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1 Introduction 

The exploration of the Moon is becoming a primary focus in global space initiatives, with both government 

and commercial entities gearing up for ambitious missions over the next decades. The importance of moon 

exploration for the future cannot be ignored, in fact, the Moon serves as a testing ground for new 

technologies and innovative experiments, improving essential skills and knowledge vital for broader space 

endeavors.  Apart from its technical value, the Moon has invaluable resources like water ice, which could 

sustain future lunar settlements and serve as a launchpad for deeper space exploration. Moreover, a 

sustained presence on the lunar surface can facilitate groundbreaking scientific research. The return to the 

Moon signifies not just human curiosity but also lays the foundation for a new chapter in human space 

exploration. 
The challenges posed by lunar exploration, such as enduring long-duration missions and extreme 

temperatures, provide invaluable opportunities to develop and refine capabilities essential for more 

ambitious ventures, such as crewed missions to Mars. Crucial resources like water ice are vital for life support 

and potentially enabling sustainable lunar colonies, thereby making prolonged human presence in space 

more viable. Additionally, water can be utilized as rocket fuel, manufactured in situ on the Moon, significantly 

mitigating the costs and complexities associated with space travel. 

Moreover, the Moon holds immense scientific importance, revealing insights into its geology, composition, 

and preserving vital information about the early history of our solar system. Finally, the Moon serves as a 

stepping stone for further solar system exploration and beyond. Establishing a lasting human presence on 

the Moon can serve as a launchpad for ambitious deep space missions, extending the frontiers of space 

exploration. The confluence of technological advancement, resource utilization, scientific discovery, and 

strategic positioning makes the Moon an irresistible destination for exploration in the forthcoming decades. 

 

 

 

 

 

 

 

 

 

 

 

 

The ESA Moonlight Initiative, as represented in Figure 1.1, encompasses a comprehensive array of missions, 

projects, and initiatives designed to explore every facet of the lunar landscape (see e.g., ESA 2024b). From 

robotic rovers exploring the lunar surface for signs of water ice to orbiting satellites mapping the Moon's 

topography in detail, ESA is deploying a wide range of cutting-edge technologies and scientific instruments 

to allow each type of experimental research. These missions not only provide valuable insights into the 

Figure 1.1: Moonlight initiative representation 
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Moon's geology, composition, and history but also lay the groundwork for future human exploration and 

settlement.  

In this context, space communications and navigation are crucial elements, representing crucial 

components in space exploration, enabling various data transmission and positional accuracy in a mission 

scenario. Satellite networks in lunar orbit play a pivotal role in communication. These satellites facilitate data 

transfer between the Moon and Earth. They act as data-relays for signals between lunar bases, rovers, and 

spacecraft, enabling seamless communication despite the vast distances. The communication between Earth 

and the Moon involves complex systems, including powerful transmitters and receivers. Signals travel vast 

distances, facing challenges like signal degradation and latency. Advanced modulation techniques and error-

correction mechanisms are employed to ensure reliable data transmission. 

In addition to satellite communication, accurate navigation on the lunar surface is essential for missions 

and exploration. Navigation systems on lunar rovers and spacecraft utilize a combination of sensors, including 

gyroscopes, accelerometers, and celestial navigation tools, to determine position and orientation relative to 

the Moon's surface. Precision in navigation relies on synchronization with Earth-based systems. The 

integration of data from Earth's positional information, combined with lunar-specific mapping and 

positioning algorithms, ensures accurate navigation and alignment of spacecraft and assets on the lunar 

surface. Lunar communications and navigation services (LCNS) faces all these problems, as represented in 

Figure 1.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The unique lunar terrain, with its craters and mountains, poses challenges for communication and navigation. 

Overcoming these obstacles requires adaptive systems, guided navigation, and real-time data analysis to 

ensure safe communication and data transmission. The Moon's harsh environment, including extreme 

temperatures and cosmic radiation, demands robust and resilient communication and navigation systems. 

Advances in materials science and system design are essential for withstanding these conditions. 

Lunar communications and navigation systems continue to evolve as space agencies and private companies 

plans for extensive lunar missions, including long-term lunar bases and scientific exploration. Innovations in 

quantum communication, autonomous navigation, and sustainable power sources are anticipated to 

revolutionize lunar communication and navigation in the coming decades. 

Figure 1.2: LCNS schematic representation 
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The captivating interplay between moonlight and the advancements in lunar communication and navigation 

systems not only fuels our curiosity but also serves as a cornerstone in humanity's quest to explore and 

inhabit the scenarios beyond Earth.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3: lunar terrain representation 
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2 Satellite navigation  

The following chapter deals with an introduction about the modern satellite navigation systems and the 

principles that drive such designs. A summary of the existing earth architectures for these kinds of 

applications are showed. Finally, the parameters of the dilution of precision are explained.  

2.1 Earth constellations  
 

 

 

 

 

 

 

 

 

 

Satellite constellations are groups of satellites strategically positioned in orbit around the Earth to achieve 

specific objectives, such as communication, Earth observation, navigation, or scientific research. Figure 2.1 

gives a representation of these systems. The constellations are composed by multiple satellites working 

together to provide coverage, redundancy, and enhanced capabilities.  

In general, constellations can be categorized based on various aspects such as operational function, the 

methodology used in designing the constellation, and the characteristics of the satellite orbits. Among these, 

the ability to provide global or local coverage is relevant.  

Satellite orbits can be classified based on several factors (see e.g., ESA 2020). In the following section the 

main subdivision is reported:  

• Low Earth Orbit (LEO) are orbit with an altitude from 160 km above Earth to less than 1000 km. It is 

the orbit most frequently used for satellite imaging, as being near the surface allows it to take images 

of higher resolution. Although individual LEO satellites are less useful for tasks such as 

telecommunications, because they require a lot of effort to track from ground stations, they often 

work as part of a large constellation to provide constant coverage of large areas simultaneously, by 

working together. These orbits provide the best ground resolution and the lowest orbital insertion 

cost. They also provide broadband signal transmission with reduced latency. Because of these 

characteristics, they are used for Earth observation missions (environmental remote sensing), while 

they are rarely used for navigation systems.  

• Medium Earth Orbit (MEO) are orbits with altitude between LEO and geostationary earth orbit (GEO) 

orbit, from 2000 km and 35,786 km. Due to significant limitations caused by the presence of the Van 

Allen radiation belts within this altitude range, the use of these orbits is limited to altitudes above 

19,000 km, where the effects of the belts are less influent.  MEO orbits are frequently used in 

navigation and terrestrial geodesy missions, particularly for altitudes between 19,000 km and 25,000 

km.  

Figure 2.1: Earth constellations representation 
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• High Earth Orbit (HEO) are orbits with an altitude greater than 35,768 km. A geosynchronous 

orbit (GSO) is an Earth-centered orbit with an orbital period equivalent to the Earth's rotation on its 

axis. A satellite in a geosynchronous orbit returns to the same position in the sky after a period of 

one sidereal day. A circular geosynchronous orbit has a constant altitude of 35,786 km. A relevant 

case of a geosynchronous orbit is termed Geostationary Earth Orbit (GEO), which is a circular and 

equatorial orbit (𝑖 = 0°, 𝑒 = 0). The satellite describes a fixed and repeated ground track (on the 

Equator) on Earth surface, allowing the satellite to continuously observe the same region with 

identical geometric characteristics. Due to these properties, GEO orbits are crucial for applications 

requiring continuous coverage on a specific region such as telecommunications, meteorology, and 

navigation. However, GEO orbits do not provide global coverage. 

Satellite constellations can be composed by different types of orbits. Generally, architectures structured with 

similar satellite orbits ensures that external dynamic perturbations affect each satellite in a comparable way. 

By maintaining this uniformity, the geometric configuration can be preserved with minimal station-keeping 

maneuvers, leading to reduced fuel consumption and longer satellite lifetime. Additionally, careful 

consideration is given to the phasing of satellites within orbital planes to maintain adequate separation, 

mitigating the risk of collisions or interference at orbit plane intersections. Circular orbits are often preferred 

due to the consistent altitude they provide, necessitating a steady signal strength for communication. 

One popular class of circular orbit geometries is the Walker constellation (see e.g., Walker 1984). This 

configuration is described using the following short notation: 

𝑖: 𝑁𝑠/𝑁𝑝/𝑓 

where: 

• 𝑖 is the orbit inclination; 

• 𝑁𝑠 is the total number of satellites; 

• 𝑁𝑝 is the number of equally spaced orbital planes;  

• 𝑓 is the phasing between satellites in adjacent planes, specified as a scalar integer greater than or 

equal to 0. 

One popular Walker constellation is the Iridium constellation. The active satellites in the full Iridium 

constellation form a Walker Star with 𝑖 = 86.4°, 𝑁𝑠 = 66, 𝑁𝑝 = 6 and 𝑓 = 2 (86.4°: 66/6/2), i.e., the 

satellite return to the same true anomaly value after two planes. These sets of circular orbits at constant 

altitude are sometimes referred to orbital shells. 

A summary of satellite constellations along with some technical information are reported: 

• communication satellite constellations: they consist of interconnected satellites orbiting the Earth in 

coordinated patterns, like Starlink or Iridium constellations. These constellations are designed to 

facilitate global communication, by ensuring continuous coverage across different regions. They are 

typically positioned in Low Earth Orbit (LEO) to reduce latency and improve coverage, using phased 

array antennas, inter-satellite links, and advanced signal processing to facilitate seamless 

communication coverage across the globe. The strategic placement and synchronization of satellites 

within the constellation ensure efficient and robust communication services for various applications, 

including telecommunications, internet connectivity, and remote sensing. 

• Earth observation satellite constellations: they allow comprehensive monitoring of the Earth's 

surface, atmosphere, and oceans, enabling a wide range of applications such as environmental 

monitoring, disaster management, urban planning, and agricultural assessment. With multiple 

satellites working together, typically in LEO orbit or sun-synchronous orbit (SSO), these constellations 

offer frequent revisit times and global coverage, allowing for real-time or near-real-time data 

acquisition. Advanced sensors onboard these satellites capture high-resolution imagery, 

https://en.wikipedia.org/wiki/Orbit
https://en.wikipedia.org/wiki/Orbital_period
https://en.wikipedia.org/wiki/Earth%27s_rotation
https://en.wikipedia.org/wiki/Iridium_(satellite)
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multispectral data, and other geospatial information, which are then processed and analyzed to 

derive valuable information into Earth's dynamic processes and changes over time.  

• Navigation satellite constellations: they provide precise positioning, navigation, and timing services 

globally. Satellites are typically deployed in medium Earth orbit (MEO) to ensure global coverage and 

accuracy. These constellations rely on signals transmitted by the satellites to determine the exact 

location of users' devices on or near the Earth's surface. Each satellite continuously broadcasts its 

precise time and position information, allowing receivers to triangulate their positions by calculating 

the time it takes for signals to travel from multiple satellites to the receiver. Navigation satellite 

constellations support a wide range of applications, including aviation, maritime navigation, land 

surveying, transportation, and personal navigation devices, contributing to increased safety, 

efficiency, and precision in various fields. 

• Space science satellite constellations: they are specifically dedicated to scientific exploration and 

observation beyond Earth's atmosphere. These constellations play a pivotal role in advancing the 

understanding of the cosmos, studying phenomena such as celestial bodies, cosmic rays, and high-

energy particles. Equipped with specialized instruments and sensors, these satellites capture data 

across various wavelengths, enabling scientists to conduct detailed analyses of astronomical events 

and cosmic structures. Satellites may have various orbits depending on the specific scientific 

objectives, including polar orbits or highly elliptical orbits. By deploying multiple satellites, these 

constellations offer broader coverage, increased observational frequency, and the ability to conduct 

coordinated observations, ultimately contributing to the advancement of space science. 

These satellite constellations represent a diverse range of applications and technical implementations, each 

contributing to scientific research, technological advancements, and practical applications in various fields. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2: representation of different orbits 
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In the context of navigation satellites (see ESA 2024a), here are some of the most prominent constellations 

able to ensure continuous and accurate positioning, navigation, and timing (PNT) services: 

• Global Positioning System (GPS): developed and operated by the United States Department of 

Defence, the GPS constellation is the most widely used navigation satellite system globally. It consists 

of a constellation of around 30 satellites orbiting the Earth at approximately 20,000 km above the 

surface. These satellites continuously transmit signals that can be received and used by GPS receivers 

to determine precise positioning, velocity, and timing information. 

• GLONASS (Global Navigation Satellite System): GLONASS is the Russia counterpart to the GPS system. 

It consists of a constellation of around 24 operational satellites orbiting the Earth. GLONASS provides 

global coverage and is interoperable with GPS, allowing users to receive signals from both systems 

simultaneously to improve positioning accuracy and reliability. 

• Galileo: developed by the European Union and the European Space Agency (ESA), Galileo is Europe's 

independent global navigation satellite system. It consists of a constellation of around 30 satellites 

in orbit, providing highly accurate positioning, navigation, and timing services to users worldwide. 

Galileo aims to offer greater coverage and reliability than existing systems and is designed to be 

interoperable with GPS and GLONASS. 

• BeiDou Navigation Satellite System (BDS): BeiDou is China's navigation satellite system, providing 

positioning, navigation, and timing services to users in China and the Asia-Pacific region. It initially 

started as a regional system but has since expanded to global coverage with a constellation of over 

30 satellites. BeiDou is designed to provide enhanced positioning accuracy and availability, 

particularly in challenging urban environments and for mobile applications. 

• Quasi-Zenith Satellite System (QZSS): developed by Japan, QZSS is a regional satellite navigation 

system designed to complement existing global navigation satellite systems like GPS. It consists of a 

constellation of multiple satellites, including one or more satellites in quasi-zenith orbits (QZO) to 

provide enhanced coverage over Japan and the surrounding region. QZSS aims to improve 

positioning accuracy, particularly in urban environments with obstructed views of the sky. 

GNSS Galileo GLONASS GPS BDS 

Orbit type MEO MEO MEO GEO IGSO MEO 

Satellite 
Number 

24 24 30 3 3 24 

Altitude 20180 km 19100 km 23220 km 35786 km 35786 km 21528 

Inclination 56° 64.8° 56° 0° 55° 55° 

Constellation 6 planes 
Walker 

(24/3/1) 

Walker 
(24/3/1) + 
6 backups 

Located at 
80°E, 

110.5°E, 
and 140°E 

RAAN of 
118°E 

Walker 
(24/3/1) 

Total number 24 24 30 30 

Table 2.1: summary of navigation constellations 
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These navigation satellite constellations work together to provide global coverage and ensure redundancy, 

resilience, and reliability in positioning and timing services for various applications, including aviation, 

maritime navigation, surveying, agriculture, transportation, and personal navigation. 

2.2 Dilution of precision 

In the vast space environment, where distances span millions of kilometers and the smallest error can have 

significant consequences, satellite navigation systems represent a testament to human ingenuity. Operating 

through a network of orbiting satellites, these systems give us the remarkable ability to define our location 

with high accuracy (see e.g., GISgeography 2024). Satellite navigation has revolutionized the way we navigate 

and explore the world around us, becoming indispensable tools in countless applications. As technology 

continues to evolve, the possibilities for improving navigation accuracy are increasing. paving the way for a 

future where we can navigate with unprecedented accuracy and confidence. 

At the heart of satellite navigation lies a constellation of satellites orbiting the central planet. These 

satellites continuously broadcast signals that are acquired by receivers on the ground or in other vehicles. 

The receiver can calculate its own position using a process known as trilateration. The principle is represented 

in Figure 2.3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The trilateration is often confused with the concept of triangulation, in fact trilateration involves measuring 

distances while, on the other hand, triangulation measures angles. The following two-dimensional example 

explains the process, involving three satellites, as represented in figure 2.4, 2.5, and 2.6. 

 

 

 

 

 

 

 

Figure 2.3: GPS trilateration 
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Satellites broadcast signals for the GPS receiver to define its position, with both time and distance 

information. When the satellite one transmits a signal and it reaches the receiver, the distance between them 

is calculated, forming a circle of possible positions around the receiver. Consequently, the GPS position could 

lie anywhere on this circular path at the specified radius (see Fig. 2.4). The same thing occurs with the signal 

from a satellite two. The distance is uniformly broadcast until it reaches the receiver, potentially placing the 

receiver anywhere along the circle (see Fig. 2.5). However, with two known distances from two satellites, the 

precise position could be on the two intersection points where the circles meet. The involvement of a third 

satellite defines the accurate location at the intersection of all three circles. Trilateration utilizes these three 

distances to calculate the exact position (see Fig. 2.6). As the GPS receiver moves, the radius of each circle 

(distance) change consequently. In three-dimensional reality, GPS satellites broadcast signals in a spherical 

pattern, measuring distances to calculate the precise location. Yet several factors such as the atmosphere 

can affect the GPS precision and errors. 

The Global Navigation Satellite System (GNSS) typically requires signals from at least four visible satellites, 

to work effectively. This requirement comes from the basic principle of how the positioning systems work. 

Thanks to the trilateration principle, it is possible to determine a receiver position by calculating its distance 

from at least three visible satellites. With signals from three satellites, the receiver can determine 

Figure 2.4: one satellite signal representation Figure 2.5: two satellite signal representation 

Figure 2.6: three satellite signal representation 

https://gisgeography.com/gps-accuracy-hdop-pdop-gdop-multipath/
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approximately its position but the clock of the receiver is not synchronized with the atomic clocks on the 

satellites. The addition of a fourth satellite is essential for precise 3D positioning and time synchronization. 

This is because the receiver also needs to account for its own internal clock inaccuracies. By receiving signals 

from a fourth satellite, the receiver can correct any clock discrepancies and accurately calculate its position 

in three dimensions. In reality, more satellites provide better precision and redundancy. While four satellites 

are the minimum required for basic positioning, additional visible satellites further improve precision and 

reliability. By receiving signals from more satellites, the receiver can better mitigate errors caused by factors 

like atmospheric interference or satellite clock inaccuracies. 

In the context of satellite navigation and positioning systems, the accuracy and reliability of positioning are 

paramount. The phenomenon termed dilution of precision (DOP) represents and profoundly shapes the 

reliability of location-based measurements, and among its manifestations, the geometric dilution of precision 

(GDOP) emerges as a pivotal factor (see e.g., Tsui 2000). The DOP is a parameter to specify the error 

propagation as a mathematical effect of navigation satellite geometry on positional measurement precision, 

in particular it quantifies the effect of satellite geometry on positioning precision. The DOP defines how errors 

in the measurement as geometric perturbations, will affect the final state estimation, leading to changes in 

the measured data. Ideally, minor variations in the measured data should not yield significant variations in 

the final data. Conversely, sensitivity to measurement errors indicates a less desirable scenario where small 

variations in input lead to considerable changes in output. Not considering ionospheric and tropospheric 

effects, the signals from navigation satellites are defined. In particular, the relative satellite-receiver 

geometry plays the major role in determining the precision of estimated positions and times. Generally, a 

low DOP value represents a better positional precision. The DOP include the Geometric Dilution of Precision 

(GDOP), the Position Dilution of Precision (PDOP), the Time Dilution of Precision (TDOP) and the Vertical 

Dilution of Precision (VDOP): 

• Horizontal Dilution of Precision (HDOP): HDOP is a measure of the effect of satellite geometry on the 

accuracy of horizontal positioning. It quantifies how well the satellites are spread out across the sky 

in relation to the user's position. A lower HDOP value indicates better satellite geometry and 

therefore better horizontal positioning accuracy. HDOP values typically range from one to infinity, 

with values closer to one indicating better accuracy. 

• Vertical Dilution of Precision (VDOP): VDOP measures the effect of satellite geometry on the accuracy 

of vertical positioning. It assesses how well the satellites are distributed in relation to the user's 

altitude. Similar to HDOP, a lower VDOP value indicates better satellite geometry and therefore 

better vertical positioning accuracy. VDOP values also typically range from one to infinity. 

• Geometric Dilution of Precision (GDOP): GDOP is a combined measure of the effect of satellite 

geometry on both horizontal and vertical positioning accuracy. It considers both HDOP and VDOP to 

provide an overall assessment of positioning accuracy. A lower GDOP value indicates better overall 

satellite geometry and therefore better overall positioning accuracy. 

• Time Dilution of Precision (TDOP): TDOP measures the effect of satellite geometry on the accuracy 

of time measurements in satellite navigation systems. It quantifies how well the satellites are 

distributed in relation to the user's location in time. Similar to HDOP and VDOP, a lower TDOP value 

indicates better satellite geometry and therefore better time measurement accuracy. 

The DOP factors are influenced by various factors: 

• Satellite constellation geometry: the satellites position in the sky plays a crucial role in determining 

the accuracy of the receiver position. When satellites are closely grouped together, the DOP is low, 

resulting in higher accuracy. Conversely, when satellites are spread out or clustered in specific 

regions of the sky, the DOP is high, leading to lower accuracy. The concept is represented in Figure 

https://en.wikipedia.org/wiki/Error_propagation
https://en.wikipedia.org/wiki/Error_propagation
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2.7. Higer satellite elevation angles result in lower DOP, improving sensitivity to atmospheric 

disturbances. This is because, depending on the relative geometry between a satellite and a receiver, 

the precision of the satellite pseudo-range directly influences each dimension of the receiver's 

position measurement. The collective precision of multiple satellites in view of a receiver is 

determined by their relative positions, thus impacting the accuracy across each dimension of the 

receiver's measurement. 

 

 

 

 

 

 

 

 

 

 

 

 

• Receiver position: the receiver location on the surface affects the visible satellites and their angles, 

thereby it influences the GDOP. 

• Atmospheric conditions: the atmosphere can introduce errors in satellite signals due to factors such 

as, for example in the Earth case, ionospheric and tropospheric delays. These delays can vary based 

on factors like weather conditions, time of day, and geographic location, thereby affecting the 

accuracy of position measurements. 

• Satellite signal quality: the strength and integrity of satellite signals received by the receiver device 

also impact the DOP. Interference from nearby structures, terrain, or electronic devices can degrade 

the quality of signals, leading to increased uncertainty in position calculation. 

