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Abstract

This thesis aims to investigate the interaction between the multibody dynamics and
fluid dynamics of a pressure relief valve for hydraulic applications.
The performance of a hydraulic valve is significantly influenced by flow forces gener-
ated due to changes in fluid momentum within the valve. These flow forces consist of
three components: a steady-state factor, directly proportional to the flow rate and
fluid velocity, and two unsteady factors, dependent on the flow rate derivative and
spool acceleration, respectively. The first contribution, which is the most influential,
consistently tends to decrease the flow area. It has been proven that, under a con-
stant pressure drop across the valve, the steady-state force is directly proportional
to the spool displacement, resembling the behavior of a virtual spring.
In the present work, the behavior of the valve was investigated by means of the
co-simulation tool developed by MSC Software, now incorporated into Hexagon MI
(Manufacturing Intellgence) - Design & Engineering, which allows to couple multi-
body simulations with fluid dynamic simulations. The main goal of this study is
to validate the model through co-simulation and propose variations for further ex-
ploration. The outcomes will provide useful data to deliver practical insights in the
understanding of system-fluid dynamics interactions.
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Chapter 1

Introduction

Pressure relief devices provide the essential function of purging a system from overpressure con-
ditions. Particularly, a Self-Actuated Pressure Relief Valve (SRV) is designed to protect life
and equipment through controlled fluid discharge at a predetermined pressure [8]. It acts as
the final control device to prevent accidents or explosions caused by overpressure. SRVs must
comply with international codes and close at a predetermined pressure when the system pressure
returns to a safe level.
SRVs must be designed with materials compatible with a wide range of process fluids, including
corrosive and toxic media. They should operate smoothly on various fluids and fluid phases.
These design parameters result in a diverse range of SRV products in the market, all adhering
to internationally recognized codes [17].

Pressure relief valves fall into two major groups: direct-loaded pressure relief valves and pi-
loted pressure relief valves. Direct-acting valves respond directly to system fluid pressure, while
pilot-operated valves use a pilot to control the main valve based on system pressure. Direct-
loaded valves may have an auxiliary actuator for lift assistance or supplementary closing force.
Pilot-operated valves can have a pilot directly controlling the main valve or indirectly through
discharged fluid.

Pressure relief valves are critical safety elements in high-pressure hydraulic and pneumatic sys-
tems. A direct spring-operated relief valve consists of a precompressed helical spring and a valve
disc (Fig. 1.1). During normal operation, the valve disc presses against the valve seat, closing
the pressurized fluid space. The set pressure, adjustable with spring precompression, determines
the valve opening. External viscous damping, optional but restricted by some standards, aims to
prevent valve vibrations. Vibrations, indicated by harsh noise, can lead to mechanical damage
or insufficient discharging, emphasizing the importance of proper damping considerations [12].

1



Introduction

Figure 1.1: A representation of the vessel-valve system using
mechanical modeling, incorporating state variables and pa-
rameters [8]

Early pressure relief valves were initially loaded with a weight, leading to minimal disc lift
within allowable overpressure. Charles Ritchie’s 1848 innovation enhanced lift using a peripheral
flow deflector, creating an annular chamber for sudden valve opening. William Naylor’s 1863
design improved lift by turning discharged fluid through 180◦. Modern designs combine Ritchie
and Naylor principles, incorporating a lip around the disc to form an annular chamber with a
secondary orifice. Liquid relief valves developed based on this design open fully within a 10%
overpressure.
Early valves used a weight, due to challenges in producing suitable springs to regulate the
disc’s lifting force. They were later replaced by springs due to practicality and controllability.
Consequently, the majority of direct-loaded pressure relief valves now employ spring loading,
with exceptions for low-pressure applications as per industry standards. The following sections
outline a standard range of direct-loaded pressure relief valves available in the industry [3] [10].

1.1 Safety Valves
Safety valves, exemplified in Figure 1.2, serve primarily for relieving steam in industrial boiler
plants and other steam systems. Their design focuses on safeguarding the spring from excessive
temperature increases that might lead to spring setting drift and potential relaxation over time.
To ensure this protection, safety valves often feature an open bonnet, allowing steam entering
the bonnet to directly escape into the surrounding atmosphere [6] [17].
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Figure 1.2: Safety valve [20]

The disc of safety valves typically moves within a guided sleeve, equipped with a threaded ring
for altering the deflection direction of the escaping fluid. This, in turn, adjusts the reactive force
on the underside of the disc, allowing for sensitive blowdown adjustment. Adjusting the guide
ring affects blowdown length, with lowering extending it and raising shortening it.
The nozzle ring, located below the nozzle seat, regulates the difference between set pressure
and popping pressure. Adjusting the nozzle ring influences valve popping timing and blowdown
duration.
Safety valves with open bonnets find partial balance through the stem guide, permitting op-
eration against a built-up back pressure of around 20%, subject to manufacturer consultation.
They are unsuitable for superimposed back pressure due to potential leakage around the stem
to the bonnet, and thus, manifold use is discouraged [20].

1.2 Safety Relief Valves
Safety relief valves are versatile in gas or liquid services within the process industry. They pre-
vent fluid leakage with vented or bellows-sealed bonnets. In gas service, valves pop open, while
in liquid service, they modulate open, reaching full open position at 25% overpressure (or 10%
in newer designs).
Two types exist: conventional and balanced safety relief valves. Conventional ones have a closed
bonnet vented to the outlet, suitable for short pipelines limiting back pressure to 10%. Super-
imposed back pressure affects the set pressure. Some can handle constant back pressure up to
50%. Open bonnet conversion allows up to 20% built-up back pressure.
Balanced safety relief valves (Figure 1.3) minimize back pressure limitations with balanced bel-
lows between the disc and vented bonnet. They maintain rated capacity up to 40% back pressure,
closing gradually beyond. Blowdown adjustment, critical for valve stability, is achieved through
a nozzle ring or external screw [20].

3
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Figure 1.3: Safety relief valve with a bellows for balance [20]

1.3 Vacuum Relief Valves
A vacuum relief valve operates through a mechanism that permits the ingress of air into a
system to mitigate the buildup of excessive vacuum pressure. When the internal pressure within
the system diminishes beyond a predetermined threshold, the valve activates, facilitating the
intake of air and thereby equalizing the pressure. This action serves to safeguard the integrity
of the system by preventing potential damage resulting from the imposition of excessive vacuum
pressures.
There are different configurations of vacuum relief valves, either individually or in conjunction
with positive over-pressure relief.
In Figure 1.4, a breather valve integrates a direct-loaded vacuum relief valve and an overpressure
relief valve. Unlike other vacuum relief valves, it employs a disc that swings open on a point
contact hinge. Soft diaphragm seals allow the valve to reseat close to the set pressure, making
it suitable for low-pressure storage tanks [20].
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Figure 1.4: Breather valve [20]

1.4 Liquid Relief Valve
Typically, liquid relief valves only slightly modify the disc’s geometry compared to traditional
safety relief valves to achieve specific performance in liquid service.
The liquid relief valve in Figure 1.5 opens fully under a 10% overpressure, ensuring stable oper-
ation across various conditions. Blowdown adjustment is possible through the nozzle ring.

Figure 1.5: Relief Valve [20]

Figure 1.6 displays a liquid relief valve with a linear proportional opening characteristic, suitable
for wide load range operations. The flared nozzle outlet minimizes disc movements in response to
flow rate changes. Tests confirm effective internal friction to prevent valve oscillations, even with
rapidly accelerating mass flow. Figure 5-16 illustrates the opening and closing characteristics of
this valve [6] [20].
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Figure 1.6: Proportional Relief Valve [20]

Incompressible fluids, like liquids, impact valve behavior differently. Their nearly incompressible
nature and high density cause significant pressure changes with small alterations in inlet flow
velocity. Liquid relief valves, more susceptible to chatter than gas valves, can be equipped with
friction dampers to eliminate valve chatter1 [20].

1.5 Force/Lift Diagrams
In order to understand how pressure relief valves behave in operation, diagrams depicting force
and lift, as illustrated in Figures 5-29 to 5-33, serve as valuable tools. These diagrams are
instrumental in analyzing the impact of factors like inlet pipe pressure loss and back pressure
on the lifting force of the valve, as well as in examining the blowdown adjustment using specific
devices.
The diagrams feature a dashed line symbolizing the closing force applied by the spring on the
valve disc, while S-shaped curves represent the net opening forces from the fluid acting on the
disc. These curves, determined experimentally under constant inlet pressure, vary in shape
depending on the valve design.

1Irregular, back-and-forth movement of the components within the pressure relief valve, involving direct
contact between the disc and the nozzle.
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(a) Effect of pressure loss [20] (b) Effect of back pressure [20]

Figure 1.7: Influence of pressure loss and back pressure on Force/Lift diagram

The force/lift diagram (Figure 1.7a) illustrates the diminishing effect of increasing inlet pipe
pressure loss on lifting force, considering zero back pressure. This specific valve type restricts
lift to l/d0 = 0.22. The manufacturer has chosen a spring characteristic resulting in full valve
opening with a 3% inlet pressure loss.
Examining the force/lift diagram (Figure 1.7b) reveals the diminishing effect of built-up back
pressure on the lifting force for an unbalanced conventional pressure relief valve under zero inlet
pipe pressure loss conditions. If the built-up back pressure at 3% inlet pipe pressure loss is
sufficiently high, the valve may lose its ability to fully open in one stroke.

Figure 1.8: Mode of Blowdown Adjustment [20]

The force/lift diagrams in Figures 1.8 (a) and (b) demonstrate blowdown adjustment modes for
different pressure relief valve types. (a) applies to valves with a guide sleeve and a screwed ring,
adjusting blowdown by altering the sleeve length; (b) pertains to valves with a screwed ring on
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the nozzle, adjusting blowdown by reducing the width of the secondary orifice.

Different valves may exhibit varied resistance, and manufacturers offer methods like adjust-
ing spring characteristics or selecting larger orifices to enhance back pressure tolerance. This
approach involves balancing shorter decaying lift force curves with larger inlet and discharge
piping to reduce pressure loss [6] [20].

