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Abstract

This thesis details the design, development, and verification of an imaging system for the
TWIN-SAT satellite mission, currently being developed at TU-Delft. The mission incorporates

two 3P PocketQube platforms in a connected configuration, with the imaging system tasked
with capturing a sequence of images documenting their separation, serving both engineering
analysis and outreach objectives. The project encompasses the entire system lifecycle: from
conceptualization and design to development and verification. It builds upon lessons learned

from previous missions, aiming to enhance acquisition and data handling capabilities within the
limitations imposed by the PocketQube format. The initial phase involved a comprehensive

analysis of the spacecrafts’ separation dynamics, optimizing the imaging system’s performance.
This phase led to the selection of an appropriate COTS CMOS sensor and optics. Focus was
placed on designing a payload data handling system capable of managing high image data
throughput, ensuring continuous image acquisition, and facilitating real-time control and

capture. The design and development process involves every aspect of the system including
electronics and on-board firmware of the payload data handling system. A custom-developed

board incorporates an ARM Cortex-M4 based MCU, a parallel CMOS sensor interface, a
high-capacity and throughput SLC NAND memory subsystem, and interfaces for the satellite
bus. The onboard firmware includes bare-metal drivers tailored for the payload hardware, the

RTEMS real-time operating system, and application software. The drivers, along with a
bootloader engineered for the custom board, facilitated the creation of a Board Support Package.
This support package enables the use of the RTEMS RTOS with the STM32L4+ microcontroller
family, which was previously unsupported. The thesis activities resulted in the production of a
functioning Development Model that underwent a verification process to assess its performance

and compliance with mission-derived system requirements. The process yielded positive
outcomes, guaranteeing the achievement of mission objectives and facilitating the progression

towards the development of a ProtoFlight Model.
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Chapter 1

Introduction and scope of the

project

This Master’s thesis includes the design, development, assembly and verification of an
imaging system compatible with the PocketQube satellite format, realized with the
support of the Space Systems engineering group at TU-Delft.

The imaging system has been designed to satisfy the payload requirements of the Delfi-
TWIN mission. The mission is going to be carried out by two PocketQube spacecrafts
that are currently being Developed at TU-Delft, with contribution of students from
Politechnic University of Turin.

1.1 Programmatic considerations and mission con-

cept

The Delfi-Twin mission is an academic PocketQube mission that aims to achieve a set
of research, education, and outreach goals.

• To test in the low earth orbit environment technologies for formation flight and
autonomous operations.

• To produce images to be used for outreach purposes.

• To provide a project where students can acquire hands-on experience working on
the project.

The high level mission concept consists in the deployment of two 3P PocketQube satel-
lites in an attached 6P configuration. The S/C stack is going to be deployed from a 6P
deployer and proceed to an initial commissioning phase. At the end of the S/C com-
missioning, the first mission phase will take place, that includes the separation of the
two spacecrafts and the successive controlled distancing, until the formation flight con-
figuration is reached. Successively, the second mission phase will consist of maintaining

13



14 Chapter 1. Introduction and scope of the project

the formation flight configuration via autonomous relative position control making use
the use of differential drag.

Each of the two spacecraft will feature an imaging system to acquire an image se-
quence of the separation. The scope of this thesis is the conceptualization, design and
development of the imaging system, inlcuding the development and verification of a
Development Model.

Interfacing with the available stakeholders has been an essential step to determine the
instrument characteristics and eventual system constraints. By interfacing with TU-
Delft Space Systems engineering group, the following information about the project,
and its stakeholders, has been gathered:

• TU-Delft university is the prime stakeholder of the project, it covers the launch
costs and its interest is in the outreach and education outcomes of the mission.

• The TU-Delft Space Systems engineering research group is the S/C developer
and is also a stakeholder of the project. The research group plans to utilize the
mission to conduct research and validate technologies for a set of research topics:
Formation flying, control of satellite attitude and position via differential drag,
autonomous operations and more.

• Other research groups at TU-Delft plan to utilize the platform to test payloads
in the low earth orbit environment.

Consequently, a mission concept has been developed that is able to achieve the mission
goals of the stakeholders, and a set of payloads has been conceptualized to achieve each
goal.

The development of the payload has overcome numerous challenges, some of which
programmatic in their nature and derived from the mission development context.

To achieve the education goal, most of the work packages necessary for the realiza-
tion of the mission are meant to be performed by students. This is an aspect that
strongly influenced the organization of the project, since availability of students make
a traditional project organization difficult to implement.

To enable parallelization of the development, the activities have been organized in two
segments, a first segment dedicated to Mission Analysis and second involving System
design and development.

Since the design process of the systems requires input from the Mission analysis func-
tion, the parallelized approach necessitates that the inputs of the sub-systems design
process are known independendly from the mission analysis process.

This design assumption has been used to generate a plausible system budget allocation
and high level requirements for the imaging system using as reference is the budget
developed for the Delfi-PQ mission, due to the similarities in format, hardware and
orbit of operation.

While an approach based on these assumptions can provide preliminary subsystems
performance requirements, it cannot possibly provide instrument performance require-
ments, before the completion of the mission analysis phase.

This issue has been aggravated by the lack of a defined outreach strategy from the
prime stakeholder.

Therefore, the lack of mission requirements created a situation where it has been not
only necessary to conceptualize the observational strategy, but also to interface with
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the prime stakeholder to understand and formalize the outreach needs.

Consequently, it has been agreed to include in the schedule of the activities an initial
period of three weeks for a preliminary mission and instrument feasibility study, with
the objectives:

• Formalization of the stakeholder outreach needs.

• Development of the observation requirements.

• Definition of the observational strategy.

• Development of the instrument performance requirements.

• Definition of the payload architecture.

The rest of the thesis timeframe is reserved for the design, development, production
and verification of the payload subsystem. The key dates for the project top level
schedule are shown in Table below. The schedule has been developed to avoid blocks
in the development activities, with particular attention to the effect of procurement on
the overall schedule. Specifically, the activities have been scheduled so that hardware
and software development could have been executed while waiting for fruition of the
successive procurement rounds.
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Activity Schedule

Preliminary mission and instrument feasibility study
1st week October -
3rd week October

Component selection 4th week October

small Initial procurement of test components for
pre-development activities

4th week October

small Design of the software architecture and
software development plan

1st week November

Hardware design for Development Model
2nd week November -
3rd week November

Hardware procurement for Development Model 3rd week November

Low level software development on Breadboard Model
4th st week November -
1st st week December

Development Model Assembly 2nd week December

Software development of RTEMS board support package
2nd week December -
1st week January

High level software development on Development Model
2nd week January -
4th week January

Development Model Verification 1st week February

Table 1.1: Schedule (indicative) for the project development schedule

1.2 The PocketQube format and derived systems

constrains
The PocketQube satellite format is defined in a set of standards born from an initial
conceptualization from professor Robert J. Twiggs, as a result of a collaboration be-
tween Morehead State University and Kentucky Space [28]. The standard has been
defined in a further set of specifications by AlbaOrbital, TU-Delft and GAUSS Srl [2].

In general, PocketQube are inexpensive platforms developed making large use of COTS
microelectronics components and composed of cubic format units of size 50 mm x 50
mm, and with a maximum mass per unit of 250g.

The PocketQube structure is characterized by the presence of a structural backplate,
used as rail in the pod deployment system.

Amongst PocketQubes the most common form factor is the 3P configuration, consisting
of three format units. The 3P factor is commonly used thanks to the ability to fit two
triple junction solar cells over the length of the spacecraft.
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Figure 1.1: On the left, an Example of a PocketQube unit, with the inclusion of con-
ventional axis specification. [2]. On the right, the AlbaPod 6P PocketQube deployer,
from Alba Orbital [16]
(Image from the manufacturer’s website).

The common solar cell placement configuration are body mounted solar cells like for the
DelfiPQ spacecraft from TU-Delft [18], or deployable solar panels like for the Unicorn-2
satellite platform from AlbaOrbital (Figure 1.2).

Currently, power generation is the greatest factor that limits capabilities for most Cube-
Sat or PocketQube satellites. This is because thanks to the great availability of small
package electronics, it is possible to implement many of the S/C subsystems (EPS,
C&DH, COMM-SYS) in a very compact format, making volume and mass less of a
concern.

Sufficient power generation is essential to support performant payloads, that defines the
capability of a given platform format. Communication and navigation payloads rely
on the reception and transmission of RF signals and are limited in the duration and
power of the transmission by the power generation. Earth observation systems are also
relatively power hungry due to factors like:

• Power necessary for operation of the photodiode array (for CMOS sensors) and
readout electronics.

• Power consumption of the sensor handling electronics. For COTS CMOS sensors
this often includes an integrated MCU or ASIC that performs image correction,
de-mosaicization, white balance, automatic exposure control and other image pro-
cessing functions.

• High power consumption of high frequency MCU or SoC, required to support
high speed serial interfaces used by most imaging sensors (Like SoC based on the
ARM Cortex-A series of processor cores).

In regard to power generation, the Delfi-TWIN platforms is being developed with the
same configuration of Delfi-PQ, a 3P PocketQube with body mounted triple-junction
solar cells.

The power requirements assigned to the imaging payload are the following:

• The mean power consumption shall be equal or less than 150mW
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Figure 1.2: Example of two solar cell configurations: on the left Delfi-PQ that fea-
tures body mounted solar cells, on the right the Unicorn-2 platform from AlbaOr-
bital[16](Image from the manufacturer’s website), that uses deployable solar panels.

• The peak power consumption shall be equal or less than 1.5W

The mean power consumption takes in account the duty cycle of the payload and consid-
ers power consumption before the subsystem voltage regulators, therefore considering
the power absorbed from the unregulated S/C power bus. The maximum power con-
sumption is defined as a consequence of Delfi-PQ EPS, that has been sized for the
activation of the hot-knives for antenna deployment.

At the beginning of the design process a configuration requirement has been received
regards the utilization of a specific MCU as command and data handling hardware. The
Delfi-TWIN spacecraft avionics make use of a distributed system architecture, similar
to the one implemented in Delfi-PQ. The distributed C&DH system of Delfi-PQ makes
use of a common MCU (MSP432P401R) [18] in every S/C subsystem, to facilitate the
reuse of software and hardware between the subsystems. Each of the subsystems MCU
communicate on a RS485 satellite bus and is responsible for subsystem operation and
FDIR.

A SWD debug interface between the distributed elements of the system allows for
firmware update of the elements of the system and needs to be exposed in the imaging
system as well.

During previous activities in the scope of the Delfi-TWIN project, the STM32L496
microcontroller has been selected as the common MCU for the Delfi-TWIN subsystems.
During the development of the system configurations candidates and the feasibility
study, it has been determined that the utilization of the STM32L496 would lead to
unsatisfactory performance due to a limited availability of peripherals, therefore an
MCU of the L4+ family of the same product line from ST has been selected, featuring
higher clock speed and a greater number of serial peripherals.



Chapter 2

Mission and Instrument feasibility

study

The first step taken in the analysis activities has been to interface with the prime
stakeholder to analyze and formalize its needs.

In particular the mission management team composed of Stefano Speretta and Mehmet
Şevket Uludağ provided invaluable support in this regard, acting as interface between
the autor and the prime stakeholder.

For simplicity in the rest of the document, the satellite hosting the imaging payload
is referred as ”Observer”, while the observed satellite is referred as ”Target”. The
separation and successive distancing of the satellites after the removal of the mechanical
link between them is referred as the ”separation event”.

In the kickoff meeting it has been possible to identify the following high level functional
requirement:

• The imaging system on the observer satellite shall acquire a sequence of images
of the target satellite during the separation event.

The successive step has been to produce quantitative instrument performance require-
ments that would allow achievement of the outreach goal. The imaging system per-
formance requirements are inherent to two areas: Quality of the captured image and
acquisition frequency.

After a preliminary overview of the performance of the CMOS sensors that are both
available in the market and compatible with the required MCU, a successive meeting
has been organized with the stakeholder’s representative (SR) to define the observation
objectives. The discussion of the desired image quality has been guided making use
of a test image to provide an empiric tool to quantify the desired target sampling
performance. The test image is displayed in figure 2.1 and consists of a white canvas
composed of 1900x1200 pixels containing a set of test boxes. The pixel count of the
image is the same as the highest pixel count amongst the sensors available in the market
(and specifically from component distributors) compatible with the STM32L496 DCMI
interface.

19
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Figure 2.1: The test image utilized to discuss with the stakeholder representatives the
desired characteristics of the images to be used for outreach.

The test image contains a set of dark squares that represent possible sizes of the target
in the image. The SR has been asked to select the smallest box that could be useful for
the outreach purpose. Each box contains a pattern that represents the smallest feature
that could be sampled considering a spatial cutoff frequency that would only be limited
by the sensor’s sampling. Naturally, all the parties shared the understanding that the
contrast of the imaged features would be less than the one depicted with solid colors in
the test image and this information has been shared with the SR.

The SR selected a box of pixel size 60x60. From this information, it is possible to
generate a set of quantitative criteria, so that it is possible to univocally determine if a
captured frame is adequate for the outreach purpose. Therefore, the observability the
following observation requirements are set of conditions:

• A valid image shall contain the entire target satellite in frame.

• A valid image shall sample the target satellite with a minimum of 3600 samples.

• A valid image shall contain resolved features of the target satellite of at least 2
mm of characteristic length.

2.1 The observation scenario

The separation event consists in the separation of the two S/C. When the mechanical
link is released, a separation spring applies an impulse that results in a relative sepa-
ration speed of 10cm/s. The separation velocity has been determined by the mission
analyst to ensure adequate separation of the platforms and to avoid collisions in the
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successive orbital periods.

The application of an impulse, in conjunction with the change in inertia of the two
bodies will result in an expected tumbling motion. The ACS system of the spacecraft
is not going to be sized to stabilize the tumbling motion before the two satellites will
be too far to be imaged. Therefore, it is necessary to account the tumbling motion of
the observer satellite during the design of the imaging system.

This imposes a set of constrains, specifically:

• It is necessary to determine the optimal combination between the horizontal and
vertical AFOV and maximum working distance that would allow capturing of as
many valid frames as possible of the target satellites.

• The imaging sensors selected shall be able to acquire images of the target satellite
with a limited degradation of the SNR caused from the rotation of the observer
satellite. In practice this means designing an imaging system able to acquire with
rapid exposure time and using sensors with electronic global shutter.

• The requirement of being able to achieve the mission objectives even in case of
failure of the ACS system implies that the attitude initial conditions cannot be
assumed and an appropriate number of cases needs to be studied to be able to
demonstrate the suitability of the design.

Moreover, the application point of the separation impulse is not yet determined. An-
other task of the preliminary observation analysis is to determine the best point of
application of the separation impulse, to maximize the acquisition output.

To analyze the mission scenario, a simulator of the two satellites dynamics has been
developed. The simulator has the purpose of simulating attitude and position of the two
spacecrafts before and after the separation. A set of simulation cases have been studied,
that include combinations of different initial conditions and different placement of the
separation spring. The purpose is evaluating significant cases to gather information to
guide the successive design steps.

The position-attitude-time state vectors obtained from the different simulation scenarios
allows to evaluate the performance of a given imaging system in terms of valid frames
that would be able to capture. By calculating the number of valid image frame captured
by each valid combination of imaging system parameters, it is possible to determine
the imaging system characteristics that maximize the number of valid images that it
can capture.

Thanks to this method, it has been possible to produce instrument requirements that
are able to maximize the outreach value of the mission, guiding the development of
a payload that would be able to achieve the best possible satisfaction of the mission
goals.

2.2 Satellite dynamics simulator

The satellite dynamics simulator is a computational software that has been developed
ad-hoc for the project to determine position and attitude of the spacecrafts before and
after the separation. The model has been defined in the Local Vertical Local Horizontal
(LVLH) reference frame.
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The LVLH reference frame is a quasi-inertial reference frame often used for proximity
operations, thanks to the possibility to simplify in the LVLH reference frame the general
2-body position dynamics equation. The reference frame is defined as follows: the +Z
axis is directed in the nadir direction, the +Y axis is perpendicular to the orbit plane
with direction opposite to the angular momentum vector and +X axis is positioned to
complete the right-handed triad so that it is horizontal in the orbit plane and in the
direction of orbit travel.

When the frame is used to represent proximity operations, usually the LVLH frame is
centered in the target spacecraft. In the scope of the analysis, the LVLH coordinate
frame is centered in the CoM of the attached satellites at the initial condition. After
separation, the two satellites will begin their separation relative to the origin of the
reference frame.

Figure 2.2: Diagram of the LVLH refer-
ence frame [10]

Figure 2.3: Placement of the origin of the
LVLH reference frame in respect to the
simulation bodies. Blue: observer satel-
lite. Red target satellite. Superposed to
the two bodies, a third green body rep-
resents the two satellites in the attached
configuration.

2.2.1 Simulation subjects

The dynamic simulation scenario includes three bodies:

• A body (Observer satellite): This body represents the observer satellite,
which is equipped with the imaging instrument. The inertial properties of the
observer satellite have been assumed from the mass distribution of the Delfi-PQ
satellite. Specifically, the PocketQube has been considered a parallelepiped with
an homogeneous mass distribution and total mass equal to the design mass of
Delfi-PQ. Consequently, the total mass the m = 0.549kg and with dimensions
l = [0.15, 0.05, 0.05]m results in a diagonal tensor of inertia, with main diagonal
ja = [0.0002287, 0.0011437, 0.0011437]kgm2.

• B body (Target satellite): This body represents the target satellite, it presents
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Figure 2.4: Simulated objects reference nomenclature.

the same inertial properties as the observer satellite,
jb = [0.0002287, 0.0011437, 0.0011437]kgm2

• C body (Lead satellite): This body represents the two PocketCubes in the
attached configuration. It is referred to as the lead satellite. Its motion is defined
at t0 by the initial conditions and the simulation reference frame is centered on
its initial CoM. The inertia tensor of the C body has been derived from the ones
of the two constituent bodies (A and B) jc = [0.0004575, 0.0084637, 0.0084637].

2.2.2 Simulation phases

The simulation is composed of two phases, respectively before and after the separation
of the two satellites:

Spin Phase During the spin phase, only the C body position and attitude dynamics
are simulated, as it represents the A and B bodies linked together. The position and
attitude of the A and B bodies are derived directly from the one of the C body, as they
are represented by it. In this phase, the C body is free to rotate for a definite amount
of time, after which the successive phase is simulated.

Separation Phase The separation phase consists in the simulation of the dynamics
of the A and B bodies. The initial conditions of the simulation are determined from
the last state of the spin phase simulation. The separation includes the unlinking of
the two satellites and the application of the separation force generated by an elastic
actuator. The applied total impulse can be applied in the direction of the CoM axis
or in the off-axis interface between the two satellites, which is the backplate. The
actuation impulse generates a variation of momentum and angular momentum, which
is taken into account in the determination of the initial conditions of the distancing
phase.
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2.2.3 Dynamics model

The position of each spacecraft in the analysis is determined via the solution of the Hill
equation, derived from the linearization of the complete nonlinear two body problem
[20]. The Hill equation solved in the simulation domain is here reported:

ẍ =
Fx

ms

+ 2ωż,

ÿ =
Fy

ms

− ω2y,

z̈ =
Fy

ms

− 2ωẋ+ 3ω2z,

(2.1)

where ω is the mean orbital rate, [x, y, z] is the position of the body in the Local Vertical
Local Horizontal (LVLH) reference frame,F = [Fx, Fy, Fz] is the forces applied on the
spacecraft in the LVLH reference frame.