• Receiver sensitivity and multipath effects: The sensitivity of the receiver device to satellite signals, as 

well as multipath effects caused by signal reflections off nearby surfaces, can introduce errors in 

position calculations. Receiver design, antenna placement, and signal processing techniques play 

crucial roles in mitigating these effects. 

While DOP presents challenges to achieving accurate position fixes, there are several strategies to mitigate 

its effects. Effective satellite selection, strategic antenna placement, optimized receiver design, and real-time 

monitoring with corrections are crucial elements for enhancing the accuracy of position measurements in 

advanced positioning systems. By prioritizing satellites with favorable geometries and visibility, users can 

minimize dilution of precision (DOP) and elevate measurement accuracy, often facilitated by algorithms that 

dynamically optimize satellite selection based on prevailing conditions. Additionally, strategic antenna 

placement enhances satellite visibility and geometric conditions, further reducing DOP. Receiver design and 

calibration play a pivotal role in mitigating the impact of receiver sensitivity and multipath effects on accuracy 

Figure 2.7: satellite geometry influence on DOP factors 
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through optimization of design, placement, and signal processing algorithms. Moreover, continuous real-

time monitoring of satellite positions coupled with correction algorithms recalibrates positioning calculations 

on-the-fly, effectively mitigating DOP effects and ensuring consistent accuracy in position measurements. 
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3 Problem statement 

The following chapter deals with the description of the mathematical model and assumptions defined to 

describe the problem. The optimization algorithms are applied on the model formulated. The dynamic 

models, control variables and constraints are showed in detail.  

The problem consists in analyzing the motion of a group of satellites around a central body, in our case the 

Moon, to calculate the time intervals of visibility of every satellite with respect to the target points on the 

body surface, and the time intervals of visibility of every satellite with respect to the Earth. The following 

scenario is considered: 

• a set of satellites 𝑆𝛼 with 𝛼 = 1,… ,𝑁𝑆  is considered.  

• the time period considered is [0, 𝑇]; 

• a grid of target points 𝑃𝑖 = (𝜆𝑖, 𝜑𝑖) (𝜆𝑖 latitude and 𝜑𝑖  longitude), with 𝜆𝑖 = [0,±
𝜋

2
], 𝜑𝑖 = [0,2𝜋] 

and 𝑖 = 1,… ,𝑁𝑃 ,  on the Moon surface is given;   

The model is aimed at minimizing the geometric dilution of precision GDOP, as defined in Section 3.3 (GDOP, 

Langley 1999a, 1999b). The visibility of at least four satellites from each single point (on the lunar surface) 

must be permanently guaranteed. Analogously, the visibility of at least one satellite from Earth must be 

permanently guaranteed. In the present work is understood that the mutual communication between all the 

satellites is always possible (this guarantees that the visibility of a single satellite from Earth is sufficient for 

the scope). The following reference frames are introduced: 

• Earth centered inertial (ECI) reference frame. The fundamental 𝑥𝐸𝑦𝐸 plane is the Earth equatorial 

plane, the 𝑥𝐸  axis is permanently fixed in the direction of the vernal equinox while the 𝑧𝐸 axis is 

permanently oriented to the north pole. The origin 𝑂𝐸 is fixed in the center of the Earth. One 

commonly used ECI frame is defined with the Earth's Mean Equator and Mean Equinox (MEME) at 

12:00 Terrestrial Time on 1 January 2000 (represented in Fig. 3.1). The 𝑧𝐸 axis is aligned with 

the Earth's rotation axis (or equivalently, the celestial North Pole) as it was at that time. The 𝑥𝐸  and 

𝑦𝐸  axes are defined as previously. The ECI reference system will be indicated herein by (𝑂𝐸,𝑥𝐸,𝑦𝐸 , 

𝑧𝐸). 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: J2000 reference frame centered on Earth 

https://en.wikipedia.org/wiki/Fundamental_plane_(spherical_coordinates)
https://en.wikipedia.org/wiki/Terrestrial_Time
https://en.wikipedia.org/wiki/North_Pole
https://en.wikipedia.org/wiki/Celestial_pole
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• Moon centered (MC) reference frame with axes always parallel to the corresponding axes of the 

J2000 reference frame (𝑥𝐸//𝑥𝑀, 𝑦𝐸//𝑦𝑀, 𝑧𝐸//𝑧𝑀) as represented in Figure 3.2. The origin of 𝑂𝑀 is 

fixed in the center of the Moon; the MC reference system will be indicated herein by (𝑂𝑀,𝑥𝑀,𝑦𝑀, 

𝑧𝑀). In the following, if not differently specified, the Cartesian coordinates are adopted for both 

reference frames.  

For the specific case it will be considered the Moon centered reference frame to propagate satellite orbit for 

all the dynamical models implemented.  In Figure 3.2 the red line represents the Moon equator. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The conversion of a state vector from one inertial reference system to a second inertially one, can be 

obtained with the definition of the matrix rotation, starting from the Euler angles defined between the two 

inertial reference systems. The three Euler angles usually represent rotations about the axes of a fixed 

coordinate system. The sequence of rotations and the order of the axes determine the final orientation. A 

common rotation applied is the Tait-Bryan 321 rotation where 3 indicates that the first rotation is about the 

third axis (z axis), 2 indicates that the second rotation is about the second axis (y axis) and 1 indicates that 

the third rotation is about the first axis (x axis). For each elemental rotation, a 3x3 rotation matrix 

representing the rotation about a specific axis is expressed. The rotation matrices for the elemental rotations 

can be derived based on trigonometric functions (such as sine and cosine) of the corresponding Euler angles. 

The following expressions represent the main rotation matrices, for an angle rotation 𝛼 about the x axis, an 

angle rotation 𝛽 about the y axis and an angle rotation 𝛾 about the z axis to obtain: 

𝑅𝑥(𝛼) = [

1 0 0
0 cos (𝛼) −sin (𝛼)
0 sin (𝛼) cos (𝛼)

] ,                                                                                                                                                      (3.1) 

𝑅𝑦(𝛽) = [
cos (𝛽) 0 sin (𝛽)
0 1 0

−sin (𝛽) 0 cos (𝛽)
] ,                                                                                                                                                (3.2) 

𝑅𝑧(𝛾) = [
cos (𝛾) −sin (𝛾) 0
sin (𝛾) cos (𝛾) 0
0 0 1

] .                                                                                                                                            (3.3) 

Figure 3.2: J2000 reference frame centered in the Moon 
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Following the 321 rotation sequence, the state vector in the new reference system 𝐹2 (𝑿𝐹2) can be obtained 

starting from the vector in the first reference system (𝑿𝐹1) as follow: 

𝑿𝐹2= 𝑅𝑧(𝛾) ∗ 𝑅𝑦(𝛽) ∗ 𝑅𝑥(𝛼) ∗ 𝑿𝐹1 .                                                                                                                                            (3.4) 

3.1 Physical models 

The following chapter is based on the celestial mechanical theory as discussed in Fundamentals of 

Astrodynamics and applications (Vallado, 2013).  

3.1.1 Two-body approximation 

There are various equivalent forms to define the state of a satellite in space at a specific time. A widely used 

form, is the state vector expression 𝑿(𝑡), which represents the position 𝒓(𝑡) and velocity �̇�(𝑡) vectors of the 

satellite, as reported in 3.5: 

𝑿(𝑡) = [𝒓(𝑡), �̇�(𝑡)] = [𝒓𝑥(𝑡), 𝒓𝑦(𝑡), 𝒓𝑧(𝑡), �̇�𝑥(𝑡), �̇�𝑦(𝑡), �̇�𝑧(𝑡)] .                                                                                               (3.5) 

The state vector can be also expressed as function of the Keplerian orbital parameters: 

𝑿(𝑡) = [𝒓(𝑡), �̇�(𝑡)] = 𝒇(𝑆𝑎 , 𝑒, 𝑖, 𝛺, 𝜔, 𝜈0) .                                                                                                                           (3.6) 

Here, the Keplerian orbital elements are utilized, i.e., 𝑆𝑎 is the semi-major axis, 𝑒 the eccentricity, 𝑖 the 

inclination, 𝛺 is the right ascension of the ascending node, 𝜔 is the argument of periapsis and 𝜈0 is the true 

anomaly at 𝑡 = 0. More specifically: 

• Semi-major axis (𝑆𝑎): it represents half the sum of perigee 𝑟𝑝 and apogee 𝑟𝑎 radius of the orbit. The 

apogee is denoted as the farthest point in the orbit from the secondary body about the primary one, 

while the perigee as the nearest point. 

• Eccentricity (𝑒): it describes the elongation of the ellipse in relation to a circle. 

• Inclination (𝑖): it represents the orientation of the ellipse with respect to the reference plane, 

measured at the ascending node. 

• Right ascension of the ascending node (𝛺): it represents the angle orientation of the ascending node 

line of the orbit, with respect to the reference frame vernal point. 

• Argument of periapsis (𝜔): it indicates the orientation of the ellipse within the orbital plane, 

measuring the angle from the ascending node to the periapsis. 

• True anomaly at epoch 𝑡 = 0 (𝜈0): it describes the orbiting body position along the ellipse at a specific 

time. 

 

 

 

 

https://en.wikipedia.org/wiki/Orbit
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The inclination, right ascension of the ascending node, and argument of periapsis can also be described as 

Euler angles, defining the orbit orientation relative to the reference coordinate system. The Keplerian orbital 

elements (as represented in Fig. 3.3) are the parameters required to uniquely identify a specific orbit. 

In celestial mechanics these elements are considered in two-body systems using a Kepler orbit. A real orbit 

elements change over time due to the dynamic perturbations caused by other celestial bodies and the effects 

of their gravity field. A Kepler orbit is an idealized approximated orbit at a particular time. With reference to 

a secondary body orbiting around a primary central one with an inertial reference system centered on it, the 

shape and size of the ellipse orbit are defined. 

The two-body equation describe the motion of two points body under the influence of their mutual 

gravitational attraction, as described by Newtonian mechanics. The equation is obtained from several 

assumptions. 

1. The mass of the satellite is negligible compared to the mass of the attracting body. This is reasonable for 

the motion of artificial satellites.  

2. The coordinate system chosen is inertial. The importance of this assumption becomes apparent in the 

derivations necessary to obtain the equation.  

3. The bodies of the satellite and attracting body are spherically symmetrical, with uniform density. In 

consequence they can be treated as point masses.  

4. On the system is present only the gravitational force, which act along a line joining the centers of the 

two bodies.  

 

 

 

 

 

Figure 3.3: Keplerian orbital parameters representation 

https://en.wikipedia.org/wiki/Parameter
https://en.wikipedia.org/wiki/Orbit
https://en.wikipedia.org/wiki/Celestial_mechanics
https://en.wikipedia.org/wiki/Two-body_system
https://en.wikipedia.org/wiki/Kepler_orbit
https://en.wikipedia.org/wiki/Perturbation_(astronomy)
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The two-body equation in an inertial reference frame can be expressed as follows: 

�̈�(𝑡) =  −
𝜇

‖𝒓(𝑡)‖3
𝒓(𝑡) ,                                                                                                                                                                   (3.7) 

with 𝜇 = 𝐺𝑀. 

Where �̈�(𝑡) is the satellite acceleration vector, 𝜇 is the gravitational parameter of the central body, 𝐺 is the 

universal constant of gravitation, 𝑀 is the mass of the central attracting body and 𝒓(𝑡) is the position vector 

of the satellite. For the specific case the Moon is the central body.  

3.1.2 N-body dynamics 

The perturbed dynamic model describes the motion of the satellite under the influence of the central body 

gravitational force, and the perturbative gravitational forces derived from the presence of third bodies. 

Figure 3.3 represents a general inertial reference system with a central body and other secondar bodies, like 

Moon or Sun, and can helps to understand the position vectors and relative positions, that have to be 

considered. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3: Two body problem representation 

 

Figure 3.4: three-body geometry in a general inertial reference system 



24 
 

By analytical derivations, it is possible to achieve the N-body expression, relative to an inertial reference 

system, with the origin in the mass center of the primary central body.  The subscript ‘1’ refers to the primary 

central body, the subscript ‘𝑠𝑎𝑡’ refers to the satellite and ‘𝑗’ to the third body considered. In particular the 

(n) perturbative bodies considered for 3 ≤ 𝑗 ≤ 𝑛: 

�̈�1𝑠𝑎𝑡(𝑡) =  −𝐺
(𝑚1+𝑚𝑠𝑎𝑡)

‖𝒓1𝑠𝑎𝑡(𝑡)‖
3 𝒓1𝑠𝑎𝑡(𝑡) + 𝐺 ∑ 𝑚𝑗 (

𝒓𝑠𝑎𝑡𝑗(𝑡)

‖𝒓𝑠𝑎𝑡𝑗(𝑡)‖
3 −

𝒓1𝑗(𝑡)

‖𝒓1𝑗(𝑡)‖
3)

𝑛
𝑗=3  ,                                                              (3.8) 

From the equation can be seen the presence of several effects. The first one is the two-body gravity 

acceleration of the primary central body on the satellite. The second part of the equation has two parts, and 

it represents the gravity perturbation derived from the third bodies. A direct effect is caused from the third 

bodies directly on the satellite, derived from the state vector 𝒓𝑠𝑎𝑡𝑗(𝑡). The last term represents the indirect 

effect, caused by the acceleration of the third bodies on the central one (derived from the state vector 

𝒓1𝑗(𝑡)).  

3.2 Geometric dilution of precision  

The mathematical formulation of the GDOP is here described (with reference to the Moon surface). At a 

given time, we consider a surface point to be observed contemporarily by at least four satellites. The 

formulation presented considers the case of four visible satellites but can be generalized in the case the 

satellites are more than four. 

The satellite position vectors are introduced for each satellite respectively: 𝑟𝑀1 = [𝑥 𝑀1, 𝑦𝑀1, 𝑧𝑀1], 𝑟𝑀2 =

[𝑥 𝑀2, 𝑦𝑀2, 𝑧𝑀2], 𝑟𝑀3 = [𝑥 𝑀3, 𝑦𝑀3, 𝑧𝑀3], 𝑟𝑀4 = [𝑥 𝑀4, 𝑦𝑀4, 𝑧𝑀4],  and component vectors of the surface point 

𝑟𝑀 = [𝑥𝑀 , 𝑦𝑀 , 𝑧𝑀]. The distance between surface point and any of the four satellites is represented by: 

𝛿𝑟𝑀𝛼 = √(𝑥𝑀𝛼 − 𝑥𝑀)
2 + (𝑦𝑀𝛼 − 𝑦𝑀)

2 + (𝑧𝑀𝛼 − 𝑧𝑀)
2 ,                                                                                               (3.9) 

where 𝛼 is any satellite (𝛼 = 1, . . . ,4  ). 

The following matrix A is introduced: 

𝐴 =

[
 
 
 
 
 
 
(𝑥 𝑀1−𝑥𝑀)

𝛿𝑟𝑀1

(𝑦 𝑀1−𝑦𝑀)

𝛿𝑟𝑀1

(𝑧 𝑀1−𝑧𝑀)

𝛿𝑟𝑀1
1

(𝑥 𝑀2−𝑥𝑀)

𝛿𝑟𝑀2

(𝑦 𝑀2−𝑦𝑀)

𝛿𝑟𝑀2

(𝑧 𝑀2−𝑧𝑀)

𝛿𝑟𝑀2
1

(𝑥 𝑀3−𝑥𝑀)

𝛿𝑟𝑀3

(𝑦 𝑀3−𝑦𝑀)

𝛿𝑟𝑀3

(𝑧 𝑀3−𝑧𝑀)

𝛿𝑟𝑀3
1

(𝑥 𝑀4−𝑥𝑀)

𝛿𝑟𝑀4

(𝑦 𝑀4−𝑦𝑀)

𝛿𝑟𝑀4

(𝑧 𝑀4−𝑧𝑀)

𝛿𝑟𝑀4
1]
 
 
 
 
 
 

 .                                                       (3.10) 

The following matrix Q is defined:                   

𝑄 =

[
 
 
 
 
𝜎𝑥
2 𝜎𝑥𝑦

2 𝜎𝑥𝑧
2 𝜎𝑥𝜏

2

𝜎𝑦𝑥
2 𝜎𝑦

2 𝜎𝑦𝑧
2 𝜎𝑦𝜏

2

𝜎𝑧𝑥
2 𝜎𝑧𝑦

2 𝜎𝑧
2 𝜎𝑧𝜏

2

𝜎𝜏𝑥
2 𝜎𝜏𝑦

2 𝜎𝜏𝑧
2 𝜎𝜏

2
]
 
 
 
 

 = (𝐴𝑇 ∗ 𝐴)+ .                                         (3.11)

                   

The calculation of the Q matrix involves the implementation of the transpose matrix 𝐴𝑇 and the 

pseudoinverse (𝐴𝑇 ∗ 𝐴)+ of the term (𝐴𝑇 ∗ 𝐴). The pseudoinverse (see e.g., Israel et al., 2003) is also known 

as the Moore-Penrose inverse and it represents the generalization of the inverse matrix for non-square or 

singular matrices. It is defined as follows: 
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 It is used when the matrix does not have an inverse, i.e., when it is not a square matrix or when it is singular 

(its determinant is zero). The pseudoinverse provides a solution that is as close as possible to a true inverse, 

allowing to solve systems of linear equations even when the matrix doesn't meet the criteria for a traditional 

inverse. The main characteristics of the inverse and the pseudoinverse of a matrix are reported below. 

• Applicability: the inverse of a matrix exists if and only if the matrix is square and non-singular. In 

contrast, the pseudoinverse can be calculated for any matrix, regardless of its dimensions or 

singularity. 

• Existence: not all matrices have an inverse, but every matrix has a pseudoinverse. 

• Computation: while the inverse of a matrix can be computationally expensive to calculate, especially 

for large matrices, the pseudoinverse can be efficiently computed even for singular or rectangular 

matrices using techniques like singular value decomposition (SVD). 

• Use cases: the inverse of a matrix is primarily used to solve systems of linear equations. The 

pseudoinverse, on the other hand, is often used in applications like least squares regression, 

optimization, and solving overdetermined systems of linear equations. 

If 𝐴 is a square non-singular matrix, its inverse 𝐴−1 satisfies the equation 𝐴 ∗ 𝐴−1 = 𝐴−1 ∗ 𝐴 = 𝐼, where 𝐼 is 

the identity matrix. However, for non-square or singular matrices, no such inverse exists. Instead, the 

pseudoinverse denoted as 𝐴+ can be computed, which satisfies certain properties such as 𝐴 ∗ 𝐴−1 =

𝐴 ∗ 𝐴+ ∗ 𝐴 = 𝐴 and 𝐴+ ∗ 𝐴 ∗ 𝐴+ = 𝐴+. In conclusion, the pseudoinverse is a generalization of the inverse of 

a matrix, allowing to find approximate solutions to systems of linear equations and perform calculations on 

matrices that do not meet the criteria for having a true inverse. 

The GDOP 𝑑 is given by: 

𝑑 = √𝜎𝑥
2 + 𝜎𝑦

2 + 𝜎𝑧
2 + 𝜎𝜏

2 .                                                      (3.12)   

Where 𝜎𝑥, 𝜎𝑦, 𝜎𝑧 and 𝜎𝜏 are the diagonal elements of 𝑄 as defined in (3.11). The GDOP 𝑑 is adimensional. 

3.3 Optimization mathematical models 

Basic assumptions 

In this section we formulate the simplified mathematical models relevant to the constellation optimization 

problem, assuming the following: 

• the satellite dynamics is described with different model: the two body problem (with the Moon as 

central body) and the perturbed with the Moon as the central body and the Earth and the Sun as the 

second central bodies; 

• the Earth and Sun are described as single points; 

• the Moon body is assumed as a perfect sphere; 

• the Earth ephemerides are considered to obtain position, velocity and acceleration during the orbital 

motion with respect to the Moon; 

• the Sun ephemerides are considered to obtain position, velocity and acceleration during the orbital 

motion with respect to the Moon; 
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GDOP time-function definition 

To generalize for any time 𝑡 and for any point 𝑃𝑖 the satellite visibility from the target points  the Boolean 

functions 𝛿𝛼𝑖(𝑡) are introduced, with the following meaning:   

∀𝑡 ∈ [0, 𝑇]       𝛿𝛼𝑖(𝑡) = {
1                                           𝛾𝛼𝑖(𝑡) ≥ 𝛾𝛼
0                                            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  

  .                                                             (3.13) 

As is gartered, the visibility condition for any satellite with respect to the point is satisfied if there is a 

minimum elevation angle 𝛾 between the satellite and the local horizon of the point at any time 𝑡.  

In particular 𝛾𝛼  is the elevation angle lower bound and 𝛾𝛼𝑖 is the elevation angle of the satellite with respect 

to the point surface 𝑃𝑖, at a specific time  𝑡. 

The following time function is introduced for the selection of all visible satellite 𝛼. 

∀𝑡 ∈ [0, 𝑇],  

∀𝑖 ∈ [1, 𝑁𝑃] 

�̂�𝑖𝛼(𝑡) = {
√𝜎𝑥𝑖

2 (𝑡) + 𝜎𝑦𝑖
2 (𝑡) + 𝜎𝑧𝑖

2 (𝑡) + 𝜎𝜏𝑖
2 (𝑡)       𝑖𝑓           ∑ 𝛿

𝑁𝑠
𝛼=1  𝛼𝑖(𝑡) ≥ 4   

           +∞                                                                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

,                                                        (3.14) 

where the term √𝜎𝑥𝑖
2 (𝑡) + 𝜎𝑦𝑖

2 (𝑡) + 𝜎𝑧𝑖
2 (𝑡) + 𝜎𝜏𝑖

2 (𝑡)  is obtained from (3.9), (3.10) and (3.11), for all the visible 

satellite 𝛼.  

