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Abstract

The space market trends indicate that in the next decade, the space industry will

continue to experience a radical transformation in terms of the number of operating

satellites and market value. Simultaneously, Industry and Academia are leading

a transition from Document-Based System Engineering to Model-Based Systems

Engineering (MBSE), combined with Concurrent Engineering (CE) approaches,

due to increased demand and reduced design time.

How to effectively formalise data and improve data exchange is an open ques-

tion. The representation of complex systems through models for defining their

functional, logical, and physical architectures is not as straightforward as it could

seem. For instance, during the Preliminary Design (PD) phase, when mathematical

analyses and simulations need to be carried out, and system budgets need to be

generated, such models require integration with external mathematical models that

allow systems to be represented from a design parameters point of view.

Parallel to the adoption of the MBSE methodology, another revolution in the

space sector, and more specifically in the small satellites field, has been the in-

troduction of the CubeSat standard. Thanks to their standardised form factor,

they enable a further reduction in development time and cost, especially in the PD

phase, therefore offering an opportunity to increase the accessibility to space on a

tight budget and representing a valuable research topic for Academia.

This thesis illustrates the work conducted in collaboration with ISAE-SUPAERO

(Toulouse, FR), aiming to provide a formalisation of a CubeSat model to include

relevant information for its use during the various stages of the PD phase. This

research work presents the following main contributions: (i) to formalise the mod-

elling efforts of CubeSats from the PD stage by architecting a generic CubeSat

model with Systems Modelling Language (SysML), allowing data storage and visu-

alisation through the use of Unified Modelling Language (UML) stereotypes, and

enhancing information exchange for the integration with any set of simulation and

analysis tools; (ii) to elaborate an end-to-end use case scenario in the context of the

Nanostar Software Suite (NSS), an open-source software framework that aims to fa-

cilitate data exchange between various domain-specific software during CE sessions.

The latter serves as a proof of concept demonstrating the proposed formalisation’s

benefits.

The proposed formalisation allows a CubeSat SysML model to be considered

as the central source of truth for data during the entire design process, which can

facilitate automating trade-off analyses, by relying on the combination of all SysML

advantages and a well-chosen data instantiation across all PD study phases.

Keywords: Preliminary Design, CubeSat, Systems Engineering, Concurrent De-

sign Engineering, Model-Based Systems Engineering, SysML, UML.
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1 Introduction

Euroconsult in its Space Economy Report 2023 [1] highlighted how current trends in

the space market suggest a significant shift in the industry over the coming decade.

This transformation is expected to be evident in two key areas: a marked increase in

the number of satellites in operation, also underlined by the forecasts presented in the

Nanosats Database by Kulu [2]; and a substantial growth in market value, estimated to

reach $ 737B within a decade [1].

Currently, there is a growing demand in the industry which necessitates a reduction in the

time it takes to design these space systems. To meet this challenge, both the industrial

sector and academic institutions are observing a pivotal shift in their approach to Systems

Engineering (SE). The traditional Document-Based System Engineering methods are in-

creasingly being replaced by Model-Based Systems Engineering (MBSE). This shift is

occurring in tandem with the propagation of adoption of Concurrent Engineering (CE)

methods. More information about NASA’s approach to CE and its Concurrent Engineer-

ing Center (CEC) can be found in the work from Iwata et al. [3], while ESA’s approach

and its Concurrent Design Facility (CDF) are presented in the works from Bandecchi et

al. [4], [5]. A general overview of CE practices, discussing their integration with MBSE

methodology, can be found in Knoll et al. [6].

The move towards MBSE, coupled with CE methodology, is being driven by several

advantages across different sectors, as presented by the International Council on Systems

Engineering (INCOSE) in its Systems Engineering Handbook [7] and highlighted in the

work of Henderson and Salado [8]. Such advantages include: enhanced efficiency in the

design process, improved accuracy in system modelling, and a more collaborative and

integrated approach to engineering projects. This transition is a response to the evolving

needs of the sector and represents a significant advancement in the way space systems

are engineered [8]. Moreover, the synergy between MBSE and CE approaches allows for

real-time collaboration and decision-making, which is essential in reducing design time [6].

INCOSE, in its Systems Engineering Vision 2035 [9], confirmed how the future of Sys-

tems Engineering is strongly dependant on the application of MBSE. Advanced models,

coupled with state-of-the-art visualisation techniques and deeply integrated, multidis-

ciplinary simulations, will enable systems engineers to develop systems with increasing

complexity while still maintaining high efficiency and reliability [9].

However, several challenges in the implementation of MBSE have been identified. As

presented in the work from Bajaj et al. [10], several levels of discontinuity have been

identified across the various design stages of complex systems, including discrepancies

between systems models and simulation tools used. Another challenge, presented by

Knoll et al. [6], is constituted by the lack of sufficient generic models to allow reuse,

ensuring a further reduction in development costs.

In parallel, the CubeSat standard [11] since its first applications in the early 2000s has

revolutionised the world of space mission design. Thanks to their standardised form

factor, CubeSats have granted access to space to smaller countries and organisations with

limited teams, budgets, and time, confirming themselves as a major research topic and a
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new opportunity for both industry and academia. An overview of the CubeSats history

and major revolutions introduced by their application is also present in reference [12].

This work has been developed in the context of the Nanostar Software Suite (NSS) [13],

[14], an open-source software constellation aimed at facilitating the Preliminary Design

of CubeSats through the application of MBSE and CE approaches.

This thesis is structured as follows: Section 2 (Context of the work) presents a background

on the principal topics discussed in the following of this thesis, such as Preliminary De-

sign (PD), Concurrent Engineering (CE) and Model-Based Systems Engineering (MBSE)

approaches, UML and SysML, the CubeSats standard and the state of the art of the NSS

constellation.

Section 3 (Proposed formalisation) begins by providing an overview of the rationale for

the main research problems of this research work, namely the formalisation of a general

CubeSat model in SysML, capable of a comprehensive representation of the system and

the integration of such model with any set of simulation tools. Afterwards, this section

continues with the proposed formalisation of the CubeSat general SysML model, enhanced

with UML stereotypes, capable of combining the benefits arising from MBSE with a

method for data storage and representation within the model itself. This latter feature,

as discussed in detail later, enables the model to be integrated with any set of simulation

and analysis tools. Section 3 continues with the assessment of the general parameters and

budget needed for a comprehensive mission simulation and validation, and the proposed

formalisation for a CubeSat general OM is then introduced, as a way of obtaining a

general activity profile for mission analysis and simulation.

An end-to-end application of the proposed formalisation is then presented. The CubeSat

SysML model is integrated with the simulation tools from the NSS constellation, as a

proof of concept, and the outputs are presented.

Lastly, in Section 4 the conclusions of the work are presented with its principal derivatives

and future work.
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2 Context of the work

This section provides a brief overlook of concepts utilised throughout this thesis work.

This includes the definition and meaning of the most common terms used in the following

sections, coupled with the state of the art of design approaches, their major benefits and

challenges.

2.1 Preliminary Design

Space missions’ life cycles are thoroughly planned, from the initial concept studies to

the final execution. In Figure 1 is represented the life cycle of a space mission, with a

comparison of the mission phases nomenclature, as intended by European Space Agency

(ESA), National Aeronautics and Space Administration (NASA), and US Department of

Defence (DoD) [12].

Figure 1: Comparison of space mission life cycle phases classifications between ESA,

NASA, and US DoD [12].

As shown in Figure 1, mission phases are analogous for ESA and NASA. ESA typically

denotes them as Phases 0 (Mission Analysis), A (Feasibility study), B (Preliminary Defi-

nition), C (Detailed Definition), D (Production & Test), E (Utilisation) and F (Disposal),

while NASA typically defines the Advanced Studies phase (ESA Phase 0) as Pre-Phase

A, and includes Disposal as part of ”Operations and Support” in Phase E. In this thesis

work the ESA life cycle phases nomenclature is used.
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The NASA Systems Engineering Handbook [15] provides a thorough description of all

design phases and their principal inputs and outputs. Each Phase ends with a Milestone

Review, which involves a comprehensive review by experts and stakeholders, during which

the entire project is critically evaluated to determine whether it meets the requirements

and objectives of the mission [15].

This work focuses on Phases 0, A, and B, as they are the initial phases that lay the

foundation for the entire mission design process, constituting the Preliminary Design (PD)

Phase. Each of these Phases has specific purposes and outputs, as highlighted in [15].

Phase 0, Mission Analysis/Needs Identification The purpose of this phase is to

identify one or more mission concepts, based on a preliminary assessment of mission needs

and feasibility, in terms of technical requirements, expected costs, and risk analyses.

A Mission Definition Review (MDR) is held at the end of this Phase, for evaluating the

feasibility of the project and its high-level requirements. If the mission is deemed feasible,

it proceeds to Phase A.

Phase A, Feasibility it focuses on refining the mission concept and developing a

first iteration of the Preliminary Design, comprising possible Concepts of Operations

(ConOps), system architectures, and functions’ trees. It aims to provide a more detailed

and well-defined plan for the mission, which includes management plans and risk analyses.

Preliminary Requirements Review (PRR) is held at the end of Phase A, whose main

purpose is to confirm the technical and programmatic feasibility of the concepts provided.

The chosen concepts move to Phase B for a more detailed design.

Phase B, Preliminary Definition This is characterised by developing a compre-

hensive preliminary design and initiating implementation preparations for the mission.

Phase B includes the numerous trade-off analyses for the selection of the preferred mis-

sion baseline, the development of a project management plan, which considers budgeting

and scheduling, and the definition of a verification plan.

A Preliminary Design Review (PDR) is held at the end of this phase. A PDR principal

objectives are the verification of the PD of the selected concepts in regards to the require-

ments and constraints identified earlier; the release of final management, engineering, and

product assurance plans; and the release of the Assembly, Integration & Test (AIT) plan.

If the PDR is passed, the mission can proceed to the detailed design and assembly phases.

It is important to also note that in the field of engineering and product development,

the Preliminary Design (PD) phase constitutes a highly multidisciplinary endeavour,

requiring the confluence of different skills to establish a complete basic design. This

phase represents more than just the initial outline of a project: professionals ranging

from mechanical and electronic engineers to software developers and, in more specialized

fields such as aerospace or automotive, aerodynamics and materials science experts, must

work closely together.
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This interdisciplinary collaboration is crucial, as it ensures the holistic integration of

different perspectives and ingrained skills, thereby optimising every aspect of the project

to work in tandem. In aerospace, the PD phase requires meticulous synchronisation

between figures such as structural engineers, propulsion specialists, and control system

designers. Each discipline brings with it a rigorous set of requirements and considerations

that contribute to a design that is not only technically robust but also conforms to strict

safety standards, regulatory compliance, and cost efficiency. In addition, this collective

approach plays a crucial role in addressing issues of user experience and environmental

sustainability.

In summary, Phases 0, A, and B represent the initial and crucial steps in the life cycle

of a space mission. Phase 0 focuses on the definition of a mission concept and the

assessment of mission feasibility, Phase A refines the mission concept and develops a

preliminary design, and Phase B goes further into the preliminary design, initiating the

implementation preparation for detailed design and construction in subsequent phases.

These phases are conducted in a multidisciplinary manner, to ensure that space missions

are well-considered, scientifically valuable, and technically achievable before significant

resources are committed to the project.
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2.2 Concurrent Engineering

2.2.1 CE definition, advantages and challenges

From the work of Bandecchi et al. [5], Concurrent Engineering (CE) can be defined as

”a systematic approach to integrated product development that emphasises the response

to customer expectations. It embodies team values of co-operation, trust and sharing in

such a manner that decision making is by consensus, involving all perspectives in parallel,

from the beginning of the product life-cycle”.

Concurrent Engineering represents a paradigm shift in the approach to design and devel-

opment, particularly in complex, multidisciplinary projects. Unlike traditional sequential

design processes, where each specialist involved in the project works on their subsystem

design independently from the others, CE involves the simultaneous collaboration of sev-

eral engineers, each contributing with their expertise. CE is therefore characterised by

its collaborative, integrated, and real-time nature [4], [5].

This approach promotes an environment in which cross-functional teams, composed of

specialists in areas such as system design, mission analysis, structure analysis, cost and

risk assessment and project management, work concurrently rather than in a linear se-

quence. This holistic approach allows for immediate feedback and iterative project ad-

justments, significantly reducing the time and costs associated with the approach of

traditional methods, where design iterations take place in meetings at intervals of a few

weeks [5].

The advantages presented are also confirmed by Knoll et al. [6], through a survey con-

ducted across industry, space agencies and academia, as can be seen in Figure 2.

Figure 2: Benefits of Concurrent Engineering [6].

However, Concurrent Engineering introduces a new set of challenges, as represented in

Figure 3. Among these, the top three according to the results of [6] appear to be:

• Capturing engineering knowledge in models: MBSE has already become a

major research topic, and will be exploited even more in the future, as presented

in the INCOSE SE Vision 2035 [9]. In order to be more effective, models need to
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Figure 3: Challenges of Concurrent Engineering [6].

represent a clear vision of the design and be reusable across projects, which also

represents another of the challenges highlighted in the work of Knoll et al. [6].

• Expert availability: unlike more traditional methodologies, Concurrent Engineer-

ing requires the simultaneous participation, on-site or remote work, of all engineers

involved in the project for each design session. This may represent an issue if a

work schedule is not well defined.

• Integrated toolchain: the need for concurrent work between numerous specialists

implies the need for a reliable and seamless link between the various tools required

for each subsystem design, corroborated by reliable data sharing. This represents,

as highlighted in the INCOSE SE Vision 2035 [9], one of the main challenges for

the entire Systems Engineering field in the upcoming future.

2.2.2 Concurrent Design Facilities

The Concurrent Engineering sessions are typically held in highly specialised facilities,

such as the ESA/ESTEC Concurrent Design Facility (CDF) [5], [4], or NASA’s Concur-

rent Engineering Center (CEC). These dedicated environments are meticulously designed

to foster efficient and effective interaction among the diverse range of professionals par-

ticipating in the CE design processes [5].

An example of the layout of these facilities is presented in Figure 4.

These infrastructures are strategically arranged to facilitate optimal communication and

collaboration. In particular, specialists who need to interact more frequently and closely

are usually placed close to each other. This proximity improves ease and speed of com-

munication, which is crucial in a fast-paced, collaborative environment. Furthermore,

an important feature of these facilities is a central screen. This screen can display the

7



Figure 4: ESA/ESTEC Concurrent Design Facility layout [5].

results of each participant’s workstation, allowing the entire team to engage in detailed

discussions and collaborative analysis.

From the research conducted by Knoll et al. [6], it has become evident that a signif-

icant portion of the engineers involved in CE sessions work remotely. This trend has

necessitated the integration of video conferencing technology within the CDFs [5]. These

technologies are not mere additions, but essential components that ensure the seamless

integration of remote participants into the session.

This capability is critical to maintaining the effectiveness of the CE process in a world

where remote and flexible working modes are becoming increasingly common. Remote

participation technologies in CDFs allow teams to exploit a larger pool of expertise,

regardless of geographical constraints, thus improving the quality and efficiency of the

design process.
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2.3 Model-Based System Engineering

2.3.1 MBSE definition

The International Council on Systems Engineering (INCOSE), in its Systems Engineering

Vision 2020 [16] defined Model-Based Systems Engineering (MBSE) as “the formalised

application of modelling to support system requirements, design, analysis, verification, and

validation activities beginning in the conceptual design phase and continuing throughout

development and later life cycle phases”.

MBSE represents a transformative approach in the realm of SE, as presented in the

INCOSE SE Handbook [7]. It introduces a new model-centric paradigm, where compre-

hensive models are the primary medium of information exchange and system understand-

ing. This approach moves away from traditional document-centric methods [7].

It is based on the use of domain-specific models 1 as the primary means of communication

among engineers, rather than traditional documents. These models are often created

using standardised languages such as the Unified Modelling Language (UML) or the

Systems Modelling Language (SysML), which are discussed more in detail in Section 2.4

(UML and SysML).

They provide an abstract yet detailed representation of the system’s architecture, be-

haviour, and requirements before the actual development phase. This increases the

system’s reliability and minimises the time and costs of the development and testing

phases [7].

Centralising information in a cohesive model, MBSE combined with simulations promotes

a shared and comprehensive understanding of complex systems. This helps to identify

limitations or incompatibilities in design and avoid time and budget overruns, especially

in the operational phase. This aspect is demonstrated to be as important as the system

becomes more complex [7].

2.3.2 Benefits of using MBSE

According to the INCOSE SE Handbook [7], the use of MBSE presents several benefits.

An assessment of the principal ones has been proposed in the work of Henderson and

Salado [8] through a review of 20 journals and conferences of the SE area.

The most common benefits, divided into referenced, perceived, observed and measured

ones according to reference [8], are depicted in Figure 5.

