resolution 0 -
Noise Standard Deviation 1√

3 · [0.1 0.1 0.1] deg

Table 3.5: FSS parameters
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For the analog sun sensor, the difference is that only the intensity is computed
and processed, from the starting sun position.

Figure 3.10: Coarse Sun Sensor Model

Parameter Value Unit
FOV 180 deg

RbsX

0 0 1
0 1 0
1 0 0

 -

RbsY

1 0 0
0 0 1
0 1 0

 -

RbsZ

1 0 0
0 1 0
0 0 1

 -

Bias [0.05 0.05 0.05] µA
Resolution 3.7876e−7 -
Noise Standard Deviation 1√

3 · [0.10.10.1] µA

Table 3.6: FSS parameters
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Simulated Actuators
For the same reason already explained for sensors, even models to simulate attitude
controllers have been implemented and in particular the Reaction Control System
(RCS) is needed for the scenario chosen 5.2.5.
Two main steps are necessary to convert the commanded forces, received from the
software, into control torques to be applied to the satellite to control its attitude
over time:

• a block, shown in figure 3.11 which implements a Pulsed Width Pulsed
Frequency (PWPF) Modulator, to convert the floating point values output by
the controller to the pulses that the thruster can realize.

Figure 3.11: PWPF Modulator model

• the actual thruster model, referred to the discussion presented in [32], which
converts the input forces provided into the equivalent torques generated on
the satellite, using an Allocation Matrix, properly defined according to the
position of the thrusters.

Figure 3.12: RCS Model
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The distribution matrix used for the torque allocation is the following:

DM =


−0.0885 0.0068 0.1062
0.0085 0.1062 0.0068

−0.0085 −0.0068 −0.1062
0.0085 −0.1062 −0.0068

 (3.8)

3.2.3 Communication
The last remaining blocks to be discussed are the data transmission ones, which
allow to send and receive, each second of the simulation, the requested data to the
hardware, from the Simulator, and vice-versa.
Serial Send
Starting from the sending process, the need is to provide data from the simulated
sensor models to the OBC hardware, where they will be processed in the ADCS
software.
For this purpose, the outputs of the Sensor models block, in float format, have to
first be properly delayed, then converted into a compatible data format, packed
and sent:

• Tapped Delay block is used to delay each signal a certain amount of sample
periods and provide as output the delayed version of the signal. The most
important of this block to be set is the Sample Time, which allows to choose
the entity of the delay and the number of delays.

• For the conversion action the Data Type Conversion block is efficient and it
requires to set only the output data type, which is single for the particular
case analyzed.

• Once delayed and converted, data need to be stored using Byte Pack block,
which allows to pack easily input data to a single output vector of the required
type. Therefore, the correct input and output port data types have to be
configured.

The output data packet can then be provided to the Serial Send block, in which, for
the specific application, only the correct communication port needs to be specified,
as no headers or terminators are used.
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Figure 3.13: Send Data

Serial Receive
To receive the controlled forces, computed by the ADCS software, embedded in the
OBC hardware, which are required to properly control the satellite attitude, the
Serial Receive block is used and the process to follow is the opposite with respect
to the sending one.
To use correctly the Serial Receive block, the following parameters need to be
configured:

• communication port (in the application presented, the same port is used to
send and receive data);

• the data type of the packet received (uint32);

• the data size of the packet received, specifying rows and columns of the arrays
([1 4]);

• Block sample time, to set the frequency of the request of data from the port
selected (0.05 s, according to the simulation sample time).

It could happen that data retrieved with this block have flipped bytes, therefore
Byte Reversal block may be needed in order to receive the expected data values.
The format of the packet received is not the one expected in the Actuator models
as input, so a proper function to convert the data type is required: for this purpose,
a Matlab function has been implemented to take as inputs the uint32 data and
convert them into ’single’ format, to be used then as floating values.
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Figure 3.14: Data Receive
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Chapter 4

Modular Avionics Test
Bench Design and Setup

The design of the test bench used for the work, as presented in [11], has been
developed for the relative project, with the main aim to map all the interconnectivity
technologies offered by European suppliers, design the Command and Data Handling
(CDHS) hardware and software to match those technologies and test the design
with the supplier’s components, providing a final product that is 80 % compatible
with the EU CubeSat subsystem suppliers.
In this chapter, it is going to be discussed briefly how the design of the bench has
been built and how the components have been selected and integrated.

4.1 Requirements and design
Each FlatSat developed in the project has been designed to host the subsystems
required for an operational satellite, which essentially are:

• attitude determination;

• attitude control;

• Telecommunication, with optional antenna;

• Power;

• Rate Determination;

• Optional Payload.
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For the project presented, only the subsystems related to the attitude and rate
determination and control have been kept to test the modular ADC system, with the
addition of the Electrical Power System for creating a more realistic and complete
setup. Furthermore, it is important to know that each FlatSat uses a PCB to
connect all its subsystems together: this board is designed to be as modular as
possible but there is a customization for each chain produced. The general design is
well represented in 1.10: each bench has 9 PC104 form factor slots for subsystems,
with PC104 connectors; it can be powered on externally, either with a power line
which goes to the EPS on its input power lines, or with 5 V and 3.3 V power lines;
it also has a JTAG connector to communicate directly with the MA61C board from
a computer. JTAG, or Joint Test Action Group, is a standardized interface and
protocol used in the electronics industry for testing and programming integrated
circuits (ICs) on printed circuit boards (PCBs) and other electronic devices. For
the case of interest, this kind of connector has been very worthwhile during the
testing and debugging phases.

4.2 Selection of hardware components
The choice of the components to be connected to the bench has been made taking
into consideration the ones present in the previous ADCS project: as the current
work represents an extension of the SmallSat version already designed and tested,
the components involved have to be as close as possible to the starting ones, in
terms of performance.
According to that purpose, the main criteria of selection has been the performance
that each component can ensure:

• For Sensors:

– Sun sensor: the focus has been on the field of view, sensor accuracy and
precision;

– Star Tracker: the most important parameters considered are the cross-
boresight and around-boresight, besides the update rate limitations;

– Magnetometer: sensitivity and range of measurement have guided the
choice;

– Rate Sensor: the reference parameters have been rate estimation accuracy,
bias knowledge and stability, and measurement range.

• For Actuators:

– Reaction wheel: the selection has been made with respect to torque
capability and momentum capacity;
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– Thruster: nominal thrust and specific impulse have led the choice criteria.

For two components in particular, involved in the starting setup, any correspondent
device has been selected for the integration in the test bench:

• GPS among sensors, as it has been chosen to replace the relative measurements
with the ones provided by the orbital propagator simulated.

• MagneTorquers among actuators, as it has been considered sufficient to pro-
vide the voltage outputs, computed by the software, without having proper
hardware to manage.

In figure 4.1 the list of all the components selected is presented, coupled with the
reference ones from the SmallSat project.

Figure 4.1: Components comparison between the projects

In the following sections, a brief description of each chosen subsystem is provided,
to better understand the devices involved in the simulation.
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Coarse Sun Sensor - Grove Sunlight Sensor Si1551

Figure 4.2: Coarse Sun Sensor [33]

The Si1551, from Grove data sheet [33], is an ambient light sensor, proximity,
and gesture detector with I2C digital interface and programmable event interrupt
output. The sensor could offer adequate performance under a wide dynamic range
and a variety of light sources, including direct sunlight and is able to support
multi-axis proximity motion detection.
The best resolution possible, as an ambient light sensor, is less than 100 mlx,
allowing even operation under dark glass, and it ensures a dynamic range possible
up to 128 klx, across two ADC range settings.
The supply voltage could vary between 1.62 and 3.6 V.

Fine Sun Sensor - NanoSSOC-D60

Figure 4.3: Fine Sun Sensor

Nano Sun Sensor, from SOLARMEMS Technology datasheet [34], is a two-axis
low cost sun sensor for high accurate sun-tracking and attitude determination. The
device measures the incident angle of a sun ray in both azimuth and elevation,
providing an accurate angle reading.
It could communicate via UART, I2C or SPI but SPI interface version has been
chosen for the application.
The power supply voltage to be provided is 3.3V and the main performances are
the following:

• wide Field of View: ±60◦;
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• High accuracy in FoV: 0.5◦;

• Precision: 0.1◦.