The following function (3.15) represents the GDOP for any point 𝑖 at a general time 𝑡 : 

𝑑𝑖(𝑡) = �̂�𝑖𝛼(𝑡) .                                                                                                                                     (3.15)      

Satellite Earth visibility 

In order to deal with the request of visibility of at least one satellite from Earth, the following Boolean 

function is defined: 

∀𝑡 ∈ [0, 𝑇]      𝜂𝛼(𝑡) = {
1                                               𝛼 𝑖𝑠 𝑣𝑖𝑠𝑖𝑏𝑙𝑒 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝐸𝑎𝑟𝑡ℎ
 0                                                                                𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  

 .                        (3.16)             

The above visibility condition can be expressed in the following way. 

At a given time t we consider the segment joining the Earth center 𝑂𝐸 with the point corresponding to the 

position of the satellite 𝑃𝛼(𝑡) . To reach the visibility of the satellite 𝛼 from Earth, the segment previously 

introduced must not intersect the Moon surface. 

∀𝑡 ∈ [0, 𝑇],        𝑂𝐸𝑃𝛼(𝑡) ∩ 𝑆𝑀 = ∅ ,                                                     (3.17) 

Where 𝑆𝑀 is the Moon surface.  

Objective function 

The following optimization criterion is considered, to represent the minimization of the GDOP: 

• 𝑚𝑖𝑛∑ ∫ 𝑑𝑖(𝑡)𝑑𝑡
𝑇

0

𝑁𝑃
𝑖                   (3.18) 

This corresponds to minimizing the GDOP average over all the grid points in the whole time interval [0, 𝑇].  
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Constraints 

• Dynamic system constraints 

The reference frame considered is the MC frame as defined in Section 3.1.  

With reference to the two-body dynamic model implemented, the equation 3.1 can be expressed as follow: 

�̈�𝑀𝛼(𝑡) =  −
𝜇𝑀

‖𝒓𝑀𝛼(𝑡)‖
3 𝒓𝑀𝛼(𝑡) .                                                                                                                                                     (3.19) 

For the perturbed dynamic model, the equation 3.2 is expressed as follow.  

To derive the dynamics equations with respect to the MC reference frame, we have to consider the resulting 

force vector 𝑭𝑀𝛼(𝑡) acting on the satellite 𝛼 at any time 𝑡 in the MC reference frame. The primary central 

body is represented by the Moon while the third bodies are the Earth and the Sun. 

After analytical passages the following equation is obtained and used to describe the motion: 

�̈�𝑀𝛼(𝑡) = −
𝜇𝑀

‖𝒓𝑀𝛼(𝑡)‖
3 𝒓𝑀𝛼(𝑡) +

𝜇𝐸

‖𝒓𝑀𝛼𝐸(𝑡)‖
3 𝒓𝑀𝛼𝐸(𝑡) +

𝜇𝑆

‖𝒓𝑀𝛼𝑆(𝑡)‖
3 𝒓𝑀𝛼𝑆(𝑡) −

𝜇𝐸

‖𝒓𝑀𝐸(𝑡)‖
3 𝒓𝑀𝐸(𝑡) −

𝜇𝑆

‖𝒓𝑀𝑆(𝑡)‖
3 𝒓𝑀𝑆(𝑡) ,      (3.20) 

Where:  

𝜇𝑀

‖𝒓𝑀𝛼(𝑡)‖
3 𝒓𝑀𝛼(𝑡)   is the Moon gravitational force acting on the satellite  

𝜇𝐸

‖𝒓𝑀𝛼𝐸(𝑡)‖
3 𝒓𝑀𝛼𝐸(𝑡)    is the Earth gravitational force acting on the satellite. 

𝜇𝑆

‖𝒓𝑀𝛼𝑆(𝑡)‖
3 𝒓𝑀𝛼𝑆(𝑡)     is the Moon gravitational force acting on the satellite 

𝜇𝐸

‖𝒓𝑀𝐸(𝑡)‖
3 𝒓𝑀𝐸(𝑡)         is the Earth gravitational force acting on the Moon 

𝜇𝑆

‖𝒓𝑀𝑆(𝑡)‖
3 𝒓𝑀𝑆(𝑡)         is the Sun gravitational force acting on the Moon 

And 𝜇𝑀 is the gravitational parameter of the Moon, 𝜇𝐸 is the gravitational parameter of the Earth and 𝜇𝑆 is 

the gravitational parameter of the Sun. 

In particular the position vectors are expressed as follow: 

𝒓𝑀𝛼𝐸(𝑡) = 𝒓𝑀𝐸(𝑡) − 𝒓𝑀𝛼𝑀(𝑡), 

𝒓𝑀𝛼𝑆(𝑡) = 𝒓𝑀𝑆(𝑡) − 𝒓𝑀𝛼𝑀(𝑡), 

Where 

�̈�𝑀𝛼(𝑡) = [�̈�𝑀𝛼(𝑡), �̈�𝑀𝛼(𝑡), �̈�𝑀𝛼(𝑡)] acceleration of satellite α at time t w.r.t. MC; 

𝒓𝑀𝛼(𝑡) = [𝑥𝑀𝛼(𝑡), 𝑦𝑀𝛼(𝑡), 𝑧𝑀𝛼(𝑡)] position of satellite α at time t w.r.t. MC; 

𝒓𝑀𝛼𝐸(𝑡) = [𝑥𝑀𝛼𝐸(𝑡), 𝑦𝑀𝛼𝐸(𝑡), 𝑧𝑀𝛼𝐸(𝑡)] position of satellite α with respect to Earth at time t w.r.t. MC; 

𝒓𝑀𝛼𝑆(𝑡) = [𝑥𝑀𝛼𝑆(𝑡), 𝑦𝑀𝛼𝑆(𝑡), 𝑧𝑀𝛼𝑆(𝑡)] position of satellite α with respect to Sun at time t w.r.t. MC; 

𝒓𝑀𝐸(𝑡) = [𝑥𝑀𝐸(𝑡), 𝑦𝑀𝐸(𝑡), 𝑧𝑀𝐸(𝑡)] position of the Earth with respect to the Moon at time t w.r.t. MC;  

𝒓𝑀𝑆(𝑡) = [𝑥𝑀𝐸(𝑡), 𝑦𝑀𝐸(𝑡), 𝑧𝑀𝐸(𝑡)] position of the Sun with respect to the Moon at time t w.r.t. MC; 
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• Visibility constraints 

With reference to equation (3.11), there must be at least four visible satellite at any time 𝑡 for every point 𝑖, 

i.e. 

∀𝑡 ∈ [0, 𝑇]    ∑ 𝛿
𝑁𝑠
𝛼=1  𝛼𝑖(𝑡) ≥ 4.                                                                            (3.21) 

Concerning the visibility of at least one satellite with respect to the Earth at any time 𝑡, the following 

condition is set: 

∀𝑡 ∈ [0, 𝑇]    ∑ 𝜂
𝑁𝑠
𝛼=1  𝛼(𝑡) ≥ 1.                  (3.22) 

Regarding the non-intersection conditions (3.22), the following equation is derived: 

 ∀𝑡 ∈ [0, 𝑇],        𝑂𝐸𝑃𝛼(𝑡) ∩ 𝑆𝑀 = ∅ ⟺ 𝑂𝐸𝒓𝑀𝛼(𝑡) ∩ 𝑆𝑀 = ∅                               (3.23) 

• Visibility constraints 

The constraint on the final satellite altitude is reported. It is necessary that each satellite, at the final instant 

of analysis, report a minimum perigee altitude. The expression 3.24 represent the constraint: 

  ∀𝛼 = 1,… ,𝑁𝑠    𝑟𝑝𝛼(𝑡 = 𝑇) − 𝑅𝑚𝑜𝑜𝑛  ≥ ℎ𝑝𝑚𝑖𝑛                                                                               (3.24) 

Where 𝑁𝑠 is the total number of satellites, 𝑅𝑚𝑜𝑜𝑛 is the Moon radius and ℎ𝑚𝑖𝑛 is the minimum perigee 

altitude required for each satellite in the final instant of time analysis. 

Bounds 

The bounds for the variables representing the satellite orbit parameters are reported below: 

𝑟𝑎𝛼 ≤ 𝑟𝑎𝛼 ≤ 𝑟𝑎𝛼 

𝑟𝑝𝛼 ≤ 𝑟𝑝𝛼 ≤ 𝑟𝑝𝛼 

𝑖𝛼 ≤ 𝑖𝛼 ≤ 𝑖𝛼 

𝜔𝛼 ≤ 𝜔𝛼 ≤ 𝜔𝛼 

𝛺𝛼 ≤ 𝛺𝛼 ≤ 𝛺𝛼 

𝜈0𝛼 ≤ 𝜈0𝛼 ≤ 𝜈0𝛼 

Where for each satellite 𝛼: 

• 𝑟𝑎𝛼 is the apogee radius of the satellite orbit; 

• 𝑟𝑝𝛼 is the perigee radius of the satellite orbit; 

• 𝑖𝛼 is the perigee radius of the satellite orbit; 

• 𝜔𝛼 is the perigee argument of the satellite orbit; 

• 𝛺𝛼 is the RAAN of the satellite orbit; 

• 𝜈0𝛼is the true anomaly at 𝑡 = 0 of the satellite. 
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4 Support mathematical concepts 

In this chapter some basic mathematical concepts are introduced. The principal characteristics and general 

concepts are briefly explained herein while in the second Section 4.2 the clustering techniques is explained.  

4.1 General optimization methods 

This chapter deals with an introduction about the most well-known optimization methods and algorithms 

applied for various type of problems. Optimization problems form a fundamental category in mathematics, 

encompassing a wide range of applications across various disciplines. At their core, optimization problems 

involve finding the best solution from a set of feasible options, with the goal of maximizing or minimizing an 

objective function, while satisfying certain constraints. These problems are applied in real-world scenarios, 

appearing in fields such as engineering, physics, computer science, economics, and biology. Optimization 

problems are typically formulated using mathematical expressions. The objective function represents the 

quantity to be maximized or minimized, while constraints impose limitations on the feasible solutions. 

Mathematically, an optimization problem can be expressed as (see e.g., Minoux et al. 1986): 

{
 
 

 
 min 𝐽(𝒙)  
𝒈(𝒙) ≤ 𝟎

𝒉(𝒙) = 𝟎

𝑿 ≤ 𝒙 ≤ 𝑿

                                                                                                                                                                                    (4.1) 

With 

{
  𝒙 ∈  𝑅𝑛

𝐽 ∶   𝑅𝑛 → 𝑅
  𝑸 ∶   𝑅𝑛 → 𝑅𝑚

                                                                                                                                                                                (4.2) 

Here, 𝒙 represents the vector of decision variables, 𝑿 and 𝑿 are the upper and lower bounds of the 

decisions variables,  𝐽(𝒙) is the objective function and 𝒈(𝒙) and 𝒉(𝒙) are the inequalities and equalities 

functions respectively. In the equation 4.1 the expression min 𝐽(𝒙)  has the same significance of max 𝐽(𝒙). 

A feasible solution is represented by the set of values taken by the decision variables 𝒙 which satisfy all the 

constraints (equalities and inequalities). The set of feasible solutions in the decision variable space identifies 

the feasibility domain. A solution method can be categorized as either exact, if it precisely identifies and 

proves the best feasible solution, or heuristic, if it aims to find a satisfactory solution, though not necessarily 

optimal. Once a mathematical model is formulated, the challenge lies in identifying its solutions. 

Mathematical programming encompasses both the theoretical aspects and the solution techniques of 

mathematical programming models. The complexity of these methods strictly depends on the characteristics 

and properties of the functions 𝑓, 𝑔 and ℎ.  

Optimization techniques act as guiding compass through the various possibilities. In the specific framework 

of optimal control (see e.g., Bryson 1999), there are several methods to face optimization challenges, ranging 

from classical approaches, such as direct and indirect methods, to evolutionary algorithms. 

• Direct methods: they seek the optimal solution by directly examining the objective function and 

constraints. Among these methods, a famous one is the method of gradient, which involves iterative 

adjustments to the solution based on the gradient of the objective function, directing towards 

steepest descent or ascent. Another notable direct method is the Newton-Raphson method, 

particularly useful at solving nonlinear optimization problems. It refines the solution iteratively by 

approximating the objective function with a quadratic model and updating the solution using the 
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Newton direction. Direct methods are valued for their efficacy in uncovering local optima, especially 

in smooth, convex problems. 

• Indirect methods: in contrast, indirect methods approach optimization problems through 

mathematical formulations or transformations. These methods typically entail converting the 

optimization problem into a different mathematical form, such as a system of equations or 

differential equations, which can then be solved using established techniques. An example of an 

indirect method is the application on Pontrjagin’s principle (see e.g., Bryson 1999). While indirect 

methods may confer advantages in certain scenarios, they can also introduce complexities and 

computational overhead. 

• Evolutionary algorithms: evolutionary algorithms draw inspiration from the principles of natural 

selection and evolution to address optimization problems. These algorithms maintain a population 

of candidate solutions, subjecting them to selection, crossover, and mutation operators to iteratively 

generate new solutions. Across successive generations, the population evolves towards solutions 

based on their fitness, eventually converging to optimal or near-optimal solutions. Among the most 

renowned evolutionary algorithms is the genetic algorithm (GA), which mimics natural selection by 

evolving a population of individuals encoded as chromosomes. Each individual represents a potential 

solution, and genetic operators like crossover and mutation are applied to produce offspring with 

potentially traits. GAs are good for complex navigation and prove particularly effective for problems 

characterized by nonlinearity, discontinuity, or high dimensionality. 

Additionally, a diverse array of optimization methods exists, each tailored to address various problem 

structures, objectives, and constraints. The chosen methods can significantly influence the efficiency and 

effectiveness of the solution process.  

4.1.1 Black-box approach 

The back-box approach (see e.g., Alarie 2021) deals with a problem where the analytical expressions of the 

functions involved is partially or totally not known a priori. The control variables in the black-box approach 

are the input variables from which the output functions can be calculated. 

Formulation of the black box approach: the optimization problem is viewed solely from the standpoint of 

input and output. The emphasis lies in understanding how inputs (variables, constraints, etc.) correspond to 

outputs (objective function values, feasible solutions, etc.) without delving into the internal complexities of 

the problem. The input variables 𝒙 must be contained within the given upper and lower bounds, as expressed 

below: 

{
𝒚 = 𝑓(𝒙)

𝑿 ≤ 𝒙 ≤ 𝑿
  .                                                                                                                                                                                          (4.4) 

The cost function and the constraint functions are calculated starting from the output vector and the 

decisions variables, i.e.,  

{
𝐽(𝒙, 𝒚)
𝑸(𝒙, 𝒚)

  .                                                                                                                                                                                   (4.5) 

The focus lies on efficiently exploring the solution space using optimization techniques like algorithms, 

heuristics, or machine learning methods. This involves iterative interaction, where initial guesses refine 

subsequent inputs until satisfactory solutions or convergence criteria are met.  

Black-box optimization methods provide a powerful approach to address challenging problems even 

without a comprehensive knowledge of the system involved. As technology advances, these methods will 

continue evolving, unlocking new optimization possibilities across various domains.  
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4.1.2 Sequential quadratic programming 

Sequential quadratic programming (SQP) is an optimization method widely used for solving nonlinear 

optimization problems, particularly those with constraints (see e.g., Fletcher 2010). It belongs to the class of 

iterative algorithms, where at each iteration, it solves a quadratic subproblem approximating the original 

nonlinear one. SQP iteratively refines the solution by updating the decision variables towards the optimum, 

subject to constraints, until convergence is achieved. The general steps of the SQP algorithm are as follows: 

1. Initialization: choose an initial feasible solution and set iteration counter k = 0. 

2. Quadratic programming sub-problem: at iteration k, construct a quadratic approximation of the 

objective function and constraints around the current point. 

3. Solve quadratic sub-problem: solve the quadratic sub-problem to obtain a search direction, 

typically using methods like interior-point or active-set. 

4. Line search: perform a line search to determine the step size along the search direction that 

minimizes the objective function while satisfying the constraints. 

5. Update: update the decision variables using the step size obtained from the line search. 

6. Convergence check: check for convergence criteria. If satisfied, stop; otherwise, increment k and 

go to step 2. 

SQP converges to a local minimum when the search direction becomes small enough, or when the change in 

the objective function and constraints is sufficiently small between iterations. Convergence criteria typically 

check the optimality conditions, such as the Karush-Kuhn-Tucker (KKT) conditions.  

SQP offers efficiency and local convergence for solving a wide number of nonlinear optimization problems 

with constraints. However, its convergence can be sensitive to the initial guess and computational cost of 

using derivatives, requiring specific strategies to achieve robust and efficient convergence. Moreover, it may 

converge to local optima, particularly for ill-conditioned problems or highly nonlinear constraints / objective 

functions. All in all, despite these limitations, SQP flexibility and derivative-based approach make it a versatile 

tool. 

4.1.3 Genetic algorithms 

Genetic Algorithms (GA) are stochastic search algorithms inspired by the principles of natural selection. Their 

functioning is based on the principles of Darwinian evolution and genetics. Developed by John Holland in the 

1970s, genetic algorithms have become a popular method for finding solutions to complex optimization 

Figure 4.1: Black-box schematic representation 
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problems. They are particularly useful for problems with a large search space, non-linearity. By iteratively 

evolving a population of candidate solutions, genetic algorithms efficiently explore and exploit the search 

space to find near-optimal solutions. 

They maintain a population of individuals, each representing a potential solution to the optimization 

problem. These individuals are represented as strings of symbols, often referred to as chromosomes or 

genotypes and the evolution process involves selection, crossover, and mutation, miming the genetic 

recombination, and mutation processes. The main components of genetic algorithms include: 

• Representation: encoding of candidate solutions as chromosomes. 

• Initialization: generating an initial population of individuals. 

• Selection: choosing individuals from the population for reproduction based on their fitness. 

• Crossover: creating new individuals by combining genetic material from selected parents. 

• Mutation: introducing random changes to individuals to maintain diversity. 

• Fitness evaluation: assessing the quality of individuals based on their performance on the 

optimization problem. 

• Termination criteria: determining when to stop the evolution process, typically based on the number 

of generations or a given satisfactory criterion. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The implementation of these components depends on the characteristics of the optimization problem, such 

as its structure, constraints, and objective(s). Additionally, parameter tuning, and control strategies are 

crucial for optimizing the performance of genetic algorithms. Genetic algorithms find applications in various 

fields, including engineering design, scheduling, machine learning, and robotics.  

4.2 Clustering 

The main goal of clustering is to partition large amount of data into groups, or clusters, where data within 

the same cluster is more similar than data in other clusters (see Fig 4.3). Clustering is widely used in various 

fields due to its ability to uncover hidden patterns and structures within data. Various types of clustering 

algorithms are available. The most popular one is K-means (see e.g., Lloyd 1982), which divides the given 

Figure 4.2: genetic algorithm flow chart 
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data into K clusters and each element (of the data set) belongs to exactly one cluster. The main steps of K-

means are here reported: 

• Initialization: the algorithm starts by randomly initializing K cluster centroids. Each centroid 

represents the “center of mass” of the corresponding cluster. 

• Assignment: each element is assigned to the nearest centroid based on some distance metric, 

typically Euclidean distance. 

• Update centroids: after all elements have been assigned to clusters, the centroids are updated by 

computing the mean of all elements assigned to each cluster. 

• Repeat: steps 2 and 3 are repeated iteratively until the centroids no longer change significantly or a 

specified number of iterations is reached. 

The goal of the K-means algorithm is to minimize the within-cluster variance, which is achieved by optimizing 

the placement of the centroids. Given a set of observations (𝑥1, 𝑥2, … , 𝑥𝑛) where each observation is a 𝑑-

dimensional real vector, K-means clustering aims to partition the 𝑛 observations into k (≤ n) sets S =

 {S1,  S2, . . . ,  Sk} so as to minimize the within-cluster sum of squares (WCSS) (i.e. variance). Formally, the 

objective is to find: 

arg min
𝑆

∑ ∑ ‖𝑥 − 𝜇𝑖‖
2

𝑥∈𝑆𝑖
𝑘
𝑖=1 , 

Where 𝜇𝑖  is the mean (also called centroid) of points in 𝑆𝑖, i.e. 

𝜇𝑖 =
1

|𝑆𝑖|
∑ 𝑥𝑥∈𝑆𝑖 , 

Where |𝑆𝑖| is the size of 𝑆𝑖. 

Clustering is a versatile and widely used technique with applications across various domains, providing 

insights into data structures, patterns, and relationships. It finds application a wide variety of scientific and 

industrial fields. 

 

 

 

 

 

 

 

 

 

 

4.3 Path-relinking technique 

The path-relinking technique represents a process to generate new sets of reference solutions, creating paths 

between and beyond known solutions. In fact, a path between solutions in a neighborhood space will 

generally yield new solutions that share a significant subset of attributes contained in the parent solutions. 

The generation of such paths in the neighborhood space characteristically "relinks" previous points in ways 

not achieved in the previous search history, hence giving the approach its name (see Fig 4.4). The creation of 

paths, joining two selected solutions x' and x" and producing a solution sequence, can first be considered: 

𝑥′ =  𝑥(1), 𝑥(2), . . . , 𝑥(𝑟)  =  𝑥"  . 

Figure 4.3: clustering example representation 

https://en.wikipedia.org/wiki/Variance
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To reduce the number of solutions to be considered, the solution 𝑥(𝑖 + 1) may be created from 𝑥(𝑖) at each 

step by choosing the direction that leaves a reduced number of steps remaining to reach 𝑥 (the "fewest" 

number of moves). This policy, even if applied without exception, can permit a significant number of 

alternative choices for generating the next solution at each step. Consequently, additional criteria are 

relevant to creating the path, as indicated in Figure 4.4 below. 

 

 

 

 

 

 

 

 

 

 

 

4.4 Multi-objective optimization 

This section deals with the fundamentals of multi-objective optimization (MOO) and its application to optimal 

control, focusing on the concept of the Pareto front. In the context of optimal control, the problems often 

present conflicting objectives such as minimizing costs, maximizing performances, and meeting constraints. 