As indicated in reference [8], approximately two-thirds of the examined works highlight

perceived advantages of Model-Based Systems Engineering. Conversely, only a minority

of these works support their assertions regarding MBSE benefits through systematic

1A domain model is a conceptual representation of structured data and its associated elements within

a specific knowledge or competence domain. It is a framework that defines the various entities, their

attributes, relationships and the rules governing the interactions between these entities within a particular

context or domain [17].
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Figure 5: Model-Based Systems Engineering benefits2. Adapted from [8].

measurement methodologies. However, it is important to highlight some of the principal

benefits resulting from the study [8], which also trace to the benefits presented in the

INCOSE SE Handbook [7]:

• Enhanced communication and productivity: one of the benefits of MBSE is

its facilitation of clearer, more effective communication across the diverse engineers

and teams involved in a complex system design. The visual and dynamic nature of

models makes such systems more comprehensible, thereby enhancing collaborative

efforts.

• Increased efficiency and quality: MBSE streamlines the engineering process by

consolidating information in a singular, coherent model. This centralisation reduces

the likelihood of inconsistencies and errors prevalent in document-based approaches,

where the same information could be repeated through several documents, leading

to a more efficient workflow and higher-quality systems.

• Effective complexity management: in today’s world, systems are increasingly

complex and interconnected, as highlighted in the INCOSE SE Vision 2035 [9].

Model-Based Systems Engineering offers a holistic perspective of such systems,

enabling engineers to better understand and manage complex interactions and de-

pendencies.

• Promotion of reusability and seamless integration: the modular nature of

2V&V: Verification and Validation
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MBSE allows for the design of components and subsystems that are reusable. Addi-

tionally, it facilitates the smoother integration of new elements into existing systems,

enhancing adaptability and scalability.

2.3.3 Future and challenges of MBSE

As highlighted in the INCOSE Systems Engineering Vision 2035 [9],”the future of Sys-

tems Engineering is model-based”. This shows how highly promising the future trajectory

of Model-Based Systems Engineering is. However, in the SE Vision 2020 [16] before, and

in the SE Vision 2035 [9] after, several challenges for the SE field, also regarding the

application of MBSE, have been identified.

SE Vision 2035 [9] presents ”the enormous fragmentation across the engineering tools and

data landscape” as one of the principal challenges for Systems Engineering. The presence

of multiple discipline-specific tools, coupled with limited data standardisation and the

extensive use of proprietary data formats are the principal causes for such discontinuity

across the SE sector.

As systems grow in complexity, the demand for sophisticated system modelling techniques

becomes more pressing. With the increasing complexity of systems design and require-

ments, there is a need to develop Systems Engineering practices ”to provide methods for

achieving high-effectiveness, high-assurance, resilient, adaptive, and life cycle affordable

systems” [16].

In the upcoming future, SE practices will be model-centric, increasingly relying on

reusable elements for fast and reliable systems designs. Emerging technologies, par-

ticularly in artificial intelligence and machine learning, offer new routes for automating

elements of model creation and analysis. These advancements are likely to further refine

the efficiency and efficacy of MBSE [9].
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2.4 Unified Modelling Language and Systems Modelling Lan-

guage

In the context of MBSE, various modelling languages have been developed to answer

the need to graphically visualise complex software and systems structures and their be-

haviours. They allow a comprehensive representation of a software/system in specific

diagrams and data structures through a well-defined and constant set of rules.

Among these, two of the most diffused ones are the Unified Modelling Language (UML)

and the OMG Systems Modelling Language (SysML).

The Unified Modelling Language [18] originated in the late ’80s/early ’90s and has im-

mediately confirmed itself as one of the most useful modelling languages for software

development [19]. The Systems Modelling Language [20] was born in the early 2000s

by the combined endeavour of the Object Management Group (OMG), the International

Council on Systems Engineering (INCOSE) and other partners and industry represen-

tatives, as a specialisation of UML for Systems Engineering applications. A thorough

description of SE practices with SysML is presented in the work from Weilkiens [19].

The following section focuses on the key elements of the two deeply extensive modelling

languages that are essential for understanding this work.

2.4.1 UML core elements

Figure 6 illustrates the core elements of UML and its structure. As described in [19],

UML elements can be differentiated between structural and behavioural elements. The

same distinction can be applied to SysML, as shown in Figure 12.

Figure 6: UML structure [19].

Structural elements, such as classes and components, are utilised to outline the system’s

architecture while, in contrast, behavioural elements are employed to delineate the sys-

tem’s functions. On the other hand, a model encompasses a comprehensive description
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of the system, while a diagram represents a specific facet of the model, focusing on visu-

alisation [19].

Classes Classes act as the basic units in object-oriented modelling. They delineate

both the structure and behaviour of objects sharing common characteristics and meaning.

Attributes define the structure, while operations outline the behaviour [18], [19]. Classes

are introduced and characterised in Class Diagrams.

The above-mentioned objects could represent both codes’ elements and real-life objects

at any level of detail, thanks to the generality offered by the use of classes.

Attributees Attributes define the properties useful for the model and inherited by

classes. They are composed of visibility, name, type, and a multiplicity, indicating the

number of instances of the same type belonging to the class.

Person

+ name: String
+ age: Int

+ walk()
+ eat()

john:Person

name="John"
age=30

class Class Person and person object

Figure 7: Example of UML class and object with inherited attributes and operations.

Associations An Association indicates a relationship between two classes. Among

those can be noted:

• Aggregation Association: describes a whole-part hierarchy between two elements.

• Composition Association: describes a whole-part hierarchy between two elements,

in which the parts do not exist without the composite.

inventoryrooms
House Room Furniture

1..* *

class House

Figure 8: Example of UML aggregation and composition associations. Adapted from [19].

As from Figure 8, the House and Room classes are connected by a Composition Associ-

ation, while Room and Furniture are connected by an Aggregation Association. In this

example, if the House ceases to exist, so do the Room(s) composing it. The same is not

true for the Furniture element, which continues to exist in the model independently from

the presence of a Room element [19].
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Another aspect presented in the example is the multiplicity of the elements. The ”1..*”

expression states that the House is composed of at least one Room, while the ”*” alone

implies that in the Room there could be an arbitrary number of Furniture elements.

Generalisations A generalisation introduces a hierarchy between a special subclass

and a general superclass, where the subclass is a specialisation of the superclass (e.g.,

cat, dog or horse subclasses and animal superclass).

Animal

Cat Dog Horse

class Animal

Figure 9: Example of UML generalisation.

Stereotypes Stereotypes allow the definition of new elements through the extension

of pre-existing model elements with more properties and/or operations. The pre-existing

element extended by a stereotype is denoted with the keyword ≪metaclass≫.

As from the example in Figure 10, it can be possible to extend the basic UML class
≪metaclass≫ with Height, Name and Age attributes and call this a Person class (Fig-

ure 10a). This new class can be used to define person elements in the model, allowing

them to have a set of common attributes (Figure 10b).

«stereotype»
Person

+ height: cm
+ name: String
+ age: Int

«metaclass»
Class

class Stereotype Person

(a) Stereotype definition example.

«person»
Paula

height = 180
name = "Paula"
age = 30

class Person

«person»
John

height = 175
name = "John"
age = 25

(b) Stereotype application example.

Figure 10: UML stereotype examples.

2.4.2 SysML core elements

As illustrated in Figure 11, the OMG Systems Modelling Language (SysML) [20] rep-

resents an extension to UML for Systems Engineering purposes. It has been obtained

through the specialisation of part of the pre-existing UML elements, in combination with

the introduction of new system-oriented elements and diagrams, as presented in Figure 12.
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Figure 11: UML and SysML link [19].

Figure 12: SysML structure [19].

Blocks and Block Definition Diagrams In SysML, the UML’s concept of a class is

referred to as a block. Class Diagrams in SysML are therefore renamed as Block Defini-

tion Diagrams (BDDs). Additionally, SysML abstracts the UML class model’s software

focus, allowing objects to be utilised across various disciplines for system structure rep-

resentation [19].

Requirements and Requirement Diagrams A new introduction in SysML with

respect to UML is represented by Requirements. They represent conditions that systems

must comply with and are collected and represented in Requirement Diagrams. Moreover,

a series of relationships for requirements have been introduced, such as:

• derive requirement (or deriveReqt): indicates that a requirement is derived from

another;

• satisfy : indicates how a system element satisfies a requirement;

• verify : indicates how a test case verifies a requirement.
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Value Types, Units and Dimensions A Value Type is a specialisation of a UML

data type composed of a unit and a dimension. Units describe specific physical units,

while dimensions specify their quantity.

Stereotypes applied to UML Both the Requirement element and its new relation-

ships were obtained through the use of stereotypes for specialising pre-existing elements of

UML. In particular, the requirement is a stereotype for the UML class element, while the

deriveReqt, satisfy and verify relationships are stereotypes for the abstraction, realization

and trace elements, respectively.

The same can be noted for several SysML elements, such as the previously-introduced

blocks, value types, units or dimensions.

The extensive application of UML stereotypes will be a fundamental aspect of this work,

as presented in Section 3 (Proposed formalisation).
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2.5 CubeSats

2.5.1 SmallSats and CubeSats

Large systems, while capable of obtaining impressive results in fields like space explo-

ration, Earth observation, communications or navigation, require enormous investments

in terms of cost, development time and workforce, as described in the ”Space mission

engineering: the new SMAD” from Wertz et al. [12]. Small satellites, the class composed

of satellites weighing less than 500 kg as indicated in the Nanosats DB by Kulu [2], are

revolutionising access to space with their counter-trending cost and system complexity,

especially in fields like academia, education, and technology research & development [12].

Table 1 presents a further classification of small satellites by weight.

Table 1: Small satellites classification by weight. Adapted from [2].

Category Mass [kg]

S
m
al
lS
at
s Mini-satellite 100 to 500

Micro-satellite 10 to 100

Nano-satellite 1 to 10

Pico-satellite 0.1 to 1

Femto-satellite 0.01 to 0.1

While the majority of launched nanosatellites are from the US and Europe, thanks to

this new mass standard, access to space has been granted to more and more countries

and organisations during the last two decades [12], as presented in Figures 13 and 14.
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Figure 13: Nanosatellites by organisations [2].
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All nanosatellites by locations

Africa, 36, 0.9%

South and Central America, 73, 1.8%

Rest of the World, 295, 7.3%

Europe, 1067, 26.5%

Canada, 69, 1.7%

China, 112, 2.8%

India, 46, 1.1%

Japan, 126, 3.1%

Russia, 121, 3.0%

US, 2075, 51.6%

nanosats.eu2023/12/31

Figure 14: All nanosatellites by locations [2].

CubeSats represent an even more groundbreaking category of nanosatellites, which sig-

nificantly influenced the field of space exploration and satellite technology since their

introduction in 1999.

Developed by Professors Jordi Puig-Suari of California Polytechnic State University and

Robert Twiggs of Stanford University, the CubeSat project was initially aimed at pro-

viding university students with a standardised, cost-effective way to design, build, and

launch satellites for space research and educational purposes [11], [12].

It all started at Stanford University with the spacecraft OPAL (Orbiting Picosat Auto-

mated Launcher), which represented ”a significant milestone achievement in the evolution

of small satellites” [12]. This mission demonstrated the viability of the picosatellite con-

cept and the use of a new deployment system based on the release of small satellites from

larger satellite systems.

This concept led to the development of the CubeSat form factor (which will be discussed

more in detail in the following) and the P-POD deployment system [12]. The latter

allowed a radical reduction of launch costs, by enabling a large number of small satellites

to be more easily and simply accommodated inside the launcher tube.

2.5.2 The CubeSat standard

As anticipated, the CubeSat standard revolutionised access to space by offering a more

affordable and accessible platform, coupled with a standardised class of dispensers [12].

It is based on the adoption of a standardised form and size factor, shown in Figure 15,

in which each unit (defined as ’U’) is a 10 x 10 x ∼10 cm cube with a mass of around 2
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kg [11]. Although CubeSats were first used for academic purposes [12], their utility has

expanded to include commercial, governmental, and scientific missions.

Figure 15: Standard for 1U CubeSat structure [11].

Over time, CubeSats have evolved in both capability and size, with larger variants like

3U, 6U and 12U now common (see Figure 16 and Table 2 for the current CubeSats

options available), broadening their potential applications to include tasks like Earth

observation and scientific experiments, and even missions to other planets [2]. As evident

from Figure 17, which shows the nanosatellite launches until 2023 and future previsions

divided by satellite type [2], CubeSats represent the vast majority of them.

Figure 16: CubeSats family [11].

Table 2: CubeSats mass specifications [11].

U configuration Mass [kg]

1U 2

1.5U 3

2U 4

3U 6

6U 12

12U 24

Their small size and standardised design have made it easier and cheaper to launch them

as secondary payloads, reducing overall launch costs. The small satellite paradigm led
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Figure 17: Nanosatellite launches by types [2].

to more manageable and simple design phases, coupled with a radical simplification in

terms of team members and time needed for a project [12].

Small satellites, although most of them are designed by students with no or little expe-

rience, offer comparable reliability to the missions of large satellites precisely because of

the simplicity of their Concept of Operations (ConOps) and reference orbits (mostly Low

Earth Orbits (LEOs)), the small number of components, and the fact that they often do

not need to be rad-hardened [12].

This development has democratised space exploration, allowing smaller organisations and

countries to engage in space activities [2], [12]. The rise of CubeSats represents a major

shift in the way space missions are conducted, making them a key element in the future

of space technology.

20



2.6 Open-source initiatives for CubeSat design

Open-source initiatives in CubeSat design represent a significant and growing area of

interest in the space field.

The work from Scholz and Juang [21] presents a thorough overview of open-source existing

terrestrial practices and highlights how Open Design practices could benefit the space

sector, more specifically in low budget projects such as the ones carried out by Academia.

In [21] Open Design is referred to as the combination of Open Source Software (OSS)

and Open Source Hardware (OSHW), both regulated by specific entities.

For the OSS, the recognised regulator entities are the Free Software Foundation (FSF)

[22] and the Open Source Initiative (OSI) [23]. The latter defined the Open Source

Requirements (OSRs), i.e. the criteria that an Open Standard must comply with:

• No Intentional Secrets: The standard shall disclose any detail vital for interop-

erable implementation. Inevitable flaws shall be addressed by defining a process for

rectifying issues identified during implementation and interoperability testing. Sub-

sequent changes shall be integrated into an updated or new version of the standard,

released under terms compliant with the OSR.

• Availability: The standard shall be openly and freely accessible (e.g., via a reliable

website) under royalty-free terms at a fair and non-discriminatory cost.

• Patents: All patents crucial for the standard’s implementation shall either:

– be licensed under royalty-free terms for unrestricted use, or

– be subject to a non-assertion commitment when utilised by open-source soft-

ware.

• No Agreements: There shall be no obligation to sign any form of agreement, such

as a licence agreement, N.D.A., grant, click-through, or similar documentation, to

deploy conforming implementations of the standard.

• No OSR-Incompatible Dependencies: Implementation of the standard shall

not depend on any other technology that does not meet the criteria of this Require-

ment.

The OSR therefore defines the environment and conditions for an OSS, allowing that to

”be freely used, changed, and shared (in modified or unmodified form) by anyone. Open

Source Software is made by many people, and distributed under licenses that comply with

the Open Source Definition” [21], [23].

Unlike software, as highlighted in [21], access to various documents, including drawings,

schematics, diagrams, design rules, layouts, and other related materials, is necessary for

modifying and producing hardware.

The Open Source Hardware Association (OSHWA) [24], defines the OSHW as ”hardware

whose design is made publicly available so that anyone can study, modify, distribute,

make, and sell the design or hardware based on that design. The hardware’s source, the

21



design from which it is made, is available in the preferred format for making modifications

to it” [25].

This directly derives from the Open Source Definition from OSI [23], and defines a set of

criteria that OSHW must comply with. The full list of OSHW Requirements is available

in [25]. Among those, it is important to highlight the following ones:

• Documentation: Hardware shall come with documentation, including design files,

allowing their modification and distribution. If not provided with the product,

documentation should be obtainable online at minimal cost, ideally free.

• Necessary Software: If essential operation requires software, the license shall

ensure either:

– detailed documentation for creating compatible open-source software, or

– necessary software is under an OSI-approved open source license.

• Derived Works: The license shall permit modifications and derivatives, allowing

distribution under the same terms. It shall permit manufacturing, selling, and using

products derived from the design files.

• Free Redistribution: The license shall not limit free selling or giving away of

the project documentation and must not require royalties or fees for sale of derived

works.

• Non-Discrimination: The license shall not discriminate against any person or

group.

As presented in Section 2.5 (CubeSats) and remarked in the work from Scholz and

Juang [21], after the introduction of the CubeSat standard, the access to space has been

democratised. It enabled a wider range of Institutions, Countries and Organisations to

develop and deploy reliable and cost-effective satellites, with reduced budgets.

Figure 13 from Kulu’s Nanosats DB [2] shows how, after Industry, the second organisation

with the most deployed CubeSats is Academia.

The work from Scholz and Juang [21] highlights how the introduction of the open-source

paradigm within the Academic environment could streamline information exchange across

various institutions. As for terrestrial applications, this would lead to more reliable, cost-

effective, and innovative designs, based on a massive peer-review and all suggestions and

improvements from the open-source community [21].

