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Abstract

This thesis endeavors to explore and substantiate the utility of a novel approach to Space-

craft Docking Optimization, which integrates Machine Learning methodologies. The research

commences by validating the proposed methodology through comprehensive mathematical

analysis, grounding the model in well-established mathematical theorems and principles, par-

ticularly employing Optimal Control techniques to delineate the underlying framework. Sub-

sequent to establishing the mathematical underpinnings, the study introduces and elucidates

the integration of Neural Networks within the proposed framework, highlighting their poten-

tial efficacy in addressing the complexities inherent in solving Partial Differential Equations

for optimization purposes.

Furthermore, the thesis progresses to conduct empirical evaluations utilizing computational

simulations implemented in a Python programming environment. Through experimentation,

comparisons are drawn between the conventional approach reliant on Optimal Control tech-

niques and the Neural Network-based approach. These empirical assessments serve to ascer-

tain the comparative effectiveness and efficiency of the two methodologies, thereby providing

empirical validation of the viability of integrating Machine Learning approaches in this case,

as well as many others.

By demonstrating the efficacy of Neural Networks in addressing complex optimization prob-

lems, this research hopes to contribute to the broader field of optimization by offering a

different approach to integrating Artificial Intelligence, specifically Machine Learning, into

the optimization of dynamic models.
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Chapter 1

Theory Fundamentals

1.1 Problem Statement

Spacecraft docking, the process of bringing two separate vehicles together and securely attach-

ing them in space, is a critical aspect of space exploration and satellite servicing missions.

Achieving successful docking requires precise control and coordination of various parameters

such as relative position, orientation, and velocity between the approaching vehicles. Tra-

ditionally, docking maneuvers have been performed manually or with limited automation,

requiring significant human intervention and posing challenges in terms of efficiency, safety,

and reliability. The problem of soft landing can be modeled through many approaches, one of

which is tackled in this thesis and has its roots in the mathematical field of Optimal Control,

deriving from the study of the Hamilton-Jacobi-Bellman equation. By formulating the docking

problem within the framework of Optimal Control, input strategies can be designed to opti-

mize stability and total energy, ensuring safe and precise alignment of docking ports. Modern

attempts at improving spacecraft docking often involve the integration of machine learning

algorithms with conventional Optimal Control techniques. In this paper, we will explore these

approaches to seek to exploit the capabilities of neural networks in learning complex patterns

from data, optimizing trajectory planning, and improving the overall performance of docking

maneuvers. Through theoretical analysis and simulation studies, we seek to develop robust
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CHAPTER 1. THEORY FUNDAMENTALS

and adaptive algorithms for enabling reliable and efficient docking operations.

Hereafter, we will denote the state of a given system as y(t) and the controls acting upon

that system as α(t). Initially, the objective will be to find the set of controls which minimises

a particular functional, called the cost functional. The following chapter will introduce the

problem and derive the aforementioned equations.

1.2 Derivation of the Hamilton-Jacobi-Bellman Equation

A generic Optimal Control problem can be described as follows: let us define a sufficiently

smooth function f , such that the following system of differential equations has a unique

solution: 
ẏ(t) = f(y(t), α(t))

y(0) = x

where:

• f : Rn ×A → Rn is uniformly continuous with respect to the variable y and continuous

with respect to the time variable t;

• y : [0, T ] → Rn is continuous at least;

• x ∈ Rn;

• A ⊂ Rm defined as A = {α : [0, t] → Rm | α is Lebesgue measurable}, represents the

set containing the totality of valid controls.

We will then introduce a J functional which approximates the cost of the action which is

being performed

λ > 0, J(x, α) =

∫ +∞

0
L (y(t), α(t)) · e−λt dt

where:

• L : Rn ×A → Rn is differentiable;

• x represents the initial position in the previous system of equations.
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CHAPTER 1. THEORY FUNDAMENTALS

We can notice how even though the integral is calculated to infinity, its value still approaches

a finite number thanks to the decreasing exponential function inside of it.

To proceed to study the problem we need to introduce more precise hypotheses on the regu-

larity of f(y, α) and L (y, α). We will start by establishing the definition of a module:

Definition 1. A function ω : R+ × R+ → R is a module if:

1. ω( · ,R) is continuous;

2. ω( · ,R) is non-decreasing;

3. ω(0,R) = 0, for all R ≥ 0.

We will now introduce the continuity hypotheses:

A1. • L is continuous;

• There exists ωL : R+ × R+ → R, such that

|L (x, α)− L (y, α)| ≤ ωL (|x− y|,R)

for all α ∈ A, for all R > 0 and for all x, y ∈ Rn;

• There exists ML > 0, such that

|L (x, α)| ≤ ML .

A2. • f : Rn ×A → Rn is continuous;

• f is bounded in B(0, R) for all R > 0;

• f is Lipschitz continuous, that is to say there exists Lf ≥ 0, such that

|f(x, α)− f(y, α)| ≤ Lf |x− y|

for all α ∈ A and for all x, y ∈ Rn.

11



CHAPTER 1. THEORY FUNDAMENTALS

1.2.1 Principle of Dynamic Programming

Having written down the conditions, we can introduce and prove the first important principle

of this research: the Principle of Dynamic Programming.

Definition 2. v is the value function which represents, by definition, the least possible cost

of action starting from the initial position:

v(x) = inf
α∈A

{J(x, α)}

for all x ∈ Rn.

We can prove that the previous equation can be written down as

v(x) = inf
α∈A

{∫ t

0
L (y(s), α(s)) · e−λs ds+ e−λt · v(y(t))

}
, ∀t > 0 (1.1)

for all x ∈ Rn. In control theory, this is known as the Principle of Dynamic Programming.

Proof

Let us suppose that there is a value α∗, such that

v(x) = J(x, α∗) =

∫ +∞

0
L (y(t), α∗(t)) · e−λt dt (1.2)

with λ > 0, meaning that α∗ is the control that guarantees the least possible cost of action

for a given trajectory y(t).

For every t > 0, we can split the integral as follows:

J(x, α∗) =

∫ t

0
L (y(s), α∗(s)) · e−λs ds+

∫ +∞

t
L (y(s), α∗(s)) · e−λs ds

= I1 +

∫ +∞

t
L (y(s), α∗(s)) · e−λt ds (1.3)

renaming the first integral as I1 for visual clarity.
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We can now make a change of variable in the second integral from s to s+ t and rearrange it

introducing v calculated in y(t) using the semigroup property :

J(x, α∗) = I1 +

∫ +∞

0
L (y(s+ t), α∗(s+ t)) · e−λ(s+t) ds

= I1 + e−λt

∫ +∞

0
L (y(s+ t), α∗(s+ t)) · e−λs ds

= I1 + e−λt · v(y(t)) (1.4)

Looking back at Equation 1.1 we can now write

v(x) = I1 + e−λt · v(y(t))

=

∫ t

0
L (y(s), α∗(s)) · e−λs ds+ e−λt · v(y(t)) (1.5)

Thus, we have proven the Principle of Dynamic Programming in the case where an optimal

control exists and is unique. If α is not optimal (i.e. α ̸= α∗), we can invoke the inf function

and rewrite the equation as such:

v(x) = inf
α∈A

{∫ t

0
L (y(s), α(s)) · e−λs ds+ e−λt · v(y(t))

}
, ∀t > 0

for all x ∈ Rn. In order to show the validity of the equation, we will now rename the right

term of the previous equation:

v(x) = inf
α∈A

{∫ t

0
L (y(s), α(s)) · e−λs ds+ e−λt · v(y(t))

}
︸ ︷︷ ︸

w(x)

, ∀t > 0

for all x ∈ Rn, and proceed to prove that v(x) ≥ w(x).

Using a similar process to the one used for equations 1.2 and 1.3, we can now generalize those

13
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same relations to compute for all values of α:

J(x, α) =

∫ t

0
L (y(s), α(s)) · e−λs ds+

∫ +∞

t
L (y(s), α(s)) · e−λs ds

= I1 +

∫ +∞

0
L (y(s+ t), α(s+ t)) · e−λ(s+t) ds

= I1 + e−λt

∫ +∞

0
L (y(s+ t), α(s+ t)) · e−λs ds

We introduce a new variable α̃(s) = α(s + t). By the same logic used in Equation 1.4, it

follows that

v(x) = I1 + e−λt · J(y, α̃)

≥ I1 + e−λt · v(y)

≥ ω(x)

therefore

v(x) ≥ ω(x).

We will now proceed to prove the opposite claim:

v(x) ≤ ω(x).

Let z be a generic state of y:

z = y(t, α)

with α ∈ A. Using the definition of infimum, we can write the generic relation between v and

J as

v(z) ≥ J(z, α1)− ϵ (1.6)

14
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with ϵ > 0 and α1 ∈ A. We will now define a function ᾱ(s), such that

ᾱ(s) =


α(t) if s ≤ t

α1(s− t) if s > t.

Let ȳ, y1 be the solutions associated with ᾱ, α1. It follows that

v(x) ≤ J(x, ᾱ) =

∫ t

0
L (ȳ(s), ᾱ(s)) · e−λs ds+

∫ +∞

t
L (ȳ(s), ᾱ(s)) · e−λs ds

= I1 + e−λt

∫ +∞

0
L (y(s+ t), α(s+ t)) · e−λs ds

Using the relation in Equation 1.6, we can rewrite it as

I1 + e−λt · J(y1, α1) ≤ I1 + e−λt · v(y(t)) + ϵ.

It follows that

v(x) ≤ ω(x) + ϵ.

We know that ϵ is arbitrarily small so we can rewrite the previous equation as

v(x) ≤ ω(x).

The last two demonstrations proved that the Principle of Dynamic Programming is correct.

The basic intuition for it is that we can associate the value function v(x) with the least cost

trajectory and equate it to the total cost up to a moment t, plus the cost associated with the

rest of the trajectory. This might seem a trivial point to make but it will allow us to benefit

from it when we differentiate it in the following section.

Differentiation

The Principle of Dynamic Programming provides a condition that v must meet, but is imprac-

tical. For this reason, assuming that v is differentiable, we can deduce a differential version of
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the Principle which will turn the problem of determining v into a system of partial differential

equations, making it possible to solve them computationally. To achieve this, we will assume

that α = α∗ and proceed to rearrange Equation 1.5 and divide it by t:

v(x)− e−λt · v(y(t))
t

− 1

t

∫ t

0
L (y(s), α∗(s)) · e−λs ds = 0.

If we introduce a new function h(t) = e−λt · v(y(t)), we can rewrite the previous equation as

h(0)− h(t)

t
− 1

t

∫ t

0
L (y(s), α∗(s)) · e−λs ds = 0.

We can now assume t to be approaching zero with positive values (t → 0+) and rewrite

the first addend as a difference quotient. The integral vanishes, leaving only the integrand

function, thanks to the Fundamental Theorem of Calculus, as the function L was assumed

to be continuous:

−dh(t)

dt
− L (y(t), α∗(t)) · e−λt = 0

Knowing that h(t) is a product of two functions and assuming that v ∈ C1([0,+∞),R), we

can calculate its derivative accordingly:

λe−λt · v(y(t))− e−λt · ∇v(y(t)) · f(y(t), α∗(t))− L (y(t), α∗(t)) = 0.

We can now proceed to compute this equation for t = 0 (and therefore y(0) = x):

λv(x)−∇v(x) · f(x, α∗(t))− L (x, α∗(t)) = 0. (1.7)

This is known as the Hamilton-Jacobi-Bellman equation for infinite-horizon problems. Since

this relation was derived considering α∗ as the optimal control, it can be easily generalized

by eliminating the dependence on α∗ and introducing an upper bound on the part of the

16
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equation involving the controls:

λv(x) + sup
α∈A

{−∇v(x) · f(x, α(t))− L (x, α(t))} = 0.

This equation allows us to find the optimal trajectory for reducing cost, as long as the value

function is differentiable. It includes a supremum function with negative signs before the

terms inside of it, while other textbooks might contain an equivalent formulation with an

infimum function and positive signs before the inner terms. But how can we find the control

function starting with v(x)? For this purpose, we can introduce the Verification Theorem:

Theorem 1. Let L ∈ C1 be a convex function with respect to the controls, let f(y, u) be a

linear function with respect to the controls and let Φ(y) be the classical solution to

λΦ(y) +H(∇yΦ(y), y) = 0.

It follows that

Φ(y) = v(x).