1.6 Present work
In the present thesis work, we aim to reproduce the behavior of the opening transient of a Pres-
sure Relief Valve, until an equilibrium position is reached. The motion of the valve is analyzed
by coupling two software programs, scFLOW for fluid dynamics and Adams for multibody dy-
namics, using MSC Cosim co-simulation software. Comparison is then made with the results
obtained in [1], to validate the correctness of the analysis performed and the margins for error
and improvement.
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Chapter 2

Fundamentals of multibody
simulation

2.1 Introduction
The simulation of Multibody systems involves analyzing the motion of mechanical systems under
the influence of external forces. The multibody systems approach involves utilizing a finite set
of elements, including rigid bodies and flexible bodies, springs, dampers, joints, supports and
actuators. The accepted assumptions are outlined as follows:

A multibody system comprises rigid bodies and flexible bodies,ideal joints and elastic con-
nections.

Ideal joints include rigid joints, joints with completely specified motion (rheonomic con-
straint), and vanishing joints (free motion). Elastic connections include bushings, beams,
fields, general forces and more advanced elements.

The topology of the multibody system can be arbitrary, allowing for chains, trees, and
closed loops.

Joints and actuators are consolidated in open libraries of standard elements.

Subsystems can be added to existing components of the multibody system.

Adams, or Automatic Dynamic Analysis of Mechanical Systems, is a sophisticated software sys-
tem designed to assist analysts in conducting three-dimensional analyses of mechanical systems.
It covers aspects such as kinematics, statics, quasi-statics, and dynamics and is versatile enough
to handle systems with various interconnected rigid or flexible bodies [18]. The software allows
for extensive rotational and translational movements, accommodating different internal or exter-
nal forces and predefined motions. Notably, it is adaptable to diverse topological configurations,
treating chain, tree, cluster, closed-loop, and multiple closed-loop setups uniformly. Adams effi-
ciently identifies and eliminates redundant constraints.

The program’s inputs include part geometry, mass properties, reference frames, body types,
compliance descriptions, constraints, actuator and sensor models, restraints, connectors, control
laws, and graphic entities. Outputs provide time-dependent positions, velocities, accelerations,
forces, and user-defined variable values in various formats like tables, plots, static configurations,
and dynamic animations. The Adams software system comprises ten integrated programs, with
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the Adams program serving as the primary engine for general kinematic, static, and dynamic
analyses.
Tanks to its flexibility, Adams is suitable for various analyses and problems boasting, as in [25]:

· Rigid and flexible multibody systems;

· Sensitivity analysis;

· Vibration analysis;

· Vehicle design & testing;

· Coupled control/mechanical system analysis;

· Kinematics and kinetics;

· Contact and friction;

· Loads and displacement;

· Durability and life-cycle analysis;

· Fracture or fatigue calculations;

· Kinetic, static, and dissipative energy distribution;

· Vehicular cornering, steering, quasi-static, and straight-line analysis;

· Control system analysis.

In the following sections, we will discuss the main equations and methods used by the software
to perform a multibody simulation. All mathematical expressions and formulations provided
here are based on or guided by the content found in the cited reference [13].

It should be noted that what follows is only a small part of the capabilities of the Adams
software. This choice was made in order not to excessively make the discussion heavy while at
the same time providing the details necessary for understanding the model described later on.

2.2 Adams Generalized Coordinates
In Adams, the way we express the position and orientation of rigid bodies involves specific
mathematical principles.
The location of a rigid body is defined using three Cartesian coordinates: x, y, and z. These
coordinates represent the body’s position in three-dimensional space.
The orientation of a rigid body is determined by a trio of Euler angles: yaw (ψ), pitch (θ), and
roll (ϕ). These angles describe the body’s orientation through a 3-1-3 rotation sequence.
These three angles and the previous Cartesian coordinates are saved in two different arrays, not
vectors, using the following structure:

p =

xy
z

 ε =

ψϕ
θ


The combination of position and orientation is captured in a set of generalized coordinates for
a specific rigid body. These coordinates serve to uniquely define the configuration of the body:
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qi =
C
pi

εi

D
The body’s longitudinal velocity (u) and angular velocity (ω) are calculated based on the time
derivatives of the chosen generalized coordinates. A matrix ”B” relates the time derivative of
Euler angles to the body’s angular velocity. This matrix establishes a link between the body’s
intrinsic properties and the selected generalized coordinates.

u = ṗ

ω̄ = Bε̇ ≡ Bζ

B =

sinϕsinθ 0 cosϕ
cosϕsinθ 0 −sinϕ
cosθ 1 0


The link between angular velocity (ω̄) and the body orientation matrix (A) time derivative is
expressed through a skew-symmetric operator.

Ȧ = A ˜̄ω
In a mechanical system comprising nb bodies, the array:

q = [qT
1 , q

T
2 , . . . , qT

nb]T = [q1, q2, . . . , qn]T (2.1)
where n = 6 · nb, provides a comprehensive representation of the positions and orientations of
all bodies within the system at a specific time.

In summary, Adams employs a combination of Cartesian coordinates and Euler angles to pre-
cisely define both the position and orientation of rigid bodies in a mechanical system, enabling
detailed simulation and analysis.

2.3 Joints in Adams
In Adams simulation environment, joints are considered limitations influencing specific coor-
dinates within the system (q1 through qn of Eq. (2.1)). Mathematically, a joint constraint is
represented by:

Φ(q) = 0 (2.2)
where Φ contains all constraints imposed by the joints in the model:

Φ(q) = [ΦT
1 (q),ΦT

2 (q), . . . ,ΦT
nj(q)]T = [Φ1(q),Φ2(q), . . . ,Φm(q)]T (2.3)

with nj the number of joints, and m is the total number of constraints. For instance, a revolute
joint between two bodies introduces a set of constraints (as in Eq. (2.2)) to permit a specific
degree of freedom between the connected bodies.
The kinematic constraint equations for position, velocity, and acceleration are expressed by
taking one-time and two-time derivatives of Eq. (2.3):

Φq q̇ = 0 (2.4)
Φq q̈ = −(Φq q̇)q q̇ ≡ τ (2.5)

Equations Eq. (2.4) to Eq. (2.5) ensure that the generalized coordinates, along with their
derivatives, satisfy the necessary conditions for the coherent evolution of the mechanical system,
guaranteeing that the constraints imposed by joints are adhered to throughout the system’s
motion.
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2.4 Dynamic analysis
The formulation of rigid body equations of motion involves several quantities:

· M : Generalized mass matrix.

· J : Generalized inertia matrix expressed about the principal local reference frame.

· K: Kinetic energy, defined as a combination of translational and angular kinetic energy

K = 1
2u

TMu+ 1
2 ω̄

T J̄ ω̄

· λ: Array of Lagrange multipliers representing the number of constraint equations induced
by joints.

· F (q, q̇, t) =
C
f
n̄

D
: Vector of applied forces.

· Q(q, q̇, t) =


1
ΠP

2T
f1

ΠR
2T
n̄

: Generalized force acting on the body, obtained by projecting ap-

plied force F onto the generalized coordinates.

Considering Pv as the velocity at the point P where the external force F is applied, the calculation
of projection operators is performed as follows:

ΠP = ∂vP

∂u

ΠR = ∂ω̄

∂ζ

In addition, we can define the angular momenta as:

Γ = ∂K

∂ζ
= BT J̄Bζ

The equations of motion, derived through Lagrange’s formulation, result in second-order dif-
ferential equations. The choice of generalized coordinates in Adams influences these equations,
ensuring the representation of the mechanical system.

The numerical solution for dynamic analysis involves solving a set of 15 equations, including
kinetic and kinematic differential equations, along with the constraints induced by joints, as
stated:

Mu̇+ ΦT
p λ− (ΠP )Tf = 0 (2.6)

Γ −BT J̄Bζ = 0 (2.7)

Γ̇ − ∂K

∂ε
+ ΦT

ε λ− (ΠR)T n̄ = 0 (2.8)

ṗ− u = 0 (2.9)

ε̇− ζ = 0 (2.10)
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The solution provides information about the translational and angular momenta, satisfying both
the dynamic equations and kinematic constraints.

The numerical solution process utilizes an implicit integration formula, such as the backward
Euler formula, to discretize the first-order time derivatives. The resulting system of nonlinear
algebraic equations is solved using a Newton-Raphson iterative algorithm. The complexity of
solving this system arises due to the inclusion of kinematic constraint equations, making dy-
namic analysis in mechanical systems a challenging simulation.

Adams employs reliable methods for solving these equations, such as direct index 3 DAE1 solvers
or more refined algorithms that reduce the problem to an analytically but yet numerically dif-
ferent index 2 DAE problem. The solution process involves iterative steps, employing Newton-
Raphson method, and the solver may adjust the step size to achieve convergence. Refactorization
may be required during long simulations to address issues of singularity in the Jacobian matrix.
It’s important to note that the presented backward Euler formula is conceptually representa-
tive, and Adams typically uses higher-order integrators for improved performance based on the
characteristics of the problem being solved.

2.5 Numerical Solution and GSTIFF integrator
Three distinct formulations of Differential Algebraic Equation (DAE) systems are implemented
in Adams: Index 3 (I3), Stabilized Index 2 (SI2), and Stabilized Index 1 (SI1). Each formulation
involves different equations that differentiate in terms of their optimization equations calculated
for each state of the dynamic system. While the I3 formulation offers less accurate evaluations
of system velocities and accelerations compared to SI2 and SI1, it stands out for its lower com-
putational demand.

Geometrical nonlinearities involve phenomena like large deformations and strain, while physical
nonlinearities include material characteristics and contact effects. Nonlinear problems, involving
both geometric and physical nonlinearities, represent a significant challenge due to their diverse
nature. Achieving convergence, minimal computational times, and accurate solutions depends
heavily on the proper configuration of mathematical models and solvers, which are essential
components in addressing these issues [9].
Simulating nonlinear dynamic systems demands careful consideration of integrator selection and
settings to avoid divergence, computational instability, or inaccuracies. Stiff differential equa-
tions, particularly challenging to integrate stably, require specialized integrators termed stiffly
stable integrators. Adams offers three such integrators — GSTIFF, WSTIFF, and HASTIFF —
all robust, multi-step2, implicit integrators featuring variable-order and step size. The distinction

1Differential-Algebraic Equations. A DAE is characterized by an associated index, and the general principle
is that as the index increases, the numerical solution of the DAE becomes more difficult.