Star Tracker - Sagitta Star Tracker

Figure 4.4: Star Tracker [35]

The Sagitta Star Tracker, from ArcSec datasheet [35], is a high accuracy, high
robustness and easy interfacing device that offers arc second range pointing accuracy
for CubeSats and large satellites.
It communicates via an RS485 interface and it needs a supply voltage of 5 V.
It provides the following main performances:

• cross-boresight: 2′′(1σ);

• around-boresight: 10′′(1σ);

• Tracks up to 32 stars;

• Update rate of 5 Hz.
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Rate Sensor - STIM210

Figure 4.5: Rate Sensor - SAFRAN [36]

STIM210, from SAFRAN datasheet [36], is a small, tactical grade, affordable,
robust and reliable, ultra-high performance MEMS gyro module with up to 3 axes.
For the application presented, a 3-axis device is used.
It communicates via an RS422 interface and needs a supply voltage of 5 V. The
main performances provided are:

• Range of measurement: ±400◦

s
;

• Bias instability: 0.3◦

h
;

• Sampling Frequency: 2000 samples per second.

Rate Sensor - N-Series Gyroscope

Figure 4.6: Rate Sensor - InnaLabs [37]

N-series Gyroscope, from InnaLabs datasheet [37], is an industrial and tactical
grade device which delivers less than 10◦

hr
over the full temperature range. For the

application presented, a 2 axes device is used.
It communicates via an RS422 interface and needs a supply voltage of 12 V.

78



Modular Avionics Test Bench Design and Setup

The main performances provided are:

• In-run Bias Stability (Room temperature, 1σ): less than 0.22 deg/hr;

• Bias stability (full temperature range, 1σ): less than 10 deg/hr;

• Angular Random Walk: 0.01 deg/
√

hr.

Reaction Wheel - WHL50

Figure 4.7: Reaction Wheel [38]

WHL-50, from Veoware datasheet [38], is a fully integrated reaction wheel unit
for high-performance satellite attitude control for Micro and Nano-satellite missions.
In particular, it is an integrated 3-phase out runner Permanent magnet synchronous
motor (PMSM).
Each wheel has a CAN bus interface (or RS422) with CSP making them accessible
to the satellite communication bus.
The power supply voltage required is 12-16 V unregulated DC.
The main performances are:

• max nominal RPM: 10000;

• Momentum of 42 mNms at maximum rate;

• Max Torque higher than 5 mNm.
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Thruster - IFM Nano

Figure 4.8: Reaction Control System [39]

IFM NANO thruster, by Enpulsion datasheet [39], belongs to the electrical
propulsion system class, for micro and nanosatellite and provides a wide range of
thrust, excellent throttability, and a high specific impulse, allowing to significantly
increase the mission range of such satellites in low orbits.
For the application analyzed, the configuration chosen is based on an RS485
communication protocol and 12 V of supply voltage.
The core specifications are:

• Thrust level between 1 µN to 1 mN;

• Specific Impulse up to 5000 s;

• Capacity of 10 kNs.

Magnetometer - LIS3MDL

Figure 4.9: Magnetometer [40]

The LIS3MDL, from Adafruit datasheet [40], is an ultra-low-power high-performance
three-axis magnetic sensor. It is characterized by a wide supply voltage, between
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1.9 V and 3.6 V and by user-selectable magnetic full scales, between ±4 and ±16
gauss (the equivalent of hundreds of µTesla).
The sensor includes an I2C serial bus interface that supports standard and fast
modes.

EPS - PicoEPS

Figure 4.10: Electrical Power Supply [41]

PicoEPS, from DHV datasheet [41], is designed to be integrated into different
CubeSats platforms and represents the interface that manages the power of the
solar panel inputs and the battery charge. This module is also responsible for the
generation of 3.3V,5V,12V and VBAT power buses including the switched power
lines.
The unit chosen unifies a Power Module and a Battery Module in one single board,
optimizing mass and volume for large payloads integrated in the platform.
It operates via an I2C interface and in the particular case of exam, it is powered
via an external power supply with 12 V as voltage.

4.3 Integration and Assembly
Once the components have been properly selected, the next step is to integrate
them into the test bench presented.
For each device, it is possible to use one of the available spots on the bench,
which has a PC104 form factor, to set up a proper connection with the On Board
Computer, located in the middle spot of the test bench.
Some of the components are designed with PC104 form factor, therefore they do not
require a dedicated harness but they can be simply plugged in using the connector
integrated on the bench (figure 4.12).
For the other components, which are not designed with that form factor, a dedicated
harness has to be prepared, according to the interface used, to connect pins on the
device itself with specific pins on the connector available (figure 4.11).
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To understand how to build the connection, two reference documents have to be
followed:

• Interface Control Document for each device to understand the location of
the pinouts to be connected;

• MA61C Cubesat Hardware Design document, to identify which pins of the
board, and consequently on each PC104 connector of the bench, are involved
for the particular interface used for the communication.

Following that procedure, the connections with all the devices selected could be
installed and the test bench setup can be fully integrated.
In the pictures below, some examples of connections are displayed.

(a) Sagitta Star Tracker connection (b) IFM Nano connection

Figure 4.11: Example of dedicated Connections
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(a) MA61C PC104 Form Factor (b) PicoEPS connection

Figure 4.12: Example of PC104 form factor Connections

Besides the connections between the bench and devices, two other external
connections have to be provided and are present in the schematics:

• connection with an external power supply, in figure 4.13, which delivers the
correct amount of power requested for the full operation of the bench. This
connection can be made in two different ways:

– by connecting the power supply directly with the bench, via its dedicated
ports;

– by connecting the power supply to the EPS, via its dedicated power lines,
which then delivers by itself the requested power to all the other devices.

In the picture, the first method is presented.

Figure 4.13: Power Supply [42]

83



Modular Avionics Test Bench Design and Setup

• the second connection displayed is the one with the external PC, via a proper
JTAG connector (in figure 4.14), which enables a direct communication channel
with the laptop, for debugging and controlling operations via graphical user
interfaces or terminals.

Figure 4.14: Jtag connector

Besides these two external connections, a third one is present and essential, even if
not shown explicitly in the diagram: it is the one that allows the exchange of data
between the Simulink Simulator model, in the computer, and the OBC hardware,
based on a USB to UART TTL interface, displayed in figure 4.15. This device has
one terminal (USB) connected to the driver manager unit of the computer and the
other terminal connected directly to the bench, via dedicated pinouts of UART
TTL interface on one of the PC104 form factor connectors.

Figure 4.15: UART connection between Simulator model and Hardware
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The physical hardware setup of the test bench is finally reported in 4.16.

(a) Test bench setup front view (b) Test bench setup top view

Figure 4.16: Test bench Setup
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Chapter 5

Testing Process Description

In this chapter, the focus is on the testing campaign preparation, the description
of all the tools involved, and the explanation of the reasons that have carried to
their choice.
A section will be dedicated also to the description of the assumptions taken
into consideration for making the testing phase easier to execute and the related
limitations that have been introduced with this approach.
The final discussion proposed is to explain how the final and complete test on the
setup prepared will be executed, before presenting the results in the dedicated
section of the next chapter.

5.1 Test Scenarios
First of all, it is important to define which are mission scenarios taken into
consideration for the study and which is the one chosen for the testing phase
performed.
The set of starting scenarios has been inherited, as done for the components, from
the one used in the reference project. For that work, there have been considered
three different scenarios:

• Telecommunication scenario;

• Earth Observation scenario;

• Space Tugs scenario.

5.1.1 TeleCommunication Scenario
In the TC scenario, the main target is to point the spacecraft, which has a relatively
higher altitude compared to the LEO (around 1200 km), and the mission payload,
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which is the antenna in this application, constantly points at the Earth, similar to
the missions in communication satellites.
The main sensors, whose telemetry is required for the attitude determination and
control system are:

• Stellar Gyroscope;

• Magnetometer;

• Sun Sensors.

The main actuators needed are:

• Reaction Wheels;

• Magnetorquers.

The required pointing performance for this mission is less than 1 degree.
The mass of the satellite involved is expected to be 150 kg, with roughly 1 m ×
1 m × 1.3 m in size (ONEWEB 0102 satellite is taken as a model).
In figure 5.3 there is displayed the relationship between ADCS software, OBC
software and attitude determination and control sensors and actuators.

(a) TC scenario original version [9] (b) TC scenario adapted

Figure 5.1: TC scenario Block Diagram
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5.1.2 Earth Observation Scenario
In the Earth Observation scenario, the main task is to perform imaging in a certain
region of the World and download the imaging data to the ground station. Since
the target is much more sensitive, the pointing performance for this application is
set to 0.05 degrees: this requirement affects the choice of the components involved.
The main sensors, whose telemetry is required for the attitude determination and
control system are:

• Star Tracker;

• Magnetometer;

• Sun Sensors;

• GPS.

The main actuators needed are:

• Reaction Wheels;

• Magnetorquers.

The mass of the satellite involved is expected to be 60 kg, with roughly 40 cm ×
46 cm × 84 cm in size (BlackSky-1 pathfinder satellite is taken as a model).
In figure 5.3 there is displayed the relationship between ADCS software, OBC
software and attitude determination and control sensors and actuators.