From that it is evident how an important aspect of the application of the open-source

approach is its collaborative nature. Many open-source projects can rely on a strong

community, which conduct most of the development process.

The application of the open-source paradigm to CubeSat design across Academia would

facilitate such design process, allowing for easier re-utilisation of concepts, software and

components and enabling the collaboration between various teams that could focus on

several aspects of a same project without non-disclosure issues [21].

There are several notable open-source initiatives for CubeSat design that have emerged
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in recent years. These initiatives aim to provide accessible, community-driven resources

for designing, building, and operating CubeSats. Some of these include:

• Libre Space Foundation: The Libre Space Foundation [26] is a non-profit or-

ganisation, dedicated to the development of open-source space technologies. One

of their notable projects is the University of Patras Satellite (UPSat) [27], which

appears to be the first Open Design CubeSat.

• LibreCube: LibreCube [28] is an initiative focusing on developing OSS and OSHW

for space and Earth exploration, strictly using only open-source tools. They aim to

provide designs and protocols that are freely available for anyone to use and adapt.

• Satellite Networked Open Ground Stations (SatNOGS): Also a project

under the Libre Space Foundation, SatNOGS [29] is an open-source network of

satellite ground stations. It provides a platform for tracking and receiving data

from satellites, including CubeSats, and is a vital resource for CubeSat operators.

• ArduSat: The ArduSat Project [30] was an early example of an open-source Cube-

Sat, which used Arduino [31] as a primary platform for payloads. Two small satel-

lites were launched in 2013, after one year of crowdfunding [32], allowing users to

run their own experiments in space. Both of them re-entered the atmosphere in

2014.

• Open Source CubeSat Workshop: This is an annual event that brings together

developers and enthusiasts in the field of CubeSat and small satellite technologies.

It focuses on open-source approaches and fosters collaboration and sharing of ideas

and projects. Information on the 2021 edition of the Workshop are available in [33].

• Nanostar Software Suite (NSS): Developed by the joint effort of the Nanospace

Consortium, the NSS is an open-source and web-based software framework, with the

aim of facilitating data exchange between domain-specific software in CE sessions

[34].

These initiatives reflect the growing interest in open-source approaches to space tech-

nology. By sharing designs, software, and knowledge, these projects not only lower the

barriers to entry into the field of satellite development but also encourage innovation and

collaboration in the space community.
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2.7 State-of-the-art of the NSS

The Nanostar Software Suite (NSS) is an open-source and web-based software framework,

with the aim of facilitating data exchange between domain-specific software, as presented

in the work from Gateau et al. [34].

Figure 18 shows the architecture of the NSS. It mainly consists of a web-based Graphical

User Interface (GUI), a database and a Application Programming Interface (API), thor-

oughly designed to facilitate academic CubeSats Preliminary Design process and Con-

current Engineering sessions [34].

As from [35], ”an API is a well-defined interface that provides a specific service to other

pieces of software”. The application of an API therefore allows modular functions and

applications to be incorporated into the end-case suite, seeing each software in the NSS

constellation as a component, or a service [35]. Moreover, NSS allows several ways for

connecting third-party applications, as from the numbered circles in Figure 18:

1. Manual interaction with the GUI.

2. Through a generic interface (e.g., an API).

3. Through the NSS’ dedicated API.

This feature ensures even greater flexibility in the choice of tools for budgeting and

simulation activities and their implementation, making the modularity and flexibility

core aspects of the NSS approach to the design process.

Figure 18: Simplified Nanospace architecture [34].
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2.7.1 Nanospace UI

Nanospace UI is the primary visual interface of the Nanospace framework, which is used

for the concurrent design of CubeSats. Figure 19 displays the GUI.

Figure 19: Nanospace-UI [34].

Within the interface, the users are offered a range of functionalities to facilitate project

interaction and management [34]:

• Cross-platform access: Nanospace UI is designed for cross-platform access, re-

quiring only a modern web browser on the client side. This makes it easily accessible

from various devices without needing specific installations.

• User authentication and management: Users can authenticate themselves to

access the application and the projects they are responsible for. Additionally, users

can add other members as co-responsible for a project, fostering collaboration.

• Project and model creation and modification: Nanospace-UI allows users to

create and modify projects or models, which are compositions of various elements.

Users can characterise models with specific values, adding detailed information and

parameters to different project components.

• Creation of Requirements: The GUI enables users to create requirements based

on the characteristics of the model, helping to ensure that the design meets the

necessary criteria.

• Classic functionalities: It includes classic user interface functionalities such as

copy, drag-and-drop, and auto-completion, enhancing the ease of use.

• Modes creation for components: The interface allows for the creation of one

or several Operating Modes (OMs) for each component, facilitating the exploration
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of different configurations or states of a project’s parts.

• History Access: Users also have access to a history of past modifications, aiding

in tracking changes and maintaining project integrity.

In brief, Nanospace-UI is a comprehensive and user-friendly interface that facilitates

various aspects of CubeSat project management and design, emphasising ease of use,

collaboration, and efficient data handling.

2.7.2 Nanospace DB

Nanospace DB is a key component of the Nanospace framework. It incorporates several

important elements and characteristics [34]:

• Graph-based data storage: Unlike traditional relational databases, Nanospace

DB stores data in a graph form. This approach is more suitable for handling hier-

archical data structures with variable depth, which is common in CubeSat design.

In a graph database, data is represented as nodes and edges, where nodes can rep-

resent entities such as components, modes, and values, and edges represent the

relationships between these entities [36].

• Use of Neo4j: Nanospace DB utilises Neo4j, a database known for its ACID

(Atomicity, Consistency, Isolation, Durability) properties [36]. These properties

ensure reliable transaction processing and data integrity, which are crucial for com-

plex design projects like CubeSats. Neo4j’s graph-based structure is particularly

efficient for handling the interconnected and hierarchical nature of CubeSat design

data.

• Write-protection and access competition: To manage concurrent access and

ensure data integrity, data within Nanospace DB is write-protected. This feature

allows multiple users to access and work with the data simultaneously without

risking data corruption or conflicts.

• Entities in Nanospace DB: The data model of Nanospace DB includes several

entities:

– Project: This entity stores elements that constitute the CubeSat model.

– Components: These are the building blocks of the project, representing var-

ious parts or subsystems of the CubeSat.

– Mode: This entity describes the different functional options of a component,

allowing for the representation of various states or configurations that a com-

ponent might have.

– Value: This entity specifies the modes and, indirectly, the components. It

represents the specific parameters or characteristics of a mode or component.

– User: This entity represents individuals who are responsible for different as-

pects of the project. It ensures accountability and tracking of modifications

made by different team members.
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In summary, Nanospace DB is a sophisticated and adaptable database system, specifically

designed for the complexities and collaborative nature of CubeSat design, leveraging the

strengths of graph-based data storage and the robust capabilities of Neo4j.

2.7.3 Nanospace constellation

The Nanostar Software Suite (NSS) is an integral part of the Nanospace constellation

concept, designed for the concurrent design of CubeSats. Its main elements are depicted

in Figure 20, along with their integration level.

Figure 20: NSS constellation. Green circles represent the level of interconnection, from

low (1) to full (3) integration [34].

The development and support of the NSS modules are collaborative efforts by different

institutes within the Nanostar Consortium [34]. This collective approach leverages the

expertise and resources of various organisations to create a comprehensive and effective

toolset.

The NSS is designed to respect, as far as possible, pre-existing standards sets, such as the

ones by the Consultative Committee for Space Data Systems (CCSDS) and the European

Cooperation for Space Standardisation (ECSS). CCSDS standards, for example, are

crucial for ensuring interoperability, reliability, and quality in space data and information

systems. A thorough overview of active standards for CubeSat missions is presented by

Scholtz [37].
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Within the NSS, Nanospace functions as the backbone, facilitating smooth interactions

between different subsystem expert software. This role underscores Nanospace’s impor-

tance in integrating various software modules and ensuring seamless communication and

data exchange among them.

This integration and interaction between different subsystem expert software is crucial

for handling the complex, interdisciplinary nature of CubeSat design, where various sub-

systems need to be designed and tested in a coherent and coordinated manner [34].

In summary, the Nanostar Software Suite is a developing toolset within the Nanospace

constellation, aimed at enhancing the concurrent design of CubeSats through collabora-

tive efforts, standard compliance, and integrated subsystem expertise.
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3 Proposed formalisation

3.1 Research problem

The work of Knoll et al. [6] highlights how the introduction of Concurrent Engineer-

ing (CE) methodologies is facing a set of technical challenges. Among these, the top

common ones appear to be the need for a strong and seamless connection between the

various discipline-specific tools and the increasingly widespread use of MBSE, which must

represent the systems in their entirety [6].

As presented in Section 2.3.3 (Future and challenges of MBSE), such challenges are also

underlined in the INCOSE SE Vision 2020 [16] and SE Vision 2035 [9]. The fragmenta-

tion across modelling and simulation tools and the data landscape, along with the need

for sophisticated modelling techniques, represents a challenge for the Systems Engineering

field, to be faced in the near future.

The study conducted by Bajaj et al. [10] thoroughly examines the discrepancies between

current tools used for designing and analysing complex systems during the various design

phases, as depicted in Figure 21.

Figure 21: Gaps in current state-of-the-art tools for design and simulation of complex

systems. Adapted from [10].

Gap 1 focuses on the lack of Model-Based continuity in system design and simulation

activities across different stages of mission design. This issue arises from the utilisation

of varied modelling and simulation tools in the initial phases of a mission compared to

the later stages. This results in inconsistencies in the system’s definition, requirements,

and performance parameters throughout the development cycle [10].

Gap 2 highlights the disconnection between design and simulation models within each

design phase. Particular emphasis is given to Gap 2a, which points out the differences

between conceptual system design models and mathematical analysis models in the early

stages [10].
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The need for a MBSE workspace, facilitating the integration of modelling languages such

as SysML with discipline-specific models, has led to the creation of the Systems Lifecycle

Management (SLIM) [10] tool. An effort for developing an interface between a SysML

model and a simulation tool such as Ansys Systems Tool Kit (STK) [38], following the

SLIM methodology, is presented by Spangelo et al. [39]. In this application, the model

executes a scenario and calculates the visibility windows between a Spacecraft (S/C) and

a Ground Station (GS).

It has to be noted, however, how both SLIM and the work from Spangelo et al. [39], while

providing useful information about the integration of SysML with various simulation

tools, require the use of proprietary tools such as Ansys STK.

The demand for an open-source software ecosystem resulted in the development of the

Nanostar Software Suite (NSS) [14], [34]. As presented in Section 2.7 (State-of-the-art

of the NSS), this suite enables the creation of a unified database shared amongst the

principal analysis software used during a Preliminary Design (PD) Phase.

The process utilised within the NSS is highly iterative and modular, allowing users the

flexibility to either utilise the NSS or substitute specific tools with their preferred alter-

natives [14], [34].

Nevertheless, the NSS does not include all the advantages that would result from using

modelling language such as SysML. A thorough description of MBSE, SysML and their

benefits is presented in [8], [19], [40]. However, the use of MBSE tools and modelling

languages for the NSS has been explored in the work of Salas Cordero et al. [13], emerging

as a strong option for defining the functions related to the S/C and ”avoiding the long

manual task of mapping connections between system elements, which can be useful in

change management to determine change propagation” [13].

A new set of research questions emerged from the work [13], emphasising what already

presented in the work of Bajaj et al. [10]:

• Can MBSE be used as a ”front-end” for the complete design cycle?

• How do CE approaches and associated tools, linked with MBSE approaches and

their tools, impact the PD phase?

These questions, which eventually led to the development of the NSS [13], [14], [34], are

answered in the following of this thesis in a new form, as schematised in Figure 22:

1. How to formalise the integration of MBSE tools and modelling languages with

third-party open-source simulation tools for their application among the whole Pre-

liminary Design phase?

2. How to formalise a CubeSat model with enough generality to allow its reusability

across different mission designs, while still detailed enough for a comprehensive

representation of the systems?

In the following sections of this thesis, a detailed description of a proposed formalisation of

a general CubeSat model is presented. This model is specifically designed to be versatile
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and compatible with a wide range of simulation tools, making it a valuable asset to the

CubeSat design and development process.

The entire process is developed with the use of open-source tools in mind, as a way to

further facilitate the Preliminary Design of CubeSats in low-budget contexts, such as

Academia.

The forthcoming sections begin with a discussion of the proposed integration process of

the CubeSat model. This process is pivotal as it outlines the methodology for implement-

ing the proposed formalisation in an end-to-end application. The proposed integration

process is designed to ensure seamless interaction between the various components of the

CubeSat model and any set of simulation tools.

Following the integration process, the thesis details all the elements that constitute the

formalisation. Each element is examined, highlighting its role, significance, and interde-

pendencies with other components.

Moreover, the thesis addresses how the proposed formalisation accommodates various

mission types and objectives, illustrating the flexibility and adaptability of the model.

This is particularly important given the diverse range of applications for which CubeSats

are deployed, from Earth Observation and scientific research to technology demonstration

and educational purposes.

Overall, the subsequent sections aim to provide a comprehensive guide to the proposed

CubeSat model formalisation, offering valuable insights and practical methodologies for

researchers, engineers, and students involved in CubeSat development. This formalisation

is intended not only to streamline the design and development process but also to enhance

the overall quality and success rate of CubeSat missions.
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3.2 Integration process

The work from Spangelo et al. [39] presents an integration of a CubeSat model with

a proprietary simulation tool, i.e. Ansys STK. It presents a way for defining a set of

parameters for the characterisation of the systems and subsystems composing a CubeSat,

as inputs and outputs of the various functions defining the behaviour of such parts [39].

In the application presented by Spangelo et al., however, the CubeSat model is used as

an interface for allowing inter-operability with external tools and data sources [39].

Since this thesis sets as requirements the use of open-source tools and the centralisation

of data within a single model, the formalisation of a generic CubeSat model capable of

acting as a front-end and single source of truth for the data during all stages of the

PD phase is presented below. The proposed model formalisation, as discussed later, is

integrable with any desired set of open-source simulation tools for analysis and budgeting

activities and the generation of system reports.

Within the framework of MBSE and modelling languages, several options are viable.

As illustrated in Section 2.4 (UML and SysML), however, the Systems Modelling Lan-

guage (SysML) stands out as an extension of the Unified Modelling Language (UML),

specifically designed for Systems Engineering (SE) applications. The SysML excels in its

ability to represent complex systems, capturing everything from requirements and core

functions to the interaction of components and flows3.

Given these strengths, SysML has been chosen as the modelling language for developing

a general CubeSat model as part of the proposed formalisation. This choice is motivated

by the ability of SysML to effectively delineate both the logical and functional aspects of

the systems and its ability to consistently represent their physical architecture.

However, despite its extensive modelling capabilities, SysML does not inherently provide

the specific and quantifiable data needed for simulation and analysis. These elements,

such as the mass and power consumption of system components and orbital parameters,

are crucial for realistic simulations and accurate system budgeting. To fill this gap, it is

necessary to support the SysML model with external mathematical models, which provide

the detailed data required for these tasks.

The next step is the integration of the simulation data into the SysML model, to ensure

the existence of a single source of truth for the data and reduce the fragmentation of

information during the PD phases. This process requires the identification of the essential

data and parameters that must be represented for a complete simulation of the system’s

operational scenarios.

Figure 23 illustrates the proposed integration process. This integration strategy aims

to seamlessly merge the MBSE tools and SysML modelling language with third-party

simulation tools, creating an effective and streamlined modelling and simulation environ-

ment for CubeSat development. This holistic approach ensures that the CubeSat model

3”An item flow is a special information flow that describes at a connector in the Internal Block

Diagram that specific objects are transported. [...] The flowing object is a property defined in the context

of the block. While the flow port describes the objects that can flow there, the item flow describes what

really flows.” Definition from [19].
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accurately embodies both the theoretical and practical aspects of the system, reflecting

its performance and operational capabilities in simulated environments.

CubeSat Model

Requirements Architecture
Model
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Figure 23: CubeSat model and simulation tools proposed integration process. The colour

coding of the blocks defines an input/output relationship, following the order of the

arrows.

1. The first step in the proposed process is to establish a general model for CubeSat

using SysML, represented as green blocks in the Figure above. This model forms

the backbone of the proposed formalisation. It is important to note that this initial

phase is independent of any specific modelling tool or methodology. This flexibility

in the selection of instruments, which is elaborated later in this thesis, is crucial for

wider applicability and ease of adoption in various contexts.

2. The entire proposed formalisation is based on the application of UML stereotypes,

represented as yellow blocks, to the SysML model4. Once again, this step relies

neither on the modelling tool of choice for the generation of the model, nor on the

other elements included in the model itself.

The proposed set of stereotypes, described in detail in Section 3.3.2 (Stereotypes

generation process), allows further characterisation of the model blocks, enabling

the inheritance of specific attribute sets to blocks with the same stereotype applied.

Such attributes mimic the design parameters needed for analysis and simulation ac-

tivities across the PD stages, represented by red blocks in Figure 23. They include,

for instance, the orbital parameters, or the data needed for a characterisation of the

Operating Modes (OMs) and the main systems of a CubeSat. Thus, the next re-

quired step is the identification of the parameters and main system budgets required

in the PD phase.