2Multistep methods enhance efficiency by utilizing and considering data from previous steps rather than only
referring to the current state.
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among these lies primarily in their predictor3 methods: GSTIFF employs a Nordsiek4 vector.
The correction step of the STIFF integrators adopts the implicit formulation of the Backward
Differentiation Formula (BDF), represented as:

ȳn+1 =
kØ

i=1
αi ȳn−i+1 + h β0 ˙̄yn+1

where α and β are constants that vary based on the order of the corrector k.

2.5.1 GSTIFF I3 Integrator
The GSTIFF I3 integrator in Adams is acknowledged for its high-speed capabilities, ensuring
efficient simulations while ensuring accuracy in system displacements [7].
Despite its strengths, potential errors in velocities and accelerations should be noticed. To
address this, controlling theHmax parameter is recommended, enabling the integrator to operate
at a constant step size while maintaining a high order, preferably three or more.
The GSTIFF I3 integrator is particularly well-suited for numerically stiff models, commonly
found in mechanical systems with a broad range of frequency content. It also proves beneficial
for models featuring velocity inputs.

2.6 GForces
The GForce in Adams represents general forces with three force components and three moment
components, all mutually orthogonal. These components are actually vacant, awaiting input
from the co-simulation software. For each part engaged in the co-simulation, it is crucial to
establish a corresponding GForce.
GForce format is:

”GFORCE/id\I = id, JFLOAT = id, RM = id”

· I = id: Defines the location where Adams Solver exerts forces and torques. It’s crucial
to ensure that the "I" marker is fixed and on a separate part from the "JFLOAT" marker.
This ensures consistent force application at a fixed point on the part associated with the
"I" marker.

· JFLOAT = id: Specifies the point where Adams Solver applies reaction forces and torques.
Adams Solver adjusts the "JFLOAT" marker position to align with the "I" marker, allowing
movement in the point of reaction force application relative to its part.

· RM = id: Designates the marker and, consequently, the coordinate system where force and
torque components are defined.

3Numerical integration involves an initial evaluation, known as a predictor, to estimate the state of a system
at a future time step based on its current state and the derivatives of the state variables.

4The Nordsieck method [16] [14], derived by stabilizing a Taylor series approach, is a reliable and efficient
approach for integration of systems of ordinary differential equations. It utilizes current values of higher deriva-
tives of a polynomial approximation of the solution adjusting interval sizes for specified accuracy, with minimal
computation of derivatives per step.
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By considering two markers, "I" and "JFLOAT," the creation of a GForce initiates an action
on the part associated with marker "I" and an equal and opposite reaction on the part linked
to marker "JFLOAT." The position of the JFLOAT marker is automatically adjusted by the
software during system movement, ensuring a constant overlap with the I marker. As a result,
the reaction force is exerted on the part to which the JFLOAT marker belongs, precisely at the
position of the I marker at any given moment.

The vectors derived from the three force components and three moment components determine
the direction of the action force and torque, respectively.

Fa = FXx̂rm + FY ŷrm + FZẑrm

Ta = TXx̂rm + TY ŷrm + TZẑrm

Fa represents the applied translational force on the "I" marker. FX, FY , and FZ are functions
defined by the user for the magnitudes of force components along the x, y, and z axes, respec-
tively.
Ta represents the applied rotational force on the I marker. TX, TY , and TZ are user-defined
functions for the magnitudes of the rotational force components along the x, y, and z axes,
respectively.
x̂rm, ŷrm and ẑrm represent unit vectors in the positive x, y and z-direction of the RM marker,
respectively.

The reaction force mirrors the action force but acts in the opposite direction.

Fr = −Fa

Tr = −Ta

Fr represents the translational reaction applied at the JFLOAT marker, while Tr represents the
rotational reaction.

2.7 Multi-component force
A force with three or more components, known as a multi-component force or torque, is employed
to apply translational and/or rotational force between two components in a model. The force is
directed from the first part, referred to as the action body, to the second part, called the reaction
body, automatically applied by Adams.

Figure 2.1: Example of the action and reaction force movement [21]

To identify the points of application for the multi-component force, Adams establishes dis-
tinctive markers for each part. The action marker is associated with the action body, while the
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reaction marker corresponds to the reaction body. Throughout the simulation, Adams ensures
the coincidence of the reaction marker with the action marker. The floating nature of the re-
action marker, not fixed to the body to which it belongs, makes it commonly referred to as a
floating marker. These markers are also termed I and J markers.
Moreover, Adams generates a third marker known as the reference (R) marker, providing infor-
mation about the force direction. The user has the flexibility to define the orientation of the
reference marker during the creation of a multi-component force.

In the case of a six-component general force and a three-component force, the total force provided
by Adams Solver results from the vector sum of the specified force components. The magnitude
of this force is the square root of the sum of the squares of the three mutually-orthogonal force
components:

F̄a = FXx̂rm + FY ŷrm + FZẑrm

Where:

· F̄a is the action force;

· FX is the user-defined function determining the magnitude and sign of the x-component.

· FY is the user-defined function determining the magnitude and sign of the y-component.

· FZ is the user-defined function determining the magnitude and sign of the z-component.

· x̂rm, ŷrm, and ẑrm are unit vectors along the +x, +y, and +z directions of the reference
marker.

Reaction forces is:
F̄r = −F̄a

2.8 Bistop function
As illustrated in Figure 5.7 below, the BISTOP function is employed to simulate a gap element.
This gap element is characterized by a slot that establishes the motion domain for a component
denoted as Part I. When Part I remains within the slot without interference at its ends, it can
freely move without external forces exerted upon it.
However, as Part I attempts to surpass the physical limits of the slot, the BISTOP function
comes into play, generating impact forces that simulate contact. These forces are strategically
designed to guide Part I back into the slot, maintaining adherence to the specified constraints.

Figure 2.2: Example of the Bistop function [21]
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The BISTOP function has the following definition:

BISTOP (x, ẋ, x1, x2, k, e, cmax, d)

Where:

· x: variable representing the distance that you intend to utilize for force computation (N+M1
for the left end of the slot in Figure 5.7).

· ẋ: time derivative of x.

· x1: lower bound of x (n+M1 in Figure 5.7) - if the variable x1 is greater than x, the Adams
Solver computes a positive force value.

· x2: upper bound of x (N+L-M2 in Figure 5.7) - if the variable x2 is lower than x, the Adams
Solver computes a negative force value.

· k: stiffness.

· e: exponent of the force deformation characteristic.

· cmax: maximum damping coefficient.

· d: distance (penetration) at which we decide to apply full damping coefficient.

The BISTOP force is comprised of two components. The first involves a stiffness factor contin-
gent on the degree of penetration of Part I into the constraining Part J. The second component
introduces a damping or viscous element, providing a means to simulate energy dissipation within
the system. This comprehensive model not only captures the dynamic interactions within the
simulated environment but also allows for a nuanced representation of mechanisms involving
energy loss.
To avoid a sudden discontinuity in the damping force at zero penetration, we define the damping
coefficient as a cubic step function of the penetration. This means that the damping coefficient
is consistently zero at zero penetration. It gradually reaches its maximum, denoted as cmax, at
a penetration value d, set by user.

2.9 Translational Spring Damper
A translational spring damper characterizes the forces between two components, which locations
are defined by user, acting over a specified distance in a particular direction.
Upon selection, Adams applies an action force to the chosen initial component, termed the action
body, and exerts an equal and opposite reaction force on the second selected component, known
as the reaction body. These forces are directed along the line connecting the endpoints of the
spring-damper, commonly referred to as the line of sight. A positive action force tends to drive
the action body away from the reaction body, while a negative action force tends to draw the
action body toward the reaction body.
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Figure 2.3: Example of a Translational Spring Damper [21]

Flexibility is provided in defining the damping and stiffness values. Users can express these
values as coefficients or employ splines to establish relationships between damping and velocity
or stiffness and displacement. Furthermore, the system allows setting the stiffness value to 0 for
a pure damper or the damping value to 0 for a pure spring.
Additional customization includes specifying a preload force to further tailor the system’s be-
havior to their simulation requirements.
The translational force exerted by a spring damper is directly proportional to the relative dis-
placement and velocity of the two defined locations that establish the endpoints of the spring
damper. The mathematical representation of the action force is given by the linear relation:

force = −C
A
dr

dt

B
−K(r − length) + preload

Where:

· r: distance between the two designed markers along the line-of-sight.

· dr
dt

: relative velocity of the markers along the line-of-sight.

· C: viscous damping coefficient.

· K: spring stiffness coefficient.

· preload: spring reference force.

· length: reference length, therefore when r = length, the force attains the specified preload
force.

This equation captures the linear relationship governing the translational force behavior of the
spring damper, considering displacement, velocity, damping, stiffness, preload force, and refer-
ence length.
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Chapter 3

Fundamentals of fluid-dynamic
simulation

3.1 Introduction
Fluid dynamics operates within the framework of classical physics, adhering to the fundamental
principles of conserving mass, momentum, and energy. It is a common practice to express con-
servation laws under the hypothesis that the fluid behaves as a continuous medium, known as
the continuum hypothesis [26].
Selecting a fluid dynamics model involves considering factors such as the flow type (whether
laminar or turbulent), boundary conditions (like solid walls or inlets), the complexity of the
problem, available computational resources, and the presence of experimental data for valida-
tion. Ultimately, the choice is a balance between precision and resource availability, with a keen
understanding of each model’s limitations and a need for validation to ensure accuracy.

This section is focused the theoretical foundations of the physical phenomena investigated
through fluid dynamic analysis, concentrating on introducing the equations employed by the
scFLOW software in its computational process.