Unlike a single-objective optimization, where a single optimal solution has to be reached, MOO aims to find 

a set of solutions, known as the Pareto optimal set.  An MOO can be formulated as: 

𝑚𝑖𝑛(𝑓1(𝑥), 𝑓2(𝑥),… , 𝑓𝑘(𝑥)) , 

where the integer 𝑘 is the number of objectives to be minimized (or maximized) and the 𝑥 is the set of 

decision variables. The decision variables are typically subject to constraint functions. The pareto optimal set 

consists of solutions where no objective can be improved without worsening at least one other objective. 

This way, they represent the trade-offs between objectives. A solution is called nondominated, if none of the 

objective functions can be improved in value without degrading some of the other objective values. In 

optimal control problems, the Pareto front illustrates the compromise between different control strategies 

that optimize various objectives simultaneously as represented in Figure 4.5 (MOO minimization problem). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4: path-relinking approach 

Figure 4.5: Pareto-front representation 

https://en.wikipedia.org/wiki/Maxima_of_a_point_set
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Without additional objectives or constraints, there may exist a potentially infinite number of Pareto optimal 

solutions, all of which are considered equally good. The goal may be to find a representative set of Pareto 

optimal solutions. Formulating a multi-objective optimal control problem consists in defining the objectives, 

constraints, and system dynamics explicitly. Various techniques exist for solving MOO problems, ranging from 

evolutionary algorithms to mathematical programming and direct methods. Evolutionary algorithms like 

genetic algorithms and particle swarm optimization are well-suited for MOO. 
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5 Experimental analysis 

In the following chapter all the experimental analysis made with the algorithms and methods are reported. 

The chapter is divided into separate sections to show the results obtained with different dynamic models, 

total number of satellites and control variables, in addition with different approaches and algorithms to 

improve the solutions.  This chapter discusses solutions that are satisfactory from an engineering perspective.  

Some solutions may be considered worthwhile in this regard, even if they are not globally optimal. It should 

be noted that the optimality of the solutions found has not been proven. From a rigorous standpoint, all 

solutions found should be considered suboptimal. All the optimization analysis are performed in Matlab 

environment (see e.g., MathWorks 2022), while the results are verified in System Tool-kit (STK) environment 

(see e.g., STK 2024).  The section 5.1 deals with the basic assumptions of the mathematical model used for 

the optimization, the section 5.2 reports the solution obtained from the genetic algorithm, the section 5.3 

represents the solutions obtained through the SQP algorithm and the section 5.4 the improvements made 

with the clustering methods. The section 5.5 reports the solutions obtained through the Path-linking 

techniques. Finally, the section 5.6 reports an analysis on some relevant solutions about the influence of the 

orbital perturbation. 

5.1 Basic assumptions 

Target area 

The mathematical model used in the optimization is defined by constant and defined characteristics that 

allow the results to be compared at the end of the experimental analysis. The geographical coordinates of 

the points to be observed on the lunar surface and that define the target reference area are defined and kept 

constant throughout the analysis.  

 

 

 

 

 

 

 

 

 

 

 

 

Orbit propagation 

In the Matlab environment, the orbit propagation and position of target points are calculated for a total 

time similar to the period of the Moon's revolution around the Earth.  The initial time is defined as 𝑡 = 0 

while the final time is defined as 𝑡 = 𝑇, where 𝑇 = 28 𝑑𝑎𝑦𝑠. The total time 𝑇 is divided in subintervals of 

Minimum latitude -90° 

Maximum latitude -75° 

Minimum longitude 0° 

Maximum longitude 360° 

Number of points 20 

Table 5.1: target area coordinates 

Figure 5.1: target area representation (STK) 
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10 minutes each, to calculate satellite positions, target point positions and GDOP values. For the results 

verified in the STK environment, the orbit propagation considers the perturbation effects due to the Earth 

gravity force and the Sun gravity force, for a total time similar to the period of the Moon's revolution 

around the Earth.  The initial time is defined as 𝑡 = 0 while the final time is defined as 𝑡 = 𝑇, where 𝑇 =

28 𝑑𝑎𝑦𝑠. The total time 𝑇 is divided in subintervals of 1 minutes each, to calculate satellite positions, target 

point positions and GDOP values. 

Visibility constraint 

The visibility constraint is defined with a minimum elevation angle between the surface point and the satellite 

position (see expression 3.13): 

𝛾 = 5° 

Variable bounds 

The variables bounds are defined as follows: 

 

 

 

 

 

 

Where: 

• 𝑟𝑎  is the orbit apogee radius; 

• 𝑟𝑝 is the orbit perigee radius; 

• 𝑖 is the orbit inclination; 

• Ω is the orbit right ascension of the ascending node; 

• 𝜔 is the perigee argument; 

• 𝜈 is the satellite true anomaly at 𝑡 = 0;  

GDOP values interpretation  

The results obtained report the GDOP values calculated from the satellite and the grid point positions, over 

the time considered. The Table 5.3 helps us to understand better the GDOP value and its significance: 

GDOP value Rating Description 

<1 Ideal Highest precision level. 

1–2 Excellent 
Confidence precision level, positional 

measurements are considered accurate. 

2–5 Good 
This level represents the minimum appropriate 

for accurate measurements. 

5–10 Moderate 
The quality of positional measurements 

could be improved. 

10–20 Fair 
Low confidence level, positional measurement 

represents an estimate. 

 
[km] [km] [deg] [deg] [deg] [deg] 

𝑟𝑎 𝑟𝑝 𝑖 Ω 𝜔 𝜈 

Lower 
bound 

2000 2000 0 0 0 0 

Upper 
bound 

15000 15000 180 360 360 360 

Table 5.2: variable upper and lower bounds 
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>20 Poor 
Not sufficient accurate level, measurements 

should be discarded. 

Table 5.3: GDOP values indicators 

The results obtained report the following information, e.g. the two objectives to be minimized: 

• Mean GDOP: it represents the mean GDOP value over the total time and for each of the 20 target 

points considered. It is valuated considering all the GDOP values, in particular when the GDOP is 

greater than 20 is it forcedly set to 20; 

• Peak time %: it represents the mean percentage of time for each point with GDOP values greater 

than 20. 
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5.2 Global approach from scratch 

The following solutions are obtained by the genetic algorithm which is part of the Global Optimization 

Toolbox of Matlab. In the following cases the initial population is not initialized therefor the algorithm selects 

by itself the individuals inside the variable bounds, from which starts the process. The implemented 

mathematical model is defined with the two-body dynamics to calculate the satellite state vector during the 

orbital motion. The total number of satellites is defined, and, in each case, different variables are selected 

for the process. In case the results are too different between the Matlab two-body propagation and the STK 

perturbation analysis, a second optimization process is performed, based on a mathematical model involving 

the orbital perturbations. 

The following case G1, G2, G3, G4 represents a scenario with eight satellites. Each satellite is defined by its 

six variables (48 total variables):  apogee radius 𝑟𝑎, perigee radius 𝑟𝑝, inclination 𝑖, right ascension of the 

ascending node Ω, argument of perigee 𝜔 and the true anomaly 𝜈.  In each case are reported the variables 

defined for the optimization process while, if not specified, all the satellite variables are involved. If not 

specified, the mathematical model used for the optimization is represented by the two-body dynamics. 

5.2.1 Case G1   

The optimal results of case G1 are reported in Table 5.5, while in Table 5.4 are reported the orbital 

parameters of each satellite. In Figure 5.2 the optimal solution is represented. 

 
[km] [km] [deg] [deg] [deg] [deg] 

𝑟𝑎  𝑟𝑝 𝑖 Ω 𝜔 𝜈 

S1 13348.2 2943.2 147.4 246.9 93.2 219.1 

S2 13585.8 2594.0 148.3 247.8 115.7 358.2 

S3 14996.1 2525.6 152.0 126.4 99.9 131.3 

S4 13289.8 5177.1 87.1 267.5 108.8 133.7 

S5 14702.7 2797.5 35.9 171.3 103.9 176.3 

S6 14827.3 2738.6 34.9 221.3 94.5 247.1 

S7 14166.8 2248.9 94.1 219.1 86.5 153.1 

S8 14919.1 3554.9 97.8 149.3 87.8 232.8 

Table 5.4: case G1 orbital parameters 

 Mean GDOP  Peak time % 

 MATLAB STK MATLAB STK 

Optimal 
solution 

2.53 2.65 0.19 % 0.37 % 

Table 5.5: case G1 GDOP values 
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Case G1 represents a scenario with an orbital plane for each satellite involved. Although the architecture is 

complex, the optimization algorithm has reached a good solution with a low mean GDOP value and mean 

peak time percentage. Although the solution is not the global optimum (see case G3 and case G14), it is still 

considered worthwhile thanks to the extensive use of all degrees of freedom. 

5.2.2 Case G2 

The optimal results of case G2 are reported in Table 5.8, while in Table 5.7 are reported the orbital 

parameters of each satellite. In Figure 5.3 the optimal solution is represented. The optimization variables 

selected are reported in Table 5.6: there are eight satellites and two orbital planes. It is reasonable to consider 

solutions with a reduced number of orbital planes as they are considered more advantageous for reasons of 

satellite deployment or constellation operability. The satellites S1, S2, S3 and S4 belong to the first plane so 

the variables are the plane orbital parameters (apogee radius  𝑟𝑎1, the perigee radius 𝑟𝑝1, the inclination 𝑖1, 

the RAAN Ω1 and the perigee argument 𝜔1) and the true anomaly of each satellite at 𝑡 = 0. The satellites S5, 

S6, S7 and S8 belong to the second plane so the variables are the plane orbital parameters (𝑟𝑎2, 𝑟𝑝2, 𝑖2, Ω2 and 

𝜔2) and the true anomaly of each satellite at 𝑡 = 0. 

 

 

 

 

 

 

 

 

 

 

 

S1 S2 S3 S4 S5 S6 S7 S8 

𝑟𝑎1 𝑟𝑎2 

𝑟𝑝1 𝑟𝑝2 

𝑖1 𝑖2 

Ω1 Ω2 

𝜔1 𝜔2 

𝜈1 𝜈2 𝜈3 𝜈4 𝜈5 𝜈6 𝜈7 𝜈8 

Table 5.6: case G2 optimization variables 

Figure 5.2: case G1 optimal solution 
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[km] [km] [deg] [deg] [deg] [deg] 

𝑟𝑎  𝑟𝑝 𝑖 Ω 𝜔 𝜈 

S1 12810.9 2436.8 77.3 259.3 136.9 171.3 

S2 12810.9 2436.8 77.3 259.3 136.9 90.0 

S3 12810.9 2436.8 77.3 259.3 136.9 196.5 

S4 12810.9 2436.8 77.3 259.3 136.9 204.4 

S5 9558.8 2087.3 123.1 340.6 86.8 140.3 

S6 9558.8 2087.3 123.1 340.6 86.8 201.9 

S7 9558.8 2087.3 123.1 340.6 86.8 166.8 

S8 9558.8 2087.3 123.1 340.6 86.8 343.3 

Table 5.7: case G2 orbital parameters 

 Mean GDOP Peak time % 

 MATLAB STK MATLAB STK 

Optimal 
solution 

3.57 3.66 0.03 % 0.04 % 

Table 5.8: case G2 GDOP values 

 

 

 

 

 

 

 

 

 

The optimal solution obtained from case G2 represents a scenario with eight satellites and a reduced number 

of orbital planes. There are fewer variables involved in the optimization process compared to case G1, so the 

average GDOP value is good, but worse than the results reported in Table 5.5 relative to case G1. 

5.2.3 Case G3 

The optimal results of case G3 are reported in Table 5.11, while in Table 5.10 are reported the orbital 

parameters of each satellite. In Figure 5.4 the optimal solution is represented. The optimization variables 

selected are reported in Table 5.9: there are eight satellites and three orbital planes. The aim is to find a 

Figure 5.3: case G2 optimal solution 
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satellite arrangement with a reduced number of total orbital planes as indicated for case G2. The satellites 

S1, S2, S3 belong to the first plane so the variables are the plane orbital parameters (apogee radius  𝑟𝑎1, the 

perigee radius 𝑟𝑝1, the inclination 𝑖1, the RAAN Ω1 and the perigee argument 𝜔1) and the true anomaly of 

each satellite at 𝑡 = 0. The satellites S4, S5 and S6 belong to the second plane so the variables are the plane 

orbital parameters (𝑟𝑎2, 𝑟𝑝2, 𝑖2, Ω2 and 𝜔2) and the true anomaly of each satellite at 𝑡 = 0. The satellites S7 

and S8 belong to the third plane so the variables are the plane orbital parameters (𝑟𝑎3, 𝑟𝑝3, 𝑖3, Ω3 and 𝜔3) 

and the true anomaly of each satellite at 𝑡 = 0. 

 

 

 

 

 

 

 

 
[km] [km] [deg] [deg] [deg] [deg] 

𝑟𝑎  𝑟𝑝 𝑖 Ω 𝜔 𝜈 

S1 14893.8 2634.6 91.1 156.6 93.7 137.3 

S2 14893.8 2634.6 91.1 156.6 93.7 184.6 

S3 14893.8 2634.6 91.1 156.6 93.7 258.9 

S4 13158.5 3798.6 45.6 163.7 99.6 193.6 

S5 13158.5 3798.6 45.6 163.7 99.6 147.7 

S6 13158.5 3798.6 45.6 163.7 99.6 344.6 

S7 14429.7 2548.6 150.1 146.7 70.3 177.2 

S8 14429.7 2548.6 150.1 146.7 70.3 253.2 

Table 5.10: case G3 orbital parameters 

 Mean GDOP  Peak time % 

 MATLAB STK MATLAB STK 

Optimal 
solution 

2.50 2.50 0 % 0 % 

Table 5.11: case G3 orbital parameters 

S1 S2 S3 S4 S5 S6 S7 S8 

𝑟𝑎1 𝑟𝑎2 𝑟𝑎3 

𝑟𝑝1 𝑟𝑝2 𝑟𝑝3 

𝑖1 𝑖2 𝑖3 

Ω1 Ω2 Ω3 

𝜔1 𝜔2 𝜔3 

𝜈1 𝜈2 𝜈3 𝜈4 𝜈5 𝜈6 𝜈7 𝜈8 

Table 5.9: case G3 optimization variables 
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The solution obtained in case G3, as shown in Table 5.11, is a better solution with respect to cases G1 and 

G2, as can be seen from the mean GDOP and mean peak time percentage values. The architecture involves 

three orbital planes.  Recall that the algorithm adopted, been metaheuristic, cannot prove the optimality of 

the solution found.  

5.2.4 Case G4 

The optimal results of case G4 are reported in Table 5.14, while in Table 5.13 are reported the orbital 

parameters of each satellite. In Figure 5.5 the optimal solution is represented. The optimization variables 

selected are reported in Table 5.12: there are eight satellites and four orbital planes. As explained for cases 

G2 and G3 the aim is to find a solution with a limited number of orbital planes. The satellites S1 and S2 belong 

to the first plane so the variables are the plane orbital parameters (apogee radius  𝑟𝑎1, the perigee radius 𝑟𝑝1, 

the inclination 𝑖1, the RAAN Ω1 and the perigee argument 𝜔1) and the true anomaly of each satellite at 𝑡 =

0. The satellites S3 and S4 belong to the second plane so the variables are the plane orbital parameters (𝑟𝑎2, 

𝑟𝑝2, 𝑖2, Ω2 and 𝜔2) and the true anomaly of each satellite at 𝑡 = 0. The satellites S5 and S6 belong to the third 

plane so the variables are the plane orbital parameters (𝑟𝑎3, 𝑟𝑝3, 𝑖3, Ω3 and 𝜔3) and the true anomaly of each 

satellite at 𝑡 = 0. The satellites S7 and S8 belong to the fourth plane so the variables are the plane orbital 

parameters (𝑟𝑎4, 𝑟𝑝4, 𝑖4, Ω4 and 𝜔4) and the true anomaly of each satellite at 𝑡 = 0. 

 

 

 

 

 

 

 

 

 

S1 S2 S3 S4 S5 S6 S7 S8 

𝑟𝑎1 𝑟𝑎2 𝑟𝑎3 𝑟𝑎4 

𝑟𝑝1 𝑟𝑝2 𝑟𝑝3 𝑟𝑝4 

𝑖1 𝑖2 𝑖3 𝑖4 

Ω1 Ω2 Ω3 Ω4 

𝜔1 𝜔2 𝜔3 𝜔4 

𝜈1 𝜈2 𝜈3 𝜈4 𝜈5 𝜈6 𝜈7 𝜈8 

Table 5.12: case G4 optimization variables 

Figure 5.4: case G3 optimal solution 
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[km] [km] [deg] [deg] [deg] [deg] 

𝑟𝑎  𝑟𝑝 𝑖 Ω 𝜔 𝜈 

S1 14933.0 2336.6 94.5 137.02 94.4 245.9 

S2 14933.0 2336.6 94.5 137.02 94.4 173.9 

S3 14979.2 2246.2 33.3 278.2 120.9 178.6 

S4 14979.2 2246.2 33.3 278.2 120.9 308.0 

S5 14352.7 13632.2 69.8 303.9 192.5 289.8 

S6 14352.7 13632.2 69.8 303.9 192.5 110.1 

S7 14402.3 3180.7 44.8 108.3 108.8 157.9 

S8 14402.3 3180.7 44.8 108.3 108.8 222.6 

Table 5.13: case G4 orbital parameters 

 Mean GDOP Peak time % 

 MATLAB STK MATLAB STK 

Optimal 
solution 

2.75 3.28 0.22 % 1.37 % 

Table 5.14: case G4 GDOP values 

 

 

 

 

 

 

 

 

 

 

 

The solution obtained in case G4, as shown in Table 5.14, shows a more obvious difference between the 

Matlab and STK results, mainly due to the fact that the orbits are more modified under the dynamic 

perturbations. It could be useful to repeat the optimization with a perturbed dynamic mathematical model 

or to include different parameters in the optimization functions. 

 

Figure 5.5: case G4 optimal solution 
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The following cases G5, G6 G7 represents a scenario with seven satellites. The total number of satellites is 

reduced in order to consider architectures with less complexity and a lower cost. Each satellite is defined by 

its six variables (42 total variables):  apogee radius 𝑟𝑎, perigee radius 𝑟𝑝, inclination 𝑖, right ascension of the 

ascending node Ω, argument of perigee 𝜔 and the true anomaly 𝜈.  In each case are reported the variables 

defined for the optimization process while, if not specified, all the satellite variables are involved. If not 

specified, the mathematical model used for the optimization is represented by the two-body dynamics. The 

cases G6 and G7 report a limited number of orbital planes in order to reduce the complexity of the 

architectures, and to improve satellite operability. 

5.2.5 Case G5 

The case G5 presents a scenario with seven satellites and seven orbital planes. The mathematical model is 

described by the perturbed dynamics and the additional constraints on the final satellite perigee altitude (see 

expression 3.24) with ℎ𝑝𝑚𝑖𝑛 = 100 𝑘𝑚. The optimal results of case G5 are reported in Table 5.15, while in 

Table 5.16 are reported the orbital parameters of each satellite. In Figure 5.6 the optimal solution is 

represented. 

 
[km] [km] [deg] [deg] [deg] [deg] 

𝑟𝑎  𝑟𝑝 𝑖 Ω 𝜔 𝜈 

S1 12036.4 2477.8 42.8 259.0 92.9 269.7 

S2 14429.7 4765.7 87.38 38.9 88.8 144.3 

S3 14886.9 2329.1 40.88 163.8 88.1 23.1 

S4 12438.5 2086.9 141.08 172.5 84.4 199.3 

S5 10743.0 3693.7 142.08 254.4 90.3 79.1 

S6 14312.3 2672.3 96.78 290.6 78.6 221.4 

S7 14843.5 4584.8 85.9 356.9 102.5 73.4 

Table 5.15: case G5 orbital parameters 

 

 Mean GDOP  Peak time % 

 MATLAB STK MATLAB STK 

Optimal 
solution 

4.70 4.70 5.1 % 5.1 % 

Table 5.16: case G5 GDOP values 
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The solution obtained and reported in Table 5.16 solution satisfies the constraint on the final perigee altitude 

for each satellite but doesn’t report good values of mean GDOP and mean peak time percentage values. The 

solution could be improved by increasing the computational effort. Although the solution is not the global 

optimum (see case G7 and case G15), it is still considered worthwhile thanks to the extensive use of all 

degrees of freedom. 

5.2.6 Case G6 

The case G6 presents a scenario with seven satellites and two orbital planes. The mathematical model is 

described by the perturbed dynamics and the additional constraints on the final satellite altitude (see 

expression 3.24). The optimal results of case G6 are reported in Table 5.19, while in Table 5.18 are reported 

the orbital parameters of each satellite. In Figure 5.7 the optimal solution is represented. The optimization 

variables selected are reported in Table 5.17. 

 

 

 

 

 

 

 
[km] [km] [deg] [deg] [deg] [deg] 

𝑟𝑎  𝑟𝑝 𝑖 Ω 𝜔 𝜈 

S1 13185.4 5521.3 117.3 45.2 73.9 218.2 

S2 13185.4 5521.3 117.3 45.2 73.9 301.4 

S3 13185.4 5521.3 117.3 45.2 73.9 159.8 

S4 13185.4 5521.3 117.3 45.2 73.9 126.5 

S5 13368 3900.7 93.4 175.5 62.7 203.4 

S6 13368 3900.7 93.4 175.5 62.7 351.9 

S1 S2 S3 S4 S5 S6 S7 

𝑟𝑎1 𝑟𝑎2 

𝑟𝑝1 𝑟𝑝2 

𝑖1 𝑖2 

Ω1 Ω2 

𝜔1 𝜔2 

𝜈1 𝜈2 𝜈3 𝜈4 𝜈5 𝜈6 𝜈7 

Table 5.17: case G6 optimization variables 

Figure 5.6: case G5 optimal solution 
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S7 13368 3900.7 93.4 175.5 62.7 160.0 

Table 5.18: case G6 orbital parameters 

 Mean GDOP Peak time % 

 MATLAB STK MATLAB STK 

Optimal 
solution 

4.4 4.4 1.2 % 1.2 % 

Table 5.19: case G6 GDOP values 

  

 

 

 

 

 

 

 

The solution obtained and reported in Table 5.19 satisfies the constraints on the final perigee altitude for each 

satellite and presents the mean GDOP value satisfying and the peak time percentage to be improved. The 

advantage is represented by the reduction of the orbital planes involved in the architecture. 