(a) EO scenario original version [9] (b) EO scenario adapted

Figure 5.2: EO scenario Block Diagram

5.1.3 Space Tug Scenario
The goal of this reference mission is to transfer the target spacecraft of tug mission
to another desired altitude or orbit. Since this mission includes both in plane
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and out of plane transfers, a reaction control system with thrusters is necessary.
The main sensors, whose telemetry is required for the attitude determination and
control system are:

• Star Tracker;

• Sun Sensors;

• Fiber-Optic Gyroscope.

The main actuators needed are:

• Thrusters, at least 4 to ensure 3-axis body control.

The pointing performance for this mission is not as strict as for the others, as there
is no imaging activities: therefore 0.1 degrees, for nadir pointing, and 1/2 degrees,
for deployment, are taken as reference values.
The mass of the satellite involved is expected to be 150 kg, with roughly 60 cm ×
60 cm × 60 cm in size (COMET spacecraft is taken as a model).
In figure 5.3 there is displayed the relationship between ADCS software, OBC
software, and attitude determination and control sensors and actuators.

(a) ST scenario original version [9] (b) ST scenario adapted

Figure 5.3: ST scenario Block Diagram

A complete overview of the three scenarios presented, with the components selected
for the current project, is displayed in figure 5.4, with a particular focus on the
different interfaces used.
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Figure 5.4: Interfaces Scheme over the three scenarios

5.2 Simulation methodologies
This section is dedicated to presenting the methods chosen to recreate the correct
conditions for performing the tests, in particular for the space environment simula-
tion.
This step is really important as some real space components, such as gyroscope,
sun sensor, star tracker and magnetometer, need external inputs, i.e. rotation,
light, sun, magnetic field, to provide valid data that could be used in the ADCS
software.
For that purpose, it has been necessary to find an efficient way to provide these
external sources, taking into consideration budget and time constraints.

5.2.1 Micro-gravity Simulation - Robotic Arm
As well and clearly discussed in [15], there are several methods to recreate micro-
gravity, such as

• cable suspension

• robotic arms

• air bearings

One of the most used and efficient solutions is based on the use of an air-bearing
type facility which works by exploiting a pressurized airflow to generate a film
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between two corresponding surfaces, acting as a lubricant between them, therefore
reducing friction.
In the case object of study, there has been no availability in space, time and cost
to develop a similar solution, so an easier, cheaper and less efficient one has been
chosen: a robotic arm.
The setup prepared for the microgravity simulation is really simple: the gyroscope
is held and fixed on the top of the arm, in a vertical configuration, as displayed in
figure 5.5. Since the arm it is not designed to hold objects as heavy as the rate
sensor, this configuration has been evaluated as the most stable one to use during
the simulation.
From this position, the rotations needed for the tests are performed, respecting
certain constraints, discussed in section 5.3, again due to stability issues. Any
movement of the arm can be easily programmed and executed by following these
steps:

• First of all, it is necessary to connect the Arduino board integrated at the
basis of the arm, via a USB cable, to a computer. Once connected, open
Arduino IDE and start building the code to rotate the different degrees of
freedom available, according to the desired movement. When the code is ready,
compile and upload it to the board connected in order to be stored. Then
remove the USB connection.

• To see the actual movement coded, it is enough to provide power, via an
external power supply or via batteries, to the arm, by using the power pinouts
available on the support base.
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(a) Robotic arm Setup - Front view (b) Robotic arm Setup - Top view

Figure 5.5: Micro-gravity Simulation

5.2.2 Sun Simulation - Torch Light
To replicate, even if only partially, the solar radiation characterizing the satellite’s
orbit, an adequate and specific source of light is necessary.
In some applications, as the one presented in [15], proper Studio Light, i.e. COST
LED Studio Light, with specific features, is used as the light source. Following
that example, in the case under exam, a particular torch light has been procured,
with intensity capability up to the average Sun intensity, corresponding to about
120000 lumens.
As for the choice of the microgravity simulation device, even in that case the solution
proposed is far easier and less precise than the one presented in the reference work
but it has been led by the same constraints mentioned above.
To simulate as loyally as possible the Sunlight, besides intensity, the following
aspects should be taken into consideration:

• spectral matching;

• homogeneity of the space;

• steadiness over time;

• collimation of the light beam over a broad area.
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Since the torch light selected uses an LED source, some features are correctly
matched, such as the flicker-free emission, high efficiency and good match in the
visible part of the solar radiation spectrum; nonetheless, the near absence of
emission in the IR and UV bands represents a limitation related to that choice.
However, this limitation could be considered negligible as most of the COTS sun
sensors are built on CMOS,CCD, PSD whose response is maximum in the visible
and falls rapidly in the IR and UV wavelengths. Instead, photocells can be more
affected by the absence of these band ranges.
The configuration chosen, in figure 5.6, aims to reduce, in the absence of proper
collimation devices, as much as allowed the distance between the source of light
and both the sun sensors, in order to receive and detect the maximum amount of
intensity possible. On the other hand, this condition, for long exposure time, can
induce also overheating on the surfaces of the sensors exposed: for this reason, a
temperature sensor, in figure 5.7, has to be properly integrated close to the light
beam to constantly monitor the air temperature, ensuring that it remains below
the maximum values allowed for the correct operating conditions of the devices.

(a) Torch Light Setup - OFF (b) Torch Light Setup - ON

Figure 5.6: Sun Simulation
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Figure 5.7: Temperature Sensor

5.2.3 Star Simulation - Simulator Mode
The simulation of stars’ environment is the most complex one to take into consid-
eration for its high level of complexity and high cost required, both for hardware
and software involved.
Furthermore, in the application presented, one more and bigger limitation is repre-
sented by the Star Tracker available: the version of the device purchased is not
equipped with optics, as it has been procured for ground testing activities, therefore,
any external inputs could be provided.
The only alternative solution possible for using it in the simulation is by exploiting
the Simulator Mode, available and embedded inside the firmware of the device. By
using this mode, for testing purposes, the star tracker quaternion solution can be
overwritten by a simulated quaternion: a quaternion simulator is properly turned
on, generating a quaternion which overwrites the tracking solution computed; the
simulated quaternion is generated by rotating a previously simulated quaternion
each time interval by a given rotation quaternion. For that purpose the follow-
ing parameters have to be set at the beginning of the simulation, to enable the
Simulator mode:

• time interval between the rotation updates of the simulated quaternion;

• four elements (scalar and vectorial part) of the initial simulated quaternion
which will be rotated each time interval;

• four elements (scalar and vectorial part) of the rotation quaternion by which
the initial quaternion is rotated each time interval.

In this way, it has been possible to retrieve from the device, every second of the
simulation, different values of quaternion, evolving in time, and simulating the
motion of the satellite in space.
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5.2.4 Earth Magnetic Field Simulation - Helmholtz Cage
The last environment to be simulated is the Earth Magnetic field, for magnetometers
measurements and magnetorquers control actions. For this aim, as reported in [15],
generally the most used solution is the Helmholtz Cage: this tool is based on a
circular coil of radius R and N windings, with a current i running through it, at a
distance x from the center, which generates a magnetic field B determined in the
following way:

B = µ0 i N R2

2 (x2 + R2) 3
2

(5.1)

This structure represents a way to create a uniform and controllable magnetic field
in a certain volume.
The inspiring project in [43] has been taken as a reference for the design of that
tool: the Helmholtz Cage designed, in figure 5.8 is a small 1-axis cage 3D printed,
with the coils made out of two 3D printed parts that are screwed and possibly
glued, together to reduce overhangs.

Figure 5.8: Single-axis Helmholtz Cage Reference Project

To simulate and control fully the Magnetic field needed, the complete setup to
be prepared is composed of the following components:

• 3 orthogonal single-axis cages, represented in the figure, which corresponds to
the x, y and z axes of the reference system, respectively;

• a dedicated magnetometer to control the magnetic field generated;

• a programmable power supply to provide energy to the cage;

• a Coil Drive unit to control properly the waveforms and current provided to
the coils.

According to the setup proposed in [43] the maximum field reached with the cage
should be above 2.1 Gauss with a drive current of 450 mA, which is far enough for
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the simulation needed.
Although the solution proposed would perfectly fit the purpose of the work, the time
required for the structures 3D-printing, the relative assembly and the manufacturing
process of the coil drive units needed has not allowed to realize it early enough to
be implemented and used in the current project.
This missing tool has affected also the scenario that could be chosen for the testing,
presented in the next section.

