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Summary

In recent years, the next declared goal of the human race is landing on Martian soil
and, in view of this, the roadmap to Mars envisages, as an intermediate step, the
creation of a Moon Village in order to accumulate experience of extraterrestrial life,
improving the technological and generation capabilities of energy sources outside
our Earth. In light of this, the study carried out within this research work tries
to explore possible ways for future unmanned supply missions to the Martian soil
both in preparation for subsequent human exploration and for the creation of a
possible Mars Village.

Therefore, this paper presents a minimum propellant study for an interplanetary
trajectory from the Moon to Mars, focusing on exploiting Weak Stability Boundary
(WBS) trajectories. The mission assumptions at departure include impulsive
manoeuvres, N bodies perturbation, and JPL’s DE440 ephemerides for the Moon
and other celestial bodies position at epoch. The payload fraction is maximized via
a genetic evolution method. The escape trajectory from the Earth-Moon binary
sphere of influence towards Mars is optimized by a revised WSB trajectory that
includes an Earth gravity assisted slingshot at departure. The epoch-dependent
position of Mars and the cost to reach it from Earth are derived by solving the
Lambert problem and by slicing isocurves at the threshold identifying solution at
lower cost using WSB trajectories or traditional Earth-gravity assist strategies. The
spacecraft state at the Earth-Moon sphere of influence is patched to the heliocentric
leg, which evolves under Keplerian motion.

The analysis contains a study concerning the influence of solar pressure on
the escape phase, with references to variations in velocity and energy, and based
on the Sun-spacecraft relative position depending on the starting date. Results
clearly show that there is a significant bifurcation phenomenon between using
WSB trajectories and traditional Earth-gravity assist strategies. Future studies
could explore the possibility of using Deimos and Phobos gravity assists to further
optimize trajectories and reduce mission costs.
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Chapter 1

Introduction

In the most fervent years of space exploration, the avowed goal of this and future
generations is the human landing on Martian soil and, with it, the conquest of an
extraterrestrial independence that is as much a sign of strength as it is of hope, so
that a life beyond our cradle is possible. In order for human settlement on Mars to
be functional and sustainable, in addition to the realisation of manned missions to
the red planet, it is necessary to envisage what resources may be required to build
a living and liveable environment and optimise their interplanetary expedition:
communication technologies, life-support systems, space habitats, food and energy
production systems as well as surface vehicles and radiation protection technologies
will be necessary.

With this in mind, and attempting to respond to this need, the present paper
proposes to study a low-cost Moon-Mars transfer by exploiting and readapting the
concept of Weak Stability Boundary (WSB) to the n-Body Problem (NBP). The
research work carried out and reported here has investigated, in particular detail,
the phase of escape from the sphere of influence of the Earth-Moon complex from
a lunar orbit (LO) with the aim of minimising the required delta-V. The study
carried out was organised in two phases.

At first, out of a desire to better understand the WSB concept and, at the same
time, to lighten the computational cost, it was decided to model the motion in the
Planar Circular Restricted 3-Body Problem (PCR3BP) on which an ad hoc genetic
algorithm was stitched. The PCR3BP has been employed as the chosen model
for describing the dynamics of a minute particle within the Earth-Moon system.
In this particular framework, relative to an inertial reference frame, two primary
celestial bodies, denoted as P1 and P2 with masses m1 > m2 > 0, respectively,
execute circular orbits around their common centre of mass, influenced solely by
their mutual gravitational interaction. A third body, represented as P3(standing
as the spacecraft) and regarded as having infinitesimal mass, moves within the
same plane as the primaries, experiencing gravitational forces from P1 and P2.

1



Introduction

Importantly, the motion of this infinitesimal mass, corresponding to a spacecraft in
our context, does not perturb the orbits of the primary bodies, which stand for the
Earth and the Moon. This is where the concept of WSB takes shape, i.e. a region
in the phase space of a dynamical system in which orbits can be weakly stable. In
this context, invariant manifolds are geometric spaces that remain unchanged under
the action of a dynamical map or flow and assume importance because they can
define boundaries or separations between different stability regions of the dynamical
system. The exploitation of these regions allows the design of low-energy missions.

This approach, although functional at an embryonic stage of the work and
useful for carrying out a large number of simulations, proved to be incomplete.
To achieve a comprehensive and high-fidelity trajectory optimization, it becomes
essential to utilize a dynamical system that closely approximates the complexities
of the actual solar system. This entails accounting for all gravitational influences,
perturbations, and phenomena originating from various celestial bodies within the
solar system. For this purpose, we employ JPL’s DE440 planetary ephemerides
within the framework of the NBP dynamical system. This dynamical model
encompasses the gravitational interactions of a complete-body system, consisting
of the Sun, Earth, Moon, and the spacecraft itself as well as other celestial bodies
in the solar system itself, while also addressing various additional perturbations
and effects, which will be elaborated upon in subsequent sections.

Once the physical model, CR3BP or NBP as it may be, the trajectory search
was carried out using a Genetic Algorithm (GA) stitched onto the model itself and
based on a merit function that would naturally direct evolution towards the desired
results. Within the GA, the different candidates are represented as combinations of
four different genes that, randomly shuffled together, lead to the creation of a pilot
population (first generation) from whose evolution subsequent generations will be
born. Using offspring, ex novo generation, more or less forced mutation, crossover
and recombination operators and exclusion of individuals deemed unsuitable, the
mass of candidates evolves towards compliance with the imposed figures of merit.
The GA assumed a pivotal role in our study, facilitating the generation of diverse
yet comparable outcomes.

This approach enabled to conduct a comprehensive analysis, not only of individ-
ual solutions but also of the broader spectrum of potential trajectories stemming
from a shared initial concept. Our emphasis extended beyond singular trajectories,
encompassing a collective exploration of different trajectories, all originating from
the same fundamental concept. This approach afforded a valuable opportunity
for critical evaluation and comparison. As elaborated upon in the subsequent
section dedicated to results and analysis, this study has unveiled the potential
for executing escape manoeuvres from the sphere of influence of the Earth-Moon
system, originating from low lunar orbits. This manoeuvre leverages a gravitational
interdiction zone and entails a delta-V expenditure of approximately 400 m/s

2
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enabling a ballistic escape manoeuvre.

3



Chapter 2

Dynamics Model

“Nec fas est propius mortali attingere Divos”

-Edmond Halley

2.1 Reference System

In the scope of this work, as clearly explained in [1], the geocentric equatorial
Reference System(RS) aligns precisely with the Earth Mean Equator and Equinox
of Epoch J2000(EME2000), which will also be referred to more simply as J2000.
The analysis leverages JPL ephemerides from the DE4xx series, with a specific
focus on the JPL DE440 dataset. Notably, these ephemerides are referenced in
the International Celestial Reference Frame(ICRF) and encompass nutational and
librational phenomena. Historically, these intrinsic wobbling effects have conferred
upon the EME2000 Reference Frame(RF), also recognized as J2000, a quasi-inertial
characterization.

However, it is essential to acknowledge that the rotational offset between the
ICRF and the dynamical EME2000 amounts to a mere hundredth of an arcsecond.
Consequently, the EME2000 RF is now unequivocally regarded as inertial.

4



Dynamics Model

2.1.1 International Celestial Reference Frame

Figure 2.1: ICRF

The International Celestial Reference System (ICRS) is the current standard
celestial reference system adopted by the International Astronomical Union (IAU)
starting from the XXIII General Assembly held on 20 August 1997 in Kyoto, Japan
[2]. Its origin is at the barycenter of the Solar System, and its axes are intended to
show no global rotation with respect to a set of distant extragalactic objects.

The ICRF is a realization of the ICRS using reference extragalactic radio sources
observed at radio wavelengths.

Thus, the main objective of the ICRF is to provide a reference frame that is
conceptually independent of the Earth’s motion in space. The ICRF forms the
stable reference points from which the orientation of the Earth in three dimensional
space can be measured.

This reference frame is widely used for navigation both on Earth and in space
and is a starting point for astrophysical observations.
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2.1.2 Earth Mean Equator and Equinox of Epoch J2000

Figure 2.2: EME2000 RF [1]

As shown in the figure 2.2, the equatorial plane is the reference plane of the J2000
system. The axis Î lies on the reference plane along the direction of the vernal
equinox, while the axis K̂ is normal to the mean equator of date at epoch J2000
TDB, which is approximately Earth’s spin axis orientation at that epoch. The axis
Ĵ completes the right-hand triad.

The line of nodes is defined as the intersection of the reference plane and the
perifocal plane (plane on which the orbit lies).

2.2 Historical background
“In outlining a quick historical background to astrodynamics, reference is made to
the paper The History and Background of Astrodynamics, focusing on the aspects
most pertinent to the present discussion”.[3]

Celestial mechanics is centuries-old knowledge rooted in the history of human
civilisation, from Ancient Greece to the present day.

Although this curiosity has always burdened the thinking of the sharpest minds,
the figure of sir Isaac Newton remains to this day a watershed figure who marked
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the birth of astrodynamics. In this sense, it is possible to identify four main periods:

(1) The pre-Newtonian period, beginning with Aristoteles and ending with Galileo;

(2) The Classical(or Newtonian) period, beginning with Newton and ending with
Hamilton;

(3) The “modern” period, the 19th century;

(4) The contemporary period, until today.

2.2.1 The Pre-Newtonian Period
The first(long) years led to a broad and deep philosophical discernment of the
subject with rare excursions of a more mathematical nature.

It was between the second half of the 15th century and the first half of the 16th
that Copernicus(1473-1543) proposed an early heliocentric model (as convenient
for calculating planetary orbits).

In the years that followed, his circular orbits were improved by Kepler(1571-1630)
who, by introducing the concept of an elliptical orbit, arrived at the definition of
his laws of planetary motion (Kepler’s Laws) using the Tycho Brahe’s(1545-1601)
observational results .

(i) First Kepler’s law - The orbit of a planet is elliptical (so it lies on a plane)
and the Sun occupies one of the foci of the ellipse;

(ii) Second Kepler’s law - The planet-Sun line sweeps equal areas at equal times;

(iii) Third Kepler’s law - The square of the period of revolution of a planet is
proportional to the cube of the average distance from the Sun.

2.2.2 The Classical Newtonian Period
The figure of Newton(1642-1727) brought a great revolution to the scientific world,
introducing a new dynamic and a new meaning of science.

Limiting himself to aspects directly related to astrodynamics, Newton is credited
with having been able to connect distant phenomena(legend of the apple - elliptical
orbits). With his Principia(1687), Newtonian Mechanics was born and he conceived
the three laws of motion.

I law - The law of Inertia

“Objects in motion tend to stay in motion, and objects at rest tend to stay at rest
unless an outside force acts upon them”.
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II law

“The rate of change of the momentum of a body is directly proportional to the net
force acting on it, and the direction of the change in momentum takes place in the
direction of the net force”.

Ø
F⃗ = d(m ˙⃗r)

dt
= m¨⃗r∗ (2.1)

∗assuming mass as constant
Following at the Newton original formulation, it’s surprising how he haven’t

connected force with acceleration, but with the change of momentum: this allows
the direct application of Newton’s laws to the variable mass equations and rocket
propulsion.

III law - Conservation of Momentum

“To every action (force applied) there is an equal but opposite reaction (equal force
applied in the opposite direction)”.

Law of Universal Gravitation

Besides these three fundamental laws, Isaac Newton’ve also conceived the law of
graviting as it follow.

“Every point mass(M) attracts every other point mass(m) by a force acting
along the line intersecting the two points. The force magnitude(

---F⃗g

---) is proportional
to the product of the two masses, and inversely proportional to the square of the
distance(r) between them”.

r

m

M

Fg

r̂

Figure 2.3: Newton’s Law of Gravity

F⃗g = −GMm

r2
r⃗

r
(2.2)

where G refers to the Universal Gravitational Constant and has the value of
6,67 · 10−11Nm2/kg2.
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Applying the equation 2.2 to the equation 2.1,it is possible to obtain the EOM
of planets and satellites.

2.3 Hints at the Two-Body Problem

Figure 2.4: Geometry for Two Bodies in an Inertial Reference Frame [4]

Starting from Newton’s second law, it is possible to derive equation 2.6 a (equation
of the two-body problem) by considering the rayvectors describing the position of
the two masses with respect to an inertial XYZ reference system [4], as shown in
Figure 2.4.

For the sake of practicality in the discussion, the Earth will be considered for
illustrative purposes as the primary (more massive) body and the spacecraft as the
secondary body.

r⃗LSC = r⃗SC − r⃗L (2.3)

The importance of the inertial coordinate system is apparent now because it allows
us to differentiate this vector equation without considering the derivatives of each
axis of the coordinate system.

¨⃗rLSC = ¨⃗rSC − ¨⃗rL = ¨⃗r (2.4)

By referring to equation 2.2 and factoring out, it is possible to write:
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¨⃗r = −G(mL + mSC)
r2

r⃗

r
(2.5)

At this point it makes sense to consider the satellite’s mass negligible in relation
to the more massive gravitational body and to introduce the Earth’s gravitational
parameter µL = GmL:

¨⃗r = −µL
r2

r⃗

r
(2.6)

This is the equation for the two-body problem and is only valid under certain
assumptions:

1. The mass of the satellite is negligible compared to that of the attracting body.
This is reasonable for artificial satellites in the foreseeable future;

2. The coordinate system chosen for a particular problem is inertial. This
hypotesis allows to remove derivatives of the coordinate system itself when
differentiating vectors;

3. The bodies of the satellite and attracting body are spherically symmetrical,
with uniform density. This allows us to treat each as a point mass;

4. No other forces act on the system except for gravitational forces that act along
a line joining the centers of the two bodies.

Within this dynamic model, the equation 2.6 governs the motion of bodies de-
scribing ideal orbits in space. The introduction of perturbations (new gravitational
influences, asymmetries, solar radiation pressure, etc.) complicates the problem
and requires the introduction of the perturbative term itself within the equations
of motion.

2.3.1 Specific Angular Momentum
The angular momentum for an orbit is a variable that is independent of the mass
of the principal body and is a characteristic of the orbit, as it is constant for the
orbit. Both its vector and scalar nature are derived and described below.

Start by multiplying the terms in the equation 2.6 by the radiusvector r⃗:

r⃗ ∧ ¨⃗r + r⃗
µL
r3 r⃗ = 0 (2.7)

Because of r⃗ ∧ r⃗ = 0, the second term of the equation disappeares. Considering

d

dt
(r⃗ ∧ ˙⃗r) = r⃗ ∧ ¨⃗r + ˙⃗r ∧ ˙⃗r = r⃗ ∧ ¨⃗r (2.8)
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then, substituting, it is possible to write

d

dt
(r⃗ ∧ ˙⃗r) = 0 =⇒ r⃗ ∧ ˙⃗r = constant (2.9)

By replacing ˙⃗r with the velocity vector v⃗ the specific angular momentum vector
is made explicit

h⃗ = r⃗ ∧ v⃗ (2.10)

Notice how the vector h⃗, being the vector product between position and velocity,
is always perpendicular to the plane of the orbit (plane to which the satellite is
constrained under the assumptions of the two-body problem). It is also evident
how, once a given pair of r⃗ and v⃗ is given, the specific angular momentum will be
univocally determined.