This theorem implies that v(x) is the only valid solution to the Hamilton-Jacobi-Bellman

equation.

Proof

If we define α(s) to be a control function for all s ∈ [0, t], we can choose an x(s) function such

that 
ẏ(s) = f(y(s), α(s))

y(0) = x.

17
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If Φ(y) = ϕ(y)e−λs, it follows that

−Φ(y) =

∫ +∞

0

d

ds
[Φ(y(s), s)] ds

=

∫ +∞

0
[∇ϕ(y(s))ẏ(s)e−λs − λϕ(y(s))e−λs] ds

=

∫ +∞

0
e−λs[∇ϕ(y(s))f(y(s), α(s))− λϕ(y(s))] ds.

If we then add
∫ +∞
0 e−λsL (y(s), α(s)) ds+Φ(y) to both sides, it follows that

∫ +∞

0
e−λsL (y(s), α(s)) ds =

∫ +∞

0
e−λs[∇ϕ(y(s))f(y(s), α(s))− λϕ(y(s))] ds

+

∫ +∞

0
e−λsL (y(s), α(s)) ds+Φ(y).

We have already defined H(y, p) = supα{−p · f(y, α)− L (y, α)}, from which we can derive

−H(y, p) ≤ −p · f(y, α) + L (y, α)

for all p ∈ Rn and for all α ∈ A. It follows that

∫ +∞

0
e−λsL (y(s), α(s)) ds ≤ −

∫ +∞

0
e−λs[λΦ(y(s)) +H(∇Φ(y(s)), y)] ds+Φ(y).

We know that Φ(y) is the solution for the Hamilton-Jacobi-Bellman equations, therefore we

can cancel the integral such that

∫ +∞

0
e−λsL (y(s), α(s)) ds ≤ Φ(y).

Introducing the supremum function with respect to the controls, we get

v(x) ≤ Φ(y).

18
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We will now proceed to prove the opposite statement. Let r(y) be a function defined as

r(y) ∈ argminα {L (y, α) +∇Φ(y)f(y, α)} .

Taking advantage of the convexity of L (x, α) with respect to the controls and considering

the linearity of f(y, α) with respect to the controls, the previous equation is well-defined. Let

y(s) be the solution to 
ẏ(s) = f(y(s), r(y(s)))

y(0) = x.

We proceed as previously done:

∫ +∞

0
e−λsL (y(s), α(s)) ds =

∫ +∞

0
e−λs[∇ϕ(y(s))f(y(s), α(s)) + L (y(s), α(s))

− λϕ(y(s))] ds+Φ(y).

Substituting α(s) with r(y(s)), we can minimize the inside of the integral such that

∫ +∞

0
e−λsL (y(s), α(s)) ds ≥ −

∫ +∞

0
e−λs[λΦ(y(s)) +H(∇Φ(y(s)))] ds+Φ(y).

The inside of the integral on the right can be cancelled since Φ(y(s)) is the solution to the

Hamilton-Jacobi-Bellman equation. It follows that

v(x) ≥ Φ(y)

which proves our initial statement.

1.3 Viscosity Solutions

We have proven that, in Optimal Control problems, the Hamilton-Jacobi-Bellman equation

holds when v is a continuous and differentiable function. These equations represent a funda-

mental and necessary condition to determine such a function, as they allow us to apply the
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classical tools of Mathematical Analysis to our problem. Typically, however, the function v

is not differentiable but only continuous, as in the case where the controls used are piece-

wise continuous (e.g. bang-bang controls), which are quite common in the field of Control

Engineering.

In this case, we need to generalize the concept of derivative in order to define an analogue

of the Hamilton-Jacobi-Bellman equation for when the value function is continuous but not

differentiable. We therefore provide the following definitions:

Definition 3. The superderivative of the function v is

D+v(x) = {p ∈ Rn : lim sup
y→x

v(y)− v(x)− p(x− y)

|x− y|
≤ 0}.

Definition 4. The subderivative of the function v is

D−v(x) = {p ∈ Rn : lim inf
y→x

v(y)− v(x)− p(x− y)

|x− y|
≥ 0}.

We can now ask if splitting the regular derivative with a subderivative and a superderivative

is a useful thing to do. To answer this we can evoke the following lemma:

Lemma 1. If D−v(x), D+v(x) are both non-empty sets, then

D−v(x) = D+v(x)

and v is differentiable in x (and p = ∇v).

20
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Proof

Let us suppose that D−v(x), D+v(x) ̸= 0. Let p+ ∈ D+v(x), p− ∈ D−v(x), then

lim inf
y→x

v(y)− v(x)− p−(x− y)

|x− y|
≥ 0

lim sup
y→x

v(y)− v(x)− p+(x− y)

|x− y|
≤ 0.

If we subtract the second statement from the first we get

lim sup
y→x

(p+ − p−)(x− y)

|x− y|
≥ 0

which, implying that x− y = v, can be rewritten as

lim sup
|v|→0

(p+ − p−)v

|v|
≥ 0.

It follows that if |v| < ϵ, then

(p+ − p−)v

|v|
≥ 0.

We will now choose v to be described as v = −ϵ p+−p−

|p+−p−| and its absolute value to be described

as |v| = ϵ |p
+−p−|

|p+−p−| = ϵ. Substituting these values in the previous equation we get

−ϵ
|p+ − p−|2

|p+ − p−|
≥ 0.

It follows that

|p+ − p−| ≥ 0

and therefore that

p+ = p−

and therefore that

D−v(x) = D+v(x) = {p} .

21



CHAPTER 1. THEORY FUNDAMENTALS

The statements 1 and 2 must be true for the same value of p, therefore

lim
y→x

v(y)− v(x)− p(x− y)

|x− y|
= 0

is the definition for the differential p = ∇v. We will now proceed to define a viscosity solution

as follows:

Definition 5. Let u be a viscosity solution for the partial differential equation

F (x, u(x),∇u(x)) = 0

if:

• F (x, u(x), p) ≤ 0 for all x ∈ Rn and for all p ∈ D+u(x);

• F (x, u(x), p) ≥ 0 for all x ∈ Rn and for all p ∈ D−u(x).

We will now make some propositions in order to prove that the definition of viscosity solution

is consistent and equivalent to a classical solution when physical properties are given to the

function u(t).

Lemma 2. If u ∈ C0(Ω), Ω ⊂ Rn is a viscosity solution, it will be a viscosity solution for all

Ω′ ⊂ Ω.

Proof

If there exists a function ϕ ∈ C1(Ω) such that the function u− ϕ has a local maximum x0, it

follows that it will also be the local maximum of a function u − ϕ̃, for all ϕ̃ ≡ ϕ in the open

ball centered at x0 with a radius R. We can therefore say that

λu(x0) + sup
α∈A

{−∇ϕ(x0) · f(x0, α(t))− L (x0, α(t))} ≤ 0.
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It follows that

λu(x0) + sup
α∈A

{−∇ϕ̃(x0) · f(x0, α(t))− L (x0, α(t))} ≤ 0.

Therefore, u is a viscosity solution for all Ω′ ⊂ Ω.

Lemma 3. If u ∈ C1(Rn) is a viscosity solution, it will be both a subsolution and a superso-

lution.

Proof

If u ∈ C1(Rn) is a viscosity solution, such that

λu(x0) + sup
α∈A

{−∇ϕ(x0) · f(x0, α(t))− L (x0, α(t))} ≤ 0

with ϕ ∈ C1(Rn) such that u− ϕ has a local maximum in x0, it follows that

∇u = ∇ϕ

only if u ∈ C1, and therefore

λu(x0) + sup
α∈A

{−∇u(x0) · f(x0, α(t))− L (x0, α(t))} ≤ 0

for all x ∈ Rn.

Lemma 4. If u ∈ C0(Rn) is a regular solution (differentiable on almost all of its domain), it

will be a viscosity solution.

Proof

If u ∈ C0(Rn) is a function which is differentiable on almost all of its domain, it follows that

ϕ ∈ C1(Rn). The combined statement of these propositions allows us to consider the viscosity

solutions as regular solutions, meaning that, from now on, we won’t need to operate under
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the assumption that u might not be a differentiable function. The function u can finally be

derived.

The previous definition for a viscosity solution is equivalent to the following lemma:

Lemma 5. If v ∈ C0(Ω) is limited, and Ω ⊂ Rn, we can derive that:

1. v is a viscosity subsolution and p ∈ D+v(x) if and only if there exists a function ϕ ∈

C1(Ω), such that ∇ϕ(x) = p and (v − ϕ) has a local maximum;

2. v is a viscosity supersolution and p ∈ D−v(x) if and only if there exists a function

ϕ ∈ C1(Ω), such that ∇ϕ(x) = p and (v − ϕ) has a local minimum.

Proof

To derive the previous lemma, we can assume that p ∈ D+v(x). It follows that for

lim sup
y→x

v(x)− v(y)− p(x− y)

|x− y|
≤ 0

there exists a value δ > 0 such that v(x) ≤ v(y) + p(x− y) + σ(|x− y|) · |x− y|, with:

• σ being an increasing and continuous function;

• σ(0) = 0.

We will now proceed to introduce a novel function the use of which will become apparent

later in the demonstration:

ρ(r) =

∫ r

0
σ(t) dt.

We can observe that:

1. ρ(0) =
∫ 0
0 σ(t) dt = 0;

2. ρ′(r) = σ(r)− σ(0) = σ(r), from which it follows that ρ′(0) = σ(0) = 0;

3. ρ(2r) =
∫ r
0 σ(t) dt +

∫ 2r
r σ(t) dt ≥

∫ r
0 σ(t) dt + σ(r)

∫ r
0 1 dt = ρ(r) + σ(r) · r ≥ σ(r) · r,

from which it follows that ρ(2r) ≥ r · σ(r).
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We proceed to introduce another novel funtion ϕ, such that

ϕ(y) = u(x) + p(x− y) + ρ(2|x− y|)

with:

• ϕ ∈ C1, from which it follows that ∇ϕ(y) = p.

We can find that the analytical relation for the local maximum of the function (u− ϕ) is

(u− ϕ)(y) ≤ u(x) + p(x− y) + σ(|x− y|) · |x− y| − u(x)− p(x− y)− ρ(2|x− y|)

= σ(|x− y|) · |x− y| − ρ(2|x− y|)

≤ σ(|x− y|) · |x− y| − σ(|x− y|) · |x− y|

= 0

= (u− ϕ)(x)

which implies that

(u− ϕ)(y) ≤ (u− ϕ)(x).

It follows that x is a local maximum for all y ∈ B(x, δ). We can prove the second property of

Lemma 1 by observing that D−u(x) = −D+{−u(x)} and repeating the previous calculations.

We can now deal with the scenario in which v might not be differentiable (v /∈ C1) and

introduce the following theorem, based on the previous lemma:

Theorem 2. Let H : Rn × Rn → R be the Hamiltonian given by the formula

H(x, p) = sup
α∈A

{−f(x, α(t)) · p− L (x, α(t))}.

Considering hypotheses A1 and A2 to be true and v ∈ C0(Rn), it follows that

λv(x) +H(x,∇xϕ(x)) = 0
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for all ϕ described as in the previous lemma, is a viscosity solution.

We are now going to use these properties to prove the following theorem:

Theorem 3. If v ∈ C0(Ω), Ω ⊂ Rn is limited, it follows that

λv(x) + sup
α∈A

{−p · f(x, α)− L (x, α(t))} ≤ 0

for all p ∈ D+v(x) and for all x ∈ Rn.

Let us add and subtract v(y(t)) from the Principle of Dynamic Programming :

v(x) =

∫ t

0
L (y(t), α∗(t)) · e−λt dt+ e−λt · v(y(t)) + v(y(t))− v(y(t)).

We can rewrite it introducing a variable α ∈ A:

v(y(t))− v(x) +

∫ t

0
L (y(t), α) · e−λt dt+ (e−λT − 1) · v(y(t)) ≥ 0. (1.8)

We know that for all p ∈ D+v(x) and for t > 0, it follows that

v(y(t))− v(x) ≤ p(y(t)− x) + o(|y(t)− x|).

We can now substitute the first two addends of Equation 1.8 with the right-hand side of the

previous equation and divide by t:

p(y(t)− x)

t
+

o(|y(t)− x|)
t

+
1

t

∫ T

0
L (y(t), α) · e−λt dt+

(e−λt − 1)

t
· v(y(t)) ≥ 0.