3. After the identification of the parameters needed, the next stage in the proposed

process is the extraction of relevant data from the model files for further integration

with any set of analysis and simulation tools. It is done through the development of

a dedicated parser, represented by blue blocks in Figure 23. The parser, by knowing

4See Section 2.4 (UML and SysML) for further details on the generation and use of UML stereotypes.
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in advance the stereotypes applied in the model and their relative attributes, is

capable of extracting the desired data (e.g., the design parameters, represented

by red blocks) and generating a software-readable data structure in any desired

format. As presented in Section 3.5.10 (CubeSat SysML model and simulation tools

integration summary), this step requires a thorough understanding of the model file

format, and therefore is dependent on the modelling tool of choice.

4. Lastly, it is possible to link the newly generated data structure with any desired

simulation and analysis tools for the generation of system budgets and reports, as

indicated by purple blocks in Figure 23. With this step the integration is complete:

it is possible to generate a CubeSat general model, capable of storing and visualising

all relevant data for simulations and budgeting activities. Such data are automat-

ically parsed into a software-readable data structure for integration within any set

of simulation tools, without further need for manually populating a database. As

presented in future sections, by changing the data inside the data structure manu-

ally, or as a result of a simulation/analysis, the parser is capable of automatically

editing the model files, ensuring continuity in the overall process.

All the steps described above are discussed more in detail in the following of this work.

An end-to-end application of the proposed formalisation is presented in Section 3.5.10,

as a proof of concept.
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3.3 Data formalisation in CubeSat model

This section provides an introduction to the proposed formalisation design choices. It

presents the chosen modelling tool for the generation of a CubeSat general SysML model

and the main steps within it for the inclusion of UML stereotypes within it. The principal

design parameters and budget to be included within such stereotypes are assessed, before

continuing to Section 3.4 (Operating Modes generalisation).

3.3.1 Modelling tools comparison

In order to create an effective and efficient SysML general CubeSat model, and to enrich

it through the application of UML stereotypes, various open-source modelling tools need

to be assessed. Each tool presents its own unique benefits and limitations, especially

when considered for use in an academic setting. Given that many potential users are

likely to be newcomers to both MBSE and SysML, it is essential to assess these tools

through a lens that prioritises accessibility and ease of use.

The following set of evaluation criteria has been established:

• Ease of learning: how user-friendly is the tool, especially for beginners? This

includes considerations of the tool’s learning curve and the availability of learning

resources such as tutorials and user guides.

• Complexity of the Graphical User Interface (GUI): the simplicity and in-

tuitiveness of the tool’s GUI are crucial. A less complex GUI can significantly

enhance the learning process and overall user experience, particularly for those new

to SysML.

• Tool modelling completeness: this criterion evaluates the extent to which a tool

can comprehensively support all aspects of SysML modelling. It assesses the tool’s

capabilities in handling the various components and intricacies involved in creating

a complete SysML model.

• Availability of pre-existing tools for model translation: the presence of

existing resources or tools that facilitate the translation of models into software-

readable data structures is highly valuable. This facilitates easier integration with

other systems and software, enhancing the utility of the models developed.

• Ease of Translating Model Files: how straightforward is it to convert the model

files into formats usable by other software? This aspect is vital for ensuring the

versatility and applicability of the models across different platforms and use cases.

While these criteria are important for selecting the most suitable modelling tool, it is

important to highlight that the proposed formalisation is designed to be independent of

any specific modelling tool or methodology.

This independence ensures that the formalisation can be universally applied, regardless

of the specific tools or methods preferred by different users or organisations. This ap-
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proach enhances the adaptability and broad applicability of the formalisation, making it

a versatile solution in the field of CubeSat development and MBSE.

Eclipse Capella Eclipse Capella [41] stands out as a viable option in the realm of

SysML tools. It is distinguished by its adherence to the Arcadia method, a guided

modelling process [42], with comprehensive documentation on Arcadia available in refer-

ence [43].

Capella fully encompasses all SysML functionalities, offering the added feature of ex-

porting requirements as table files. The models are saved in the .xml format, which is

conveniently manipulable, a topic that is elaborated on later in this work. Additionally,

Capella supports the integration of Python scripts with the model.

However, Capella’s GUI presents a steep learning curve due to its complexity, potentially

posing challenges for new users. The tool offers limited customisation options and does

not come with an existing tool for translating the model files into software-readable data

structures. The requirement for installing additional plugins or add-ons, for instance, to

enhance the visualisation of requirements, further adds to its complexity.

Eclipse Papyrus Another tool assessed is Eclipse Papyrus [44], which implements all

functionalities of SysML 1.6 and provides clear, concise explanations for each SysML/UML

element. While its GUI is as feature-rich as Capella’s, it is more user-friendly in com-

parison. Papyrus allows for the display of requirements in both table and graph formats

and also saves models in the .xml format.

Like Capella, Papyrus does not currently have a parser. Users may also encounter some

difficulties in defining stereotypes from graphs, which is not particularly straightforward

for new users.

Gaphor Gaphor [45] boasts a notably simple GUI and an easy learning curve, comple-

mented by straightforward shortcuts. The fact that it’s written in Python is a significant

advantage; this allows for model editing outside the GUI and offers potential for con-

tainerisation, with ample documentation on the subject [45]. Gaphor also facilitates the

definition of stereotypes and common values, which is beneficial for variables definition,

as introduced in Section 3.1 (Research problem).

However, Gaphor is not without its drawbacks. One notable issue is the lack of guidance

and full error display during the design process, meaning that it could be possible for

newer users to generate models not compliant with the SysML specification.

Chosen tool Overall, while each tool has its strengths, the decision on which tool

to adopt depends on a balance of factors like ease of use for new users, functionality,

integration capabilities with existing simulation tools, and support for SysML standards.
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For instance, Gaphor’s user-friendly interface and Python compatibility are significant

advantages for teams looking for quick deployment and integration with existing Python-

based workflows. On the other hand, Capella’s comprehensive SysML support and struc-

tured approach might be more appealing for teams requiring in-depth Systems Engineer-

ing capabilities, despite its steeper learning curve and complexity.

Another aspect worth considering is the community and developer support for these tools.

As presented in Section 2.6 (Open-source initiatives for CubeSat design), open-source tools

like Gaphor have the advantage of community-driven development and support, which

can be a valuable resource for troubleshooting, customisation, and enhancement. In

contrast, tools like Capella, though robust, might rely more on official support channels

and may have less flexibility in terms of customisation.

Because of these factors, combined with the presence of an already existing parser to be

used as a reference, Gaphor is chosen as the preferred modelling tool for this application.

3.3.2 Stereotypes generation process

The proposed formalisation is based on the use of UML stereotypes5 to extend the at-

tributes of blocks in SysML Block Definition Diagrams (BDDs). These diagrams are

instrumental in representing the physical architecture of the system, detailing the oper-

ative Orbit and Ground Station and including its Operating Modes.

The stereotypes are modelled as extensions of the UML Class metaclass. This extension

allows the inheritance of their attributes by SysML blocks with one of these stereotypes

applied, as introduced in Section 2.4 (UML and SysML).

Figure 24 shows the steps followed to generate the stereotypes in Gaphor [45]. However, it

is important to emphasise how the proposed formalisation is independent of the modelling

tool used.

1. Setting UML as the default: Initially, it is essential to establish the UML and

its elements as the default settings. This step is fundamental since stereotypes are

a component of UML, and their correct implementation hinges on this initial setup.

2. Creating Profile Diagrams for stereotype definition: The next stage in-

volves generating new Profile Diagrams for the specification of stereotypes. For

instance, in the example presented, an OrbitProfileDiagram is created specifi-

cally for defining the Orbit stereotype. This diagram acts as the outline for the

stereotype’s structure and attributes.

3. Inserting elements into the profile diagram: Subsequently, from the Profiles

tab, both stereotype and metaclass elements can be selected and incorporated

into the previously established Profile Diagram. In the given example, the stereo-

type is labelled Orbit, and it is crucial to set the metaclass as a Class to ensure

correct association and functionality.

5”A stereotype defines how an existing metaclass may be extended, and enables the use of platform

or domain specific terminology or notation in place of, or in addition to, the ones used for the extended

metaclass.” [18]. See Section 2.4 (UML and SysML) for UML and SysML examples.
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Figure 24: Gaphor GUI steps for UML stereotypes generation.

4. Defining stereotype attributes: A critical step involves defining the attributes

of the newly created Stereotype block. This process, accessible on the right-hand

side of the GUI, lays the groundwork for future data extraction from the model.

The attributes assigned to a stereotype will be shared across all blocks to which

this stereotype is applied, enabling consistent and uniform assignment of relevant

properties.

This uniformity is especially beneficial when dealing with common system elements

like S/C systems or operating orbits. As further discussed in Section 3.5.10 (Cube-

Sat SysML model and simulation tools integration summary), the establishment of

common data structures significantly aids in translating the model files into formats

readable by software, thereby facilitating their integration with simulation tools. In

the example, the Orbit stereotype encompasses attributes detailing all necessary

orbital parameters.

5. Establishing an Extension Relationship: The final step is to define an Exten-

sion Relationship between the created stereotype and the Class metaclass. This

action enables the application of the Orbit stereotype to any Class element within

the model.

Given that the SysML Block element is itself an extension of the UML Class

element, this means the stereotype can be applied to every Block in the SysML

model, broadening its applicability.

The generation of the stereotypes is independent of the modelling tool used and of the

other elements included in the model itself. The latter feature guarantees the possibility of

customising the model with any SysML elements and diagrams not related to the proposed

formalisation (e.g., Internal Block Diagrams, Use Case Scenarios, etc.), ensuring that the

full functionality of SysML can be used.
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Prior to delving into a more detailed characterisation of the stereotypes, it is necessary

to identify all relevant data required for analysis and simulation activities throughout the

PD phase. This step ensures that the stereotypes are not only theoretically sound but

also practically applicable in real-world scenarios.

3.3.3 Budgets and parameters identification

The introduction of the CubeSat standard revolutionised the space sector, mainly due to

its simplicity and cost-effectiveness, as highlighted in reference [12]. This innovation has

democratised access to space, allowing a wider range of institutions, including smaller

educational and research organisations, to participate in space missions. Despite these

advances, the Preliminary Design (PD) phase of CubeSats remains a complex and intri-

cate process, as illustrated in Section 2.1 (Preliminary Design).

The complexity of the PD phase is largely attributed to the inherently multidisciplinary

nature of designing a satellite, even one as relatively small and standardised as a CubeSat.

Designing a CubeSat requires a careful balancing of various technical aspects, such as

mass, volume, power and data budgets, each of which presents its own set of challenges

and constraints. In addition, considerations such as the budget for communication links

and other mission-specific requirements add complexity to the design process.

The work by Gateau et al. [34] delves into the complexity of these requirements, offering

an in-depth analysis of the various budgets and studies required to assess the feasibility

of a CubeSat mission. Their results, summarised in Table 3, are a key resource for

understanding the multiple aspects of a CubeSat’s PD. This includes the evaluation of

technical parameters, subsystem integration and balancing mission objectives with the

physical and budgetary constraints inherent to CubeSats.

Mass Budget The mass budget is a critical component in the design and engineering of

a Spacecraft. It provides a complete overview of the total mass of the S/C, calculated as

the sum of the masses of all its components. This includes not only the primary structural

and functional elements of the S/C, but also the mass of harnesses, propellants and other

auxiliary materials.

An important aspect of the mass budget is the inclusion of relative margins, which are

essential to account for uncertainties or potential changes in the mass of components

during design, production and operation scenarios.

Volume Budget The volume budget plays a key role in S/C design by outlining the

internal volume constraints within which all systems must be accommodated. It involves

a detailed assessment of the space occupied by each of the S/C’s internal systems. This

assessment is critical to ensure that all components fit into the designated space while

allowing for the necessary operating margins.

These margins are an integral part of the volume budget, providing flexibility and adapt-

ability in the design to account for unforeseen changes or variations in component size.
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Table 3: Summary of principal budgets and data needed for PD studies [34].

Budget Input Output

Mass
S/C components masses

S/C mass
Margins

Volume

S/C components allocated volume

S/C available volumeS/C total volume

Margins

Power

S/C components consumption

Activity profile Power consumption profile

Eclipses Required batteries

Solar cells and batteries description Required solar cells

Margins

Link

Orbital parameters

Requirements (e.g., Bit Error Rate (BER))

S/C communication system data Data flow

Losses Link Margins

GS or other S/Cs comm. sys. data

System margins

Data

Visibility windows

Activity profile Available data flow

List of Ground Stations Required on-board storage

Satellites inter-link

Power Budget The power budget is often considered one of the most critical factors

in determining the feasibility of a space mission. It involves a thorough understanding

and calculation of the power requirements of each S/C component.

The power budget must take into account the power consumption of these components

and the S/C’s power generation capabilities, which typically include batteries and solar

cells. A key consideration for the power budget is the operating orbit of the S/C, which

influences the duration and frequency of eclipse periods, i.e. periods when the S/C is in

the Earth’s shadow and depends solely on battery power.

This budget must be carefully managed in all S/C Operating Modes, taking into ac-

count the different activity profiles during the various mission phases. Ensuring adequate

power margins is crucial to cope with fluctuations in energy requirements and generation

capacities.

Link Budget The link budget of a S/C is a critical component in the design and

operation of space missions, focusing mainly on the ability of the communication system

to transmit and receive signals between the S/C and GS’s or other S/Cs.

This is a detailed calculation that takes into account the power of the transmitted signal,
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the losses incurred during signal transmission through space and the Earth’s atmosphere,

and the sensitivity of the receiving antenna.

Key factors in this calculation include the gain and output power of the S/C’s transmit-

ting antenna, the distance the signal must travel, strongly depending on the operating

orbit, and any potential losses due to atmospheric conditions, signal polarisation or space

weather phenomena.

In addition, the link budget must consider the frequency of the transmitted signal, as

different frequencies behave differently in space and atmospheric environments. The

budget is essential to ensure reliable communication, which is crucial for mission control,

data downlink and S/C monitoring. A well-planned link budget ensures that the S/C

remains in contact with mission control and other entities, enabling successful mission

operations and data transfer.

Data Budget The data budget of a S/C is a crucial aspect of its overall design and

operational planning, as it includes the management and allocation of the S/C’s data

management capabilities. This budget mainly focuses on estimating and optimising the

amount of data that the S/C can generate, process, store and downlink.

The main data budget considerations include the data generation rates of the various

on-board instruments and sensors, the on-board data processing capabilities, the data

storage capacity before transmission, and the bandwidth of the communication systems

for the downlink of data.

The data budget also has to take into account the constraints imposed by the mission

duration and the operating orbit, which affects communication with Ground Stations.

Furthermore, the data budget is closely linked to the scientific or operational objectives

of the mission, which determine the types and volumes of data prioritised for collection

and transmission. Effective management of the data budget is crucial to ensure that

maximum scientific or operational value is extracted from the mission within the limits

of available resources.

Other Budgets For more complex missions, it is necessary to go beyond the basic

budgets and consider additional factors such as propellant budget, radiation, and heat

dissipation.

These elements require in-depth analyses, particularly for the sizing of the Attitude &

Orbit Control System (AOCS). Such analyses involve understanding the delta-V require-

ments for manoeuvres and the specifications of AOCS actuators and sensors.

While these additional parameters are critical for simulating more advanced S/C designs,

their full characterisation is beyond the scope of this particular study, which focuses on

the data presented in Table 3 as a foundation for the stereotypes characterisation and

further integration of the CubeSat model with any set of simulation tools.
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Margins The margins mentioned in the definition of most budgets are a key consider-

ation in S/C design.

Following ESA’s Margin philosophy for science assessment studies [46], these margins are

applied at both system and component levels. They serve to account for uncertainties

and variations in design and operational parameters, ensuring that the S/C can operate

effectively under different conditions.

Activity profile Particular attention must be paid to the definition of the required

activity profile of the S/C.

This profile outlines the range of operations or activities that the S/C should perform

during its mission, including transitions between Operating Modes. Derived from the

Concept of Operations, the activity profile can vary significantly depending on the specific

objectives and design of the S/C. However, for the purpose of this study, a generalisation

of OM is proposed to develop a versatile activity profile that can be applied to different

CubeSat designs.

42



3.4 Operating Modes generalisation

As presented in the previous section, one of the requirements for the development of many

system budgets is the identification of the Spacecraft’s activity profile, often generated

ad hoc for each mission.

In order to expand the modelling abstraction capabilities of the proposed formalisation,

a way of generalising the activity profile of a CubeSat needs to be explored. Therefore, in

the following sections, a generalisation of the Operating Modes of a CubeSat is presented,

based on the identification of common attributes and criteria among several LEO CubeSat

Concepts of Operations.

3.4.1 Existing standards and models

For a better understanding of how to proceed to provide a generalisation of the OMs, it

is worth mentioning some of the works in the literature on this subject.