The magnitude can be written as

h = r2v̇ (2.11)
Or alternatively, by referring to orbital parameters such as semilatus rectum p,

semi-major axis a and eccentricity e of the orbit, can be deduced from the following
relation:

p = h2

µL
= a(1 − e2) h = √

µLp (2.12)

2.3.2 Specific Mechanical Energy
The specific mechanical energy (SME) is also independent of mass and is a constant
identifying the orbit. To derive it, we follow a similar path as in the previous
subsection.

Begin by rewriting the equation 2.6 in terms of the velocity vector and multiplying
both members by ˙⃗r = v⃗

v⃗ ∧ ˙⃗v + v⃗
µL
r3 r⃗ = 0 (2.13)

By rewriting, one comes to

vv̇ + ṙ
µL
r3 r = 0 (2.14)

Recognising the remarkable derivatives and integrating the terms of the resulting
equation, we can write the visviva equation:

E = v2

2 − µL
r

+ c (2.15)
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E varies with height and speed and is zero at the Earth’s surface. In astrody-
namics c is defined to be zero.

E = v2

2 − µL
r

= −µL
2a

(2.16)

Using this definition, the same concept still applies: the higher and faster you
go, the more your energy increases. However, you start with a negative value for
energy when at rest at the surface of the Earth. [4]

It is also possible to look at the definition of specific mechanical energy 2.16 as
the difference between a kinetic term and a potential term. A consequence of this
definition is the concept of Sphere of Influence (SOI). The SOI of a central (ideally
symmetrical) body is that region of space, precisely spherical, within which the
body itself is solely responsible for all orbital motions. Outside the aforementioned
SOI, other celestial bodies have a greater influence on the spacecraft’s motion.

rSOI = aES

A
mL

ms

B2/5

(2.17)

The one given in the equation 2.17 is a good approximation. The value of the
radius of the SOI rSOI is a function of the masses of the two massive bodies and
the distance between them aES.
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Figure 2.5: rSOI/a vs planets’ masses

In Fig. 2.5, the trend relative to the approximation of equation 2.17 is shown.
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Planet Mass Distance from s Distance from s SOI
// [kg] ·1024 [AU] [km]·106 [km]·106

Mercury 0.33 0.39 57.9 0.117
Venus 4.867 0.723 108.2 0.616
Earth 5.972 1 149.6 0.929
Mars 0.65 1.524 227.9 0.578

Jupiter 1900 5.203 778.3 48.2
Saturn 570 9.539 1427.0 54.5
Uranus 87 19.18 2871.0 51.9

Neptune 100 30.06 4497.1 86.2

Table 2.1: Solar System’s SOI

The table 2.1 shows values of interest for the Solar System and its celestial
bodies.

2.3.3 Hohmann Transfer

Walter Hohmann (1880–1945) proposed a theory which suggested the minimum
change in velocity transfer could be achieved between orbits by using two tangential
burns(Hohmann, 1925).
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Figure 2.6: Hohmann Transfer [4]

The Hohmann transfer is the elliptical transfer orbit between two circular orbit.
As evident from the Hohmann transfer (to an outer orbit) shown in the figure, the
point of the first burn becomes the perigee of the Hohmann orbit while the point
of the second burn represents its apogee.

In general, it is possible to calculate the velocity at a point v̄ in the orbit from
the equation 2.16:

v̄ =

öõõô2
A
E + µL

r̄

B
(2.18)

Velocity of a circular orbit is constant for the orbit itself:
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vcirc =

öõõôAµL
r

B
(2.19)

Because of the perigee and the apogee altitude are known, the semi-major axis
of the Hohmann transfer aH is known too and consequently the time of flight τ :

aH = ra + rp

2 (2.20)

TH = 2π

öõõôa3
H

µL
τ = TH

2 (2.21)

At this point, Hohmann’s ∆v can be calculated as the sum of the two ∆v at a
and b, defined as the magnitude of the difference in velocity between the orbits at
the point.

∆va = |vH,perigee − vcirc,1| vH,perigee > vcirc,1 (2.22a)
∆vb = |vcirc,2 − vH,apogee| vH,apogee < vcirc,2 (2.22b)

∆vH = ∆va + ∆vb (2.23)

Exploiting the SOI concept, it may be useful to apply Hohmann for an initial cost
estimate of interplanetary manoeuvres by distinguishing between planetocentric
and heliocentric phases.

2.4 Circular Restricted Three-Body Problem
As mentioned in section 2.3, the Three-Body Problem(3BP) introduces a perturba-
tion to the 2BP and is a first step towards the completeness of the n-body physical
model. In this thesis, the CR3BP model is considered close enough to the actual
scenario to allow certain preliminary considerations to be made. The 3BP studies
the motion of a third body immersed in the resulting gravitational field of two pri-
mary bodies (bigger primary and smaller primary). While 2BP presents closed-form
analytical solutions (conics), by adding a third body it has not been possible to date
to find closed-form solutions for the equations of motion[5][1][4]. The considerations
outlined so far are also considered valid under certain assumptions that allow the
transition from 3BP to CR3BP:

1. Circular, the two primary bodies describe circular orbits relative to the system’s
centre of mass and this one is a good approzimation for the natural bodies in
the Solar System;
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2. Restricted, the mass of the third body m is considered negligible compared to
the other two M1, M2.

Consequently, the CR3BP fundamental assumptions are:

• m << M2 < M1;

• distance between the two primaries, ℓ∗, constant during motion;

• the only gravitational forces are those of the two primaries.

Figure 2.7: Synodic RF [1]

In Fig. 2.7 a generic synodic system is shown when observed from an inertial RS
such as {X̂F , ŶF , ẐF }. The two primary bodies rotate around the barycentre of
the system (which lies on the conjunction) at a mutual angular velocity ω(t). The
dependence on time t is the result of the mutual distance between the two primaries
varying over t. In the CR3BP hypothesis, this dependence falls (ℓ∗ constant).

The non-inertial, rotating RF centered in the barycenter is also called Synodic
RF, {x̂S, ŷS, ẑS}, and follows the main bodies’ path; the x̂S axis lies on the line
joining the two primaries, the ẑS axis is normal to the plane on which the orbits of
the primaries lie and ŷS completes the right triad.

ω =
ó

G
M1 + M2

ℓ∗3 (2.24)

Thus, the advantage in introducing and using a non-inertial, rotating system
is the fall of the dependence of motion on time, as will also be seen in the next
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section. The relationship that exists between the inertial RS and the synodic RS
can be expressed in matrix form:

X̂F

ŶF

ẐF

 = [A]


x̂S

ŷS

ẑS

 (2.25)

where

A =

cos ωt − sin ωt 0
sin ωt cos ωt 0

0 0 1

 (2.26)

is the rotation matrix required to transforme the inertial RS to the synodic one.
In addition, both for historical convention and for the sake of numerical precision

and neatness, the investigated quantities within the synodic reference system are
nondimensionalized with respect to some characteristic values:

Fundamental Quantity Unit of Measurement Equivalence
Mass kilogram m∗ = M1 + M2

Lenght meter ℓ∗ = r1 + r2

Time second T ∗ =
ñ

(ℓ∗3)/(Gm∗)

Table 2.2: CR3BP nondimensionalization

The characteristic length, denoted as ℓ∗, represents the consistent average
separation distance between the two primary bodies within the system. Similarly,
the characteristic mass, symbolized as m∗, signifies the combined total mass of these
primary bodies. Notably, the characteristic time, denoted as T ∗, is not explicitly
prescribed but rather emerges as a consequence of enforcing the nondimensional
universal gravitational constant to equate unity within the formulation of Kepler’s
third law. Consequently, it is implicitly derived from this fundamental constraint.

Therefore, the nondimensional quantities for distances, masses, and times, under
the CR3BP assumptions, are 

ρ12 = r12
ℓ∗ = 1

µ ≜ m2
m∗

τ = T
T ∗

(2.27)

Hence, the nondimensional masses are:

µ ≜
µ2

µ1 + µ2
,

µ1

µ1 + µ2
= 1 − µ (2.28)
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and similarly, the barycenter position relative to the bigger primary can be readily
deduced:

ρCG =
q

i ρiµiq
i µi

= µ (2.29)

So
ρ1 = r1

ℓ∗ = −µρ2 = r2

ℓ∗ = 1 − µ (2.30)

2.4.1 Equations of motion
Starting from the Newton’s Second Law(see equation 2.1), a dimensional compact
form can be written:

¨⃗r = − µ1

r2
12

˙⃗r13

r13
− µ2

r2
22

˙⃗r23

r23
(2.31)

where
r⃗i3 = r⃗3 − r⃗i, i = 1,2. (2.32)

are the radius vector of the spaecraft with respect to the primaries.
Considering the “restricted” assumption of the CR3BP, it is understood that the

primary bodies influence the motion of the spacecraft (SC) but remain unaffected
by the SC itself. Therefore, for clarity, the subscript “3” denoting the sole SC is
dropped. Henceforth, its coordinates are simply represented by {x, y, z} values.

By projecting the EOMs into the synodic RF cardinal directions one has

¨⃗x = − µ1

r3
13

(x − x1) − µ2

r3
23

(x − x2) (2.33a)

¨⃗y = − µ1

r3
13

y − µ2

r3
23

y (2.33b)

¨⃗z = − µ1

r3
13

z − µ2

r3
23

z (2.33c)

where
ri3 =

ñ
(x − xi)2 + y2 + z2, i = 1,2. (2.34)

It is useful to project the EOMs in the interial RF. To accomplish this, the total
differentiation of the position vector r⃗ in the inertial RF is expressed as the sum
of the differentiation of the same vector in the synodic frame and the transport
component. Generally, the transport theorem for a generic quantity “∗” gives the
following expression:

F d∗
dt

=
Rd∗
dt

+ R/F ω⃗ ∧ R∗ (2.35)

Therefore the inertial acceleration can be computed as [6] [1]
F ¨⃗r = R ¨⃗r + ˙⃗ωS ∧ Rr⃗ + 2R/F ω⃗ ∧ R ˙⃗r + ω⃗S ∧ (ω⃗S ∧ Rr⃗) (2.36)
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where the prescripts “F” or “R” indicate the corresponding fixed and synodic RFs,
as in Fig 2.7. Equation 2.36 taking into account apparent forces such as centripetal,
tangential, and Coriolis acceleration.

Moreover, based on the definition of Keplerian motion, the mean motion is as
follows

ωS = µ1 + µ2

r3
12

. (2.37)

However, considering the assumptions of the CR3BP, the angular velocity ωS = 1,
and thus ω̇S = 0, as there are no rotational or pulsating behaviors present.

Thus, by explicitly expressing the various terms in the equation and applying
dimensionalizations, it becomes feasible to derive the complete system of nondi-
mensional Ordinary Differential Equations (ODEs) for the Cartesian components
within the CR3BP dynamical model

ξ̈ − 2η̇ − ξ = −1 − µ

ρ3
13

(ξ − µ) − µ

ρ3
23

[ξ − ( −µ)] (2.38a)

η̈ + 2ξ̇ − η = −1 − µ

ρ3
13

η − µ

ρ3
23

η (2.38b)

ζ̈ = −1 − µ

ρ3
13

ζ − µ

ρ3
23

ζ (2.38c)

where ρ1 and ρ2 are defined as

ρ1 =
ñ

(ξ + µ)2 + η2 + ζ2 (2.39)

ρ2 =
ñ

[ξ − (1 − µ)]2 + η2 + ζ2 (2.40)

Thus, the equations of motion consist of three nonlinear second-order differential
equations, each coupled with the others. Therefore, the only feasible method to
solve them is through numerical integration.

2.4.2 Potential function and Jacobian Integral
Among the historical and contemporary challenges presented by the CR3BP in
analytically solving its EOMs, which might not even be feasible, as extensively
discussed in Szebehely’s work [5], a significant glimmer appears from the Jacobian
Integral. This quantity represents a pseudo-integral of motion within the CR3BP
in the rotating synodic RF, offering valuable insights into stability and accessible
regions within the binary system. Its derivation starts for an inertial RF by defining
a positive potential function U as:

U = µ1

r13
+ µ2

r23
+ 1

2ωS(x2 + y2) (2.41)

19



Dynamics Model

or, equivalently, in nondimensional form (see Fig 2.8) as

U = 1 − µ

ρ13
+ µ

ρ23
+ 1

2(ξ2 + η2). (2.42)

This quantity is defined as the pseudopotential within the domain of the CR3BP.
It consists of the sum of the centrifugal potential, which accounts for the centrifugal
forces present in the problem, and the gravitational potential, which encompasses
all gravitational attractive forces acting within the system.

Figure 2.8: Potential function U in the Synodic Earth-Moon(EM) RF

Recalling the physical meaning of the ρ1 and ρ2 (eq 2.32), i.e. the position of
the spacecraft relative to the two primary bodies, it can be seen that when the two
radii tend to zero, the potential function tends to infinity: this means that at the
centres of mass there is an infinite potential. Similarly, by moving infinite distances
away from the centres of mass of the binary system, the potential function will
also tend to infinity. These insights are easily deduced, in addition to Fig 2.8, from
equation 2.42.
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Figure 2.9: Iso-level curves of the potential function U in the Synodic Earth-Moon
RF

As is clear from the Figure 2.9, the iso-level curves of the potential function of
the Earth-Moon synod system assume a pseudo-circular pattern influenced, as is
obvious, by the presence of the massive bodies. Once again, it is evident how, when
approaching the centres of mass or moving away at great distances from them, the
iso-potential curves tend to assume infinitely large values.

The study of the potential function within this reference system takes on a very
important value as it allows us to identify the points of minimum potential, i.e.
points of stationarity related to the derivatives of the potential function itself.

Before delving into this topic in the next section, it is necessary to introduce
some useful relations, starting with the derivatives of U

∂U

∂ξ
= ξ − 1 − µ

ρ3
13

(ξ − µ) − µ

ρ3
23

[ξ − (1 − µ)] (2.43a)

∂U

∂η
= η − 1 − µ

ρ3
13

η − µ

ρ3
23

η (2.43b)

∂U

∂ζ
= −1 − µ

ρ3
13

ζ − µ

ρ3
23

ζ . (2.43c)

Equations (2.43) can be recombined with equation 2.38 by obtaining as follows

21



Dynamics Model

ξ̈ − 2η̇ = ∂U

∂ξ
(2.44a)

η̈ + 2ξ̇ = ∂U

η
(2.44b)

ζ̈ = U

ζ
. (2.44c)

The system of second-order differential equations has a first integral known as
the Jacobi integral, expressed as

2U(x, y, z) − (ẋ2 + ẏ2 + ż2) = C, (2.45)

where C is the Jacobi Constant [7].
Furthermore, by respectively multiplying each of the nondimensional equations

in 2.38 by 2ẋi, 2 ˙eta, 2 ˙zeta, and subsequently summing them, one attains:

ξ̇ξ̈ + η̇η̈ + ζ̇ ζ̈ = ∂U

∂ξ
ξ̇ + ∂U

∂η
η̇ + ∂U

∂ζ
ζ̇ (2.46)

which, once integrated, provides the Jacobian integral equation which defines the
spacecraft’s field of motion:

ξ̇2 + η̇2 + ζ̇2 = v2 = 2U − JC . (2.47)

The dimensional Jacobi Constant JC can be compared to an inverse energy-like
quantity, similar to the specific mechanical energy E in the vis-viva equation (2.15)
within the 2BP. Therefore, the specific mechanical energy E is the sum of the kinetic
V 2/2 and the potential −µ/r specific energies. Consequently, the greater the value
of JC is, the lower the energy of the spacecraft within the synodic Reference Frame
is.