5.2.7 Case G7 

The optimal results of case G7 are reported in Table 5.22, while in Table 5.21 are reported the orbital 

parameters of each satellite. In Figure 5.8 the optimal solution is represented. The optimization variables 

selected are reported in Table 5.20: there are seven satellites and three orbital planes. The satellites S1 and 

S2 belong to the first plane so the variables are the plane orbital parameters (apogee radius  𝑟𝑎1, the perigee 

radius 𝑟𝑝1, the inclination 𝑖1, the RAAN Ω1 and the perigee argument 𝜔1) and the true anomaly of each 

satellite at 𝑡 = 0. The satellites S3 and S4 belong to the second plane so the variables are the plane orbital 

parameters (𝑟𝑎2, 𝑟𝑝2, 𝑖2, Ω2 and 𝜔2) and the true anomaly of each satellite at 𝑡 = 0. The satellites S5, S6 and 

S7 belong to the third plane so the variables are the plane orbital parameters (𝑟𝑎3, 𝑟𝑝3, 𝑖3, Ω3 and 𝜔3) and the 

true anomaly of each satellite at 𝑡 = 0. 

 

 

 

 

 

Figure 5.7: case G6 optimal solution 
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[km] [km] [deg] [deg] [deg] [deg] 

𝑟𝑎  𝑟𝑝 𝑖 Ω 𝜔 𝜈 

S1 14173.8 2585.7 37.5 335.4 69.4 187.3 

S2 14173.8 2585.7 37.5 335.4 69.4 358.7 

S3 11482.0 2101.7 144.6 316.9 93.0 237.5 

S4 11482.0 2101.7 144.6 316.9 93.0 171.4 

S5 11256.6 2461.2 97.7 305.9 95.8 135.4 

S6 11256.6 2461.2 97.7 305.9 95.8 173.7 

S7 11256.6 2461.2 97.7 305.9 95.8 213.7 

Table 5.21: case G7 orbital parameters 

 Mean GDOP Peak time % 

 MATLAB STK MATLAB STK 

Optimal 
solution 

2.27 2.80 0 % 0.16 % 

Table 5.22: case G7 GDOP values 

 

 

 

 

 

 

 

 

The solution obtained in case G7, as shown in Table 5.22, is a better solution with respect to cases G5 and 

G6, as can be seen from the mean GDOP and mean peak time percentage values. The architecture involves 

S1 S2 S3 S4 S5 S6 S7 

𝑟𝑎1 𝑟𝑎2 𝑟𝑎3 

𝑟𝑝1 𝑟𝑝2 𝑟𝑝3 

𝑖1 𝑖2 𝑖3 

Ω1 Ω2 Ω3 

𝜔1 𝜔2 𝜔3 

𝜈1 𝜈2 𝜈3 𝜈4 𝜈5 𝜈6 𝜈7 

Table 5.20: case G7 optimization variables 

Figure 5.8: case G7 optimal solution 
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three orbital planes.  Recall that the algorithm adopted, been metaheuristic, cannot prove the optimality of 

the solution found.  

5.2.8  Case G8 

The optimal results of case G8 are reported in Table 5.25, while in Table 5.24 are reported the orbital 

parameters of each satellite. In Figure 5.9 the optimal solution is represented. The optimization variables 

selected are reported in Table 5.23: there are seven satellites and four orbital planes. The satellites S1 and S2 

belong to the first plane so the variables are the plane orbital parameters (apogee radius  𝑟𝑎1, the perigee 

radius 𝑟𝑝1, the inclination 𝑖1, the RAAN Ω1 and the perigee argument 𝜔1) and the true anomaly of each 

satellite at 𝑡 = 0. The satellites S3 and S4 belong to the second plane so the variables are the plane orbital 

parameters (𝑟𝑎2, 𝑟𝑝2, 𝑖2, Ω2 and 𝜔2) and the true anomaly of each satellite at 𝑡 = 0. The satellites S5 and S6 

belong to the third plane so the variables are the plane orbital parameters (𝑟𝑎3, 𝑟𝑝3, 𝑖3, Ω3 and 𝜔3) and the 

true anomaly of each satellite at 𝑡 = 0. The satellites S7 belongs to the fourth plane so the variables are the 

plane orbital parameters (𝑟𝑎4, 𝑟𝑝4, 𝑖4, Ω4 and 𝜔4) and the true anomaly of each satellite at 𝑡 = 0. 

 

 

 

 

 

 

 

 
[km] [km] [deg] [deg] [deg] [deg] 

𝑟𝑎  𝑟𝑝 𝑖 Ω 𝜔 𝜈 

S1 9909.1 2407.9 40.4 315.0 107.8 174.9 

S2 9909.1 2407.9 40.4 315.0 107.8 314.2 

S3 14600.0 2574.6 38.9 131.1 114.2 220.3 

S4 14600.0 2574.6 38.9 131.1 114.2 167.7 

S5 14878.9 2359.4 97.6 133.1 104.6 206.9 

S6 14878.9 2359.4 97.6 133.1 104.6 159.2 

S7 12415.8 2027.1 90.5 327.9 118.4 26.2 

Table 5.24: case G8 orbital parameters 

 Mean GDOP  Peak time % 

 MATLAB STK MATLAB STK 

Optimal 
solution 

3.02 3.35 0.74 % 1.71 % 

Table 5.25: case G8 GDOP values 

S1 S2 S3 S4 S5 S6 S7 

𝑟𝑎1 𝑟𝑎2 𝑟𝑎3 𝑟𝑎4 

𝑟𝑝1 𝑟𝑝2 𝑟𝑝3 𝑟𝑝4 

𝑖1 𝑖2 𝑖3 𝑖4 

Ω1 Ω2 Ω3 Ω4 

𝜔1 𝜔2 𝜔3 𝜔4 

𝜈1 𝜈2 𝜈3 𝜈4 𝜈5 𝜈6 𝜈7 

Table 5.23: case G8 optimization variables 
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Case G8 represents a good solution with 4 orbital planes. The mean GDOP and peak time percentage could 

be improved by introducing, for example, the dynamic perturbations in the optimization mathematical 

model, or improving the genetic algorithm options. 

The following case G9, G10 and G11 represents a scenario with six satellites. The total number of satellites is 

reduced in order to consider architectures with less complexity and a lower cost.  Each satellite is defined by 

its six variables (36 total variables):  apogee radius 𝑟𝑎, perigee radius 𝑟𝑝, inclination 𝑖, right ascension of the 

ascending node Ω, argument of perigee 𝜔 and the true anomaly 𝜈.  In each case are reported the variables 

defined for the optimization process while, if not specified, all the satellite variables are involved. If not 

specified, the mathematical model used for the optimization is represented by the two-body dynamics. The 

cases G10 and G11 report a limited number of orbital planes in order to reduce the complexity of the 

architectures, and to improve satellite operability. 

5.2.9  Case G9 

The optimal results of case G9 are reported in Table 5.27, while in Table 5.26 are reported the orbital 

parameters of each satellite. In Figure 5.10 the optimal solution is represented. 

 
[km] [km] [deg] [deg] [deg] [deg] 

𝑟𝑎  𝑟𝑝 𝑖 Ω 𝜔 𝜈 

S1 14311.2 2342.9 31.5 1.6 85.9 73.1 

S2 13106.8 2791.9 42.5 176.1 102.3 177.7 

S3 13846.0 2098.5 90.8 124.9 112.2 165.2 

S4 14772.8 2811.2 38.9 85.7 84.8 226.5 

S5 14264.1 2410.6 41.1 300.7 98.4 203.3 

S6 13310.1 2612.3 96.4 233.4 103.3 272.2 

Table 5.26: case G9 orbital parameters 

Figure 5.9: case G8 optimal solution 
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 Mean GDOP  Peak time % 

 MATLAB STK MATLAB STK 

Optimal 
solution 

4.64 5.19 6.48 % 8.14 % 

Table 5.27: case G9 GDOP values 

 

 

 

 

 

 

 

 

The solution obtained reports a high mean GDOP and mean peak time percentage. In order to improve the 

solution it is possible to repeat the optimization reducing the variables involved (reducing the number of 

orbital planes) or introducing the perturbations in the optimization mathematical model. 

5.2.10  Case G10 

The optimal results of case G10 are reported in Table 5.30, while in Table 5.29 are reported the orbital 

parameters of each satellite. In Figure 5.11 the optimal solution is represented. The optimization variables 

selected are reported in Table 5.28: there are six satellites and two orbital planes. The satellites S1, S2 and S3 

belong to the first plane so the variables are the plane orbital parameters (apogee radius  𝑟𝑎1, the perigee 

radius 𝑟𝑝1, the inclination 𝑖1, the RAAN Ω1 and the perigee argument 𝜔1) and the true anomaly of each 

satellite at 𝑡 = 0. The satellites S4, S5 and S6 belong to the second plane so the variables are the plane orbital 

parameters (𝑟𝑎2, 𝑟𝑝2, 𝑖2, Ω2 and 𝜔2) and the true anomaly of each satellite at 𝑡 = 0. 

 

 

 

 

 

 

 

 

S1 S2 S3 S4 S5 S6 

𝑟𝑎1 𝑟𝑎2 

𝑟𝑝1 𝑟𝑝2 

𝑖1 𝑖2 

Ω1 Ω2 

𝜔1 𝜔2 

𝜈1 𝜈2 𝜈3 𝜈4 𝜈5 𝜈6 

Table 5.28: case G10 optimization variables 

Figure 5.10: case G9 optimal solution 
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[km] [km] [deg] [deg] [deg] [deg] 

𝑟𝑎  𝑟𝑝 𝑖 Ω 𝜔 𝜈 

S1 14654.3 2979.5 93.9 229.5 133.7 188.1 

S2 14654.3 2979.5 93.9 229.5 133.7 151.2 

S3 14654.3 2979.5 93.9 229.5 133.7 251.4 

S4 13733.1 3884.7 48.0 179.1 76.5 164.5 

S5 13733.1 3884.7 48.0 179.1 76.5 359.8 

S6 13733.1 3884.7 48.0 179.1 76.5 205.9 

Table 5.29: case G10 orbital parameters  

 Mean GDOP Peak time % 

 MATLAB STK MATLAB STK 

Optimal 
solution 

3.88 4.19 0.05 % 1.36 % 

Table 5.30: case G10 GDOP values 

 

 

 

 

 

 

 

 

 

The solution obtained involves a reduced number of orbital planes and a better mean GDOP and peak time 

percentage compared to the previous solution G9. 

5.2.11  Case G11 

The optimal results of case G11 are reported in Table 5.33, while in Table 5.32 are reported the orbital 

parameters of each satellite. In Figure 5.12 the optimal solution is represented. The optimization variables 

selected are reported in Table 5.31: there are six satellites and three orbital planes. The satellites S1 and S2 

belong to the first plane so the variables are the plane orbital parameters (apogee radius  𝑟𝑎1, the perigee 

radius 𝑟𝑝1, the inclination 𝑖1, the RAAN Ω1 and the perigee argument 𝜔1) and the true anomaly of each 

satellite at 𝑡 = 0. The satellites S3 and S4 belong to the second plane so the variables are the plane orbital 

parameters (𝑟𝑎2, 𝑟𝑝2, 𝑖2, Ω2 and 𝜔2) and the true anomaly of each satellite at 𝑡 = 0. The satellites S5 and S6 

Figure 5.11: case G10 optimal solution 
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belong to the third plane so the variables are the plane orbital parameters (𝑟𝑎3, 𝑟𝑝3, 𝑖3, Ω3 and 𝜔3) and the 

true anomaly of each satellite at 𝑡 = 0 

 

 

 

 

 

 

 

 
[km] [km] [deg] [deg] [deg] [deg] 

𝑟𝑎  𝑟𝑝 𝑖 Ω 𝜔 𝜈 

S1 13311.8 2478.1 76.2 358.7 75.4 179.2 

S2 13311.8 2478.1 76.2 358.7 75.4 206.5 

S3 12747.9 3043.8 102.16 84.4 76.8 146.3 

S4 12747.9 3043.8 102.16 84.4 76.8 326.9 

S5 14633.8 2270.1 142.6 332.9 107.0 178.6 

S6 14633.8 2270.1 142.6 332.9 107.0 310.8 

Table 5.32: case G11 orbital parameters 

 Mean GDOP Peak time % 

 MATLAB STK MATLAB STK 

Optimal 
solution 

4.59 5.12 0.24 % 1.81 % 

Table 5.33: case G11 GDOP values 

 

 

 

 

 

 

 

 

S1 S2 S3 S4 S5 S6 

𝑟𝑎1 𝑟𝑎2 𝑟𝑎3 

𝑟𝑝1 𝑟𝑝2 𝑟𝑝3 

𝑖1 𝑖2 𝑖3 

Ω1 Ω2 Ω3 

𝜔1 𝜔2 𝜔3 

𝜈1 𝜈2 𝜈3 𝜈4 𝜈5 𝜈6 

Table 5.31: case G11 optimization variables 

Figure 5.12: case G11 optimal solution 
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The solution obtained shows a higher mean GDOP and mean peak time percentage compared to the previous 

solution G10. In order to improve the solution, it is possible to repeat the optimization by introducing the 

perturbations in the optimization mathematical model. 

5.2.12  Case G12 

Case G12 is described by five satellites and five orbital planes. The optimization variables are orbital 

parameters of all the five orbital plans and the true anomalies of the five satellite at 𝑡 = 0. The optimal results 

of case G12 are reported in Table 5.35, while in Table 5.34 are reported the orbital parameters of each 

satellite. In Figure 5.13 the optimal solution is represented. 

 

 
[km] [km] [deg] [deg] [deg] [deg] 

𝑟𝑎  𝑟𝑝 𝑖 Ω 𝜔 𝜈 

S1 14785.2 2069.9 140.9 3.6 91.9 331.8 

S2 14571.2 3841.9 90.9 94.9 93.5 156.8 

S3 14458.0 3958.9 90.7 89.4 93.1 229.9 

S4 14500.2 2347.2 142.3 222.4 96.1 327.1 

S5 14630.2 2216.2 139.8 115.2 86.0 311.9 

Table 5.34: case G12 orbital parameters 

 Mean GDOP Peak time % 

 MATLAB STK MATLAB STK 

Optimal 
solution 

6.98 7.35 21.34 % 22.9 % 

Table 5.35: case G12 GDOP values 

 

 

 

 

 

 

 

 

 

 

Figure 5.13: case G12 optimal solution 



55 
 

The solution obtained in case G12 have to be improved, since it doesn't report good performances. The case 

with five satellites represents an onerous scenario with respect to the one with eight satellites. In particular, 

the method could be improved by acting on different elements. The optimization could be improved with a 

mathematical model defined with the dynamic perturbations (to represent a more realistic scenario), or by 

modifying the genetic algorithm options, for example the total computation time. 

5.2.13  Case G13 

The optimal results of case G13 are reported in Table 5.38, while in Table 5.37 are reported the orbital 

parameters of each satellite. In Figure 5.14 the optimal solution is represented. The optimization variables 

selected are reported in Table 5.36: there are five satellites and two orbital planes. The satellites S1, S2 and 

S3 belong to the first plane so the variables are the plane orbital parameters (apogee radius  𝑟𝑎1, the perigee 

radius 𝑟𝑝1, the inclination 𝑖1, the RAAN Ω1 and the perigee argument 𝜔1) and the true anomaly of each 

satellite at 𝑡 = 0. The satellites S4 and S5 belong to the second plane so the variables are the plane orbital 

parameters (𝑟𝑎2, 𝑟𝑝2, 𝑖2, Ω2 and 𝜔2) and the true anomaly of each satellite at 𝑡 = 0. 

 

 

 

 

 

 

 

 

 

 
[km] [km] [deg] [deg] [deg] [deg] 

𝑟𝑎  𝑟𝑝 𝑖 Ω 𝜔 𝜈 

S1 14372.5 2594.1 100.7 225.6 115.4 171.6 

S2 14372.5 2594.1 100.7 225.6 115.4 209.5 

S3 14372.5 2594.1 100.7 225.6 115.4 94.2 

S4 14946.3 2018.2 128.4 359.8 101.0 159.8 

S5 14946.3 2018.2 128.4 359.8 101.0 192.7 

Table 5.37: case G13 orbital parameters 

 Mean GDOP Peak time % 

 MATLAB STK MATLAB STK 

Optimal 
solution 

6.90 8.26 6.79 % 15.5 % 

Table 5.38: case G13 GDOP values 

S1 S2 S3 S4 S5 

𝑟𝑎1 𝑟𝑎2 

𝑟𝑝1 𝑟𝑝2 

𝑖1 𝑖2 

Ω1 Ω2 

𝜔1 𝜔2 

𝜈1 𝜈2 𝜈3 𝜈4 𝜈5 

Table 5.36: case G13 optimization variables 
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As for case G12, the solution obtained from case G13 have to be improved, since doesn’t represent 

acceptable performances. The same considerations are applied for the current solution.  

5.2.14  Summary of global approach from scratch optimal solutions  

Case 
Total 

number of 
satellites 

Total number 
of orbital 

planes 
Mean GDOP 

Peak 
time % 

G1 8 8 2.65 0.38 % 

G2 8 2 3.66 0.04 % 

G3 8 3 2.50 0 % 

G4 8 4 3.28 1.37 % 

G5 7 7 4.7 5.1 % 

G6 7 2 4.4 1.2 % 

G7 7 3 2.80 0.16 % 

G8 7 4 3.35 1.71 % 

G9 6 6 5.19 8.14 % 

G10 6 2 4.19 1.36 % 

G11 6 3 5.12 1.81 % 

G12 5 5 7.35 22.9 % 

G13 5 2 8.26 15.5 % 

Table 5.39:  global approach optimal solutions: 

The genetic algorithm efficiently finds satisfactory solutions without any initialization. To achieve more 

optimal solutions with higher degrees of freedom, new solutions are generated using a genetic algorithm in 

section 5.6. The algorithm starts with a population of individuals that includes the solutions obtained with 

the same number of satellites (see e.g., Table 5.39) and leave all the optimization variables unrestricted (one 

orbital plane for each satellite).    

   

Figure 5.14: case G13 optimal solution 
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5.3 Local approach from guess solutions 

In the following section the cases regarding the SQP algorithm, implemented in Matlab environment, are 

reported. The algorithm is typically seen as a global method, thanks to the use of the multi-start option 

available in Matlab. In this scenario the algorithm act as a local optimization, because the use of multi-start 

would request longer time calculation and no solutions improvements in short time computations. It is 

necessary to give in input a guess solution to be minimized. In the following cases the guess solution is the 

one with eight satellites presented in the article by Bhamidipati et al. (2023). 

The following case S1, S2, S3, S4 represents a scenario with eight satellites. Each satellite is defined by its six 

variables (48 total variables):  apogee radius 𝑟𝑎, perigee radius 𝑟𝑝, inclination 𝑖, right ascension of the 

ascending node Ω, argument of perigee 𝜔 and the true anomaly 𝜈.  In each case are reported the variables 

defined for the optimization process while, if not specified, all the satellite variables are involved. If not 

specified, the mathematical model used for the optimization is represented by the two-body dynamics. 

5.3.1 Case S1 

The optimal results of case S1 are reported in Table 5.41, while in Table 5.40 are reported the orbital 

parameters of each satellite. In Figure 5.16 the optimal solution is represented. 

 
[km] [km] [deg] [deg] [deg] [deg] 

𝑟𝑎  𝑟𝑝 𝑖 Ω 𝜔 𝜈 

 
Guess 

solution 

Optimal 
solution 

Guess 
solution 

Optimal 
solution 

Guess 
solution 

Optimal 
solution 

Guess 
solution 

Optimal 
solution 

Guess 
solution 

Optimal 
solution 

Guess 
solution 

Optimal 
solution 

S1 9828.8 9828.7 2457.2 2461.4 51.7 51.78 0 0.002 90 90.0 0 0.0003 

S2 9828.8 9826.1 2457.2 2461.2 51.7 51.78 0 0.002 90 90.0 147.7 147.7 

S3 9828.8 9828.9 2457.2 2460.7 51.7 51.76 0 0.001 90 89.9 180 179.9 

S4 9828.8 9826.4 2457.2 2462.5 51.7 51.77 0 0.002 90 90.0 212.3 212.3 

S5 9828.8 9826.7 2457.2 2458.5 51.7 51.78 180 179.9 90 90.0 0 0.0015 

S6 9828.8 9825.5 2457.2 2458.9 51.7 51.78 180 180.0 90 89.9 147.7 147.7 

S7 9828.8 9825.6 2457.2 2458.6 51.7 51.79 180 180.0 90 89.9 180 180.0 

S8 9828.8 9826.1 2457.2 2457.8 51.7 51.77 180 179.9 90 90.0 212.3 212.3 

Table 5.40: case S1 orbital parameters 

 Mean GDOP Peak time % 

 MATLAB MATLAB 

Guess 
solution 

4.3807 1.08 % 

Optimal 
solution 

4.3003 0.6 % 

Table 5.41: case S1 GDOP values 

From the optimal solution obtained, even if the objective function is minimized, the variables don’t show 

effective variations and the difference between the guess solution orbital parameters are too small. 
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5.3.2 Case S2 

The optimal results of case S2 are reported in Table 5.44, while in Table 5.43 are reported the orbital 

parameters of each satellite. In Figure 5.18 the optimal solution is represented. The optimization variables 

selected are reported in Table 5.42: there are eight satellites and two orbital planes. The satellites S1, S2, S3 

and S4 belong to the first plane so the variables are the plane orbital parameters (apogee radius  𝑟𝑎1, the 

perigee radius 𝑟𝑝1, the inclination 𝑖1, the RAAN Ω1 and the perigee argument 𝜔1) and the true anomaly of 

each satellite at 𝑡 = 0. The satellites S5, S6, S7 and S8 belong to the second plane so the variables are the plane 

orbital parameters (𝑟𝑎2, 𝑟𝑝2, 𝑖2, Ω2 and 𝜔2) and the true anomaly of each satellite at 𝑡 = 0. 