3.2 Conservation equations
The continuum assumption allows us to discuss the characteristics of a fluid at a specific spatial
point and the physical attributes of an extremely small volume element within the fluid, which
we refer as material particle.
A fluid’s behavior can be fullt characterized by specifying the physical attributes of each material
particle over time, through the Lagrangean and Eulerian formulations.
The Lagrangean approach involves tracking individual material particles over time, while the
Eulerian method focuses on the evolution of flow properties at fixed points within the domain.
While the Eulerian approach is generally more convenient for analysis, there are cases where the
Lagrangean formulation is preferred, particularly in tracking fluid interfaces. In most situations,
flow properties at fixed locations, such as pressure on a wall, are easily obtained through the
Eulerian formulation [26].
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Figure 3.1: Control volume

Given a control volume, mass, momentum, and energy are exchanged through its boundaries.
Taking these exchanges into account, the conservation equations for the mentioned quantities
are formulated. The integral form of the mass conservation equation is written as:

∂

∂t

Ú
V
ρ dV = −

Ú
S
ρ (q̄ · n̄ dS) (3.1)

Where:

· V is the control volume and S is its surface;

· ρ is the fluid density;

· q̄ is the fluid velocity;

· n̄ is the normal to the control volume surface, conventionally assumed positive when out-
ward. In this case, there are no source terms as mass injections into the considered volume
are assumed to be absent.

By applying the Gauss theorem, we arrive at the mass equation written in the form of divergence
or conservative differential:

∂ρ

∂t
= ∇ · (ρ q̄) (3.2)

.
The conservation equation for momentum is developed based on Newton’s second law: the sum

of inertia forces and momentum fluxes is equal to the resultant of external forces acting on the
system.

∂

∂t

Ú
V
ρ q̄ dV = −

Ú
S
ρ q̄ (q̄ · n̄ dS) +

Ú
S
σ̄ · n̄ dS +

Ú
V
ρ f̄c dV (3.3)

Where:

· f̄c is the force (gravity, centrifugal etc.) per unit mass;

· σ is the stress tensor, with:

– σn = −p n̄, if the fluid is ideal;
– σn = −p n̄+ τ̄n, if the fluid is real (viscous), where τn is the viscous friction stress.
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By applying the Gauss theorem:

∂ρ q̄

∂t
= −∇ · (ρ q̄ q̄) + ∇ · σ̄ + ρf̄c (3.4)

.
The energy balance law equates the change in total energy within the control volume to the

power of the forces applied to the system and the thermal flux.

∂

∂t

Ú
V
ρ E dV = −

Ú
S
ρ E (q̄ · n̄ dS) +

Ú
S
(σ̄ · n̄) · q̄ dS +

Ú
V
ρ f̄c · q̄ dV −

Ú
S
q̄T · n̄ dS (3.5)

Where q̄T represents the thermal flux and E is the total energy per unit mass, defined as:

E = e+ q2

2

where e is the internal energy and q2

2 is the kinetic energy. By applying the Gauss theorem:

∂ρ E

∂t
+ ∇ · (ρ E q̄) = ∇ · ¯σ · q̄ + ρ f̄c · q̄ − ∇ · q̄T (3.6)

In conclusion, a system of 5 equations in 14 unknowns (ρ, q̄, σ̄, e, q̄T ) is obtained. To complete
the system, the following equations are added:

· For a Newtonian fluid, we have:

τij = µ
1 ∂qi

∂xj

+ ∂qj

∂xi

2
− 2

3µ∇ · q̄δij

where δij is the Kronecker delta and is defined as:

δij =
1 i = j

0 i /= j

· Fourier’s law for thermal conduction:

qT = −k∇T

where k is the thermal conductivity of the fluid and T is the temperature;

· The equation of state for perfect gases:

p = ρRT

· The internal energy equation for a calorically perfect gas:

e = CvT

where Cv is the specific heat at constant volume.

The equations mentioned before, known as the Navier-Stokes equations, form a nonlinear system
of partial differential equations that cannot be solved exactly analytically.
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3.3 Turbulence modeling
Turbulence, as defined by von Karman and refined by Hinze, is characterized by irregular fluid
motion with random variations in quantities over time and space coordinates, as in [27]. It
results as an instability in laminar flow, driven by the nonlinear inertial and viscous terms of
the Navier-Stokes equations.
The continuum nature of turbulence, described by three-dimensional equations, presents chal-
lenges in numerical simulation due to the vast range of scales. In particular, the phenomenon
of vortex stretching1 and three-dimensionality emphasize the inadequacy of two-dimensional ap-
proximations. Turbulence shows a spectrum of scales, involving a cascade process transferring
energy from larger to smaller eddies.
Enhanced diffusivity in turbulent flows significantly impacts mass, momentum, and energy trans-
fer, with apparent stresses being orders of magnitude larger than in laminar flows. Because large
swirling motions endure for significant distances, the diffusivity and stresses rely on flow history
and cannot be solely defined as functions of local flow properties. Moreover, the dissipation of
turbulence energy by small eddies is influenced by the rate at which they receive energy from
the larger eddies [27].

3.3.1 RANS
The RANS approach involves statistically averaging the instantaneous Navier-Stokes equations
through a process that considers a timescale larger than turbulence time scale but smaller than
the the mean flow evolution time. This results in averaged mass and momentum conservation
equations of the flow [5].
This methodology allows obtaining a system of equations capable of describing the mean field
of a generic signal, foregoing a detailed description of turbulent fluctuations.
A Reynolds averaging operator is introduced, so that the generic signal u(t) can be decomposed
as:

ui(t) = Ūi + u′
i(t)

Where:
Ūi is the mean value of the signal;

u′
i(t) is its time fluctuation.

Depending on the nature of the problem, the Reynolds average can be defined in various ways
(statistically stationary2 problems, problems with homogeneous3 turbulence, etc.)
In the general case, an ensemble average is used. Given a non-stationary and non-homogeneous
flow in space, the mean value is calculated over the number of experiments N, at a point within
the domain x at the time instant t.; perturbations in each experiment are introduced by different
initial conditions. It can be expressed as:

ūi(x̄, t) = lim
N→∞

1
N

NØ
m=1

um
i (x̄, t)

1Vortex stretching refers to the process in fluid dynamics where vortices, or rotating regions of fluid, experience
extension connected to a proportional rise in the vorticity component along the stretching axis. Vortex stretching
plays a crucial role in the dynamics of turbulence, contributing to the transfer of energy between different scales
of motion in a turbulent flow.

2Problems where time is the direction of homogeneity; the mean field is independent of time.
3In this case, the average does not depend on the space used for averaging
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In the case of compressible flows, the Favre average is used, so we have:

ũi(x) = 1
ρ̄T

lim
T →∞

Ú T

t+T
ρ(x, t)ui(x̄, t)dt

Where T is the chosen period of time for integration, ρ(x, t) is the instantaneous density, and ρ̄
is the Reynolds-averaged density.

We start from the Navier-Stokes equations for incompressible flows in differential form. Let’s
consider the components of the mass and momentum equations along the xi axis (the same
procedure can be repeated for the other different axes):

∂qi

∂xi
= 0

ρ∂qi

∂t
+ ρqj

∂qi

∂xj
= − ∂p

∂x
+ ∂τij

∂xj

(3.7)

The Reynolds decomposition is introduced, and an ensemble averaging operator is applied to
the entire equation. The following properties of the averaging operator are considered:

· q′
i = 0;

· qi = qi;

· ∂qi

∂xi
= ∂qi

∂xi
;

· qi + q′
i = qi + q′

i (distributive property).

This leads to the following equations:
∂qi

∂xi
= 0

ρ∂qi

∂t
+ ρqj

∂qi

∂xj
= − ∂p

∂x
+ ∂

∂xj
(τij + τR

ij )
(3.8)

Where:
τR

ij = −ρq′
iq

′
j

is the Reynolds stress tensor. The latter is added to the viscous stress tensor and describes,
through a diffusive term, the effect of turbulent fluctuations.

3.4 Boussinesq closure model
The closure of the RANS equations is achieved by modeling the Reynolds stress tensor, taking
into account certain assumptions.
One possible approach involves introducing an eddy viscosity with a linear Boussinesq [4] model.
In the Navier-Stokes equations, microscopic molecular fluctuations can be interpreted at a macro-
scopic level as a diffusive term through the introduction of a viscosity. Following this procedure,
the Reynolds stress is described through viscosity as a diffusive term, as follows:

τR
ij = 2µtS̄ij − 2

3µt
∂q̄k

∂xk

δij − 2
3ρKδij (3.9)

where:

· µt is the turbulent viscosity;
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· S̄ij = 1
2

1
∂q̄i

∂xj

∂q̄j

∂xi

2
is the velocity strain tensor calculated on averaged quantities;

· K = 1
2q

′
iq

′
i = − 1

2ρ
τR

ii is the turbulent kinetic energy;

· δij is the Kronecker delta.

The last term in the equation ensures that the trace of the tensor is representative of the kinetic
energy of fluctuations. The anisotropic part of the equation is proportional to S̄ij.