When there are no disturbances present, the energy, or Jacobi’s constant, remains
unchanged throughout a specific orbit. Consequently, with an initial condition
defined for the spacecraft’s motion in terms of position vector and velocity, the
value of the constant JC remains unvaried.

2.4.3 Equilibrium Points
In light of the nondimensionalization and simplification of the EOMs, an inves-
tigation of the system is imperative. The remaining equations, characterized by
their lack of intuitivity, present a big challenge in interpreting the motion of the
third body(SC) within the gravitational environment. Simulations highlights the
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a chaotic behavior, therefore an intrinsic unpredictability of the system without
precise initial conditions and parameter settings. Consequently, the main objective
moves to the identification of regions manifesting predictable behavior, a funda-
mental information for aerospace engineers and researchers. This knowledge has
profound implications for practical applications in space missions and scientific
exploration, providing priceless insights for mission planning and spacecraft design.

In this sense, in 1772 Joseph Louis Lagrange set a milestone by introducing the
Libration Points of the Sun-Jupiter binary system to the scientific community: one
of the greatest contributions to astrodynamics [3]. From this, equilibrium points
are also known as Lagrange Points (LPs). This equilibrium comes from a balance
in the centrifugal force and the gravitational attraction of the larger bodies.

Even though an analytical solution for the complete system of ODEs in equation
(2.44) has yet to be discovered, valuable theoretical insights can still be gained by
manipulating them and following Lagrange’s steps [1]. The sistem of equations
admit five stationary points, LPs are thus defined by the following conditions

∂U

∂ξ
= 0 = ξ − 1 − µ

ρ3
13

(ξ − µ) − µ

ρ3
23

[ξ − (1 − µ)] (2.48a)

∂U

∂η
= 0 = η − 1 − µ

ρ3
13

η − µ

ρ3
23

η (2.48b)

∂U

∂ζ
= 0 = −1 − µ

ρ3
13

ζ − µ

ρ3
23

ζ . (2.48c)

obtained by setting the vector gradient of the pseudopotential function to zero

∇U = 0 (2.49)

By settling ζ = 0, the equation (2.48c) is immediatly matched, therefore it’s
clear that these equilibrium coordinates lie in the ξ̂ − η̂ plane. The second equation,
equation (2.48b), is validated under two distinct cases:

1. η = 0;

2. η /= 0 and
è
1 − 1−µ

ρ3
13

− µ
ρ3

23

é
= 0;

and this two scenarios correspond to, respectively
1. Collinear Equilibrium Points (L1, L2, L3);

2. Triangular Equilibrium Points (L4, L5);
L1, L2 and L3 are referred to as collinear points because they are situated along

the ξ-axis. By setting η = 0 and ζ = 0, the equation of motion corresponding to ξ
can be expressed as

ξ − 1 − µ

ρ3
13

(ξ − µ) − µ

ρ3
23

[ξ − (1 − µ)] = 0 (2.50)
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To determine the values of ξ at which the equation has real roots, it’s necessary to
set up the equation along with a second distinct equation. This involves identifying
three intervals on the ξ-axis, namely:

L3 : ρ23 − ρ13 = 1, ξ < −µ (2.51a)
L1 : ρ23 + ρ13 = 1, −µ < ξ < (1 − µ) (2.51b)
L2 : ρ13 − ρ23 = 1, ξ > (1 − µ) (2.51c)

Assuming that the smaller primary is significantly smaller in size compared to
the larger primary, the first two Collinear Lagrangian Points are approximately
located at the same distance ρ23 from the smaller primary.

L1 : ρ13 ≃ (1 − 3
ñ

µ/3), ρ23 ≃ 3
ñ

µ/3 (2.52)

L2 : ρ13 ≃ (1 + 3
ñ

µ/3), ρ23 ≃ 3
ñ

µ/3 (2.53)

while the L3 point is on the opposite side of the larger body

L3 : ρ13 ≃ 1, ρ23 ≃ 2 (2.54)

Therefore, the coordinates of the Collinear Equilibrium System in the synodic
RS are

L1 =
è
1 − µ − 3

ñ
µ/3, 0, 0

é
(2.55a)

L2 =
è
1 − µ + 3

ñ
µ/3, 0, 0

é
(2.55b)

L3 =
è
1 − µ − 2, 0, 0

é
(2.55c)

where L1 is named as Cislunar Libration Point, L2 is named as Translunar Libration
Point and L3 is named as Transearth Libration Point.

As can be clearly seen in Fig 2.10, by cutting the potential function with the
plane for η = 0, the collinear points correspond to the points of minimum of the
potential function.
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Figure 2.10: Collinear points in EM synodic RS for η = 0

The coordinates of the Triangular Equilibrium Points are obtained by solving
the equations (2.48a) and (2.48b). It emerges that L4 and L5 are situated at the
vertices of two equilateral triangles with sides of unit length, namely

L4 =
è1
2 − µ,

√
3

2 , 0
é

(2.56a)

L5 =
è1
2 − µ, −

√
3

2 , 0
é

(2.56b)

where the two primaries lie on the other two vertices. This observation is
depicted in Fig 2.11, where the dash-dot-dot and dotted circles represent the
circular orbits of the primaries relative to the system barycenter when observed
from an inertial reference frame.

With reference to the Earth-Moon binary system, it is possible to define the
position of Lagrangian points taking certain the following values

• unit of distance: 384400 km;

• unit of velocity: 1.02316 km/s ;

• dimensionless mass ratio µ: 0.01215052.

Consequently, values are reported in Table 2.3
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Figure 2.11: Lagrangian points in a generic synodic RS with µ = 0.1 [1]

LP ξ η ζ U

L1 0.8500 0 0 1.59422
L2 1.1700 0 0 1.58614
L3 -1.0100 0 0 1.50611
L4 0.4800 0.8700 0 1.49399
L5 0.4800 -0.8700 0 1.49399

Table 2.3: Earth-Moon binary sistem’s LPs location
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2.4.4 Zero Velocity Surfaces

An important result obtained by setting the relative velocity in the synodic reference
frame to zero, referred to as v = 0 within the Jacobi’s integral, is the concept of
the Zero-Velocity Surface.

v2 = 2U − JC (2.57)

In order that motion be possible,

v ≥ 0 =⇒ v2 ≥ 0 (2.58)

it is possible to conclude that during motion there is

2U − JC ≥ 0 (2.59)

indeed, by analysing equation(2.45), it can be seen that the kinetic energy ẋ2+ẏ2+ż2

is semi-defined positive.
In the specific scenario where the relative velocity in the synodic reference frame

is zero, the function

2U − JC = 0 (2.60)

identifies, based on the value of C and hence the initial conditions, the boundaries
of the regions of the physical space where motion is allowed to take place [8]. Such
a constraint, given a specific value for the constant, provides the equation of a
surface which is the extremal value of all the potential limit apogee-like locations.

So, equation 2.60 establishes the Zero-Velocity Surfaces, which delineate regions
where the kinetic energy becomes negative, making motion not possible. These
regions where the particle can orbit are referred to as Hill’s regions. Consequently,
Hill’s regions are delimited by the Zero-Velocity Surface, or surfaces of zero kinetic
energy, which are unattainable by the satellite.

If a SC is positioned near a primary and has an initial velocity close to the
orbital velocity, its apogee-like condition (the maximum apogee it could reach if
all the orbit’s energy is converted into altitude) will be constrained within the
gravitational well of the primary itself. The confinement shape near the primaries
in the EM Zero-Velocity Surface representation shown in Figure 2.7 resembles a
circle.
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Figure 2.12: EM Zero-Velocity Surfaces at LPs energy

Recalling equation 2.60, the Jacobi constant can be uniquely defined as follows

JC = 2U (2.61)

Consequently, iso-level curves can be visualised in Fig 2.13, 2.14, 2.15 and 2.16, by
cross-cutting the zero-velocity surfaces with the fundamental plane ξ − η

Figure 2.13: EM Zero-Velocity Surface
at LP1

Figure 2.14: EM Zero-Velocity Surface
at LP2

The value of Jacobi’s constant that allows the points of minimum potential to
be reached and to be able to overcome them are shown in the Table 2.4.
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Figure 2.15: EM Zero-Velocity Surface
at LP3

Figure 2.16: EM Zero-Velocity Surface
at LP4 and LP5

LP ξ η ζ U JC

L1 0.8500 0 0 1.59422 3.1885
L2 1.1700 0 0 1.58614 3.1723
L3 -1.0100 0 0 1.50611 3.0122
L4 0.4800 0.8700 0 1.49399 2.9880
L5 0.4800 -0.8700 0 1.49399 2.9880

Table 2.4: Earth-Moon binary sistem’s LPs location, Potential function and
Jacobi’s constant

The naming convention of Lagrangian Points is determined by the values of
the Jacobi’s Constant JC in decreasing order, which incidentally corresponds to
the order in which they become accessible. Specifically, the LP with the highest
value of the nondimensional JC , indicating the first accessible zone at a lower
spacecraft energy, is designated as the first LP, followed by the others in sequence.
Notably, L4 and L5 have the same value of JC , which is the lowest. If a spacecraft
possesses enough energy to reach these Lagrangian Points, then all regions of space
within the CR3BP become accessible.

So, technically, a spacecraft capable of traversing the Zero-Velocity Surfaces
at L2 from the inner regions possesses adequate energy to escape the EM binary
system by utilizing specific trajectories that leverage the gravitational attractions
of the primaries.

2.4.5 Weak Stability Boundary
The Weak Stability Boundary (WSB) serves as the transition region within phase
space where the shift from gravitational or ballistic escape to ballistic capture takes
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place. Research conducted on this intricate area of chaotic motion is aimed at
exploring its distinct, fuel-saving properties in order to expand the boundaries of
low-energy transfers. This region of "fuzzy stability" is typified by highly sensitive
motion, and analysis of it has primarily relied on numerical methods [9].

In this section, with reference to Fig 2.17, an effort will be made to give a rigorous
definition of the Weak Stability Boundary naming as P1 and P2 respectively the
bigger primary body and the smaller one and naming as P3 the SC, following the
discussion in [10].

Figure 2.17: The stability criterion used to numerically define W [11]

We examine trajectories of an infinitesimal particle with the following initial
conditions:

(i) The trajectory’s initial position lies on a radial segment ℓ(θ) in the configuration
space, originating from P2 and forming an angle of θ with the P1 -P2 line,
relative to the rotating system. The trajectory initiates at the periapsis of an
osculating ellipse around P2, with its semi-major axis lying on ℓ(θ) and its
eccentricity e held constant along ℓ(θ). The initial velocity of the trajectory
is perpendicular to ℓ(θ), offering two distinct choices of initial velocities: one
positive (direct motion) and one negative (retrograde motion); below, we will
restrict ourselves to the case of positive initial velocity.

(ii) The initial Keplerian energy E2 relative to P2 is negative, denoted as E2 < 0.

(iii) Subsequently, the motion is classified as n-stable if the infinitesimal mass P3
departs from ℓ(θ), completes n full revolutions around P2 without completing
a full revolution around P1, and all intersections of the trajectory with ℓ(θ)
along this trajectory are transverse intersections with negative Kepler energy
relative to P2, i.e., E2 < 0. Otherwise, the motion is deemed n-unstable.
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In condition (i) the distance from P3 to P2 is given by r = a(1 − e), where a
is the semi-major axis of the osculating ellipse. The motion, for fixed values of
the parameters θ and e, and for a choice of direction of the initial velocity vector
depends only on the initial distance r.

In condition (ii), the initial Kepler energy is given by the equation

E2 = (e − 1)µ
2r

, (2.62)

obtained starting from the visviva equation (2.15), so the condition E2 < 0 is
automatically satisfied since e ∈ [0, 1).

In condition (iii), when we refer to P3 completing 1 full revolution around P2,
it is defined as follows:

Let θ2(t) represent the angle formed by the position vector of P3 relative
to P2, measured continuously along the trajectory of P3. If we consider P3
starting from ℓ(θ), then θ2(0) = θ. Let τ1 be the smallest positive time for which
|θ2(τ1) − θ2(0)| = 2π. We assume that the intersection of the trajectory with ℓ(θ)
at t = τ1 is transverse. If such a τ1 exists, then we say that P3 completed 1 full
revolution around P2 in the time interval [0, τ1].

Similarly, let τ2 be the smallest positive time such that |θ2(τ2) − θ2(τ1)| = 2π.
We assume that the intersection of the trajectory with ℓ(θ) at t = τ2 is transverse.
If such a τ2 exists, it means that P3 completed 2 full revolutions around P2 in the
time interval [0, τ2]. We can define inductively what it means for P3 to complete
n full revolutions around P2. In this definition, we require that the successive
intersections of P3’s trajectory with ℓ(θ) are all transverse.

Similarly, we define what it means for P3 to complete 1 full revolution around
P1. If θ1(t) represents the angle formed by the position vector of P3 relative to
P1, measured continuously along the trajectory of P3, and if for some τ > 0 we
have |θ1(t) − θ1(0)| < 2π for all t ∈ [0, τ ], it means that P3 did not complete one
full revolution around P1 in the interval [0, τ ].

In summary, condition (iii) says that a motion is said to be n-stable if there
exist τn > 0 such that P3 performed n complete turns about P2 in the interval
[0, τn] and did not complete 1 turn around P1 in the same interval.

In the above definition we require that the successive intersections of the trajec-
tory of P3 with ℓ(θ) are all transverse. This makes the notion of n-stability under
small perturbation, that is, if a trajectory is n-stable then any sufficiently close
trajectory will also be n-stable.

We note that the n-stability condition defined as above is an open condition.
This is due to the fact that E2 < 0 is an open condition.

The set of the n-stable points on ℓ(θ) is an open subset of ℓ(θ), hence it is a
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countable union of open intervals which we denote

Wn(θ, e) =
Û
k≥1

(r∗
2k−1, r∗

2k). (2.63)

DEFINITION (WSB): “The WSB of index n, denoted by W∗
n , is the locus of all

points r∗(θ, e) along the radial segment ℓ(θ) where there is a change of stability of the
initial trajectory, that is, r∗(θ, e) is one of the endpoints of an interval (r∗

2k−1, r∗
2k)

characterized by the fact that for all r ∈ (r∗
2k−1, r∗

2k) the motion is n-stable, and
there exist r′, r′′ /∈ (r∗

2k−1, r∗
2k) arbitrarily close to r∗

2k−1, r∗
2k, respectively, for which

the motion is n-unstable” [10]. Thus

W∗
n = ∂Wn = {r∗(θ, e) | θ ∈ [0,2π], e ∈ [0,1)} . (2.64)

2.4.6 Ballistic escape

Indeed, while the concept of the WSB originated in close connection with the
concept of weak capture, it is also applicable to discussions regarding ballistic escape
or ballistic ejection.

DEFINITION (Ballistic escape): P3 is ballistically ejected (or ballistically
escapes) from P2 along the solution φ(t) at a time t1 if

E (φ(t)) < 0, fort < t1 and E (φ(t)) ≥ 0, fort ≥ t1 (2.65)

where H ≡ E is still the SME defined in an Earth-centered RS.
DEFINITION (Resonant orbit): An m : n resonant orbit about the Earth, in

resonance with the Moon, is an orbit whose period T is related to the Moon’s
period T2 by

mT = nT2 (2.66)

where m, n are positive integers.
Consequently, equation 2.66 lead to the following condition on semi-major axis

a

a =
A

n

m

B2/3

(1 − µ)1/3. (2.67)
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Figure 2.18: Specific mechanical energy in a generic ballistic escape [11]

In Fig 2.18, the energy trend of a ballistic ejection trajectory is shown.