5.2.5 Scenario Choice
Since all the components needed for the simulation of the three scenarios are
available, the main factor that has limited the choice to only one possibility has
been the availability of the simulation devices. As a consequence, the absence of a
device to simulate the Earth’s magnetic field has excluded the use of magnetometers
in the simulation, therefore both the first, TeleCommunication, and the second,
Earth Observation, scenarios have to be left out and the choice fell on the Space
Tug scenario.
According to the scenario selected, the updated diagram with the relationship
between ADCS software, OBC software and attitude determination and control
sensors and actuators physically integrated in the bench is presented in figure 5.9.
The missing components, with respect to the complete diagram shown in figure
5.3b, which are not present in the physical setup displayed, are properly simulated
via the Simulink model discussed in chapter 3.2.
These are in particular:

• two analog sun sensors;

• two digital sun sensors;

• three thrusters to complete the reaction control system.
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Figure 5.9: Software-Hardware interface of the chosen scenario

5.3 Assumptions and Limitations
Once having described the final scenario and setup chosen for the simulation, it is
important to provide an overview of the assumptions and limitations introduced
with these choices.
The most relevant are listed below:

• The inputs of the simulation, provided by the Simulator explained in chapter
3.2, are not exactly the same as the ones introduced in the previous version
of the project. This starting discrepancy could affect the accuracy of the
comparison of the results. For that reason, an offset of plus/minus 5 % with
respect to the nominal input values is considered acceptable and allows to still
have good outcomes;

• The strategies chosen to simulate the Sun Light, microgravity and star pattern
for the satellite have some limitations to be taken into account:

– for the Sunlight simulation, using the Torch light with 120000 Lumen
intensity capability above mentioned, represents a good way to provide
a huge light intensity but could be not fully reliable as in some of the
cases tested the amount of light provided, at full intensity, has been just
the 95 % of the desired value. This could depend on different factors,
properly related to the tool and the setup used, but it could be considered
acceptable for the level of accuracy that it is aimed.
The other limitation is related to the difficulty in the simulation of the
different phases of the Sun illumination along the orbit, as the instrument
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used has only three relevant modes that could be exploited (high, medium,
low) but these do not provide the same light intensity correspond for
each phase. Medium and low modes are not accurate in simulating the
penumbra, or antumbra, phases of the Eclipse Shadow Model, for each
orbit.
Therefore, this could be considered a valid method to change the illumi-
nation simulated along the orbit but not an accurate one.
The last consideration about the use of that source is related to the
temperature limitation: for the setup chosen, the distance between the
source of light and the sensors is small enough to make necessary the use
of a temperature sensor to monitor the value achieved and avoid to exceed
the design limits guaranteed. In case of temperature limit excess, the
source of light must be turned off and this could affect the measurements
taken during the simulation, in contrast with the data provided by the
simulator.

– for the microgravity simulation, the instrument used and the setup
prepared present more than one limitation to be discussed:

∗ The first one that is important to point out is the limitation in the
sensitivity of rotation achievable with the tool available: by design, the
robotic arm could provide a minimum angle of rotation of plus/minus
1◦, that is almost one order of magnitude higher than the one expected
for the satellite in exam. Nevertheless, this consideration has been
considered acceptable for the application presented, as the rotation
provided is small enough to simulate the space environment desired;

∗ The second consideration is about the limit on the number of stable
configurations, due to a weight capability limitation of the tool, and
degrees of freedom, usable for the setup of the simulation. This affects
the variety of cases and scenarios that is possible to test and also
the completeness of the work but it is a point that could be for sure
improved in further development.

– for the Star simulation, even if the solution implemented was the only
one possible with the device available, adopting a simulated operating
mode does not ensure a realistic evolution of the attitude in time; in
addition, this is not controllable during the simulation: therefore, after
having set the starting parameters at the beginning of the simulation, the
evolution of the quaternions is established and independent from anything
external.

– The last limitation is related to the fact that all these simulation strategies
are not part of the closed-loop, or automated, but manual, therefore user
actions are requested every time to activate or disable them during the
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simulation. This aspect may introduce some time-related inaccuracies that
propagate until the final results, but also not coherent state simulated,
with respect to the one computed in the orbital simulator.

5.4 Tests Execution
Once all the devices involved in the simulation setup and the reference assumptions
have been clarified, it is time to discuss how practically the tests will be executed
and which schemes to follow.
The tests involve basically the Hardware in the Loop simulation, shown in the
block diagram in figure 5.10, which consists mainly of three parts:

• a simulated environment modelized in Simulink, whose aim is to provide the
measurements from the simulated components, the updated values of attitude,
rate and position of the satellite to the OBC hardware, in which is embedded
the ADCS software. It takes as inputs the commanded forces, computed by
the control algorithms implemented in the ADCS software, needed to properly
control the satellite attitude each second of the simulation.

• the Cubesat mADCS board, which includes the OBC hardware and software
and the integrated ADCS software that, using the input provided, computes
all the information required by the user according to the mode simulated.
This module is the core of the tests as it is connected, via the bench, to all
the devices involved, and allows to close the loop properly by providing data
back to the Simulator.

• the external components and devices connected to the core board via the
bench: these include both sensors and actuators but also simulation devices
needed to provide external inputs to the sensors.

The overall physical test setup, including all the main actors described, is represented
in figure 5.11.
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Figure 5.10: Hardware in the Loop Simulation Scheme

Figure 5.11: Final Setup of MATB for the Test

The execution of the tests is based on the following actions:

• First of all, to switch on the simulation devices, i.e. robotic arm and torch
light, connected to the relative components

• Accessing the computer command prompt, entering the GRMON environment
(via the command grmon −ftdi −u), loading the software version to be tested
(using command load followed by the name of the compiled version of the
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software saved in the proper folder, and run it (using simply run command).

• After the software starts, even the inputs from the Simulator have to be
provided; therefore, via the Simulink model window, it is possible to run the
simulation, starting the closed loop of data between the simulator and the
hardware.

• Once all these steps are performed, in the prompt all the information requested
in the software are displayed and the operation of the mode selected can be
evaluated.

5.5 Debug tools and interfaces terminals
In the final section, an overview of the main instruments and tools used for debugging
purposes during the testing phase is provided. First of all, it is important to point
out that debugging tools play a crucial role, particularly in the implementation
and testing phases of space components in a space project, critical to ensuring
that spacecraft systems and components operate reliably and meet their intended
objectives. The question is how debugging tools are used during these phases:

• Identifying and Resolving Software issues: in these phases, software is devel-
oped to control and manage various spacecraft components, so these tools are
used to identify and rectify software bugs and issues, with the involvement of
step-by-step execution of the software code, setting breakpoints, and inspecting
variables and memory states to pinpoint the root causes of errors.

• Testing Communication Link and Protocols: space components often commu-
nicate with each other and with ground stations using specific communication
protocols, so these tools help verify that these protocols are correctly imple-
mented.

• Verifying Hardware Behavior and Data Analysis: In addition to software, they
could be used also to test and verify the behavior of hardware components. This
includes checking sensor readings, instrument responses, and the performance
of onboard processors and electronics.

Furthermore, these tools provide, during testing, the capability to continuously
monitor the health and status of spacecraft systems. This helps engineers detect
and respond to anomalies, errors, and unexpected behavior as they occur, allowing
for quick intervention and problem resolution.
It could be useful to give a quick overview of the main terminal used for the testing:

• Termite and RealTerm for all UART interfaces, e.g. RS-232, RS-422, RS-485,
via the connectors shown in figure 5.12.
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(a) USB to RS232 device (b) USB to RS422/RS485 device

Figure 5.12: UART to Computer communication tools

• PCAN view for CAN interfaces;

• Total Phase Control Center or Arduino IDE for I2C or SPI interface;

• JTAG for Computer communication.
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Chapter 6

Analysis and Results

This chapter aims to finally present the outcomes of all the tests conducted,
verifying and validating both all the changes discussed in chapter 3 and the physical
simulation setup, presented in 4 and 5.

6.1 Software performance analysis
The analysis of the performance of the software developed has to be done on
different and subsequent layers and levels, as also the development itself of the
software has been done in that way.
The various test cases carried out during the work could be presented and high-
lighted, keeping coherence with the software development chapter, in the following
order:

• Ma61c SmallSat version with the original setup first, to give an idea of
the structure of the output data that has to be achieved;

• Ma61c CubeSat version stand alone: testing the code with the CubeSat
board without anything connected and without sending anything;

• Ma61c CubeSat version communication test: testing the code with the
CubeSat board without anything connected but sending random data via a
chosen interface available;

• Ma61c CubeSat version functional test: testing the code with the
CubeSat board with the components connected, all mounted on the modular
avionics test bench.