 

 

 

 

 

 

 

 
[km] [km] [deg] [deg] [deg] [deg] 

𝑟𝑎  𝑟𝑝 𝑖 Ω 𝜔 𝜈 

 
Guess 

solution 

Optimal 
solution 

Guess 
solution 

Optimal 
solution 

Guess 
solution 

Optimal 
solution 

Guess 
solution 

Optimal 
solution 

Guess 
solution 

Optimal 
solution 

Guess 
solution 

Optimal 
solution 

S1 9828.8 10469 2457.2 3820.9 51.7 49.8 0 37.2 90 124.4 0 17.3 

S2 9828.8 10469 2457.2 3820.9 51.7 49.8 0 37.2 90 124.4 147.7 137.8 

S3 9828.8 10469 2457.2 3820.9 51.7 49.8 0 37.2 90 124.4 180 183.0 

S4 9828.8 10469 2457.2 3820.9 51.7 49.8 0 37.2 90 124.4 212.3 222.8 

S5 9828.8 8785.7 2457.2 2246.3 51.7 81.2 180 152.2 90 135.5 0 24.08 

S6 9828.8 8785.7 2457.2 2246.3 51.7 81.2 180 152.2 90 135.5 147.7 156.9 

S7 9828.8 8785.7 2457.2 2246.3 51.7 81.2 180 152.2 90 135.5 180 186.2 

S8 9828.8 8785.7 2457.2 2246.3 51.7 81.2 180 152.2 90 135.5 212.3 225.6 

Table 5.43: case S2 orbital parameters 

S1 S2 S3 S4 S5 S6 S7 S8 

𝑟𝑎1 𝑟𝑎2 

𝑟𝑝1 𝑟𝑝2 

𝑖1 𝑖2 

Ω1 Ω2 

𝜔1 𝜔2 

𝜈1 𝜈2 𝜈3 𝜈4 𝜈5 𝜈6 𝜈7 𝜈8 

Table 5.42: case S2 optimization variables 

Figure 5.16: case S1 optimal solution Figure 5.15: case S1 guess solution 
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 Mean GDOP  Peak time % 

 MATLAB STK MATLAB STK 

Guess 
solution 

4.38 4.57 1.08 % 1.9% 

Optimal 
solution 

3.48 3.78 0.06 % 0.86 % 

Table 5.44: case S2 GDOP values 

 

 

 

 

 

 

 

 

 

The solution S2 is improved with respect to the solution obtained in case S1. The mean GDOP and the peak 

time percentage are reduced and the orbital parameters are different. It can be seen that working with fewer 

variables with the SQP algorithm leads to a better solution and more visible changes in the architecture. 

5.3.3 Case S3 

The optimal results of case S3 are reported in Table 5.47, while in Table 5.46 are reported the orbital 

parameters of each satellite. In Figure 5.20 the optimal solution is represented. The optimization variables 

selected are reported in Table 5.45: there are eight satellites and two orbital planes. The satellites S1, S2, S3 

and S4 belong to the first plane so the variables are the plane orbital parameters (apogee radius  𝑟𝑎1, the 

perigee radius 𝑟𝑝1, the inclination 𝑖1 and the RAAN Ω1)  and the true anomaly of each satellite at 𝑡 = 0. The 

satellites S5, S6, S7 and S8 belong to the second plane, which has the same apogee and perigee radius of the 

first plane, so the variables are the plane orbital parameters (𝑟𝑎1, 𝑟𝑝1, 𝑖2, and Ω2) and the true anomaly of 

each satellite at 𝑡 = 0. The perigee argument 𝜔1 and 𝜔2 of the two planes are equivalent to those of the 

guess solution (𝜔1 = 𝜔2 = 90). 

 

 

 

 

 

Figure 5.17: case S2 guess solution Figure 5.18: case S2 optimal solution 
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[km] [km] [deg] [deg] [deg] [deg] 

𝑟𝑎  𝑟𝑝 𝑖 Ω 𝜔 𝜈 

 
Guess 

solution 

Optimal 
solution 

Guess 
solution 

Optimal 
solution 

Guess 
solution 

Optimal 
solution 

Guess 
solution 

Optimal 
solution 

Guess 
solution 

Optimal 
solution 

Guess 
solution 

Optimal 
solution 

S1 9828.8 9627.6 2457.2 2874.0 51.7 68.1 0 0 90 90 0 359.9 

S2 9828.8 9627.6 2457.2 2874.0 51.7 68.1 0 0 90 90 147.7 153.3 

S3 9828.8 9627.6 2457.2 2874.0 51.7 68.1 0 0 90 90 180 180.8 

S4 9828.8 9627.6 2457.2 2874.0 51.7 68.1 0 0 90 90 212.3 207.6 

S5 9828.8 9627.6 2457.2 2874.0 51.7 73.0 180 180.5 90 90 0 1.1 

S6 9828.8 9627.6 2457.2 2874.0 51.7 73.0 180 180.5 90 90 147.7 156.1 

S7 9828.8 9627.6 2457.2 2874.0 51.7 73.0 180 180.5 90 90 180 178.6 

S8 9828.8 9627.6 2457.2 2874.0 51.7 73.0 180 180.5 90 90 212.3 207.4 

Table 5.46: case S3 orbital parameters 

  

 Mean GDOP  Peak time % 

 MATLAB STK MATLAB STK 

Guess 
solution 

4.38 4.57 1.08 % 1.9% 

Optimal 
solution 

4.24 4.18 0.44 % 0.81 % 

Table 5.47: case S3 GDOP values 

 

 

 

 

 

S1 S2 S3 S4 S5 S6 S7 S8 

𝑟𝑎1 

𝑟𝑝1 

𝑖1 𝑖2 

Ω1 Ω2 

𝜈1 𝜈2 𝜈3 𝜈4 𝜈5 𝜈6 𝜈7 𝜈8 

Table 5.45: case S3 optimization variables 
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The solution, with respect to case S3, improves the mean GDOP and peak time percentage values. As for case 

S2, using a reduced number of variables with the SQP algorithm, led to a better solution and more visible 

changes in the architecture and orbital parameters. 

5.3.4 Case S4 

The optimal results of case S4 are reported in Table 5.50, while in Table 5.49 are reported the orbital 

parameters of each satellite. In Figure 5.22 the optimal solution is represented. The optimization variables 

selected are reported in Table 5.48: there are eight satellites and eight orbital planes. Each satellite has the 

plane orbital parameters (apogee radius  𝑟𝑎, the perigee radius 𝑟𝑝and the inclination 𝑖) and the true anomaly 

of each satellite at 𝑡 = 0. The perigee argument 𝜔 of each plane is equivalent to those of the guess solution 

(𝜔1 = 𝜔2 = 𝜔3 = 𝜔4 = 𝜔5 = 𝜔6 = 𝜔7 = 𝜔8 = 90°). The RAAN Ω of each plane is equivalent to those of 

the guess solution (Ω1 = Ω2 = Ω3 = Ω4 = 0°, Ω5 = Ω6 = Ω7 = Ω8 = 180°). 

 

 

 

 

 

 

 

 

 

 

 

 

 

S1 S2 S3 S4 S5 S6 S7 S8 

𝑟𝑎1 𝑟𝑎2 𝑟𝑎3 𝑟𝑎4 𝑟𝑎5 𝑟𝑎6 𝑟𝑎7 𝑟𝑎8 

𝑟𝑝1 𝑟𝑝2 𝑟𝑝3 𝑟𝑝4 𝑟𝑝5 𝑟𝑝6 𝑟𝑝7 𝑟𝑝8 

𝑖1 𝑖2 𝑖3 𝑖4 𝑖5 𝑖6 𝑖7 𝑖8 

𝜈1 𝜈2 𝜈3 𝜈4 𝜈5 𝜈6 𝜈7 𝜈8 

Table 5.48: case S4 optimization variables 

Figure 5.19: case S3 guess solution Figure 5.20: case S3 optimal solution 
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[km] [km] [deg] [deg] [deg] [deg] 

𝑟𝑎  𝑟𝑝 𝑖 Ω 𝜔 𝜈 

 
Guess 

solution 

Optimal 
solution 

Guess 
solution 

Optimal 
solution 

Guess 
solution 

Optimal 
solution 

Guess 
solution 

Optimal 
solution 

Guess 
solution 

Optimal 
solution 

Guess 
solution 

Optimal 
solution 

S1 9828.8 9828.8 2457.2 2457.2 51.7 67.3 0 1.4 90 90 0 0.4 

S2 9828.8 9828.8 2457.2 2457.2 51.7 82.9 0 4.7 90 90 147.7 147.7 

S3 9828.8 9828.8 2457.2 2457.2 51.7 71.6 0 0.0 90 90 180 173.4 

S4 9828.8 9828.8 2457.2 2457.2 51.7 60.6 0 0 90 90 212.3 210.7 

S5 9828.8 9828.8 2457.2 2457.2 51.7 77.4 180 178.7 90 90 0 1.1 

S6 9828.8 9828.8 2457.2 2457.2 51.7 60.1 180 180.4 90 90 147.7 153.7 

S7 9828.8 9828.8 2457.2 2457.2 51.7 75.9 180 184.2 90 90 180 185.8 

S8 9828.8 9828.8 2457.2 2457.2 51.7 82.9 180 176.9 90 90 212.3 221.4 

Table 5.49: case S4 orbital parameters 

 Mean GDOP Peak time % 

 MATLAB STK MATLAB STK 

Guess 
solution 

4.38 4.57 1.08 % 1.9% 

Optimal 
solution 

3.70 3.73 0.03 % 0.03 % 

Table 5.50: case S4 GDOP values 

  

 

 

 

 

 

 

 

 

 

The obtained solution doesn't allow to reduce the complexity of the architecture. However, the algorithm 

can also be used with the inclusion of selected variables to reduce the model complexity and improve the 

objective function.  

Figure 5.22: case S4 optimal solution Figure 5.21: case S4 guess solution 
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5.3.5 Case S5 

The optimal results of case S5 are reported in Table 5.53, while in Table 5.52 are reported the orbital 

parameters of each satellite. In Figure 5.24 the optimal solution is represented. The optimization variables 

selected are reported in Table 5.51: there are 8 satellites and 8 orbital planes. Each satellite has the plane 

orbital parameters (inclination 𝑖) and the true anomaly of each satellite at 𝑡 = 0. The perigee argument 𝜔 of 

each plane is equivalent to those of the guess solution (𝜔1 = 𝜔2 = 𝜔3 = 𝜔4 = 𝜔5 = 𝜔6 = 𝜔7 = 𝜔8 =

90°). The RAAN Ω of each plane is equivalent to those of the guess solution (Ω1 = Ω2 = Ω3 = Ω4 = 0°, Ω5 =

Ω6 = Ω7 = Ω8 = 180°).  The perigee radius and apogee radius of each plane is equivalent to those of the 

guess solution (𝑟𝑎 = 9828.8 𝑘𝑚, 𝑟𝑝 = 2457.2 𝑘𝑚). 

 

 

 

 

 

 
[km] [km] [deg] [deg] [deg] [deg] 

𝑟𝑎  𝑟𝑝 𝑖 Ω 𝜔 𝜈 

 
Guess 

solution 

Optimal 
solution 

Guess 
solution 

Optimal 
solution 

Guess 
solution 

Optimal 
solution 

Guess 
solution 

Optimal 
solution 

Guess 
solution 

Optimal 
solution 

Guess 
solution 

Optimal 
solution 

S1 9828.8 9830.9 2457.2 2461 51.7 51.75 0 0 90 90 0 0.000 

S2 9828.8 9829.5 2457.2 2459.7 51.7 51.76 0 0 90 90 147.7 147.68 

S3 9828.8 9829.7 2457.2 2459.8 51.7 51.75 0 0 90 90 180 179.98 

S4 9828.8 9831.2 2457.2 2461.4 51.7 51.76 0 0 90 90 212.3 212.3 

S5 9828.8 9826.9 2457.2 2456.7 51.7 51.76 180 180 90 90 0 0.001 

S6 9828.8 9825.4 2457.2 2455.4 51.7 51.76 180 180 90 90 147.7 147.7 

S7 9828.8 9825.5 2457.2 2455.5 51.7 51.77 180 180 90 90 180 180.0 

S8 9828.8 9826.8 2457.2 2456.8 51.7 51.75 180 180 90 90 212.3 212.3 

Table 5.52: case S5 orbital parameters 

 

Mean GDOP Peak time % 

MATLAB MATLAB 

Guess 
solution 

4.3807 1.08 % 

Optimal 
solution 

4.3584 0.67 % 

Table 5.53: case S5 GDOP values 

  

S1 S2 S3 S4 S5 S6 S7 S8 

𝑟𝑎1 𝑟𝑎2 𝑟𝑎3 𝑟𝑎4 𝑟𝑎5 𝑟𝑎6 𝑟𝑎7 𝑟𝑎8 

𝑟𝑝1 𝑟𝑝2 𝑟𝑝3 𝑟𝑝4 𝑟𝑝5 𝑟𝑝6 𝑟𝑝7 𝑟𝑝8 

𝑖1 𝑖2 𝑖3 𝑖4 𝑖5 𝑖6 𝑖7 𝑖8 

𝜈1 𝜈2 𝜈3 𝜈4 𝜈5 𝜈6 𝜈7 𝜈8 

Table 5.51: case S5 optimization variables 



64 
 

 

 

 

 

 

 

 

 

 

 

From the optimal solution obtained, even if the objective function is minimized, the variables don't show 

effective variations and the difference between the guess solution orbital parameters are not too small.  

5.3.6 Summary of local approach optimal solution 

 

Case 
Total number 
of satellites 

Total number of 
orbital planes 

Mean 
GDOP 

Peak 
time % 

S2 8 2 3.79 0.86 % 

S3 8 2 4.18 0.81 % 

S4 8 8 3.74 0.03 % 

Table 5.54: local approach optimal solutions 

 

 

 

 

 

 

  

Figure 5.23: case S5 guess solution Figure 5.24: case S5 optimal solution 
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5.4 Orbit number reduction 

The following section deals with the clustering method. The methodology proposed regards the K-means 

algorithm application, useful for solutions with independent satellite orbits, obtained from previous cases. 

Thanks to this approach it can be possible to reduce satellite variables into a defined number of clusters and 

to observe which satellite is assigned to each cluster. In general, the solutions obtained from the clustering 

are not good as the starting ones, so the choice was made to use the SQP algorithm to perform a local 

optimization from the new guess solutions obtained.  

5.4.1 Case AK1: K-means clustering 

The results of case AK1 are reported in Table 5.56. The guess solution from which starts the clustering is case 

G1. The clustering is made on orbital plane variables 𝑟𝑎, 𝑟𝑝, 𝑖, Ω, 𝜔 with two clusters, in order to reduce the 

number of orbital planes from eight planes to two planes. The true anomaly of each satellite is defined 

externally in each plane. The Table 5.55 reports the orbital parameters of each satellite. In Figure 5.26 the 

clustering solution is represented. 

 
[km] [km] [deg] [deg] [deg] [deg] 

𝑟𝑎  𝑟𝑝 𝑖 Ω 𝜔 𝜈 

 
Guess 

solution 

Optimal 
solution 

Guess 
solution 

Optimal 
solution 

Guess 
solution 

Optimal 
solution 

Guess 
solution 

Optimal 
solution 

Guess 
solution 

Optimal 
solution 

Guess 
solution 

Optimal 
solution 

S1 13348 13699 2943.2 2596.3 147.4 129.9 246.9 237.9 90.0 98.5 0 0 

S2 13585 13699 2594.0 2596.3 148.3 129.9 247.8 237.9 90.0 98.5 147.7 147.7 

S3 14996 13699 2525.6 2596.3 152.0 129.9 126.4 237.9 89.9 98.5 180 180 

S4 13289 13699 5177.1 2596.3 87.1 129.9 267.5 237.9 90.0 98.5 212.3 212.3 

S5 14827 14565 2797.5 3340.1 35.9 81.6 171.3 187.2 90.0 99.0 0 0 

S6 14827 14565 2738.6 3340.1 34.9 81.6 221.3 187.2 89.9 99.0 147.7 147.7 

S7 14166 14565 2248.9 3340.1 94.1 81.6 219.1 187.2 89.9 99.0 180 180 

S8 14919 14565 3554.9 3340.1 97.8 81.6 149.3 187.2 90.0 99.0 212.3 212.3 

Table 5.55: case AK1 orbital parameters 

 Mean GDOP  Peak time % 

 MATLAB STK MATLAB STK 

Guess 
solution 

2.53 2.65 0.19 % 0.37 % 

Optimal 
solution 

4.27 4.48 0 % 0.02 % 

Table 5.56: case AK1 GDOP values 
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In the following case, thanks to the use of the K-means algorithm, it is possible to reduce the number of 

orbital planes from eight (case G1) to two, without changing the total number of satellites involved in the 

architecture. Even if the mean peak time percentage is reduced, the mean GDOP value is higher. It is 

proposed a second local optimization (case BK1) starting from the clustering solution obtained with the 

present case AK1. 

5.4.2 Case BK1: SQP optimization 

The optimal results of case BK1 are reported in Table 5.59, while in Table 5.58 are reported the orbital 

parameters of each satellite. In Figure 5.28 the optimal solution is represented. The optimization variables 

selected are reported in Table 5.57: there are eight satellites and two orbital planes. The satellites S1, S2, S3 

and S4 belong to the first plane so the variables are the plane orbital parameters (apogee radius  𝑟𝑎1, the 

perigee radius 𝑟𝑝1, the inclination 𝑖1, the RAAN Ω1 and the perigee argument 𝜔1) and the true anomaly of 

each satellite at 𝑡 = 0. The satellites S5, S6, S7 and S8 belong to the second plane so the variables are the plane 

orbital parameters (𝑟𝑎2, 𝑟𝑝2, 𝑖2, Ω2 and 𝜔2) and the true anomaly of each satellite at 𝑡 = 0. The guess solution 

is the clustering solution of case AK1. 

 

 

 

 

 

 

 

 

 

 

 

S1 S2 S3 S4 S5 S6 S7 S8 

𝑟𝑎1 𝑟𝑎2 

𝑟𝑝1 𝑟𝑝2 

𝑖1 𝑖2 

Ω1 Ω2 

𝜔1 𝜔2 

𝜈1 𝜈2 𝜈3 𝜈4 𝜈5 𝜈6 𝜈7 𝜈8 

Table 5.57: case BK1 optimization variables 

Figure 5.25: case AK1 guess solution Figure 5.26: case AK1 clustering solution 
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[km] [km] [deg] [deg] [deg] [deg] 

𝑟𝑎  𝑟𝑝 𝑖 Ω 𝜔 𝜈 

 
Guess 

solution 

Optimal 
solution 

Guess 
solution 

Optimal 
solution 

Guess 
solution 

Optimal 
solution 

Guess 
solution 

Optimal 
solutio

n 

Guess 
solution 

Optimal 
solution 

Guess 
solution 

Optimal 
solution 

S1 13699 14049 2596.3 5335.3 129.9 145.1 237.9 247.9 98.5 77.9 0 0 

S2 13699 14049 2596.3 5335.3 129.9 145.1 237.9 247.9 98.5 77.9 147.7 132.0 

S3 13699 14049 2596.3 5335.3 129.9 145.1 237.9 247.9 98.5 77.9 180 167.7 

S4 13699 14049 2596.3 5335.3 129.9 145.1 237.9 247.9 98.5 77.9 212.3 204.3 

S5 14565 12797 3340.1 3069.6 81.6 92.5 187.2 174.3 99.0 142.5 0 0.3 

S6 14565 12797 3340.1 3069.6 81.6 92.5 187.2 174.3 99.0 142.5 147.7 161.0 

S7 14565 12797 3340.1 3069.6 81.6 92.5 187.2 174.3 99.0 142.5 180 193.7 

S8 14565 12797 3340.1 3069.6 81.6 92.5 187.2 174.3 99.0 142.5 212.3 215.2 

Table 5.58: case BK1 orbital parameters 

 Mean GDOP  Peak time % 

 MATLAB STK MATLAB STK 

Guess 
solution 

4.27 4.48 0 % 0.02 % 

Optimal 
solution 

3.64 3.96 2.01 % 3.10 % 

Table 5.59: case BK1 GDOP values 

 

 

 

 

 

 

 

 

 

 

In the present case, it can be seen that the SQP algorithm, in order to improve the solution, reduces the mean 

GDOP value by increasing the mean peak percentage value.  

 

Figure 5.28: case BK1 optimal solution Figure 5.27: case BK1 guess solution 
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5.4.3 Case AK2: K-means clustering 

The results of case AK2 are reported in Table 5.61. The guess solution from which starts the clustering is case 

G1. The clustering is made on orbital plane variables 𝑟𝑎, 𝑟𝑝, 𝑖, Ω, 𝜔 with three clusters. The true anomaly of 

each satellite is defined externally in each plane. The Table 5.60 reports the orbital parameters of each 

satellite. In Figure 5.29 the clustering solution is represented. 