2.5 Ballistic escape in a high-fidelity model

By introducing external perturbations to the CR3BP (’fourth bodies’ for example),
it is possible to perform a ballistic escape so, other celestial bodies’ influence is
now taking into account.

Specifically, the behavior of initial orbits in resonance with the Moon in the
n-Body Problem (NBP) is investigated. This dynamics is even more intricate
than that of the CR3BP since the potential function contains non-autonomous
terms representing the gravitational attraction of the other celestial bodies on P3.
These terms become particularly significant when P3 moves in the region outside
the Moon’s orbit. In this outer region, the resonance motion characteristic of the
CR3BP is disrupted. Additionally, as noted by Belbruno (1990), particle P3 departs
from the Earth–Moon system and enters a heliocentric orbit: this constitutes a
ballistic escape and from that point a patched-conics approximation takes sense
[11].
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(a) Earth-centered frame (b) Sun-centered frame

Figure 2.19: The shown orbit is perturbated within the four-Body Problem,
taking into account Earth, Moon and Sun gravitational influence [11]

Figure 2.19 illustrates a ballistic escape trajectory integrated under the per-
turbatedy dynamics over a time span equal to 10 lunar periods. P3 completes
one orbit around the Earth before experiencing temporary capture by the Moon,
leading to its entry into the exterior region (see Fig. 2.19(a)). In this scenario P3 is
simply brought away from the Earth–Moon system due to the gravitational pull of
the fourth bodies. Subsequently, the particle transitions to a heliocentric orbit and
enters a temporary state where its motion is primarily governed by the Sun (as
reported in Fig. 2.19(b)). It’s noteworthy that this type of escape occurs without
the need for any maneuvers; it exploits exclusively the intrinsic dynamics of the
perturbated model.
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(a) Earth-centered frame (b) Sun-centered frame

Figure 2.20: The shown orbit is perturbated within the four-Body Problem,
taking into account Earth, Moon and Sun gravitational influence [11]

Another example is depicted in Fig. 2.20. In this instance, an initial resonant
orbit with the Moon is integrated for 13 lunar periods. Following the weak capture
at the Moon, P3 is ejected into a highly elliptical orbit around the Earth, with an
apogee of approximately 106 km. The perturbation caused by the Sun decreases
the perigee of this orbit, leading P3 to perform a flyby of the Earth and execute a
ballistic escape. The trajectory’s shape—from the weak capture at the Moon to the
Earth approach—is remarkably similar to exterior WSB transfers, as described by
Belbruno and Miller (1993) [12], Belbruno (1994, 2004) [13], and Belbruno (2007)
[14].

Once again, it’s important to emphasize that this mechanism leverages the
simultaneous gravitational attractions of the Sun, Earth, Moon and other bod-
ies, resulting in an escape with zero cost. This characteristic makes it highly
advantageous for spacecraft applications, particularly in the context of low-energy
interplanetary transfers aimed at reaching Mars and Venus with minimal propellant
mass, as discussed in [15].

2.6 The N-body problem
“The brief introduction to the N-Body Problem in this section takes its cue from the
work of R. Bate, Donald D. Mueller and Jerry E. White as reported in the text
Fundamentals of astrodynamics”.[16]
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Figure 2.21: The N-Body Problem [17]

At any given moment of its journey, a body is subject to the influence of many
gravitational masses and can experience forces such as drag, thrust, solar radiation
pressure, etc.

In the following discussion, a system of N-bodies(m1, m2, m3, ..., mN ) is assumed,
of which the one whose motion is to be studied is denoted by subscript i and will
be called the i-th body, mi.

The resultant vector of all gravitational forces and other external forces acting
on the i-th body will be used to determine the equation of motion(EOM).

By applying Newton’s law of universal gravitation, it is possible to determine
the gravitational force of the n-th body on the i-th one.

F⃗gn = −Gmimn

r3
ni

(r⃗ni) (2.68)

where
r⃗ni = r⃗i − r⃗n (2.69)

The vector sum, F⃗g, of all such gravitational forces acting on the i-th body may be
written as

F⃗g = −Gmim1

r3
1i

(r⃗1i) − Gmim2

r3
2i

(r⃗2i) − ... − Gmimn

r3
ni

(r⃗ni) (2.70)

Obviously, equation 2.70 does not contain the term

−Gmimi

r3
ii

(r⃗ii) (2.71)
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since the i-th body cannot exert a force on itself. Using the summation notation,
it’s possible to obtain the following simplification

F⃗g = −Gmi

nØ
j=1
j /=i

mj

r3
ji

(r⃗ji) (2.72)

The other external forces, as illustrated in Figure ?? is the composition of drag,
thrust, solar radiaton pressure, perturbations due to non-spherical shapes, etc.
Therefore, the combined force acting on mi is called F⃗T OT AL

F⃗T OT AL = F⃗g + F⃗OT HER (2.73)

and, assuming the the mass mi as constant, formulation of the i-th body acceleration
can be written

¨⃗ri = F⃗T OT AL

mi

(2.74)

where F⃗T OT AL is the vector sum of all gravitational forces and all other external
forces.

To compute a comprehensive and high-fidelity trajectory optimization, it is
necessary to utilize a dynamical system that closely calls to mind the real solar
system, accounting for all effects and perturbations derived from other celestial
bodies and phenomena. In this thesis, the JPL DE440 planetary ephemerides are
employed in the NBP dynamical system. This model incorporates gravitational
interactions from the main four bodies of the analysis (Sun, Earth, Moon, and the
spacecraft itself), while also considering various perturbations, effects and other
gravitational influences, which will be thoroughly discussed in the Chapter 3.
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High Fidelity Orbit
Propagator

The motion of a satellite operating beyond Geostationary Earth Orbit (GEO) is
affected by numerous forces. Among these forces is the central gravitation force
exerted by the Earth, while the others are collectively referred to as perturbations.
These perturbations can be categorized into:

• gravitational forces;

• non-gravitational forces.

The equation of motion can be modified to include these perturbations by
incorporating an additional acceleration term that accounts for their influence. This
modification adjusts the equation accordingly to accurately represent the satellite’s
motion under the combined effects of central gravity and various perturbations.

Recalling the equation of motion (EOM) for the two-body problem (2BP),
already seen in 2.6

¨⃗r = −µL
r2

r⃗

r
, (3.1)

the writing of the EOM in the high-fidelity (HF) model becomes clearer, within
which the compact acceleration term γp appears [16], grouping the different pertur-
bations as mentioned above

¨⃗r = −µL
r2

r⃗

r
+ γp. (3.2)

In the remainder of the chapter, the perturbative term γp will be exploded in
its various components and analysed more deeply.
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With reference to a high precision orbit propagator (HPOP) dedicated to low
earth orbit (LEO) [18], a HF model was implemented for the study within this
thesis.

3.1 Perturbing accelerations

The dynamical model gathers different perturbing effects on the bodies’ motion:
the acceleration induced by the gravitational forces of the Moon ¨⃗rM , the Sun ¨⃗rS and
the other solar system’s planets ¨⃗rP , the acceleration resulting from the Earth’s non-
sphericity and inhomogeneous mass distribution within itself ¨⃗rE, the perturbation
originating from direct ¨⃗rSP and Earth-reflected solar radiation pressure ¨⃗rA.

Consequently, the vectorial expression for the cumulative combined perturbing
acceleration from the system can be expressed as follows

γp = ¨⃗rM + ¨⃗rS + ¨⃗rP + ¨⃗rE + ¨⃗rSP + ¨⃗rA (3.3)

Further on each perturbation is discussed singularly in the following Sections.

3.1.1 Lunisolar effect

The DE440 JPL ephemerides [19] serve as the source for retrieving the positions
of the Moon (subscript ℓ) and the Sun (subscript s). Here, subscript b denotes
a generic celestial body, and its position vector r⃗b is represented in rectangular
coordinates xb, yb, zb with respect to the Earth in the ICRF, denoted as r⃗b =
xbI + ybJ + zbK. In this analysis, the small differences between the ICRF and
the EME2000 reference frames are neglected, and the latter is utilized. The
gravitational perturbation induced by the body, characterized by a gravitational
parameter µb and a position vector r⃗b relative to the Earth, is computed as the
difference between the gravitational accelerations acting on the spacecraft (⃗abg)
and the Earth (⃗abE). One has

a⃗bg = −
A

µb

R3
b

B
R⃗b −

A
µb

r3
b

B
r⃗b (3.4)

where R⃗b = r⃗ − r⃗b is the spacecraft relative position vector (and −r⃗b is Earth’s
relative position) with respect to the perturbing body, as extensively explained in
[20]. A schematic representation is provided in Figure 3.1 below.
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Figure 3.1: Schematic representation of third body gravitational perturbation in
EME2000 RF [20]

The acceleration is projected onto the topocentric frame at the epoch to facilitate
the extraction of perturbing components. In cases where the perturbing body is
significantly distant compared to the Earth-spacecraft distance (i.e., when r⃗b ≫ r⃗,
such as what happens with the Sun), and coplanarity is assumed, a simplified
expression for the tangential and radial components of the perturbation can be
derived (see [20] [21] [1]).

(⃗ass\c − a⃗sE) · ûj = 3
2

µs

r3
s

sin [2(ϑs − ϑ)] (3.5a)

(⃗ass\c − a⃗sE) · ûi = 3
2

µs

r3
s

{1 + cos [2(ϑs − ϑ)]} (3.5b)

where ûj and ûi are, respectively, the tangential and radial unit vectors.
The spacecraft velocity primarily consists of components along the tangential

and radial directions. Therefore, these terms can be utilized to estimate the positive
or negative effects of solar perturbation during the escape. Equations (3.5a) and
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(3.5b) illustrate that it is possible to considering the dependence of the perturbation
effect on the Sun-spacecraft position through the following two proportionality
terms

ςv = sin 2∆ϑ (3.6a)
ςu = 1 + cos 2∆ϑ (3.6b)

where ∆ϑ is the angular difference between the Sun and the spacecraft. Energy
increases due to the acceleration component along the spacecraft direction. A
large positive ςv tends to be more advantageous during the initial phase (tangential
velocity), whereas a large ςu should be preferred in the final phases, when the
velocity tends towards the radial direction. A large ςv occurs when the Sun is in the
first (0° < ∆ϑ < 90°) or third (−180° < ∆ϑ < −90°) quadrant in the spacecraft
rotating frame, whereas other ∆ϑ combinations may have null or negative influence
on the spacecraft energy if the spacecraft is continuously moving outward. On the
other hand, the radial acceleration cannot produce a negative effect (unless the
spacecraft is moving towards the Earth) and has a maximum positive influence
when the Sun is between the fourth and first quadrants (−45° < ∆ϑ < 45°) or
between the second and the third quadrants (∆ϑ > 135° and ∆ϑ < −135°).
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Figure 3.2: Tangential and radial components of the lunisolar perturbative effect
ςv and ςu

In general, as shown in Figure 3.2,the combined effect of the two solar perturba-
tion components may produce an overall positive effect on the spacecraft energy
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when the Sun is either close to −157.5° or 22.5° with respect to the Earth–spacecraft
direction.

The gravitational influence of the other celestial bodies in the solar system is
evaluated in a similar way to what is explained in this section. For the purposes
of a study of ballistic escape manoeuvres from the EM system, the motion of the
satellite will always occur in the proximity of the Earth and Moon, and the effect
of the other planets will be secondary to that of the Sun, which can be referred to
as the primary fourth body.

3.1.2 Earth asphericity

The perturbation is computed via the GRACE Gravity Model GGM03C [22].

The gravity field of the Earth exhibits variability both spatially and temporally,
constituting an integral constraint on the mean and time-variable mass distribution
within the Earth. To estimate global models for the mean and time-variable
Earth gravity field, data from the Gravity Recovery and Climate Experiment
(GRACE) mission has been utilized. Approximately every 30 days, science data
from GRACE have been employed to derive these models. This data includes
measurements of inter-satellite range changes, as well as accelerometer, GPS, and
attitude measurements obtained from each satellite involved in the mission.

As deeply explained in [23], GRACE mission utilize a method of Satellite-to-
Satellite Tracking exploiting a low-low concept, based on two satellites following each
other along the same orbit, a few hundred kilometers apart. The spacecraft in the
low orbit are the sensors in Earth’s gravity field. One-way and two-way microwave
intersatellite tracking systems can be used to measure the relative velocities. The
irregular variations of this velocity contain gravitational information. The lower
the satellite’s orbit the more pronounced and detailed this information becomes.
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Figure 3.3: GRACE mission [23]

Two identical satellites were launched on March 17, 2002, into a near-polar orbit
of about 500 km altitude with an inclination of 89°. In the nominal configuration
the satellites fly in-echelon, 220 km apart, within ±50 km.

In essence, the twin GRACE satellites can be considered as one instrument in
which:

• variations in the gravity field cause variations in the range between the two
satellites; areas of stronger gravity will affect the lead satellite first and
accelerate it away from the following satellite;

• range variations are measured by a high-accuracy microwave link; the rela-
tionship to the global reference frame is given by GPS;

• the observed range variations are corrected for non-gravitational effects by a
precise accelerometer.

The observations will produce monthly global gravity maps with a spatial resolution
of about 300 km on the ground, and a precision superior by a factor of up to 100
over existing models.

GRACE, a joint project between NASA and the German Space Agency (DLR),
measured changes in the local pull of gravity as water shifted around Earth due to
varying seasons, weather patterns, and climate processes.

GRACE introduced several innovations in Earth observation. It monitored the
loss of ice mass from Earth’s ice sheets, leading to an improved understanding of
the processes contributing to sea level rise and ocean circulation. Additionally,
GRACE provided insights into areas where global groundwater resources may be
diminishing or expanding and identified regions where dry soils are getting worse

43



High Fidelity Orbit Propagator

drought conditions. Moreover, GRACE monitored changes in the solid Earth,
putting a focus on geophysical phenomena.

The GRACE science mission concluded in October 2017, having made significant
contributions to our understanding of Earth’s dynamic systems [24].

The perturbing acceleration resulting from Earth’s non-sphericity is determined
by the gradient of the function Φ = V +µL/r, where V is The dimensional potential
due to the Earth asphericity of an object positioned at a geocentric distance r, with
a certain longitude θ and a certain latitude φ . Its components in the topocentric
frame are therefore evaluated as:

(aJ)u = ∂Φ
∂r

(3.7a)

(aJ)v = ∂Φ
∂θ

1
r cos φ

(3.7b)

(aJ)w = ∂Φ
∂φ

1
r

(3.7c)

Harmonics of order 8 and degree 8 are implemented along the associated legendre
functions and spherical harmonic coefficients [1].

Deriving with respect to r and θ is straightforward; however, deriving with
respect to φ necessitates the computation of derivatives of the associated Legendre
functions. These derivatives are obtained recursively, leveraging the properties of
Legendre polynomials[1].