The work of Asundi and Fitz-Coy [47] presents a SE approach to CubeSat design for

a rigorous definition of OMs and their dependencies. This work is based on the NASA

Systems Engineering Handbook [15].

The Mission ConOps is an important document for the analysis of Mission Objectives

and Mission Operations, which can be translated into an outline for the identification

of Mission Phases and their OMs [47], constituting the above-mentioned S/C’s activity

profile. It is derived from the decomposition of the Mission Definition into Mission Ob-

jectives, taking into account external factors such as cost and other and other constraints,

as shown in Figure 25.

The system requirements are translated into components, interfaces and then tasks, which

are grouped to define the Operating Modes in accordance with the ConOps.

As most of the operations for CubeSats are similar or close enough to allow a standard-

isation of the OMs and ConOps, Jain’s work [48] proposed an abstracted sequence of

operations for CubeSats.

As discussed in [48], a standardised way of describing the Operating Modes, in terms of

control sequences and minimum requirements for each OM, can be derived by analysing

the similarities between different ConOps of LEO CubeSat missions (e.g., SwampSat [47],

Waydo et al. [49], M3 and APEX [50], VISORS [51], Cat-2 [52], DICE [53]).

An example of the structure of the templates provided by [48] is shown in Table 4.

By following the framework provided by ECSS-E-70 standards [54] as a template, each

OM is characterised by its scope and concept, then the suggested mission sequence is

presented. Lastly, minimal and additional capabilities, failure operations, and a rationale

for the choice of the mode are listed.

Among the various benefits presented, this approach could allow future CubeSats devel-

opers to reduce development time and risks, by reusing the templates with little modi-

fications as needed, as well as lay the foundations for the development of effective AIT

plans [48].
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Figure 25: Requirements breakdown flowchart for OM identification [47].

However, this template is more focused on a Document-Based method for defining a

standard operations planning - that could enhance the development of control software

for CubeSats thanks to the identification of common parameters for each OM - and for

identifying the telemetry data produced during the operating scenario.

A Model-Based formalisation of a general OM model is therefore missing. In the following

will be proposed a OMs generalisation, based on the methodology from Jain’s work [48].

3.4.2 Proposed Operating Modes formalisation

The final purpose of this section is the formalisation of a general S/C’s activity profile.

To achieve so, it is possible to identify common characteristics among the ConOps and

OMs of several CubeSat in LEO missions, through a similar process with respect to [48].

It is important to note that, although referring to different missions, most of the analysed

ConOps (e.g., [49], [51], [53]) present similar OMs and transition criteria.

In particular, it can be observed how the Operating Modes related to Early Orbit Phase

(EOP) and off-nominal scenarios, such as Detumbling, Calibration or Safe Modes, are
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Table 4: Mission operations abstraction mode presentation [48].

Mission Mode presentation

Mode Category Content

Scope Mode description and functionality

Mission Mode Concept Mode concept stating stages of operations

within the mode

Suggested mission sequence A diagram suggesting different operations approaches

Capability Minimum and additional set of capability required in

for execution of the mode

Failure operations List of failure operations for the mode and anomalies

that can be addressed using stated practices

Mode rationale Explanation on the useful correlation on the mode

almost always considered in their missions’ ConOps, with various connotations.

While certainly critical from a design point of view, such OMs are however not considered

for the current analysis. They represent non-nominal conditions and, as a result, have

properties and transition conditions that are difficult to generalise and replicate across

multiple projects.

Therefore, in the following only the Operating Modes relative to the operative phase of

the S/Cs will be analysed.

Other two OMs usually present are a Servicing Mode and a Communication Mode, which

refer respectively to cases where the Payload is active or a Downlink/Uplink with a GS

is present. A central Stand-by Mode is often considered to reduce power consumption

when the Payload is off or if no ground stations are visible.

Reference [52] highlights how some OMs transitions can occur based on the state of charge

of the batteries, for example during eclipse periods when no power from the solar arrays

is available.

The ConOps in reference [50], conversely, considers the attainment of a specific orbital

configuration as a transition criterion between two OMs.

The main differences between the various OMs can thus be reduced, at the level of detail

desired, to when a specific OM is activated and which subsystems are active in that Mode.

The latter can be further reduced to a difference in average power consumption and data

rate.

Transition criteria The general transition criteria for the Operating Modes have been

identified among the most common present in literature:

• Presence of eclipse: A significant number of ConOps for CubeSats, such as those

detailed in [47], [49], and [52], specify a transition in OMs during an eclipse or when
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available power is insufficient to sustain satellite operations. In such scenarios, the

CubeSat typically switches off most of its systems to minimise power consumption

and reduce the Depth Of Discharge (DOD) of its batteries.

• Presence of GS or specific target in Line Of Sight (LOS) with the S/C:

Almost all the ConOps reviewed (e.g., [47], [49], [51], [52], [53]) emphasise the

importance of establishing a communication link with a GS or multiple Ground

Stations. This link is crucial for receiving commands from the GS and downlinking

vital data, which can range from mission-specific information to satellite health

status updates.

• S/C over specific Latitude/Longitude zone: Particularly relevant for Earth

Observation missions (e.g., [52]), this criterion involves activating satellite payloads

when the S/C passes over designated terrestrial areas. This targeted operation is

essential for capturing specific data sets pertinent to the mission’s objectives.

• S/C in specific true anomaly range: Certain missions, as noted in [51], require

the activation of thrusters or other systems when the satellite is in a particular

orbital position or transitioning through a specific segment of its orbit. This precise

positioning ensures that operational activities are conducted at optimal points in

the orbit for maximum efficacy.

• Activation at a specific time: Similar to the true anomaly-based criterion, this

approach involves determining the satellite’s orbital position at a given time by

solving Kepler’s Equation6. Some missions necessitate defining an OM transition

based on the time elapsed since the satellite’s passage through periapsis. This

time-based criterion allows for precise scheduling of operations in alignment with

the mission’s overall timeline and objectives.

In summary, these transition criteria are instrumental in guiding the operational be-

haviour of CubeSats, ensuring that they function optimally in response to their dynamic

space environment and mission-specific requirements. The implementation of these crite-

ria is vital for the effective management of CubeSat resources and the successful accom-

plishment of mission goals.

Default Mode definition A critical observation from the analysis of various ConOps

is the prevalence of a central or Standby Mode, as highlighted in references like [49]. This

Mode is typically activated when no specific operational conditions are met.

To mirror this in a generalised model, it is essential to incorporate the concept of a Default

Mode. This Default Mode becomes active in the absence of conditions that trigger other

specific Operating Modes.

The inclusion of a Default Mode ensures that there is always an active OM within the

activity profile of the CubeSat. This continuous operational engagement is crucial for

6For an in-depth understanding of elliptical orbits and orbital parameter determination, refer to R.

Fitzpatrick’s ”An Introduction to Celestial Mechanics”, pp. 46-52, in reference [55].
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maintaining the basic functions of the CubeSat and ensuring its readiness to transition

to other OMs as required.

Criteria priority Given that each space mission has unique objectives and priorities,

it is vital to allow Users to define the priority order for activating each OM. This priori-

tisation is achieved by introducing a priority counter in the definition of each Operating

Mode.

The priority counter is a strategic addition, facilitating more realistic simulations and

mission analyses. It allows for the dynamic adjustment of OMs based on their assigned

priority levels. Consequently, OMs with lower priority can be overwritten by those with

higher priority during the creation of the activity profile. This flexibility is key in adapting

the CubeSat’s operations to varying mission needs and scenarios.

Relevant data Information about the activity profile and the OMs is essential for

various system budgets, as also indicated in Table 3. On analysing the distinctions

between different OM, several core differences become apparent, which can generally be

categorised as:

• Variations in power consumption.

• Differences in data transmission rates.

• Discrepancies in the quantities of data produced or stored.

Therefore, a comprehensive definition of a general OM must encompass these parameters,

as they represent the primary distinctions between various OMs. This incorporation is

critical for accurately modelling the operational dynamics and resource requirements of

the CubeSat across its different Operating Modes.

Metadata For simulation and visualisation purposes, it is useful to introduce the pos-

sibility to define relevant metadata for each OM, such as:

• Mode ID.

• Mode name.

• Post-processing information, such as colour for visualisation in graphs.

Such metadata not only aids in the clear identification and differentiation of various

OMs but also enhances the usability and interpretability of simulation results and visual

representations.

This added layer of information is particularly useful in complex analyses and presen-

tations, where distinguishing between different OMs quickly and effectively can provide

clearer insights into the CubeSat’s operational profile.
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3.4.3 General Operating Modes model summary

The proposed generalisation offers a structured approach to defining any set of OMs,

integrating a range of parameters and sub-parameters that capture the essence of a S/C’s

operational scenario. Table 5 summarises such generalisation.

The activation criteria cover scenarios from the S/C being in eclipse to its position in

relation to the Earth’s surface or a specific point in its orbit. Such detailed criteria are

crucial for ensuring the accurate simulation of the OMs under varying conditions.

The Default mode check ensures that there is always an active OM, providing a fail-safe

in case none of the specific activation criteria are met. The mode priority mechanism

allows for a hierarchical approach, ensuring that more critical operations take precedence

over others.

Table 5: Proposed Operating Mode generalisation.

Parameter Sub-parameter

A
ct
iv
at
io
n
C
ri
te
ri
a

S/C in eclipse N.A.

GS in LOS N.A.

S/C over Lat/Lon zone

Start Latitude

Start Longitude

End Latitude

End Longitude

S/C in True Anomaly range
Range Start

Range End

S/C in time interval
Interval Start

Interval End

Default Mode check N.A.

Mode Priority N.A.

V
ar
ia
b
le
s

Power Consumption N.A.

Transmitted data rate N.A.

Produced data
Housekeeping data

Payload/other data

M
et
ad

at
a Mode Name N.A.

Mode ID N.A.

Post-processing information Colour, ...

The variables section delves into the operational aspects of the OMs, including power con-

sumption, data transmission rates, and data production. These variables are fundamen-

tal to understanding and simulating the spacecraft’s functional capabilities in different

modes.
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Lastly, the metadata section provides an additional layer of information, such as the

mode name and ID, which are essential for identification and post-processing, including

visualisation. The inclusion of post-processing information like colour coding adds an

intuitive element to the presentation of data, enhancing the User’s understanding and

interaction with the simulation results.

By employing this general model in dedicated data structures, it becomes feasible to

simulate a wide range of mission scenarios. This flexibility is invaluable in testing and

refining various ConOps and operational strategies, making it a versatile tool in S/C

design and mission planning. Such a comprehensive model not only aids in theoretical

planning but also has practical implications, significantly enhancing the efficiency and

effectiveness of mission simulations.

3.4.4 Operating Modes generalisation test through NSS tools

In order to validate the practicality and effectiveness of the proposed Operating Modes

generalisation, a proof of concept is conducted by integrating the proposed formalisation

within the existing Nanostar Software Suite (NSS) simulation tools.

Context This integration involves integrating the generalised OMs within a suite of

Python-based tools used for various mission analysis tasks. These tasks include calculat-

ing visibility windows and eclipse periods, and generating data and power budgets.

The integration process involves storing all relevant information in Python data struc-

tures, in particular through .yaml files [56]. The YAML format (YAML Ain’t Markup

Language) is particularly suitable for this purpose due to its linguistic independence and

its ability to facilitate data storage and exchange between different tools. The YAML

format is both human-readable and unambiguous, making it straightforward for users to

interpret while being easily processable by code. Because of the above-mentioned reasons,

it has been chosen as the favourite format for the NSS simulation tools, and is therefore

used within this application.

A significant advantage of the proposed OMs generalisation is its adaptability to different

simulation tools and data formats. This flexibility means that the generalisation can be

easily incorporated into existing data structures, requiring only minor modifications to

the pre-existing Python codes.

An example of how an OM is defined within a .yaml data structure is presented in

Listing 1. This snippet shows the configuration for a hypothetical TestName Mode.

The detailed example of this configuration, including the extended parameters and their

descriptions, is provided in Appendix B.

Listing 1: TestName Mode .yaml configuration example

1 TestName:

2 isDefault: True [bool] # Default mode identification

3 priority: 1 [int] # Priority counter

4 isEclipse: False [bool] # Criterion 1: eclipse
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5 isOnTarget: False [bool] # Criterion 2: GS in LOS

6 isOnZone: False [bool] # Criterion 3: S/C over zone

7 zoneLatStart: na [deg] # |-> Criterion 3 sub -parameter

8 zoneLatEnd: na [deg] # |-> Criterion 3 sub -parameter

9 zoneLonStart: na [deg] # |-> Criterion 3 sub -parameter

10 zoneLonEnd: na [deg] # |-> Criterion 3 sub -parameter

11 isInRange: False [bool] # Criterion 4: true anomaly range

12 rangeStart: na [deg] # |-> Criterion 4 sub -parameter

13 rangeEnd: na [deg] # |-> Criterion 4 sub -parameter

14 isInInterval: True [bool] # Criterion 5: time interval

15 intervalStart: 0.0 [sec] # |-> Criterion 5 sub -parameter

16 intervalEnd: 240.0 [sec] # |-> Criterion 5 sub -parameter

17 modeID: 2 [int] # Metadata: mode ID

18 modeName: TestName [str] # Metadata: mode name

19 postProColour: ’#BA525270 [str]’ # Metadata: post -processing colour

20 TMRate: 18.0 [kbitsec] # Variable: Telemetry data rate

21 TCRate: 16.0 [kbitsec] # Variable: Telecommand data rate

22 powerCons: 32.0 [W] # Variable: Power consumption

23

24 TestName2:

25 isDefault: False [bool] # Default mode identification

26 priority: 2 [int] # Priority counter

27 [...]

This implementation, as illustrated, allows for the meticulous definition and customisa-

tion of each OM, including its activation criteria, priority level, and various operational

variables like data rates and power consumption. This level of detail and customisability

is essential for accurately simulating a diverse range of mission scenarios and operational

conditions. The use of YAML further enhances this process by providing a format that

is both coder-friendly and easily comprehensible, facilitating efficient data handling and

exchange.

Implementation and results The enhanced scripts now incorporate functions specif-

ically designed to verify whether the defined activation conditions for each Operating

Mode are met at any given simulation time. This verification is conducted in a sequential

manner, adhering to the priority order set by the User(s). As a result, OMs verified later

in the sequence override those checked earlier, ensuring that the most relevant OM is

active based on the current conditions.

To ensure the accuracy and reliability of these code changes, a comparative analysis is

conducted using the same initial dataset to examine the outputs generated before and

after the new OM characterisation. This approach enables direct comparison of simulation

results, ensuring that changes have not adversely affected the accuracy of the calculation.

The CREME use case presented by Gateau et al. [14] serves as a reference for this

comparison. Figure 26 and Figure 27 provide a visual comparison of the outcomes for

both the power budget and the data budget, respectively, contrasting the results from

the original and modified versions of the code.

In the case of the data budget (Figure 27a and Figure 27b), the outputs are identical,
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(a) Output before code modifications [14].
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(b) Output after code modifications.

Figure 26: Comparison between battery data output before and after code modifications.
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Figure 27: Comparison between data budget output before and after code modifications.

as expected, given that no changes were made to the calculations for eclipses and data

links.

However, a notable difference can be observed in the power budget outputs (Figure 26a

and Figure 26b). This discrepancy arises from the way the previous version of the code

calculated power consumption, particularly during the Sending TM OM. The older code

assumed battery discharge during this mode, which, while applicable during eclipses, is

not universally true. This assumption resulted in an overestimated maximum DOD.

In summary, the proposed OMs generalisation significantly enhances the versatility of

the code. It enables the adaptation of the scripts to different mission scenarios simply

by modifying the configuration files, eliminating the need for further alterations to the

Python source code.

The revised code, with its advanced approach to defining and transitioning between OMs,

has proven to be more adaptable and flexible compared to its predecessor, allowing for

more precise and varied mission simulations.
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3.5 Proposed stereotypes characterisation

In the following, the proposed set of stereotypes is proposed. They allow for a thorough

characterisation of the parameters highlighted in Section 3.3.3 (Budgets and parameters

identification) inside the CubeSat SysML model. The implementation of such stereotypes

constitutes an extension of the model’s capabilities, without affecting the possibility to

represent the logical and functional behaviour of the model’s elements.

3.5.1 SystemComp

SystemComp serves as the foundational stereotype for a physical component of the S/C,

encompassing the system’s mass, power consumption, and applicable margins, along with

pertinent metadata like ID, name, and manufacturer for component traceability.

For further customisation, the power consumptions are divided into three attributes:

powerConsIsStb, powerConsIsOn and powerConsIsPeak for the consumptions in Stand-

by, On and Peak mode respectively. A reference table for the attributes introduced with

this stereotype is presented in Table 6, while Figure 28 shows their UML definition.

As shown in Figure 28, additional stereotypes further refine SystemComp:

• SystemMain;

• Battery;

• SolarArray;

• Transmitter;

• Receiver.