We can now assume t to be approaching positive zero (calculating the derivatives in y(0) = x):

p · ẏ(0) + L (x, α)− λv(x) ≥ 0.
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Assuming that p ∈ D+v(x) we can rewrite the previous equation as

p · f(x, α) + L (x, α)− λv(x) ≥ 0

and therefore

F (x, v(x), p) ≥ 0

for all p ∈ D+v(x) and for all x ∈ Rn. We can finally define F as the viscosity solution.

We will dedicate the following paragraph to the proof of this non-differentiable version of the

Hamilton-Jacobi-Bellman equation for the sake of clarity, as it requires the demonstration of

some auxiliary results.

Proof for Theorem 2

We will start by proving that if v is continuous, than it will also be a viscosity solution of the

Hamilton-Jacobi-Bellman equation. Let ϕ be a function such that ϕ ∈ C1(Rn) and x be the

local maximum of the function v − ϕ. It follows that

v(x)− ϕ(x) ≥ v(y)− ϕ(y)

for all y ∈ B(x,R). We can rearrange this relation to be

v(x)− v(y) ≥ ϕ(x)− ϕ(y)

for all y ∈ B(x,R). Let α(t) be constant and y(t) be its associated solution. It follows that for

small values of t, y(t) is an element of the open ball centered at x with a radius R. Therefore

v(x)− v(y(t)) ≥ ϕ(x)− ϕ(y(t)) (1.9)

27



CHAPTER 1. THEORY FUNDAMENTALS

for all y ∈ B(x,R) and for small values of t. We will now subtract v(y(t)) from equation 1.5

and rearrange it to be:

v(x)− v(y(t)) ≤
∫ t

0
L (y(t), α(t)) · e−λs ds+ v(y(t)) · (e−λt − 1).

Looking back at Equation 1.8 we can now say that:

ϕ(x)− ϕ(y(t)) ≤ v(x)− v(y(t)) ≤
∫ t

0
L (y(t), α(t)) · e−λs ds+ v(y(t)) · (e−λt − 1).

It follows that:

ϕ(x)− ϕ(y(t)) ≤
∫ t

0
L (y(t), α(t)) · e−λs ds+ v(y(t)) · (e−λt − 1).

We can now divide by t and assume that it approaches 0 with positive values:

ϕ(x)− ϕ(y(t))

t
≤ 1

t

∫ t

0
L (y(t), α(t)) · e−λs ds+ v(y(t)) · (e

−λt − 1)

t

for all α ∈ A. It follows that:

−dϕ(x)

dt
≤ L (x, α(t))− λv(x)

for all α ∈ A. It follows that:

−∇ϕ(x) · f(x, α(t))− L (x, α(t)) + λv(x) ≤ 0

for all α ∈ A. We now transform it into an equivalence using the supremum function:

λv(x) + sup
α∈A

{−∇ϕ(x) · f(x, α(t))− L (x, α(t))} = 0.

It follows that:

λv(x) +H(x,∇ϕ) ≤ 0.
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v is therefore a viscosity subsolution. We now want to prove that it is also a viscosity super-

solution. Using Lemma 1 with an opposite logic, we can think of x as the local minimum of

v − ϕ. It follows that:

v(x)− v(y) ≤ ϕ(x)− ϕ(y)

for all y ∈ B(x,R). I can now use the Principle of Dynamic Programming (≥) to set ᾱ ∈ A

as a generic variable and ȳ as its solution and say:

v(x) ≥
∫ t

0
L (ȳ(s), ᾱ(s)) · e−λs ds+ v(ȳ(t)) · e−λt − tϵ (1.10)

with ϵ > 0. Following hypotheses A1 and A2, I can say:

|L (ȳ(s), ᾱ(s))− L (x, ᾱ(s))| ≤ ωL (|ȳ(s)− x|, R).

Knowing that f is continuous and bounded, we can say that |ȳ(s)− x| ≤ Ms for small values

of s, therefore:

|L (ȳ(s), ᾱ(s))− L (x, ᾱ(s))| ≤ ωL (Ms,R). (1.11)

We know that f is a Lipschitz continuous function from hypotheses A1 and A2, therefore we

can derive that:

|f(ȳ(s), ᾱ(s))− f(x, ᾱ(s))| ≤ L(|ȳ(s)− x|) ≤ LMs.

We can proceed to integrate the left side of Equation 1.11 and elaborate it using the triangle

inequality:

∣∣∣∣∫ t

0
L (ȳ(s), ᾱ(s)) · e−λs ds−

∫ t

0
L (x, ᾱ(s)) · e−λs ds

∣∣∣∣
≤
∫ t

0
|L (ȳ(s), ᾱ(s))− L (x, ᾱ(s))| · e−λs ds

≤
∫ t

0
ωL (Ms,R) · e−λs ds
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We know that: ∫ t

0
ωL (Ms,R) · e−λs ds = o(t)

therefore: ∫ t

0
L (ȳ(s), ᾱ(s)) · e−λs ds =

∫ t

0
L (x, ᾱ(s)) · e−λs ds+ o(t)

therefore, substituting in Equation 1.10,

v(x) ≥
∫ t

0
L (x, ᾱ(s)) · e−λs ds+ v(y(t)) · e−λt + o(t).

We will now subtract v(y(t)) from both sides:

v(x)− v(y(t)) ≥
∫ t

0
L (x, ᾱ(s)) · e−λs ds+ v(y(t)) · (e−λt − 1) + o(t)− ϵt.

We can once again use Lemma 1 to go from v to ϕ to make sure we are dealing with a

differentiable function:

ϕ(x)− ϕ(y(t)) ≥
∫ t

0
L (x, ᾱ(s)) · e−λs ds+ v(y(t)) · (e−λt − 1) + o(t)− ϵt.

Let us now divide by t and make it approach zero with positive values:

−dϕ(y(t))

dt
≥ L (x, ᾱ(t))− λv(y(t)) + ϵ+ o(1)

−∇ϕ(y(t)) · ẏ(t)− L (x, ᾱ(t)) + λv(y(t)) ≥ ϵ+ o(1)

−∇ϕ(x) · f(x, ᾱ(t))− L (x, ᾱ(t)) + λv(y(t)) ≥ ϵ

for all ᾱ ∈ A and for all ϵ > 0. If we introduce the supremum function and consider the

arbitrariness of ϵ, we are left with

λv(x) +H(x,∇ϕ(x)) = 0.
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This result finally proves that v is also a viscosity supersolution and, therefore, a viscosity

solution. This result allows us to derive the Hamilton-Jacobi-Bellman equation in its weak

form. It is called a weak form because the gradient of the function v(x) is substituted with

the gradient of a differentiable function ϕ(x) which shares a stationary point with it.

1.4 Adding Constraints

The value function v(x) is differentiable, but if we decide to impose constraints it might

become not differentiable. We will now consider an equation with constraints:


ẏ = f(x, α)

y(0) = x.

The set of possible controls can be described as

A = {α : [0,+∞) → U | y(t) ∈ θ̄}

with y(t) being the corresponding solution, U ∈ Rm and θ̄ being a closed subset of Rn.

Therefore we can write our value function as such

v(x) = inf
α∈A

J(α).

We will explain in depth the following statements since their proof is beyond the scope of this

thesis. Let us suppose that:

1. There exist h, r > 0 and η : Rn → R is a continuous and closed function in θ̄ ⊂ R such

that

B(y + tη(y), rt) ⊂ θ

for all y ∈ θ̄ and for all t ∈ (0, h];

2. α : [0,+∞) → U ⊂ Rm with U being a compact system;
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3. All the previous hypotheses on the f and L functions are valid.

Definition 6. v(x) is a closed and continuous function in θ̄. It is a viscosity solution for the

constrained problem

λv(x) +H(x,∇v(x)) = 0

for all x ∈ θ̄ if v(x) is a subsolution in θ̊ and a supersolution in θ̄

Theorem 4. If the conditions 1-3 are true, the closed and continuous value function v(x) is

the only constrained viscosity solution for

λv(x) +H(x,∇v(x)) = 0.

The proof can be found in the referenced papers.

Theorem 5. Let H1, H2 be the Hamiltonians associated with the dynamics f1, f2. Let v1, v2

be the constrained viscosity solutions for

λv(x) +H1(x,∇v(x)) = 0

λv(x) +H2(x,∇v(x)) = 0.

It follows that

sup
x∈θ

|v1(x)− v2(x)| ≤ sup
x∈θ̄,α∈U

[f1(x, α)− f2(x, α)].

The previous theorems are used to prove the following theorem:

Theorem 6. Let us suppose that:

1. There exists β > 0 such that for all x ∈ ∂θ and there exists α ∈ U such that

f(x, α) · ν(x) ≤ −β < 0;

2. ∂θ ∈ C2.
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It follows that v(x) is a closed and continuous function in θ̄.

This last theorem proves that there exists a condition for which the value function v(x) is not

only a viscosity solution but a constrained viscosity solution. The proof for this statement

requires introducing two more lemmas which are beyond the scope of this thesis. Basically,

in intuitive terms, adding a constraint of this type is equivalent to tracing an analytical curve

around an obstacle and adding a rule which imposes that the trajectory must not cross that

boundary. This is possible by making sure that the thrust vector is always pointing in the

same direction as the outward-pointing normal vector of the curve, which is guaranteed by

the inequality f(x, α) · ν(x) ≤ −β < 0.

33



Chapter 2

Classical Numerical Methods

There are several classical methods for solving the Hamilton-Jacobi-Bellman equation; in this

particular case, two have been chosen based on prior knowledge and the intrinsic elegance

of the techniques employed. The first technique we will discuss has its roots in functional

analysis, while the second technique is grounded in the field of perturbative methods. Even

though we will only use the Semi-Lagrangian method, it is useful to delineate other possible

alternatives for illustrative purposes.

2.1 From Viscosity Solutions to Real Solutions

In this section we are going to use a finite difference method (such as Euler’s method) to define

an operator, which we will later prove to be a contraption. Since we will be dealing with a

contraption, we will be able to employ all known theorems in Functional Analysis to define

a convergent succession, thereby deriving a solution by iteration based on a finite difference

method (contraption method) and ask the question: is this viscosity solution v an effective

solution?

λv(x) + sup
a∈A

{−∇v(x) · f(x, a(t))− L (x, a(t))} = 0
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Knowing that both f and L are Lipschitz continuous as in A1 and A2, it follows that:

|f(x, a)− f(y, a)| ≤ Lf (|x− y|+ |a0 − a1|) (2.1)

|L (x, a)− L (y, a)| ≤ LL (|x− y|+ |a0 − a1|).

Fixing h > 0, we replace the problem described by the differential equations with the following

single-step approximation:


yn+1 = yn + hϕ(yn, An, h)

y0 = x

where:

• An = (a0n, a
1
n, · · · , a

q
n) ∈ RM×(q+1) is the set containing all the admissible controls after

the nth time;

• ϕ satisfies the following consistency condition:

lim
h→0

ϕ(x, (a, a, · · · , a), h) = f(x, a).

This condition becomes necessary for the convergence of the approximation of the system

of differential equations;

• ϕ satisfies the following Lipschitz condition

|ϕ(x,A, h)− ϕ(y,A, h)| ≤ Lϕ(|x− y|)

for all A matrices of admissible controls and for all 0 < h < h0 < ∞.
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Similarly, the Lipschitz condition becomes a sufficient condition for the aforementioned con-

vergence, therefore we can write down the discrete version of the functional J

Jh({An}) =
∞∑
n=0

∑
i∈I

hωi · L (yn+τi , a
i
n) · βn+τi

where1:

• β = e−λh;

• ωi ∈ (0, 1),
∑

i=0 ωi = 1 are the weights associated with the trapezoid formula;

• I = {0, · · · , q};

• 0 ≤ τi ≤ 1 are the knots associated with the trapezoid formula.

The function v will then be:

vh(x) = inf
{An}

Jh({An})

Lemma 6. Considering B1, B2 and B3 hypotheses to be correct, it follows that

vh(x) = inf
{An}

{
p−1∑
n=0

∑
i∈I

hωi · L (yn+τi , a
i
n) · βn+τi + vh(yp) · βp

}

for all p ≥ 1, for all x ∈ Rn and with β < 1. The points yn+τi are intermediate points between

yn and yn+1 based on τi in order to approximate the differential problem.