• Ma61c CubeSat version Mission Scenario: testing fully the final version
of the software, within the complete setup of the simulation, including all the
actors involved.
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In addition, before the Communication test, it is useful to present also some
insights into the testing of the Interface Test code developed; moreover, before the
Functional Test with the actual components, the outcomes of the tests on new
protocols are added.

6.1.1 Test 1: MA61C SmallSat Version

The first tested model is the SmallSat one, for which the following procedure has
been followed: thanks to the fact that this version has been already developed and
prepared before, the only thing to do has been to properly compile the main .cpp
file: ADCS_performance.cpp.
Once that file is compiled, the procedure can start by first accessing remotely
the SPiN test desktop, to load and run the compiled file that allows to start the
hardware-in-the-loop test, Equipment_emulator, by sending inputs data to Ar-
duino units and the MA61C EGSE emulator. After that step, the data flow begins
and the SmallSat mADCS Node starts to provide outputs that could be obtained by
loading and running the compiled file previously computed (ADCS_performance).
The outputs have the following structure:

1725.50000000,0.00950963,0.00969349,-0.00906610,0.00585429,0.00000002,
-0.00000002,0.00000000,1.00000000
1725.50000058,0.00988900,0.00935927,-0.00904474,0.00589270,0.00000005,
-0.00000004, -0.00000001,1.00000000
1725.50000116,0.00988904,0.00935921,-0.00904471,0.00589270,0.00000007,
-0.00000007, -0.00000001,1.00000000
1725.50000174,0.00988908,0.00935915,-0.00904469,0.00589270,0.00000009,
-0.00000009, -0.00000002,1.00000000
1725.50000231,0.00988912,0.00935909,-0.00904467,0.00589270,0.00000012,
-0.00000012, -0.00000002,1.00000000

Focusing on every single couple of lines, it is possible to identify the following
information provided by the model tested: in this case, in the reading output
section of the main file, only the fields related to the torques measurements of the
Reaction Wheel and the computed quaternions are selected, therefore, after the
first value that regards the Julian date calculated, different for each time step, for
each line it is displayed the evolution of the data relative to the torque in each
direction and to the estimated value of quaternions.
According to the user’s necessity and desire, it is possible to choose to obtain the
time evolution of even the variables related to the attitude sensors emulated, such
as gyros for angular velocity measures or sun sensors for attitude.
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6.1.2 Test 2: MA61C CubeSat Version Stand Alone

For the CubeSat version, the test results cannot have immediately the same struc-
ture as the ones above, because of the differences between the models explained
in the previous section: without the presence of the EGSE as an emulator of the
components, it is not possible to follow the same test procedure as for the SmallSat
version but, in the beginning, it will only be possible to compile the new version of
the main file, which includes the CubeSat model’s relative commands, and after
that, loading and running the compiled file in the computer connected to the OBC
Hardware, to see and understand if there is a data flow between the two devices
(sent and received), in open loop.
Following that simplified procedure, the outputs obtained are there reported:

FOG Device not responding
FOG Device not responding
FOG Device not responding
FSS Device not responding
FSS Device not responding
FSS Device not responding
1725.50000000,-nan,-nan,-nan,-nan,nan,nan,nan,nan
FOG Device not responding
FOG Device not responding
FOG Device not responding
FSS Device not responding
FSS Parameter out of limit, value is: -129024.00000000, limit is:-1.10000000
Sent commands to restart, boot and initialize the FSS
FSS Device not responding
FSS Parameter out of limit, value is: -137280.00000000, limit is:-1.10000000
Sent commands to restart, boot and initialize the FSS
FSS Device not responding
FSS Parameter out of limit, value is: -138288.00000000, limit is:-1.10000000
Sent commands to restart, boot and initialize the FSS

The lines presented are relative to the first time frames returned, and the same
structure is repeated for each following frame, in an open loop.
Concerning what has been obtained, it is necessary to highlight that, as expected
from this version tested, no device has been found (that explains the first 6 lines
shown), because of the lack of an EGSE emulator or the presence of physical space
components connected to the Cubesat Hardware. Therefore, as a consequence,
when asked to return the data measured by the sensors or actuators, the response
is -nan (not a number), as displayed in line 7 of the outputs. It has been found
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also in the next lines, as a response, parameters out of the limit set in the code, an
index of random results obtained due to the lack of connection with components.

6.1.3 Interfaces Configuration and Test
After having validated that the updated version of the software, for Cubesat
applications, is working, even without any external inputs, it comes time to verify
if all the interfaces needed for the simulation can exchange information in both
directions: receiving and transmitting.
According to the scenario and relative components chosen, the main interfaces to
be tested are:

• I2C for EPS and Coarse/Analog Sun Sensor (CSS);

• SPI for Fine Sun Sensor;

• RS422 (UART 1) for Rate Sensor;

• RS485 (UART 2 and 3) for Attitude Control and Attitude sensor.

To perform functional tests on these, there are essentially three steps for each
interface: first connecting to the bench both the OBC hardware and the relative
interface to USB tool, connected to the computer, to check if there is a valid
exchange of data between the two devices, properly configured; then the same
process between the debug tool and the space component, to ensure that the device
answers correctly to the commands sent and if it can provide valid data to the
computer. The last one is to perform communication tests by removing the debug
tool and sending commands directly from the OBC, as the master device, to each
different space component, as the slave device.
Among these three tests, only the second one is reported below to show the correct
interface connections and configuration for each device. Starting from I2C, as de-
scribed in 2.2, the connection involves only two pins except for the ground one, SCL
and SDA. The application used for the communication, TotalPhase Control Center,
has to be properly set up in Master configuration, with the correct bit rate (100
kHz for EPS and 400 kHz for CSS) and the slave address specific for the device
to be tested (0x51 for EPS and 0x53 for CSS), then the message to send could be
written in the dedicated window and sent via the Master Write button; to read
the eventual response from the device, the number of expected bytes has to be set
before selecting the Master Read option. Both the messages, sent and received, are
displayed and stored in the transaction log, allowing to have easier control of the
device’s operation.
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I2C settings Electrical Power System Coarse Sun Sensor
Slave address 0x51 0x53
Bit rate 100 kHz 400 kHz

Table 6.1: I2C settings

For the SPI interface, one of the differences is the number of pins to be connected, as
in this case there are MISO, MOSI, CLK, CS and also the settings to be defined, in
the same application used before: besides the bit rate (set to 125 kHz), the polarity,
phase and bit order are important parameters which define the configuration of the
communication and have to be the same for the two devices that are interacting;
the common process is to understand the ones of the slave, with which it is desired
to communicate, and then as a consequence set the Master ones, which could be
either the debug tool or the OBC. In the exam case, the bit rate is 125 kHz, the
polarity is Falling/Raising, the phase is Setup/Sample, the bit order is MSB first
and the CS polarity should be low.

SPI settings Attitude Sensor
Bit rate 125 kHz
Polarity Falling/Raising
Phase Setup/Sample
Bit Order MSB

Table 6.2: SPI settings

For UART interfaces the procedure to follow and the tools to use are different:
starting with RS422, the connection is made of 4 pins (two lines for the transmitter,
TXP and TXN , and the same for the receiver, RXP and RXN , and the application
used is RealTerm. The configuration is defined once the following parameters
are set: the port of the computer used for the connection, the data bits, usually
set to 8, the stop bits, to 1, the Parity, the Flow control and Forward, to None
and the baud rate, which changes according to the device connected (for UART
1 is 460800). For RS485 instead, the connection is simpler, as only two lines are
needed, one for the transmitter and the other for the receiver and the application
is the same. The main settings keep the previous values but the baud rate changes:
115200 for the Attitude Controller and 921600 for the Attitude Sensor. The other
difference is also in the format of the data displayed: ASCII for the RS422 device
and Hexadecimal for the RS485 devices.
For sending commands via the RealTerm application, the message has to be
written in the correct format and with the correct encoding, in the SEND window,
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and then the response from the device is shown in the user interface.