The attitude of each of the bodies is simulated via Euler equations and quaternion
kinematics. The Euler equations are given by:

ω̇B = I−1[TB − ω×
BIωB], (2.2)

where TB is the total torque applied to the spacecraft in the spacecraft body reference
frame, ωB is the angular velocity in the spacecraft and ω×

B is the cross product matrix
of the ωB vector.

At each time step, the attitude of the spacecraft is obtained from the angular velocity
via the use of quaternion kinematics. Specifically, the time-derivative of the quaternion
qba is computed such that it rotates a reference frame ”a” into alignment to the reference
frame ”b” in which the angular velocity of ”b” with respect to ”a”, and represented in
”b”, is ωba,b. In the scope of the solution of this equation the ”b” reference frame is the
spacecraft reference frame, while the frame ”a” is the LVLH reference frame.

qba =
1

2
(ωbab)qba (2.3)

q̇ba =
1

2
·


0 −ωba,b,x −ωba,b,y −ωba,b,z

ωba,b,x 0 ωba,b,z −ωba,b,y

ωba,b,y −ωba,b,z 0 ωba,b,x

ωba,b,z ωba,b,y −ωba,b,x 0

 · qba (2.4)

To handle the different bodies the simulation is organized as follows: The attitude
and position dynamics of the C body are calculated considering the simulation initial
conditions. This first simulation, that constitute the first phase, lasts an arbitrary
duration (time necessary for two rotations around the yB axis). Successively, the final
state vectors of the C body is used to determine the initial conditions for the second
phase simulation, consisting in the solution of attitude and position ODE for the bodies
A and B.
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The initial angular velocity of the A and B bodies is calculated via conservation of an-
gular momentum, that considers the change in inertial properties between the attached
configuration and the detached, two bodies, configuration.

Due to the reduction of total inertia due to the different mass distribution, the result is
an increase of spin rate for the two spacecrafts, independently of the angular momentum
variation introduced by an offset separation spring.

The angular velocity of the observer spacecraft is an essential parameter in determining
the feasibility of the observation. The presence of rotation introduces noise that is
dependent on the integration time of the sensor (blur).

Solution of
Hill/Euler ODE

Solution of
Hill/Euler ODE

Solution of
Hill/Euler ODE

Spin phase Separation phase

Figure 2.5: High level diagram of the simulation

2.2.4 Scenario characteristics
The C body is assumed to start in a circular orbit of arbitrary inclination with an
altitude of 400Km. The characteristics of this initial condition are summarized in
Table 2.1.

Symbol Name Quantity

zc Orbit altitude 400 Km
ωc0 Orbit angular velocity (mean motion) ωc0 = (µ/(rearth + zc)

3)0.5

ωlvlh,0 Angular vel. of the LVLH rf. relative to ECI rf. ωlvlh,0 = [0,−ωc0, 0]

Table 2.1: Initial condition assumptions

2.2.5 Cases
For brevity, a subset of the simulation cases that have been studied is presented, con-
sisting of the simulation cases in table 2.6. The simulation cases present different initial
angular velocity for the satellite in the attached configuration and explore the possi-
bility of having a separation spring in line with the axis that goes through the CoM
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of the two satellites or positioned in the separation plate. In the first case there is no
change in angular momentum, while in the second, the application of the spring impulse
generates a change of angular momentum for each spacecraft.

Case ID Initial conditions separation spring offset
1 ω0 = [0,2,0] rad/s yes
2 ω0 = [0,2,0] rad/s no
3 ω0 = [0,5,1] rad/s yes
4 ω0 = [0,5,1] rad/s no
5 ω0 = [0,10,5] rad/s yes
6 ω0 = [0,10,5] rad/s no

Simulation cases

Figure 2.6: Simulation cases discussed in this document

2.2.6 Simulator tech
The separation dynamics simulator has been developed using the Julia programming
language [4], making use of a set of a set of open source packages. In particular the
solver used is a Rosenbrock-Wanner method (Rodas5P) [22], implemented in the Dif-
feretialequations.jl Julia package [17]. The Differentialequations.jl package provides a
set of interfaces towards ODE solvers.

A visualization engine has been built that provides real time 3D visualization of the
results of the simulation. The visualization engine makes use of the Julia library Mesh-
cat.jl [19] based on Three.js [5]

2.2.7 Analysis results

This section contains the results of the simulation cases. The graphs on the left show
the position of the observer and target satellite and the ones on the right indicate each
spacecraft attitude. These results are used successively to visibility of the target satellite
from the observer as a function of the imaging system characteristics in a successive
section.

The separation event is visible in both graphs. It is possible to observe how the rotation
of the lead satellite (and therefore the initial conditions of the simulation) influence con-
siderably the velocity of the observer and target satellites after the separation. This is
something that needs to be accounted for in the mission analysis phase: The paramount
necessity to avoid collisions between the two satellites requires that the separation sce-
nario happens in a condition where the rotation of the lead satellite would lead to a safe
release of the two S/C, without risk of successive collision. Since the release condition is
so dependent on the initial condition of the separation, it is necessary that the attitude
of the lead satellite is controlled, or at least precisely measured, to be able to assess if
there are the conditions for a safe separation or not.

In regard to the attitude, it is possible to observe the change in angular velocity due
to the separation of the two bodies, and of course the angular velocity is much higher
when the separation spring is placed in line with the structural backplate.
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In these simulations it has been considered that the separation spring would apply an
angular impulse constructive in respect to the angular momentum possessed by the
Observer satellite. This assumption is not necessarily true, since the initial angular
velocity can be manifested in both directions and not necessarily in the one assumed
in the simulation. Moreover, the lead S/C could be tumbling with an angular veloity
on both of the major axis of inertia (YB,ZB).

Figure 2.7: Simulation case 1: [ω0]B = [0, 2, 0]deg/s, offset separation spring

Figure 2.8: Simulation case 2: [ω0]B = [0, 2, 0]deg/s, separation spring in line with
CoM.

Figure 2.9: Simulation case 3: [ω0]B = [0, 5, 1]deg/s, offset separation spring.
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Figure 2.10: Simulation case 4: [ω0]B = [0, 5, 1]deg/s, separation spring in line with
CoM.

Figure 2.11: Simulation case 5: [ω0]B = [0, 5, 1]deg/s, offset separation spring.

Figure 2.12: Simulation case 6: [ω0]B = [0, 5, 1]deg/s, separation spring in line with
CoM.
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Visualization of case 5

(a) Visualization of simulation case 5,
frame 80

(b) Visualization of simulation case 5,
frame 90

(c) Visualization of simulation case 5,
frame 100

(d) Visualization of simulation case 5,
frame 110

(e) Visualization of simulation case 5,
frame 120

(f) Visualization of simulation case 5,
frame 130

(g) Visualization of simulation case 5,
frame 140

(h) Visualization of simulation case 5,
frame 150
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2.3 Overview of the image acquisition chain

To analyze the number of valid frames that can be captured, the whole acquisition
chain needs to be considered. The acquisition chain is defined as the set of processes
and relative elements that allow for the generation of the data product.

The properties of the images captured, and therefore the perceived quality, are solely
dependent on the acquisition segment of the system, while the maximum acquisition
frequency depends both on the sensor and the data handling subsystem.

When evaluating the performance of an imaging system, both the optics and the sensor
characteristics concur to the properties of the captured image. It is necessary to analyze
both elements of the acquisition system holistically.

2.3.1 Image formation

The image formation process consists in the focusing of the incoming radiation on the
sensor array. In the observation scenario that is being considered, the radiation gathered
by the optics is assumed to originate from Lambertian Scattering of the solar radiation
on the surface of the target satellite. This is a simplification and the validity of the
assumption depends on the surface of the target satellite.

The selection of a specific test box in the test image from the SR allows characterizing
the target in terms of pixel coverage and feature resolution in the object space. It is
assumed that the test box represent the +x face of the target PocketQube, since it is the
smallest profile of the tumbling target PocketQube that can be imaged and therefore
the worst case scenario. The pattern that identifies the smallest detail of interest is
composed of alternating white and black stripes with a spatial period of 1/30 of the
side of the square. Since the assumed size of the +X PocketQube panel in the object
space is 45mm, this means that the spatial frequency of the significant feature in the
object space is:

kx,obj = ky,obj =
30lp

45mm
= 0.75lp/mm (2.5)

and would be equivalent to a feature size of 1.33mm.

The target in the object space is imaged by the camera lenses, forming the image in
the image space.

The primary magnification is defined as ratio of image height to object height and
describes the ratio between the imaged scene size in the image space and the size of the
target in the object space [27].

m = himg/hobj (2.6)

The magnification is considered to be linear, and is applied to the complete surface of
the sensor.

Assuming that the entire surface of the sensor is illuminated, it is possible to define the
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Figure 2.13: Representation of the relation between object space and image space

  

Figure 2.14: Qualitative illustration of Lambertian scattering
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magnification of the lens assembly as the ratio between sensor size and FOV [9].

m =
HSL

HFOV
=

V SL

V FOV
(2.7)

Where HSL is the horizontal sensor length, VSL the vertical sensor length, HFOV the
horizontal FOV and VFOV the vertical FOV.

The FOV is a significant parameter in the evaluation of the acquisition for this particular
application. A FOV can be realized from combination of Angular FOV (AFOV) and
Working Distance (WD), that is the distance at which the target is located relative
to the aperture of the imaging system. The combination between the AFOV and the
maximum WD determines the geometry of the observable region, defined as the region
of space in which the target satellite is considered observable. The geometry of the
observable region and the dynamics of the satellites determine the total time for which
the target satellite is observable.

FOV = 2 ·WD · tan
(
AFOV

2

)
(2.8)

Therefore, due to the tumbling motion of the two spacecrafts during separation, it
is necessary to determine the optimal balance between the working distance and the
angular field of view. Qualitatively:

• An increase in the Angular Field of View (AFOV), considering the tumbling mo-
tion of the spacecraft, would extend the time interval during which the target
satellite remains in view. However, this would simultaneously decrease the max-
imum working distance, thereby reducing the number of observation windows
before the target satellite becomes too distant to be resolved.

• A high AFOV and maximumWorking Distance (WD) can only be achieved thanks
to a very high Field of View (FOV). Consequently, the FOV assumes the role of
a budget variable.

• The maximum FOV for each sensor that allows for the satisfaction of the obser-
vational requirements is defined as the Field of View Budget (FOVB).

To calculate the FOVB for an arbitrary sensor, it is necessary to calculate the spatial
frequency of the feature in the image space as a function of the FOV and to determine
the highest FOV that still allows for sampling of said frequency.

FOV B = 2 ·WDmax · tan
(
AFOV

2

)
(2.9)

The highest frequency resolvable by the sensor is the Nyquist spatial frequency and is
half of the spatial sampling frequency of the sensor detector elements (pixels):

Rn =
1

2

N

HSL
(2.10)
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The feature spatial frequency in the object space can be referred to the image space
via the magnification, itself is function of the FOV (either horizontal or vertical):

kx,img = kx,obj/m = kx,obj
HFOV

HSL
(2.11)

Since the resolution limit is given by the sensor sampling cutoff frequency (Nyquist
frequency) and cosidering a design that is going to be limited in resolution by the
sensor and not the optics, it results tha the maximum FOV that would allow imaging
of the spatial frequency of the feature is:

FOV B = Rn
HSL

kx,obj
(2.12)

To select the best sensor for the application, a database of global shutter imaging sensors
compatible with the requred MCU has been built. Equation 2.12 is applied for each
sensor of the database to obtain the FOV budget. Sensor with higher FOVB would be
able to produce a lager detection volume and therefore increase the number of frames
that the imaging system would be able to capture during the separation event.

Lastly, after the sensor for the application is selected, and therefore the sensor cutoff
spatial frequency is defined, it is necessary to select a lens assembly such that its MTF
would not degrade the contrast at the sensor cutoff frequency. This means selecting
appropriate optics so that the system is effectively limited by the sensor and not the
optics, satisfying the previous assumptions.

2.4 CMOS sensor database

2.4.1 Configuration requirements and compatible camera in-

terfaces
Due to power constraints, the configuration requirements mandated the use of an ARM
Cortex M4 processor. The STM32L4 family of microcontrollers, as demonstrated by
their successful operation in missions such as SINGER payload computer for the SPEI-
SATELLES mission [7], have proven their suitability for operation in the Low Earth
Orbit (LEO) environment. As stated before, The configuration requirement has been
adjusted to include the STM32L4+ family of microcontrollers as acceptable MCU for
the imaging system.

Both the STM32L4 and STM32L4+ families support DCMI camera interface. DCMI is
ST’s nomenclature for a parallel interface utilized for raw or jpeg image data, commonly
utilized for low performance imaging sensors. The interface is composed of 8-12 parallel
data lines for the pixel data and a set of lines for signal synchronization (VSYNC/H-
SYNC, PixelClock).

The DCMI peripheral implemented by ST presents a throughput limitation related to
the AHB (DCMICLK < AHBCLK/2) bus clock of the MCU. Since the Arm Core-M4
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can be clocked up to 80Mhz for the STM32L4 family and 120Mhz for STM32L4+, the
specified maximum throughput is respectively limited to 32MB/s [25] and 54MB/s [24].

The DCMI peripheral throughput imposes a limit on the combination of resolution and
frame rate.

The system has been designed to work with a pixel sampling of 8 bit, but can optionally
work with a 10 bit sampling. It has been decided to utilize a 8bit sampling is because
it involves a reduced data volume amongst the other sampling modes and presents
no throughput loss when packed in a 32bit word. The latter aspect is particularly
important because the utilization of the MCU bus, as we will see, is one of the aspects
that are critical for the acquisition frequency of the Development Model.

To gather information on the available automotive-grade COTS CMOS sensors, the
product portfolios of the most prominent CMOS manufacturers were analysed, respec-
tively from OnSemi, Omnivision, AMS-OSRAM, Sony, STMicroelectronics.

The analysis of the products available from the manufacturers highlighted a segmenta-
tion of the market in legacy low-end sensors with parallel interfaces and high end, more
recent sensors with serial interfaces.

2.4.2 CMOS sensors industry shift from parallel to High-Speed

Serial Interfaces
The research of compatible CMOS sensors highlighted a set of trends from CMOS
sensor manufacturers and integrators, that are interesting to analyze in the context of
the current development work.

The most prominent trend consists in the shift from the use of parallel camera interfaces
towards high-speed serial interfaces. Serial interfaces offer superior throughput and
facilitate system integration due to the lack of necessity of parallel line syncronism and
reduction in the number of data lines.

Some of the high-speed serial interfaces currently used to interface with CMOS sensors
include:

• Mobile Industry Processor Interface - Camera Serial Interface 2 (MIPI-CSI 2)

• Low-Voltage Differential Signaling (LVDS)

• subLVDS, a reduced voltage version of the LVDS electrical specification, predom-
inantly used by CMOS sensors produced by Sony.

But there are challenges that are associated to the utilization of newer interfaces. An
high speed serial interface requires an adequately high clock peripheral, are usually
available only on relatively power hungry MCU or SoC.

Being limited to sensor working with parallel interfaces means to look to (and to rely
on) legacy products, that consequently are characterized by inferior performance, un-
certainty about the components longevity and future availability, scarce availability of
technical documentation and lack of support from the manufacturers due to the lack of
interest in supporting products close to being discontinued.
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Figure 2.15: Evaluation of FOV budget for the sensors in the compatible sensors
database

2.4.3 Database
The database includes a set of global shutter sensors from ONSEMI, STMicroelectron-
ics, ams OSRAM, Univision. The database presents the additional inclusion of the
OV5640 rolling shutter sensor in two different sampling (5Mpx and 720p) configura-
tions.

The OV5640 sensor is a successive addition in a second iteration of the sensor evaluation
analysis. The first analysis resulted in the selection of the AR0234CS sensor from ON-
SEMI. Unfortunately, the manufactured disagreed to provide technical documentation
necessary to work with the sensor, therefore it has been necessary to select a different
sensor at least for the development model activities. The OV5640 sensor makes use of
a rolling shutter, that is unsuitable for the application due to rolling-shutter distortion
induced by the tumbling of the observer and the target satellite. That said, it is an
inexpensive, easy to procure sensor that has been used as a backup to conduct the
initial development activities.

The graph displayed in figure 2.15 shows the FOV budget calculated for each of the
sensors in the database.

2.5 OV5640 sensor performance analysis

In this section, the performance of the OV5640 sensor in the 720P configuration are
shown and discussed. It has been decided to present the results of the analysis for
this particular configuration, since it is the one utilized in the Development Model that
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Figure 2.16: Delfi-PQ (Left), Body and Sensor reference frames (right)

has been assembled and verified. Moreover, it features a FOVB equal to 1.848m, very
similar to the one of the AR0134CS sensor, that is the most performant global shutter
sensor which technical documentation was available.

To evaluate the presence of the target satellite in the imaging sensor frame for each
instant of the simulation, it is necessary to define an instrument reference frame and a
criterion that defines if the target satellite can be imaged.

2.5.1 Instrument reference frame
The position of the origin of the instrument reference frame (SHSV) isOi, b = [75, 0, 0]mm,
relative to the body reference frame and corresponds to the center of the imaging sensor.

The instrument reference frame axis are aligned with the ones of the Body axis. The in-
strument axis are respectively defined as sensor-perpendicular (P-Sens), sensor-horizontal
(H-sens) and sensor-vertical (V-sens).

2.5.2 Observability criterion

The target satellite is represented in the instrument reference frame as a position vector
r with its origin in the sensor reference frame. The vector is within the observable region
if it satisfies the following conditions:

1. The vector can be represented via a [2− 3] intrinsic rotation in the SHSV frame
of the generator vector r∗, that is if

r∗ = Ry,shsv(Θ)−1Rz,shsv(Ψ)−1r (2.13)
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Figure 2.17: Visualization of the imaging system observable region

where Ra represents the rotation matrix for the a axis and the angles of rotation
are within the respective intervals:

Θ ∈
[
−AFOVv

2
,−AFOVv

2

]
, Ψ ∈

[
−AFOVh

2
,−AFOVh

2

]
(2.14)

2. The projection of the position vector, r, on xshsv should be positive. This can be
mathematically represented as:

r · xshsv > 0 (2.15)

3. The 2-norm of the position vector, denoted as ||r||2, should be within the minimum
and maximum working distance limits. This can be expressed as:

||r||2 ∈ [min(WD),max(WD)] (2.16)

Here, min(WD) is the minimum working distance derived from the optical system
specifications. On the other hand, max(WD) is the maximum distance for which it is
possible to satisfy the detection requirements. The value of max(WD) is a function of
the Field of View at the Base (FOVB) of the sensor in use and the Apparent Field of
View (AFOV).