1This approximation derives from the trapezoid, which states that∣∣∣∣∣
∫ b

a

g(s) ds−
N∑

n=0

∑
i∈I

hωi · g((n+ τi) · h)

∣∣∣∣∣ ≤ c

(
b− a

N

)p
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Proof

By the definition of vh(x), for any ϵ > 0, there exists an admissible sequence {An} which

depends on ϵ, such that

vh(x) + ϵ ≥
p−1∑
n=0

∑
i∈I

hωi · L (yn+τi , a
i
n) · βn+τi +

∞∑
n=p

∑
i∈I

hωi · L (yn+τi , a
i
n) · βn+τi (2.2)

where we have denoted by ȳn the sequence generated by the discrete control {An}. The second

term in the right-hand side of the previous equation may be rewritten as such:

vh(x) + ϵ ≥
p−1∑
n=0

∑
i∈I

hωi · L (yn+τi , a
i
n) · βn+τi + βp

∞∑
n=0

∑
i∈I

hωi · L (yp+n+τi , a
i
p+n) · βn+τi .

Since ϵ is arbitrary, observing that ȳp+n is the solution of Equation 2.1 related to the control

{Ap+n} and with initial state ȳp, we obtain from Equation 2.2

vh(x) ≥
p−1∑
n=0

∑
i∈I

hωi · L (ȳn+τi , ā
i
n) · βn+τi + βpvh(ȳp).

To prove the reverse inequality, it suffices to observe that, due to the definition of vh(x), for

any sequence
{
Ân

}
0≤n≤p−1

we have

vh(x) ≥
p−1∑
n=0

∑
i∈I

hωi · L (ŷn+τi , â
i
n) · βn+τi + βp inf

{An}
Jh
ŷp({An})

and hence

vh(x) ≥
p−1∑
n=0

∑
i∈I

hωi · L (ŷn+τi , â
i
n) · βn+τi + βpvh(ŷp)

which completes the proof. In our specific case, we will assume p = 1, τi = τ = 0, ωi = ω = 1

and that ϕ(x,A, h) = f(x, a). Therefore, Lemma 6 will become

vh(x) = inf
a∈A

{hL (x, a) + βvh(x+ hf(x, a))}
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We will call this a 1st order scheme. This is not the only option, other viable schemes could

be the Runge-Kutta or Heun schemes.

2.1.1 Semi-Lagrangian Method

We will now try to prove the following theorem:

Theorem 7. If the functions L and f satisfy the B1 and B2 hypotheses, the discretized

Hamilton-Jacobi-Bellman equation has a unique solution vh ∈ L∞(Rn), such that:

∥vh(x)∥ ≤ ML

λ

Proof

We start by defining B(x,R) as

B(x,R) = {v ∈ L ∞(Rn), ∥vh(x)∥∞ ≤ R}.

We will then define the functional Th applied to the analytical function v as

Thv(x) = min
A

[∑
i∈I

hωi · f(xτi , ai) · βτi + β · v(x+ h · ϕ(x,A))

]
.

With this definition, the discretized Hamilton-Jacobi-Bellman equation transforms into the

following fixed-point equation:

vh(x) = Thv(x).

The first notion that we are going to derive is that

T : B

(
x,

ML

λ

)
→ B

(
x,

ML

λ

)

for all λ ∈ R+.
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Proof

If v ∈ B(x,R) for all R > 0, it follows that

∥Thv(x)∥∞ =

∥∥∥∥∥∑
i∈I

hωi · L (xτi , a
i) · βτi + β · v(x+ h · ϕ(x,A))

∥∥∥∥∥
∞

.

By applying the triangle inequality rule, we obtain

∥Thv(x)∥∞ ≤
∑
i∈I

hωi ·
∥∥L (xτi , a

i)
∥∥
∞ · βτi + β · ∥v(x+ h · ϕ(x,A))∥∞ .

Knowing that L is bounded (∥L ∥ ≤ ML ) and v(x) ∈ B(0, R) (∥v(x)∥∞ ≤ R), we can

simplify the equation further as such:

∥Thv(x)∥∞ ≤ hML

∑
i

ωi + βR.

Therefore,

∥Thv(x)∥∞ ≤ hML + βR.

We will now arbitrarily assign the value R = hML
1−β . The reasoning is that if we substitute this

value for R in the previous equation we will get

∥Thv(x)∥∞ ≤ hML + β
hML

1− β
.

It follows that

∥Thv(x)∥∞ ≤ (1− β)hML + βhML

1− β
.

It follows that

∥Thv(x)∥∞ ≤ hML

1− β
.

That is to say

∥Thv(x)∥∞ ≤ R
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and, therefore,

T : B(x,R) → B(x,R)

We will now want to prove that the functional Th is a contraction2 for some matrix A ={
a0, a1, · · · , an

}
, therefore

|Thv1(x)− Thv2(x)| ≤

∣∣∣∣∣∑
i∈I

hωi · L (xτi , a
i) · βτi + β · v1(x+ h · ϕ(x,A))

−
∑
i∈I

hωi · L (xτi , a
i) · βτi − β · v2(x+ h · ϕ(x,A))

∣∣∣∣∣
which can be simplified as

|Thv1(x)− Thv2(x)| ≤ β|v1(x+ h · ϕ(x,A))− v2(x+ h · ϕ(x,A))|.

Taking the supremum of each side, we can rewrite it as

∥Thv1 − Thv2(x)∥∞ ≤ β∥v1 − v2∥∞.

Since we know that β is positive and less than 1, we have finally proved that the functional

Th is a contraction. We now know for sure that Thv(x) = vh(x) has a unique solution because

of the Banach-Caccioppoli theorem.3

We can now develop an algorithm to find the solution vh by converging numerically:

v
(n+1)
h = Th(v

(n)
h ) (2.3)

with v
(0)
h chosen arbitrarily. We know that this method will converge to the right solutions

2A functional F : x → x is defined as a contraction when there exists Lf ≤ 1, such that

|F (u)− F (v)| ≤ L|u− v|, ∀u, v ∈ x

3Theorem (Banach-Caccioppoli): If (X, d) is a metric space and f : X → X is a contraction, f will
have a unique solution to the f(x) = x fixed-point problem.
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thanks to Picard’s theorem.4 We will now proceed to prove the following theorem:

Theorem 8. If the hypotheses B1, B2 and B3 are valid, L is limited and λ ≥ Lϕ, it follows

that for all h ≤ h0

∥v − vh∥∞ ≤ C0 · hp

where p is the order of approximation for the trapezoid method.

We will define the following conditions:

C1. For all z ∈ Rn that are in initial conditions and for all α ∈ [0, h] → U that are controls

there will exist a matrix A ∈ Rm×(q+1) and a constant k1 > 0 such that:

|y(h, α)− z − h · ϕ(z,A)| ≤ k1 · hp+1

C2. There exists a constant k2 > 0, such that:

∣∣∣∣∣
∫ h

0
L (y(s), α(s)) · e−λs −

∑
i∈I

hωi · L (zτi , a
i) · βτi

∣∣∣∣∣ ≤ k2 · hp+1

We know from the Principle of Dynamic Programming that

v(x) = inf
α∈A

{∫ h

0
L (y(s), α(s)) · e−λs ds+ e−λh · v(y(h))

}
.

If we consider the matrix A = (a0, a1, · · · , ap) as the minimum of controls given by the

discretized Hamilton-Jacobi-Bellman equation and α(s) as the first control of the hypotheses

C1 and C2, it follows that

|v(x)− vh(x)| ≤

∣∣∣∣∣
∫ h

0
L (y(s), α(s)) · e−λs ds−

∑
i∈I

hωi · L (xτi , a
i) · βτi

∣∣∣∣∣
+ β|v(y(h))− vh(x+ h · ϕ(x,A))|. (2.4)

4A method
v
(n+1)
h = Th(v

(n)
h )

will converge only if Th is a contraction.
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We can notice how the modules in the right side of the inequality can be both rewritten as

∣∣∣∣∣
∫ h

0
L (y(s), α(s)) · e−λs −

∑
i∈I

hωi · L (xτi , a
i) · βτi

∣∣∣∣∣ ≤ k2 · hp+1

|v(y(h))− vh(x+ h · ϕ(x,A))| ≤ |v(y(h))− v(x+ h · ϕ(x,A)|

+ |(vh(x+ h · ϕ(x,A)))|

− |(vh(x+ h · ϕ(x,A)))|.

Since we know that the v function is Lipschitz continuous, the right side of the second equation

can be written in the following inequality:

|v(y(h))− v(x+ h · ϕ(x,A))|+ |(vh(x+ h · ϕ(x,A)))| − |(vh(x+ h · ϕ(x,A)))|

≤ Lv|y(h)− x− h · ϕ(x,A)|+ sup
x
|vh(x)− v(x)|.

which can in turn be rewritten as

Lv|y(h)− x− h · ϕ(x,A)|+ sup
x
|vh(x)− v(x)| ≤ Lvk1 · hp+1 + ∥vh − v∥∞

which means that Equation 2.4 can be rewritten as

|v(x)− vh(x)| ≤ k2 · hp+1 + β(Lvk1 · hp+1 + ∥vh − v∥∞)

for all x ∈ Rn. It follows that

∥v − vh∥ ≤ k2 · hp+1 + βLvk1 · hp+1 + β∥vh − v∥∞

for all x ∈ Rn. It follows that

(1− β) · ∥v − vh∥ ≤ k2 · hp+1 + βLvk1 · hp+1
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for all x ∈ Rn. It follows that

∥v − vh∥ ≤ C
hp+1

1− β

for all x ∈ Rn, where C = k2 + βLvk1. We know that β = e−λh, therefore 1− β = 1− e−λh.

If h approaches zero with positive values, we can derive that 1 − β = λh through a notable

limit. Therefore,

∥v − vh∥ ≤ C
hp+1

λh
.

It follows that

∥v − vh∥ ≤ C0
hp+1

h
.

It follows that

∥v − vh∥ ≤ C0 · hp, C0 =
C

λ
.

2.1.2 Linear Case Example

We now know that we can use Equation 2.3 to find a solution vh. We can then make h

approach 0 with positive values and derive the solution v to arbitrary accuracy.

We have shown that the problem of finding solutions to the Principle of Dynamic Program-

ming can be reduced to a fixed-point problem, which can be easily solved using the Banach-

Caccioppoli theorem. Subsequently, we demonstrated that, under suitable assumptions, there

is a convergence comparable to the error incurred when choosing to approximate the value

function using the trapezoidal method. Clearly, this is not the only way to approximate such

an integral, and an entire family of results on the convergence rate and quality of solutions

can be generated. We can employ the contraction method by assuming that the function

f(x, a) is linear with respect to position and controls:

f(x, a) = Ax+Ba+ b

with A ∈ Rn×n, B ∈ Rn×m and b ∈ Rn. We will also assume that the control vector vh is
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linear with respect to position

vh(x) = Mx+ c

with M ∈ Rn×n and c ∈ Rn. We can then combine the previous equations and obtain

Mx+ c = inf
a
{hL (x, a) + β[M(x+ h(Ax+Ba+ b)) + c]} .

We can now assume that a = α∗(x), which implies that the inf function is no longer needed

since we already have a value which minimizes its content:

Mx+ c = hL (x, α∗(x)) + β[Mx+MhAx+MhBα∗(x) +Mhb+ c].

We can recognise this to be an equation in the form

v
(n+1)
h = Th

(
v
(n)
h

)

with Th being a contraction and v
(0)
h being chosen arbitrarily. We can rearrange it for visual

clarity:

M (n+1)x(n+1) + c(n+1) = hL (x, α∗(x)) +
[
βM (n) + βM (n)hA

]
x+M (n)βhBα∗(x)

+M (n)hb+ c(n).

This recursive equation for the Semi-Lagrangian method will now depend on how the α∗(x)

function is behaved, since it has to be derived for any specific case. The more it is continuous

in x, the easiest it will be to find a good recursive equation. In each specific case, we will have

to assume the values for L (x, α∗(x)) and f(x, a) in order to find the relative α∗(x) function.

The same logic can be used with a control function which is piece-wise continuous, such as

vh(x) =
N∑
i=1

ciηi(x)
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with ηi(x) = Mix+ ci. We can then obtain

N∑
i=1

ci(Mix+ ci) = inf
a

{
hL (x, a) + β

[
N∑
i=1

ci(Mi(x+ h(Ax+Ba+ b)) + ci)

]}
.