3.1.3 Solar Radiation Pressure
Since the early days of the first radiometers, like Crookes’ radiometer, experiments
on light’s wave-particle duality have demonstrated that light can exert a net
momentum when it strikes a surface [1]. Photons emitted from the Sun carry
momentum and travel at the speed of light c. While some dynamical models
consider spacecraft to be massless, they do possess specific physical properties. The
spacecraft utilized in the analysis exhibits characteristics as outlined in Table 3.1.

Quantity Value
Mass m0 500 kg

Cross-section Surface S 4 m2

Surface reflectivity Cr 1

Table 3.1: SC characteristic values

The photon pressure p at a generic distance r from the Sun, considered a point
source of light emitting spherical wavefronts, is given by:
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p = I
4πr2 c, (3.8)

where I = 1367W/m2is the radiated power, also referred to as the solar constant
or solar irradiance, which scales with the inverse squared distance from the Sun
in Astronomical Units. The photon pressure at r∗ = 1AU equals p∗ = 4.55682 ×
10−6N/m2. By defining the quantity

Γ = (1 + Cr)pS (3.9)

the acceleration on a spherical body of mass m and surface S at a distance from
the Sun rss\c is

(asrp)u = − Γ
mr3

ss\c

[(rsE)u − r] (3.10a)

(asrp)v = − Γ
mr3

ss\c

(rsE)v (3.10b)

(asrp)w = − Γ
mr3

ss\c

(rsE)w (3.10c)

Once more, the Solar Radiation Pressure (SRP) is a function of r, θ and φ,
but it also depends on the mass of the spacecraft itself, m, which could vary
along the trajectory if thrusting maneuvers are performed; within this study, since
it is intended to carry out ballistic type manoeuvres under the assumption of
chemical and therefore impulsive propulsion, the mass of propellant emitted as
a result of the required burn only ( provided in the initial phases of the mission)
will be neglected and m considered as constant. The formulation presented here
is a partially simplified one in which the spacecraft’s surface is assumed to be
consistently facing the Sun at all times, thereby neglecting changes in perspective
and effective area [1] [25].

3.2 Integraton method
One approach to ensure accuracy in solving an Initial Value Problem (IVP) is to
solve the problem twice using step sizes h and h/2, and then compare the solutions
at mesh points corresponding to the larger step size. However, this method requires
a significant amount of computation for the smaller step size and may need to be
repeated if the agreement is not satisfactory.

The Fehlberg method provides a solution to this problem by incorporating a
procedure to determine if the proper step size h is being used. At each step, two
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different approximations for the solution are computed and compared. If the two
approximations are in close agreement, the current step size is deemed appropriate,
and the solution is accepted. However, if the two approximations do not agree to a
specified accuracy, the step size is reduced. Conversely, if the agreement between
the approximations exceeds the required accuracy, the step size is increased. [26].

3.2.1 Initial Value Problems
Obtaining a particular solution of an n − th order differential equation can be
achieved by assigning specific values to the n constants in the general solution.
However, in typical applications of differential equations, you are often tasked with
finding a solution of a given equation that satisfies certain preassigned conditions.
These conditions, known as initial conditions, are crucial in determining the specific
solution that best describes the physical system or phenomenon under consideration.
Solving the differential equation subject to these prescribed conditions allows us
to obtain a solution that is not only mathematically correct but also physically
meaningful in the context of the problem at hand.

An n − th order IVP consists of an n − th order differential equation
F (x, y, y′, y′′, ..., y(n)) = 0 (3.11)

together with n (initial) conditions of the form
y(c) = k0, y′(c) = k1, y′′(c) = k2, . . . , y(n−1)(c) = kn−1. (3.12)

where c and k0, k1, . . ., kn−1 are given numbers.

3.2.2 Runge Kutta Fehlberg method
In 1969, Erwin Fehlberg introduced a variation of the Runge-Kutta method [27],
which utilizes an estimate of local error to determine an appropriate step size [Ref
6]. For a given value of yn, Fehlberg’s method calculates two estimates of yn+1
using fourth- and fifth-order Runge-Kutta formulas. By comparing these two values
of yn+1, an estimate of the local error is obtained. Subsequently, the step size
is adjusted based on the magnitude of this local error [28]. This adaptive step-
size control mechanism ensures that the numerical integration scheme maintains
accuracy while minimizing computational effort.

Fehlberg first uses

yn+1 = yn +
6Ø

i=1
ciki (3.13)

where the ki satisfy

ki = hnf(xn + αihn, yn +
i−1Ø
j=1

βijki) i = 1, . . . , 6. (3.14)
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This method requires six function evaluations per step. The coefficients ci

are determined by expanding yn+1 in powers of hn so that it aligns as closely as
possible with the Taylor series solution. Fehlberg discovered that the two expansions
match until the h6

n term, thus rendering the method fifth-order accurate. This
deviates from the behavior of nth-order Runge-Kutta methods, where n = 1,2,3,4,
which typically yield errors of (n + 1)st order. Obtaining one additional order
of accuracy usually requires two more function evaluations. However, Fehlberg’s
method leverages the sixth function evaluation by determining a second value y∗

n+1
using the following expression

y∗
n+1 = yn +

6Ø
i=1

c∗
i ki (3.15)

The local error is then estimated by

Dn =
6Ø

i=1
(ci − c∗

i )ki (3.16)

which is used for stepwise control.
Increasing the accuracy of the integration method, Fehlberg also introduced a

variation to the Runge-Kutta method with seventh-order evaluation [29]. Naming it
as Runge-Kutta-Fehlberg (RKF) 7(8) and following the rationale explained above
within this Section, a semplifying guide-line is reported below:

1. Coefficient Calculation: The RKF 7(8) method computes solutions in two
main steps. The step at order 7 computes an estimate of the solution, while
the step at order 8 computes a more accurate estimate;

2. Step at Order 7 : In this step, coefficients are calculated to estimate the
solution using a 7th order Runge-Kutta method. This is the initial step that
produces an approximate solution;

3. Step at Order 8 : Subsequently, using the same starting point and coefficients,
a second step is performed with an 8th order Runge-Kutta method. This
yields a more accurate estimate of the solution;

4. Error Calculation: After obtaining estimates from the solutions at order 7
and order 8, an estimated error is calculated by comparing the two estimates.
If the error is acceptable relative to a certain specified tolerance criterion, the
order 8 solution is used. Otherwise, an additional step is performed to reduce
the error;

5. Temporal Step Update: Based on the calculated error, the temporal step can
be adapted to ensure greater accuracy in the solution. This adjustment of the
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temporal step helps maintain a desired level of accuracy without having to
perform too many function evaluations.

Even if computational cost is heavier than lower orders Runge-Kutta embedded
method, high algebraic order RKF methods are commonly used when stringent
tolerances are demanded [30].

Fehlberg propose a numerical comparison between RKF 7(8) method and a
standard method such as ones based on SHANKS’s formulas. Studying a generical
problem analised in “Classical Fifth-, Sixth-, Seventh-, and Eighth-Order Runge-
Kutta Formulas with Stepsize Control” [29], which relative coefficients are shown in
Figure 3.5

the resulting comparison are reported in Figure 3.4

Figure 3.4: Comparison of seventh-order methods for given x and Tolerance [29]

The table demonstrates that in this example, the computational running time
for RK7(8) formula is only approximately 45% of the running time required for
SHANKS’s 7th-order one. The relatively large number of integration steps (1423)
necessary for SHANKS’s formula reflects the unfavorable magnitude of its error
coefficients.
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Figure 3.5: Runge-Kutta coefficients
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3.3 NASA’s NAIF SPICE Toolkit
The Spacecraft Planet Instrument Camera-matrix Events (SPICE) project [31]
was initiated at National Aeronautics and Space Administration (NASA) in the
1980s in response to the increasing complexity of space missions and the need to
standardize the way data regarding the position and orientation of celestial bodies
were represented and utilized in calculations. The toolkit was developed at NASA’s
Jet Propulsion Laboratory (JPL), within the Navigation and Ancillary Information
Facility (NAIF) with the aim of providing scientists and engineers with a common
tool to work with spatial data from a wide range of missions.

As a direct descendant of its predecessor, the Supplemental Experiment Data
Record (SEDR) program, today the SPICE toolkit is utilized at various levels and
by numerous space agencies, as shown in Figure 3.6.

Figure 3.6: Space Agencies using SPICE in 2023

3.3.1 Generic SPICE capability
Utilizing NAIF’s SPICE Toolkit within a space analysis (generically reported in
Fig. 3.7) permits to compute many kinds of observation geometry parameters at
selected times:

• Positions and velocities of planets, satellites, comets, asteroids and spacecraft;

• Size, shape and orientation of planets, satellites, comets and asteroids;
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• Orientation of a spacecraft and its various moving structures;

• Instrument field-of-view location on a planet’s surface or atmosphere.

Figure 3.7: Scheme of a generic space scenario

Introducing a SPICE data overview allows us to identify various types of data
kernels essential for conducting analyses within the SPICE environment. Table 3.2
provide a brief summary of these data files typologies.

3.3.2 SPICE Toolkit application at the analysis
For what concerns the work carried out within this thesis, some useful kernels have
been recalled:

• Spacecraft and Planet Kernel, SPK - de440s.bsp;

• Leapseconds Kernel, LSK - naif0012.tls.

Now, let’s introduce a brief description of the most useful tools for this disserta-
tion from the SPICE library that are employed to compute the necessary ephemeris
of celestial bodies:
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Logical Components Kernels Contents

Planet and
Spacecraft SPK

Space Vehicle or
Target Body
Trajectory
(Ephemris)

Planet PCK
Target Body Size,

Shape and
Orientation

Instrument IK
Instrument Field of

View Size, Shape and
Orientation

Camera-Matrix CK

Orientation of Space
Vehicle or any

articulating
Structure on it

Events EK Events Information

Other FK Reference Frame
Specifications

Other LSK Leapseconds
Tabulation

Other SCLK Spacecraft Clock
Coefficients

Other DSK Digital Shape Models

Table 3.2: SPICE kernels

• cspice_furnsh: the routine cspice_furnsh loads SPICE kernel files into MAT-
LAB;

• cspice_kclear : the routine cspice_kclear clears the KEEPER system: unload
all kernels, clear the kernel pool, and re-initialize the system;

• cspice_str2et: the routine cspice_str2et converts a string representing an
epoch to a double precision value representing the number of TDB seconds
past the J2000 epoch corresponding to the input epoch;

• cspice_spkezr : the routine cspice_spkezr returns the state (position and
velocity) of a target body relative to an observing body, optionally corrected
for light time (planetary aberration) and stellar aberration. It is obviously
necessary to define in input the time or the timespan of observation and the
reference frame considered.
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Chapter 4

Genetic Algorithm

In the context of analyzing space trajectories and escape manoeuvrs from Earth
and Moon’s sphere of influence in an n-Body Problem, the design and optimization
of such trajectories represent a crucial challenge. The inherent complexity of
these problems calls for advanced computational methods to effectively explore the
solution space. Among various optimization approaches, Genetic Algorithms (GAs)
emerge as a powerful tool to tackle the intricacies of space trajectories.

As explained in [32], GAs draw inspiration from the evolutionary mechanisms
of nature, replicating the process of natural selection to generate optimal or near-
optimal solutions. These algorithms are particularly well-suited for problems where
the solution space is vast and intricate, as is the case with space escape manoeuvrs.
In this study, a Genetic Algorithm specifically designed for pseud-optimizing space
escape trajectories is presented. The GA plays a pivotal role in the research
approach, enabling the exploration of a wide range of parameters and efficiently
generating high-quality solutions.

In this Chapter, a detailed description of written GA will be provide, elucidating
its key components and fundamental principles. It will also be examined how the
GA has been applied to the specific space escape trajectories considered in this
research. The goal is to offer a clear understanding of the crucial role played by
the GA in optimizing space trajectories and how it contributes to the significant
results achieved in the context of our investigation.
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4.1 Optimisation Overview
This section will outline and categorize the techniques that can be utilized to tackle
the optimization of space trajectories. These methodologies, when appropriately
configured, are applicable to a wide range of scenarios beyond just astrodynam-
ics. Depending on the specific problem being analyzed, certain methods may
demonstrate varying degrees of effectiveness.

As widely clarified in [32], before tackling an optimization problem, three
fundamental choices need to be made, which are crucial for the optimization itself:
determining the merit function (or fitness function), identifying the variables, and
establishing the constraints:

• The merit function represents the element of the problem that one actually
aims to minimize. Constraints that the problem under analysis is subject to
can also be included in the fitness function, so its correct choice is crucial for
optimization purposes;

• The variables determine the value of the merit function. They can be chosen
depending on the specific case. For example, when addressing an optimization
problem of interplanetary orbit transfers, the variables could represent the
thrust angle, transfer time, delta-V vector’s components, etc;

• The constraints represent the limitations imposed on the variables. For
example, if a variable represents the value of an angle, it can be limited to a
specific interval.

When addressing an optimization problem, it is not always possible to find all the
essential elements. Indeed, the existence of a merit function is not guaranteed; one
may work with a known solution to verify if certain constraints are met. Conversely,
in some cases, multiple fitness functions may exist, leading to what are known as
multi-objective optimization problems. These multi-objective problems can also be
simplified to single merit function optimization problems. Additionally, variables
and constraints may not always be required in every optimization scenario.

Optimization problems are distinguished into two types[33]:

• local optimization problems;

• global optimization problems.

DEFINITION (local minimum point): A point x∗ is called a local minimum if
there exists an δ > 0 such that for all x ∈ Rn satisfying ∥x − x∗∥ < δ, we have
f(x∗) ≤ f(x).

DEFINITION (global minimum point): A point x∗ is called a global minimum
if there exists a δ > 0 such that for all x ∈ Rn, we have f(x∗) ≤ f(x).
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Figure 4.1: Local and global minima [34]

A schematic representation is shown in Figure 4.1. Taking full advantage of the
ad-hoc genetic algorithm written for this thesis work, what we will do is search for
some pseudo-minimum points that, physically, return a result of interest in terms
of ballistic manoeuvering.

4.1.1 Local Optimisation methods
In general, methods to solve local minimum problems fall into two categories:
indirect methods and direct methods [35] [36] [37] [38].

Indirect methods [32] [39] in optimization introduce a state vector and optimize
the control variables indirectly by adjusting the initial values of this state vector.
These methods are based on computing variations, and typically formulate the
optimal control law as a Two Points Boundary Value Problem (TPBVP). An
example of a function provided by MATLAB to solve TPBVP is the function
called bvp5c. This function integrates a system of differential equations of the form
y′ = f(x, y) subject to the boundary conditions described and the initial solution
guess. To use bvp5c, it typically start by creating the initial guess. This initial
guess also defines the points at which the boundary conditions are enforced.

The objective is to solve this problem in a manner that satisfies the final
conditions and constraints. If a solution to the TPBVP is found, it represents
an optimal solution for the specific initial conditions and constraints. However,
obtaining a solution can be challenging due to the small convergence domain, which

55



Genetic Algorithm

is highly sensitive to the initial values of the variables and may not be intuitively
clear. When optimizing space trajectories, the addition of gravity assist manoeuvrs
further exacerbates the sensitivity to initial variables and reduces the convergence
domain significantly.

To address these challenges, techniques are employed where a solution to a
problem similar to the one being analyzed is known. The problem under analysis is
then modified slightly and solved with the initial conditions of the known problem.
This approach allows for obtaining a compatible optimal solution for the problem
being analyzed. However, indirect methods are often difficult to implement with
automatic and global optimization programs due to their long execution times and
the small convergence region. Despite their convergence difficulties and limited
robustness, indirect methods offer high numerical accuracy and require a low
number of parameters.