«metaclass»
Class

«stereotype»
SystemComp

+ mass: kg
+ powerConsStb: W
+ powerConsOn: W
+ powerConsPeak: W
+ compID: str
+ compName: str
+ manifacturer: str
+ margin: floatPercent

«stereotype»
SystemMain

+ modeIsStb: OMlist
+ modeIsOn: OMlist
+ modeIsPeak: OMlist
+ computeMass: bool
+ computeCons: bool
+ volume: m3

«stereotype»
Battery

+ capacity: Wh

«stereotype»
SolarArrays

+ producedPower: W

«stereotype»
Receiver

+ gain: dB
+ etaRx: float
+ lossPoint: dB
+ lossCable: dB
+ lossConnector: dB
+ noiseTemp: K

«stereotype»
Transmitter

+ power: W
+ gain: dB
+ lossCable: dB
+ lossConnector: dB
+ lossFeeder: dB
+ lossPoint: dB
+ lossMisc: dB
+ freq: Hz
+ dataRate: kbits
+ reqBER: float
+ modulation: str
+ sysMargin: dB

pkg «profile» Systems

Figure 28: Systems UML stereotypes definition.
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Table 6: SystemComp stereotype attributes.

Attribute ValueType Scope

mass kg Define component’s/system’s mass

powerConsStb W Power consumption while in Stand-by mode

powerConsOn W Power consumption while in On mode

powerConsPeak W Power consumption while in Peak mode

compID str Component’s/system’s reference ID

compName str Component’s/system’s name

manifacturer str Component’s/system’s manifacturer

margin float %* Applicable margin to power consumption and mass
*float %: 0 ≤ margin ≤ 1

3.5.2 SystemMain

It characterises a primary SubSystem of the S/C (e.g., Electrical Power System (EPS),

Propulsion System, Payload, etc.). Beyond the attributes of SystemComp, it includes a

list of Operating Modes (OMs) in which the system operates in On, Stand-by, and Peak

modes, the system volume, and two Boolean flags for post-processing. Table 7 displays

the attributes introduced by this stereotype.

Table 7: SystemMain stereotype additional attributes.

Attribute ValueType Scope

modeIsStb OM List* List of OMs in which the system is in Stand-by mode

modeIsOn OM List* List of OMs in which the system is in On mode

modeIsPeak OM List* List of OMs in which the system is in Peak mode

computeMass bool Specify if to compute components’ mass or not

computeCons str Specify if to compute components’ consumption or not

volume m3 System’s external volume
*OM List: [OM1 name, OM2 name, ...]

The computeMass and computeCons flags indicate whether the simulation tools should

consider the masses and power consumption of the system’s sub-components. These are

introduced to facilitate database creation even in early design stages, when the entire

system architecture is yet to be defined.

As anticipated in Section 3.1 (Research problem), for the applicable margins ESA Margin

philosophy for science assessment studies [46] is followed, so that the model presents the

capability to introduce margins on both component and system levels.

3.5.3 Battery and SolarArray

Battery and SolarArray encompass the battery’s capacity and the power generated by

solar arrays, in addition to the attributes introduced by SystemComp, as displayed in
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Table 8.

Table 8: Battery and SolarArray stereotypes additional attributes.

Attribute ValueType Scope

Battery

capacity Wh maximum battery capacity

SolarArray

producedPower W maximum output power

3.5.4 Transmitter and Receiver

These stereotypes define variables crucial for the Communication System elements affect-

ing the link budget.

Table 9: Receiver stereotype additional attributes.

Attribute ValueType Scope

gain dB Receiver Antenna Gain

etaRx float Receiver efficiency

lossCable dB Signal losses due to cables length

lossConnector dB Signal losses due to connectors

lossPoint dB Signal losses due to pointing mismatch

noiseTemp K System Noise Temperature

Table 10: Transmitter stereotype additional attributes.

Attribute ValueType Scope

power W Transmitter antenna power

gain dB Transmitter Antenna Gain

lossCable dB Signal losses due to cables length

lossConnector dB Signal losses due to connectors

lossFeeder dB Signal losses inside the feeder

lossPoint dB Signal losses due to pointing mismatch

lossMisc dB Other Signal losses

freq Hz Transmitted signal frequency

dataRate kbit/s Transmitter data rate

reqBER float Required Bit Error Ratio

modulation str Modulation type name

sysMargin dB Margin applied to the transmitted signal
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3.5.5 Orbit and PropagationLosses

Orbit and PropagationLosses stereotypes specify all remaining necessary properties for

orbital and link budget analyses.

«metaclass»
Class

«stereotype»
PropagationLosses

+ lossPol: dB
+ lossAtm: dB
+ lossScin: dB
+ lossRain: dB
+ lossCloud: dB
+ lossSnowIce: dB
+ lossMisc: dB

«stereotype»
Orbit

+ SMA: km
+ ECC: real
+ INC: deg
+ RAAN: deg
+ AOP: deg
+ startTA: deg
+ startEpoch: epochFormat

pkg «profile» Orbit

Figure 29: Orbit and Propagation Losses UML stereotypes definition.

Table 11: Orbit stereotype attributes.

Attribute ValueType Scope

SMA km Semi-major axis

ECC float Eccentricity

INC deg Inclination

RAAN deg Right Ascension of Ascending Node

AOP deg Argument of Periapsis

startTA deg Starting True Anomaly

startEpoch epochFormat* Initial simulation Epoch
*epochFormat: ”YYYY,MM,DD,hh,mm,ss”

Table 12: PropagationLosses stereotype attributes.

Attribute ValueType Scope

lossPol dB Signal losses due to polarisation

lossAtm dB Signal losses due to atmosphere

lossScin dB Signal losses due to scintillation

lossRain dB Signal losses due to rain

lossCloud dB Signal losses due to clouds presence

lossSnowIce dB Signal losses due to snow and ice

lossMisc dB Other signal losses

3.5.6 GroundStation

The GroundStation stereotype allows the definition of all the relevant data for the iden-

tification of the GS, such as its position, altitude and antenna data. Table 13 summarises
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all the newly-introduced parameters.

Table 13: GroundStation stereotype attributes.

Attribute ValueType Scope

altitude m GS altitude

minElevation deg Min angle between S/C LOS and GS horizon line

Lat deg GS latitude

Lon deg GS longitude

powerTx W GS transmitter gain

lineLossTx dB GS transmitter signal losses due to line length

lossConnectorTx dB GS transmitter signal losses due to connectors

gainTx dB GS transmitter gain

lossPointRx dB GS signal losses due to pointing mismatch

freq Hz Transmitted signal from GS frequency

dataRateTx kbit/s GS transmitter data rate

reqBER float Required Bit Error Ratio

modulation str Modulation type name

sysMargin dB Margin applied to the transmitted signal

etaRx float GS receiver efficiency

diameterRx m GS receiver antenna diameter

LNAGain dB GS receiver Low Noise Amplifier gain

noiseTempRx K GS receiver System Noise Temperature

lossCableRx dB GS receiver signal losses due to cables length

lossConnectorRx dB GS receiver signal losses due to connectors

3.5.7 OperatingMode

In order to replicate the Operating Modes generalisation discussed in Section 3.4 (Op-

erating Modes generalisation) and presented in Table 5, an OperatingMode stereotype

is introduced. It is important to note how this stereotype is highly dependent on the

systems’ definition. In fact, the power consumption of each OM is calculated based on

the power consumption of each subsystem or, optionally, cascaded from the individual

components of each subsystem.

Consequently, three attributes have been added to the SystemMain stereotype to denote

the OMs during which a particular system is in standby, on, or peak mode: modeIsStb,

modeIsOn, and modeIsPeak. These consist of lists containing the names of various OMs,

enabling the simulation tools to associate the power consumption of a specified system

with the total consumption of the Operating Mode during model translation.

Moreover, an isDefault Boolean attribute is present in the OperatingMode stereotype,

allowing the definition of an active OM when no activation criteria are satisfied.
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Table 14: OperatingMode stereotype attributes.

Attribute ValueType Scope

modeName str OM name

modeID int OM unique ID

postProColor str OM color for post-processing

priority int Priority order for OM activation criterion check

isEclipse bool Is the OM active in eclipse?

isOnTarget bool Is the OM active while over GS?

isOnZone bool Is the OM active over a Lat/Lon zone?

zoneLatStart deg Zone initial Latitude

zoneLatEnd deg Zone ending Latitude

zoneLonStart deg Zone initial Longitude

zoneLonEnd deg Zone ending Longitude

isInRange bool Is the OM active while in a True Anomaly range?

rangeStart deg True Anomaly range start

rangeEnd deg True Anomaly range end

isInInterval bool Is the OM active while in a time interval?

intervalStart s Seconds after Periapsis transition

intervalEnd s Seconds after Periapsis transition

TCRate kbit/s OM Telecommand data rate

TMRate kbit/s OM Telemetry data rate

powerCons W OM total power consumption

isDefault bool Is the OM the default OM?

«metaclass»
Class

«stereotype»
GroundStation

+ altitude: m
+ minElevation: deg
+ Lat: deg
+ Lon: deg
+ powerTx: W
+ lineLossTx: dB
+ lossConnectorTx: dB
+ gainTx: dB
+ lossPointRx: dB
+ freq: Hz
+ dataRateTx: kbits
+ reqBER: float
+ modulation: str
+ sysMargin: dB
+ etaRx: float
+ diameterRx: m
+ LNAGain: dB
+ noiseTempRx: K
+ lossCableRx: dB
+ lossConnectorRx: dB

pkg «profile» Ground Station

(a) Ground Station UML stereotype.

«metaclass»
Class

«stereotype»
OperatingMode

+ modeName: str
+ modeID: int
+ postProColor: str
+ priority: int
+ isEclipse: bool
+ isOnTarget: bool
+ isOnZone: bool
+ zoneLatStart: deg
+ zoneLatEnd:  deg
+ zoneLonStart: deg
+ zoneLonEnd: deg
+ isInRange: bool
+ rangeStart: deg
+ rangeEnd: deg
+ isInInterval: bool
+ intervalStart: sec
+ intervalEnd: sec
+ TCRate: kbit/sec
+ TMRate: kbit/sec
+ powerCons: W
+ isDefault: bool

pkg «profile» Operating Mode

(b) Operating Modes UML stereotype.

Figure 30: Operating Modes and Ground Station UML stereotypes.
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3.5.8 Stereotypes application example: Payload Block Definition Diagram

After the definition of all the stereotypes required for the proposed formalisation, it is

possible to implement them within the elements of a model’s Block Definition Diagrams.

Figure 31 shows an example of a Payload’s BDD with the previously-described stereotypes

applied.

«block, systemMain»
Payload

parts
+ cmcu: CMCU[1]
+ afs: AFS[2]

SystemMain
computeMass = "True"
computeCons = "False"
margin = "0.05"
compName = "GNSSPayload"
powerConsStb = "84"
powerConsOn = "105"
powerConsPeak = "105"
modeIsStb = "[Stand-by, Phasing]"
modeIsOn = "[Servicing]"
modeIsPeak = "[]"
mass = "0"

«block, systemComp»
AFS

parts
+ rafs: RAFS[1]
+ phm: PHMmini[1]

SystemComp
mass = "0"

«block, systemComp»
RAFS

SystemComp
mass = "3.3"
margin = "0.05"

«block, systemComp»
PHMmini

SystemComp
mass = "12"
margin = "0.05"

«block, systemComp»
CMCU

SystemComp
mass = "5.2"
margin = "0.05"

+cmcu 1

+afs

2

+phm 1

+rafs 1

bdd [TWC] Payload

Figure 31: Payload BDD example.

As demonstrated by the AFS block in the Figure, the proposed formalisation allows

to take into account the components’ redundancies by noting the multiplicity7 of each

Composite Association in the BDD.

Furthermore, it is possible to highlight how the computeCons and computeMass attributes

allow data extraction at any design stage, more specifically when it is not possible to detail

the individual components of a system. The example above shows how only the masses of

the components are defined. The computeMass variable is therefore set to True, meaning

that the mass of the payload will be derived from the masses of the components.

As for the computeCons variable, it is correctly set to False, as the power consumption

of the various components is missing. However, this will not be invalidating for future

interaction with simulation tools, as the overall payload’s power consumption is defined

at system level.

3.5.9 Observations

By standardising the attributes across various system components and operational as-

pects, the model ensures consistency and comprehensiveness in system representation.

This uniformity is particularly beneficial when dealing with complex systems where nu-

merous components and variables interact.

7i.e., the number near the arrowhead of each Composite Association, also present in the parts section

of the block.
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The model’s versatility lies in its ability to adapt to different phases of system design

and varying methodologies, thereby serving as a robust tool for systems engineers and

analysts.

Furthermore, this design facilitates a seamless transition between the conceptual phase

of system design and the practical aspects of implementation and analysis.

Moreover, the effectiveness of this formalisation does not hinge on the specific method-

ologies applied for generating the BDDs or the choice of tools utilised for their creation.

Lastly, a crucial aspect of this formalisation, which deserves to be emphasised, is that

once the stereotypes and their associated attributes are defined, it becomes possible to

identify common data structures within the model files.

This capability allows relevant data to be extracted for further integration with simulation

tools, as all blocks to which the same stereotype is applied possess common attributes.

This feature will be described in the following sections.

3.5.10 CubeSat SysML model and simulation tools integration summary

The proposed formalisation allows for the integration of a general CubeSat model, created

using SysML and enhanced through UML stereotypes, with any set of simulation tools.

Figure 32 serves as a visual guide to the integration process of such a general CubeSat

model with simulation tools such as, in this instance, the ones from the NSS constellation.

The diagram uses colour-coded blocks to depict the connection between various tools and

the outputs they generate.

The integration process takes place in several key steps, as illustrated by the numbered

blocks in Figure 32:

1. CubeSat SysML model generation: The first step involves generating a SysML

model, here using Gaphor [45] as an example. This step includes the definition

of specific UML stereotypes within dedicated Profile Diagrams, as discussed in

Section 2.4 (UML and SysML). These stereotypes are critical for adding specific

attributes to the model elements.

2. UML stereotypes definition: The next phase focuses on applying the UML

stereotypes within Block Definition Diagrams (BDDs). These diagrams are crucial

in relation to various aspects such as physical architecture, orbit and Operating

Modes. It is important to note that the choice of the modelling tool and method-

ology does not limit or define the specifications of the model, nor does it limit the

types of diagrams and elements that can be included in the model.

3. Data extraction through a dedicated parser: Following the characterisation

of the model, the next step is to extract relevant data from the model file. This

is achieved through a parser, leading to the generation of a software-readable data

structure and a requirements list, as indicated by the blue blocks in Figure 32.

The use of additional tools, like the Graphviz library [57], enables the automatic
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SysML S/C model

Requirements
model

Architecture
model

Design
parameters

OMs model

Parse 
model

.gaphor 
model file

Read 
DB

Edit model

Parameters
dependency

graphs

Requirements
list

NSS tools

GraphvizModel parser

Edit 
DB

Budgets

Edit model

Edit model manually

Gaphor

UML
stereotypes

Edit DB

Reports

Ext. tools

View model

Database

1

2
3

4

5

3b

Figure 32: Data flow scheme of an application of the proposed formalisation.

generation of a dependency graph. This graph visually represents the relationships

among model elements and their attributes, providing a clearer understanding of

how changes in one variable can affect the entire model.

4. Data structure generation based on UML stereotypes identification: The

parser’s primary focus is on blocks where stereotypes have been applied. This

selective approach enhances the flexibility and general applicability of the SysML

model, ensuring that only relevant data is extracted for the database generation.

This flexibility is particularly advantageous, as it allows the model to replicate any

system at any stage of design, provided the necessary stereotypes are applied.

5. Simulation tools and database interaction: Finally, once the database is gen-

erated, User(s) can engage in analysis and simulation using the NSS tools or other

preferred simulation tools. This stage is further enhanced by the ability to edit the

model files directly from Python, facilitating dynamic updates and modifications

to the model based on the database inputs. This capability ensures a coherent

and up-to-date flow of data between the backend database and the frontend SysML

model.

The subsequent sections delve into more detail regarding each of these steps, providing a

comprehensive understanding of the integration process and its application in CubeSat

modelling and simulation.
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3.6 End-to-end use case

In the following, an application of the proposed formalisation, involving a SysML model

expanded with the proposed set of UML stereotypes and linked with the simulation tools

from the NSS constellation, is presented.

3.6.1 Example mission: TWC mission

Before delving into the specifics of the practical application process of the proposed

formalisation, it is beneficial to introduce the selected case study. The case study selected

for this purpose is an academic theoretical mission concept named ”The White Compass

(TWC)”. This mission concept was developed during the ”Space Mission and Systems

Design” Course at Politecnico di Torino. The hypothetical goal of the TWC mission is

to provide Global Navigation Satellite System (GNSS) services over the Arctic Region.

This objective is to be achieved through a constellation of 12 small satellites, positioned

in two High Elliptical Molniya-like Orbits8.

The essence of each TWC S/C is captured within a comprehensive SysML Block Defini-

tion Diagram, which has been constructed using Gaphor as a modelling tool. This BDD,

showcased in Figure 33, includes the application of specific UML stereotypes, which play

a pivotal role in defining and characterising each system and component of the S/C.