3.4.1 Standard k − ε model
As the eddy viscosity (µt) is not constant and it varies based on the flow conditions and its
spatial location, it requires a distinct definition for each unique problem or scenario.
To address this variability and enhance precision, a strategy involves identifying a ’fundamental
quantity of turbulence’. This involves solving a set of equations that account for advection, dif-
fusion, formation, and consumption associated with this fundamental quantity and subsequently
the eddy viscosity is determined based on this ones. In this context, the identified ’fundamental
quantity of turbulence’ comprises two key parameters: turbulence energy (k) and turbulence
dissipation rate (ε). By anchoring the description of eddy viscosity to these fundamental turbu-
lence parameters, the approach aims to offer a more accurate representation, taking into account
the dynamic nature of flow conditions. We define:

k = 1
2 ūi

′ūi
′ (3.10)

ε = ν
∂ūi

′

∂xj

∂ūi
′

∂xj

(3.11)

The k − ε equations, which include the advection, diffusion, formation, and consumption of
turbulence energy (k) and turbulence dissipation rate (ε), are conventionally described for com-
pressible fluids through empirical equations as follows:

∂ρ̄k

∂t
+ ∂ūiρ̄k

∂xi

= ∂

∂xi

1µt

σk

∂k

∂xi

2
+GS −GS1 −GS2 −GS3 − ρ̄ε (3.12)

∂ρ̄ε

∂t
+ ∂ūiρ̄ε

∂xi

= ∂

∂xi

1µt

σε

∂ε

∂xi

2
+ C1

ε

k
(GS −GS1 −GS2 −GS3) − C2

ρ̄ε2

k
(3.13)

Where:

GS = µt

1
∂ūi

∂xj
+ ∂uj

∂xi

2
∂ūi

∂xj

GS1 = 2
3 ρ̄kD

GS2 = 2
3µtD

2

GS3 = µt

σtρ̄2
∂ρ̄
∂xi

∂P̄
∂xi

D = ∂ūi

∂xi

These equations include numerous empirical parameters, provided below (Table 3.1). Employing
these parameters significantly enhances precision when compared to the method of individually
assessing the eddy viscosity for each specific problem.
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σk σε C1 C2 C3 Cµ σt

1 1.3 1.44 1.92 0 0.09 0.9

Table 3.1: Standard k − ε model constant parameters values

From k and ε values we can obtain:

µt = Cµρ
k2

ε
(3.14)

3.4.2 SST k − ω model
Introduced by Wilcox et al.[27], the k−ω model stands as a two-equation turbulence model like
k − ε models. Rather than directly addressing turbulence dissipation, it treats the dissipation
rate per unit turbulence energy, denoted as ω ∼ ε/k, carrying the dimension of frequency
[1/s]. This modeling approach boasts advantages in replicating near-wall turbulence behavior,
eliminating the need for damping functions to acquire a near-wall velocity profile, a necessity
in the low-Reynolds-number k − ε model. Furthermore, it offers an enhanced estimation of
boundary layer separation under adverse pressure gradients. However, a recognized challenge
lies in its pronounced reliance on boundary conditions, such as inflow or free-stream turbulence
values, limiting its reliability in the outer free-stream layer.

The SST model, an innovation by Menter[11], solves the equations for k and ω through a
zonal treatment. In this method, the conventional k-omega equations developed by Wilcox find
resolution in the near-wall regions, shifting towards outer regions to align with the k− ε model.
This adjustment promises a computation that is both accurate and robust. Additionally, the
application of the Shear-Stress Transport concept in the SST model prevents the overestimation
of eddy viscosity under adverse pressure gradients. Notably, it faithfully reproduces intricate
separation phenomena that conventional eddy viscosity models may struggle to capture.
In the k-omega model, the expression for eddy viscosity is articulated as follows:

µt|k−ω = ρ
k

ω
(3.15)

The transport equation for k follows the same structure as those found in other low-Reynolds
number k − ε models, albeit with a different expression for energy dissipation: ε = Cµkω. The
equation for ω is given by:

∂

∂t
ρω + ∂

∂xj

ujρω = ∂

∂xj

C3
µ+ µt

σω

4
∂ω

∂xj

D
+ γρ

µt

Gs − βρω2

By incorporating the cross-diffusion term, CDkω, into the above equation for ω, the k-omega
equations are analytically equivalent to the k − ε model:

CDkω = 2 ρ

σωω

∂k

∂xj

∂ω

∂xj

In the SST model, a gradual transition from the k-omega model to the k − ε model is achieved
through the introduction of a blending function, which considers wall distance and turbulence
quantities. This blending function is multiplied by the cross-diffusion term mentioned above.
Additionally, model constants for both inner and outer layers are interpolated using the same
blending function. These constants are detailed below, with subscripts indicating the inner (1)
and outer (2) layers:
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Cµ = 0.09

σk1 = 1.18, σk2 = 1.0

σω1 = 2.0, σω2 = 1.17

β1 = 0.075, β2 = 0.0828

γ = β

Cµ

− κ2

σω

ñ
Cµ

, κ = 0.41

The eddy viscosity is:

µt|SST = ρ
a1k

Ω
Where a1 = 0.31 and Ω represents the magnitude of mean vorticity. Both expressions (1) and (5)
are interpolated using another blending function that incorporates wall distance and turbulence
quantities as parameters.
When applying a low-Reynolds-number correction for turbulence production as proposed by
Wilcox, the parameters a1, γ, and Cµ in the dissipation term of the k equation (Cµρωk) are
modified as follows:

a′
1 = β1/3 +Reτ/Rk

1 +Reτ/Rk

γ′ = γ0 +Reτ/Rω

1 +Reγ/Rω

γ

C ′
µ = 4/15 + (Reτ/Rβ)4

1 + (Reτ/Rβ)4 Cµ

Where:
γ0 = 1

9
Rβ = 8

Rk = 6

Rω = 2.95

3.5 Numerical methods for fluid dynamics
The mathematical models just described result in a system of partial differential equations having
no exact analytical solutions. Therefore, it is necessary to discretize the spatial and temporal
domains by transforming the continuous problem into a discrete problem that can be solved
numerically. There are three mainly used discretization methods:

1. Finite differences: only structured grids are used here. The spatial derivatives of variables
are approximated by difference between the values they take at discrete points of neighbor-
ing cells. The number of cells involved in the discretization depends on the degree of the
derivative being approximated and the precision required in the problem.
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2. Finite elements: discretization using finite elements consists of approximating solutions by
means of shape functions, defined in each element. Shape functions are polynomials or
other locally defined functions and approximate the value of a given physical quantity in
each element. Through this discretization, the problem is reformulated in variational form.

3. Finite volumes: the domain is discretized by cells, on each of which a conservation principle
is applied. The momentum field is then solved locally, and then it is integrated over the
entire computational domain

3.5.1 Finite volume method
The finite volume method involves dividing the flow or thermal field into discrete elements, where
fluid or heat can flow between neighboring elements through what is termed as "Numerical flux".
This flux is computed based on the governing equations with discretized data on each element.
By determining numerical flux for each element face, variations in data over time and space
within each element can be tracked and updated. This method, fundamental to scFLOW ’s
calculation workflow, ensures conservation laws are accurately represented.

Figure 3.2: Data and element [22]

In scFLOW, elements are shaped as arbitrary polyhedrons, with data only available at their cen-
troids. The governing equations are expressed with these discretized data, considering elements
in a two-dimensional field. The time variations of variables at a given element are influenced by
flow across its surface (advection), gradient differences between neighboring elements (diffusion),
and any arbitrary generation or depletion of quantities within the element (source).
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Figure 3.3: Data and element in 2D view [22]

The Navier-Stokes equation system can be write in the following form:

∂ϕ

∂t
+ ∂(ϕuj)

∂xj

= ∂

∂xj

A
α
∂ϕ

∂xj

B
+ S (3.16)

where, terms from the left-hand side represent ’Unsteady (unknown)’, ’Advection’, ’Diffusion’,
and ’Source’. The function ϕ(t, xi), representing the distribution in space and time, is determined
by solving this equation. For instance, in the case of mass conservation where ϕ = ρ and α is
the diffusion coefficient for the species, the solution yields the rate of mass variation per unit
time per unit volume.
Naming with P the element centroid and with N the centroid of its neighbor element, considering
also element volume (V ), surface area (S), unit vector perpendicular to the element surface (n⃗),
and velocity vector (u⃗), the Equation 3.16 is reformulated into an integral form (Eq. 3.17) using
volume and surface integrals with Gauss’s divergence theorem.
This allows consideration of equations on each element individually, with surface integral terms
representing numerical fluxes.

∂

∂t

Ú
V
ϕdV +

Ú
S
ϕu⃗ · n⃗dS =

Ú
S
α(∇ϕ) · n⃗dS +

Ú
V
SdV (3.17)

Unsteady term

The unsteady term in equation 3.17 represents the time variation of ϕ, approximated using a
linear method (Eq. 3.18), although higher-order accuracy approximations are also possible.

∂ϕ

∂t
≈ (ϕn+1 − ϕn)∆V

∆t (3.18)

This term only focuses on time variation and does not involve numerical fluxes.

Advection term

In the computation of the advection term, the first-order partial derivative in the governing
equation highlights the inflow and outflow of a quantity within each element, influenced by the
local flow velocity (uj). This term just focuses on the spatial transport of the function ϕ, and the
gradient of quantity should not be changed by this term. Numerical fluxes play a crucial role in
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modeling these effects within the finite volume method, determined on the element surfaces de-
spite data being available only at the element centroids. Therefore, an approximation technique
like interpolation or extrapolation becomes necessary to compute numerical fluxes accurately
with discretized data. Various interpolation methods can be employed, with higher accuracy
achieved by increasing the number of reference data points. Considering the nature of flow, em-
ploying more data points on the upstream side is preferable. This strategy, known as "upwind
differencing", involves both first-order and second-order approximation methods depending on
the selection of data points. Figure 3.4 illustrates the concept in a one-dimensional flow scenario,

Figure 3.4: Data involved in calculating the numerical flux on the red surface [22]

where the numerical flux computation on a red-colored surface varies based on the number of
employed data points. If only data from P-1 is considered, it results in a first-order upwind
differencing. Including data from both P-1 and P+1 leads to central differencing, while incor-
porating data from P-2, P-1, and P results in second-order upwind differencing. As previously
mentioned, increasing the number of data points improves the accuracy of the numerical flux
approximation. However, using higher-order approximations can reduce computational robust-
ness. In such cases, a combination of lower-order approximations or the application of limiter
functions may be necessary to maintain accuracy.