In direct methods [32] [39], unlike indirect ones, there is continuous control, and
the state variables are often discretized over certain time or length intervals. The
result of this is a nonlinear programming technique that directly optimizes a specific
performance index. In the case of interplanetary transfers, such a performance
index can typically be the flight time or the amount of propellant used. Based on
the performance index, discrete control variables are modified and optimized to
satisfy boundary conditions and optimization criteria. There are several methods
for discretizing control variables, and the choice of discretization strategy can
significantly influence the final optimal solution. The number of control variables
in the use of direct methods can become quite high, and for this reason, such types
of problems are limited by current nonlinear programming techniques. Since direct
methods discretize a continuous problem and although the accuracy of the results is
sufficiently accurate for conceptual design analysis, the solution found is considered
suboptimal. The main advantages of techniques using direct methods are high
computational efficiency and robust convergence. The solution calculated with
direct methods is less sensitive to initial conditions compared to those calculated
with indirect methods. Additionally, these initial conditions are more physically
intuitive compared to indirect methods. However, the choice of discretization for
the purpose of calculating the optimal solution affects computation times. Indeed,
very fine discretization, despite providing an accurate solution, results in significant
computation times. For this reason, various discretization techniques have been
calculated and tested, in order to guide those who want to use direct methods
towards an optimal strategy for solving a specific problem.

Hybrid methods [32] [39] numerically integrate the Euler-Lagrange equations
and control the vehicle through a vector. Like direct methods, hybrid methods
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solve a nonlinear programming problem, but with the Euler-Lagrange multipliers
completing part of the vector parameters while maximizing or minimizing some
weight functions. Hybrid methods numerically search for a set of parameters
that extremize the weight function while explicitly satisfying only the kinematic
boundary conditions.

4.1.2 Global Optimisation methods
Global optimization algorithms [40] [41] can be broadly categorized into three main
classes:

• Stochastic Algorithms: these algorithms start from a suitable choice of
samples and are capable of manipulating these samples to find local minimum
conditions. Stochastic algorithms are particularly useful in scenarios where the
merit function is noisy or non-differentiable, making traditional gradient-based
methods ineffective. Examples of stochastic algorithms include evolutionary
algorithms, simulated annealing, and genetic algorithms;

• Guaranteed Algorithms: in contrast to stochastic algorithms, guaranteed
algorithms are deterministic and capable of providing rigorous guarantees on
the computation of a local minimum with high accuracy. These algorithms
are often based on mathematical optimization techniques such as convex
optimization or branch-and-bound methods;

• Algorithms with Metamodels: these algorithms leverage the construction
of metamodels, which are simplified models used to represent complex systems,
to search for a global optimal solution. An efficient exploration of the design
space is enabled in scenarios where direct evaluation of the objective function
is computationally expensive or time-consuming. Common techniques used in
algorithms with metamodels include response surface methodology, kriging,
and radial basis functions.

The stochastic algorithms further divide into two main subclasses:

• Evolutionary Algorithms: these algorithms aim to find a global solution by
emulating the natural process of evolution: the most successful individuals are
able to reproduce and persist into the next generation, thereby ensuring that
the value of the fitness function improves over generations. However, there is
a possibility that even individuals with low fitness can survive and reproduce;

• Simulated Annealing: these algorithms seek a global solution through
iterative update steps. The magnitude of these updates is proportional to a
predefined set of parameters, which function akin to a temperature. Similar
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to the annealing process in metallurgy, the temperature is initially raised
to facilitate rapid optimizations, and subsequently lowered to attain greater
stability.

An additional subdivision of evolutionary algorithms is made into three sub-
classes:

• Genetic Algorithms (GAs): These algorithms (see Figure 4.2) conduct an
exhaustive exploration of the space where the optimal solution might exist, as
well as regions that may hold additional and superior solutions. Populations
of individuals undergo modifications through the utilization of specific genetic
operators, including mutation, crossover, and selection operators;

• Evolutionary Programming: The classical form of these algorithms in-
volves the use of only one genetic operator, mutation, unlike GAs. They
simulate natural evolution at the phenotypic level; furthermore, since a selec-
tion process is involved, these algorithms are based on a tournament selection.
Such selection involves a population consisting of both parents and offspring
individuals;

• Evolutionary Strategies: These algorithms are similar to Evolutionary
Programming in that they simulate natural evolution at the phenotypic level,
but with the difference that the selection operator is of a recombinative type.

Due to the complexity, the number of variables (multi-objectives optimization
capabilities) involved and the interest in investigating a broader spectrum of possible
trajectories (whether or not using Earth Gravity Assist (EGA) or Moon Gravity
Assist (MGA)), using and writing a genetic algorithm proved to be the best choice.

4.1.3 Genetic Algorithm Overview
As seen above, a GA works as a stochastic optimization technique grounded in the
biological principles of Darwinian evolution [42] [43]. It integrates operators that
emulate natural selection and reproduction by employing a probabilistic search
within a population of designs. The population undergoes evolutionary changes
through the application of genetic operators, ultimately identifying the design most
adapted to a given fitness landscape. This fitness landscape is delineated by a
fitness function (previously named as merit function too) typically comprised of
an objective function and a supplemental penalty function if the problem entails
constraints. Unlike calculus-based methods, GAs are conceived as a framework for
globally exploring the design space. They enable exploration of complex, expansive,
and multimodal design spaces, unlike methods confined to locally optimal solutions
in the vicinity of an initial estimate.
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Genetic algorithms prove effective for challenging optimization problems char-
acterized by nonconvexity, multimodality, or discontinuity in the design space.
Nevertheless, while GAs excel in tackling complex problems, they are computa-
tionally intensive, often necessitating numerous function evaluations due to their
population-based search. For continuous unimodal problems or situations where a
local search suffices, traditional calculus-based techniques offer greater efficiency,
demanding fewer function evaluations owing to their utilization of gradient infor-
mation in a point-to-point search. Furthermore, as GAs do not leverage gradients,
there exists no proof of convergence alike the Kuhn-Tucker conditions for calculus-
based methods [44]. Moreover, GAs may not consistently achieve high precision
due to the restricted resolution inherent in the binary encoding of design variables.

Additionally, genetic algorithms were not originally tailored for unconstrained
problems, hence may exhibit limited efficacy in tightly constrained scenarios featur-
ing small feasible regions. Despite these limitations, the GA emerges as a potent
optimization tool for problems surpassing the capabilities of traditional methods.
Its population-based formulation, albeit computationally burdensome, remains
pivotal to its effectiveness. By incorporating probabilistic transition rules within a
population rather than calculus-based rules for point-to-point search, GAs prove
adept at optimizing problems devoid of gradient information, such as combinatorial
or mixed problems. Moreover, the population-based approach endows GAs with
the ability to avoid to get stuck in local optima. Through simultaneous exploration
of multiple designs, the GA search process can strongly comprehensively traverse
fitness landscapes characterized by numerous local optima [45].

4.2 Genetic Algorithms Structure
The GA is a computational method originally proposed by J.H. Holland in 1992
and inspired by the Darwinian theory of natural selection and inherits from it a
consequent logic of nomenclature. The fundamental components of a GA include
encoding cheme, chromosome representation, fitness (or merit) selection, and
biological-inspired operators.

Each chromosome (see Fig. 4.3) comprises a defined number of elements referred
to as "genes" (or characters, decoders). Each gene has the potential to influence the
traits or behavior of one or more individuals. The genes pertaining to a specific
individual are situated at specific positions termed as "string positions."

Typically, chromosomes (also referred to as strings, genotype or individuals)
are represented as strings, where there are a defined number of loci or genes or
characters (specific position on the chromosome). Each gene has the potential to
influence the traits or behavior of one or more individuals. The genes pertaining to
a specific individual are situated at specific positions termed as "string positions.
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Figure 4.2: Basic structure of genetic algorithm [46]

These chromosomes serve as points in the solution space and undergo iterative
processing through genetic operators, ultimately leading to the replacement of the
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Figure 4.3: Population, Chromosomes and Genes

population.
A merit function is employed to assign a value to each chromosome in the

population, aiding in fitness selection. The biological-inspired operators encompass
selection, mutation, and crossover. During selection, chromosomes are chosen based
on their fitness values for further processing. In the crossover operator, a random
locus is selected, and subsequences between chromosomes are exchanged to generate
offspring. Mutation involves randomly flipping some bits of the chromosomes based
on a predefined probability [47].

4.2.1 Encoding Schemes
For most computational problems [47], the choice of encoding scheme—how in-
formation is converted into a particular form—is crucial. The information needs
to be encoded into a specific bit string, and different encoding schemes are used
depending on the problem domain [48].

Binary encoding is the most common scheme used. Each gene or chromosome
is represented as a string of 1s and 0s [49]. In binary encoding, each bit signifies
a characteristic of the solution. It facilitates quick implementation of crossover
and mutation operations, although it requires additional effort for conversion and
the algorithm’s accuracy hinges on this conversion. The arrangement of the bit
stream varies according to the problem. Binary encoding is not suitable for certain
engineering design problems due to epistasis and natural representation issues.

In octal encoding, genes or chromosomes are represented as octal numbers (0–7),
while hexadecimal encoding employs hexadecimal numbers (0–9, A-F) [50] [49].
Permutation encoding is typically used for ordering problems, where genes or
chromosomes are represented by strings of numbers indicating their positions in a
sequence.

Value encoding represents genes or chromosomes using strings of various values,
which can be real numbers, integers, or characters [51]. This scheme is beneficial
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for problems involving complex values where binary encoding may not suffice, such
as in neural networks for determining optimal weights.

Tree encoding represents genes or chromosomes as trees of functions or commands,
often resembling the structure of expressions in programming languages [52]. It is
commonly used in evolving programs or expressions.

For the current study, a value encoding scheme was selected. Table 4.1 displays
the various alleles defining the generic chromosome. The study was divided into two
parts: initially focusing on the 3-Body Problem and subsequently transitioning to
a more intricate high-fidelity model. However, the genetic algorithm developed was
designed to provide flexibility in transitioning between these study phases. In this
context, each individual consists of the perturbative delta-V of initial conditions
and a specified mission duration.

∆V ϑ φ T

Table 4.1: Genes of the generic individual

Moreover, this genetic approach employs the boundary problem principle, where
the value constituting each individual’s gene is selected within a lower and upper
limit of the parameter being considered, randomly distributed between these bounds.
Each individual will comprise four genes, structured as follows:

• ∆V : this gene represents, in absolute value, the velocity increment necessary
to perturb the initial conditions and guide the spacecraft onto the trajectory,
the quality of which will subsequently be evaluated by the merit function;

• ϑ: this gene represents the angle between the spacecraft’s velocity vector and
the direction of thrust exerted by the spacecraft’s propulsion system within
the plane of the velocity vector, commonly referred to as the in-plane thrust
direction or simplier in-plane angle;

• φ: this gene represents the angle formed between the spacecraft’s velocity
vector and the direction of thrust applied by the spacecraft’s propulsion system
in a direction perpendicular to the plane of the velocity vector, commonly
referred to as the out-of-plane thrust direction or simplier out-of-plane angle;

• T : this gene represents the total duration of the manoeuvre, starting from
the instant when the circular lunar orbit conditions are perturbed.

Equations (4.1) give an analytical writing of the initial condition.
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x0,i = xℓ + h0 · cos(ϑi + ϑℓ) · cos(φi + φℓ) (4.1a)
y0,i = yℓ + h0 · sin(ϑi + ϑℓ) · cos(φi + φℓ) (4.1b)
z0,i = zℓ + h0 · sin(φi + φℓ) (4.1c)
u0,i = uℓ + VC · cos(ϑi + ϑℓ + 90°) · cos(φi + φℓ) (4.1d)
v0,i = vℓ + VC · sin(ϑi + ϑℓ + 90°) · cos(φi + φℓ) (4.1e)
w0,i = wℓ + VC · sin(φi + φℓ) (4.1f)

The initial conditions refer to the state immediately following the perturba-
tion of the starting circular lunar orbit. Specifically, the state vector X0,i =
{x0,i, y0,i, z0,i, u0,i, v0,i, w0,i}, where the subscript ℓ pertains to the Moon, and the
subscript i pertains to the i − th individual within the population, is composed of
a combination of the following terms:

• (x, y, z): position information;

• (u, v, w): velocity information;

• ϑ: in-plane angle information;

• φ: out-of-plane angle information;

• VC : starting circular lunar orbit velocity, in magnitude;

• h0 starting circular lunar orbit height equal to 4000 km above the lunar surface.

where Moon’s state vector has been obtained by the utilization of the NASA
NAIF’s SPICE toolkit and consequent ephemeris extraction, as seen in Section 3.3.

dvx,i = ∆Vi · cos(ϑi + ϑℓ + 90°) · cos(φi + φℓ) (4.2a)
dvy,i = ∆Vi · sin(ϑi + ϑℓ + 90°) · cos(φi + φℓ) (4.2b)
dvz,i = ∆Vi · sin(φi + φℓ) (4.2c)

By recombining each other the different alleles of the i − th chromosome,
equations (4.2) are obtained and, accordingly to equations reported in (4.3), the
initial conditions for the integration phase are defined.
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(4.3)

4.2.2 Merit Function
The merit function serves as the milestone of the optimization process, embodying
a multi-objective framework that encapsulates various criteria, objectives, and
constraints inherent in the optimization problem. This multifaceted approach
is crucial for tackling complex real-world scenarios where conflicting goals and
trade-offs abound. Each objective or constraint integrated into the merit function
represents a unique aspect of the optimization problem, spanning from minimizing
fuel consumption to maximizing mission success probability, adhering to trajectory
constraints, or meeting specific mission requirements.

The incorporation of multiple objectives enables a comprehensive evaluation
of potential solutions. An essential aspect of the multi-objective fitness function
involves assigning distinct weights to individual objectives and constraints. These
weights convey the relative importance of each criterion within the optimization
problem. Through careful adjustment of these weight assignments, specific objec-
tives can be prioritized over others, aligning the optimization process with the
mission’s unique goals and priorities [32].

The significance of weight assignment cannot be exaggerated. It empowers
decision-makers to finely adjust the optimization process, ensuring its precise
alignment with objectives. In conclusion, the multi-objective nature of the merit
function, coupled with deliberate weight allocation to objectives and constraints,
enhances the versatility and efficiency of the genetic algorithm. This capability
enables the algorithm to explore a broad spectrum of solutions.

During the course of the research, three distinct merit functions were adopted:

• The first merit function was tailored for analyzing the problem within the
framework of the CR3BP, aiming to enable the spacecraft to achieve the WSB
conducive to future ballistic escape maneuvers. The objectives are reported
below:
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– Apogee objective: the primary objective is to achieve an altitude of 1.5
million kilometers above Earth’s surface [53]. This objective is assigned
the highest weight within the merit function, indicating its paramount
importance in the optimization process;

– Apogee velocity objective: the secondary objective is responsible for en-
suring that the speed of the spacecraft within the WSB is as low as
possible;

– Delta-V minimisation objective: being at the preliminary stage of research,
this objective helped to steer the range of delta-V modulus values required
to bring the spacecraft into the WSB towards lower values.