The detailed implementation of these stereotypes in the TWC mission model ensures that

every aspect of the spacecraft, from its physical architecture to its operational capabilities,

is meticulously defined and aligned with the mission’s objectives.

Furthermore, the SysML model for the TWC mission extends beyond the general S/C ar-

chitecture. In Appendix C, more detailed, system-specific BDDs are presented, alongside

a comprehensive set of functional requirements. These include the characterisation of the

orbit, the Ground Station, and the Operating Modes. The inclusion of these additional

elements in the SysML model provides a more holistic view of the mission, encompass-

ing not only the S/C itself but also its operational environment and the key parameters

governing its mission profile.

The TWC mission case study thus serves as a practical example, demonstrating the

application of the proposed formalisation process in a realistic, even though hypothetical,

mission scenario.

8For further details on Elliptical Orbits refer to R. Fitzpatrick’s ”An introduction to Celestial Me-

chanics”, pp. 46-52 [55].
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3.6.2 Model files manipulation and data extraction

In order to integrate the proposed formalisation with the set of NSS simulation tools, it is

important to understand how most of the modelling tools (e.g., the previously described

Capella [41], Papyrus [44], Gaphor [45]) save their model files.

As discussed earlier, Gaphor, like other similar modelling tools, stores its models in .xml

format [58]. This is a common file format for storing and transmitting data structures

with a pre-defined set of rules.

Listing 2 presents an example of how the previously defined OperatingMode stereotype

and all other stereotypes have been saved in the Gaphor .xml model file.

Listing 2: Example of OM stereotype definition in Gaphor .xml model file.

1 [...]

2 <Stereotype id="cf60e810 -8885 -11ee -95ad -17 bee43d1b0b">

3 <instanceSpecification >

4 <reflist >

5 <ref refid="d14d034a -892e-11ee -9e0a -ad799f37f801"/>

6 [...]

7 <ref refid="08c33141 -892f-11ee -9319- ad799f37f801"/>

8 </reflist >

9 </instanceSpecification >

10 <name>

11 <val>OperatingMode </val>

12 </name>

13 <ownedAttribute >

14 <reflist >

15 <ref refid="6d8fc81a -8886 -11ee -b691 -17 bee43d1b0b"/>

16 [...]

17 <ref refid="ecf0c0d1 -8885 -11ee -83c5 -17 bee43d1b0b"/>

18 </reflist >

19 </ownedAttribute >

20 <package >

21 <ref refid="a44055ea -8856 -11ee -91ef -850 d737e7061"/>

22 </package >

23 <presentation >

24 <reflist >

25 <ref refid="cf61d79e -8885 -11ee -8d03 -17 bee43d1b0b"/>

26 </reflist >

27 </presentation >

28 </Stereotype >

29 [...]

Independently on the modelling tool of choice, once the rules and structures of such

model files (which are different for each tool) are understood, it is possible to build

simple Python libraries to extract the data of interest and, conversely, manipulate the

.xml files as desired.

In this step, the proposed formalisation is helpful. As presented before, the formalisation

is based on the use of common sets of attributes among SysML blocks with the same
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stereotypes applied. This introduces a high presence of similar structures inside the

model files, that can be exploited.

Taking as an example the OperatingMode stereotype’s formatting presented in Listing 2,

its structure will be identical for every stereotype defined. The same can be noted for

every element created with a specific stereotype applied.

As shown by the highlighted lines in Listings 2, 3 and 4, it is possible to identify in

the model files cross-references between stereotypes, their attributes and the blocks they

are applied to. This is a fundamental aspect for the development of a parser capable

of translating the proposed SysML-based database into a software-readable database,

whatever format is desired for that.

By knowing in advance the set of stereotypes present in the model and their attributes,

once the structure of the model file is also known, it is possible to extract all relevant

data for database generation. Once more, it can be done regardless of the modelling tool

used or the number and type of blocks present in the model itself.

Listing 3: Servicing OM SysML block definition in Gaphor .xml model file.

1 [...]

2 <Block id="cbece26a -892e-11ee -abd0 -ad799f37f801">

3 <appliedStereotype >

4 <reflist >

5 <ref refid="d14d034a -892e-11ee -9e0a -ad799f37f801"/>

6 </reflist >

7 </appliedStereotype >

8 <name>

9 <val>Servicing </val>

10 </name>

11 <package >

12 <ref refid="48c02cf6 -892e-11ee -baeb -ad799f37f801"/>

13 </package >

14 <presentation >

15 <reflist >

16 <ref refid="cbedb683 -892e-11ee -9404- ad799f37f801"/>

17 </reflist >

18 </presentation >

19 </Block>

20 [...]

Listing 4: OM stereotype’s modeName property definition in Gaphor .xml model file.

1 [...]

2 <Property id="6d8fc81a -8886 -11ee -b691 -17 bee43d1b0b">

3 <class_ >

4 <ref refid="cf60e810 -8885 -11ee -95ad -17 bee43d1b0b"/>

5 </class_ >

6 <name>

7 <val>modeName </val>

8 </name>

9 <slot>

10 <reflist >

11 <ref refid="8c07292e -892e-11ee -9df3 -ad799f37f801"/>
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12 <ref refid="d77119fc -892e-11ee -8132- ad799f37f801"/>

13 <ref refid="0eda6a9a -892f-11ee -b23c -ad799f37f801"/>

14 </reflist >

15 </slot>

16 <typeValue >

17 <val>str</val>

18 </typeValue >

19 </Property >

20 [...]

Starting from the stereotypes’ definitions, all properties (i.e. the data needed for simu-

lations and the generation of system budgets) are derived by cascading cross-references

within the file structure.

It is important to note how, while the formalisation is independent of the modelling tools

used, each tool requires a deep understanding of its model files’ structure. In fact, while

the model files’ format remains the same across various modelling tools, the same cannot

be said for the way each tool writes the information in such files.

3.6.3 Model parser functionalities

Because of the reasons mentioned above, a specific parser needs to be developed for

translating a SysML model generated with Gaphor.

The parser serves as an essential element for the generation of a software-readable database

based on a SysML CubeSat general model and its further integration with simulation

tools. The final output of this process, including the integration of the new database

with the NSS tools, is the generation of system budgets, i.e. a power budget and a data

budget.

Data extraction process As described in the previous section, the parser is built

taking into account the structure of the .xml Gaphor model file. Moreover, by knowing

in advance the set of stereotypes introduced in the model and their specific attributes, it

is possible to specify what data to extract from the model file.

The latter setting proves to be the more efficient the more complex the model file, which

for models composed of numerous subsystems may have a large number of definitions of

diagrams, elements and relationships between elements. Instead, the parser extracts only

the relevant data for database generation.

Therefore, the data extraction process starts with the identification of all stereotypes

present in the model, whose definition inside the model file includes a list of all their

attributes and blocks to which they are applied. It is then possible to insert as many

blocks and elements into the model as desired, since the parser will only take into account

blocks referring to a stereotype among those introduced in Section 3.3.2 (Stereotypes

generation process) with the proposed formalisation.

Subsequently, the parser runs through the various previously identified blocks to extract

the attributes of interest (i.e. the data needed to populate the database). Once again,

65



the extraction of attributes is tied to their belonging to the reference stereotype of the

block in question. This latter requirement makes it possible to separate the stereotype-

specific attributes from the block-specific attributes, introduced by the user(s) to detail

the model and not relevant to the generation of the database,.

The same process is followed for SysML relevant elements, such as Requirements. Like

the ones introduced with this formalisation, also the SysML Requirement element is an

extension of the UML class metaclass9. This allows for the extraction of all requirements

introduced into the model in a process similar to that described for the stereotypes

introduced earlier.

3.6.4 Parser outputs

Requirements list The initial outcome of the parsing process is the creation of a

comprehensive requirements list. This list is a collation of all parameters specified by

the Requirement stereotype within the SysML model. Crucial elements such as the

requirement’s ID, name, and descriptive text are included in this list. This functionality

proves especially valuable in scenarios where the chosen modelling tool lacks the capability

to format requirements in tabular form, instead relying solely on block representations.

REQ. ID
REQ.
NAME

REQ. TEXT

R-FUN-EPS-001 EPS-001
The electrical power system shall provide and
regolate sufficient power to all other subsystems'
components in each mission phase

R-FUN-EPS-002 EPS-002
The electrical power system shall provide the
correct voltage to satellite's systems

R-FUN-EPS-003 EPS-003
The electrical power system shall ensure that the
maximum power produced is within the safe
operating limits to prevent any harmful effects

R-FUN-EPS-004 EPS-004
The batteries' functioning design shall guarantee
an optimal efficiency during operational life

R-FUN-EPS-005 EPS-005
The solar panels shall generate at least 1.6 kW
including margin

R-FUN-EPS-006 EPS-006
Solar panels shall perform sun tracking with an
accuracy of ±5% of full step.

R-FUN-EPS-007 EPS-007
The batteries' Depth-of-Discarge (DoD) shall be
less than 50% during operational life

R-FUN-EPS-008 EPS-008 The batteries' voltage shall be 28±2 V
R-FUN-EPS-009 EPS-009 The batteries shall have a capacity of 2 kWh

R-FUN-EPS-010 EPS-010
The batteries shall have a minimum lifetime of 6
years

Figure 34: Example of requirements list output by Gaphor parser.

The Requirement element in SysML allows for the application of a similar logic used

in database extraction to the extraction of requirements. With minor modifications to

the parser’s code, it becomes feasible to not only extract basic information about each

9See Section 2.4 (UML and SysML) for more details.
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requirement but also to delve deeper into their relationships and contexts. This could in-

clude extracting details like the rationale behind each requirement or the specific systems

to which they are linked.

For the purposes of this application, however, the focus is on generating a straightforward

list of requirements. This approach streamlines the extraction process, ensuring that the

essential information is captured efficiently and accurately. An illustrative example of

such a generated requirements list is presented in Figure 34. This list is derived from the

Requirements Diagram shown in Figure 41 in Appendix C.

The resulting requirements list provides a clear, organised overview of the various re-

quirements that the S/C or mission must meet, ensuring that these critical factors are

not overlooked during the design and development stages.

Software-readable data structure For seamless integration with the NSS constel-

lation tools, the parser, once it has successfully extracted the necessary data from the

SysML model, proceeds to store this data into a new set of .yaml files. The choice of

.yaml format, as previously mentioned in Section 3.4.4 (Operating Modes generalisation

test through NSS tools), aligns with the preferred format for the NSS tools. However, it

is important to note that the database file format in the context of the proposed formal-

isation is flexible and not constrained to any specific type. This flexibility means that,

with minor adjustments to the parser’s code, data can be saved in a variety of formats,

adapting to different requirements or preferences.

The crucial aspect of this step is to ensure that the newly created database accurately

replicates the existing data structures of the simulation tools it is intended to integrate

with. This replication is vital to guarantee that there is no loss or misrepresentation

of information when the proposed formalisation is applied. Each element of the original

data set, whether it is related to spacecraft characteristics, OMs, or other mission-specific

details, must be meticulously mirrored in the new database.

This fidelity in data replication ensures that when the SysML model is integrated with the

NSS tools, or any other chosen simulation tools, the transition is smooth and the results

are consistent and reliable. The parser plays a pivotal role in this process, not only in

extracting and converting data but also in preserving the integrity and accuracy of the

data throughout the transition from the SysML model to the simulation environment.

By achieving this, the proposed formalisation facilitates a highly adaptable and efficient

integration process, enabling users to leverage the strengths of SysML modelling in con-

junction with advanced simulation tools. This integration enhances the capability to

conduct comprehensive and accurate mission simulations, reflecting a true-to-life repre-

sentation of spacecraft operations and behaviours.

An example of the .yaml file generated by extracting all relevant information about the

OMs shown in Figure 37 is presented in Listing 5, in Appendix B.

Relationships Graphs In the Block Definition Diagrams of a SysML model, the es-

tablishment of Composite Associations plays a crucial role in defining the relationship
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between different blocks. Particularly, in the case of the SystemComp and SystemMain

blocks, these associations enable the cascading of critical properties like power consump-

tion and mass. This cascading occurs from the component level up to the main system

block. Similarly, the Operating Modes are interconnected with the SystemMain blocks

through attributes like modeIsStb, modeIsOn, and modeIsPeak10.

Understanding these relationships is key to the effective utilisation of the SysML model in

the proposed design process. When extracting data for the database, it becomes possible

to generate a Relationship graph. This graph, populated with all the blocks that have an

assigned stereotype, offers a comprehensive visual representation of the dependencies and

interconnections among the various variables within the model. Such a graph provides

clear insights into how changes in one part of the system might impact other parts,

allowing for more informed decision-making at any stage of the design process.

Systems Components

AFS

RAFS

PHMmini

CMCU

Main Systems

Payload

Operating Modes

Stand-by

Servicing

mass

mass

margin mass

margin mass

margin mass

margin

powerConsOn

powerConsPeak

powerConsStbmodeIsOn

powerCons

modeIsPeak

modeIsStb

powerCons

TCRate

TMRate

isDefault

isEclipse

TCRate

TMRate

isDefault

isOnTarget

Figure 35: Example of Payload relationship graph.

An example of this can be seen in Figure 35, which depicts a relationship graph generated

10For a detailed explanation of the development of stereotypes and their attributes, refer to Sec-

tion 3.3.2 (Stereotypes generation process)
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from the Payload BDD shown in Figure 39 and the OMs from Figure 37.

When extending this approach to a more comprehensive SysML-based data structure,

other crucial elements can be included, such as Ground Stations or the S/C’s Commu-

nication System. This inclusion would bring to light all relevant relationships necessary

for data and link budget analysis.

Furthermore, incorporating elements like Solar Arrays, Batteries, and an EPS, along with

orbital parameters, would facilitate the visualisation of all interrelationships pertinent to

a power budget.

Such an expanded relationship graph would provide a holistic view of the system, high-

lighting the intricate web of dependencies that define the spacecraft’s functionality and

operational efficacy.

3.6.5 Simulation results

Summarising what is presented in the previous sections, through the proposed formali-

sation, it is possible to generate a general S/C SysML model. By editing the attributes

inherited by the blocks through the application of the proposed set of UML stereotypes

it becomes possible to adapt the general model to any system and mission scenario.

Once the Systems, Components, Operating Modes, Orbit(s) and Ground Station(s) are

comprehensively characterised within the model, it is possible, through the development

of a dedicated parser, to extract the relevant data and translate them into a data format

that can be used with any desired set of simulation tools. These tools or scripts may

require minor modifications in order to access the new database.

In this case, the TWC mission model presented in the previous sections is integrated with

the mission analysis tools from the NSS constellation. They allow, as presented for the

CREME use case [14] in Section 3.4.4 (Operating Modes generalisation test through NSS

tools), the generation of a Power Budget and a Data Budget.

0 50000 100000 150000 200000 250000
time [s]

0.0

0.5

1.0

ec
lip

se

0 50000 100000 150000 200000 250000
time [s]

0.0

0.5

1.0

 v
isi

bi
lit

y 
- T

LS

Total Visibility time: 
2830.33min Eclipse

Sending TM

0 50000 100000 150000 200000 250000
time [s]

90

95

100

Ba
tte

ry
 C

ap
ac

ity
 [%

]

Stand-by
Servicing
Phasing

(a) TWC Power Budged.

0 50000 100000 150000 200000 250000
time [s]

0

50

100

150

200

250

TC
 q

ua
nt

iti
es

 - 
TL

S 
 [M

b]

Total TC during period : 2717.11Mb

0 50000 100000 150000 200000 250000
time [s]

0

100

200

TM
 q

ua
nt

iti
es

 - 
TL

S 
 [M

b]

Total TM during period : 3056.75Mb

(b) TWC Data Budged.

Figure 36: TWC output Power and Data Budgets.
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Once the data are extracted from the S/C SysML model and saved in the preferred data

format for the simulation tools, in this case the .yaml format, it becomes possible to

execute analyses and generate the desired system budgets.

As secondary outputs for the parsing process, the requirements list and the relationship

graph shown in Figure 34 and Figure 35 respectively are generated.

For the budgets generation, the mission analysis scripts required minor changes to the

code in order to adapt to the newly generated data format, but once these changes were

made, it became possible to use the software with any SysML model provided seamlessly.

The result of the proposed process is reported in Figure 36.

The correct generation of system budgets proves the correct functionality of the proposed

process, starting from the definition of UML stereotypes within a generic S/C SysML

model and ending with the correct execution of simulations and analyses.
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4 Conclusions and future work

The Preliminary Design of a CubeSat is characterised by its high level of multidisci-

plinarity. Even through the use of advanced Systems Engineering practices, such as

Model-Based Systems Engineering and Concurrent Engineering, there is a high fragmen-

tation between the multiple domain-specific tools used by the various figures involved

in a project. This fragmentation is also found in the storage and transmission of data

required for simulation and analysis activities. This represents a challenge for the SE

domain in the upcoming future [9], [16].

This problem led to the development of integrated toolchains for complex systems mod-

elling and analysis, both proprietary (e.g., SLIM [10]) and open-source (e.g., the Nanostar

Software Suite [14], [34]). However, how to effectively integrate open-source modelling

tools and languages with domain-specific open-source tools for simulation and analysis

activities was an open question [13].