 
[km] [km] [deg] [deg] [deg] [deg] 

𝑟𝑎  𝑟𝑝 𝑖 Ω 𝜔 𝜈 

 
Guess 

solution 

Optimal 
solution 

Guess 
solution 

Optimal 
solution 

Guess 
solution 

Optimal 
solution 

Guess 
solution 

Optimal 
solution 

Guess 
solution 

Optimal 
solution 

Guess 
solution 

Optimal 
solution 

S1 13348 13699 2943.2 2596.3 147.4 129.9 246.9 237.9 90.0 98.5 0 0 

S2 13585 13699 2594.0 2596.3 148.3 129.9 247.8 237.9 90.0 98.5 147.7 120 

S3 14996 13699 2525.6 2596.3 152.0 129.9 126.4 237.9 89.9 98.5 180 240 

S4 13289 14104 5177.1 4366.2 87.1 92.5 267.5 208.4 90.0 98.3 212.3 0 

S5 14827 14104 2797.5 4366.2 35.9 92.5 171.3 208.4 90.0 98.3 0 120 

S6 14827 14104 2738.6 4366.2 34.9 92.5 221.3 208.4 89.9 98.3 147.7 240 

S7 14166 14842 2248.9 2687.2 94.1 74.3 219.1 173.0 89.9 99.5 180 0 

S8 14919 14842 3554.9 2687.2 97.8 74.3 149.3 173.0 90.0 99.5 212.3 180 

Table 5.60: case AK2 orbital parameters 

 Mean GDOP  Peak time % 

 MATLAB STK MATLAB STK 

Guess 
solution 

2.53 2.65 0.19 % 0.37 % 

Cluster 
solution 

4.96 5.43 2.15 % 3.31 % 

Table 5.61: case AK2 GDOP values 

 

 

 

 

 

 

 

 Figure 5.29: case AK2 clustering solution Figure 5.30: case AK2 guess solution 
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By using the K-means algorithm, it is possible to reduce the number of orbital planes from eight (case G1) to 

three with the same total number of satellites in the architecture. The mean peak time percentage and the 

mean GDOP value are increased. A second local optimization (case BK2) is proposed starting from the 

clustering solution of case AK2. 

5.4.4 Case BK2: SQP optimization 

The optimal results of case BK2 are reported in Table 5.64, while in Table 5.63 are reported the orbital 

parameters of each satellite. In Figure 5.31 the optimal solution is represented. The optimization variables 

selected are reported in Table 5.62: there are eight satellites and three orbital planes. The satellites S1, S2 and 

S3 belong to the first plane so the variables are the plane orbital parameters (apogee radius  𝑟𝑎1, the perigee 

radius 𝑟𝑝1, the inclination 𝑖1, the RAAN Ω1 and the perigee argument 𝜔1) and the true anomaly of each 

satellite at 𝑡 = 0. The satellites S4, S5 and S6 belong to the second plane so the variables are the plane orbital 

parameters (𝑟𝑎2, 𝑟𝑝2, 𝑖2, Ω2 and 𝜔2) and the true anomaly of each satellite at 𝑡 = 0. The satellites S7 and S8 

belong to the second plane so the variables are the plane orbital parameters (𝑟𝑎3, 𝑟𝑝3, 𝑖3, Ω3 and 𝜔3) and the 

true anomaly of each satellite at 𝑡 = 0. The guess solution is the clustering solution of case AK2. 

 

 

 

 

 

 

 

 
[km] [km] [deg] [deg] [deg] [deg] 

𝑟𝑎  𝑟𝑝 𝑖 Ω 𝜔 𝜈 
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Guess 
solution 

Optimal 
solution 

Guess 
solution 

Optimal 
solution 

Guess 
solution 

Optimal 
solution 

Guess 
solution 

Optimal 
solution 

Guess 
solution 

Optimal 
solution 

S1 13699 14165 2596.3 3560.8 129.9 149.5 237.9 252.9 98.5 113.8 0 0.2 

S2 13699 14165 2596.3 3560.8 129.9 149.5 237.9 252.9 98.5 113.8 120 161.3 

S3 13699 14165 2596.3 3560.8 129.9 149.5 237.9 252.9 98.5 113.8 240 197.5 

S4 14104 12461 4366.2 3509.3 92.5 107.2 208.4 188.1 98.3 136.9 0 5.3 

S5 14104 12461 4366.2 3509.3 92.5 107.2 208.4 188.1 98.3 136.9 120 166.7 

S6 14104 12461 4366.2 3509.3 92.5 107.2 208.4 188.1 98.3 136.9 240 208.2 

S7 14842 12484 2687.2 2417.7 74.3 43.2 173.0 172.5 99.5 165.8 0 1.2 

S8 14842 12484 2687.2 2417.7 74.3 43.2 173.0 172.5 99.5 165.8 180 205.2 

Table 5.63: case BK2 orbital parameters 

 

 

S1 S2 S3 S4 S5 S6 S7 S8 

𝑟𝑎1 𝑟𝑎2 𝑟𝑎3 

𝑟𝑝1 𝑟𝑝2 𝑟𝑝3 

𝑖1 𝑖2 𝑖3 

Ω1 Ω2 Ω3 

𝜔1 𝜔2 𝜔3 

𝜈1 𝜈2 𝜈3 𝜈4 𝜈5 𝜈6 𝜈7 𝜈8 

Table 5.62: case BK2 optimization variables 



70 
 

 Mean GDOP  Peak time % 

 MATLAB STK MATLAB STK 

Guess 
solution 

4.96 5.43 0.19 % 3.31 % 

Optimal 
solution 

4.57 5.85 6.74 % 13.2 % 

Table 5.64: case BK2 GDOP values 

 

 

 

 

 

 

 

 

From the results, it can be seen that SQP algorithm, in order to improve the solution, reduces the mean GDOP 

value by increasing the mean peak percentage value. The solution doesn't show good performance because 

the mean GDOP and peak time percentage values are too high. 

5.4.5 Case AK3: K-means clustering 

The results of case AK3 are reported in Table 5.66. The guess solution from which starts the clustering is case 

G5. The clustering is made on orbital plane variables 𝑟𝑎, 𝑟𝑝, 𝑖, Ω, 𝜔 with two clusters. The true anomaly of each 

satellite is defined externally in each plane. The Table 5.65 reports the orbital parameters of each satellite. 

In Figure 5.34 the clustering solution is represented. 

 
[km] [km] [deg] [deg] [deg] [deg] 

𝑟𝑎 𝑟𝑝 𝑖 Ω 𝜔 𝜈 
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Optimal 
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Guess 
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Optimal 
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Guess 
solution 

Optimal 
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Guess 
solution 

Optimal 
solution 

Guess 
solution 

Optimal 
solution 

S1 14160 14553 2206.1 3595 79.5 94.8 237.1 209.1 97.0 93.1 359.7 0 

S2 14386 14261 5700.1 2141 120.4 57.8 254.9 233.5 90.3 97.3 35.2 0 

S3 14569 14261 3062.5 2141 148.7 57.8 170.1 233.5 90.4 97.3 254.2 150.3 

S4 14946 14553 2075.9 3595 36.1 94.8 230.0 209.1 97.6 93.1 132.6 180 

S5 12510 14261 2851.1 2141 82.7 57.8 301.9 233.5 105.3 97.3 329.2 171.8 

S6 14968 14261 4188.7 2141 84.5 57.8 187.6 233.5 98.9 97.3 268.9 188.1 

S7 14871 14261 2172.7 2141 38.1 57.8 131.4 233.5 80.6 97.3 285.8 209.6 

Table 5.65: case AK3 orbital parameters 

Figure 5.32: case BK2 guess solution Figure 5.31: case BK2 optimal solution 
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 Mean GDOP Peak time % 

 MATLAB STK MATLAB STK 

Guess 
solution 

4.70 4.70 5.1 % 5.1 % 

Cluster 
solution 

5.73 5.23 0 % 0.02 % 

Table 5.66: case AK3 GDOP values 

 

 

 

 

 

 

 

 

 

By using the K-means algorithm, the number of orbital planes is reduced from seven (solution case G5) to 

two without changing the total number of satellites involved in the architecture. Although the mean peak 

time percentage is reduced, the mean GDOP value is increased. A second local optimization (case BK3) is 

proposed starting from the clustering solution of case AK3. 

5.4.6 Case BK3: SQP optimization 

The optimal results of case BK3 are reported in Table 5.69, while in Table 5.68 are reported the orbital 

parameters of each satellite. In Figure 5.36 the optimal solution is represented. The optimization variables 

selected are reported in Table 5.67: there are seven satellites and two orbital planes. The satellites S1 and S4 

belong to the first plane so the variables are the plane orbital parameters (apogee radius  𝑟𝑎1, the perigee 

radius 𝑟𝑝1, the inclination 𝑖1, the RAAN Ω1 and the perigee argument 𝜔1) and the true anomaly of each 

satellite at 𝑡 = 0. The satellites S2, S3, S5, S6 and S7 belong to the second plane so the variables are the plane 

orbital parameters (𝑟𝑎2, 𝑟𝑝2, 𝑖2, Ω2 and 𝜔2) and the true anomaly of each satellite at 𝑡 = 0. The guess solution 

is the clustering solution of case AK3. 

 

 

 

 

Figure 5.34: case AK3 guess solution Figure 5.33: case AK3 clustering solution 
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[km] [km] [deg] [deg] [deg] [deg] 

𝑟𝑎 𝑟𝑝 𝑖 Ω 𝜔 𝜈 

 
Guess 
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Optimal 
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Guess 
solution 

Optimal 
solution 

Guess 
solution 

Optimal 
solution 

Guess 
solution 

Optimal 
solution 

Guess 
solution 

Optimal 
solution 

Guess 
solution 

Optimal 
solution 

S1 14553 14628 3595 4185.5 94.8 104.5 209.1 211.5 93.1 79.9 0 0 

S2 14261 14294 2141 2927.7 57.8 49.7 233.5 231.6 97.3 105.1 0 0 

S3 14261 14294 2141 2927.7 57.8 49.7 233.5 231.6 97.3 105.1 150.3 147.0 

S4 14553 14628 3595 4185.5 94.8 104.5 209.1 211.5 93.1 79.9 180 172.6 

S5 14261 14294 2141 2927.7 57.8 49.7 233.5 231.6 97.3 105.1 171.8 171.8 

S6 14261 14294 2141 2927.7 57.8 49.7 233.5 231.6 97.3 105.1 188.1 188.6 

S7 14261 14294 2141 2927.7 57.8 49.7 233.5 231.6 97.3 105.1 209.6 212.2 

Table 5.68: case BK3 orbital parameters  

 Mean GDOP Peak time % 

 MATLAB STK MATLAB STK 

Guess 
solution 

5.73 5.23 0 % 0.02 % 

Optimal 
solution 

5.43 5.45 0.63 % 1.33 % 

Table 5.69: case BK3 GDOP values 

 

 

 

 

 

S1 S4 S2 S3 S5 S6 S7 

𝑟𝑎1 𝑟𝑎2 

𝑟𝑝1 𝑟𝑝2 

𝑖1 𝑖2 

Ω1 Ω2 

𝜔1 𝜔2 

𝜈1 𝜈2 𝜈3 𝜈4 𝜈5 𝜈6 𝜈7 

Table 5.67: case BK3 optimization variables 
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In this case, to improve the solution, SQP algorithm reduces the 

mean GDOP value by increasing the mean peak percentage value. The solution could be improved by defining 

a perturbed dynamic model or by adding different parameters to be optimized. 

5.4.7 Case AK4: K-means clustering 

The results of case AK4 are reported in Table 5.71. The guess solution from which starts the clustering is case 

G5. The clustering is made on orbital plane variables 𝑟𝑎, 𝑟𝑝, 𝑖, Ω, 𝜔 with three clusters. The true anomaly of 

each satellite is defined externally in each plane. The Table 5.70 reports the orbital parameters of each 

satellite. In Figure 5.38 the clustering solution is represented. 

 
[km] [km] [deg] [deg] [deg] [deg] 

𝑟𝑎 𝑟𝑝 𝑖 Ω 𝜔 𝜈 

 
Guess 

solution 

Optimal 
solution 

Guess 
solution 

Optimal 
solution 

Guess 
solution 

Optimal 
solution 

Guess 
solution 

Optimal 
solution 

Guess 
solution 

Optimal 
solution 

Guess 
solution 

Optimal 
solution 

S1 14553 14229 3595 3068.7 94.8 88.5 209.1 197.7 93.1 93.7 0 0 

S2 14261 14553 2141 2141.0 57.8 57.8 233.5 233.5 97.3 97.3 0 0 

S3 14261 14386 2141 5700.1 57.8 120.4 233.5 254.9 97.3 90.3 150.3 0 

S4 14553 14229 3595 3068.7 94.8 88.5 209.1 197.7 93.1 93.7 180 180 

S5 14261 14386 2141 5700.1 57.8 120.4 233.5 254.9 97.3 90.3 171.8 134.6 

S6 14261 14386 2141 5700.1 57.8 120.4 233.5 254.9 97.3 90.3 188.1 180 

S7 14261 14386 2141 5700.1 57.8 120.4 233.5 254.9 97.3 90.3 209.6 225.4 

Table 5.70: case AK4 orbital parameters 

 

 

 

 

Figure 5.36: case BK3 optimal solution Figure 5.35: case BK3 guess solution 
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 Mean GDOP Peak time % 

 MATLAB STK MATLAB STK 

Guess 
solution 

4.70 4.70 5.1 % 5.1 % 

Cluster 
solution 

5.03 5.43 2.95 % 4.54 % 

Table 5.71: case AK4 GDOP values 

 

 

 

 

 

 

 

 

As reported in the previous cases, the number of orbital planes is reduced from seven (case G5) to three with 

the same total number of satellites. Although the mean peak time percentage is reduced, the mean GDOP 

value is increased. A second local optimization (case BK4) is proposed starting from the clustering solution of 

case AK4. 

5.4.8 Case BK4: SQP optimization 

The optimal results of case BK4 are reported in Table 5.74, while in Table 5.73 are reported the orbital 

parameters of each satellite. In Figure 5.40 the optimal solution is represented. The optimization variables 

selected are reported in Table 5.72: there are seven satellites and three orbital planes. The satellites S1 and 

S4 belong to the first plane so the variables are the plane orbital parameters (apogee radius  𝑟𝑎1, the perigee 

radius 𝑟𝑝1, the inclination 𝑖1, the RAAN Ω1 and the perigee argument 𝜔1) and the true anomaly of each 

satellite at 𝑡 = 0. The satellites S2 belongs to the second plane so the variables are the plane orbital 

parameters (𝑟𝑎2, 𝑟𝑝2, 𝑖2, Ω2 and 𝜔2) and the true anomaly of each satellite at 𝑡 = 0. The satellites S3, S5, S6 

and S7 belong to the second plane so the variables are the plane orbital parameters (𝑟𝑎3, 𝑟𝑝3, 𝑖3, Ω3 and 𝜔3) 

and the true anomaly of each satellite at 𝑡 = 0 The guess solution is the clustering solution of case AK4. 

 

 

 

 

Figure 5.38: case AK4 guess solution Figure 5.37: case AK4 clustering solution 
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[km] [km] [deg] [deg] [deg] [deg] 

𝑟𝑎 𝑟𝑝 𝑖 Ω 𝜔 𝜈 

 
Guess 

solution 

Optimal 
solution 

Guess 
solution 

Optimal 
solution 

Guess 
solution 

Optimal 
solution 

Guess 
solution 

Optimal 
solution 

Guess 
solution 

Optimal 
solution 

Guess 
solution 

Optimal 
solution 

S1 14229 14177 3068.7 2945.2 88.5 101.9 197.7 196.2 93.7 100.4 0 0 

S2 14553 14350 2141.0 2092.6 57.8 37.9 233.5 235.5 97.3 106.8 0 0.1 

S3 14386 14007 5700.1 5615.5 120.4 140.8 254.9 254.3 90.3 92.2 0 0 

S4 14229 14177 3068.7 2945.2 88.5 101.9 197.7 196.2 93.7 100.4 180 180.6 

S5 14386 14007 5700.1 5615.5 120.4 140.8 254.9 254.3 90.3 92.2 134.6 141.6 

S6 14386 14007 5700.1 5615.5 120.4 140.8 254.9 254.3 90.3 92.2 180 188.3 

S7 14386 14007 5700.1 5615.5 120.4 140.8 254.9 254.3 90.3 92.2 225.4 222.0 

Table 5.73: case BK4 orbital parameters 

 

 Mean GDOP Peak time % 

 MATLAB STK MATLAB STK 

Guess 
solution 

5.03 5.43 2.95 % 4.54 % 

Optimal 
solution 

4.21 4.83 4.22 % 6.2 % 

Table 5.74: case BK4 GDOP values 

 

 

 

 

S1 S4 S2 S3 S5 S6 S7 

𝑟𝑎1 𝑟𝑎2 𝑟𝑎3 

𝑟𝑝1 𝑟𝑝2 𝑟𝑝3 

𝑖1 𝑖2 𝑖3 

Ω1 Ω2 Ω3 

𝜔1 𝜔2 𝜔3 

𝜈1 𝜈2 𝜈3 𝜈4 𝜈5 𝜈6 𝜈7 

Table 5.72: case BK4 optimization variables 
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As reported for case BK3, to improve the solution, the SQP algorithm reduces the mean GDOP value by 

increasing the mean peak percentage value. The solution can be improved by defining a perturbed dynamic 

model or by adding different parameters to be optimized.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.40: case BK4 guess solution Figure 5.39: case BK4 optimal solution 
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5.5 Path-relinking solutions 

The following section reports the solutions obtained through the application of the Path-relinking technique.  

The relevant solutions obtained through the application of the method are reported below. The aim of this 

section is to propose a different methodology to obtain new solutions starting from others previously known. 

The initial solutions are cases G1 (see e.g. Fig 5.41) and G2 (see e.g. Fig 5.42) obtained from the genetic 

algorithm.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Starting from the orbital parameters of each satellite respectively (satellite S1 of case G1 and of case G2, 

satellite S2 of case G1 and of case G2, …), are obtained ten evenly spaced subintervals. The following table 

describe the concept: 

 

𝑟𝑎𝐺1 𝑟𝑎𝑖 𝑟𝑎𝐺2 

𝑟𝑝𝐺1 𝑟𝑎𝑖 𝑟𝑝𝐺2 

𝑖𝐺1 𝑖𝑖  𝑖𝐺2 

Ω𝐺1 Ω𝑖  Ω𝐺2 

𝜔𝐺1 𝜔𝑖 𝜔𝐺2 

𝜈𝐺1 𝜈𝑖 𝜈𝐺2 

Table 5.75: orbital parameters subdivision 

Where 𝑖 = 1, 2, … ,8. 

The intermediate solutions represent the new guess solutions from which start the optimization. The genetic 

algorithm is implemented for the process, defining new upper and lower bounds around the new guess 

solution:  

 

 
[km] [km] [deg] [deg] [deg] [deg] 

𝑟𝑎 𝑟𝑝 𝑖 Ω 𝜔 𝜈 

Lower bound 𝑟𝑎𝐺 + 200 𝑟𝑝𝐺 + 200 𝑖𝐺 + 10° Ω𝐺 + 10° 𝜔𝐺 + 10° 𝜈𝐺 + 30° 

Upper bound 𝑟𝑎𝐺 − 200 𝑟𝑝𝐺 − 200 𝑖𝐺 − 10° Ω𝐺 − 10° 𝜔𝐺 − 10° 𝜈𝐺 − 30° 

Table 5.76: upper and lower bounds 

Figure 5.42: case G2 genetic algorithm Figure 5.41: case G1 genetic algorithm 
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Where: 

• 𝑟𝑎𝐺  is the orbit apogee radius of the guess solution; 

• 𝑟𝑝𝐺 is the orbit perigee radius of the guess solution; 

• 𝑖𝐺 is the orbit inclination of the guess solution; 

• Ω𝐺  is the orbit RAAN of the guess solution; 

• 𝜔𝐺 is the perigee argument of the guess solution; 

• 𝜈𝐺 is the satellite true anomaly at 𝑡 = 0 of the guess solution;  

The following case P1, P2 and P3 represents a scenario with eight satellites. Each satellite is defined by its six 

variables (48 total variables):  apogee radius 𝑟𝑎, perigee radius 𝑟𝑝, inclination 𝑖, right ascension of the 

ascending node Ω, argument of perigee 𝜔 and the true anomaly 𝜈.  All the satellite variables are involved in 

the optimization process. The basic assumptions described in Section 5.1 are considered.  The mathematical 

model used for the optimization is represented by the perturbed dynamic. 

5.5.1  Case P1 

The optimal results of case P1 are reported in Table 5.78, while in Table 5.77 are reported the orbital 

parameters of each satellite. In Figure 5.43 the optimal solution is represented. 

 
[km] [km] [deg] [deg] [deg] [deg] 

𝑟𝑎  𝑟𝑝 𝑖 Ω 𝜔 𝜈 

S1 12171.3 4032.6 137.9 248.2 89.6 199.8 

S2 12405.4 3774.6 143.2 243.2 110.1 316.1 

S3 13418.9 3523.4 140.4 150.5 96.4 134.3 

S4 12045.8 5897.9 77.8 267.3 102.9 137.2 

S5 14152.4 2733.4 41.4 192.3 106.3 159.5 

S6 14210.9 2817.9 46.5 236.3 98.4 236.0 

S7 13480.5 2356.2 93.6 231.3 92.6 163.4 

S8 14499.1 3475.0 97.3 171.5 79.5 222.0 

Table 5.77: case P1 orbital parameters 

 Mean GDOP Peak time % 

 MATLAB STK MATLAB STK 

Optimal 
solution 

3.68 3.68 1.4 % 1.45 % 

Table 5.78: case P1 GDOP values 
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The new solution obtained reports an architecture of eight satellites and eight orbital planes. The complexity 

can be reduced by applying the clustering method, as explained in Section 5.4, to reduce the total number of 

orbital planes. The mean GDOP and mean peak percentage values shown in Table 5.78 are satisfactory.  

5.5.2  Case P2 

The optimal results of case P2 are reported in Table 5.80, while in Table 5.79 are reported the orbital 

parameters of each satellite. In Figure 5.44 the optimal solution is represented. 

 
[km] [km] [deg] [deg] [deg] [deg] 

𝑟𝑎  𝑟𝑝 𝑖 Ω 𝜔 𝜈 

S1 10796.6 5240.2 141.8 252.3 98.0 198.1 

S2 11209.2 4720.5 139.8 241.2 111.9 306.3 

S3 12013.4 4732.4 142.7 149.9 105.0 141.3 

S4 10948.4 7013.7 79.2 257.8 107.2 134.7 

S5 13488.1 2710.6 46.0 211.0 90.1 155.1 

S6 13656.3 2643.9 55.5 240.1 99.9 212.7 

S7 13206.0 2302.4 96.5 247.4 92.4 148.1 

S8 13606.0 3185.5 99.7 198.1 93.2 234.0 

Table 5.79: case P2 orbital parameters 

 Mean GDOP  Peak time % 

 MATLAB STK MATLAB STK 

Optimal 
solution 

4.30 4.30 2.75 % 2.76 % 

Table 5.80: case P2 GDOP values 

 

Figure 5.43: case P1 optimal solution 
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As explained for case P2, the new solution obtained reports an architecture of eight satellites and eight orbital 

planes. The complexity can be reduced by applying the clustering method, as explained in Section 0, in order 

to reduce the total number of orbital planes. The mean GDOP and mean peak percentage values reported in 

Table 5.80 are higher with respect to case P1 and could be improved, for example by applying the SQP 

algorithm.  