• The second merit function leveraged the concept of Pareto efficiency, facilitating
a multi-objective examination of the escape maneuver itself. This involved
analyzing case studies that included or excluded gravitational slingshots within
the HF model seen in Chapter 3, allowing for a comprehensive exploration of
trade-offs and optimal solutions. The objectives are reported below:

– First apogee objective: in order for the spacecraft to perform a ballistic
escape, it must first reach a gravitational interdiction zone (previously
recognised within the CR3BP as WSB). This objective ensures, in the
course of evolution, that this target is reached;

– First apogee velocity objective: similarly to what seen earlier, the spacecraft
has to stay within high gravitational instability zone at a lower that is as
low as possible;

– Last apogee objective: once stationed in the ex-WSB, this objective allows
the evolution of the species to be directed towards a family of trajectories
in which the spacecraft is influenced by the gravitational attraction of the
fourth-bodies to such an extent that it evades finding itself in a zone in
which the patched-conics approximation can be consistently applied;

– Perigee objective: this objective is an on/off switch objective and allowed
for both trajectories that operated gravity assist and trajectories that did
not.
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Figure 4.4: Multi-Objectives error trend

An example of genetic evolution guided by this merit function is shown in the
Figure 4.4. From the figure, it is evident how the evolution is based on the
concept of Pareto Efficiency [54].

DEFINITION (Pareto Efficiency): A solution (or individual) is considered
Pareto efficient if there does not exist another solution in the set of considered
solutions that is better in all objectives without being worse in at least one.
In other words, a solution is Pareto efficient if it cannot be improved in all
objectives simultaneously without worsening at least one of the objectives.

This definition of Pareto Efficiency is crucial in the context of genetic algo-
rithms as it helps identify solutions that represent the best trade-offs among
conflicting objectives. During the execution of the genetic algorithm, achiev-
ing Pareto efficient solutions aids in identifying the so-called "Pareto front,"
which represents the non-dominated solutions and hence the best possible
alternatives.

• The third merit function was developed after defining the range of interest for
the variables involved and refining the boundaries between them. This merit
function enabled the differentiation of various solutions (elite trajectories)
based on the energy level attained at the Earth-Moon binary system’s escape.
The objective is reported below:

– Specific mechanical energy objective: this objective has allowed the search
for trajectories that, by performing a ballistic escape, reach the same
escape at different fixed energy levels (and consequently fixed velocities).
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Figure 4.5: C3 error trend

Figure 4.5 illustrates how, from a perspective of sequential optimization, once
the appropriate operating ranges for mission success have been identified,
focusing solely on energy as the merit parameter allows for a better refinement
of the desired final solution.

4.2.3 Selection techniques
As widely exposed in [47] [52], selection, a critical step in genetic algorithms,
determines whether a particular string will participate in the reproduction process.
This step is also known as the reproduction operator, and the convergence rate of a
genetic algorithm depends on the selection pressure. Various selection techniques are
employed, including roulette wheel, rank, tournament, Boltzmann, and stochastic
universal sampling.

In roulette wheel selection, all possible strings are mapped onto a wheel portioned
according to their fitness values. The wheel is then randomly rotated to select
specific solutions for the next generation. However, this method suffers from
errors introduced by its stochastic nature. To address this, De Jong and Brindle
introduced determinism in the selection procedure.

Rank selection, a modified form of roulette wheel selection, assigns ranks based
on fitness values, reducing the likelihood of prematurely converging solutions to
local minima.

Tournament selection, proposed by Brindle, involves selecting individuals in
pairs based on fitness values. Individuals with higher fitness values are added to
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the next generation pool.
Stochastic universal sampling extends roulette wheel selection by selecting

individuals at evenly spaced intervals from a random starting point. While it
performs well for the Travelling Salesman Problem, traditional roulette wheel
selection is more effective as problem size increases.

Boltzmann selection, based on entropy and sampling methods from Monte Carlo
Simulation, mitigates premature convergence issues. It gives high probability to
selecting the best string while executing quickly, although information loss may
occur, which can be managed through elitism.

Elitism selection, introduced by K. D. Jong, ensures that the best individual from
each generation is always propagated to the next. If the highest fitness individual
is not selected through normal procedures, the elitist individual is automatically
included in the next generation.

For the implementation of the genetic algorithm utilized in this study, the
roulette wheel selection method was selected as the selection mechanism. In this
approach, individuals were reordered based on their merit values, and an elitist
strategy was employed. Specifically, only the top 30% of the best individuals
proceeded to the next generation, while genetic operators such as crossover and
mutation were applied to this subset to generate the complete new generation.

4.2.4 Crossover operators
Crossover operators are used to generate the offspring by combining the genetic
information of two or more parents. The well-known crossover operators are single
point, two-point, k-point, uniform, partially matched, order, precedence preserving
crossover, shuffle, reduced surrogate and cycle [47].

In a single-point crossover, a random crossover point is selected, and the genetic
information of two parents beyond that point is swapped with each other.

In two-point and k-point crossovers, two or more random crossover points are
chosen, and the genetic information of the parents is swapped based on the segments
created by these points.

In uniform crossover, parents are not decomposed into segments, and each gene
is treated separately. The decision to swap genes with the corresponding location
of another chromosome is made randomly.

Partially Matched Crossover is one of the most frequently used crossover opera-
tors, known for its superior performance compared to other methods. Proposed
by D. Goldberg and R. Lingle, Partially Matched Crossover involves one parent
donating a portion of genetic material, with the corresponding segment from the
other parent contributing to the child. The remaining alleles are copied from the
second parent once this process is completed.
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Order Crossover, introduced by Davis in 1985, copies one or more parts of a
parent to the offspring from selected cut-points, filling the remaining space with
values other than those included in the copied section. While Order Crossover
is beneficial for ordering problems, it’s less efficient for the Traveling Salesman
Problem.

Precedence Preserving Crossover maintains the ordering of individual solutions
present in the parent offspring before applying crossover. The offspring is initialized
with a string of random 1’s and 0’s to determine whether individuals from both
parents are selected.

Shuffle Crossover, proposed by Eshelman, shuffles the values of an individual
solution before and after crossover to reduce bias introduced by other techniques.
However, its utilization has diminished in recent years.

Reduced Surrogate Crossover reduces unnecessary crossovers when parents have
the same gene sequence for solution representations. It operates under the assump-
tion that diverse parental genetic compositions yield better individuals.

Cycle Crossover, proposed by Oliver, generates offspring from parents by assign-
ing each element’s position based on their parents’ positions. It iterates through
cycles, taking elements from different parents to form the offspring.

Figure 4.6: One-point crossover

In the implemented genetic algorithm of this work, a one-point crossover (see
Fig. 4.6) was utilized, and three dice were defined for this purpose:

• DICE 1 : randomly selects the index n at which the cut will occur, ranging
from 1 to the length of the individual.

• DICE 2 : randomly selects Parent 1 from among the elitists that have passed
on to the next generation.

• DICE 3 : randomly selects Parent 2 from among the elitists that have passed
on to the next generation.

Additionally, it was stipulated that if DICE 2 and DICE 3 yield the same
outcome, the throw must be repeated.
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4.2.5 Mutation operators
Mutation is an operator crucial for maintaining genetic diversity from one population
to the next. Common mutation operators include displacement, simple inversion,
and scramble mutation [47].

Displacement mutation involves displacing a substring of an individual solution
within itself. The displacement occurs at a randomly chosen position within the
substring, ensuring the resulting solution remains valid and undergoes a random
mutation. Variants of displacement mutation include exchange mutation and
insertion mutation. In exchange mutation and insertion mutation, parts of the
individual solution are exchanged with other parts or inserted at different locations,
respectively [52].

The simple inversion mutation operator reverses the substring between two
specified locations in an individual solution. It randomly selects a string and
reverses it before placing it at a random location [52].

Scramble mutation shuffles the elements within a specified range of the individual
solution in random order. The fitness of the resulting solution is then evaluated to
determine if an improvement has occurred [52].

In this study, an additional die was introduced to perform a random genetic
mutation in the GA. It was decided to carry out the mutation by arithmetic
averaging: once Parent 1 and Parent 2 had been identified, the values of their
respective genes were averaged. The implemented die is as follows:

DICE 4 : Randomly identifies a number indicating the probability of mutation,
which is then compared with the ’mutation rate’. In this case, the mutation rate
was set at 0.05 (increasing much more the mutation doesn’t occur). Therefore, the
mutation is carried out on an individual only if the fourth die generates a number
lower than the mutation rate.

However, the mutation rate must be handled with caution. A mutation rate
that is too high can lead to a rapid loss of valuable genetic information within
the population, making it difficult to converge on optimal solutions. Conversely, a
mutation rate that is too low may reduce the effectiveness of the genetic algorithm
in generating new solutions and diversifying the population.

Furthermore, to enhance genetic diversification even further, it was decided to
introduce up to 5% new individuals per generation.

Below, in Figure 4.7, is a graph summarizing the operational process of the
genetic algorithm described in this chapter.
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Figure 4.7: Structure of the genetic algorithm
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Chapter 5

Ballistic Escape Trajectories
from Earth-Moon Binary
System

When it comes to space missions, particularly interplanetary ones, the concept
of cost emerges as one of the primary constraints to human exploration of the
universe. In this regard, the study of low-cost maneuvers capable of leveraging
various gravitational effects becomes of paramount importance for both manned
and unmanned missions.

Departing from the concept of manned missions and thus allowing for greater
flexibility in terms of mission duration, the present research aimed to analyze the
different families of trajectories enabling a ballistic escape from the Earth-Moon
binary system.

Initially focusing on reducing the cost of escape with a view towards a Martian
expedition, it was later realized that this type of maneuver could also be highly
beneficial for reaching other smaller celestial bodies such as asteroids.
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5.1 Estimate of launch date
As clarified in [55], the Porkchop plots are clear and straightforward graphical tools
that assist mission designers in carefully planning the most convenient dates for
scheduling a transfer between two celestial bodies. These charts consist of contour
curves that can represent the value of various parameters as a function of the
departure date and arrival date. One of the key parameters for determining the
feasibility of a mission is the total transfer cost delta-V, in terms of the velocity
difference required to perform the necessary maneuvers.

In consideration of the specific mission requirements, a strategic approach was
implemented, necessitating the utilization of two distinct Porkchop plots.
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Figure 5.1: Big temporal span Porkchop Plot

The initial plot, shown in Figure 5.1, covering the period from 2030 to 2050 and
helps the research work to find a first time window of inetrest.

The computational expense associated with the dynamic model and integration
outlined in Chapter 3 is notably considerable. Within the scope of the analysis
at hand, conducting simulations across a 20-year launch window was deemed
impracticable. Consequently, the focus shifted towards examining the solution
space of minimum delta-V within the Porkchop Plot in Fig 5.1.

The second plot (see Fig. 5.2) represented a concentrated effort aimed at
pinpointing the absolute minima within the Porkchop family, crucial for identifying
optimal transfer windows. This meticulous approach enabled us to pinpoint the
most cost-effective and energetically efficient solutions, consequently minimizing
requirements and overall mission costs.
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Figure 5.2: 2039 Porkchop Plot

As is evident, these Porkchop Plots, despite incorporating ephemerides, do
not directly address Lambert’s problem for a ballistic trajectory. Consequently,
transer time required to escape from the SOI increases, and the area of interest
was estimated to be slightly earlier in time.

5.2 Ballistic escape trajectories with time con-
straint

With the Porkchop Plot studies in mind, it was decided to focus the research by
conducting the analysis on a smaller number of dates:

• 21th March 2039;

• 21th June 2039;

• 21th September 2039.

75



Ballistic Escape Trajectories from Earth-Moon Binary System

(a) 21/03/2039, Earth-centered frame (b) 21/03/2039, Sun-centered frame

Figure 5.3: The shown orbit is calculated in order to have a final specific
mechanical energy value equals to 0.2km2/s2

(a) 21/06/2039, Earth-centered frame (b) 21/06/2039, Sun-centered frame

Figure 5.4: The shown orbit is calculated in order to have a final specific
mechanical energy value equals to 0.2km2/s2

(a) 21/09/2039, Earth-centered frame (b) 21/09/2039, Sun-centered frame

Figure 5.5: The shown orbit is calculated in order to have a final specific
mechanical energy value equals to 0.2km2/s2

In figures 5.3, 5.4, and 5.5, the escape trajectories from the Earth-Moon binary
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system for the three initial attempt dates are depicted. As can be observed from the
results displayed in the heliocentric frame (figures (b)), the outcomes are consistent
with what was seen in the figures 2.19 and 2.20 and presented in [11].

The trajectories just shown were derived from the elite individuals obtained
downstream of the genetic algorithm. Starting from these, the initial lunar orbit
was perturbed as seen in Chapter 4, following the equations reported here for
convenience (see equations (5.1),(5.2) and (5.3))

x0,i = xℓ + h0 · cos(ϑi + ϑℓ) · cos(φi + φℓ) (5.1a)
y0,i = yℓ + h0 · sin(ϑi + ϑℓ) · cos(φi + φℓ) (5.1b)
z0,i = zℓ + h0 · sin(φi + φℓ) (5.1c)
u0,i = uℓ + VC · cos(ϑi + ϑℓ + 90°) · cos(φi + φℓ) (5.1d)
v0,i = vℓ + VC · sin(ϑi + ϑℓ + 90°) · cos(φi + φℓ) (5.1e)
w0,i = wℓ + VC · sin(φi + φℓ) (5.1f)

dvx,i = ∆Vi · cos(ϑi + ϑℓ + 90°) · cos(φi + φℓ) (5.2a)
dvy,i = ∆Vi · sin(ϑi + ϑℓ + 90°) · cos(φi + φℓ) (5.2b)
dvz,i = ∆Vi · sin(φi + φℓ) (5.2c)
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(5.3)

In Table 5.1, the individuals that generated the above trajectories are listed.
It is noted how the constraints imposed through the genetic algorithm were able

to guide the evolution towards a specific family of ballistic escape trajectories. In
particular, in this case, a constraint was added to the maneuver time alongside the
merit function related to SME, varying it between 70 and 85 days. At this point in
the discussion, it is important to make some observations:

OBSERVATION I (Non-planar dynamic model): in this study, the introduction
of information on planetary ephemerides extracted from NASA’s SPICE Toolkit
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∆V
[m/s]

In-plane
angle ϑ[deg]

Out-of-plane
angle φ[deg]

Time of transfer
T [days]

21/03/2039 357.4652 54.4750 109.2536 84.5
21/06/2039 370.5233 191.0265 -59.2879 80.0
21/09/2039 363.2421 321.3541 -35.6438 72.5

Table 5.1: List of individuals for fixed time and SME equals to 0.2km2/s2

has allowed for the complication of the model by taking into account the non-planar
components of positions and velocities. In other words, this means that the escape
is enabled not only in coplanar terms but also in extraplanar terms. The potential
applicability of these transfers for reaching minor celestial bodies such as asteroids
is evident.
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Figure 5.6: For semplicity, the 21/06/2039 orbit is the only one shown. Analogous
considerations can be mande on the other ones

Figure 5.6 shows how the spacecraft explores regions outside the fundamental
plane of the heliocentric frame.

OBSERVATION II (Moon Gravity Assist): the presence of a MGA provides a
velocity boost to the trajectory. This allows reaching certain regions of space while
reducing the cost of access to them.