2.5.3 Time In Range (TIR) and Time In View (TIV)

The total time in range is the time that is necessary for the relative distance between
the Observer and the target to be greater than the maximum working distance. For a
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fixed FOVB, the maximum working distance is:

WDmax =
HFOV B

HAFOV
. (2.17)

The simulation software determines the time in range as the last timestamp for which
the target satellite is in frame. Therefore, in the 5th simulation case displayed in figure
2.18 for HFOV < 23 deg the target has never been imaged (by the definition of the
observability criterion) and for the rest of the HFOV dominion, the TIR follows the
function above, as expected.

The TIR parameter does not consider the attitude of the spacecraft, but it is indicative
of the ability to image the target at range as a function of the horizontal AFOV.

The Time In View is the total time for which the target satellite resides in the observable
area. It is obtained by the sum of every simulation time step for which the observability
criterion are satisfied.

The TIV is the ultimate product of the analysis process. Given a system acquisition
frequency, it allows to determine the number of valid image frames that a sensor con-
figuration can capture for a set of initial conditions.

Given a specific dynamics simulation case, the TIV is calculated for an angular hori-
zontal FOV in the span of [20,130] degrees. For each AHFOV the TIV is determined
and plotted in the graphs below, that include each of the dynamics simulation cases
presented in the previous sections. The results consider a variation of the Horizontal
angular FOV. The same process can be applied to the vertical FOV. It is important to
point out that the ratio between the Horizontal and Vertical FOV is dependent on the
aspect ratio of the sensor, that is the ratio in horizontal an vertical dimensions of the
sensor.

Below the TIR and TIV graphs, there are a set of graph that are meant to display the
process of determination of the total time in view. An example case is presented, that
is relative to a sensor with HAFOV = 70 deg and dynamics simulation case 5 (offset
separation spring, ω0 = [0, 10, 5] deg/s).

Each of the graphs 2.22,2.24,2.24, represent respectively the comparison of distance to
the sensor, and angular coordinates, in respect to the limits of the observation region.
In a simulation time step, the target is considered in view only if all the three criteria
are concurrently satisfied. In this simulation case, the relatively fast rotation motion
applied by the separation spring allows the observer satellite to execute two rotations
before the range of the target satellite becomes greater than the maximum working
distance for the considered HAFOV. But, due to the angular velocity, the duration of
the observation views are limited.

2.5.4 Analysis of the simulation results

In general, from the results of the different dynamics cases, it is possible to observe
how the highest time in view is achieved by the simulation case 2, and specifically for
a HAFOV of 40 deg. This happens because of the low rotation speed that allows
for a specific HAFOV to conduct a single, high duration observation after the satellite
performs a 180 − HAFOV/2 deg rotation after the separation. While this scenario
would provide a high total time in view, is considered to be too dependent on the
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Figure 2.18: Total time in range as a function of HFOV and, therefore, maximum WD
for simulation case 5 (offset separation spring, ω0 = [0, 10, 5] deg/s)

initial conditions to be considered. Specifically, the initial conditions of the simulation
could be achieved only with attitude control before the separation, something that goes
against the requirement of being able to achieve the mission goals in case of failure of
the ACS subsystem.

Much more promising are the simulation cases in which the separation spring is offset
in line with the backplate (cases 1,3,5). The presence of the separation spring makes
the resulting motion of the spacecraft a lot less dependent on the initial conditions. The
higher rotation speed enables to image the target satellite reliably over several passes.
The HAFOV that determines the lengths of the passes is balanced by the number
of passes, since smaller HAFOV allows for greater maximum working distance and
therefore a greater number of passages. This creates a condition where the observation
results are more independent on both the initial conditions and the HAFOV of the
imaging system, in respect to the cases where the separation spring is in the axis
that passes between the two spacecrafts FoV. Moreover, the possibility of applying
a determined momentum in the specific YB rotation axis generates a situation where
rotation in the specific yB axis is induced by the separation spring. This enables the
effective utilization of a sensor with a high aspect ratio, placing the imager greater
AFOV in the direction of YB rotation, since this rotation axis is necessary going to be
the primary axis of rotation. Given the above considerations, it is advised to place the
separation spring in line with the backplate. To achieve reliably the best performance
independently of the initial attitude before separation, the imaging system shall feature
a HAFOV in the range of [30-50] deg, that would yield a total time in view greater
than 1.5 s.
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Figure 2.19: Results of TIV evaluation for cases 1 and 2 (ω0 = [0, 2, 0] deg/s) On the left
simulation case 1 (offset separation spring), on the right simulation case 2 (separation
spring aligned with CoM axis of both S/C);

Figure 2.20: Results of TIV evaluation for cases 3 and 4 (ω0 = [0, 5, 1] deg/s) On the left
simulation case 3 (offset separation spring), on the right simulation case 4 (separation
spring aligned with CoM axis of both S/C);

Figure 2.21: Results of TIV evaluation for cases 5 and 6 (ω0 = [0, 10, 5] deg/s) On
the left simulation case 5 (offset separation spring), on the right simulation case 6
(separation spring aligned with CoM axis of both S/C);
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Figure 2.22: This graph shows the value of the projection of the target satellite position
vector on the P-sens (perpendicular to sensor surface) axis of the instrument reference
frame. The Working distance limits are highlighted.

Figure 2.23: The graph shows the horizontal relative angular position of the Target
satellite relative to the instrument reference frame and the vertical angular limits to
the observability region.
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Figure 2.24: The graph shows the vertical relative angular position of the Target satel-
lite relative to the instrument reference frame and the vertical angular limits to the
observability region.

Figure 2.25: This graph shows the total time in view as a function of simulation time



2.5 OV5640 sensor performance analysis 43

2.5.5 Selection of COTS lens assembly

The lens assembly considered for the future system implementation is the 8mm FL,
Red Series M12 Lens#57-909 from EdmundOptics. These lenses feature an 8 mm focal
length(f) and an aperture of f/2.5, resulting in a primary magnification of 0.020X.

Given the primary magnification, and the feature object space spatial frequency kx,obj =
ky,obj0.75lp/mm it results in an image space spatial frequency of 37.5 lp/mm.

kx,img =
kx,obj
m

= 37.5lp/mm (2.18)

The selection of the lenses is permissive, due to the low image space spatial frequency
that is necessary to ensure.

It is possible to compare the image space spatial frequency with the lenses Modulation
Transfer Function specifications for these lenses provided by the manufacturer.

The lenses selected provide a MTF equal to 0.7 for the required image spatial frequency,
that is sufficient with great margin to satisfy the contrast requirement.

Due to the nature of sensor-constrained imaging system, the choice of the lenses is flex-
ible. In particular these lenses have been selected being optimized for infinite conjugate
applications and are therefore suitable to gather images of earth once concluded the
separation phase of the mission, in order to further increase the outreach outcome.

Lastly, thanks to the modular design and utilization of standard M12 threaded COTS
lenses, it is possible to switch in the future the mounted lenses, to evaluate different
configuration or to adapt the imaging system for another mission or application.
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Figure 2.26: Modulation Transfer Function and Depth of Field graphs for the Red
Series M12 Lens#57-909 from EdmundOptics



Chapter 3

System design

The process utilized to achieve the system design consists in the definition of a set of
candidate system architectures utilizing a functional decomposition approach. Succes-
sively a tradeoff study has been conducted to select the system architecture that would
best suit the mission objectives and the development, assembly and verification context.

The input of the systems design process are the high level instrument requirements
derived from the program objectives and stakeholders expectations, analyzed in the
application analysis phase. The process is defined by its intermediary products, respec-
tively the following System Breakdown structures:

• Functional Breakdown Structure (FBS).

• Product Breakdown Structure (PBS).

And the System Definition products:

• N2 Matrix.

• System Block diagram.

The process follows the steps: The system high level functional requirement has been
decomposed in lower level functions and organized in a function tree. Hardware and
software products are identified and functions are assigned to each of the elements of
the product tree via the use of a F/E matrix. Connections and interfaces between
elements of the system are identified via the use of an N2 Matrix, and successively the
system is laid out in a System Block Diagram.

An essential input to the system design process are the interfaces of the system with
the rest of the S/C. Thanks to the commonalities of the Delfi-TWIN bus with Delfi-PQ,
most of the interfaces specifications have been derived from the latter. Respectively:

Mechanical interfaces with S/C bus The Delfi-PQ spacecraft makes use of four
rods that support an internal PCB stack. The four rods are held in place thanks to two
aluminum frames at both ends of the stack and additional anchor points at the middle
[14].

45
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Figure 3.1: Drawing of the Delfi-PQ PCB form factor [14]. (Dimensions in mm)

Each PCB of the stack makes use of a standardized PCB format that allows for integra-
tion with the structural rods and the rest of the stack. The drawing of the PCB format
displayed in figure 3.1 highlights the pass-through holes necessary for the structural
rods. The drawing includes the Delfi-PQ inter-board PQ-9 connector that represents
the physical layer of the satellite electrical and data bus

Consequently, the imaging system PCB shall adhere to the standardized PCB format
to ensure compatibility of the mechanical interface.

The development of the Development Model has been considered as useful opportunity
to test and evaluate the a new physical interface, that substitutes the PQ-9 connector
with the SAMTEC-FSI-105 10 pin board to board connector.

Electrical ad Data interfaces with S/C bus The Electrical and data bus for the
Delfi-PQ spacecraft makes use of the PQ-9 inter-board connector and allocates to the
pins the functions in table 3.3.

The changes applied with the new version of the satellite bus involve power distribution
and regulation. It has been decided to decentralize power regulation, including the
necessary dc-dc regulators in each of the satellite subsystems, therefore the regulated
power lines are substituted with an unregulated bus (SW0). This change allows to free
pin 6-7-8 that can be assigned to other functions. In the scope of the Development
model, the pins have been allocated to power the sensor voltage domains. The new
functional configuration is shown in table 3.4.

Another interface that needs to be accounted for is the debug interface. Its physical
layer is a Molex 8 pin connector allowing for the connection of a debug probe via the
SWD debug protocol, a debug UART and a signal line to inhibit the on-board watchdog.
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Figure 3.2: New electrical and data bus interface for the Delfi-TWIN satellite

Pin Signal Function
1 RESET System reset
2 D- RS-485 inverting signal
3 D+ RS-485 non-inverting signal
4 GND Ground
5 V_BUS1 Power
6 V_BUS2 Power
7 V_BUS3 Power
8 V_BUS4 Power
9 GND Ground

Figure 3.3: Table containing the function-pins assignment of the Delfi-PQ spacecraft

Pin Signal Function
1 GND Ground
2 D- RS-485 inverting signal
3 V_BUS2 Power
4 D+ RS-485 non-inverting signal
5 V_BUS3 Power
6 RESET System reset
7 V_BUS3 Power
8 V_BUS1 Power
9 GND Ground

10 GND Ground

Figure 3.4: Table containing the function-pins assignment of the physical layer for the
Delfi-TWIN spacecraft
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3.1 Functional Breakdown Structure
The functional breakdown structure contains presents a hierarchical representation of
the functional decomposition of the high level functional requirement of the system.
Provides an overview of the functions that the system needs to perform and how the
different low level functions concur to the realization of higher level functions.

To capture an image
sequence of the
separation event

To apply compression
to the image data

To store the data
product for the
duration of the

mission

To supply the
subsystem from the
unregulated power

bus

To generate image
metadata

To protect the
subsytem hardware

from SEL

To protect the
subsytem hardware

from GSE

To supply the voltage
domains from the

unregulated power
bus

To communicate to
the platform C&DH
subsytem via the
spacecraft bus

To keep track of time

To generate the data
product

To provide
command and

control interfaces

To acquire the image
data

To packetize image
data and metadata

To handle
commands received

from the C&DH
subsystem

To retrieve and
transfer data

products to the
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Figure 3.5: Functional breakdown structure of the imaging system.

3.2 Product Breakdown Structure
The PBS has been produced after successive iterations and represents the products that
constitute the final system architecture of the imaging system. Therefore, it includes
information on the design that were not defined in the initial draft. Namely: the selected
memory technology (NAND SLC), the utilization of the RTEMS real time operating
system.

This product tree contains two layers of decomposition containing both hardware and
software products. The system has been dived in four subsystems: The Payload Com-
mand and Data Handling subsystem (PCDH), the Image Acquisition Subsystem (IAS),
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the Static Memory Subsystem (SMS) and the Power Distribution and Protection Sub-
system (PDP).

This organization of the system products has been devised to promote modularity of
each of the subsystems. The subsystems are conceived so that they can be implemented
as separate modules for the development model. The modular approach presents the
following advantages:

• In case of the necessity of redesign of a portion of the system, it is possible to
apply the changes only in the relevant module and perform a second round of
procurement only for the affected module.

• It is possible to switch a specific module in case of failure with one in work-
ing condition, and use a second module to continue the activities while the first
undergoes maintenance.

• It is possible to perform independent verification on each of the assembled mod-
ules, before the successive integration. This enables the development of a AIV
plan that more easily discerns subsystem related issues with integration and in-
terfaces issues.

• It is possible to perform environmental testing on a specific portion of the system.

• The utilization of a standard interface between the PCDH and IAS allows to
substitute the sensor module, enabling future upgrades of the system or enabling
performance evaluation testing with different sensor modules.

In addition, the product tree is a useful tool to illustrate which hardware products
have been developed from the ground up for the project, while which others have
been adapted from the previous Delfi-PQ designs. In general, every hardware device
that interfaces with the software requires a low level driver. The vast majority of the
hardware products are integrated with the software via bare metal drivers developed ad
hoc during the thesis activities, while a minor number of functions make use of drivers
derived from ST High Abstraction Layer (HAL) drivers. This topic is expanded upon
in the software development section.
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Figure 3.6: Product breakdown structure for the imaging system.

3.3 System block diagram

The System Block diagram here displayed offers an overview of the system at the highest
level for the latest design iteration. The different subsystems can be easily identified as
well as the interfaces previously specified.

The IAS includes the lens assembly and the image sensor.

3.3.1 State diagram

The state diagram offers an overview of the operative states of the instrument.

In the context of the development of the DM, operative constrains were not available,
therefore the simplest operative state diagram has been devised from the high level
functional decomposition.

The imaging system state diagram includes four non-transitory operating states: Stand-
by, Video Capture, Data processing, Data transfer. Two additional states are defined
and are used in transitory, automatically handled conditions: initialization state, re-
covery state.
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Figure 3.7: Imaging system block diagram.

The organization of the system states follows a standard architecture for simple em-
bedded applications. The system nominally operates following instructions stored in
volatile memory, loaded initially from an image in static memory during an initializa-
tion process. In case of non-nominal condition, the simplest recovery option is to save
critical information in a static buffer or static memory and then execute a power cycle
or a system reset, to allow a re-initialization from the correct initial state saved in static
memory.
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Figure 3.8: Imaging system state diagram.

3.4 Design considerations for the data Handling Sys-

tem

3.4.1 Image acquisition pipeline

The image acquisition pipeline is defined as the chain of time-sensitive processes exe-
cuted by the system on the image data. It includes the sequential functional steps that
the system executes on the captured image data to achieve its handling. It is critical
to define an acquisition pipeline that performs image data handling with sufficient per-
formance to satisfy the performance requirements of the system in terms of acquisition
frequency.

In other words, the instrument frame acquisition rate depends on the period (and
therefore the frequency) of the output of the image acquisition pipeline.

In a pipelined process, the process with the inferior throughput defines the throughput
of the pipeline. Therefore, it is essential to devise a set of processes that does not create
a bottleneck. The data handling pipeline consists of the following steps:

• Output image data from the sensor module via parallel interface.

• Transfer of data from the sensor to the DMA FIFO used by the DCMI interface.

• Transfer of data from DMA FIFO to RAM circular buffer.

• Generate and copy metadata to frame data in the RAM circular buffer.
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• Transfer of image data and metadata to flash modules page buffer, util all data
is transferred.

• Program the image data in static memory array.

The throughput of these processes are a consequence of the components used responsible
for each process. Except for the programming in static memory process, the other steps
of the pipeline are executed by elements of the system that have been already defined
due to other systems constrains, respectively:

• The STM32L4R9ZIT MCU has been selected directly being the most performant
MCU satisfying the configuration requirement and featuring a non BGA package
(LQFP-144).

• The AR0234CS and the development counterpart OV5640 CMOS sensors has
been selected due to its performance characteristics and component availability.

Therefore, it is necessary to design a SMS that would not hinder the performance of the
selected components. The following table contains the maximum throughput of each
element of the pipeline.

Process Maximum throughput Notes

Sensor data output on DCMI interface (1080p, 15 fps) 32 Mbps 
Dependent on sensor capture 
mode and clock settings

STM32L4R9ZIT DCMi peripheral 54 MBps

STM32L4R9ZIT DMA transfer (1/4 bus time allocation) 20 Mbps (Assumed)
Assumiing 6 clock ticks per 
transfer, high uncertainty

STM32L4R9ZIT DMA transfer (complete allocation) 80 Mbps (Assumed)
Assumiing 6 clock ticks per 
transfer, high uncertainty

STM32L4R9ZIT Core AHB transfer 40 MBps (Assumed)
Assumiing 6 clock ticks per 
transfer, high uncertainty

SMS memory programming throughput requirement 40 MBps

Figure 3.9: Table containing the throughput of the elements of the pipeline

The process that governs the throughput of the pipeline is primarily the acquisition
of image data from the sensor, which is capped at a rate of 32MBps. To maintain a
margin of 20%, a system requirement has been established to set the minimum static
memory throughput to 40MBps.

The successive section is dedicated to the description of memory configurations archi-
tecture candidates and the description of the rationale followed in the selection of the
SMS architecture to be developed.

3.4.2 Tradeoff between memory technologies

The objective of this section is to design a memory configuration that would be able to
handle the maximum data throughput that the sensor can produce.

The following aspects have been taken into account when choosing a memory module
for the application:

• Memory technology write time performance.
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• Memory technology suitability to the operative environment.

• Memory technology typical capacity.

• Package characteristics and component rating.

• Memory module interface.

The memory technology can impact several factors like capacity, write/read perfor-
mance, availability, packages, interfaces, write/read operation endurance. The most
common high capacity memory technologies are NOR flash and NAND flash.

The first step of the selection process has been an analysis of the available MCU inter-
faces that can be used to integrate memory modules and the maximum performance
that each interface allows, as a consequence of the compatible memory modules cate-
gories.

The STM32L4R9 provides dedicated memory interfaces like the Flexible Memory Con-
troller (FMC), the eMMC interface, and the general purpose OCTO-SPI interface.