We can now assume that a = α∗(x)

N∑
i=1

ci(Mix+ ci) = hL (x, α∗(x))

+ β

[
N∑
i=1

(ciMix+ ciMihAx+ ciMihBα∗(x) + ciMihb+ ci)

]
.

This is in the form

v
(n+1)
h = Th

(
v
(n)
h

)
with Th being a contraction and v

(0)
h being chosen arbitrarily. We can once again rearrange

it for visual clarity:

N∑
i=1

(
c
(n+1)
i M

(n+1)
i x(n+1) +

(
c
(n+1)
i

)2)

= hL (x, α∗(x)) +

[
N∑
i=1

(
βc

(n)
i M

(n)
i + βc

(n)
i M

(n)
i hA

)]
x(n)

+

N∑
i=1

(
βc

(n)
i M

(n)
i hBα∗(x) + βc

(n)
i M

(n)
i hb+ βc

(n)
i

)
.

As in the previous case, the recursive equation will depend on how we choose α∗(x). This last

chapter highlighted that Semi-Lagrangian is not the only method to rely on for solving PDE

systems and that there are many ways to apply neural networks if desired.

2.2 Perturbation Method

After exploring a resolution method which utilizes functional analysis, we now adopt a per-

turbative method. This approach belongs to a family of methods that consider the solution to

a specific problem as a series of appropriately determined terms. We begin to delve into it by
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solving the following equation:

A(v)− f(x) = 0

B(v) = 0

with x ∈ Rn, A : C1 → R being a differential operator and B : C0 → R being a linear operator

which determines the boundary conditions. We will now proceed to split the differential

operator into linear and non-linear components as such:

A = L+N.

In this way, the previous equation can be rewritten as such:

L(v) +N(v)− f(x) = 0. (2.5)

We will now define a family of solutions

vλ : Rn → R, λ ∈ [0, 1]

for the following equation, which is the convex transform of the previous equation:

k(vλ, λ) = (1− λ)[L(vλ)− L(vs)] + λ[A(vλ)− f(x)] = 0. (2.6)

Let us notice that if k = 1, the equation becomes

A(v1)− f(x) = 0

while if k = 0 the equation becomes

L(v0)− L(vs) = 0.
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In this latter case, we can notice how the equation is linear (since L is the linear part of A).

We can now proceed to rewrite Equation 2.6 as follows:

k(vλ, λ) = L(vλ)− L(vs)− λL(vλ) + λL(vs) + λL(vλ) + λN(vλ)− λf(x)

= L(vλ)− (1− λ) · L(vs) + λ · [N(vλ)− f(x)]. (2.7)

This is known as homotopy method since it relies on having two addends in the equation rely

on a combination of factors depending on the parameter λ. We will now assume λ to be a

small value and suppose that the solution v can be expressed as a power series in terms of it:

v = v0 + λv1 + λ2v2 + · · · =
+∞∑
n=0

λnvn. (2.8)

If we suppose λ = 1, then

v = v0 + v1 + v2 + · · · =
+∞∑
n=0

vn. (2.9)

Let us now suppose that:

• The 2nd derivative of N(v) is small in value;

• ∥L−1 ∂N
∂v ∥ < 1.

We will proceed to prove the following theorem:

Theorem 9. If N(v) is a non-linear function and v =
∑+∞

k=0 λ
kvk, then

∂n

∂λn
N(v)λ=0 =

∂n

∂λn
N

(
n∑

k=0

λkvk

)
λ=0

.
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Proof

We know that v =
∑+∞

k=0 λ
kvk can be split as follows:

v =
+∞∑
k=0

λkvk

=

n∑
k=0

λkvk +

+∞∑
k=n+1

λkvk.

We can finally derive that

∂n

∂λn
N(v)λ=0 =

∂n

∂λn
N

(
n∑

k=0

λkvk +

+∞∑
k=n+1

λkvk

)
λ=0

=
∂n

∂λn
N

(
n∑

k=0

λkvk

)
λ=0

.

The second summation vanishes since a polynomial of at least degree n+1 is differentiated n

times, always leaving at least one lambda term of degree 1, which is then evaluated at λ = 0

and disappears. We now introduce the following relations:

L(v) = v(x)− f(x)−N(v) = 0

H(v, λ) = (1− λ) · F (v) + λL(v) = 0.

If we substitute the first equation into the second one and define F (v) = v(x)− f(x), we can

obtain:

H(v, λ) = v(x)− f(x)− λN(v) = 0. (2.10)

We will now do a Maclaurin expansion of N(v) with respect to λ

N(v) = N(v)λ=0+

(
∂

∂λ
N(v)λ=0

)
·λ+

(
1

2!

∂2

∂λ2
N(v)λ=0

)
·λ2+ · · · +

(
1

n!

∂n

∂λn
N(v)λ=0

)
·λn.
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If we substitute Equation 2.8 into the previous equation we obtain

N(v) = N

(
+∞∑
k=0

λkvk

)
λ=0

+

(
∂

∂λ
N

(
+∞∑
k=0

λkvk

)
λ=0

)
· λ+

(
1

2!

∂2

∂λ2
N

(
+∞∑
k=0

λkvk

)
λ=0

)
· λ2

+ · · ·+

(
1

n!

∂n

∂λn
N

(
+∞∑
k=0

λkvk

)
λ=0

)
· λn.

According to Theorem 4 we derive

N(v) = N(v0) +

(
∂

∂λ
N

(
1∑

k=0

λkvk

)
λ=0

)
· λ+

(
1

2!

∂2

∂λ2
N

(
2∑

k=0

λkvk

)
λ=0

)
· λ2

+ · · ·+

(
1

n!

∂n

∂λn
N

(
n∑

k=0

λkvk

)
λ=0

)
· λn. (2.11)

Substituting 2.8 and 2.11 into 2.10, and equating the terms with the same order of λ, we

obtain

λ0 : v0(x)− f(x) = 0 ⇒ v0(x) = f(x)

λ1 : v1(x)−N(v0) = 0 ⇒ v1(x) = N(v0)

λ2 : v2(x)−
∂

∂λ
N

(
1∑

k=0

λkvk

)
λ=0

= 0 ⇒ v2(x) =
∂

∂λ
N

(
1∑

k=0

λkvk

)
λ=0

...

λn+1 : vn+1(x)−
1

n!

∂n

∂λn
N

(
n∑

k=0

λkvk

)
λ=0

= 0 ⇒ vn+1(x) =
1

n!

∂

∂λn
N

(
n∑

k=0

λkvk

)
λ=0

.

We will now proceed to prove the following theorem:

Theorem 10. The solution to problem A is the following:

v(x) = f(x) +H0(v0) +H1(v0, v1) + · · · +Hn(v0, · · · , vn)
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where:

Hr(v0, · · · , vr) = −L−1

(
1

r!

∂r

∂λr
N

(
r∑

k=0

λkvk

))
, r = 0, · · · , n

are the He operators.

To conclude the chapter, we will present some simple considerations and a small illustrative

example. The first thing to note is that this method is non-iterative, so there is no need

to evaluate the convergence rate since the solution depends simply on a finite set of non-

linear equations that can be solved in various ways. Secondly, it is observed that the He

polynomials are well-defined, making it straightforward to construct an approximate solution

for the Hamilton-Jacobi-Bellman equation in cases where the operators can be easily separated

into linear and non-linear parts. What will follow is a one-dimensional example to provide an

idea of the method’s application.

The last two theorems allow us to formalize our objective:

ẋ = x+ u, x : R+ → R.

We want to find the best control u which minimizes energy as written in the following formula

J =
1

2

∫ +∞

0
(x2(t) + u2(t)) · e−λt dt.

We can define the Hamiltonian as follows:

H(x, p, u) = L (x, u) + p · f(x, u)

=
1

2
(x2 + u2) + p · (x+ u).

We want to solve the following differential equation

∂tv +max
u∈U

{L (x, u) +∇v(x) · f(x, u)} = 0
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which can be interpreted as

∂tv +max
u∈U

{
1

2
(x2 + u2) + v′(x) · (x+ u)

}
︸ ︷︷ ︸

H(x,u)

= 0. (2.12)

We will now find the maximum by finding the gradient of its content and find the optimal

control u∗:

∇uH(x, u) = u+ v′(x) = 0

from which it follows that

u∗ = −v′(x). (2.13)

Substituting the optimal control in Equation 2.12 we arrive to the following partial differential

equation:

∂tv(t, x) +
1

2
(x2 + (v′(x))2 + v′(x) · (x− v′(x)) = 0.

We can elaborate further:

∂tv(t, x) +
1

2
x2 +

1

2
v′2(x) + v′(x) · x− v′2(x) = 0

from which it follows that

∂tv(t, x) +
1

2
x2 + v′(x) · x− 1

2
v′2(x) = 0. (2.14)

If we include the boundary conditions


∂tv(t, x) +

1
2x

2 + v′(x) · x− 1
2v

′2(x) = 0

v(0, x) = 0.
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we can see how Equation 2.14 can be mapped onto Equation 2.5 as such:

∂tv(t, x)︸ ︷︷ ︸
L

+
1

2
x2︸︷︷︸

f(x)

+ v′(x) · x− 1

2
v′2(x)︸ ︷︷ ︸

N

= 0.

We will now find the solution to the previous equation by substituting its terms in Equation

2.7:

∂tvλ − (1− λ) · ∂tvs + λ · [v′λ(x) · x− 1

2
v′2(x)− f(x)] = 0

which can be rearranged as follows:

∂tvλ − ∂tvs + λ · [v′λ(x) · x− 1

2
v′2(x)− f(x) + ∂tvs] = 0.

We will now substitute the terms vλ, v
′
λ, v

′ with their relative Taylor series expansion:

+∞∑
n=0

λn∂tvλ − ∂tvs + λ ·

x ·
+∞∑
n=0

λnv′n(x)−
1

2

(
+∞∑
n=0

λnv′n(x)

)2

− f(x) + ∂tvs

 = 0.

We can finally expand the previous sums into a series of equations:

λ0 : ∂tv0 − ∂tvs = 0

λ1 : ∂tv1 + x · v′1(x) +
1

2
x2 + ∂tvs −

1

2
v′20 (x) = 0

...

λn : ∂tvn − 1

2

n−1∑
k=0

∂xvn−k−1 + x · ∂xvn−1 = 0.

We can see how at every step we find a value vn. At the end, we can sum all of those values as

shown in Equation 2.9 and finally find the value function, and therefore the optimal control

as shown in Equation 2.13.
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Introduction to Neural Networks

The International Business Machine (IBM) describes Artificial Neural Networks (ANN) as

a mathematical tool which seeks to replicate human brain behaviour, imitating the brain

structure and its neural connections to allow the identification of patterns in order to solve

common problems in a wide range of fields. To define exactly what an ANN is we have to

deal with the concepts of ”architecture” and ”activation function”.

Definition 7. Let An,m be the set of functions going from Rn to Rm. For all f ∈ An,m there

exists a matrix W ∈ Rn×m and a vector b ∈ Rm such that

f(x) = Wx+ b.

Despite being very versatile, the following definition shows how the mathematical basis for

Simple Neural Networks is remarkably simple.

Definition 8. A Simple Neural Network is a function ANNΘ : Rn → Rk

ANNΘ(x) = σ(a(x)) = σ(Wx+ b)

where a ∈ An,k, {W, b} = Θ are the parameters associated with the function (respectively called
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Figure 3.1: Example of an ANN elaborating n inputs and generating a single output through
a single neuron.

weights and biases), and σ : Rk → Rk is a non-linear function called activation function.

Each ”activation function-function” couple is called a neuron (or node). All of the activation

functions and weights form the architecture of the Simple Neural Network. To enhance our

understanding of Simple Neural Network architectures we will now provide the definition of

Rectified Linear Unit (ReLU ):

ReLU : x → max(0, x) =



max(0, x1)

max(0, x2)

...

max(0, xn)


.

The most widely used ANN is given by the following (ReLU,Θ) architecture:

ANNΘ : Rn → Rk, ANN(x) = ReLU(Wx+ b) =



max(0,
∑n

i=1w1,ixi + b1)

max(0,
∑n

i=1w2,ixi + b2)

...

max(0,
∑n

i=1wk,ixi + bk)


.