UART settings UART 1 UART 2 UART 3
Data Bits 8 8 8
Stop Bits 1 1 1
Parity None None None
Flow Control None None None
Forward None None None
Baud Rate 460800 115200 921600

Table 6.3: UART settings

6.1.4 Test 3: MA61C CubeSat Version Communication
Test

The following step, before introducing the physical sensors, has been to capture
and send some data, via one of the interfaces available, to the MA61C board, to
get back a response from the software, checking the correct working of the data
flow process.
For doing that, it has been chosen to use as a debug terminal Termite, connected
to the RS485 interface. After having loaded and run the compiled file, in the tool
it has been possible to see first the request data sequence arrived from the software
and after that, according to the auto-reply mode set, the encoded data sent back
to the board.
In the meanwhile, in the prompt, the following lines of output are displayed:

1725.50000000,0.00953226,0.00967707,-0.00906957,0.00585587,0.00000348,
-0.00000002, 0.00000004,1.00000000
1725.50000058,0.00991161,0.00934285,-0.00904821,0.00589427,0.00000696,
-0.00000004, 0.00000009,1.00000000
1725.50000116,0.00991165,0.00934279,-0.00904819,0.00589427,0.00001044,
-0.00000007, 0.00000013,1.00000000
1725.50000174,0.00991169,0.00934273,-0.00904816,0.00589427,0.00001393,
-0.00000009, 0.00000017,1.00000000
1725.50000231,0.00991173,0.00934267,-0.00904814,0.00589427,0.00001741,
-0.00000012, 0.00000022,1.0000000

The output in this last test case has the same structure as the one obtained in
the Ma61c SmallSat original version, of course with different results for each time
frame considered, due to the varying inputs introduced.
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This is justified by the fact that, unlike the previous CubeSat test case, now the
code is recognizing some information coming from outside and for that reason, it is
responding back in the same way that it did when the EGSE was connected and
was emulating the data of the components.
This testifies that the communication line works and that when the components
are connected to the Cubesat Hardware, there will be a correct exchange of data
between them. It is also important to point out that to allow proper communication
with all the components present in the test bench, it is required to update the
software with a proper communication protocol for each device.
For this reason, the next section will be completely dedicated to protocol testing.

6.1.5 Encoding process and Output Management
As it has been told in the software development section, to verify if a protocol is
good or not, it has to be tested properly, to make the on-board computer and the
device speak the same language.
To test it, the process basically includes first eventually encoding the data to send,
usually a command, send it, and then eventually decoding the data retrieved and
sent back from the device, usually the telemetry. Sometimes, such as in the case of
the coarse sun sensor, specific steps have to be followed every time it is necessary
to send a command or to read a telemetry. Also for the action of writing or reading
itself, according to the interface used, there could be some measures to keep in
mind to build the data structure properly.
Below are listed all the devices with the relative protocols adopted:
Digital Sun Sensor Protocol
In the Interface Control Document of the device, it is explained how to build the
frame format both for the request message, from the OBC (master) to the device
(slave), and vice versa, for the response message.
The command message is composed of the command code (0x01 and 0x03 for
requesting voltage values of the photocells or 0x04 for requesting angular positions
of incident light), which is the code of the incoming command, the length, which
for commands is fixed to 1 (0x01 in hexadecimal) and the checksum byte, different
for each command. For the response message, the structure is the same except
for the additional part related to the data sent from the device, according to the
command selected.
Every request and response message is preceded by a synchronization word that
indicates the start of a new frame, which is

1ACFFC1D

For the simulation, the command useful to get the measurements of the Sun Position
is the 0x04 and below is shown an example for this case: The expected data from
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Sync word Command Code Length Data Checksum
Request 0x1ACFFC1D 0x04 0x01 - 0x05
Response 0x1ACFFC1D 0x04 0x0E α(4), β(4) and SI (4) 0x63

Table 6.4: Example of FSS messages

this command, in hexadecimal format, consists of 4 bytes for the floating value
of Angle X (in degree), other 4 bytes for the second angle, Angle Y, 4 bytes for
representing the floating value of Sun detection percentage and 1 last byte for the
error code. The error code gives information about the angle calculation operation:
if it is valid, affected by Earth Albedo, by Sun albedo or if the light is detected out
of the FoV of the device.
To be able to retrieve the final values, useful for the simulation, it is necessary
to convert from hexadecimal to the correct float codification (IEEE 754-1985) for
single-precision floating 32 bits, by implementing a specific algorithm, reported in
the Annexes.
The response provides the direction and the intensity of the light detected with
respect to the following system of reference:

Figure 6.1: Sensor System of Reference [34]

Angle α and angle β in the picture, represent Angle X and Angle Y of the response.
For the ADCS software, the measurements that need to be provided for the sun
sensors concern the three body axes of the satellite, so two steps are required
to convert the measurement provided and the one needed: first converting the
direction vector, defined by the two angles on the XZ plane and YZ plane, into its
three components with respect to the Sensor Frame; then, via a proper rotation
matrix, considering the position of the sensor in the spacecraft, the vector must be
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rotated to the Body Frame.

Analog Sun Sensor Protocol
For the coarse sun sensor, a particular encoding format to send and receive messages
is not requested: as the device works with an I2C interface, in the software there
are already embedded functions to write and read properly a certain amount of
data from a master unit to a slave device and vice-versa.
Nonetheless, a specific set of actions has to be executed according to the command
chosen:

• to start the device, it is necessary to write in the COMMAND register, whose
address is 0x0B, the code of the START command, which is 0x13;

• to set a determined configuration of parameters, for each of them more than
one command is needed: first writing the value to assign to the parameter in
the HOSTIN0 register (0x0A); then writing in the COMMAND register the
location of the parameter, in binary, inside the parameters table, calculated
by doing the logic operation OR between 0x80 and the code of the parameter
(e.g. for changing the number of channels involved in the measurements the
parameter to be changed is the Channel List (code 0x01), the location is 0x80
| 0x01 = 0x81, in binary 10000001, so 0b10000001 should be written in the
COMMAND register);

• to read the value of a precise parameter it is required first to write in the
COMMAND register the location of the parameter, like done before, but
instead of 0x80 using 0x40 for the calculation, and then to read from the
RESPONSE1 register, the data retrieved.

To read the output of the measurements needed for the simulation, it is enough
to read from the HOSTOUTx registers, whose addresses vary from 0x13 to 0x2C,
according to the channel selected. In the exam case, every channel result is
represented with two bytes, one for each register; in the situation in which only the
first channel is used for the measurements, the output data should be read from
HOSTOUT0 and HOSTOUT1 and the value to use is calculated in the following
way for IR band:

MeasurementIR = HOSTOUT0 · 256 + HOSTOUT1

Star Tracker Protocol
For the Star Tracker the encoding format, defined as SLIP framing, is essential
for the correct communication: every frame, sent or received, must start and end
with the character 0xc0; this starting frame is followed by a fixed SLIP ID byte
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(0x21), and for most of the messages by one byte defining the type of the message,
one defining the ID of the parameter involved and one checksum at the end. For
some messages, e.g. set parameter request, between the parameter ID and the
checksum, there could be one additional field with the value to assign to the specific
parameter. For the responses, usually this field is replaced with the Result one,
showing if the command has been executed without errors, or with the parameter
value itself if the type of the message is to request telemetry.
The types of messages used for the simulation are:

• set parameter (0x00 for request and 0x80 for response) to configure the
parameters for the Simulator mode (parameter code: 0x18);

• request telemetry (0x02 for request and 0x82 for response) to retrieve the
calibrated quaternions (telemetry code: 0x18);

• action (0x03 for request and 0x83 for response) to boot the device at the
beginning (action code: 0x01).

An example of command and response is reported below:

Action SLIP Type Action ID Field Set / Result Checksum
Request 0x21 0x03 0x01 0x01 0x9c349a61
Response 0x21 0x83 0x01 0x00 0xd802d483

Table 6.5: Boot action

For the simulation purpose, as the calibrated quaternions retrieved from the Solution
telemetry response are in hexadecimal format, it is necessary to convert each set
of 4 bytes into the correspondent floating representation, as already done for the
measurements of the digital sun sensor and reported in the Appendix.
Gyroscope Protocol
For the gyroscope chosen, the format of the messages is ASCII and no particular
encoding format is needed except for <CR> character at the end of the command.
The device, by default, after powering on, starts directly to provide autonomous
rate measurements, which are not easy to read or use, so two commands are needed:
first setting the operational mode by sending the SERVICEMODE command, to get
human-readable information; then performing a single-shot measurement, via the
command a, to receive one measurement at a time for angular velocities detected.
An example of the single-shot command is shown in the picture below:
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Figure 6.2: Single-shot measurement

The rate provided is in ASCII, therefore it needs to be converted to float before
being sent to the simulation software. The code used is reported in the specific
Appendix section.
Thruster Protocol
For the Attitude Controller the message, both sent and received, must be built
with a certain structure: each data packet consists of a mandatory header and
optional load (value), with variable length. The first byte of the header is the
sender address (0x00 for OBC), the second byte is the receiver address (0xFF to
send the information to all the thrusters at once), the third one is the message
type, then one more byte for the checksum and the two last bytes for the payload
length. The CRC8 checksum, in compliance with CRC-8-CCITT, polynomial 0x07,
is generated over the whole packet.
The message types used for the simulation are:

• 0x01 (OK) type of message displayed in the response, after WRITE request is
executed successfully.

• 0x03 (READ) for requests to read telemetry or parameters;

• 0x04 (WRITE) to set with proper values the parameters available;

• 0x05 (DATA), type of message displayed in the response, after READ request.