Respectively, the FMC is used mostly with dynamic memories (SRAM, DRAM). It also
allows for read and write in memory mapped mode. The limitation of this interface is
the maximum addressable capacity, that is limited to 256 MB. The high data through-
put generated by the imaging system (40MBps for RAW at maximum capture rate)
would rapidly fill the maximum addressable capacity. Also, most of the SLC memories
in the range parallel utilize TSOP packages that very bulky and would occupy a great
portion of the floor plan of the PCB. Therefore, utilization of the FMC has not been
considered a suitable option.

The MCU eMMC interface allows for adequate throughput and supports eMMC mem-
ories, which feature the highest capacity between the available interface/memories con-
figurations (32 GB). The disadvantage of eMMC memories lies in their use of an internal
controller to manage the interface and the NAND memory array. The presence of the
controller has advantages, in particular it simplifies the logic of the interface and writes
to the memory using wear leveling procedures, but the presence of a controller increases
the subjectivity to SEE.

Another factor that went against the use of the eMMC memories is the package. The
most common packages are fine pitch 153-pin BGA package, the integration of a memory
module with said package would need a verification step of the solder joints that requires
X-ray inspection instruments that are not available at the facilities in support of the
project.

Another point is the fact that high capacity eMMC modules typically utilize MLC
or 3D NAND configurations, that typically have inferior write/erase cycles longevity
and inferior tolerance to the radiation effects when compared to SLC NAND cells. In
conclusion, the uncertainties related to the suitability to the space environment of the
controller and the reliability and integration issues due to the packages made the use of
eMMC memories a powerful option, with drawbacks that would be difficult to address
in the timeframe of the activities.

The OCTOSPI interface allows for the integration of serial memories. It can interface
both SLC NAND or NOR modules and to access serial DRAM or SRAM modules.

To increase the flexibility of the system, it has been considered to use memories in the
standard 24-bga NOR memory package. This package is common for serial ram and
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flash nor memories, but there also serial NAND flash module that are compatible with
the pinout configuration.

From these considerations, the following SMS architectures have been designed and
compared, to determine the static memory architecture for the imaging system

STM32L4R9ZIT
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QSPI2
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DCMI
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A B C

Figure 3.10: SMS architecture candidates.

Architecture candidate A candidate This architecture makes use of two SLC
NAND module of the MT29F family. The MT29F is a family of NAND devices pro-
duced by Micron that has been developed to be package-compatible with NOR memory
modules. The commonality of the package (and most of the command interface) enables
eventual substitution of serial SRAM, NOR static memories and MT29F memories by
replacing the component itself on the same PCB and uploading a new device driver.
This feature is very convenient in the context of the rapid development schedule as it
would allow substituting a set of NAND memory modules with serial SRAM modules
that could be used to increase the volatile memory that could be allocated as frame
buffer if necessary.

Architecture candidate B This architecture tries to implement a solution mak-
ing use of NOR memory modules instead of the NAND modules used in candidate
A. Specifically, it makes use of four Macronix MX66L2G45G memory modules. The
MX66L2G45G module is a 2Gb NOR flash memory that features a pages size of 256
bytes. Its programming performance characteristics include a typical page program
time of 25us and a maximum program time of 60us. The resulting programming per-
formance is 10.2 MBps (typical) and 4.7 MBps (worst case), therefore four modules are
necessary to satisfy the average programming speed requirement of 40MBps.

The memory module can be interfaced with a multiple I/O SPI, up to QUAD-SPI
and is available both in a standard NOR memory 24-Ball BGA format or a 16 pin
SOP. Due to the limited programming throughput, it is more pin efficient to interface
with the module via DUAL-SPI (resulting in an I/O throughput for 30 MBps) and
consequently being able to integrate four modules in a single OCTO-SPI interface.
Memory module programming power consumption is particularly relevant, since the
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MT29F4G01ABAFD12-AAT MX66L2G45G MTFC32GAZAQHD-IT TR
Memory technology NAND SLC NOR NAND MLC
Integrated controller - - MMC
Module capacity 512 MB 256 MB 32 GB 
Module page size 4352 B 256 B N/A (controller)
Module page program time (TYP) 200 us 25 us N/A (controller)
Module page program time (MAX) UNKN 60 us N/A (controller)
Module program throughput (TYP) 21.8 MB/s 10.2 MB/s 100 MB/s
Module program throughput (WORST) UNKN 4.27 MB/s UNKN
Module I/O interface QUAD-SPI QUAD-SPI eMMC
Module I/O speed (MAX) 60 MB/s 60 MB/s 200 MB/s
Module Page I/O time 72.5 us 4.27 us N/A (controller)
Module memory longevity 1E5 cycles 1E5 cycles N/A (controller)
Module idle power consumption 15 uA 140 uA 200 uA
Module page program power consumption  
(TYP) 20 mA 35 mA 80 mA
Module page program power consumption  
(MAX) 25 mA 45 mA 110 mA
Module package 24-Ball BGA 24-Ball BGA / 160-SOP 153-ball VFBGA
Temperature range -40°C to 105°C -40°C to 85°C -40°C to 95°C
Suceptibility to radiaiton environment Good UNKN UNKN (controller)
Assemply  module number 2 4 1
Assembly program throughput 43.8 MB/s 40.8 MB/s 100 MB/s
Module page program power consumption  
(TYP) 40 mA 140 mA 80 mA

Memory module

Figure 3.11: Memory configuration architecture comparison.

architecture makes use of four memory modules. The total programming operating
current would be 140mA, equivalent to 462mW, that represents almost a third of the
peak power consumption allowed by the EPS requirements. This aspect makes this
architecture undesirable in comparison to the lower power consumption of the others.

Lastly, satisfying the programming requirement in the worst case condition would neces-
sitate the utilization of 8 memory modules, that would use significant space in the PCB
footprint and an increase of poser consumption, that becomes significant considering
the high number of components.

Architecture candidate C This architecture makes use of an eMMC memory mod-
ule. The considerations made about the utilization of eMMC related to the package
and the susceptibility are applicable to this architecture.

Potentially it is the architecture that would be best for more performant systems,
and It would be the choice of preference for imaging systems that work with high
performance MIPI-CSI CMOS sensors. That said, the development context and the
scope of the project does not allow for the verification steps that would be necessary
for this architecture.

Final architecture The final architecture is an adaptation of candidate architecture
A. It makes use of both the two OCTO-SPI interfaces available in the STM32L4R9
MCU to utilize two pairs of MT29F4G01ABAFD12-AAT. Each pair of QUAD-SPI
memories are interfaces with the OCTO-SPI peripheral in a dual QUAD-SPI config-
uration. In this configuration, the chip select and clock lines are shared between the
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Figure 3.12: Overview of the image frame handling pipeline.

two memories and each of the memory stores respectively the most significant and the
least significant part of each byte. The two sets of memories can be used in a buffered
ping-pong configuration, further increasing the SMS throughput and capacity. The
final architecture data handling pipeline follows the block diagram in figure 3.12.

3.5 Model Philosophy

The objective of a model verification strategy is to achieve product verification while
minimizing cost, schedule and managing engineering risk.

The model philosophy that is presented in this document has been developed to guide
the development and verification activities for the thesis project and therefore, is limited
the scope to the thesis activities themselves. It encompasses the following:
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• Development and successive verification of functional and performance require-
ments assigned to two Breadboard Models (BM). The breadboard models have
been developed from COTS components for initial functional verification of hard-
ware proof of concepts and a subset of software bare metal drivers.

• The development and verification of a Development Model (DM) for functional
and performance verification of the instrument subsystems and the integrated
system.

The thesis timeframe has been considered unsuitable for the development and pro-
duction of successive models necessary to complete the life cycle of the system. An
Engineering Model and successive Protoflight model are considered future steps for the
successive activities.

An important aspect that needs to be highlighted is that the model philosophy de-
vised has been designed with the intentional absence of performance verification at the
subsystem component level.

This choice has been motivated by the insufficient time to execute performance verifi-
cation at every system level and brings with it the risk of discovering component level
or element level lack of performance in a late stage of the project development.

This choice followed the following rationale:

• Performance verification at the system element level would have required develop-
ment overhead due to the differences in hardware between the breadboard models
and the development model. Investing the required temporal resources would have
yielded a considerable risk of being unable to deliver a functional system by the
end of the thesis activity due to the already limited schedule.

• Due to the mission outreach objectives, an inferior performance of the system
would lead to a lesser satisfaction of the mission goals, but would not jeopardize
the achievement of said goals and therefore, the success of the mission. On the
other end, the inability to deliver a functional product would cause great pressure
on the successive project schedule and a probable reevaluation of the mission goals
and scope.

Therefore, the risk of nonconformity to performance requirements for subsystem com-
ponents has been considered acceptable.

An issue of this kinf presented itself for a performance parameter of the static memory
subsystem. In particular inferior throughput for the transfer of image data from the
RAM circular buffer to the OCTOSPI MCU interface FIFO has been observed in tests
conducted on the DM.

The effect of inferior performance in this particular step of the data handling chain has
been compounded by the consequent inability to configure the data handling processes
as a pipeline due to the implementation of circular buffer handling routines not respect-
ing the design timings. The consequence has been the necessity of reconfiguring the
pipeline process in a sequential process, further diminishing the data throughput.

It is still worth defending the model philosophy since it still allowed for the successful
development of a first iteration of the functional product that can be further iterated
upon, with the purpose of solving the engineering issues already identified (and the
ones at are going to be discovered via the development model itself).

In summary, a tradeoff between engineering risk and programmatic risk led to a decision
that prioritized programmatic risk, while increasing engineering risk. The engineering
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risks taken caused a late discovery of a design bottleneck that still allowed the produc-
tion and verification of a functional Development Model with inferior performance to
the one expected from the design. The DM is still satisfies the model objective and
represents a starting point for successive design iterations.

3.5.1 BM1 - NUCLEO-L476RG + MT29F2G01ABAGD12

NUCLEO-L476RG + MT29F2G01ABAGD12 Model objec-
tives

To familiarize with STM QuadSPI peripheral.
To develop and test bare metal drivers for the QuadsSPI interface
To develop and test bare metal drivers for the MT29 memory family
To develop and test bare metal driver for the USART interface
To develop and test bare metal driver for MCU clock sources
To validate debug tools and procedures
To support the development of the DM static memory subsystem
schematic.

The Breadboard Model 1 is the fist model developed. Its setup has been constructed in
the earliest days of development using hardware readily available in Tu-Delft workshop
with the exception of the NAND module. It includes a nucleo development board
featuring an STM32L476 MCU, connected via jumper wires to a development NAND
memory module. The MT29F2G01 SLC NAND module is part of Micron MT29F
memory family and has been selected being a lower grade and more available alternative
to the MT29F4G01ABAFD12-AAT memory used for the DM. Thanks to its availability
has been easily and rapidly procured at the beginning of activities.

While the hardware utilized in this model is similar to the one used in the DM, there
are differences that required a later rework and adaptation of the software products
that have been developed using this model.
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32L4R9IDISCOVERY Model objectives

To support development of the RTEMS BSP.
To support integration of bare metal drivers with the RTEMS BSP.
To develop and test the bootloader for the RTEMS+Application soft-
ware image.
To verify functionality of the RTEMS RTOS.
To identify low level software issues related to hardware-software in-
teraction and develop solutions and workarounds.
To update the UART peripheral driver for the STM32L4S9AI MCU.

3.5.2 BM2 - 32L4R9IDISCOVERY demonstration platform

The models consist of the 32L4R9IDISCOVERY demonstration board from ST, and
has been used predominantly to develop low level software products.

It originates from the necessity to have a backup development setup that could have
been used while solving eventual hardware issues with the development model.

The model allowed for the identification of a software issue related to a misconfigura-
tion of the OCTOSPI Multiplexer peripheral and allowed for decoupling of the initial
development of hardware and software products.

3.5.3 Development Model

The Development Model is implemented in three modules:

• Compute Module (CM)

• Daugherboard (DB)

• Sensor Module (SM)
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Figure 3.13: Compute Module and daughterboard render.

The compute module is stacked on top of the daugheterboard and connected to it via a
6 pin bard to board connector, that is the physical level of the satellite board connector.

The daugheterboard has been designed to be compatible with the Delfi-PQ satellite
bus physical layer (PQ-9), while the inter board connection between the DB and the
CM is realized via the SAMTEC-FSI-105 10 pin board to board connector.

This configuration allows the Development Model via the daughterboard to be com-
patible with the test equipment developed for Delfi-PQ, while utilizing the new bus
interface for the Compute Module.
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Chapter 4

Hardware design and development

4.0.1 Compute Module schematic

The electronics design of the compute module hardware has been performed via the
use of the EAGLE software and laid out in a hierarchical schematic.

The high level schematic of the compute module contains the various subsystems, the
interfaces of the boards and the connections between the different subsystems, specifi-
cally:

• A control unit consisting of the STM32L4R9ZIT MCU.

• An FRAM SPI module for radiation tolerant storage of the software image.

• An RS485 transceiver used to drive the RS485 line and interfaced via UART to
the MCU.

• The SMS subsystem, consisting of four MT29F4G01ABAFD12-AAT SLC NAND
memory modules.

• The CMOS sensor interface.

• Satellite Bus interface.

• Debug and programming interface.

The voltage regulator necessary for the 3.3V domain that supplies the devices on board
s present on the daugterboard, as well as the 2.8V and 1.5V regulators necessary to
supply the CMOS sensor via the sensor interface.

The protection electronics have not been included since satellite-standard anti latch-
up and static protection systems are currently being developed as part of a different
project at TU-Delft. The only measures that have been included for protection at a
board supply level is a current limiting resistor and a ferrite bead on 3.3V supply line
right after the connector. Each of the subsystems includes as well an appropriately
sized current limiting resistor.

63
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4.0.2 MCU component selection

The STM32L4+ family of microcontrollers have been selected during the system design.
Th MCU model selected is the STM32L4R9ZIT, featuring the highest memory capacity
segment with a 2 MB embedded flash and a 640 KB RAM and a LQFP-144 package.
The LQFP package has been selected for being easier to inspect the quality of the solder
joints in respect to the BGA package.

The STM32L4R9 MCU has been preferred to the STM32L496 MCU for the superior
availability of serial peripheral interfaces (2xOctoSPI vs 1xQuadSPI) and superior MCU
maximum clock (120Mhz vs 80Mhz).

The MCU makes use of two external clock sources, respectively a 32.7kHz oscillator
and a 48Mhz oscillator. Stability of the supply for the MCU is granted via the use of
two decoupling networks, for the digital and the analog supply domain. The decoupling
networks are made of a set of 100nf capacitors and a bulk decoupling capacitor with a
value of 4.7uf .

4.0.3 NAND memory subsystem

Amongst the NAND SLC modules the MT29F4G01ABAFD12 modules have been se-
lected being the QUAD-SPI modules that were available during design and development
with the highest capacity and programming throughput.

A literature research has been conducted to estimate the radiation hardness of this
memory component. The most relevant result is a radiation hardness evaluation cam-
paign performed by M. Bagatin, S. Gerardin, A. Paccagnella at University of Padova [3]
under ESA contract as part of the JUICE program [29]. The test campaign determined
a total ionization dose (TID) of 65krad before the manifestation of retention errors and
block erase failures. The specific model that has been tested is no longer manufactured,
but newer models in the same MT29F family are now available, amongst witch there
is the MT29F4G01ABAFD12 that has been used in the imaging system design. Of
course, it is not possible to take for granted these results, since they refer to a different
component and possibly to a different manufacturing node and process. The memory
analyzed in the cited research makes use of a 25-nm process, while technical documen-
tation for the MT29F4G01ABAFD12 does not specify the process node. That said this
information can be still be useful as a reference for a future environmental verification
campaign.

The NAND SLC modules are organized in two pairs, each pair connected to an OC-
TOSPI interface on the STM32L4R9ZIT MCU. On the logic and signal level, the mod-
ules are configured as DUAL-QUADSPI: Each pair shares the clock and the chip-select
and the first chip of the pair receives the first four data lines, while the second the lat-
ter four. As a consequence, every 8 bit transfer performed to the OCTOSPI interface
results in the data being split between the memory pair.

A write operation consist of transferring the data to a page buffer on each of the
modules and successively execute a program command. Due to the DUAL-QUADSPI
configuration the total page buffer appears to be double the size of each module page
buffer and total capacity is doubled in respect to a single module.

Due to the perceived resilience to the radiation environment and the automotive ex-
tended temperature range (-40C, 105C) the reliability of the memory modules is consid-
ered high, therefore it has been considered acceptable to have two memory components
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in series in a reliability block diagram of the subsystem. Of course reliability data is
not available, therefore it is not possible to calculate the reliability of the static memory
subsystem as a whole.

Moreover, in case of failure of one or several memory modules, the OCTOSPI-Multiplexer
available in the STM32L4+ family provides options for in flight reconfiguration. The
event of failure of up to two modules would produce the loss of the data already stored,
but if at least two modules are in functional condition, it is always possible to con-
figure the system to have a working pair, therefore being able to meet the acquisition
performance requirements necessary for operation.

Lastly, it could be conceivable to use the two pairs, and the ability to multiplex the
interface, to have a system where the same information is saved on both pairs, neces-
sitating a failure on both symmetric modules to generate a data loss. This feature has
not been implemented in software due to the perceived already high reliability of the
subsystem, but is a possibility for future developments.

4.0.4 Sensor interface
The physical sensor interface is a 25 pin FFC (Flexible Flat Cable) designed to match
the pinout of an OV5640 camera module. The rationale is that it enables easy test of the
data handling subsystem thanks to the connection of a test OV5640 camera module.
The logic interfaces (DCMI,I2C) are common amongst CMOS sensors with parallel
interfaces, therefore the interface can be used with an arbitrary sensor (including the
sensor initially selected, AR0234CS), with an appropriate breakout board. In the future
it is going to be possible to switch the OV5640 with one of the more suitable global
shutter sensors discussed in the previous chapters, simply developing the sensor host
board matching the same pinout.
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Figure 4.1: Schematic detail of the sensor data and power interface.
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Compute module high level hierarchical schematic
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MCU schematic
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NAND memory subsystem - Schematic
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4.1 Compute Module PCB design and production

The PCB for the development model has been developed keeping in consideration the
following aspects:

• The design shall keep into the account the future presence of the power regulation
and protection system, therefore reserving adequate space in the floor plan of the
PCB.

• The PCB design for the DM shall make use of EuroCircuits design rules, and
shall prioritize speed of procurement and affordability. This it to enable rapid
iteration of the design. The initial prototype is bound to have issues that are
expected to require a successive iteration to be fixed. This is especially valid in
the development context of the project, where functions like integration with the
sensor (and therefore the MCU DCMI interface) could only be tested with the
development model, due to absence of accessible relevant physical interfaces on
the breadboard models.

• Lastly, it has been necessary to procure, assembly and perform initial functional
verification of the DM before the New Years break, in order to have functional
hardware to work on during the break.

Figure 4.2: Compute Module floor plan (Top side).