5.5.3  Case P3 

The optimal results of case P3 are reported in Table 5.82, while in Table 5.81 are reported the orbital 

parameters of each satellite. In Figure 5.45 the optimal solution is represented. 

 
[km] [km] [deg] [deg] [deg] [deg] 

𝑟𝑎  𝑟𝑝 𝑖 Ω 𝜔 𝜈 

S1 11785.2 3262.7 93.8 248.4 134.4 163.3 

S2 11770.4 3261.3 88.3 249.7 129.6 98.7 

S3 11550.6 3455.1 86.1 252.6 125.9 189.4 

S4 11772.8 3252.8 76.3 263.9 130.8 223.5 

S5 10176.5 2441.5 122.4 330.9 83.3 164.1 

S6 10031.3 2627.0 103.7 328.0 96.2 203.7 

S7 10104.3 2481.4 128.7 336.8 95.2 186.4 

S8 10054.5 2571.7 129.7 324.8 88.9 359.9 

Table 5.81: case P3 orbital parameters 

Figure 5.44: case P2 optimal solution 
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The new solution obtained report an architecture of eight satellites and eight orbital planes. As for the 

previous cases of this section, the complexity can be reduced. The mean GDOP and mean peak percentage 

values reported in Table 5.82 are represent good performances with respect to cases P1 and P2.   

 

 

 

 

 

 

 

 

 

 

 

 Mean GDOP Peak time % 

 MATLAB STK MATLAB STK 

Optimal 
solution 

3.43 3.45 0.11 % 0.11 % 

Table 5.82: case P3 GDOP values 

Figure 5.45: case P3 optimal solution 
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5.6 Global approach from guess solutions 

The solutions obtained through the use of the genetic algorithm are reported in this section. To begin the 

optimization process, a population of individuals, including the optimal solutions obtained in the previous 

sections, is initialized. The optimization analysis is performed in the Matlab environment, while the results 

are verified in the System Tool kit (STK) environment.  The mathematical model used for the optimization is 

based on the assumptions reported in section 5.1. Two cases are presented, one involving eight satellites 

(case G14) and the other involving seven satellites (case G15). 

5.6.1 Case G14 

The case reports 8 satellites and 8 orbital planes (48 total variables). The optimal results of case G14 are 

reported in Table 5.83, while in Table 5.84 are reported the orbital parameters of each satellite. In Figure 

5.46 the optimal solution is represented. The initial population of individuals include the solutions with eight 

satellites obtained in the previous sections. 

 
 [km] [km] [deg] [deg] [deg] [deg] 

𝑟𝑎  𝑟𝑝 𝑖 Ω 𝜔 𝜈 

S1 14893.8 2634.6 93.3 156.6 95.5 137.3 

S2 14893.8 2634.6 91.6 170.9 93.7 184.6 

S3 14893.8 2689.3 93.8 156.6 93.7 258.9 

S4 13158.5 3798.6 45.6 163.7 99.6 197.0 

S5 13158.5 3798.6 42.0 163.7 99.6 147.7 

S6 13158.5 3798.6 31.3 163.7 99.6 344.6 

S7 14429.7 2548.6 150.1 152.1 70.3 177.2 

S8 14429.7 2548.6 150.1 146.7 70.3 253.2 

Table 5.83: case G14 orbital parameters 

 

  
 Mean GDOP Peak time % 

 MATLAB STK MATLAB STK 

Optimal 
solution 

2.39 2.41 0% 0 % 

Table 5.84: case G14 GDOP values 
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Case G14 presents a solution with eight satellites and eight orbital planes. The mean GDOP and mean peak 

time percentage values are satisfactory. The solution demonstrates that increasing the degrees of freedom 

leads to an improved solution.  

5.6.2 Case G15 

The case reports 7 satellites and 7 orbital planes (42 total variables). The optimal results of case G15 are 

reported in Table 5.86, while in Table 5.85 are reported the orbital parameters of each satellite. In Figure 5.44 

5.47 the optimal solution is represented. The initial population of individuals include the solutions with seven 

satellites obtained in the previous sections. 

 
 [km] [km] [deg] [deg] [deg] [deg] 

𝑟𝑎  𝑟𝑝 𝑖 Ω 𝜔 𝜈 

S1 14173.8 2620.9 30.3 335.4 69.4 187.3 

S2 14173.8 2585.7 37.5 335.4 69.4 358.7 

S3 11482 2101.7 144.6 316.9 93.0 237.5 

S4 11482 2101.7 144.6 316.9 93.0 171.4 

S5 11256.6 2461.2 97.7 305.9 92.6 128.2 

S6 11256.6 2461.2 97.7 313.1 95.8 173.7 

S7 11256.6 2461.2 90.5 312.2 95.8 213.7 

Table 5.85: case G15 orbital parameters 

  

Figure 5.46: case G14 optimal solution 
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Case G15 presents a solution with seven satellites and seven orbital planes. The mean GDOP and mean 

peak time percentage values are satisfactory. The solution demonstrates that increasing the degrees of 

freedom leads to an improved solution.  

A summary of all the optimal solutions obtained from the experimental analysis is presented in Section 5.8. 

 

 

  

 Mean GDOP Peak time % 

 MATLAB STK MATLAB STK 

Optimal 
solution 

2.62 2.69 0 % 0.11 % 

Table 5.86: case G15 GDOP values 

Figure 5.47: case G15 optimal solution 
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5.7 Solution analysis 

This section presents a perturbation analysis conducted on two significant solutions. Specifically, STK was 

used to perform a high-fidelity propagation of satellite orbits, taking into account the following 

perturbations: 

• Moon gravity field, 

• Earth gravity field, 

• Sun gravity field, 

• Earth zonal harmonics (up to 𝐽7),  

• Moon zonal harmonics (up to 𝐽50). 

Here, the notation 𝐽𝑛 represents the degree order considered in the gravity harmonics formulation. The 

propagation is defined (see Section 5.1) for a total time of 28 days. The comparison is made between the 

solution obtained in case G1 with the genetic algorithm and the guess solution of case S1, as reported in the 

work by Bhamidipati et al. (2023). The aim of this analysis is to present the different percentages of variations 

for the satellite orbital parameters. Case G1 represents a scenario with generic high elliptical orbits, while 

case S1 reports two frozen orbits. Case G1, as reported in the Chapter 5, Figures out a lower mean GDOP and 

mean peak time percentage values. On the other hand, the frozen orbits represent a class of Table orbits 

around the Moon. These orbits are elliptical, with their line of apsides librating in the polar region and 

exhibiting a lifetime of ten years. 

The solutions of cases G1 and S1 are reported in figures Figure 5.48, Figure 5.49, Figure 5.50, Figure 5.51, Figure 

5.52 respectively, where the percentage variations, relative to the orbital parameters of each satellite (S1, S2, 

…, S8), are represented.  
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Figure 5.48: apogee radius variation (%) 

Figure 5.49: perigee radius variation (%) 
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Figure 5.50: perigee argument variation (%) 

Figure 5.51: inclination variation (%) 

Figure 5.52: RAAN variation (%) 
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From the results shown, it can be observed that non-frozen orbits manifest a greater variation in orbital 

parameters over the time. The value of variation strongly depends on the orbit considered and the effect of 

relevant perturbations. 

5.8 Analysis summary 

In this section a summary of all the optimal solutions obtained are reported in Table 5.87, with a discussion 

about the related results.  

Case 
Total 

number of 
satellites 

Total number 
of orbital 

planes 
Mean GDOP  Peak time % 

G1 8 8 2.65 0.38 % 

G14 8 8 2.41 0 % 

S4 8 8 3.74 0.03 % 

P1 8 8 3.68 1.45 % 

P2 8 8 4.30 2.73 % 

P3 8 8 3.43 0.11 % 

G2 8 2 3.66 0.04 % 

S2 8 2 3.79 0.86 % 

S3 8 2 4.18 0.81 % 

AK1 8 2 4.48 0.02 % 

BK1 8 2 3.96 3.10 % 

G3 8 3 2.50 0.01 % 

AK2 8 3 5.43 3.31 % 

BK2 8 3 5.85 13,2 % 

G4 8 4 3.28 1.37 % 

G5 7 7 4.7 5.1 % 

G15 7 7 2.69 0.11 % 

G6 7 2 4.4 1.2 % 

AK3 7 2 5.23 0.02 % 

BK3 7 2 5.45 1.33 % 

G7 7 3 2.80 0.16 % 

AK4 7 3 5.43 4.54 % 

BK4 7 3 4.83 6.2 % 

G8 7 4 3.35 1.71 % 

G9 6 6 5.19 8.14 % 

G10 6 2 4.19 1.36 % 

G11 6 3 5.12 1.81 % 

G12 5 5 7.35 22.98 % 

G13 5 2 8.26 15.52 % 

Table 5.87: summary of the optimal solutions obtained 
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Scenarios with higher degrees of freedom, where each satellite has its own orbital plane, could lead to better 

solutions in terms of mean GDOP values and mean peak time percentage. This way each satellite can select 

its position using Keplerian orbital parameters within assigned bounds. On the other side, they require more 

computational effort. The genetic algorithm led to the solutions G14 and G15 with the lowest mean values 

of GDOP and peak time percentage. The SQP algorithm can hardly improve the solution when about forty 

variables or more are involved (see case S1 and S5). Using the SQP algorithm with fewer free variables (as 

reported in cases S2, S3 and S4) is more advantageous, resulting in improved results and different 

constellation architectures. The path-relinking method can be used to obtain new solution architectures. The 

genetic algorithm is then applied to optimize the new solutions by restricting variable bounds and using six 

variables for each satellite (as represented by cases P1, P2, and P3 with eight satellites).  By means of the 

genetic algorithm, the solutions could be improved increasing the computational time. In order to reduce the 

constellation complexity and improve the satellite operability, the number of orbital planes can be defined 

externally, by defining each satellite to a plane. Cases G2, G3, G4, S2, S3, AK1, BK1, AK2 and BK2 report good 

solutions with eight satellites and limited number of orbital planes. The advantage of reducing the number 

of orbital planes involved is shown in the clustering cases AK1, AK2, AK3 and AK4. On the other side, 

subsequent optimization by means of the SQP algorithm can reduce the mean GDOP value as the expense of 

an increment of mean peak time percentage value. In general, not all the solutions resulted in being 

acceptable because featuring high mean GDOP value and/or a significant number of peak percentages over 

time. By using a perturbed-dynamics model and appropriate additional constraints (e.g., on the perigee 

altitude) the optimization leads to improved solutions (see case G5 and G6). The best solution obtained with 

seven satellites is represented by case G15, while, for the scenario with six satellites, the best one is 

represented by case G10. The scenarios with five satellites (G12 and G13) are less efficient, in fact the GDOP 

is reduced with a higher number of satellites involved. In the whole analysis performed here, the genetic 

algorithm proved to be effective. The SQP method is a local approach for improving a known solution. It is 

strongly dependent on the trend of the objective function and the provided guess solution. By applying the 

K-means algorithm, the clustering approach is an effective method for reducing the number of orbital planes 

involved. 

Finally, a Pareto-front approach is adopted to select the solutions obtained: non-dominated solutions are 

considered equivalent. The cases considered concern different numbers of orbital planes but the same 

numbers of satellites. Two objective functions are considered, i.e., mean GDOP value and mean peak time 

percentage, both to be minimized. Figure 5.53 shows that in scenarios with eight satellites, there is one 

dominant solution (G14) followed closely by G3. Neglecting G3 and G14 the G1, P3, G2, S4, and AK1 are 

mutually non-dominated solutions (the one that are still good from an engineering point of view are mutually 

non dominated and can be considered as equivalent). The remaining solutions in the top right-hand side are 

dominated by the previous. 

 

 

 

 

 

 

 

 

 

Figure 5.53: non-dominated solution selection for eight satellite scenarios 
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The same selection approach has been followed concerning the scenarios involving seven satellites. Figure 

5.54 shows that there is one dominant solution (G15) followed closely by G7. AK3 and G7 are mutually non-

dominated. The remaining solutions in the top right-hand side are dominated by the previous.  

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 5.54: non-dominated solution selection for seven satellite scenarios 
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6 Extensions and future improvements 

In relation to the experimental analysis proposed in Chapter 5, the following discussion concern possible 

future developments to improve the methodologies and the optimization approach adopted. In this section 

a different area of interest is considered. A test case regarding the arrangement of 16 satellites, covering the 

Moon equatorial area, is reported. The geographical coordinates of the grid points considered are reported 

below:   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The orbit propagation considers the perturbation effects due to the Earth gravity and the Sun gravity. The 

satellites and positions of the target points are calculated for a total time of 28 𝑑𝑎𝑦𝑠. This total time is 

partitioned in subintervals of 10 minutes each, to calculate satellite / target point locations and the relevant 

GDOP values. The visibility constraint is defined by a minimum elevation angle between the surface point 

and the satellite position (see 3.13): 

𝛾 = 5°. 

The variables bounds are defined as follows: 

 

 

 

 

 

 

The mean GDOP value and the mean peak time percentage is minimized. Each satellite is defined by its six 

variables: apogee radius 𝑟𝑎, perigee radius 𝑟𝑝, inclination 𝑖, right ascension of the ascending node Ω, argument 

Minimum latitude -10° 

Maximum latitude -10° 

Minimum longitude 0° 

Maximum longitude 360° 

Number of points 36 

 Table 6.1: equatorial target area coordinates 

 
[km] [km] [deg] [deg] [deg] [deg] 

𝑟𝑎 𝑟𝑝 𝑖 Ω 𝜔 𝜈 

Lower 
bound 

2000 2000 0 0 0 0 

Upper 
bound 

15000 15000 180 360 360 360 

Table 6.2: variable upper and lower bounds 

Figure 6.1: representation of the equatorial target area (STK) 
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of perigee 𝜔 and the true anomaly 𝜈.  The optimal results are reported in Table 6.4, while in Table 6.3 the 

orbital parameters of each satellite are reported. In Figure 6.2 the optimal solution is represented. The 

optimization involves sixteen satellites and two orbital planes. Satellites S1, S2, S3, S4, S5, S6, S7 and S8 belong 

to the first plane, therefore the variables involved are the plane orbital parameters, in addition to the true 

anomaly of each satellite, at 𝑡 = 0. Satellites S9, S10, S11, S12, S13, S14, S15 and S16 belong to the first plane, 

therefore the variables involved are the plane orbital parameters, in addition to the true anomaly of each 

satellite, at 𝑡 = 0. The test case-reported in Figure 6.2 represents an example of the possible applicability of 

the algorithm to different areas to be observed. 

 

 
[km] [km] [deg] [deg] [deg] [deg] 

𝑟𝑎  𝑟𝑝 𝑖 Ω 𝜔 𝜈 

S1 12805.3 10832.7 148.4 254.8 19.5 263.8 

S2 12805.3 10832.7 148.4 254.8 19.5 68.8 

S3 12805.3 10832.7 148.4 254.8 19.5 234.8 

S4 12805.3 10832.7 148.4 254.8 19.5 155.9 

S5 12805.3 10832.7 148.4 254.8 19.5 318.5 

S6 12805.3 10832.7 148.4 254.8 19.5 205.3 

S7 12805.3 10832.7 148.4 254.8 19.5 28.8 

S8 12805.3 10832.7 148.4 254.8 19.5 103.4 

S9 12543.7 11704.9 44.7 207.1 142.8 324.7 

S10 12543.7 11704.9 44.7 207.1 142.8 210.6 

S11 12543.7 11704.9 44.7 207.1 142.8 79.8 

S12 12543.7 11704.9 44.7 207.1 142.8 258.9 

S13 12543.7 11704.9 44.7 207.1 142.8 27.1 

S14 12543.7 11704.9 44.7 207.1 142.8 159.1 

S15 12543.7 11704.9 44.7 207.1 142.8 124.0 

S16 12543.7 11704.9 44.7 207.1 142.8 290.6 

Table 6.3: equatorial area orbital parameters 

 Mean GDOP  Peak time % 

 MATLAB STK MATLAB STK 

Optimal 
solution 

2.59 2.59 0 % 0 % 

Table 6.4: equatorial area GDOP values 
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The study of the orbital station keeping issue is discussed hereinafter. The station-keeping is defined by the 

maneuvers required to maintain a spacecraft at a fixed distance from another spacecraft or planet/celestial 

body. It is performed through a series of orbital maneuvers made by the satellite thrusters to keep the 

spacecraft in the designed path.  The perturbations present in the outer space are the major causes of the 

deviations from the theoretical trajectory. For example, the Earth’s oblateness, the gravitational forces from 

other celestial bodies, solar radiation pressure or atmospheric drag are typical perturbations. Station keeping 

is strictly correlated with the satellite constellation considered. The maintaining cost of the satellites in their 

nominal position is the fundamental scope of the station keeping. This cost is expressed in terms of number 

of maneuvers required and consequently the propellant mass consumed. In Figure 6.3, the maximum 

percentage variations of the orbital parameters are reported. The case studies considered compare a 

stabilized lunar satellite orbit with an unstable one. Station keeping could help improving maneuvers with 

low fuel consumption. In this case an optimization strategy can be adopted by acting on the constellation 

variables. 
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Figure 6.2: equatorial optimal solution 

Figure 6.3: stable and unstable orbits comparison 

https://en.wikipedia.org/wiki/Spacecraft
https://en.wikipedia.org/wiki/Orbital_maneuver
https://en.wikipedia.org/wiki/Spacecraft_propulsion
https://en.wikipedia.org/wiki/Solar_radiation_pressure


93 
 

With respect to the satellite trajectory, the GDOP function is closely related to the instantaneous satellite 
position in 3D space, and the number of satellites involved in the positioning. Generally, the function exhibits 
a highly irregular trend over time, often varying by many orders of magnitude within a short period (see e.g., 
Fig. 6.4). Major aspects concerning each optimal solution consists in the mean GDOP value and the mean 
peak percentage over time. It is expected that more or less stable solutions can occur. Specifically, if small 
variations in the parameters that characterize the optimal solution result in large variations in the GDOP 
value, the solution is considered unstable and vice versa. A sensitivity analysis could therefore be carried out 
to investigate the stability of the GDOP function (w.r.t. the control variables values found). 

 

 

 

 

 

 
 

 

 

Finally, a relevant aspect in the development of a constellation architecture, is the relative communication 
between satellites (see e.g., Fig 6.5). It is important to understand which spacecraft can communicate with 
each other and with those connected to Earth. This ensures communication between the satellite 
constellation and surface points of the observed area, even when they are hidden on the dark side of the 
Moon. The inclusion of communication aspects between satellites in the mathematical model allows for 
more realistic solutions. In fact, the need for constant communication from the ground with the relevant 
points on the surface observed by the constellation would be fully covered.   

  

Figure 6.5: satellite inter-link communication 

Figure 6.4: GDOP trend over time 
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7 Conclusions 

In the upcoming years, the exploration of the Moon will be a primary focus of global space initiatives. Satellite 
constellations orbiting the Moon will play a central role in these endeavors by providing essential navigation, 
communication, and data relay services. These architectures will enable precise positioning for lunar landers 
and rovers, facilitate real-time communication with Earth-based mission control, and support the 
establishment of sustainable lunar habitats. The South Pole region of the Moon is of particular interest due 
to its water ice deposits, ample sunlight for generating solar power, and significant scientific potential. Lunar 
exploration presents valuable opportunities to develop and refine capabilities essential for more ambitious 
ventures, such as crewed missions to Mars. 

The objective of this thesis is to propose methodologies and algorithms for obtaining optimized 
architectures of lunar satellites visible from the lunar South Pole area, while minimizing the global dilution of 
precision (GDOP). The solutions obtained ensure that at least one satellite is always visible from Earth and at 
least four satellites are visible from every point in the lunar South Pole area. The basics of GPS positioning 
systems and the relevant triangulation concept are considered in depth. The dilution of precision and its 
relative factors, including the GDOP, determine the precision of the positioning system and represents the 
main objective of the constellation. 

In this work, the mean GDOP is minimized, in addition to the mean percentage of times the GDOP exceeds 
a given acceptability limit. A novel overall approach is put forward, combining various methods and 
techniques. In this perspective, ad-hoc algorithms have been developed using several mathematical 
concepts. A genetic algorithm is used to arrange the satellite positions, following a global optimization point 
of view. Additionally, a different approach utilizes the sequential quadratic programming algorithm to locally 
optimize architectures known a priori. Another method aims to decrease the constellation complexity and 
improve satellite operability by reducing the number of orbital planes in the constellations. This is achieved 
through a specific clustering technique based on the K-means algorithm. 

The experimental analysis carried out is aimed at obtaining a number of satisfactory solutions applicable to 
different operational scenarios, rather than a single result, albeit globally optimal. The proposed methods 
are applied to various cases involving different optimization variables, total number of satellites, and orbital 
planes. For example, constellations with eight satellites are investigated, distributed on eight or less orbital 
planes (e.g., two orbits). The results obtained from different cases confirm the efficiency of the overall 
methodology proposed. The optimization process can be applied flexibly to scenarios with different areas of 
observation and on other celestial bodies like Earth or Mars. A constellation architecture is additionally 
considered to cover the equatorial region of the Moon, using two orbital planes and sixteen satellites. 

Future improvements will focus on major aspects, such as orbital station keeping and satellite inter-link 
communication. These enhancements will address the challenges posed by perturbations in outer space, 
leading to specific optimization strategies to minimize the costs associated with satellite positioning, such as 
the propellant required for station keeping maneuvers. 
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