This thesis presents the formalisation for a general CubeSat SysML model, enhanced

through the use of UML stereotypes for data storage and transmission. The proposed

formalisation enables the model to be considered as the central source of truth for data

across all PD Phase stages, becoming the principal front-end for the overall design cycle.

The novelty of this thesis is represented by the generality offered by the features intro-

duced within the proposed formalisation. It is possible to generate a CubeSat SysML

model with any desired modelling tool and methodology without affecting the final re-

sult. Moreover, within the CubeSat SysML model, it is possible to define any desired

diagram or element with no consequences on the integration process with any set of

simulation tools. Such integration takes into account only the elements with one of the

above-mentioned UML stereotypes applied and, once more, considers only the attributes

introduced by such stereotypes. This feature allows another degree of freedom in the

characterisation of model elements.

The second result of the presented research work is a generalisation for the Operating

Modes of a CubeSat. It is based on the identification of common attributes and tran-

sition criteria between several LEO CubeSats Concepts of Operations. By introducing

such OMs generalisation it becomes possible to define several CubeSats mission scenar-

ios by only modifying the modelled OMs attributes, without the need to further edit

any simulation tool or script. The proposed OMs generalisation can be implemented

in any desired data format, including the one proposed in the general CubeSat SysML

model formalisation, adding a further degree of freedom in its modelling and abstraction

capabilities.

The exploitation of the UML stereotypes in the CubeSat SysML model makes it possible

to identify common structures within the model files, enabling the extraction of data of

interest for the integration of the model with any set of simulation and analysis tools. The

generated data structure, dependent solely on the stereotypes introduced in the proposed

formalisation and their attributes, can be adapted to any desired format.

While extracting relevant data, as a third output of the presented process, it is possible

to generate dependency graphs. They highlight the relationships between various model
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elements and the budgets and variables dependent on them. Ultimately, they make it

possible to understand graphically, quickly and intuitively which parameters are affected

by a change in any design parameter, offering a valuable asset for trade-off studies across

the PD Phase.

An application of the proposed formalisation in the context of the NSS constellation is

presented as a proof of concept. The SysML model is generated using as a reference

the TWC mission, a theoretical mission design developed during the ”Space Mission and

Systems Design” course at Politecnico di Torino. The SysML model, enhanced with the

proposed set of UML stereotypes, is integrated within the mission analysis tools from the

NSS through the development of a dedicated parser. The final output of the process is

the generation of a Power Budget and a Data Budget, proving the functionality of the

proposed formalisation.

A public repository collecting the main outcomes of this work is present at the link

https://gitlab.isae-supaero.fr/preliminary-design/mbse-cubesat-sysml, pro-

vided under GPLv3 License.

As for future works, the proposed formalisation could benefit from some additions. The

simulation tools of the NSS used for the end-to-end application introduced some levels of

approximation: only circular orbits and one Ground Station for the data downlink/uplink

have been considered. In the meantime, for the proposed OMs generalisation only LEO

scenarios and Early Orbit Phase (EOP) operations have been taken into account, due

to the absence of common properties and transition criteria to generalise and replicate

across multiple projects.

A deepening of the topics above and their addition to the proposed formalisation would

furthermore expand the generalisation capabilities enabled by the latter, allowing the

modelisation of a wider range of missions. Additionaly, the inclusion of dedicated stereo-

types and relative attributes for a more thorough characterisation of systems such as

the Propulsion System and the AOCS (e.g., by defining AOCS actuators and sensors,

or thrusters and propellants) would lead to the integration and simulation of more com-

plex scenarios, generating other useful budgets such as propellant and Delta-V budgets.

Lastly, integration with other database formats, e.g. SQL, and their advantages can be

explored.
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DOD Depth Of Discharge . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

EOP Early Orbit Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

EPS Electrical Power System . . . . . . . . . . . . . . . . . . . . . . . . . . 53

ECSS European Cooperation for Space Standardisation . . . . . . . . . . . . 27

ESA European Space Agency . . . . . . . . . . . . . . . . . . . . . . . . . . 3

FSF Free Software Foundation . . . . . . . . . . . . . . . . . . . . . . . . . 21

GNSS Global Navigation Satellite System . . . . . . . . . . . . . . . . . . . . 61

GS Ground Station . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

GUI Graphical User Interface . . . . . . . . . . . . . . . . . . . . . . . . . . 24

INCOSE International Council on Systems Engineering . . . . . . . . . . . . . . 1

LEO Low Earth Orbit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

LOS Line Of Sight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

MBSE Model-Based Systems Engineering . . . . . . . . . . . . . . . . . . . . i

MDR Mission Definition Review . . . . . . . . . . . . . . . . . . . . . . . . . 4

NASA National Aeronautics and Space Administration . . . . . . . . . . . . . 3

NSS Nanostar Software Suite . . . . . . . . . . . . . . . . . . . . . . . . . . i

OM Operating Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

OMG Object Management Group . . . . . . . . . . . . . . . . . . . . . . . . 12

OSHW Open Source Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
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OSHWA Open Source Hardware Association . . . . . . . . . . . . . . . . . . . . 21

OSI Open Source Initiative . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

OSR Open Source Requirement . . . . . . . . . . . . . . . . . . . . . . . . . 21

OSS Open Source Software . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

PD Preliminary Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i

PDR Preliminary Design Review . . . . . . . . . . . . . . . . . . . . . . . . 4

PRR Preliminary Requirements Review . . . . . . . . . . . . . . . . . . . . . 4

SatNOGS Satellite Networked Open Ground Stations . . . . . . . . . . . . . . . . 23

S/C Spacecraft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

SE Systems Engineering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

SLIM Systems Lifecycle Management . . . . . . . . . . . . . . . . . . . . . . 30

STK Systems Tool Kit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

SysML Systems Modelling Language . . . . . . . . . . . . . . . . . . . . . . . i

TWC The White Compass . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

UML Unified Modelling Language . . . . . . . . . . . . . . . . . . . . . . . . i
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B Configuration Files example

Listing 5: Full set of OMs .yaml configuration example

1 Phasing:

2 isDefault: False [bool] # Default mode identification

3 priority: 2 [int] # Priority counter

4 isEclipse: False [bool] # Criterion 1: eclipse

5 isOnTarget: False [bool] # Criterion 2: GS in LOS

6 isOnZone: False [bool] # Criterion 3: S / C over zone

7 zoneLatStart: na [deg] # | - > Criterion 3 sub - parameter

8 zoneLatEnd: na [deg] # | - > Criterion 3 sub - parameter

9 zoneLonStart: na [deg] # | - > Criterion 3 sub - parameter

10 zoneLonEnd: na [deg] # | - > Criterion 3 sub - parameter

11 isInRange: False [bool] # Criterion 4: true anomaly range

12 rangeStart: na [deg] # | - > Criterion 4 sub - parameter

13 rangeEnd: na [deg] # | - > Criterion 4 sub - parameter

14 isInInterval: True [bool] # Criterion 5: time interval

15 intervalStart: 0.0 [sec] # | - > Criterion 5 sub - parameter

16 intervalEnd: 240.0 [sec] # | - > Criterion 5 sub - parameter

17 modeID: 2 [int] # Metadata : mode ID

18 modeName: Phasing [str] # Metadata : mode name

19 postProColor: ’#BA525270 [str]’ # Metadata : post -processing colour

20 TMRate: 18.0 [kbitsec] # Variable : Telemetry data rate

21 TCRate: 16.0 [kbitsec] # Variable : Telecommand data rate

22 powerCons: 0.0 [W] # Variable : Power consumption

23 Servicing:

24 TCRate: 16.0 [kbitsec]

25 TMRate: 18.0 [kbitsec]

26 intervalEnd: na [sec]

27 intervalStart: na [sec]

28 isDefault: False [bool]

29 isEclipse: False [bool]

30 isInInterval: False [bool]

31 isInRange: False [bool]

32 isOnTarget: True [bool]

33 isOnZone: False [bool]

34 modeID: 1 [int]

35 modeName: Servicing [str]

36 postProColor: ’#00990040 [str]’

37 powerCons: 0.0 [W]

38 priority: 1 [int]

39 rangeEnd: na [deg]

40 rangeStart: na [deg]

41 zoneLatEnd: na [deg]

42 zoneLatStart: na [deg]

43 zoneLonEnd: na [deg]

44 zoneLonStart: na [deg]

45 Stand -by:

46 TCRate: 16.0 [kbitsec]

47 TMRate: 18.0 [kbitsec]

48 intervalEnd: na [sec]

49 intervalStart: na [sec]

50 isDefault: True [bool]

51 isEclipse: True [bool]
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52 isInInterval: False [bool]

53 isInRange: False [bool]

54 isOnTarget: False [bool]

55 isOnZone: False [bool]

56 modeID: 0 [int]

57 modeName: Stand -by [str]

58 postProColor: ’#D6EFFF [str]’

59 powerCons: 0.0 [W]

60 priority: 3 [int]

61 rangeEnd: na [deg]

62 rangeStart: na [deg]

63 zoneLatEnd: na [deg]
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C TWC SysML model core elements

«block, operatingMode»
Stand-by

OperatingMode

modeName = "Stand-by"
modeID = "0"
postProColor = "#D6EFFF"
isEclipse = "True"
isOnTarget = "False"
isOnZone = "False"
isInRange = "False"
isInInterval = "False"
TCRate = "16.0"
TMRate = "18.0"
priority = "3.0"
powerCons = "0.0"
zoneLatStart = "na"
zoneLatEnd = "na"
zoneLonStart = "na"
zoneLonEnd = "na"
rangeStart = "na"
rangeEnd = "na"
intervalStart = "na"
intervalEnd = "na"
isDefault = "True"

«block, operatingMode»
Servicing

OperatingMode

modeName = "Servicing"
modeID = "1"
postProColor = "#00990040"
isEclipse = "False"
isOnTarget = "True"
isOnZone = "False"
isInRange = "False"
isInInterval = "False"
TCRate = "16.0"
TMRate = "18.0"
priority = "1.0"
powerCons = "0.0"
zoneLatStart = "na"
zoneLatEnd = "na"
zoneLonStart = "na"
zoneLonEnd = "na"
rangeStart = "na"
rangeEnd = "na"
intervalStart = "na"
intervalEnd = "na"
isDefault = "False"

«block, operatingMode»
Phasing

OperatingMode

modeName = "Phasing"
modeID = "2"
postProColor = "#BA525270"
isEclipse = "False"
isOnTarget = "False"
isOnZone = "False"
isInRange = "False"
isInInterval = "True"
intervalStart = "0.0"
intervalEnd = "240.0"
TCRate = "16.0"
TMRate = "18.0"
priority = "2.0"
zoneLatStart = "na"
zoneLatEnd = "na"
zoneLonStart = "na"
zoneLonEnd = "na"
rangeStart = "na"
rangeEnd = "na"
powerCons = "0.0"
isDefault = "False"

Figure 37: TWC Operating Modes Block Definition Diagram implemented in Gaphor.

«block, orbit»
HEO

Orbit

SMA = "16500.0"
ECC = "0.55"
AOP = "270.0"
INC = "63.4"
RAAN = "0.0"
startTA = "0.0"
startEpoch = "2025,06,01,00,00,00"

«block, propagationLosses»
Propagation Losses

PropagationLosses

lossPol = "0.0"
lossAtm = "0.0"
lossScin = "0.0"
lossRain = "0.0"
lossCloud = "0.0"
lossSnowIce = "0.0"
lossMisc = "150.0"

(a) Orbit BDD.

«block, groundStation»
KirunaGS

GroundStation

altitude = "402.0"
minElevation = "5.0"
diameterRx = "15.0"
Lat = "67.9"
Lon = "21.0"
sysMargin = "10.0"
powerTx = "177.8"
lineLossTx = "4.7"
lossConnectorTx = "0.0"
gainTx = "46.8"
freq = "2000000000.0"
reqBER = "10.5"
modulation = "QPSK"
etaRx = "0.95"
noiseTempRx = "515.0"
LNAGain = "7.82"
lossCableRx = "0.0"
lossConnectorRx = "0.0"
dataRateTx = "10.0"
lossPointRx = "0.0"

(b) Ground Station BDD.

Figure 38: TWC Orbit and Ground Station Block Definition Diagram implemented in

Gaphor.
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«block, systemMain»
Payload

parts

+ cmcu: CMCU[1]
+ afs: AFS[2]

SystemMain

computeMass = "True"
computeCons = "False"
margin = "0.05"
compName = "GNSSPayload"
powerConsStb = "84.0"
powerConsOn = "105.0"
powerConsPeak = "105.0"
modeIsStb = "[Stand-by, Phasing]"
modeIsOn = "[Servicing]"
mass = "39.469500000000004"
modeIsPeak = "[]"

«block, systemComp»
AFS

parts

+ rafs: RAFS[1]
+ phm: PHMmini[1]

SystemComp

mass = "16.065"

«block, systemComp»
PHMmini

SystemComp

mass = "12.0"
compID = "MM07688 1-17"
manifacturer = "Leonardo"
margin = "0.05"
compName = "PassiveHydrogenMaser"

«block, systemComp»
RAFS

SystemComp

compName = "RubidiumAtomicFrequencyStandard"
mass = "3.3"
margin = "0.05"
manifacturer = "Airbus"
compID = "AYP2EN"

«block, systemComp»
CMCU

SystemComp

mass = "5.2"
manifacturer = "Airbus"
compName = "ClockMonitoringControlUnit"
compID = "2A1Z36"
margin = "0.05"

+ afs

2

+ phm 1

+ rafs 1

+ cmcu 1

Figure 39: TWC Payload Block Definition Diagram implemented in Gaphor. Compo-

nents data from Satsearch [59].

«block, systemComp»
DC/DC Converter

«block, systemComp»
LCL

«block, systemComp»
BCDR

«block»
Bus28V

«block, battery»
Battery

Battery

capacity = "1036.8"

«block, systemComp»
PCU

parts

+ bcdr: BCDR[1]

«block, systemComp»
ShuntRegulator

«block, solarArray»
SolarArray

SolarArray

producedPower = "2021.0"

«block, systemMain»
EPS

parts

+ bus: Bus12V[1]
+ array: SolarArray[2]
+ battery: Battery[2]
+ shunt: ShuntRegulator[1]
+ pcu: PCU[1]
+ dcdc: DC/DC Converter[4]
+ lcl: LCL[5]
+ bus: Bus28V[1]
+ bus: Bus50V[1]
+ bus: Bus5V[1]
+ bus: Bus3.3V[1]

SystemMain

mass = "120.0"
margin = "0.05"
powerConsStb = "10.0"
powerConsOn = "10.0"
powerConsPeak = "10.0"
modeIsOn = "[Stand-by, Servicing, Phasing]"
computeMass = "False"
computeCons = "False"
modeIsStb = "[]"
modeIsPeak = "[]"

«block»
Bus50V

«block»
Bus12V

«block»
Bus5V

«block»
Bus3.3V

+ bcdr 1

+ bus

1

+ dcdc 4+ pcu 1

+ array 2

+ shunt 1 + lcl 5+ battery 2

+ bus

1

+ bus

1

+ bus

1

+ bus

1

Figure 40: TWC EPS Block Definition Diagram implemented in Gaphor.
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«requirement»
EPS-001

Id: R-FUN-EPS-001
Text: The electrical power
system shall provide and
regolate sufficient power to all
other subsystems' components
in each mission phase 

«requirement»
EPS-002

Id: R-FUN-EPS-002
Text: The electrical
power system shall
provide the correct
voltage to satellite's
systems 

«requirement»
EPS-003

Id: R-FUN-EPS-003
Text: The electrical power
system shall ensure that the
maximum power produced is
within the safe operating limits
to prevent any harmful effects 

«requirement»
EPS-004

Id: R-FUN-EPS-004
Text: The batteries' functioning
design shall guarantee an optimal
efficiency during operational life 

«requirement»
EPS-005

Id: R-FUN-EPS-005
Text: The solar panels
shall generate at least 1.6
kW including margin 

«requirement»
EPS-006

Id: R-FUN-EPS-006
Text: Solar panels shall
perform sun tracking with an
accuracy of ±5% of full step. 

«requirement»
EPS-007

Id: R-FUN-EPS-007
Text: The batteries' Depth-
of-Discarge (DoD) shall be
less than 50% during
operational life 

«requirement»
EPS-008

Id: R-FUN-EPS-008
Text: The batteries'
voltage shall be 28±2 V 

«requirement»
EPS-009

Id: R-FUN-EPS-009
Text: The batteries
shall have a capacity
of 2 kWh 

«requirement»
EPS-010

Id: R-FUN-EPS-010
Text: The batteries
shall have a minimum
lifetime of 6 years 

«requirement»
MIS-003

(from Mission Requirements)

Id: R-MIS-003
Text: The mission
shall provide
navigation service for
the Arctic Region for
a time period of at
least 5 years 

«deriveReqt»

Figure 41: TWC Functional EPS Requirements implemented in Gaphor.
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