PCB floor plan The PCB floor plan presents at its center the MCU, due to its role
as the central interface node. The right side of the PCB is reserved for the two memory
pairs and the clock sources, while the external interfaces are placed both on the top
side, which in the satellite configuration hosts a removable panel that can be opened
to provide access to the interfaces. The image sensor interface on the other end, is
situated in the bottom portion of the board, to make use of the PCB cutout to route
more easily the flexible flat sensor cable.
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Figure 4.3: Compute Module floor plan (Bottom side).

PCB stack-up The board layout has been developed for an 8-layer FR4 PCB. The
PCB buildup used is from the standard pool from Eurocircuits to minimize procurement
time and presents the following characteristics:

# Name Type Thickness
1 Signal Top Signal Top Copper 0.018 mm

* dielectric - 1 Prepreg PR1080 0.07 mm + PR2116 0.12 mm
2 [2] GND Signal Inner Copper 0.035 mm

* dielectric - 2 Core FR4 0.2 mm
3 [3] Signal Signal Inner Copper 0.035 mm

* dielectric -3 Prepreg PR2116 0.12 mm   + PR2116 0.12 mm
4 [4] GND Signal Inner Copper 0.035 mm

* dielectric - 4 Core FR4 0.2 mm
5 [5] Signal Signal Inner Copper 0.035 mm

* dielectric - 5 Prepreg PR2116 0.12 mm   + PR2116 0.12 mm
6 [6] GND Signal Inner Copper 0.035 mm

* dielectric - 6 Core FR4 0.2 mm
7 [7] VCC Signal Inner Copper 0.035 mm

* dielectric - 7 Prepreg PR2116 0.12 mm   + PR1080 0.07 mm
8 Signal Bottom Signal Bottom Copper 0.018 mm

PCB Layer stack

Figure 4.4: Table containing the layer stackup of the Compute Module PCB.

Only a pass-through via pair has been defined and used in the design. The PCB has
been designed without the use of blind via to further reduce the manufacturing time



72 Chapter 4. Hardware design and development

and cost.

Figure 4.5: PCB signal top layer (left) and signal layer 3 (right).

PCB layers and routing The top layer is used predominantly to route signals,
with a good portion of the layer assigned to the routing of the OCTOSPI interface for
the SMS. Particular attention has been used in the routing this interface, due to the
relatively high interface speed 120Mhz, and the mission-critical aspect of image data
transmission to the static memories for storage.

The OCTOSPI routes were appropriately separated and sized to implement a set of
impedance controlled microstrips to improve signal integrity.

The specification from the microcontroller indicates a set of rising times speeds that
each GPIO can be configured to use. The GPIO pins repurposed for the OCTOSPI
interface makes use of the fastest speed setting, that results in a slew time of 3.3ns
([24]). Consequently, the width of the microstrips has been calculated to be 0.18 mm
of trace width. The manufacturer calculator has been used for speed of use, since it
contains already the information about materials used for manufacturing of the boards.

It has been decided to place the high speed memory signals on the surface (rather
than in an inner stripline) due to the ease of accessibility of said lines for probing and
debugging the signals during driver development.

Moreover, a set of 402 SMD bridges have been placed on the memory data lines to
provide a physical interface where test wires could have been soldered to analyze the
signal. The pads provide the additional benefit of enabling the addition of in series
resistors to the data lines in case it would have been necessary to counter ringing.
Luckily, this measure was superfluous, and the successive verification process proved
that the signals did not present abnormal oscillations during operation of the memories
at the specified 120Mhz frequency.

Other signals that are routed on the top layer are some of the DCMI signals, the clocks
form the two clock sources, and most of the signals towards the RS485 and the FRAM
memory modules.
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The layer 3 and 5 are used for other signals that were not routed in the first layer.
The signals in these layers were intentionally spaced out and sandwitched between two
ground layers to improve singnal integrity for the high speed interfaces like DCMI.

The Layer 7, also referred as VCC layer, contains the supply domains used for the
devices on the board and the MCU. Specifically, the layer surface is filled with two
domains: the inner voltage domain is responsible for supplying the MCU and is derived
from the other external domain through a ferrite bead and current limiting resistor. The
outward domain is a 3.3V domain that originates from the board to board connector
and is used to supply all the others devices. Every device present on the board interfaces
to this voltage domain via a dedicated ferrite bead and current limiting resistors.

The purpose of the current limiting resistor is to reduce the maximum current in case
of a short circuit in the device, limiting the heat and the damage generated in the time
between the event and the activation of the protection systems.

Lastly, the bottom layer hosts most of the power distribution components and the
power supply lines necessary for the image sensor. In a successive iteration, this layer
will host the DC-DC switching voltage regulators for both the sensor and the MCU
and the latch-up protection system.

Figure 4.6: PCB signal layer 5 (left) and bottom signal layer (right).
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Figure 4.7: VCC distribution layer (left) and overview of signal layers without filling
(right).

4.1.1 PCB manufacturing

After an initial inspection of the PCB, the boards have been assembled by the author
in a TU-Delft workshop. Most of the top layer of the compute module has been as-
sembled making use of a stencil and a reflow oven. During the first assembly, it has
been discovered that the stencil cutouts for the MCU pins were oversized, therefore an
excessive amount of paste were being deposited. During the reflow process, this caused
the excess solder to be sucked by the vias that are in proximity to the MCU pads (most
of which used to connect decoupling capacitors). This created shorts that required the
MCU to be removed and successively hand-soldered.
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Figure 4.8: Images of the Compute Module assembly: on the top right an image of
the PCB as delivered from the manufactured. On the top right, stencil utilized for
the solder paste distribution. Bottom left includes the board with all the components
placed, before placement in the reflow oven. Bottom right shows the assembled board
after the reflow process.
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Chapter 5

Software Design

5.1 General Software architecture
The on-board software consists in a layered architecture, consisting of the following
layers:

• Driver layer.

• Board support package (BSP) layer.

• RTEMS RTOS layer.

• Application layer.

The lowest layer consists of bare metal drivers that utilize the hardware functions di-
rectly, by interfacing with the hardware registers. The successive layer, the Board
Support Package (BSP) integrates the drivers and the hardware specific software ele-
ments and configurations that enable the execution of the upper layers and allows them
to interface with the hardware. The BSP includes a bootloader and the necessary soft-
ware to support the execution of the RTEMS (Real-Time Executive for Multiprocessor
Systems) Real Time Operating System (RTOS).

The layer right above the BSP is the RTEMS real time operating system itself. RTEMS
provides a set of features and services to the application, such as task management,
inter-task communication and synchronization, interrupt management and time man-
agement.

The application makes use of the underlying layers to implement the high level functions
assigned to the onboard software.
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Target hardware
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Software
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Bare metal
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Figure 5.1: Hierarchical software architecture (left), RTEMS logo (right)

5.2 The RTEMS real time operating system

RTEMS (Real-Time Executive for Multiprocessor Systems) is an open source RTOS
(Real time operating system) widely used in space applications.

In the past 20 years, RTEMS has been utilized as RTOS in flight computers and payload
controllers for a multitude of space missions organized by space agencies around the
world [15], including the missions:

Developed by the European Space Agency
(ESA):

• Herschel

• Planck

• BepiColumbo

• ExoMars rover

• Galileo GNSS constellation

Developed by the National Aeronautics
and Space Administration (NASA):

• Mars Reconnaissance Orbiter

• Dawn

• Fermi

• Magnetospheric Multiscale

• Solar Dynamics Observatory

• Parker Solar Probe

• Juno

• Curiosity rover

The RTEMS software is an open source project that is distributed under the terms of
the GNU GPL2 license and supports the execution of the Core Flight System (CFS)
and Core Flight Executive (CFE) middlewares.

Execution of the RTEMS RTOS is supported for supports most radiation hardened
processors, including in the European context GR712RC, the newer GR740 and many
more processors and processor core IPs. The supported hardware includes a specific
set of processors from several architectures like ARM, PowerPC, Intel, SPARC, MISP,
RISC-V and more.

An important portion of the software development work has been the development
of a Board support package that would allow RTEMS to be executed on the custom
hardware developed during the thesis activities.
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Thanks to the work of this thesis, RTEMS now supports the STM32L4+ family of
microcontrollers, enabling its utilization on accessible, inexpensive hardware that is
suitable for PocketQube and CubeSat applications.

5.3 Software Development Process

The software products have been developed iteratively, focusing initially on the lowest
levels, proceeding to the highest, that is the application software. The development
process follows and derives from the model philosophy. An overview of the assignments
between the software products and the models is displayed in figure 5.3.

The methodology employed for the software products development is a test-based ap-
proach, where each software component is developed, tests are generated, and the
suitability of the software produced is verified.

Due to schedule considerations, the development process has been focused on the gener-
ation of earliest functioning software solution, providing rapid results that can demon-
strate early the feasibility of the design and possibly provide useful performance figures.
After simple functional implementations are developed, it becomes easier to identify is-
sues and potentially useful abstractions, that can be addressed in a successive rework.
The rework phases allow for managing the technical debt and to reduce the explorative
code to manageable level, while avoiding investing time in abstractions that are than
not necessarily used.

The resulting iterative work pattern consists in phases of exploratory and experimen-
tal development and consolidation phases, during which abstraction are constructed,
and the code is harmonized. The method aims to achieve a balance between feature
implementation and stability.

development verification rework verification

Specifications

tests

Development of software components

system 
design

Figure 5.2: Development process of each software component
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Bootloader
(STM32L4S9AI)

OV5640 Driver

DCMI Peripheral Driver

I2C Peripheral Driver
(STM32L4S9AI)

DMA Driver
 (STM32L496)

MULTI-SPI Peripheral Driver
(STM32L496)

MT29 Memory module driver
(STM32L496) 

UART Peripheral driver
(STM32L496) 

MCU clock and power configuration
driver  (STM32L496) 

MT29 Memory module driver 
(STM32L4R9ZIT)

MULTI-SPI Peripheral Driver
(STM32L4R9ZIT)

Bootloader
(STM32L4R9ZIT)

I2C Peripheral Driver
(STM32L4R9ZIT)

DMA Driver
(STM32L4R9ZIT)

UART Peripheral driver
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MCU clock and power configuration
driver (STM32L4R9ZIT)

UART Peripheral driver
(STM32L4R9ZIT)

Breadboard Model 1 Breadboard Model 2 Development Model

Figure 5.3: Model assignment of software products.

5.4 Board support package

The RTEMS Board Support Package (BSP) is a collection of software and configuration
files used to support RTEMS on a specific hardware platform, providing the necessary
low level software components necessary to allow RTEMS and the application to inter-
face with the hardware.

At the time The RTEMS documentation provides limited support in relation to the
development of board support packages. Therefore, the board support package has
been developed using as reference the STM32F4 and STM32H7 BSP developed by
Embedded Brains Gbh [8] and available in the RTEMS sources [12]. The BSP has been
analyzed to determine undocumented practices and software interface in regard to:

• BSP provided RTEMS initialization sequence.

• Shared armV7m linker script template.

• Integration with STM HAL and LL libraries.

• WAF BSP build specification.

RTEMS supports a layered source structure each BSP so that each BSP can be built
reusing previously developed compatible layers. The layers of each BSP are respectively
divided in CPU independent, CPU Architecture dependent, CPU dependent, Board
dependent, Peripheral dependent.

As specified in [26] the minimal set of components necessary for a BSP are Low-level
initialization code, a console driver and a clock driver. The board support package
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moreover contains all the software products necessary for the application software to
fulfill the assigned functions.

Amongst the drivers developed and integrated in the BSP, a set of software products
have been developed from scratch as bare-metal drivers, while a set has been integrated
from ST Libraries. Including ST Libraries is something that was initially avoided.
Successively a limited number of drivers from the HAL libraries have been included in
the BSP. The motivation behind this change was due to the necessity of having on hand
functional drivers to debug hardware issues, since it is time consuming to debug new
hardware and software concurrently. Therefore, the inclusion of the HAL drivers has
been an useful addition in the scope oh hardware verification, but the inclusion brought
with it a set of drawbacks in terms of software test coverage, perceived reliability and
firmware image size. These aspects considered, the HAL drivers are a development
support and their removal from the codebase is recommended for future development
of the engineering model.

The next table presents a summary of the software product’s origin and the specific
verification model to which the verification process has been assigned.

Software product Origin Verification model

Bootloader Bare metal Dev. Pre-Development B
OV5640 Driver Bare metal Dev. Development Model
DCMI Peripheral Driver STM HAL Development Model
I2C Peripheral Driver STM HAL Pre-Development B
DMA Driver Bare metal Dev. Pre-Development A
OCTOSPI Peripheral
Driver

Bare metal Dev. Pre-Development A +
adaptation for DM

MT29 Memory module
driver

Bare metal Dev. Pre-Development A +
adaptation for DM

UART Peripheral driver Bare metal Dev. Pre-Development A
MCU clock and power
configuration driver

BMD & STM HAL Pre-Development A +
adaptation for DM
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5.5 Driver development overview

Most of the drivers developed in the project are bare-metal drivers. Bare metal drivers
are designed to operate directly on the hardware without an operating system or any
other software layers, having direct access to the M4-Core or MCU peripheral registers.

In the specific case of this BSP, it has been decided to decouple driver initialization and
the BSP initialization due to the following considerations:

• The utilization of RTEMS has been considered as an exploratory endeavor. The
ability to develop a functional Board Support Package in the time frame of the
activities was not certain. Therefore, to minimize technical risk, the drivers have
been developed in a less decoupled configuration, so that they could be used (or
reused in the future) in a bare metal context with minimal rework effort.

• The MCU and peripheral registers reset condition presents functional defaults
that can be used right away for the initialization of the BSP. Therefore, clock
and peripheral configuration can be performed after RTOS initialization during
application initialization.

Consequently, the system initialization is performed via a custom initialization system
executed in the application initialization task.

Each driver has been tested independently on the pre-development models (BM1 and
BM2). The atomic verification of software components has been supported by the bare
metal approach, that allowed for:

• Independent execution and testing of each software product

• Direct utilization of the hardware features via access of the hardware registers.

• Ease of assessment of the resources utilized specifically by the driver (stack uti-
lization, size of the executable sections (.DATA .TEXT .BSS).

Furthermore, the tests for the STM and the DCMI interface have been reworked in
automated tests that can be executed on the Development Model and during the rest
of the Product Lifecycle to rapidly verify function and performance of system elements
(For example during hardware acquisition for the Engineering Model, or for diagnostics
on successive models).

5.6 STM32L4R9ZIT BSP Development

5.6.1 Analysis of the Initialization sequence provided by the

STM32H7 BSP
This section presents the results of the analysis of the initialization sequence of the
STM32H7 BSP, with the purpose of using these finds as a starting point to introduce
the initialization process utilized in the STM32L4R9 BSP that has been developed.

The initial start file contains the entry symbol of the executable, it is the first file
presented to the linker [26] and starts the process to link the executable. The initial
assembly code performs the minimal actions to allow execution of the C code and
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successively calls sequentially two low level initialization functions: bsp start hook 0()
and bsp start hook 1().

The initialization assembly code is architecture specific: since the ARMv7 processor
architecture is supported, the relative source file has been included as an architecture
shared component.

The BSP start hooks provide the earliest interface with the BSP. Typically, the first
hook is used for initial configuration of the MCU, including the configuration of essential
systems and peripherals. In the case of the STM32H7 BSP, the initialization process is
extended by the initialization of all the peripherals, specifically

• MCU power settings configuration: for stm32 microcontrollers this is done by
setting the power control registers, configuring this way the power state of the
MCU. This often involves setting the values for the internal voltage regulators.

The clock regime of the MCU is often dependent on the power state. For instance,
during development for the STM32L4R9ZIT it has been necessary to change the
power-state to a boost mode before configuring the PLL to clock at 120Mhz. This
is the reason why power configuration is done before clock configuration.

• MCU clock configuration: This involves enabling the clock sources and configuring
the PLLs. The configuration is usually not performed in a single step but rather
via a step increase of the MCU clock, with successive checks of clock stability at
each step.

• Peripheral clock configuration: In stm32 MCU in the reset state the peripherals
and the MCU AHB and APB buses are not clocked in order to save power. It
is necessary to clock the peripheral that are meant to be used during system
initialization. This operation is performed by setting the appropriate fields in the
Reset and Clock Control (RCC) register.

• Peripheral configuration: at this point it is possible to configure the MCU pe-
ripherals as for necessity. The HAL init function is a wrapper for initialization
procedures of the HAL driver. This includes not only the configuration of the
peripherals and the relative GPIO pins, but also the creation of the necessary
objects in memory used for future operation.

• Configuration of the Flexible Memory Controller (FMC) peripheral. The FMC
can be used to expand the available RAM by memory mapping a connected SRAM
memory device. The peripheral is configured early, to have this resource available
in the successive phases.

In the case of the STM32H7 BSP functions above are performed via the use of functions
provided by the HAL driver, that has been integrated in the BSP.

The second BSP start hook is typically used for the preparation of the memory area.
This includes copying the .DATA, .FAST TEXT, .FAST DATA from the load to the
runtime area, located in RAM. Successively, the RAM region reserved for the .BSS
section is cleared. Lastly, the .TEXT region is copied in the runtime area and execution
is branched to the runtime area. At this point the execution is performed exclusively
from the RAM runtime area, and the successive step is the execution of the boot card()
function, that is the function that starts the high level initialization of the RTEMS
system.

The rtems initialize executive() makes use of a system initialization linker set [11] that
initializes only the RTEMS features that are necessary by the specific application.
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Successively RTEMS starts multitasking. At this point the ready task with the highest
priority gets executed, in this case the application initialization task.

shared/start/start.S

Start.s

boards/stm/bspstarthooks.c

 Bsp_start_hook_0()  Bsp_start_hook_1() boot_card()

SystemInit()

boards/stm/system_stm32h7xx.c

stm32h7_init_power()

stm32h7_init_oscillator()

stm32h7_init_clocks()

stm32h7_init_peripheral_clocks()

HAL_RCC_MCOConfig()

HAL_Init()

SystemInit_ExtMemCtl()

bsp_start_copy_

sections_compact()

bsp_start_clear_bss()

include/bsp/start.h

rtems_initialize_executive()

shared/start/bootcard.c

start/bspstart.c

bsp_start()

Legend:

Architecture shared

Board specific

Family (MCU) specific

Generic shared

Figure 5.4: Low level BSP initialization (first initialization phase)
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start/bspstart.c

bsp_start()

shared/irq/irq-generic.c

bsp_interrupt_initialize()

shared/irq/irq-armv7m.c 

bsp_interrupt_facility_initialize()

bsp_interrupt_set_initialized()

cpukit
(RTEMS)

rtems_cache_coherent_add_area()

Figure 5.5: BSP initialization (second initialization phase)

5.6.2 Initialization manager for imaging system software com-

ponents

The initialization of the peripherals for the STM32H7 BSP makes use of the HAL init()
procedure. This procedure consists in a sequential execution of the peripheral drivers
that are enabled via a set of defines. The usual workflow relies on the generation of
the system configuration, via the utilization of the CubeMX software from ST, which
generates the project files, including the necessary defines to allow of the configuration
of the behavior of the drivers and initialization directive.