In Figure 5.7, the trends of SME are depicted and compared between a case
featuring MGA and a case without it. In the 5.7(a), it’s evident how MGA leads
to a peak in mechanical energy due to the sudden velocity increase, akin to a free
delta-V.

In both cases, the energy trends reflect those typical of a ballistic escape; the
mathematical condition is reported below (for simplicity) and is respected.

C3(φ(t)) < 0, for t < t1 and C3(φ(t)) ≥ 0, for t ≥ t1 (5.4)
where the SME is denoted by C3.
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(a) SME trend with MGA

0 10 20 30 40 50 60 70 80

Time [days]

-0.5

0

0.5

1

1.5

2

2.5

3

c
3

 [
k
m

2
/s

2
]

(b) SME trend without MGA

Figure 5.7: SME trend comparison between trajectories with or without MGA
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(a) Velocity trend with MGA
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(b) Velocity trend without MGA

Figure 5.8: Velocity trend comparison between trajectories with or without MGA

As anticipated, Figure 5.8 reveals how increases in energy translate into increases
in speed (and vice versa) and make the presence or absence of Gravity Assist clearly
recognisable.

OBSERVATION III (Inner and outer orbits): adopting a ballistic escape tra-
jectory certainly allows for escaping the primary gravitational attraction of the
Earth-Moon binary system, leveraging the gravitational influence of the Sun (and
secondarily of other celestial bodies) to position oneself on an orbit that allows for
the patched-conics approximation.

This orbit, as shown in Figure 5.9, can be inner or outer, enabling missions both
towards inner and outer planets relative to the departure planet (Earth in this
case).

5.2.1 Solar radiaton pressure influence
During the escape, the Sun evolves in its (apparent) motion with respect to the
Earth in the EME2000 RF, producing a varying over time perturbation. As
anticipated in Section 3.1.1, the solar perturbation, under simplifying assumptions,
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Figure 5.9: Outer and inner orbits

produces a net perturbing acceleration in the radial and tangential directions of
the SC, reported here from equations (3.5a) and (3.5b) for clarity

(⃗ass\c − a⃗sE) · ûj = 3
2

µs

r3
s

sin [2(ϑs − ϑ)] (5.5a)

(⃗ass\c − a⃗sE) · ûi = 3
2

µs

r3
s

{1 + cos [2(ϑs − ϑ)]} (5.5b)

Equations (5.5a) and (5.5b) show that it is possible to enclose the perturbation
effect dependence on the Sun-SC position in two proportionality terms [1]

ςv = sin 2∆ϑ (5.6a)
ςu = 1 + cos 2∆ϑ (5.6b)

where ∆ϑ is the angular difference between the Sun and the spacecraft.
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Figure 5.10: Tangential and radial components of the lunisolar perturbative effect
ςv and ςu

In general, as shown in Figure 3.2,the combined effect of the two solar perturba-
tion components may produce an overall positive effect on the spacecraft energy
when the Sun is either close to −157.5° or 22.5° with respect to the Earth–spacecraft
direction.

Starting from this premise, it is possible to analyze the influence of this per-
turbative effect on the trajectories studied so far within this chapter. For each
ballistic escape trajectory, a polar plot is proposed, which is able to convey infor-
mation about the spacecraft’s distance from Earth, the relative position between
the spacecraft and the Sun, and the gravitational influence of the latter.

In Figure 5.11, the escape is enabled for values of ∆ϑ between 0 and 30 degrees,
when the perturbative effect provides a positive contribution.

In Figure 5.12, the escape is enabled for values of ∆ϑ between 0 and 60 degrees,
when the Earth-SC distance increases substantially.

In Figure 5.13, the escape is enabled for values of ∆ϑ between 120 and 180
degrees, when, similarly with the firt one, the perturbative effect provides a positive
contribution.
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Figure 5.11: Solar perturbative effect on 21/03/2039 trajectory

0°

30°

60°

90°

120°

150°

180°

210°

240°

270°

300°

330°

0

5

10

Figure 5.12: Solar perturbative effect on 21/06/2039 trajectory
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Figure 5.13: Solar perturbative effect on 21/09/2039 trajectory

5.3 Ballistic escape trajectories with time con-
straint free

By increasing the available time range for performing the escape maneuver, genetic
evolution enables other families of trajectories that are distinguished by certain
phenomena:

• Earth Gravity Assist;

• Waiting orbit;

5.3.1 Earth gravity assisted trajectory
Similarly to what was seen with the Moon, it is possible to construct trajectories
that leverage the Earth’s gravitational slingshot. In the case of MGA, the advantage
lies in the spacecraft’s position in space, already near the Moon’s orbit. In this
case, however, to enable an Earth gravity assist, the trajectory must be constructed
in such a way that it first reaches the region of gravitational influence (defined as
WSB in the PCR3BP) and then triggers a temporary capture towards the primary
body.
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(a) EGA trajectory
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Figure 5.14: The Figure puts the focus on a trajectory that exploit an Earth
Gravity Assist

Figure 5.14(a) and Figure 5.14(b) show, respectively, the obtained trajectory
(with a view in the plane) and the energy trend that certifies the success of the
ballistic trajectory search. In particular, in Figure 5.14(b), the energy jump due to
the EGA is evident.
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Figure 5.15: EGA trajectory velocity trend

Similarly to what was seen with the MGA, in this case too, the energy jump is
synonymous with a speed boost. It’s evident that if compared to Figure 5.8, the
peak in speed is much higher, indicating that an Earth gravity assist is much more
impactful on the energy and velocity profiles, as one might expect. Meanwhile,
the losses due to staying for longer times in the gravitational influence zone of the
Earth-Moon binary system are greater.
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Figure 5.16: Feasibility of the EGA

In Figure 5.16, the focus is on the actual feasibility of the gravity assist maneuver
with Earth. The horizontal line represents the value, in kilometers, of the Earth’s
equatorial radius and shows that the spacecraft does not approach excessively. It
is noted that, in this study, the perturbative effect of atmospheric drag has been
neglected, although it can be more or less influential for maneuvers of this kind;
however, for altitudes on the order of 104km (akin happened for this perigee), this
approximation is considered acceptable.

Again, Figure 5.17 shows how the ballistic escape is enabled for values of ∆ϑ
included between 25° and 90°.

∆V
[m/s]

In-plane
angle ϑ[deg]

Out-of-plane
angle φ[deg]

Time of transfer
T [days]

21/03/2039 359.7132 58.9820 -22.5161 149

Table 5.2: Individual for EGA trajectory and SME equals to 0.2km2/s2

Table 5.2 reports the characteristics of the elite individual selected downstream
of the genetic algorithm, with the perigee objective considered within the merit
function (see Chapter 4). The delta-V is similar to that obtained for the trajectory
that exploits MGA, but the transfer time is significantly higher.
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Figure 5.17: Solar perturbative effect on Earth Gravity Assisted orbit

5.3.2 Trajectory exploiting waiting orbit
Other families of trajectories analyzed within the study are those that involve the
spacecraft’s station-keeping on a certain number of waiting orbits (WOs) while
waiting to achieve the necessary energy condition for the ballistic escape to occur.
These waiting trajectories can occur around either the Earth or the Moon.

(a) WO trajectory (b) WO trajectory HC frame

Figure 5.18: The Figure puts the focus on a trajectory that exploit WOs

Figure 5.18 shows a trajectory that utilizes WOs around the Earth. In the
first plot, it’s possible to observe the trajectory in a reference frame centered on
the Earth, while in the second plot, the outer orbit in the heliocentric system is
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observable in its planar view.
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(a) SME trend
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(b) Velocity trend

Figure 5.19: SME and velocity representations

From the energy trend reported in Figure 5.19(a), two zones of temporary
capture of the satellite due to the presence of the massive Earth are evident, a
phenomenon more extensively described in [11]. The smaller peaks are related to
the time spent on the WOs, while the larger ones are due to gravity assists. In
the final part of the transfer, the obtained energy trend confirms the successful
ballistic escape.

Figure 5.19(b) helps complete the interpretation of the energy picture of this
transfer.

Figure 5.20: WO trajectory - Zoom on MGA

In Figure 5.20, a zoom of the trajectory in its initial phases is depicted. It
clarifies that the first energy peak is indeed due to a lunar gravity assist.
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Figure 5.21: WO trajectory - SC-Earth distance

Giving a glance at Figure 5.21, the presence of Earth Gravity Assists is even
clearer, and one can simply count six before actually observing the final phase of
the transfer coinciding with the spacecraft’s departure from the primary body.
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Figure 5.22: WO trajectory - SC-Earth distance
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The polar plot in Figure 5.22 is interesting for evaluating the ballistic escape
phase. The spacecraft tends to escape when its relative position to the Sun is
around 270 degrees and then 150 degrees.

∆V
[m/s]

In-plane
angle ϑ[deg]

Out-of-plane
angle φ[deg]

Time of transfer
T [days]

21/03/2039 362.5131 135.3429 11.6460 226.5

Table 5.3: Individual for WO trajectory and SME equals to 0.2km2/s2

Table 5.3 reports the values related to the individual that generated the trajectory
just analyzed: the significant increase in terms of time is evident.

5.4 Ballistic escapes for given values of SME

∆V
[m/s]

Time of transfer
T [days]

Presence of
gravity assist

Velocity at
escape [m/s]

C3 = 0.2 357.4652 84.5 YES 730.36
C3 = 0.2 359.7132 149.0 YES 667.22
C3 = 0.2 362.5131 226.0 YES 763.34
C3 = 0.2 370.5233 80.0 NO 646.39
C3 = 0.2 363.2421 71.5 NO 696.80
C3 = 0.3 366.8855 134.0 YES 722.66
C3 = 0.4 367.6164 226.5 YES 848.88
C3 = 0.4 393.8258 67.5 NO 821.27
C3 = 0.5 408.4041 221.0 NO 863.08

Table 5.4: List of individuals for different values of SME

Table 5.4 reports the main results obtained by varying the objective function
related to the desired final value of specific mechanical energy. In general, the
results show that performing a ballistic escape maneuver allows reaching the escape
zone with a speed equal to twice the delta-V provided initially. It is possible to
assess the effectiveness of this maneuver by estimating the cost of extraterrestrial
transfer assuming patched conics model.

5.5 Ballistic escape toward asteroids
In this final section of the present chapter, starting from the results shown in
Table 5.4, certain assumptions will be made to simplify the problem and to analyze
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an estimation of the impact of a ballistic escape maneuver on an interplanetary
mission:

• Planar circular orbit assumed for celestial bodies;

• 2BP-Patched Conics method adopted;

• Optimal conjunction between celestial bodies is assumed to carry out the
transfer;

• Hohmann transfer performed;

• Magnitude of the position vector at the starting point equal to the average
Earth-Sun distance (one astronomical unit) added to the value of the position
vector assumed to identify the WSB in the J2000 reference frame.

For convenience, the basics of the Hohmann transfer (see Figure 5.23) previously
analyzed within Section 2.3.3 are summarized below.

Figure 5.23: Hohmann transfer

Remembering (2.16), the visviva equation:

E = v2

2 − µL
r

+ c (5.7)
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E varies with height and speed and is zero at the Earth’s surface. In astrodynamics
c is defined to be zero.

E = v2

2 − µL
r

= −µL
2a

(5.8)

In general, it is possible to calculate the velocity at a point v̄ in the orbit from the
equation (5.8):

v̄ =

öõõô2
A
E + µL

r̄

B
(5.9)

Velocity of a circular orbit is constant for the orbit itself:

vcirc =

öõõôAµL
r

B
(5.10)

Because of the perigee and the apogee altitude are known, the semi-major axis of
the Hohmann transfer aH is known too and consequently the time of flight τ :

aH = ra + rp

2 (5.11)

TH = 2π

öõõôa3
H

µL
τ = TH

2 (5.12)

At this point, Hohmann’s ∆v can be calculated as the sum of the two ∆v at a
and b, defined as the magnitude of the difference in velocity between the orbits at
the point.

∆v1 = |vH,perigee − vcirc,1| vH,perigee > vcirc,1 (5.13a)
∆v2 = |vcirc,2 − vH,apogee| vH,apogee < vcirc,2 (5.13b)

∆vH = ∆v1 + ∆v1 (5.14)

Exploiting the SOI concept, it may be useful to apply Hohmann for an initial cost
estimate of interplanetary manoeuvres by distinguishing between planetocentric
and heliocentric phases.

In Figure 5.24, various known (named and unnamed) asteroids reachable with a
maximum first delta-V of 12km/s are plotted. Two thresholds are highlighted on
the plot:

• the green one set at the value of 0.85km/s, which is equal to the hyperbolic
excess velocity reached at escape with a 367.62m/s impulse in lunar orbit (see
Table 5.4);

• the second threshold, in red, is set at a value of 3km/s.
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Figure 5.24: Asteroids delta-V treshold

With reference to the first threshold considered, a ballistic transfer would allow
reaching 1742 asteroids, reducing, in the worst case, the cost of the first Hohmann
delta-V from 0.85km/s to 0.367km/s.

With reference to the first threshold considered, a ballistic transfer would allow
reaching 6701 asteroids, covering, in the worst case, 28% of the cost of the first
Hohmann delta-V spending only 0.367km/s.
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Chapter 6

Conclusion and future steps

In conclusion, this work has focused on the study of a series of escape trajectories
from the Earth-Moon binary system constructed in a way to fall within the class of
ballistic escape trajectories. To identify a proper solution space, a genetic algorithm
was written capable of directing evolution through ad-hoc merit functions. Starting
from a lunar orbit, elite individuals, composed of four genes (delta-V, angle in-
plane, angle out-of-plane, propagation time), perturb the orbit triggering the escape
maneuver.

In the initial phase, the study was conducted within a simplified physical model
(Planar Circular Restricted Three Body Problem) in which the concept of Weak
Stability Boundary is defined. By exploiting this region of gravitational interdiction,
it is possible to enable ballistic capture maneuvers towards the primary bodies.

Once an appropriate first attempt delta-V value for reaching the weak stability
boundary was identified, the problem was further complicated by using a High
Fidelity Orbit Propagator, taking into account perturbations such as the non-
sphericity of the Earth, solar radiation pressure, the lunisolar effect, and the
presence of other celestial bodies in the solar system extracted using the NASA’s
NAIF SPICE Toolkit. In a model of this type, the influence of the fourth bodies,
mainly the Sun, has enabled the possibility of performing a ballistic escape maneuver
by exploiting the region of gravitational interdiction previously described as the
weak stability boundary.

At the end of the analysis, it became evident that exploiting a low-cost maneuver
such as a ballistic one provides a gain, in terms of delta-V and therefore propellant
mass, of approximately double compared to a classical maneuver, albeit sacrificing,
to some extent, the duration of the transfer.

In any case, following this work, it is evident that the research is not yet complete.
Many potential avenues provide opportunities for advancement in the analysis.

• to conduct a precision study to determine the correct launch window for fixed
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maneuver durations;

• to carry out a study on the heliocentric phase following the escape phase using
the high-fidelity model implemented for this work and to complete the study
of missions to Mars or to inner or outer asteroids;

• to deepen the study of the effect of the presence of other celestial bodies along
the lines of what was done with the Sun;

In any case, it may be of particular interest to study a low-cost mission from the
initial phase (escape maneuver, as done in this thesis) to the final phase, assuming
a ballistic capture maneuver towards the target planet and analyzing the feasibility
of an aerobraking or aerocapture maneuver for landing on the surface.
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