The numerical flux on the surface Sj is represented by Fj. By summing the numerical fluxes from
all surfaces of an element, the total numerical flux of the element is obtained. This relationship
is approximated as:

∂ϕu

∂xi

≈
Ø

j

Fj

It should be noted that Fj is calculated using data from multiple neighboring elements. For
instance, when employing first-order upwind differencing as depicted in Figure 3.4, F can be
computed using the following equation:

F = (ϕu)p−1

Diffusion term

On the other hand, the diffusion term in equation 3.16 is represented by the spatial cross-
derivative; In equation 3.17, the gradient of ϕ varies in space, and the function ϕ smoothes
by the coefficient α. This term accounts for phenomena like viscosity and thermal conduction,
facilitating homogeneous diffusion or dissipation of ϕ without restricting spatial direction as
advection does. The calculation of numerical flux for diffusion involves calculating gradients at
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element centroids, which are then interpolated to determine gradients on element surfaces. Now,
consider the numerical flux of diffusion on the surface Sj, which we’ll represent as Dj. To find
the total numerical flux of the element, we sum up all the Dj values.Ú

S
α(∇ϕ) · n⃗ dS

is approximately equal to q
j Dj. In this context, Dj is computed using data from multiple

elements, and the transport coefficient α is factored into the calculation.

Source term

Finally, the source term, directly influences the production or disappearance of ϕ regardless
of flow or thermal field. Its calculation involves multiplying the given production rate per
unit volume by the element volume. It accounts for phenomena such as local heating, mass
production, or disappearance due to chemical reactions.Ú

V
SdV ≈ S∆V (3.19)

In summary, through the discretization process outlined above, the governing equation can be
approximately solved given the time step and element volume. The resulting equation, termed
the "Discretized equation", involves arithmetic calculations and incorporates terms representing
advection, diffusion, and source effects, allowing for computational modeling of complex fluid or
thermal dynamics. The Discretized equation is:

(ϕn+1 − ϕn)∆V
∆t +

Ø
j

Fj(ϕ, u) +
Ø

j

Dj(ϕ, u, α) = S∆V (3.20)

3.5.2 The matrix solver
In numerical simulations, there are two approaches to calculate numerical fluxes and source
terms: explicit and implicit time integration. Explicit integration uses properties at time n,
while implicit integration uses properties at time n+1. Implicit integration solves the discretized
equations for all elements simultaneously, often employed for steady-state analyses due to its
computational efficiency.
The system of equations is represented in matrix form:

 A




...
ϕi
...

 =


...
Si
...

 (3.21)

where ϕi and Si are column vectors, and [A] is a coefficient matrix containing numerical fluxes.
Equation 3.21 is solved using matrix inversion in equation 3.22, known as the matrix solver.

...
ϕi
...

 =

 A


−1


...
Si
...

 (3.22)

Iterative methods like the Krylov subspace method are commonly used for matrix inversion,
with the goal of reconstructing a diagonally dominant matrix for efficient iteration, termed
"pre-conditioning".
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3.6 Pressure-based solver
A solver for thermal fluid analysis employs a designated computational approach (algorithm)
to address fundamental equations outlined in Conservation equations. Numerous computa-
tional methods exist, with "pressure-based" and "density-based" being specific calculation method
names. Originally trademarks, these terms have become widely adopted as common names in
thermal fluid analysis software, including scFLOW. The "pressure-based solver" and "density-
based solver" within scFLOW represent distinct methodologies for solving basic equations, each
tailored to ensure mass conversion compliance [22].

The pressure-based solver in scFLOW employs a method of pressure correction that addresses
mass conservation, momentum conservation, and energy conservation equations in distinct steps.
Through adjustment of pressure variations during momentum conservation, both velocity and
pressure are calibrated to ensure alignment with the momentum equation’s outcomes, thereby
satisfying mass conservation principles. Due to the predominant adjustment of pressure to meet
mass conservation requirements, this methodology is aptly termed the "pressure-based solver."
The pressure-based solver doesn’t focus only on mass conservation, especially evident in incom-
pressible fluid analyses where density disappears from mass conservation equations. In such sce-
narios, traditional methods struggle to solve equations over time due to this absence of density
data. However, by concurrently addressing momentum conservation over time, the pressure-
based solver adeptly adjusts pressure to ensure mass conservation compliance. This flexibility
proves advantageous in scenarios involving minute or rapid density fluctuations, where metic-
ulous adjustment of mesh size and time-step becomes crucial for accurately simulating density
changes. Traditional methods may face computational challenges when handling such scenarios,
resulting in increased calculation times and potentially compromised accuracy.
One of the notable advantages of the pressure-based solver is that it’s not affected by density
fluctuations, allowing for dynamic adjustments in calculation speed to accommodate varying
flow conditions. This adaptability significantly enhances efficiency in incompressible fluid anal-
yses, where computational resources can be allocated optimally based on the prevailing flow
dynamics. By separately addressing each conservation equation, the pressure-based solver en-
ables the derivation of vital flow field parameters (velocity and pressure) without necessitating
the resolution of energy conservation equations, particularly in scenarios where energy changes
can be disregarded. As a result, this method finds widespread application in incompressible fluid
analyses, particularly those where natural convection phenomena are not a primary considera-
tion.
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Chapter 4

Fundamentals of cosimulation

The potential of co-simulation is limitless in addressing crucial multiphysics problems, driven
by the escalating demand to optimize intricate product designs through interdisciplinary ap-
proaches. Co-simulation holds the promise of deploying leading solvers across diverse physics
domains and spatiotemporal scales.

This chapter outlines the analysis of fluid-mechanism interaction using two software tools,
scFLOW and Adams, enabled by MSC CoSim. While scFLOW utilizes an implicit scheme
for fluid-solving, MSC CoSim employs an explicit weak coupling scheme. The exchange of
forces, torque, and data for rigid bodies involves virtual nodes.
Values calculated in Adams coordinates include:

· Coordinates of rotational center [m];

· Euler angles [rad];

· Integral value of Force on surface [N];

· Integral value of torque on surface [Nm].

ScFLOW requires Adams coordinate system information for input. The exchange of physical
quantities can be visually represented as shown in Fig..

Figure 4.1: Representation of exchange of physical quantities [23]

CoSim-Pre simultaneously displays analysis models of solvers in geometry or mesh form, allowing
inspection of coupling surfaces and point locations. CoSim-Launcher facilitates the execution
of co-simulation jobs locally, remotely, or on HPC systems. It utilizes a CMB archive created
by CoSim-Pre, encompassing all information necessary for linked solvers. The launcher provides
status graphs for various solvers, allowing real-time review of co-simulation status.
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Figure 4.2: Representation of co-simulation workflow [23]

The CoSim engine, functioning within a task-based framework initiated by CoSimLauncher, han-
dles various tasks, including initialization, loop processing for time promotion, and termination
procedures. The MSC CoSim engine code, serving as the master code, incorporates a sophis-
ticated control algorithm that facilitates flexible asynchronous communication with slave codes
(Adams, scFLOW etc.) during each time integration step. Following successful time integration
steps, all slave codes exchange data with the master code. The system is designed to adapt to
different time integration steps without a predetermined communication interval. Slave codes,
each operating with distinct timesteps, interpolate data based on user-selected "time integration"
preferences.
The CoSim engine offers support for a range of algorithms for time interpolation/extrapolation,
including quadratic, linear, and constant last. This versatile architecture promotes effective com-
munication and collaboration among the interconnected software codes, allowing for seamless
co-simulation across various time integration steps.

The coupled1 solvers allow the utilization of different time steps, and the CoSim engine pro-
vides support for various algorithm types in time interpolation/extrapolation:

· Quadratic: This option leverages the historical data of physical quantities (force or dis-
placement) to precisely fit a quadratic curve through the available data points.

· Linear: Utilizing a linear fit approach, this option considers the latest two data points for
interpolation.

1As in [28], there are two primary categories of coupling methods: strong coupling, also known as the direct
coupling method, in which coupled equations are directly solved, updating all variables of the interconnected
system concurrently; and weak coupling, referred to as the iterative coupling method, that solves each physical
model independently, meeting coupling conditions by transferring data between distinct physics models.
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· Constant Last: This option employs the most recent value in the history of physical quan-
tities for interpolation.

It’s noteworthy that the computational meshes of each coupled solver on the connected sur-
face/volume may not align in general. To address this, the CoSim engine offers the following
mapping algorithms:

· Nearest Node Mapping: This method involves using the three nearest nodes for mapping.
The weighting for mapping is calculated based on the area of the triangle formed by the
target node and the other two source nodes.

· Shape Function Based Mapping: This approach employs shape functions to determine the
mapping weight, derived from the connectivity of nodes in the source element.

· Volumetric Mapping: This mapping technique directly transfers the values of an elemental
variable to the nodes contained in the element without interpolation.
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Chapter 5

Adams model

The model described in this Chapter, refers to the results obtained in section 9.2.

The first step to perform a simulation is to create a geometry model in Adams, including parts,
forces and joints. A part is a moving element related to the model having properties of inertia
and initial conditions of velocity and position. Different types of parts are available, including
rigid bodies, flexible bodies, FE parts and point masses.

A rigid body is an element in the model with mass and inertial properties that remains non-
deformable. Introducing a rigid body contributes six degrees of freedom to the overall model. To
regulate the motion of these components, constraints like joints can be incorporated to specify
their attachment points and determine their relative movement.
Each part has a proper coordinate system, referred to as its local coordinate system. The local
coordinate system of a component moves with it, and its initial position defaults to align with
the global coordinate system.
The ground part serves as the fixed and stationary element in the model. It serves as the inertial
reference frame by default, determining the velocities and accelerations of all other components.
It also establishes the global origin (0,0,0) and the reference frame for model construction.
Moreover, it doesn’t possess mass properties or initial velocities and doesn’t contribute to the
model’s degrees of freedom.

The valve under study is composed of various parts, as indicated in the figure:

Figure 5.1: Valve main parts
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Overall, the valve has a maximum height dimension of 165 mm and a weight of approximately
1.3 kg [2]. In order to meet the total weight requirement, each component has been assigned a
density of 6733.42 kg/m3.