The neural mechanism is simple: an input signal is processed and each neuron is activated

if the processed signal reaches a given amplitude, generating a corresponding output. If the

threshold value is not reached, the neuron will not generate an output. In order to generalize
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Figure 3.2: On the left, a Deep Neural Network (DNN) processing n inputs and, through
a succession of hidden layers, generating two outputs in the output layer. On the right, a
schematic representation of the inner workings of a single neuron.

the idea further to make it useful in a wider range of situations, let us introduce the concept

of Deep Neural Network (DNN ):

Definition 9. A DNNΘ : Rn → Rk function is a Deep Neural Network (DNN) if there exists

a succession of integers {ni}i=1, ··· ,s where n0 = n and ns = k, a succession of activation func-

tions σi=1, ··· ,s : Rni → Rni+1, a succession of weight matrices {W (i)}i=1, ··· ,s and a succession

of bias vectors {b(i)}i=1, ··· ,s both associated with {fi}i=1, ··· ,s functions, such that

DNNΘ(x) =

s∏
i=1

σi(fi(x)) =

s∏
i=1

σi(W
(i)x+ b(i))

where the sequence product is intended as an operation for composing functions.

The weights, as in the previous definition, are indicated with

Θ =
({

W (i)
}
i=1, ··· ,s ,

{
b(i)
}
i=1, ··· ,s

)
. The ”activation function-function” couples at the ith

step are called nodes and their totality makes up the ith layer. The first layer is called the

input layer while the last layer is called the output layer. Some of the fields in which ANNs

and DNNs can be applied include linear regressions, classifications, identification of images

and patterns, etc. The characteristics of both architectures can be fine-tuned to suit a desired

purpose. There are also various families of neural networks, including Sequential Networks,
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Recursive Networks, Bidirectional Networks, and GAN Networks. The ones introduced so

far belong to the family of Sequential Networks, where the output from each layer serves as

the input for the next layer. Now, we will present a theorem highlighting one of the main

attractions of neural networks in general: their ability for the universal approximation of data.

Theorem 11. Let D ⊂ Rn be an open set and Ψ : D → Rn a differentiable function. Let us

suppose that there exists a compact set K ⊂ D such that any solution x(t) of the following

Cauchy problem 
ẋ(t) = Ψ(x(t)), t ∈ [t0, tf ]

x(t0) = x0 ∈ K

is still contained in K for all t ∈ [t0, tf ], therefore for all ϵ > 0 there exists an integer N and

a DNNΘ(t) with n outputs and N hidden layers, such that

max
t∈[t0,tf ]

|x(t)−DNNΘ(t)| < ϵ

The proof of this theorem is beyond the scope of this thesis.

3.1 Optimization

It is abundantly clear that neural networks can be employed in solving problems of Optimal

Control such as the Hamilton-Jacobi-Bellman equation. Despite having shown the suitability

of neural networks for the purpose of this thesis, there are still some questions to be answered:

• What role do weights and biases play in the approximation of functions?

• What are the criteria for choosing the activation functions to obtain a high-performance

network? What constitutes as ”high-performance”?

• Is there a particular way to tune the parameters to obtain better performances?

Let us suppose to have a succession of data {yj}j=1, ··· ,N collected from any experimental test.

We can assert that for any input xj there is an output yj , yet we don’t know what the relation
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between each input and output is, neither which parameters are relevant for constituting

that relation. In this case, it is convenient to use neural networks to try and catch the

subtle connections among the data. Given an architecture ({σi} ,Θ), we define an associated

DNNΘ : Rn → Rk as in Definition 8, where Θ = (
{
W (i)

}
,
{
b(i)
}
). Let L : Rk × Rk → R be

a differentiable function called Loss Function. The approximation problem for deriving the

relation between inputs X = {xj}j and outputs Y = {yj}j can be formulated as follows:

min
Θ

1

N

N∑
j=1

L(DNNΘ(xj), yj) = min
Θ

F (X,Y,Θ). (3.1)

The Loss Function measures the quality of the approximation given by the DNNΘ. The

problem is therefore reduced to finding the appropriate Θ parameters to make sure that the

Loss Function is minimized. The most widely used method to achieve this is the gradient

descent algorithm: if F (X,Y,Θ) is a differentiable function, its point of minimum is obtained

by moving in the direction opposite to its gradient. That is to say: fixing an initial condition

Θ0, the algorithm will follow an iterative succession defined by

Θn+1 = Θn − αn∂ΘF (X,Y,Θn) (3.2)

where αn is the Learning Rate, which can be constant or updated during each cycle. In order

to demonstrate the efficacy of this method we need to introduce some regularity results.

Definition 10. A differentiable function f(Θ) is L-smooth if its gradient satisfies the Lipschitz

condition, that is to say

|∂Θf(Θ1)− ∂Θf(Θ2)| ≤ L|Θ1 −Θ2|

for all Θ1,Θ2 ∈ Rn.

A consequence of the previous definition is the following lemma:

Lemma 7. Let f : Rn → R be a two-times differentiable function. If the function f is
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L-smooth, then

f(Θ1) ≤ f(Θ0) + ∂Θf(Θ0)(Θ1 −Θ0) +
L

2
|Θ1 −Θ0|2 (3.3)

for all Θ0,Θ1 ∈ Rn.

Proof

We can derive that

f(Θ1) = f(Θ0) +

∫ 1

0
∂Θf(Θ0 + ν(Θ1 −Θ0))(Θ1 −Θ0) dν

= f(Θ0) + ∂Θf(Θ0)(Θ1 −Θ0)

+

∫ 1

0
[∂Θf(Θ0 + ν(Θ1 −Θ0))− ∂Θf(Θ0)](Θ1 −Θ0) dν

≤ f(Θ0) + ∂Θf(Θ0)(Θ1 −Θ0) + L|Θ1 −Θ0|2
∫ 1

0
ν dν.

Solving the last integral brings us to the statement we wanted to prove in the first place.

Lemma 8. If f(Θ) is L-smooth, then

f

(
Θ− 1

L
∂Θf(Θ)

)
− f(Θ) ≤ − 1

2L
|∂Θf(Θ)|2 (3.4)

for all Θ ∈ Rn.

Proof

Fixing Θ, we will use Equation (3.3) with Θ0 = Θ and Θ1 = Θ− 1
L∂Θf(Θ) to derive

f

(
Θ− 1

L
∂Θf(Θ)

)
≤ f(Θ)− 1

L
|∂Θf(Θ)|2 + 1

2L
|∂Θf(Θ)|2

which is the statement we wanted to prove in the first place.

Lemma 9. Let f(Θ) be a convex and L-smooth function, then

(∂Θf(Θ1)− ∂Θf(Θ0))(Θ1 −Θ0) ≥
1

L
|∂Θf(Θ1)− ∂Θf(Θ0)|2. (3.5)
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Proof

We can derive that, for all ξ ∈ Rn,

f(Θ1)− f(Θ0) = f(Θ1)− f(ξ) + f(ξ)− f(Θ0)

≤ ∂Θf(Θ1)(Θ1 − ξ) + ∂Θf(Θ0)(ξ −Θ0) +
L

2
|ξ −Θ0|2

where the term f(Θ1) − f(ξ) is used through the definition of convexity1 while the term

f(ξ)−f(Θ0) is used as in Equation 3.3. Given that this approximation is valid for all ξ ∈ Rn,

then

ξ = Θ0 −
1

L
(∂Θf(Θ0)− ∂Θf(Θ1)).

This way we can derive

f(Θ1)− f(Θ0) ≤ ∂Θf(Θ1)

(
Θ1 −Θ0 +

1

L
(∂Θf(Θ0)− ∂Θf(Θ1))

)
− 1

L
∂Θf(Θ0)(∂Θf(Θ0)− ∂Θf(Θ1))

+
1

2L
|∂Θf(Θ0)− ∂Θf(Θ1)|2

that is to say

f(Θ1)− f(Θ0) ≤ ∂Θf(Θ1)(Θ1 −Θ0)−
1

2L
|∂Θf(Θ0)− ∂Θf(Θ1)|2.

The thesis follows by applying what has just been demonstrated by reversing the role of Θ0

and Θ1. By adding the estimates together, we obtain

0 ≤ (∂Θf(Θ1)− ∂Θf(Θ0))(Θ1 −Θ0)−
1

L
|∂Θf(Θ1)− ∂Θf(Θ0)|2.

We can now proceed to prove the following convergence theorem.

1By definition, for all t ∈ [0, 1] and for all Θ0,Θ1 ∈ Rn there exists

f(tΘ0 + (1− t)Θ1) ≤ tf(Θ0) + (1− t)f(Θ1)

59



CHAPTER 3. INTRODUCTION TO NEURAL NETWORKS

Theorem 12. Let f(Θ) = F (X,Y,Θ) be a convex and L-smooth function and {Θi}i be defined

as in Equation 3.2, then

f(Θn)− f(Θ∗) ≤ 2L|Θ0 −Θ∗|2

n+ 1

where Θ∗ is the solution to Equation 3.1.

Proof

We can derive from Equation 3.2 that

|Θn+1 −Θ∗|2 = |Θn −Θ∗ − αn∂Θf(Θn)|2

= |Θn −Θ∗|2 + α2
n|∂Θf(Θn)|2 − 2αn(Θn −Θ∗)∂Θf(Θn). (3.6)

Knowing that ∂Θf(Θ
∗) = 0, as per Equation 3.5, we can derive that

(Θn −Θ∗)∂Θf(Θn) = (Θn −Θ∗)(∂Θf(Θn)− ∂Θf(Θ
∗))

≥ 1

L
|∂Θf(Θn)|2

and therefore Equation 3.6 becomes

|Θn+1 −Θ∗|2 ≤ |Θn −Θ∗|2 +
(
α2
n − 2αn

L

)
|∂Θf(Θn)|2.

Imposing that αn − 2
L ≤ 0 for all n, we obtain that the succession |Θn − Θ∗|2 is decreasing.

Let us suppose that αn = 1
L and apply Equation 3.4:

f(Θn+1)− f(Θn) = f

(
Θn − 1

L
∂Θf(Θn)

)
− f(Θ0)

≤ − 1

2L
|∂Θf(Θn)|2.

We can now reorganize the terms and subtract f(Θ∗), obtaining

f(Θn+1)− f(Θ∗) ≤ f(Θn)− f(Θ∗)− 1

2L
|∂Θf(Θn)|2. (3.7)

60



CHAPTER 3. INTRODUCTION TO NEURAL NETWORKS

Contextually, we can use the convexity property

f(Θn)− f(Θ∗) ≤ ∂Θf(Θn)(Θn −Θ∗)

≤ |∂Θf(Θn)||Θn −Θ∗|

≤ |∂Θf(Θn)||Θ0 −Θ∗|

where we employed the notion that the succession |Θn −Θ∗| is decreasing. Therefore,

|∂Θf(Θn)| ≥
f(Θn)− f(Θ∗)

|Θ0 −Θ∗|

which, when substituted in Equation 3.7, brings us to the following estimate

f(Θn+1)− f(Θ∗) ≤ f(Θn)− f(Θ∗)− 1

2L

(f(Θn)− f(Θ∗))2

|Θ0 −Θ∗|2
.

Let us define δn = f(Θn)− f(Θ∗). It follows that δn+1 ≤ δn and, therefore,

δn+1 ≤ δn − 1

2L

δ2n
|Θ0 −Θ∗|2

.

We can now divide by δnδn+1 to obtain

1

δn
≤ 1

δn+1
− 1

2L

1

|Θ0 −Θ∗|2
δn
δn+1

≤ 1

δn+1
− 1

2L

1

|Θ0 −Θ∗|2

given that δn
δn+1

≥ 1. To complete the proof, let us sum all the integers k ≤ n to obtain

1

δn
≤ 1

δn
− 1

δ0

=
n∑

k=0

1

δk
− 1

δk+1

≤ − n+ 1

2L|Θ0 −Θ∗|2
.
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That is to say

δn ≤ 2L|Θ0 −Θ∗|2

n+ 1
.

This result can also be applied to non-convex functions after employing certain convexifica-

tion techniques. However, for the purposes of our discussion, we will restrict ourselves to

considering only convex functions, as all the loss functions we will encounter are expected to

be convex.