In the context of development for the RTEMS system, this approach necessitates to
integrate newly generated project files in the RTEMS BSP source and successively re-
compile the BSP. This process is time-consuming due to the high amount of project files,
the necessity of updating the build specifications, and the necessity of an automated
software verification chain.

The STM32L4R9 BSP does not utilize a static sequential peripheral driver initialization
like the STM32H7 BSP, but rather makes use of a dynamic initialization system that
has been specifically developed to satisfy specific needs.

Often drivers needs to be initialized in a specific order, due to the necessity of having
some peripheral already initialized as a requirement: For instance it is necessary that
the clock sources and clock configuration to be configured before initialization of the
UART driver. Likewise, the clock configuration requires itself that the power state of
the MCU has been already configured.

A particular example is the one displayed in figure 5.6, that displays the software drivers
and configurations that are prerequisites to the DCMI peripheral driver initialization.
Albeit all the elements are dependencies of the DCMI driver, it is necessary that the
initialization steps of the various components are executed in a specific order.

A similar scenario presents itself for the initialization of the other peripheral drivers,
like for instance the driver for the OCTOSPI interface.
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DCMI peripheral

I2C1 Peripheral driver

HAL_GPIO

HAL_I2C

DMA1 Channel 3 configuration DMA1 Controller driver

DMAMUX configuration

DMA1 Channel 3 enable

Requires

Initialization
sequence

1

2

3

4
5

6

7

Figure 5.6: Initialization order necessary for correct initialization of the DCMI periph-
eral

The development of an initialization system has been therefore been considered neces-
sary and the following set of requirements has been defined, to guide its development.

• The initialization system shall be independent of the BSP

• The initialization system shall be portable to a bare-metal software architecture.

• The initialization system shall perform an initialization sequence that is minimal
in respect to hardware features utilized in the executable.

• The initialization system shall avoid re-initialization of hardware resources.

• The initialization system shall detect resources conflicts between utilized resources.

• The initialization system shall be able to initialize, de-initizlize, reinitialize pe-
ripheral drivers dynamically.

• The initialization system shall provide information about initialization sequence.

The architecture of the initialization system follows the idea of using a pooled linked
list to keep track and build the initialization sequence of the drivers progressively, while
the software is executed.

The objective is to edit the sequence stored in the linked list as soon as a resource is
used, and perform the initialization right after.

Initially, a pool of nodes of fixed sizes is statically reserved in memory for the linked
list elements. Whenever a software element requires a specific feature, in invokes the
hwlist require method, with as arguments the initialization function handler required
and an optional argument that identifies a ”parent” function handler. If the parent
handler has been provided (i.e. is not NULL) the hardware node is inserted in the
hardware list right after the parent node. If the parent handler is NULL, the hardware
node is added as head of the hardware list.
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Before exiting, the hwlist require calls the hwlist iterate method. The hwlist iterate
methiod executes the initialization functions pointed by the initialization handler reg-
istered in each node, iterating from the tail of the list up to the head.

During the execution of a initialization function, it is possible that uninitialized hard-
ware resources are requested and therefore the process repeats iteratively, until all the
dependency layers are explored.

The result is a process that keeps track of the dependencies between the different drivers
and initializes the requirements as needed. It also provides the following benefits:

• The resources are available at the earliest moment, since the initialization actions
are performed as soon as the underlying requirements are satisfied.

• It allows keeping track of the order of initialization of the whole system.

• It allows determining if a resource has been initialized and avoids conflicts between
resources that share the same components.

Moreover, in the future it would be possible to expand on this system, implementing
new feautures. For example, in case of failure of a system element, it would be possible
to deinitialize the resource. A monitoring task could keep track of the changes to the
hardware list and address issues by issuing reinitialization or other recovery actions
(like a system reset).

The system respects the requirements formulated for it: since it does not depend on
any software components and works directly with arbitrary functions’ handler derived
directly from the source, it is easily portable to another system architecture, may it be
bare metal or another RTOS.

The figure 5.7 shows the set of operations and the respective order for the nested
initialization of two components. Instead, figure 5.8 shows the initialization process
that has been implemented for the DCMI interface.

hwlist_require
(i2c_init)

adds the function to
the beginnign of the

linked list

hwlist_require
(sensor_clock_init)

Calls the initialization
agent

i2c_initsensor_clock_init

adds the function to
the beginnign of the

linked list

Calls the initialization
agent

sensor_clock_init

hwlist_require
(system_clock_init)Performs initialization

actions

sequence of actions
called after each

handler is added in
the linked list

i2c_init

sensor_clock_init i2c_initsystem_clock_init

adds the function to
the beginnign of the

linked list

Calls the initialization
agent

sensor_clock_init i2c_initsystem_clock_init

Performs initialization
actions

sensor_clock_init i2c_initsystem_clock_init

Performs initialization
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sensor_clock_init i2c_initsystem_clock_init

non initialized

initializing
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i2c_init

i2c_init

i2c_init

i2c_init

i2c_init

i2c_init

sensor_clock_init i2c_initsystem_clock_init

Hardware list action flow Hardware list section

Figure 5.7: Actions performed by the initialization system when a resource is required
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dcmi_inithwlist_require(dcmi_init, NULL)

dcmi_inithwlist_require(OV5640_init,
dcmi_init) OV5640_init

hwlist_require(sensor_clock_init,
OV5640_init) dcmi_init OV5640_init

dcmi_init OV5640_inithwlist_require(i2c1_init, OV5640_init)

sensor_clock_init

hwlist_require(system_clock_init,
sensor_clock_init) dcmi_init OV5640_init sensor_clock_init system_clock_init

i2c1_init sensor_clock_init system_clock_init

hwlist_require(HAL_GPIO_init, i2c1_init)

hwlist_require(HAL_I2C_init, i2c1_init)

dcmi_init OV5640_init i2c1_init sensor_clock_init system_clock_initHAL_GPIO

dcmi_init OV5640_init i2c1_init sensor_clock_init

system_clock_init

HAL_GPIOHAL_I2C

hwlist_require(dcmi_dmachannel_init,
dcmi_init)

hwlist_require(dcmi_dmamux_init, dcmi_init)

hwlist_require(dcmi_dma_enable, dcmi_init)

hwlist_require(dcmi_peripheral_init,
dcmi_init)

dcmi_init OV5640_init i2c1_init

sensor_clock_init system_clock_init

HAL_GPIOHAL_I2Cdcmi_dmachannel_init

dcmi_init OV5640_init i2c1_init

sensor_clock_init system_clock_initHAL_GPIO

HAL_I2Cdcmi_dmachannel_init

dcmi_init OV5640_init i2c1_init

sensor_clock_init system_clock_initHAL_GPIOHAL_I2C

dcmi_dmachannel_init

dcmi_init OV5640_init

i2c1_init sensor_clock_init system_clock_initHAL_GPIOHAL_I2C

dcmi_dmachannel_init

dcmi_dmamux_init

dcmi_dma_enable dcmi_dmamux_init

dcmi_peripheral_init dcmi_dma_enable dcmi_dmamux_init

Initialization complete, directive exit dcmi_init OV5640_init

i2c1_init sensor_clock_init system_clock_initHAL_GPIOHAL_I2C

dcmi_dmachannel_initdcmi_peripheral_init dcmi_dma_enable dcmi_dmamux_init

Intialization in progress: the requirements are not completely satisfied and / or the
initializaiton actions are not yet performed.

The hardware node has been added in this step in the hardware linked list.

The hardware node has been completely initialized and the relative resource is
available to the rest of the sytem.

Figure 5.8: Initialization flow for the DCMI peripheral
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5.6.3 Initialization process for the STM32L4R9ZIT BSP

This brief section describes the initialization process for the STM32L4R9ZIT, to high-

light the differences in comparison to the STM32H7 BSP. It is a minimal version of the

BSP initialization process, and has been presented because it provides a good example

of the minimal directives that are necessary to implement a BSP initialization.

The most relevant change is the removal of the hardware initialization during the BSP,

that has been rather executed via the hardware list manager in the application initial-

ization task.

shared/start/start.S

Start.s

boards/stm/bspstarthooks.c

 Bsp_start_hook_0()  Bsp_start_hook_1() boot_card()

bsp_start_copy_sections()

bsp_start_clear_bss()

./start/bspstarthooks.c

rtems_initialize_executive()

shared/start/bootcard.c

start/bspstart.c

bsp_start()
Legend:

Architecture shared

Board specific

Generic shared

do nothing

bsp_interrupt_initialize()

Figure 5.9: Initialization flow of the STM32L4R9ZIT BSP

5.6.4 CMSIS Header libary

The Common Microcontroller Software Interface Standard (CMSIS) (cite) is a set of

software interfaces for Cortex-M and entry-level Cortex-A processors. CMSIS provide

functional defines for MCU registers and hardware specific implementation of low level

operations. It allows to easily work with MCU registers, referring to them via the use

of pre-defined and standardized macros, rather than the specific memory address. The

standardization of these interfaces allows for software to be portable between MCU
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that support the standard and that feature the same high level registers (and therefore

peripherals).

The CMSIS source is composed of a set of header files. ARM (The processor core IP

designer) provides CMSIS sources for each processor core, in this case for the Cortex-

M4 core. ST Microconductors provides instead header files that provide interfaces to

the MCU peripherals.

The utilization of CMSIS standard has been particularly useful in the development of

the low level software, since most of the drivers developed are bare metal and interface

directly with the registers via the use of this interface. In particular, the drivers de-

veloped for the Breadboard model A (STM32L476) have been easily ported to the

Breadboard Model B (STM32L4S9AI) and successively on the development model

(STM32L4R9ZIT) seamlessly, thanks to the utilization of this interface. The steps

necessary to port the firmware have been the substitution of the ST’s CMSIS head-

ers with the ones for the appropriate processor (since all the MCU here listed make

use of the Coretex M4 core). The verification of the drivers previously resulted right

away in positive results for each model. Only minimal changes were required for the

QUADSPI/OCTOSPI drivers since the similar peripherals are not actually the same

and therefore the interfaces makes use of slightly different register organization.

5.6.5 Console driver

As specified in [26], the termios software layer works as interface between the application

and the Low-Level Device Driver.

The [26] specifies how in the default application configuration RTEMS opens during

system initialization a /dev/console device file to create the file descriptors 0, 1 and 2

used for standard input, output and error, respectively.

The BSP and Driver Guides provides a description of the three elements that are

necessary for a serial device driver:

• A section in the build specification: addition of the shared source

../../shared/dev/serial/console-termios.c and the bsp source console/console.c

• A low level driver providing:

– handler table
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– device context specialization

• A BSP-Specific initialization routine console initialize() that calls

rtems termios device install() providing a low-level driver context for each

installed device.

The console driver implemented for the STM32L4R9ZIT BSP registers the UART2

interface (that is the UART routed to the debug interface) to the termios file descriptor

tty2, used for error reporting. This allows for the RTEMS error handling functions an

interface to print useful information in case of errors or non-nominal behavior. The

application software is also meant to use the tty2 for debug prints and can do so via

the fprint() function (using the termios console driver currently configured with the

HAL driver) or via direct access to the bare metal driver function write char and

write buff.

5.7 Application Software

The Application software consists in the implementation and orchestration of the pro-

cesses necessary to achieve the functional requirements. The application software real-

ized for the development model covers only the core functionalities of image acquisition

and data handling. A simple command interface via the debug adapter has also been

developed, but other aspects like communication to the spacecraft bus, command han-

dling and FDIR features have not been implemented.

The application software is organized in two different tasks: the application initializa-

tion task and the frame handler task. Figure 5.10 displays the execution flow for the

DM software when debug adapter is not attached or specific commands are not issued

via the debug interface.

The debug command interface works in implementing a set of GDB scripts developed

via the python extension that ar able to perform a set of functions, useful to operate

the system. Respectively:

• Download of the images stored in static memory to the host PC.

• Call of a handler directive to clear a specific region of the static memory.

• Call of a handler directive to download initialization log and system status.
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Figure 5.10: Application software flow diagram.
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Figure 5.11: Task scheduling diagram.

5.7.1 Initialization task

The application initialization task is registered right away and is executed after RTEMS

begins multithreading, that is after the final steps of low level initialization, consisting

of the actions defined in bsp start(). The first steps executed by the initialization task

are to require the hardware necessary for the execution of the functionalities via the

use of the hardware list initialization system. The requested software elements are:

• Debug Uart interface.

• DCMI inteface.

• NAND memory subsystem (that includes OCTOSPI peripheral, MT29F memory

driver and many more).

In total, the initialization system from these three requests initializes independently 27

software elements that are requirements to the selected items. Some of these elements

are for instance change in power state to boost, applying an overvoltage to the core,

increasing system clock from the reset state of 4Mhz to 120Mhz, and many more.

To operate the NAND array, the system requires contextual information on its state:

Such information includes the areas in the address space where image data is stored,

the amount and location of bad blocks.

The system has been designed to never rely memory state information held in volatile

memory, due to the possibility of losing the information in system resets. It has been

decided against storing state information on the SMS. This is because for performance

reasons a file system has not been implemented on the NAND array and therefore

state information would need to be written in specific pages/block of memory, since
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the system would need to know from a reset state where to get such information. But

writing frequently in the same blocks (like it would be necessary in this case) would

easily lead to depleting the write endurance of the NAND blocks in question, creating

serious issues for the longevity of the system.

Instead, the system reads the totality of the memory array during initialization, logging

in a structure statically allocated in the RAM .BSS section, containing information

about utilization of the memory. This information is essential, since it indicate in the

NAND address space the presence of images. The information is later used to identify

where to write new acquired images and for retrieval of the images already captured.

Due to the high total capacity this operation requires quite a bit of time (a few minutes).

This can be managed operatively, by defaulting in searching only a minor region of the

array and to disregard the data contained in the rest of the section, or to postpone this

”instrument commissioning operation” to a later, command driven operation, rather

than an automated execution at system initialization.

Once the NAND memory context has been built, the software execution is either

stopped automatically if a debug interface is attached, or successively, a set of actions

are performed to register and enable the Frame Handler Task and the Frame Received

ISR.

Once these actions are performed, the task Frame Handler is set to Ready and the

initialization tasks deletes itself. Being the frame handler task the only task in the

ready state, the task is dispatched and its execution begins. Given the conditions

specified, this happens independently of the scheduler that has been used.

In the scope of the Development Model, there has not been a necessity to analyze and

conduct a tradeoff amongst scheduling algorithms. It is intended that once command

handling, watchdog and communication tasks are introduced, and also the prospect

of re-uising the software configuration on other systems is more thoughtfully analyzed

in the future, more constrains will be identified. At this point it will be beneficial to

determine the best scheduling algorithm for the application via a trade-off study.

The current software image configures RTEMS to use a Deterministic Priority Sched-

uler, that is a preemptive deterministic scheduling algorithm that considers a priority

assigned for each task. Therefore, the task executing on the processor at any given

time is the task with highest priority, and the algorithm provides round-robin access
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to tasks with the same priority level. The ready chain makes use of a FIFO, therefore

in a group of equal priority tasks, tasks will be executed in the order as they become

ready or the FIFO order.

5.7.2 Frame Handler Task

The frame handler task at its beginning initializes and clears the frame circular buffer.

The purpose of a frame buffer is to provide a memory region where data can be rapidly

stored by the image acquisition peripheral, via the use of a DMA transfer.

The system has been designed to work with a great variety of CMOS sensors featuring

a parallel interface. Most CMOS sensors output either raw pixel values data or JPEG

compressed data.

Raw image data is transferred sequentially in a raster pattern. The image data is often

the output of de-mosaicing the pixel readout and applying image correction processing,

like white balance. For raw image data, the data transfer is synchronized via the use

of the HSYNC and VSYNC signals, that work as a data valid mask and indicates

respectively the end of a frame line and the end of the frame. The polarity of these

signals is dependent on the sensor and can be configured in the sensor driver.

JPEG data is the output of an additional compression process applied on the raw data

and performed by the CMOS sensor SoC. A JPEG image is a bytestream of variable size

identified by a header(0xFFD8) and a closer (0xFFD9). The size of the compressed

image depends on the homogeity of the initial raw image and the loss factor of the

compression algorithm utilized. Therefore, the transfer is synchronized via a different

use of the synchronization signals: HSYNC signal is used as a data valid signal and

VSYNC indicates the start/end of the image transfer. Figure 5.12 obtained from the

MCU reference manual [24] shows the transmission signal timings for a JPEG image.

The ram buffer has been sized to contain the maximum size that can be transferred

via a single-buffered DMA transfer, therefore 262.14KB (or 65535 4 byte words). The

frame buffer is statically allocated in the MCU volatile memory and represent a notable

size (40.1%) of the total RAM capacity of 640KB.

Via experimentation, it has been observed that typical 720p JPEG images captured via

the use of the test sensor (OV5640) utilize a size in memory of up to 100KB and up
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Figure 5.12: Timing diagram for JPEG transfer over DCMI interface. From ST
STM32L4R9 reference manual.

to 200KB for 1080p images. Therefore, the current frame buffer size would be able to

support capture of 1080p (2 Mpx) JPEG compressed images.

In the execution flow of the Frame handler task, the next step is enabling the image

capture for the DCMI peripheral. The peripheral can be configured to capture frames

in a single or continuous frame acquisition. In both cases a Frame Ready interrupt is

generated when a complete frame has been received, with the only difference that the

peripheral ”capture enable” flag is reset after the acquisition of a valid frame for the

single acquisition mode and needs to be re-set by the software to enable a successive

acquisition.

Once the peripheral is enabled for capture, it waits for the next frame start sequence

to acquire and transfer the image data.

At this point the frame handler task enters an infinite loop, at the beginning of which

changes its state from Executing to Blocked, waiting for an event that is generated

by the Frame Captured ISR. The Frame Captured ISR has been registered during the

application initialization. The associated interrupt is generated only if a complete valid

frame has been received by the DCMI interface, and therefore it can execute only after

the interface has been enabled for acquisition.

The only purpose of the ISR is to generate the event that readies the Frame Handlder

once a frame is ready to be handled.
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Frame circular buffer: 262.14 KB

Extended metadata buffer region:
4.096 KB 

Circular buffer region writable by DCMI DMA transfer

DMA write wrap

Figure 5.13: Structure of the circular buffer.

When the frame handler task continues its execution, the image data is present in the

frame circular buffer. The nature of a circular buffer results in the placement of the

image data in an undetermined section of the buffer. Therefore the first step of the

current software iteration scans the circular buffer to find the header and the closer of

the newly captured image. It has to be noted that once an image in the buffer has

been completely handled, its header and closer in the circular buffer are overwritten,

such that previous images cannot be found during the scanning operation. Contextual

information about the buffer are determined and stored at each iteration, consisting of:

• Image JPEG header pointer

• Image JPEG closer pointer

• Size of the captured image

• current position of the scanning pointer

To reduce the scanning overhead, the scanning operation resumes in the circular buffer

from the last position scanned in the previous iteration (that usually is the position of

the closest of the previous image).