In the exam case, only the command for enabling and disabling the thrusters need
to be sent. An example of communication is shown below:

Sender Receiver Message Type CRC Payload Length Value
Request 0x00 0x0C 0x04 0xC6 0x0200 0x0E01
Response 0x0C 0x00 0x01 0xFD 0x0000 -

Table 6.6: Enable command

In the request message, in the value field, the first byte is to define which parameter
to change, via its address, and the second one is the new value to assign.
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6.1.6 Test 4: MA61C CubeSat Version Functional Test
After having tested first all the interfaces and then all the encoding protocols
needed to communicate with each component of the simulation, it has come time
to replace partially the emulated devices present in the software with the ones
tested and physically available. Unfortunately, the amount of devices available is
not the one needed to make the software work properly, therefore some of them
have to remain emulated or, in the exam case, simulated, as discussed in 3.2.
In the main file of the software, to simulate the most complete mode, e.g. sun-
tracking mode, it is requested to provide at least the following measurements:

• one set of 3D measurements for angular velocities (Gyroscope);

• three set of 3D measurements for sun position (three digital sun sensors);

• three set of 1D measurement for sun intensity (three analog sun sensors);

• one set of 4D measurements for quaternions (Star Tracker).

With the devices available, it is possible to retrieve valid measurements for angular
velocities and quaternions, but only one out of three sets for both the sun sensors.
Therefore, for two digital and two analog sun sensors, sunlight measurements need
to be simulated in the Simulator environment developed.
To perform this test, all the components are connected to the test bench, together
with the OBC, and the software, properly updated with the code to retrieve all the
telemetry needed, is compiled, loaded and run.
The outcome is displayed below:

SERVICE MODE command sent
BOOT command sent
SET PARAMETERS command for SAGITTA sent
Mode configuration set
Telemetry from STIM210 arrived
Response Length is:91
Angular velocities:3.47538,1.60106,6.50589
Sensor data (Gyroscope) updated
Telemetry requested from NanoSSOC
3D measurements for Sun Position are:0.0550653,-0.065731,0.996317
Intensity level of Sun Light is:33.1609
Sensor data (FSS1) updated
STR quaternions (x,y,z,w):0.250843,0.294029,0.92226,-0.00788785
Sensor data (Star Tracker) updated
Photodiode intensity measurements:0.424032
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Sensor data (Photodiodes) updated

The first four rows represent initialization commands

• SERVICEMODE to set gyroscope in operational mode;

• BOOT action to start the star tracker;

• SET PARAMETER to configure the Simulation Mode of the star tracker;

• ADCS mode configuration, to set which mode to be tested.

After the initialization, measurements start to be requested: first angular velocities
from the gyroscope, for which it is possible to see the length of the whole response
of the single-shot measurement command and the three values in rad/s; then
sunlight position and intensity from the sun sensor, displayed in the two rows after
the confirmation of the request: the 3D measurements are adimensional and the
intensity is in percentage with respect to the average Sunlight intensity. After the
first digital sun sensor, the other two simulated ones are retrieved (FSS2 and FSS3)
and the values are clearly displayed.
After the digital sun sensors, first the quaternions from the star tracker are re-
quested and displayed, and then, at the end, the last measurement of the light
intensity is provided.
This test has allowed to check that all the updates inside the software work and all
the components connected on the bench are responding correctly to the commands
and are providing valid telemetries.
The next and final step is to test and validate a complete mission scenario, with
all the different parts involved simultaneously, including the simulated environment.

6.1.7 Test 5: MA61C CubeSat Version Mission Scenario
This final test includes all the elements developed and needed for complete hardware
in the loop simulation:

• ADCS software to test;

• Simulator that provides simulated models for components missing;

• robotic arm to simulate microgravity environment and satellite rotation;

• torch light to simulate Sun brightness.
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As discussed in the previous chapter concerning the testing methodologies 5.2,
for running the simulation, first it is necessary to turn on the simulation devices,
both the torch and the robotic arm, then the software can be loaded and run, and
immediately after it comes to the simulator, to provide the needed simulated data.
In this way, the software will have all the inputs required to run correctly the
chosen operating mode designed.
For each scenario and mode simulated, it is possible to choose the outputs to be
displayed and presented. Below an example of output for the Space Tug scenario
selected, during Deploy mode, is reported:

SERVICE MODE command sent
BOOT command sent
SET PARAMETERS command for SAGITTA sent
Mode configuration set
Telemetry from STIM210 arrived
Sensor data (Gyroscope) updated
Sensor data (FSS1) updated
Simulated Components Telemetry arrived
Sensor data (FSS2) updated
Sensor data (FSS3) updated
Sensor data (Star Tracker) updated
Sensor data (Photodiode) updated
JD: 1725.60578704
Orbit Position is: 3655.58813477,1508.31762695,5654.20556641
Orbit Velocity is: -4.93920135,-3.91615415,4.24282837
Earth Magnetic Field is: -0.00003140,-0.00000953,-0.00002045
Sun Position is: -0.99999487,0.00293503,0.00127193
q1 desired: -0.29181179
q2 desired: 0.90806264
q3 desired: -0.02412785
q4 desired: -0.29947597
w1 desired: 0.00000000
w2 desired: -0.00110122
w3 desired: 0.00000000

As seen in the previous test case, the first twelve rows are for initialization and
data retrieval from the components, therefore the mission scenario outputs start
from the thirteenth row with the Julian Data (JD).
The time indication gives information about the progress of the simulation and it
increases by 0.05 seconds each step. After the temporal reference, in the example,
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data about the evolution of position and velocity are reported, and with them also
vectors related to the Earth’s Magnetic Field and Sun position at each specific time.
Under the environmental data, there are reported the attitude and rate values
determined by the guidance algorithms embedded in the software.
As already mentioned, the data displayed are just some of the possible outputs
calculated by the software; the purpose of the test has been only to show the
correct run of the software with the data provided and to validate the testing
methodologies chosen for this particular scenario.

6.2 Output discussion
According to the tests conducted and the output achieved it is possible to state
that the software version, together with the setup and the Simulator designed, has
allowed to preliminarly test in all its levels the Attitude Determination and Control
subsystem under exam.
The main features validated are highlighted and wrapped up in the following list:

• with the 6.1.1, as the original SmallSat version has been tested, the outcome
represents a reference point and a guide for the results to be achieved with
the final simulation of the updated code in the loop. It has been also useful
to take confidence with the data provided by the ADCS software and with
the relative structure.

• with the 6.1.2 the focus switches to the CubeSat version, first of all updated
by replacing only the SmallSat software with the CubeSat one. This test
allows to validate this first update and show how the ADCS software responds
when it does not receive any kind of input from the devices. The outcome
confirms that the software is running correctly but, as expected, without
finding any devices and any data provided, so it is not able to calculate the
results requested.

• the 6.1.3 role before the software communication test is to understand and val-
idate the correct configuration of each of the interfaces used, before managing
them directly inside the software.

• with the 6.1.4 the aim is to test if and how the software responds to artificial
data provided by one of the interfaces available. In this way, the whole
operation of the ADCS updated application is validated for the first time,
although without useful and valid data. It is easy to highlight and identify
a similar structure of the response as the one seen in the original SmallSat
version.

117



Analysis and Results

• the 6.1.5 section is essential to understand how commands and responses are
built and encoded, in order to manage correctly the outputs retrieved and
correctly provide them to the ADCS software. This represents the first phase
of the testing which involves also the physical components chosen for the
simulation and it is useful to show how the different devices work and which
kind of data and in which format are generated.

• with the 6.1.6 a step further toward the final simulation is achieved, as the
communication between the OBC and all the components is fully tested, by
updating the software with all the protocols and decoding procedures to read
correctly the data provided.

• with the last section 6.1.7 The hardware-in-the-loop (HiL) setup has been tested
fully, involving all the previous subjects tested and the Simulator to achieve
a closed-loop environment to test the performance of the ADCS modular
application. The outcomes of this process validate the setup chosen, the
HiL logic designed and the exchange of data between the different integrated
systems, part of the testing loop. Nevertheless, the real outputs, which have
to be compared with the reference ones from the SmallSat project, have yet
to be determined, because of mADCS software inconsistencies, that have to
be investigated.