3.2 Neural Methods

After discussing the main characteristics of neural networks we can now define the algorithms

that employ them. Let us see what our problem looks like:

F (x, v(x),∇v(x)) = 0

where F : Rn × R× Rn → R is a smooth function. Our specific scenario can be modelled as

such:

λv(x) +H(x,∇v(x)) = 0

for all x ∈ Ω ⊂ Rn, and

v(x) = g(x)

for all x ∈ ∂Ω. In order to solve this kind of problem we can utilize the Physics Informed

Neural Networks (PINN), a type of neural network that is being used in many physical

applications, especially in partial differential equations. In the following two paragraphs we

will delve into the specific functioning of PINNs for two kinds of approaches: a local approach

and a global approach.

3.2.1 Local Approach

This approach focuses on a subset Ω ⊂ Rn that is closed and compact. We then consider a

mesh of {xi}i∈I evenly distributed points in Ω̊, a mesh of {yj}j∈J evenly distributed points in
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∂Ω and a differentiable function g : Rn → R. We can now define a candidate solution function

vΘ = DNNΘ : Rn → R. Our objective will be to minimize a loss function

L(θ) = Lborder(θ) + Leq(θ)

with

Lborder(θ) =
1

|J |
∑
j∈J

∥vΘ(xj)− g(xj)∥2

and

Leq(θ) =
1

|I ∪ J |
∑

i∈I∪J
∥λvθ(xi) +H(xi,∇vθ(xi))∥2

therefore

L(θ) =
1

|J |
∑
j∈J

∥vΘ(xj)− g(xj)∥2 +
1

|I ∪ J |
∑

i∈I∪J
∥λvθ(xi) +H(xi,∇vθ(xi))∥2.

This is called a local approach since in order to be useful we need to fix a closed and compact

Ω set and a g function. This is the approach we will adopt in this research.

3.2.2 Global Approach

In this approach, we let Ω be a closed and compact set and vθ : Rn → R. If we introduce a

set of functions g(x, ϵ) : Rn ×R → R, it follows that vθ : Rn ×R → R. We can then take once

again {xi} ⊂ Ω̊ and {xj} ⊂ ∂Ω, with {ϵk}k ⊂ R. In this case, the first addend of our loss

function becomes

Lborder(θ) =
1

|J ||K|
∑
j∈J

∑
k∈K

∥vΘ(xj , ϵk)− g(xj , ϵk)∥2.

The presence of the ϵ variable tells us that we are not taking into consideration just one

function for the values at the border but a set of different possible functions. In other words,

we can derive a solution which depends on the boundary conditions and therefore can be
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easily computed for each possible case. The second addend of our loss function becomes

Leq(θ) =
1

|I ∪ J ||K|
∑

i∈I∪J

∑
k∈K

∥λvθ(xi, ϵk) +H(xi,∇vθ(xi, ϵk))∥2

therefore

L(θ) =
1

|J ||K|
∑
j∈J

∑
k∈K

∥vΘ(xj , ϵk)− g(xj , ϵk)∥2

+
1

|I ∪ J ||K|
∑

i∈I∪J

∑
k∈K

∥λvθ(xi, ϵk) +H(xi,∇vθ(xi, ϵk))∥2.

This can be called a global approach since the term ϵ allows us to find solutions for a whole

set of boundary conditions instead of just a specific instance. While the local approach aims

to find a singular point in the space of solutions for the Partial Differential Equations, the

global approach aims to find a whole subset of the space of solutions.
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Model Definition

Let us imagine a spacecraft trying to dock to a satellite orbiting a planetary object in a circular

orbit. To define a docking trajectory, the spacecraft needs to be moved from a known starting

position and velocity state, through a given constraint frame, to a final position and velocity

state coinciding with the satellite. Our objective will be to do so in an optimal manner, i.e.

minimizing a cost functional. Given that this will be an approximate model, we will begin by

making some assumptions.

4.1 Assumptions

Assumption 1. The system is described by the two-body problem approximation.

Both the spacecraft and the satellite have a negligible mass and their motion is solely influ-

enced by the gravitational pull of the planetary object and is not disturbed by the gravitational

fields of other celestial bodies.

Assumption 2. The planetary object is perfectly spherical.

Therefore standard gravitational laws don’t need to be corrected to account for irregularities

in the planetary object’s shape.

Assumption 3. The distance between the spacecraft and the satellite is very small compared
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to the distance between the satellite and the planetary object.

Therefore the spacecraft and the satellite can be considered as following the same circular

trajectory.

Assumption 4. The spacecraft is travelling through a perfect vacuum.

The radius of the circular orbit is sufficiently large, therefore aerodynamic drag forces can be

neglected and the atmospheric pressure considered null. That is to say that we can model the

whole environment by just dealing with energetic considerations.

Assumption 5. The thrust direction can be changed instantaneously in any direction.

For the sake of simplicity, the mechanical limitations for directional steering of the thrust will

be ignored in this model. Of course, this is not a valid assumption to make when building

a real GN&C system. Regardless, it is considered a reasonable assumption to make while in

the early stages of designing an Optimal Control algorithm.

4.2 Equations of Motion

All vectorial quantities from now on will be displayed in a bold typeface.

We will start by defining an auxiliary reference system with the origin placed in the center of

mass of a satellite following a circular orbit of radius r1 around a planetary object. We will

call the distance between the spacecraft and the planetary object r2 and the distance between

the satellite and the spacecraft r = r2 − r1 (as shown in Figure 4.1). Both reference systems

share a third axis which completes the right-hand triad which we will call ê3. As already

stated in the Assumptions paragraph, we will consider r ≪ r1. We will start by introducing

Newton’s Law of Motion for point-like objects in positions r1 and r2.

r̈1 +
µr1
∥r1∥3

= 0

r̈2 +
µr2
∥r2∥3

= F
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Figure 4.1: Schematic representation of the auxiliary reference system.

The satellite, in position r1, is not subjected to any perturbation force, while the spacecraft,

in position r2, is subject to a force F which will be supplied by the thruster controls. By

subtracting these two equations we can write

r̈2 − r̈1 +
µr2
∥r2∥3

− µr1
∥r1∥3

= F.

If we rearrange the equation and substitute r = r2 − r1, we get

r̈+
µ

∥r1∥3
(
r2∥r1∥3∥r2∥−3 − r1

)
= F.

Since the satellite is describing a circular orbit, we know that ∥r1∥ is constant. Therefore, we

can substitute µ
∥r1∥3 with a constant n2 describing the body’s mean motion

r̈+ n2
(
r2∥r1∥3∥r2∥−3 − r1

)
= F. (4.1)

Our objective is to have the equation not be dependent on r2, therefore we can use the
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modulus formula to describe it in terms of the other vectors

∥r2∥ =
√
r2 · r2

=
√
(r+ r1) · (r+ r1).

It follows that

∥r2∥−3 = [(r+ r1) · (r+ r1)]
− 3

2

= (∥r1∥2 + 2r · r1 + ∥r∥2)−
3
2 .

We can now find the binomial extension for this expression in order to get a second order

approximation for it

(x+ y)r = xr + rxr−1y +O(r2).

We can now find that the values of the variables are respectively x = ∥r1∥2, y = 2r · r1+ ∥r∥2

and r = −3
2 . Substituting the values we get

∥r2∥−3 = (∥r1∥2 + 2r · r1 + ∥r∥2)−
3
2

= ∥r1∥−3

(
1− 3

2

(
2r · r1
∥r1∥2

)
+O(r2)

)
.

We can now ignore the higher order terms and substitute the previous equation into Equation

4.1

r̈ = n2

(
−r+ 3

r · r1
∥r1∥2

r1

)
+ F

Looking back at Figure 4.1, we can notice how all this calculations are done for the inertial

reference frame I. We are now interested in finding the same equations of motion for the

rotating reference frame H. To do this, we will have to do a change of reference frame. From

now on, the notation I( · ) and H( · ) will be used to distinguish between vectors in different

reference frames. We can now write the vectorial equations to change reference frame for
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velocity and acceleration

I(ṙ) = H(ṙ) + ω × r

I(r̈) = H d

dt

(H(ṙ) + ω × r
)
+ ω ×

(H(ṙ) + ω × r
)

where ω is the angular velocity between the I and H reference systems. The second equation

can be expanded to find the usual components of acceleration

I(r̈) = H(r̈) + H(ω̇)× r+ 2
(
ω × H(ṙ)

)
+ ω × (ω × r) .

We know that H(ω̇) × r = 0 since the angular rate must be constant in time, given that the

reference frame H rotates with a constant angular velocity equal to the mean motion n2. We

can now solve for H(r̈) and substitute in the velocity equation to obtain

H(r̈) = −2nê3 × H(ṙ)− n2(ê3 × (ê3 × r))− n2(r− 3(êr · r)êr) + F

which can be written in vectorial form as
ẍ

ÿ

z̈


H

=


2nẏ

−2nẋ

0


H

+


n2x

n2y

0


H︸ ︷︷ ︸

Rotating Frame

−


n2x

n2y

n2z


H

+


3n2x

0

0


H︸ ︷︷ ︸

Gravity Perturbations

+


Fx

Fy

Fz


H︸ ︷︷ ︸

Other Perturbations

which, in turn, can be written as a system of equations inside of the H reference frame


ẍ− 2nẏ − 3n2x = Fx

ÿ + 2nẋ = Fy

z̈ + n2z = Fz
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with

Fx = F · êr

Fy = F · êθ

Fz = F · ê3.

These equations are known as Clohessy-Wiltshire Equations. We can observe that the Z-axis

equation is decoupled from the system and resembles a harmonic oscillator, meaning that

any force applied on the Z-axis will cause an oscillation about that same axis. This allows

us to neglect this variable as long as we don’t generate a thrust with a z component. We

can also notice that the position on the Y-axis does not appear in the formulas and therefore

does not influence the motion of the system. That is because the y coordinate corresponds to

the position along the orbit which, being circular, is perfectly simmetric and therefore is the

same everywhere. We can now create an analogous system to solve these 2nd order differential

equations in a Python script by keeping track of each differential operator separately



ẋ = Vx

ẏ = Vy

V̇x = 3n2x+ 2nVy + Fx

V̇y = −2nVx + Fy

which translates to the following algebraic system



ẋ

ẏ

V̇x

V̇y


=



0 0 1 0

0 0 0 1

3n2 0 0 2n

0 0 −2n 0





x

y

Vx

Vy


+



0 0

0 0

1 0

0 1


Fx

Fy


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which can be in turn be written as

ẋ = Ax+Ba

where x ∈ R4 is the state vector, which gives us information on the position and velocity

on the X- and Y-axes; and a ∈ R2 is the control vector which gives us information on the

magnitude and direction of thrust in the X and Y directions. We can now proceed to define

the functional J for our specific purpose, which we will want to minimize in order to optimize

the docking trajectory

J =

∫ +∞

0
(xTQx+ aTRa)e−λt dt

where

Q =



q1 0 0 0

0 q2 0 0

0 0 q3 0

0 0 0 q4


, R =

r1 r2

r3 r4

 .

This implies that

L (y(t), a(t)) = xTQx+ aTRa.

It follows that

v(x) = inf
a∈A

{∫ t

0
(xTQx+ aTRa) · e−λs ds+ e−λt · v(y(t))

}
, ∀t > 0.

It follows that

λv(x) + inf
a∈A

{∇v(x) · ẋ+ xTQx− aTRa} = 0.

4.3 Classical Approach

We can now apply the Semi-Lagrangian method and write the discretized version of the control

function

vh(x) = inf
a∈A

{hL (x, a) + βvh(x+ hf(x, a))}
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where h ≪ 1, β = e−λ and λ > 0. Knowing that L = xTQx+ aTRa and f(x, a) = Ax+Ba,

we can write

vh(x) = inf
a∈A

{h(xTQx+ aTRa) + βvh(x+ h(Ax+Ba))}.

We can assume the control function to be optimal and remove the infimum function. Since

both addends in the right side of the equation are quadratic with respect to x, we can assume

vh(x) to be quadratic with respect to x. It follows that there exist M ∈ Rn×n, p ∈ Rn and

c ∈ R such that

vh(x) = xTMx+ pTx+ c.

It follows that

xTM (k+1)x+ (p(k+1))Tx+ c(k+1) = inf
a∈A

{h(xTQx+ aTRa)

+ β[[x+ h(Ax+Ba)]TM (k)[x+ h(Ax+Ba)]

+ (p(k))T [x+ h(Ax+Ba)] + c(k)]}.