5.1 Joints
The measure of body movement in relation to other bodies within mechanical systems, known
as degrees of freedom (DOF), is fundamental in understanding the system’s defining motions.
The total degrees of freedom represents the minimum coordinates essential to describe its con-
figuration.
A rigid body in three-dimensional space owns six DOFs. This means that it can move in six
independent ways: three translations and three rotations. These DOFs, crucial for defining the
system’s configuration, serve as the fundamental coordinates.
Representing a mechanical system with more coordinates than degrees of freedom is plausible:
this condition necessitates algebraic constraint equations connecting some coordinates (they are
not all independent). Various constraints limit specific motion combinations, effectively reducing
the model’s degrees of freedom.
To define the motion between two components of the model we use joints. They can establish a
rigid connection between two parts allowing the following DOF:

Joint name # DOF Type of allowed motions
Fixed 0 No movement between parts.

Translational 1 One part translating in relation to another; all axes are aligned.

Table 5.1: Allowed DOF for used joints

In this case, it is first necessary to use a Fixed joint to attach the "Shutter Support" to the
Ground.

Figure 5.2: Fixed joint for Shutter Support

In the same way, it is necessary to use a Fixed joint to attach the "Spring Upper Support" to
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the Ground.

Figure 5.3: Fixed joint for Spring Upper Support

Additionally, since the "Shutter" pushes on the "Spring Lower Support" when the spring com-
presses, and vice versa the "Spring Lower Support" pushes on the "Shutter" when the spring
expands, a Fixed joint is used to attach the "Spring Lower Support" to the "Shutter".

Figure 5.4: Fixed joint for Spring Lower Support and Shutter

Finally, a Translational joint is used to model the translation of the "Shutter" relative to the
Ground.
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Figure 5.5: Translational joint for Shutter

5.2 Translational Spring Damper definition
In order to simulate the presence of a spring between the "Spring Upper Support" and the "Spring
Lower Support", a Translational Spring Damper (2.9) is employed.
The preload of the spring is defined as follows [1]:

F0 = πd2p∗

4 (5.1)

Where:
· F0 is the preload of the spring;

· d is the seat/damper diameter;

· p∗ is the cracking pressure.

Figure 5.6: Spring parameters
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The following values are used:

. Variable . Value .
p∗ 75 bar
d 8mm

Table 5.2: Main geometric parameters of the valve

It follows that F0 = 376.9911 (Eq. (5.1)). The Damping is defined of 0.1 Ns/m.

5.3 Setting of Shutter end position
In order to model the end position of the Shutter within the valve, a multi-component force (2.7)
is applied to Shutter and a Bistop function (2.8) is implemented, as follows:

Figure 5.7: Bistop function parameters

The force is directed from the Shutter - the action body - to the Spring Upper Support - the
reaction body - along motion direction.
In the force definition, a Bistop function is introduced taking the following parameters as input:

· The DZ(i,j,k) function provides the z-component of the translational displacement vector
from marker j to marker i, expressed in the coordinate system of marker k. If not specified,
markers j and k default to the global coordinate system.

– i: The marker whose origin is considered for the displacement measurement.
– j: The marker serving as the reference point for displacement calculation.
– k: The marker whose coordinates define the system for the z-component calculation.

· The VZ(i,j,k,l) function provides the z-component of the velocity vector difference between
marker i and marker j. expressed in the coordinate system of marker k with all vector time
derivatives taken in the reference frame of marker l.

– i: The marker whose origin is considered for the velocity measurement.
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– j: The marker relative to which velocity is determined.
– k: The marker defining the coordinate system for the velocity vector.
– l: The reference frame for the first time derivative of the displacement vector.

· 0 mm is the lower bound of x;

· 100 mm is the upper bound of x;

· 1000 N/mm is the stiffness coefficient;

· 1.5 is the exponent of the force deformation characteristic;

· 50 Ns/mm is the maximum damping coefficient;

· 0.01 mm is the distance at which we decide to apply full damping coefficient.

The lower bound was chosen so that the shutter stops when in contact with its seat; the upper
bound so that, since there is no limitation on the upper position that the shutter can reach, it
was a sufficiently large value that it is never actually reached. The other parameters used, were
chosen as a result of considerations based on experience.

5.3.1 Gforce and Dynamic simulation
Finally, in order to carry out the simulation, a Gforce (2.6) is applied to the center of mass of the
"Shutter" component. The components of the Gforce are currently empty, awaiting information
that will be passed from the co-simulator. The fluid dynamic force calculated using the scFLOW
software, which is the force enabling valve movement, thus translates into a displacement of the
shutter.

Figure 5.8: Gforce applied to Shutter center of gravity

Finally, a Dynamic Simulation (2.4) is performed as follows:
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Figure 5.9: Performed dynamic simulation parameters

This configuration means that it will start a dynamic simulation with a range from 0 to 1 seconds
and a time step of 10−6 s.
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scFLOW model

6.1 Model set up and definition of the fluid domain
To set up the model in scFLOW, the refined geometry of all non-essential geometric elements
is imported. During the mesh creation phase, these elements could lead to highly deformed
elements or difficulties in adhering to the specified geometry with the predetermined element
size.
Furthermore, to simplify co-simulation, the parts undergoing the same movement are unified.
In particular, the unification process involves the parts "Spring Lower Support" and "Shutter",
as shown in Fig. 6.1 below.

Figure 6.1: Unification of parts Spring Lower Support and Shutter

After importing the CAD model, the next step involves defining the fluid domain. This domain
comprises the internal part of the "Frame" between the inlet and the outlet. For defining the
fluid domain, we proceed with extracting the empty volume within the existing parts.
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Figure 6.2: Fluid domain

Figure 6.3: Fluid domain

6.2 Overset mesh
To allow the movement of the "Shutter" relative to the system and the fluid, it is necessary to
define, in addition to the Background mesh, an Overset mesh.
The concept of overset mesh, where multiple meshes overlap, is a solution for handling moving
objects.
The overset mesh methodology consists primarily of three sequential steps within its operational
framework. Initially, the computation selects the mesh domain (elements) from a collection of
overlapping meshes. This selection process, termed Hole cutting, involves deactivating the un-
necessary mesh domain for computation, treating it as inactive and outside the analysis domain.
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Subsequently, the scheme constructs two crucial lists: the acceptor elements designated for inter-
mesh communication within the active domain and the donor elements, serving as counterparts
for communication with the acceptor elements. These initial steps constitute the pre-processing
phase, setting the stage for the main computation.
During the main computation, coefficients matrices derived from discretizing governing equa-
tions on individual meshes are interconnected and solved using the constructed element lists. In
scenarios where the computation domain incorporates a moving mesh, the pre-processing steps,
namely hole cutting and list construction, recur at each time step.

In order to create the just-defined Component mesh, enable both displacements and rotations
according to the following scheme:

Figure 6.4: Setting for overset mesh

The fluid domain related to the component mesh is obtained by creating an offset of the combined
system of the "Shutter" and "Lower Spring Support":

Figure 6.5: Fluid domain for component mesh

When all essential elements are properly defined, we have to to distinguish the primary compu-
tational domain from those associated with the overset mesh. This crucial step facilitates the
utilization of four distinct meshes during the configuration of the mesh.
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Figure 6.6: Background and component meshing units

6.3 Analysis model
In order to proceed with the subsequent operations, the software needs to create an internal
model by tessellating the geometry. This operation allows for a geometry check, preventing
errors during mesh creation due to poor-quality or negative elements.

6.3.1 Part material
There are three classes of materials:

· Fluid: represents incompressible or compressible fluids. In the case of compressible flow
simulations, it is necessary to activate the energy equation;

· Obstacle: objects serving as obstacles or boundaries for the fluid, but are thermally inert;

· Solid: represents solid materials with properties such as density, thermal conductivity,
specific heat, etc. In thermal exchange simulations, solids actively participate.

In this case, an oil with the following properties is used as the fluid:

. Property . . Value .
density 866 [kg/m3]

dynamic viscosity 0.0415 [Pa s]
bulk modulus 1.7109 [Pa]

Table 6.1: Fluid property

All other elements of the domain are set as Obstacles.

6.3.2 Regions
Regions are references linked to the geometry to identify surfaces or volumes in the model.
They are used to define boundary conditions, local mesh controls, measurement surfaces during
post-processing, etc.
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Figure 6.7: Defined regions

A numerical region typically refers to a specific region or domain within the computational
domain where certain numerical settings, such as mesh refinement or solver parameters, are
applied. It allows users to locally refine the mesh or adjust simulation settings to capture
detailed flow behavior in specific areas of interest.
In this case, a numerical region (vol-ref ) is defined in the area of greatest interest, as follows:
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Figure 6.8: Numerical region

6.4 Conditions
In this section, we describe the settings used for the simulation and the relevant data for each
ones.
A transient1 analysis is performed, enabling the condition of moving elements, particularly ac-
cording to an Adams coupled law. Additionally, since the fluid is compressible, the energy
equation is activated. We use a Standard k − ε (3.4.1) Model as the turbulence model.
The operational time step is 10−6 s with a simulation performed for 10000 steps.

6.4.1 Flow boundary conditions
Boundary conditions are applied to the faces that separate the inner and outer regions of the
analysis domain. It falls into different categories—Dirichlet2 boundary condition, Neumann3

boundary condition, and periodic4 boundary condition—based on how the values are specified.
In this case, we define an inlet flow rate condition equal to 40 l/min; to prevent the downstream
pressure of the valve from unrealistically dropping below absolute zero, a backpressure at the
outlet is simulated: an outlet pressure condition equal to 50 bar is defined, as follows:

1Transient analysis refers to the simulation of fluid flow and heat transfer phenomena over time. Unlike
steady-state simulations where the solution does not vary with time, transient simulations capture the evolution
of the flow and temperature fields over a specified time period.

2In Dirichlet boundary conditions, numerical values are directly given to boundary faces.
3In Neumann boundary conditions, we give to boundary faces the gradient of a variable.
4In Periodic boundary conditions two boundary faces are treated as a single entity because the analysis target

has a periodic geometry.