6.3 Anomalies and deficiencies
In this section it is interesting to collect and point out the most significant issues
and anomalies encountered during the testing.
As most of the tests have been conducted step by step, validating each additional
update or change separately before proceeding, there have not been any particular
anomalies before the final and complete simulation.
Once everything had been merged to run the overall HiL simulation the first
unexpected behaviors appeared:

• after the request for the calibrated quaternions is sent correctly to the Star
Tracker, the software manages hardly to retrieve the full response from the
device, which includes a total amount of 89 bytes, even if enough time passes
before the reading procedure starts. Avoiding considering that the problem
can be in the receiving line as the same software is capable of retrieving even
longer telemetries from other components, e.g. gyroscope, it could be related
either to a harness issue or to a deeper level software setting;

• during the validation of all the possible modes available for the scenario chosen,
some of them did not work nominally, i.e. target tracking mode, probably
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due to the lack of some parameters previously present in the emulated version
of the components but missing for the physical ones, or to the differences in
the Simulator developed, far simpler and reduced; further investigations are
needed to understand the specific points that are missing to make even these
modes operate.

• after the first time step of the simulation, sometimes it happens that, even if
a new request for telemetry is sent to the different devices, the data stored in
the sensor variables remain the same as the ones stored in the previous step,
therefore the update process does not work correctly and this would affect
also the outputs provided;

• for particular modes, e.g. sun tracking, there have been some issues in the
calculation processes of the quaternions and as a consequence even in the
processing of the control torques needed to control the attitude of the satellite;
as for point 2, also in this case there could be some parameters to modify or
to add in the ADCS software, to adapt it properly for the scenario and setup
implemented.

For all these anomalies encountered, as already mentioned, further investigations
are required and left for future development of the work, to understand and focus
on the missing points noticed in the actual model.
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Chapter 7

Conclusions

In the final chapter of the work the focus is first on collecting the most significant
outcomes and implications of the project within the New Space environment, then
on explaining the main limitations encountered and faced, and in the end, the open
points left for further future development are discussed.

7.1 Key findings and implication of the research
It is interesting to highlight the key aspects that the solution developed brought
and put into evidence and the benefits that the Space industry, particularly the
New Space economy, could exploit from this work.
These could be summarised and expressed into three main concepts:

• Intercompatibility;

• Modularity;

• Adaptability.

All of these features are ensured by the use of Avionic Test Bench, a tool to
revolutionize ADCS software validation and testing.

7.1.1 Intercompatibility
One of the highest achievements of this project is to have implemented a software
application, for testing the Attitude Determination and Control subsystem for
CubeSats application, which has the capability to communicate with space COTS
components, from different suppliers and with different interfaces. This is a huge
advantage in terms of flexibility as it allows every company that wants to test
its own software to freely choose the best device for the simulation, in terms of
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performance, time available and cost, avoiding that the decision is constrained to
the tool or configuration available for the validation.
This key feature is due to the embedded software inside the On Board Computer
unit, which includes several protocols and drivers needed to exchange messages
with the devices provided by most of the European market realities. Some of these
drivers are the ones shown and used in the simulation presented.

7.1.2 Modularity
The second important key feature is the modularity approach, adopted in both
software development and hardware setup. On the software side, the modular
application developed allows to make changes and updates only where needed,
without affecting the whole model and even more significantly it provides a solution
that could be tested module by module, before its completeness, reducing drastically
the time required for debugging software issues. On the hardware side, this concept
translates into the possibility of connecting one component at a time to test it,
validate its performance, and evaluate if it fits with the setup or if it has to be
replaced. This approach is surely performance-oriented while limiting at the same
time costs and testing time.

7.1.3 Adaptability
The third key feature ensured by this solution is the possibility to test every sub-
system needed, within each mission scenario and mode of the satellite. A flexible
testing solution can accommodate changes in hardware and software configura-
tions, enabling to test new iterations efficiently without significant redesign of
testing setups; the setup can be customized to simulate mission, subsystem or
mode-specific conditions, ensuring that the system tested meets the demands and
the requirements imposed.
Two other reasons that highlight the importance of adaptability for this kind of
application concern fault tolerance and optimization purposes. Since for Space
missions more and more robust systems capable of handling unexpected failures
or anomalies are required, such a solution, capable of simulating various failure
scenarios, is essential to assess the system’s fault tolerance and develop strategies
for recovery or mitigation. Moreover, since usually spacecraft have to operate under
strict power or weight constraints, flexibility helps engineers optimize the validating
process to minimize resource usage while still obtaining adequate data on system
performance.

All these features presented would have not been as well implemented as they are
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without the availability of the avionic test bench. This tool has allowed to put
into practice these three concepts in the most optimized way possible: by simply
plugging in all the devices needed in the different spots available, it has ensured the
opportunity to create customized hardware configuration for each scenario desired,
easily adapting the setup to the needs of the user.
For the development of space missions, especially during the testing campaign,
time management is essential and this bench has minimized the temporal effort
needed for the validation processes.

7.2 Limitations and challenges
Despite all the achievements earned, there have been also several limitations in
the simulation setup developed and used for the work, which could be improved in
order to increase the validity and performance of the testing tool.
The main restrictions present in the actual model could be identified in the following
points:

• The first limitation is related to the use of devices that simulate space envi-
ronment: torch light and robotic arm. In particular for the torch light, in
the current simulation, the only two (out of four available) states used are
on, for Sunlight exposure time, and off during the eclipse but it is not the
most accurate way to simulate the variation of light along the orbit; there are
phases in which the satellite is partially enlightened by the Sun and even these
should be properly simulated by the source of light available. Regarding the
robotic arm, in the simulation presented, as explained in 5.3, only rotations
mainly with respect to the Z-axis are available, and continuous ones, without
being controlled in time; this condition is surely far from the real situation in
space, for which the best simulation possible should be achieved by providing
to the arm the current angular velocity of the satellite every time step, instead
of setting up a random rotation. Furthermore, in an ideal simulation, the
whole satellite, not only the rate sensor, should be rotated.

• The second limitation involves the choice of the mission scenario to be tested
and simulated. Two out of three scenarios include the use of magnetometers,
which need a specific device (Helmholtz Cage) to simulate the Earth’s Magnetic
Field along the orbit; due to time constraints, this device could not be procured
soon enough to be implemented and integrated into the simulation setup,
therefore only the third scenario has been available.

• The third limitation is about the space components available, in particular for
the star tracker and for the coarse sun sensor. Starting from the star tracker,
the version of the device procured is purely electronic-based, without optics,
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so it is not possible to use a star simulator to provide valid images for the
measurements. For that reason, the only operational solution has been using
the Simulator Mode, for which a set of starting quaternions and a defined
evolution rate have been chosen as inputs, to receive back, as calibrated
quaternions, the time-varying values. For the coarse sun sensor, instead,
the main limitation has been on the device available: in this case, no space
components were already available so it has been necessary to procure them
specifically; for this purpose, as the budget was limited, cheap and simple
devices have been selected and this choice affected the reliability and the
performances, in terms of accuracy.

• The last limitation concerns the number of devices that could be connected
simultaneously to the simulation bench. As the test bench used has a maximum
amount of spots that could be used for the components, a setup that includes
also the redundant devices could not be tested with all the physical devices
plugged in, but simulated versions are still needed.

Most of the limitations and challenges highlighted in this section generate all
the possible suggestions and improvements for future development of the work,
presented in the next and final discussion.

7.3 Recommendations and Future Work
Time constraints and deadlines usually do not allow to develop the work as in-depth
as planned or desired, therefore this section collects the main open points missing,
to achieve the most complete version of the project proposed.
The recommendations for further development could be gathered in the following
points:

• First of all, the Space Tug scenario, already started, has to be closed and
completed fully, before advancing with the others: all the modes available
need to work nominally, so a deeper investigation on the relative .cpp and
header files is requested, to understand which parameters are missing or are
not properly initialized. The focus should be on the files which involve the
calculation of the quaternions and the control torques of the thrusters.

• together with the first point, also the simulation device operation has to be
improved: in particular it is needed to find a way to transfer in real-time
satellite rate information from the Simulator to the Arduino unit that controls
the movement of the robotic arm; the second aspect to improve is related to
the management of the sun exposure along the simulation: a temporal plan
has to be defined to choose for each phase of the simulation which mode of
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the torchlight has to be used, to get enlightenment as close as possible to the
one in the Simulator.

• after having completed fully the third scenario, and having optimized also
the operation of the simulation devices, the next improvement concerns the
realization of the solution, presented in 5.2, for the Helmholtz Cage. With this
simulation device ready and the magnetometer already procured, even the
other two scenarios could be tested, as all the other components needed are
available from the previous projects. Even for this application, a way has to
be found to provide from the simulator to the hardware which would control
the magnetic field varying in time, the correct real-time values to simulate
during the simulation.

For sure, these points are not immediate and easy to solve but with proper dedication
and effort, exploiting the information given along the chapters, once solved, could
make the project even closer to real space simulations and the optimized tool
developed could be widely used in the space market to facilitate and give flexibility
to the testing process of Attitude and Orbit determination and Control subsystem
of small satellites.
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