Usually, in case of a correct acquisition, the header of the next image is placed by the

DMA right after the closest of the previous image. To avoid readings that could be

caused by the acquisition of bytes from the peripheral in case of spurious activation of

the synchronization signals, the header of the image is still searched, instead of copying

directly the data right after the closest of the previous image capture.

The successive actions performed by the frame handler task are described in figure 5.14

making use of an example of the capture of two consecutive frames.
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Previous image

H

C

A new image is captured that wraps around the buffer and overwrite the previous image
in the circular buffer

H C

Image metadata is added before the image header, overwriting the buffer
contents 

and making use of the metadata buffer region

H C

An image is acquired and copied to the buffer

The image is segmented in pages and sequentially written to contiguous pages
in the NAND array

NAND array

Metadata is added overwriting the area before the image header

The new image is segmented in pages and written to the NAND array. Since each page needs to be
a contiguous refion of memory, the incomplete page on the right is copied before the beginning of

the DMA region start, making use of the metadata buffer region.

NAND array

1

2

3

4

5

6

Figure 5.14: Summary of operation performed on the frame buffer.



Chapter 6

System Verification Campaign

A preliminary AIV plan has been devised for the imaging system lifecycle, in relation

with the one of the spacecraft.

Due to the limited time for the integration and verification activities that have been

conducted are finalized exclusively to achieve functional and performance verification

of the integrated system. Interface verification has been performed only at the imaging

system level, therefore interfaces with the S/C bus have not been verified. Thermal

environmental verification has not been performed on the Development Model but it is

advised, since it would allow to detect and identify potential issues related to component

performance near the edge of the declared temperature operative range.

99
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Model
Level PL S/C PL S/C PL S/C

Functional P P X X X
Performances P X X X
Mission X X
Mechanical interfaces P X X
Optical alignment X (X)

Acoustic
Random vibration (X) X
Sinusoidal vibration X X

Thermal cycling X X X
Thermal vacuum (X) X

EMC (conducted & radiated) X X
ESD X
Electromagnetic auto-compatibility X

Electrical/RF

P: test performed
X: test to be performed
(X): test may be performed, depending on the AIV programme

BM DM PFM

General

Mechanical

Thermal

Figure 6.1: PL and S/C test matrix. Tests at subsystem level are not shown.

6.1 Capture of test images

The first test is a DCMI interface functional test meant to verify the functionality of

the sensor and the image acquisition interface, after integration of the sensor module

with Command Module and Daugherboard stack.

The test consists of:

• Verification of electrical and logic level of the DCMI and sensor configuration I2C

interface via the use of an oscilloscope and a logic analyzer.

• Configuration of the sensor’s registers to output on the DCMI interface a test

pattern

• Capture of the test pattern via the DCMI peripheral and storage of the image in

volatile memory.

• Download of the test image from the imaging system to a support workstation

for visualization.
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Figure 6.2: Test images generated by the OV5640 sensor and captured by the data
handling module

Figure 6.3: First captured frames, before configuration of the sensor automatic white
balance correction

The result of the test has been successful, and the test images captured from the sensor

are shown in figure 6.2.

The successive test has been performed to verify the ability to configure the sensor for

nominal capture, and to calibrate the sensor to output usable images, obtaining sensor

configuration that can be suitable for the successive operations.

The test consists in configuring the sensor mode of capture and additional parameters

relative to exposure control and white balance. A set of frames are successively captured

and downloaded to assess the image quality.

The first two amongst the initial frames captured in this test are displayed in figure

6.2. In these first frame it is visible how the automatic exposure control of the sensor

is working, but not the white balance correction. After a successful white balance

calibration, the successful capture of well-balanced images allowed to determine a set

of configurations that can be used for future.
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Figure 6.4: fig:Frame after white balance and exposure calibration (90 deg rotation)
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(a) Frame 13 (b) Frame 14

(c) Frame 15 (d) Frame 16

(e) Frame 17 (f) Frame 18

(g) Frame 19 (h) Frame 20

Table 6.1: Demonstration of Camera System
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6.2 Evaluation of acquisition performance

The next test included the capture of a sequence of 1500 image frames, with the purpose

of determining the performance of the data handling system, characterizing the time

necessary to handle an image frame.

In the context of the system operation, the acquisition time is the time necessary to the

data handling system to execute the data handling processes starting from the reception

of the image in the frame buffer (that triggers the frame received ISR) up to the end

of the transfer to the NAND memory array. Since initially the acquisition time proved

to be superior to the capture period of the sensor, it has been necessary to configure

the DCMI peripheral in blocking mode. This means that after the peripheral has been

enabled to capture a new frame, it will begin to capture only at the beginning of the

successive frame outputted by the sensor. The time between starting to wait for the

next frame and the frame ready in the frame buffer is defined as waiting time. The

total time necessary to obtain a frame, starting from enabling the peripheral, up to

the end of the handling process, is defined as frame time. The frame time defines the

necessary time to obtain a frame, and it defines the period of the acquisition process

and, therefore, the acquisition frequency.

The acquisition time distribution for this test shows a mean acquisition time of avg(Ta) =

0.1096s, with a mode of mode(Ta) = 0.0717s.

It is possible to observe how a 90% confidence level centered on the mode of the distri-

bution has bounds [0.06981, 0.07359] s , while the rest of the distribution shows an equal

distribution of acquisition time amongst the frames, in the interval of [0.054167,0.225783]

s.

The distribution of waiting time presents a mean of avg(Tw) = 0.1096s, with a mode of

mode(Tw) = 0.0717. For this values as well the distribution is constant over the domain

of [0.054167,0.225783] s, with the exception of the interval in proximity to the mode

value.

The frame time distribution is obtained by the sum for each frame of the acquisition

time and the relative frame time. It shows the total time necessary to capture the

frame. The average frame time of the imaging system is avg(T ) = 0.1916, while the

mode is mode(T ) = 0.1577s. Considering the average frame time, it results that the

imaging system in this configuration presents an average acquisition frequency of 5.22



6.2 Evaluation of acquisition performance 105

fps.

The PPLs of the sensor modules are configured to output 30fps at 720p when supplied

with a 24Mhz input clock. The sensor clock is provided from an MCU pin, configured as

a clock output. The clock is produced by the AHB clock of 120Mhz applying a divider

of value 8, obtaining a 15Mhz output clock. Proportionally, the image acquisition

frequency of the sensor is 18.75 fps, equal to a sensor frame period of 0.05333 s.

It is easy to observe how the sensor frame period is reflected on the frame time distri-

bution of the imaging system: It is evident that for most of the frames, the frame time

is equal three times the sensor frame period, therefore while a frame is handled by the

system, the sensor produces three frames, resulting in the loss of two frames each frame

captured.

In some cases the performance is inferior, and the imaging system is able to handle one

frame in 4,5 or even 6 frames generated by the sensor.

The distribution of the acquisition time shows that the 0.59 % of Ta is less than two

times the sensor frame period (0.1066 s), while the rest of the time is wasted waiting

for the next frame, an operation that always takes more than a frame period. This is

because the waiting time includes the time to effectively fill the frame buffer: a fraction

of a frame period is wasted waiting, while a complete frame period is necessary to

complete the data transfer from the sensor to the frame buffer. In fact the waiting time

distribution is never less than the sensor frame time.

The system throughput can be estimated considering the size of the images that are

being transferred. Figure 6.5 shows a distribution of the size of the JPEG images

captured during the test. The sample size of the images captured is just 660 out of

the 1500 images of the test. This is because in this test the utilization of the memory

has been limited to a specific set of blocks and the other images have been overwritten

during the capture. The average image size is 71.967 KB, with a minimum/maximum

range of [54.435, 97.353] KB.

In terms of throughput, considering the average acquisition time and the average JPEG

image size, the resulting average data handling throughput is 656.640 KB/s, that is way

less than the throughput that the systems has been designed to handle. Considering

the total frame time, the system throughput is necessarely worse and equal to 456.358

KB/s
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The evaluation process allowed for the identification of two issues:

• Since the process is not configured as a pipeline, the best achievable performance

is half of the sensor acquisition rate, due to the time that is necessary to fill the

frame buffer being a sensor time period in addition to the successive acquisition

time. Even if the acquisition time would be less than the sensor capture time, the

peripheral would still need to wait for the beginning of the successive frame.

• The acquisition time is way more than what expected in the design phase. This

results in a considerably inferior data handling throughput than expected.
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Figure 6.5: Distribution of the JPEG image size determined from the images acquired
during the test.

6.3 Analysis of the acquisition process

The system is already designed to operate as a pipeline, therefore, to restore the process

pipeline, it is necessary to apply modifications to allow the system to satisfy the timing

requirements.

Moreover, the circular buffer shall have sufficient capacity to hold two frames concur-

rently, to avoid that a continuous capture would overwrite the buffer region from where

the current frame is being handled. The acquisition time shall be less than the frame

capture time.

This condition is respected for compressed 720p images, since the 262.14 KB circular
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buffer can contain 2.7 images in the worst case.

To address the timings issue it has been necessary to investigate the cause of the

performance reduction of the data handling process.

To analyze the performance of the whole process, it has been decided to measure the

timing of each of the operations that compose the acquisition process. In order to do

so, a set of probe wires has been soldered to the Compute Module, to have easy access

to signals that could be measured with an oscilloscope. A simplified diagram of the

pipeline process id displayed in the figure below.

M4 Core

DMA1 Controller

DMA2 Controller

DCMI 
Peripheral

OCTOSPI1
peripheral

NAND SET1

Feed DCMI 
FIFO

Transfer to FB via DMA2

Generate
metadata

Copy
metadata 

Transfer to OCTOSPI FIFO

Frame 1
capture

complete

Frame1
Buffer ready

Frame1
Page trnsf
complete

Frame 2
capture

complete

Frame 2
Buffer ready

Frame 2
Page trnsf
complete

Feed DCMI 
FIFO

Transfer to FB via DMA2

OCTOSPI1
write to page buffer

Generate
metadata

Copy
metadata 

Page program

Copy
metadata 

Transfer to OCTOSPI FIFO

Feed DCMI 
FIFO

Transfer to FB via DMA2

OCTOSPI1
write to page buffer

Generate
metadata

Page program

Figure 6.6: Data handling process.

Starting from the tail of the pipeline, the first process measured is the transfer and

programming of the page-sized chunks from the frame buffer to the NAND modules.

Saving an image in the SMS requires to transfer and program a number of pages that

is dependent on the size of the image frame. From the characterization of the previous

test, the average frame size is 71.967 KB, while the size of the page buffer is 8.182

KB in a dual-quadspi configuration and 4.096 KB for a single memory module. In this

characterization test the memories are used in a dual-quadspi configuration, but the
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driver has been configured to still consider a page size of 4.096 KB, to allow for the

measurement of the single module throughput, resulting in an average of 18 pages per

image. This estimation does not consider metadata, that is stored in the first page of

the image frame.

Saving a page in the memory modules consists in the following steps:

• Transfer of the data from the frame buffer to the octospi-fifo.

• Transfer of the date via the octospi-interface to the NAND module page buffer.

• Programming of the data from the page buffer to the nand memory.

Figure 6.7 shows the transfer of an image frame in the octospi interfaces. The total

duration of the transfer is 8 ms, and represents a transfer of 14 pages. This oper-

ation contains both the time necessary to transfer data to the memory modules and

the programming time, because a page buffer needs to be programmed before it can

be overwritten by the successive page. The throughput of the transfer results to be

4.096KB ∗ 14/0.008s = 7.168MB/s. The time necessary to execute the operation is

minimal in respect to the acquisition time, therefore this step in the process is not the

bottleneck.

Figure 6.8 shows a detail of the transfer and programming operation. The first segment

is the transfer of data to the page buffer. Between the first and the second segment,

a ”page program” command is sent to the memory modules and the second segment

is a continuous polling of the NAND modules to check when the programming op-

eration is finished. The figure allows obtaining the timing of the data transfer and

programming operation. Respectively, the data transfer operation lasted 300 us, while

the programming operation required 200 us. The transfer throughput results to be

4.0096KB/0.0003s = 13.65 MB/s, which is the 22.75% of the maximum data rate of

the peripheral advertised by the manufacturer [23] (60MB/s), potentially suggesting

that the octospi FIFO is being supplied with an insufficient throughput, but this as-

pect has not been further investigated. The programming performance of the NAND

modules are instead exactly as for the component datasheet.

The next step has been to measure the time necessary to analyze the frame buffer. As

described in the software design chapter, once a frame has been transferred via DMA

to the frame buffer, it is necessary to search in the buffer for the JPEG header and

closer, since the size of the image is variable.
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Figure 6.7: Capture of the transfer of an image frame over OCTOSPI. In the figure the
yellow and blue signals are two octospi data lines, while green is the interface clock.

The time necessary to complete this operation is measured via the use of a GPIO signal,

that is set high during the buffer analysis operation. Figure 6.9 shows (in two different

timescales) the duration of the buffer analysis process (red) in comparison with the time

necessary to complete the transfer to memory, indicated by the octospi clock (green).

It is visible how the buffer analysis takes most of the time necessary to handle a frame:

in most cases is more than half of the total frame time. Even if the search process in

the buffer begins from the end of the previous frame, it still requires several hundreds

of milliseconds to complete.

Lastly, the time before the buffer analysis is the waiting time. It has been measured

similarly to the previous case and is displayed in figure 6.10. Waiting time can be

minimized once the frame acquisition time is below the sensor capture time.
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Figure 6.8: Transfer of a page to the page buffer of the memory modules and successive
programming of the page buffer in the NAND memory.

Figure 6.10: Measurement of the waiting time (red), in comparison with the transfer
of the image in memory (green)
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Figure 6.9: Measurement of the time necessary to find JPEG header and closer in the
frame buffer. In red: buffer analysis process. In green: clock of the octospi interface

6.4 Addressing the identified issues

Considering the relative speed of transfer of the image frame to the SMS in respect to

the time necessary to search for the header and closer of the imge.

Consequently, it has been decided to rather write the whole buffer directly to the SMS,

rather than only the image frame. This would imply that the analysis of the buffer

would be performed when the buffer itself is retrieved from the SMS rather than when

the image is stored.

The consequence is that the memory capacity is used inefficiently, sice the buffer is

being written rather than the image. Considering the writing throughput of a sin-

gle module determined in the previous section, writing the complete buffer would

require 262.14KB/7168KB/s = 0.03657s. Considering the throughput of two mod-

ules that operate seamlessly in a dual-quad configuration, the resulting time would be

262.14KB/14336KB/s = 0.01828s.

These changes have been implemented, and a new test has been performed, to charac-

terize the system after the changes.
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6.5 Improved acquisition system performance

Both of the successive tests consists in the capture of a sample of 2500 frames. The

first modification that has been applied consists in writing directly the whole buffer in

the SMS, for each image frame that is received.

The mode of the acquisition time distribution is 0.0402 seconds, similar to the expected

value. The actual measured value is slightly greater than the expected value, since the

previous image data size estimation did not consider the metadata.

The measurements show that frame acquisition has been performed in a time interval

that is inferior to the frame period. Since the process still relies on the DCMI peripheral

in single capture mode, the waiting time is necessarily more than a frame period, and

this results in a system frame time that is essentially always equal to double the sensor

capture time. This means that in this configuration, the data handling system can

handle the sensor acquisition frequency of 18.75 fps, but due to the DCMI peripheral

limitation, one in each two frames is lost, limiting the frame rate to 9.375 fps. In

any case this test demonstrated that the timing requirements to achieve a pipeline

acquisition process are satisfied.

Therefore, the peripheral has been successively configured to work in continuous mode

and the SMS has been configured to work in dual-quadspi mode. The results of a

successive test respect the predictions, the average acquisition time is average(Ta) =

0.01927 and the mode of the acquisition time distribution is mode(Ta) = 0.01923.

This means that the time necessary to the data handling system to manage a frame is

36.13% of the frame time of the sensor, and therefore the frame rate of the system is

limited by the sensor, rather than the data handling system at 18.75 fps. If the average

acquisition time is considered, the maximum acquisition rate for a 720p JPEG image

would be 50.69 fps. By comparing this acquisition rate with the average image size, it

is possible to determine the theoretical maximum average throughput of the imaging

system, that is 71.967KB ∗ 50.69fps = 3.648MBps.

If the imaging system throughput is applied to a 1080p raw image produced by the

initial selected sensor (AR0234CS), it would result in a maximum average frame rate

of 3.684Mbps/2.3MB = 1.60fps.
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Figure 6.11: Timing distribution of the imaging system with the addition of frame
buffer direct writing



6.5 Improved acquisition system performance 115

Figure 6.12: Timing distribution of the imaging system with direct writing of the frame
buffer, dual-quadspi memory modules and DCMI peripheral configured in continuous
capture mode.
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Projection of the results on the imaging system with ping-pong SMS As

stated before, the SMS is formed of four memory modules, configured in two dual-

quadspi configurations. Up to this point only a single dual-quadspi has been consid-

ered, since the second set of memories was initially inteded to increase the total capacity

rather than the throughput. That said, since the writing operation consists of alternat-

ing transfer/programming phases, it is possible to utilize the two set of memories in a

ping-pong configuration. This would mean that while a set of memories is programming

its page buffer, the MCU can transfer data to the page buffer of the other set. This

feauture has not yet been implemented, but the implementation itself is straightfor-

ward, since the bare metal drivers that have been developed provide complete access

to the hardware at its lowest level.

The measurements of the octospi interface displayed in figure 6.8 show that there is

a difference between the time needed to fill the page buffer( 300 us) and the time

necessary to program it in the NAND memory ( 200 us). In order to implement a ping-

pong configuration, ideally both phases would have a duration of 300 us, resulting in

a total operation time of 600 us, resulting in a reduction of the throughput for a single

dual-quad set of 16.7%.

The total throughput of the imaging system with a SMS in a ping pong configuration

can be estimated as

THRPP = THRS(1− α) + THRS ∗ α ∗ (1− 0.167) ∗ 2 (6.1)

Where α is a participation factor in the total throughput of the data storage process

and THRS indicates the throughput of the imaging system for a single memory module

set. Considering the process diagram in figure 6.6, it is the ratio between the [buffer

ready, page transfer complete] time interval and the [capture complete, page transfer

complete] time interval.

The measurement of the timings of the ”copy metadata” process resulted in a negligible

duration, therefore α is arbitrarily set to 0.95.

The resulting estimated maximum throughput for a ping-pong configuration would be

5.956 MB/s, resulting in a 1080p raw image acquisition rate of 2.5896 fps. If a ping-

pong SMC configuration would be utilized to capture JPEG 720p images, the maximum

average frame rate would be 5.956MB/s/71.967KB = 82.76fps.