It follows that the iterative algorithm would become

xTM (k+1)x+ (p(k+1))Tx+ c(k+1) = inf
a∈A

{h(xTQx+ aTRa)

+ β[[x+ h(Ax+Ba)]TM (k)[x+ h(Ax+Ba)]

+ (p(k))T [x+ h(Ax+Ba)] + c(k)]}.
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We can now rearrange the terms inside of the infimum function and take out the terms that

are not dependent on the controls function:

xTM (k+1)x+ (p(k+1))Tx+ c(k+1) = hxTQx+ β[xTM (k)x

+ hxTM (k)Ax+ hxTM (k)Ba+ hxTATM (k)x

+ h2xTATM (k)Ax+ h2xTATM (k)Ba

+ haTBTM (k)x+ h2aTBTM (k)Ax

+ (p(k))Tx+ h(p(k))TAx+ c(k)]

+ inf
a∈A

{haTRa+ β[h2aTBTM (k)Ba+ hp(k))TBa]}.

Since h2 ≪ 1, we can eliminate all the terms that include it:

xTM (k+1)x+ (p(k+1))Tx+ c(k+1) = hxTQx+ β[xTM (k)x+ hxTM (k)Ax+ hxTM (k)Ba

+ hxTATM (k)x+ haTBTM (k)x

+ (p(k))Tx+ h(p(k))TAx+ c(k)]

+ h inf
a∈A

{aTRa+ β(p(k))TBa}. (4.2)

We can now find the optimal control value a∗ by taking the gradient of the terms inside of

the infimum function and equating it to zero:

G(a) = aTRa+ β(p(k))TBa

∇aG(a) = (R+RT )a+ βBT p = 0.

It follows that

a∗ = −β(R+RT )−1BT p

which is also known as Linear-Quadratic Control. We will then be able to remove the infimum

function by substituting the optimal value inside of it.

Given that we want to introduce constraints in the differential equation system, in order to
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generalize this optimal control we can introduce a matrix function T (θ) ∈ R2×2

T (θ) =

cos θ − sin θ

sin θ cos θ


which will allow us to rotate the control thrust vector by changing the θ value. Utilizing the

results found in the Section 4 of Chapter 1, we define Θ to be the constraint that needs to be

satisfied. We know that the following has to be true

ν(x) · f(x, a∗) < 0 (4.3)

for all x ∈ ∂Θ. In order to do it we will multiply T (θ) with the control vector and obtain

a∗ = −βT (θ)(R+RT )−1BT p.

In our case the Equation 4.3 will become

ν(x) · (Ax−B(βT (θ)(R+RT )−1BT p) < 0.

We want to chose θ in order to make sure that the previous equation is always valid outside

of the constraint Θ. By including a∗ in Equation 4.2 and rearranging the terms in order to

highlight the variables M , p and c we get

xTM (k+1)x+ (p(k+1))Tx+ c(k+1)

= xT [hQ+ β(M (k) + hM (k)A+ hATM (k))]x

+ [β((p(k)) + hp(k)A− βh((M (k)BT (θ)(R+RT )−1BT p(k))T

+ (T (θ)(R+RT )−1BT p(k))TBTM (k))]x

+ [β(c(k) + βh((T (θ)(R+RT )−1BT p(k))TRT (θ)(R+RT )−1

− (p(k))TBT (θ)(R+RT )−1)BT p(k))].
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Figure 4.2: Left: Logarithmic plot showing the convergence of the Mk, pk and ck errors for
θ = 0. Right: Logarithmic plot showing the convergence of the Mk, pk and ck errors for
random values of θ.

It follows that

M (k+1) = hQ+ β(M (k) + hM (k)A+ hATM (k))

p(k+1) = β(p(k) + hp(k)A− βh((M (k)BT (θ)(R+RT )−1BT p(k))T

+ (T (θ)(R+RT )−1BT p(k))TBTM (k)))

c(k+1) = β(c(k) + βh((T (θ)(R+RT )−1BT p(k))TRT (θ)(R+RT )−1

− (p(k))TBT (θ)(R+RT )−1)BT p(k)).

This means that M , p and c can be found iteratively. By importing these functions into a

Python script, we can run the iteration and confirm that the values for Mk, pk and ck, as well

as their associated errors, will converge if θ = 0 as shown in Figure 4.2 (meaning that there

is no constraint and T (θ) will not affect the outcome). In this case the pk and ck coefficients

converge to null values (as shown in Figure 4.3), meaning that the final equation for the value

function v(x) will be

v(x) = xTMx

which is associated to an elliptic paraboloid (as shown in Figure 4.4) and confirms the Banach-

Caccioppoli Theorem. It is also important to note that in the case with θ = 0 the rotation
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Figure 4.3: Left: Plot showing the convergence of the Mk, pk and ck variables for θ = 0.
We can also observe how the terms pk and ck converge to zero, which is compatible with the
Banach-Caccioppoli Theorem introduced in Chapter 2. The Mk matrix also converges to a
value which is expected from the theory. Right: Plot showing the convergence of the Mk,
pk and ck variables for random values of θ. We can also observe how the terms pk and ck
converge to zero, which is compatible with the Banach-Caccioppoli Theorem introduced in
Chapter 2. The Mk matrix also converges to a value which is expected from the theory.

Figure 4.4: Left: 3D plot showing the convergence of the value function v(x) for θ = 0. Right:
3D plot showing the convergence of the value function v(x) for random values of θ.
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matrix T (θ) does not survive the iteration process, which is not a problem since we are not

imposing any constraints at this point. But what happens if we try to impose constraints,

therefore try to assign values to θ in order to adjust the direction of the thrust vector? In

order to verify if the T (θ) function can affect in a meaningful way the shape of the value

function, we will run an iteration where at each step the variable θ is assigned a random

value between 0 and 2π. If we run the iteration this way we can see how in the long term

the variables pk and ck still converge to zero (despite an early influence, as shown in Figure

4.3), leaving only the Mk variable which is not dependent on θ, meaning that in this kind of

model there is no way to get a value function which reflects a constraint such as imposing the

trajectory to remain constrained to a certain area. The value function will therefore remain

the same as in the previous case (as shown in Figure 4.4). At this point, if we wanted to

take this model further, we could have the value function be described by a sum of different

analytical functions which reflect the constraints we want to apply, such as

vh(x) =
N∑
i=1

li(x)

with l : Ωi → R, Ωi ⊂ Rn and Ωi ∩Ωj = ∅, i ̸= j. We could delve into such a proposition but

the calculations would become a lot more complicated. This is why Deep Neural Networks

(DNNs) are typically introduced in such cases.

4.4 Neural Approach

We start with the usual formulation for the problem we want to solve

ẋ = Ax+Ba

minimizing

Jx(a) =

∫ +∞

0
(xTQx+ aTRa)e−λt dt
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with λ > 0. In this case the approach is different: the Principle of Dynamic Programming is

used in its differential form in order to more easily include and differentiate neural networks

in the process. It follows that the Hamilton-Jacobi-Bellman equation must be valid in the

following form:

λvθ(x) + inf
a∈A

{(xTQx+ aTRa) + (∇vθ(x))
T (Ax+Ba)} = 0

with A being the set of all admissible controls. If we take the derivative of the content of

the inf function and equate it to zero we can derive that the optimal value for a is a∗ =

−(RT +R)−1BT∇vθ(x) and substitute it in the previous equation

λvθ(x)− xTQx− (a∗)TRa∗ − (∇vθ(x))
T (Ax+Ba∗) = 0.

which can be rewritten as

λvθ(x)− xTQx

− (−βT (θ)(R+RT )−1BT p)TR(−βT (θ)(R+RT )−1BT p)

− (∇vθ(x))
T (Ax+B(−βT (θ)(R+RT )−1BT p)) = 0.

which can, in turn, be rewritten as

λvθ(x) +H(x,∇vθ(x)) = 0 (4.4)

where vθ(x) : Rn → R is the only unknown variable which we can now isolate.

The most important step in building a neural network is to identify a loss function, which in

this case will help solve our system of differential equations. As seen in Chapter 3, Section 2,

the loss function for our particular case can be obtained directly from Equation 4.4 as such:

Ldyn(Θ) =
1

N

N∑
i=1

|λvθ(xi)−H(∇vθ(xi))|2.
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Figure 4.5: Plot showing the value function v(x) without constraints obtained using a Physics
Informed Neural Network (PINN). The result is very similar to the paraboloid found in the
classic approach.

If we run the PINN with no constraints we can obtain a very similar value function to the one

found through the classical approach (Figure 4.5), albeit more generalized and not analytically

defined.

Imposing constraints

Let us now try to define Θ ⊂ Rn as a topological constraint and {xi}i=1, ··· ,N ⊂ Θ which, in

our example, will be

Θ = {x ∈ Rn | ∥x∥ < 1}

which is a circumference around the target point. The definition of each position xi can be

written in the polar coordinates

αi ∈ {αi |αi ∈ [0, 2π]}

ρi ∈ {ρi | ρi ∈ [0, 1]}
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as

xi = (ρi cosαi, ρi sinαi).

We utilized these definitions to create a loss function which imposed constraints based on the

position relative to the unitary circle previously defined:

Ldyn = k1Ldiff + (1− k1 − k2)LBC + k2Ldots

with k1 = 4 · 10−1, k2 = 1 · 10−4, where:

• Ldiff (Θ) = 1
N

∑N
i=1|λvθ(xi)−H(∇vθ(xi))|2, as shown in Chapter 3, Section 2;

• LBC imposes the boundary conditions such that the value function v(x) is equal to zero

when on the edge of the circumference;

• Ldots which defines the way θ (contained in the Hamilton-Jacobi-Bellman equation

thanks to the inclusion of the rotation matrix) is constrained.

The gradient ∇vθ(xi) can be calculated exactly thanks to the back-propagation algorithm

of neural networks: since the DNN is a composite function made up of known analytical

functions, there is no need to approximate its gradient by using a numerical method such as

the Finite Difference method, which would introduce an error in the result. Having defined

the loss function, we can finally define the weights and biases Θ0 associated with the nodes

of our neural network, which will be small and random. The iterative process through which

we will converge to the optimal values for the weight and biases will be

Θk+1 = Θk − α∇ΘLdyn(Θ).

As we specified earlier the gradient of Ldyn(Θ) does not introduce an error. We can now

finally proceed to show the results for the simulation without constraints in order to compare

it to the Classical Approach. As seen in Figure 4.6, the total loss function converges to zero,

meaning that our trained Neural Network was successful in optimizing the value of vθ(x) as
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Figure 4.6: Plot showing the convergence of the loss function and its components.

Figure 4.7: Plot showing the value function v(x) with a constraint ∥x∥ < 1 (a circumference
around the target point) obtained using a Physics Informed Neural Network (PINN).
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Figure 4.8: Plot showing the convergence of trajectories from different starting positions using
Gradient Descent.

we expected. From the graph of the value function vθ(x) (shown in Figure 4.7) we can see

how the constraints are effectively inforced: if the spacecraft is inside of the circumference, it

will tend to fall into the origin of the graph (where the target sits). If, on the other hand,

the spacecraft is outside of the circumference, it will tend to fall in the opposite direction

of the target. Therefore, in this case, we will want our initial position to be inside of the

circumference. Finally, if we look at the computation for the trajectories (shown in Figure

4.8) we can see how starting from different initial points results in the trajectories converging

into a single location. The location is slightly translated for the origins from a failure in

accounting for the asymmetry which arises from the motion equations.
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Conclusions

The findings of this study underscore the effectiveness of Physics Informed Neural Networks

(PINNs) in modeling dynamic systems requiring adaptability such as spacecraft docking in

space. Specifically, our analysis reveals that PINNs excel in scenarios where incorporating

constraints is essential, as they streamline the integration of such constraints into the modeling

process. Unlike traditional methods that may necessitate the complex task of approximating

value functions through a sum of analytical functions, PINNs offer a more straightforward

approach by directly incorporating the appropriate constraints.

Moving forward, there is ample room for further development in the application of PINNs

to docking maneuvers. While our demonstration in this thesis introduced a constraint for

illustrative purposes, it lacked practicality. A more realistic constraint, such as a cone-shaped

region centered around the target point to prevent spacecraft deviation, could significantly

enhance the utility of PINNs in docking maneuvers.

Additionally, an oversight in our approach is evident from the trajectories’ graphs, where the

final points exhibit slight translation from the origin. This oversight stems from the failure to

account for the asymmetry of the dynamic model, which arises from centering the reference

frame on the target point. Future research efforts should prioritize addressing such nuances

to improve the accuracy and applicability of PINN-based models.
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