6.6 Comparison with COTS components 117

Sensor
Is 

verified
image format SMS configuration

framerate 
[fps]

# 
captured 
frames

Total 
frame 

capacity

OV5640 (15Mhz) YES JPEG 720P Single Dual-Quadspi 18.75 28 20000
OV5640 NO JPEG 720P Single Dual-Quadspi 50.69 76 20000
OV5640 NO JPEG 720P Double Dual-Quadspi 60 90 20000
AR0234CS NO RAW 720P Single Dual-Quadspi 3.2 4 2170
AR0234CS NO RAW 720P Double Dual-Quadspi 5.18 7 2170
AR0234CS NO RAW 1080P Single Dual-Quadspi 1.6 2 1085
AR0234CS NO RAW 1080P Double Dual-Quadspi 2.59 3 1085

Figure 6.13: Performance of the different sensor configuration applied to the mission
scenario.

Determination of data product generation From the performance results of the

final verification test and the expected total time in view obtained from the simulation of

the separation phase, it is possible to predict the data products that would be produced

during the mission, presented in the table above.

6.6 Comparison with COTS components

To assess the performance of the Delfi-TWIN imaging system, it has been compared to

other imaging systems for CubeSat platforms that are compatible with the PocketQube

format and that provided accessible datasheets or specifications. Respectively:

• Pikocamera from Orion Space,[21].

• KissCAM V2 from MVP aerospace [1].

• Leo2MP from Infinityavionics [13].

• CAM1U KIKAS CubeSat Camera from Crystalspace [6]

To analyze the performance of the different imaging sensors, a set of performance pa-

rameters has been identified and utilized to compare the different components.

Image format Integrated imaging sensors can output data in raw pixel value format,

or in a compressed data format (usually JPEG 2000). Raw data is utilized for scientific

applications and as input for any task that involve image processing, like navigation.

Compressed images are typically utilized for outreach and engineering purposes, since
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Figure 6.14: On the left the Leo2MP engineering camera from Infinityavionics [13],while
on the right the KIKAS imaging system from Crystalspace (Images from each the
manufacturer’s website)

Figure 6.15: Image of the Development Model of the Delfi-TWIN imaging system during
a performance test. The OV5640 test sensor is connected to the sensor control and data
interface.
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image fidelity can be sacrificed in order to reduce image size and, therefore, the time

necessary for downlink. Typically processing algorithms make use of raw images, there-

fore compressed images needs to be decompressed to be used for such purpose.

The imaging system (IMS) for the Delfi-Twin can potentially capture either JPEG or

RAW images, depending on the sensor that has been integrated with the Compute

Module. The OV5640 sensor, utilized during the verification tests described in the

previous sections, is able to output JPEG images, while every global shutter sensor

amongst the ones considered in the initial sensor selection can produce RAW images,

including the global shutter sensor selected (AR0234CS).

Out of the set of COTS imaging systems that the Delfi-TWIN payload is going to

be compared against, the Leo2MP and Pikocamera IMS produce JPEG compressed

images, while the KIKAS and the KissCAM V2 output RAW image data. Therefore,

the two sensor classes are analyzed separately.

The IMS producing JPEG images are compared to a 1MP and a 2MP configuration

of the Delfi-TWIN imaging system, both of which utilizing the OV5640. Out of these

two configurations, performance parameters have been experimentally measured only

for the 1MP configuration, while the performance of the 2MP configuration is derived

from the data handling throughput measured for the 1MP configuration. Both of the

IMS configurations utilize a single set NAND module memory configuration.

On the other end, two Delfi-TWIN IMS configurations are compared to other IMS

producing RAW images. Both configurations utilize the AR0234CS sensor, the first

makes use of a single set NAND modules, while the second utilizes the complete SMS

in a ping-pong configuration.

Comparison of imaging systems that produce JPEG images The Delfi-TWIN

IMS provides better performance for every performance parameter in respect to other

COTS imaging systems featuring JPEG data output. The table considers the Delfi-

Twin 1080p configuration as the comparison baseline. The closest commercial compo-

nent in terms of performance is the Leo2MP, that is able to produce around half of the

frame rate at almost double the power consumption during capture. The pikocamera

presents an inferior power consumption (-33.33%) at the cost of not being able to cap-

ture an image sequence, but just single images. Moreover, the Delfi-TWIN IMS can

provide a storage capacity up to 50 times the capacity of the Leo2MP imaging system.
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Imaging system comparison (Absolute values)
Delfi-TWIN 

IMAGER 720p 
JPEG

Delfi-TWIN 
IMAGER 1080p 

JPEG
Leo2MP* Pikocamera 

Image format JPEG JPEG JPEG JPEG
Resolution [Mpx] 1 2 2 2
Frame rate [fps] 50 25 12 SINGLE

Acquisition data throughput**  [MB/s] 3.648 3.648 2.4 N/A
On board storage [MB] 2000 2000 400 64

Number of storable images 20000 10000 200 32
Idle power consumption [mW] 108.9 108.9 N/A 176

Capture power consumption [mW] 511.5 511.5 1000 341
*: The Leo2MP reported framerate is specified to be framerate dependent. It is likely that the indicated 

framerate is not achieved at the 2MPx resolution
**: Acquisition data throughput approximated to resolution/10 x framerate for JPEG images

Figure 6.16: Table containing absolute parameters for IMS producing JPEG output

imaging system comparison (Delta %)
Delfi-TWIN 

IMAGER 720p 
JPEG

Delfi-TWIN 
IMAGER 1080p 

JPEG
Leo2MP* Pikocamera 

Image format JPEG JPEG JPEG JPEG
Resolution [Mpx] -50.00% 0.00% 0.00% 0.00%
Frame rate [fps] 100.00% 0.00% -52.00% SINGLE

Acquisition data throughput**  [MB/s] 0.00% 0.00% -34.21% N/A
On board storage [MB] 0.00% 0.00% -80.00% -96.80%

Number of storable images 100.00% 0.00% -98.00% -99.68%
Idle power consumption [mW] 0.00% 0.00% #VALUE! 61.62%

Capture power consumption [mW] 0.00% 0.00% 95.50% -33.33%

Figure 6.17: Table containing relative comparison of the Delfi-TWIN IMS with OV5640
sensor operating at 1080p with other IMS producing JPEG output

Therefore, the imaging system developed, when integrated with a JPEG sensor, can

achieve more than double the performance of possible competitors at a fraction of power

consumption.

Comparison of imaging systems that produce RAW images The framerate

performance of the KIKAS system falls between that of the Delfi-TWIN imaging system

in a single set memory configuration and the same Delfi-TWIN system in a ping-pong

SMS configuration. However, the KIKAS system exhibits a slightly lower framerate

than the latter, albeit with a reduced power consumption.

On the other hand, the KissCAMV2 system demonstrates inferior performance across

all parameters when compared to both the KIKAS and Delfi-TWIN imaging systems.
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imaging system comparison
Delfi-TWIN 

IMAGER 1080p 
RAW

Delfi-TWIN 
IMAGER  PP-
1080p RAW

KIKAS (Crystal 
space)

KissCAM V2

Image format RAW RAW RAW RAW
Resolution [Mpx] 2 2 2 1.2
Frame rate [fps] 1 2.59 2 SINGLE

Acquisition data throughput**  [MB/s] 3.648 5.956 4 N/A
On board storage [MB] 2000 2000 750 4

Number of storable images 1000 1000 375 3
Idle power consumption [mW] 108.9 108.9 75 165

Capture power consumption [mW] 1023 1023 750 396
**: Acquisition data throughput equal to resolution x frame rate for RAW images

Figure 6.18: Table containing absolute parameters for IMS producing RAW output

imaging system comparison
Delfi-TWIN 

IMAGER 1080p 
RAW

Delfi-TWIN 
IMAGER  PP-
1080p RAW

KIKAS (Crystal 
space)

KissCAM V2

Image format RAW RAW RAW RAW
Resolution [Mpx] 0.00% 0.00% 0.00% -40.00%
Frame rate [fps] -61.39% 0.00% -22.78% SINGLE

Acquisition data throughput**  [MB/s] -38.75% 0.00% -32.84% N/A
On board storage [MB] 0.00% 0.00% -62.50% -99.80%

Number of storable images 0.00% 0.00% -62.50% -99.70%
Idle power consumption [mW] 0.00% 0.00% -31.13% 51.52%

Capture power consumption [mW] 0.00% 0.00% -26.69% -61.29%

Figure 6.19: Table containing relative comparison of the Delfi-TWIN IMS with
AR0234CS sensor and SMS in ping-pong configuration with other IMS producing RAW
output

Therefore, the Delfi-TWIN imaging system provides competitive performance with

other imaging systems of similar format currently available.
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Chapter 7

Conclusion

This document contained a high level overview of the activities that have been con-

ducted during the thesis project. Many details relative to implementation had to be

left out to allow for an high level perspective on the scope of the project.

In conclusion, the conceptualization, design, development and verification activities

encompassed the system from the lowest element level up to the system in its entirety.

The resulting imaging system is an improvement over current COTS imaging systems

compatible with the PocketQube format and has been specifically tailored to achieve

the outreach mission goal of the Delfi-TWIN mission.

The short 5-month timeframe did not impede the production of value in a set of areas:

• A methodology to evaluate the results of proximity observation of the spacecraft

has been developed. Supported by a set of computational tools, provides a tested

framework to evaluate the capability of arbitrary imaging systems to image a

target in the S/C proximity.

• A tradeoff study between components for the acquisition system has been carried

out, resulting in the selection of an optimal combination of COTS optics and

CMOS sensor.

• A complete baseline avionics system has been developed, including software and

hardware products. The avionics system is going to be used as technological

reference for future implementations of subsystems for the Delfi-TWIN S/C. Fur-

thermore, the Compute Module consists in a payload data handling system that
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can be repurposed as OBC for future PocketQube or CubeSat platforms, featur-

ing an RTOS, high availability of I/O, extended temperature range and radiation

tolerant components.

• A component symbols library has been developed to be utilized during the produc-

tion of the Compute Module and Daughterboard. The library includes symbols,

footprints and 3D models for the components utilized in the hardware and will

be reused for the development of other subsystems for Delfi-TWIN spacecraft.

• The bare metal drivers developed during the thesis allows supporting high level

utilization of the hardware peripheral and components from current and future

application software. The drivers functionality has been verified, and automated

tests have been developed for the Static Memory Subsystem (SMS) and the DCMI

sensor interface. In particular, the Multi-SPI driver (Single, Dual, Quad, Octo-

SPI) and the memory driver for the MT29F04 module, enables future systems

to utilize high capacity, high throughput NAND SLC modules, featuring great

temperature operative range and radiation tolerance.

• The RTEMS Board Support Package that has been developed allows the execution

of the RTEMS RTOS on the previously unsupported STM32L4R9 MCU. The

BSP includes a bootloader, the RTEMS software initialization procedure and

integration with the low level drivers.

• The specification-based initialization system that has been developed allows for

initialization and monitoring of the software components of the imaging system.

In the context of the Delfi-TWIN project, it enables future definition of board

variants for the different subsystems, enabling the generation of the lower software

layers from the specifications of each of the subsystems. The monitoring features

in the future can be expanded in a FDIR system for the software components.

The development of the RTEMS Board support package for the STM32L4R9 MCU is

a particularly important achievement: It allows future students to familiarize and work

with the RTEMS RTOS without expensive hardware, but rather utilizing inexpensive

COTS development boards and the Development Model itself.

The modularity of the system allows for integration of a wide set of imaging sensors,

including future automotive global shutter CMOS sensors, allowing for repurposing of

the Compute Module for other applications or mission requirements.
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Overall, the thesis activity successfully achieved all of the initially agreed-upon ob-

jectives. The Development Model represents a significant technical milestone in the

advancement of the Delfi-TWIN mission, paving the way for future enhancements and

improvements to the already market-competitive Imaging System.
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Appendix A

N2 matrixes
This appendix contains the N2 matrix of the Imaging System, developed during the system definition phase.

IAS SMS

M
CU

H
ig

h 
sp

ee
d 

cl
oc

k 
so

ur
ce

Lo
w

 s
pe

ed
 re

fe
re

nc
e 

cl
oc

k 
so

ur
ce

RS
-4

95
 tr

an
sc

ei
ve

r

FR
AM

 m
em

or
y 

m
od

ul
e

D
eb

ug
 in

te
rf

ac
e

CM
O

S 
se

ns
or

N
AN

D
 S

LC
 m

em
or

y 
m

od
ul

es

3v
3 

Re
gu

la
to

r

2v
8 

Re
gu

la
to

r

1v
5 

Re
gu

la
to

r

Pr
ot

ec
tio

n 
sy

st
em

MCU x x X X X X x x
High speed clock source x
Reference clock source x
RS-495 transceiver x
FRAM memory module x
Debug interface x

IAS CMOS sensor x

SMS NAND SLC memory modules x

3v3 Regulator x x x x x x
2v8 Regulator x x
1v5 Regulator x x
Protection system x x

CDH PDF
Imaging system

Im
ag

in
g 

sy
st

em

CDH

PDF

M
CU

 c
lo

ck
 d

riv
er

M
CU

 U
AR

T 
pe

rip
he

ra
l d

riv
er

RT
EM

S 
RT

O
S

RT
EM

S 
M

CU
 B

SP

Ap
pl

ic
at

io
n 

so
ft

w
ar

e

Bo
ot

lo
ad

er

CM
O

S 
se

ns
or

 d
riv

er

D
CM

I M
CU

 p
er

ip
he

ra
l d

riv
er

I2
C 

M
CU

 p
er

ip
he

ra
l d

riv
er

M
CU

 D
M

A 
dr

iv
er

O
CT

O
SP

I P
er

ip
he

ra
l d

riv
er

N
AN

D
 m

od
ul

e 
dr

iv
er

MCU clock driver X X X
MCU UART peripheral driver X X
RTEMS RTOS X X X X
RTEMS MCU BSP X X X X X X X X X X
Application software X X
Bootloader X X
CMOS sensor driver X X
DCMI MCU peripheral driver X
I2C MCU peripheral driver X
MCU DMA driver X
OCTOSPI Peripheral driver X X
NAND module driver X

Im
ag

in
g 

sy
st

em

Imaging system
CDH IAS SMS

CDH

IAS

SMS

Figure A.1: N2 matrixes for hardware and software products of the imaging system
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Figure A.2: N2 matrix for the complete set of the imaging system products



Appendix B

MCU Breakout

PA1.Mode=Full_Duplex_Master PA1.Signal=SPI1_SCK

PA2.Mode=OCTOSPI1_Port1_NCS PA2.Signal=OCTOSPIM_P1_NCS

PA3.Mode=O1_P1_CLK PA3.Signal=OCTOSPIM_P1_CLK

PA4.Mode=Slave_10_bits_External_Synchro PA4.Signal=DCMI_HSYNC

PA6.Mode=OCTOSPI1_IOL_Port1L PA6.Signal=OCTOSPIM_P1_IO3

PA7.Mode=OCTOSPI1_IOL_Port1L PA7.Signal=OCTOSPIM_P1_IO2

PA13\ (JTMS/SWDIO).Mode=Trace_Asynchronous_SW PA13\ (JTMS/SWDIO).Signal=SYS_JTMS-SWDIO

PA14\ (JTCK/SWCLK).Mode=Trace_Asynchronous_SW PA14\ (JTCK/SWCLK).Signal=SYS_JTCK-SWCLK

PB0.Mode=OCTOSPI1_IOL_Port1L PB0.Signal=OCTOSPIM_P1_IO1

PB1.Mode=OCTOSPI1_IOL_Port1L PB1.Signal=OCTOSPIM_P1_IO0

PB3\ (JTDO/TRACESWO).Mode=Trace_Asynchronous_SW PB3\ (JTDO/TRACESWO).Signal=SYS_JTDO-SWO

PB7.Mode=Slave_10_bits_External_Synchro PB7.Signal=DCMI_VSYNC

PB8.Mode=I2C PB8.Signal=I2C1_SCL

PB9.Mode=I2C PB9.Signal=I2C1_SDA

PB10.Mode=I2C PB10.Signal=I2C2_SCL

PB11.Mode=I2C PB11.Signal=I2C2_SDA

PC1.Mode=OCTOSPI1_IOH_Port1H PC1.Signal=OCTOSPIM_P1_IO4

PC2.Mode=OCTOSPI1_IOH_Port1H PC2.Signal=OCTOSPIM_P1_IO5

PC3.Mode=OCTOSPI1_IOH_Port1H PC3.Signal=OCTOSPIM_P1_IO6

PC4.Mode=OCTOSPI1_IOH_Port1H PC4.Signal=OCTOSPIM_P1_IO7

PC6.Mode=Slave_10_bits_External_Synchro PC6.Signal=DCMI_D0

PC7.Mode=Slave_10_bits_External_Synchro PC7.Signal=DCMI_D1

PC8.Mode=Slave_10_bits_External_Synchro PC8.Signal=DCMI_D2

PC9.Mode=Slave_10_bits_External_Synchro PC9.Signal=DCMI_D3

PC10.Mode=Slave_10_bits_External_Synchro PC10.Signal=DCMI_D8

PC12.Mode=Slave_10_bits_External_Synchro PC12.Signal=DCMI_D9

PD3.Mode=Slave_10_bits_External_Synchro PD3.Signal=DCMI_D5

PD9.Mode=Slave_10_bits_External_Synchro PD9.Signal=DCMI_PIXCLK

PE4.Mode=Slave_10_bits_External_Synchro PE4.Signal=DCMI_D4

PE5.Mode=Slave_10_bits_External_Synchro PE5.Signal=DCMI_D6

PE6.Mode=Slave_10_bits_External_Synchro PE6.Signal=DCMI_D7

PE12.Mode=NSS_Signal_Hard_Output PE12.Signal=SPI1_NSS

PE14.Mode=Full_Duplex_Master PE14.Signal=SPI1_MISO

PE15.Mode=Full_Duplex_Master PE15.Signal=SPI1_MOSI

PF0.Mode=OCTOSPI2_IOL_Port2L PF0.Signal=OCTOSPIM_P2_IO0

PF1.Mode=OCTOSPI2_IOL_Port2L PF1.Signal=OCTOSPIM_P2_IO1

PF2.Mode=OCTOSPI2_IOL_Port2L PF2.Signal=OCTOSPIM_P2_IO2

PF3.Mode=OCTOSPI2_IOL_Port2L PF3.Signal=OCTOSPIM_P2_IO3

PF4.Mode=O2_P2_CLK PF4.Signal=OCTOSPIM_P2_CLK

PG0.Mode=OCTOSPI2_IOH_Port2H PG0.Signal=OCTOSPIM_P2_IO4

PG1.Mode=OCTOSPI2_IOH_Port2H PG1.Signal=OCTOSPIM_P2_IO5

PG9.Mode=OCTOSPI2_IOH_Port2H PG9.Signal=OCTOSPIM_P2_IO6

PG10.Mode=OCTOSPI2_IOH_Port2H PG10.Signal=OCTOSPIM_P2_IO7

PG12.Mode=OCTOSPI2_Port2_NCS PG12.Signal=OCTOSPIM_P2_NCS

GPIO BANK F

GPIO BANK G

GPIO BANK A
MCU GPIO BREAKOUT

GPIO BANK B

GPIO BANK C

GPIO BANK D

GPIO BANK E

Figure B.1: Pin breakout for the STM32L4R9 MCU utilized in the Compute Module
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