47



scFLOW model

(a) Inlet condition (b) Outlet condition

Figure 6.9: Inlet and outlet conditions

6.4.2 Wall boundary conditions
Fluid-solid or external wall interfaces induce shear stress on the fluids, necessitating specific wall
conditions for shear stress. More precisely, these conditions involve determining the frictional
force exerted by the fluid on the walls. Two commonly employed assumptions for these wall
conditions are the free-slip and no-slip conditions.
Under the free-slip wall condition, there is no friction between the fluid and the walls, yet the
flow direction is influenced by the walls. Although the flow is directed by the walls, the kinetic
energy remains unchanged, maintaining a zero-gradient of momentum on the boundaries. This
condition is applicable in scenarios involving flows with minimal viscosity and for the sides of
the pressure drop region not to have unnecessary frictions.
The no-slip condition allows for friction. Initially assuming zero velocity at the wall, the friction
force is then calculated based on the velocity gradient near the wall. This results in the existence
of a momentum boundary layer on the wall. The actual friction force depends on flow conditions
within the boundary layer, particularly in turbulent boundary layers where the velocity gradient
undergoes complex changes.

In this case, referring to regions of Section 6.3.2, we set up the following conditions:

Region Boundary condition
Domain_wall_region No−slip

Shutter_region No−slip
Shutter_support_region No−slip

Table 6.2: Boundary conditions
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6.4.3 Moving elements
In conclusion, it is necessary to link the two models from Adams and scFLOW by establishing
how the communication between pressure forces and displacements occurs.
Each element, treated as a surface, is assigned a "Mechanism coupled (Adams)" movement type.
This entails the insertion of the corresponding element ID, an output from the Gforce created in
Adams. This process is reiterated for each mobile element, assigning a unique ID and associating
it with the reference surface on scFLOW, corresponding to the Adams component where the
GForce originated.

Figure 6.10: Setting of moving condition

Ensuring the seamless integration of calculations mandates uniformity in the units of measure-
ment and the orientation of the reference system across both codes.

Figure 6.11: Orientation of the reference system

Prior to delving into mesh-related tasks, the co-simulation type was chosen. Opting for a two-way
coupling in the current analysis facilitates bilateral communication, concluding data exchange
at the conclusion of the fluid dynamic simulation. Finally, a quadratic interpolation of time
direction was chosen.
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Figure 6.12: Quadratic interpolation

6.5 Octree and Mesh
In scFLOW, unstructured5 mesh elements are generated by forming clusters of cuboids using
the octree method.
Octree is an approach to partitioning three-dimensional space, involving the repeated division
of space into eight sections known as octants. When implementing octree division, a cuboid
undergoes successive divisions at the center of each side. This process creates a hierarchical
structure where each octant further refines the spatial subdivision (Fig. 6.13).

Figure 6.13: Refinement levels for octree generation [22]

The creation of the mesh is thus divided into two distinct phases:

1. Octree: The body is enclosed in a Root Octant and successively divided into octants until
a specified minimum size is reached. This process serves to size the mesh, specifying mesh
resolution to determine the scale and accuracy of the analysis.

2. Polyhedral mesh: Create a polyhedral mesh with prism layer elements to be used for the
analysis.

To define the size of the Octants, there are three types of controls:

· Target a number of elements and let the octree generator decide for the sizes.

5An unstructured mesh is characterized by irregularly aligned mesh elements, which can be triangles or
rectangles (for two-dimensional applications) or polyhedral elements (for three-dimensional applications).
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· Determine the sizes with a minimum value which will be applied to the surfaces; then, the
octree is coarsened.

· Control the octree with detailed parameters and sizes on surfaces and volumes.

It is also known that the grid needs to be refined under the following conditions:

· Strong pressure or velocity gradients;

· Curved shape surfaces;

· Small edges;

· Moving regions.

Additionally, in scFLOW, there is a function known as influence range, which allows specifying
how the transition from the finer to coarser grid occurs. Values of influence range greater than 0
imply that the specified cell size at the wall is maintained for a certain number of layers within
the domain, starting from the wall.

For the definition of the mesh, particular attention is placed on the first element at the wall
to describe the boundary layer accurately. For this reason, various layers of prisms are used. In
fact, a uniform distance from the wall allows for an accurate calculation of velocity and temper-
ature gradients, ensuring stability in the calculations.
Since each turbulence model works well with a specific minimum distance to the wall and con-
sequently precise values of y+, reference is made to the following values:

. Model . y+ .
SST k − ω 1 − 5
k − ε 10 − 100

Table 6.3: y+ values with reference to used models

Considering the working fluid, its properties, and the conditions of the flow field, we can calculate:

h = y+ν

u∗

Where:

u∗ =
ó
τw

ρ
, τw = 1

2Cfρ U
2
∞, Cf = 0.0576 Re−1/5

x , Rex = ρ U∞D

µ

Where:

· h: dimension of the first octant at the wall;

· y+ = y/lτ (lτ characteristic length of the boundary layer);

· u∗ = u/Uτ (Uτ characteristic velocity of the boundary layer);

· ρ: density;

· τw: viscous stress at the wall;
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· ν: kinematic viscosity;

· µ: dynamic viscosity;

· D: characteristic size of the body (diameter);

Defined the size of the first wall prism, the subsequent elements are defined as follows:

Figure 6.14: Prism growing on wall [22]

The variation rate of thickness is defined, referring to Fig. 6.14, as:
e2

e1
= e3

e2

Finally, the following configurations are available for mesh creation:

· Model shape oriented: attempts to replicate the shape and peculiarities of the geometry
as accurately as possible; this implies that the size of the octree must represent the detail
well: geometry is clean and easy, and the octant is well defined.

· Stability oriented: geometry is not so clean and complex, and the octant may not be well
defined.

· Detailed settings: allow you to control all parameters such as surface mesh, timing of prism
layer insertion, volume mesh, element size, etc.

6.5.1 Background octree and mesh
In this case, a choice is made to create a uniform grid by specifying the dimensions of the
elements: in particular, global controls are defined for the entire domain, and local controls
refine the grid locally according to the following scheme:
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(a) Background octree

Volume region Dimension [m]
Domain 0.001
vol-ref 0.0001

(b) Grid dimension for each region

Figure 6.15: Background octree definition

To create the mesh, the following parameters are chosen:

Figure 6.16: Background mesh definition

As a result:
e3 = h× 0.2

Furthermore, the parameters through which to define the mesh can be further detailed. In
particular, the following are chosen:
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Figure 6.17: Background mesh details

In this case, the size of the first wall prism is automatically calculated by the software, and a
variation rate of thickness of 1.1 is applied.

Figure 6.18: Background mesh

6.5.2 Overset octree and mesh
As defined previously for the background mesh (6.5.1), in this case as well we create a uniform
grid by specifying the dimensions of the elements:
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(a) Overset octree

Volume region Dimension [m]
Domain 0.001
vol-ref 0.0001

(b) Grid dimension for each region

Figure 6.19: Overset octree definition

To create the mesh, the following parameters are chosen:

Figure 6.20: Overset mesh definition

Furthermore, the parameters through which to define the mesh are further detailed:
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Figure 6.21: Overset mesh details

In this case as well, the size of the first wall prism is automatically calculated by the software,
and a variation rate of thickness of 1.1 is applied.

Figure 6.22: Overset mesh

56



Chapter 7

Co-simulation model

When setting up a co-simulation, each GForce created is assigned an ID, which is appended to
its name. It is crucial to ensure that the IDs for individual GForces are distinct to facilitate
proper integration into ScFLOW. The Job ID is specified to correspond to the ScFLOW Job ID,
particularly useful in scenarios involving co-simulation between one Adams process and multiple
scFLOW processes. This configuration helps instruct MSC CoSim about the correspondence
between GForces in the model and their interaction with specific ScFlow processes.

Figure 7.1: Adams and scFLOW configurations

To initiate the co-simulation setup, it’s important to set up the Co-simulation Conditions, trig-
gering the display of the Adams-scFLOW Co-simulation-specific Condition Wizard. In particu-
lar, we have to create coupling pairs choosing components from both the Adams GForce marker
and scFLOW Moving condition.
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Figure 7.2: Coupling pairs of Adams GForce marker and scFLOW Moving condition

An essential step involves configuring the Execution Setting to optimize co-simulation func-
tionality. This setting dictates the sequence in which participating processes proceed in the
co-simulation. Notably, the software with a higher execution mode number takes precedence. If
the mode number is set to 0, the application software pauses upon detecting the termination of
the communication partner software. Conversely, with a mode number greater than zero, the
application software continues its process until completion, utilizing extrapolated data from the
MSC CoSim process, even if the communication partner has concluded.

(a) Adams settings

(b) scFLOW settings

Figure 7.3: Cosimulation settings
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Grid independence analysis

Determining the optimal grid refinement point involves balancing computational efficiency, time
constraints, and maintaining acceptable accuracy in CFD predictions within defined tolerance
levels. This problem is addressed through a grid convergence study or mesh refinement study.
This process entails generating a sequence of grids for the geometry under consideration, con-
ducting CFD computations, and analyzing result variations across different grid levels, including
coarse, medium, and fine resolutions.
The grid convergence study operates on the fundamental principle that increasing grid refine-
ment leads to a gradual reduction in spatial discretization errors, eventually approaching zero
and yielding a grid-independent solution. This means the solution becomes independent of mesh
resolution, with no further refinement offering improvement.
In the mesh refinement study, systematic grid enhancements are performed across the entire com-
putational domain with each successive level in the grid hierarchy. Surface and volume mesh
density are methodically increased: traditionally, surface elements double in number, while vol-
ume cell count triples with each subsequent grid. In structured grids, this equates to a 1.5 times
increase in points along each coordinate direction. The discretization error on the finest grid
should be smaller that the required accuracy.

A grid independence analysis was performed through steady-state simulations [1], maintain-
ing a constant poppet lift at 1 mm and a flow rate of 50 L/min, to verify grid convergence.
After importing the geometry, we proceed with defining the domain regions (6.3.2) and boundary
conditions (6.4.1, 6.4.2) as detailed in Chapter 6. This procedure was conducted with a constant
grid size across the entire domain and employed four different grid models in the vol−ref region
(Figure 6.8).
The four grid models, labeled coarse, mid, fine and extra fine, detailed in Table 8.1, were such
that the fine grid type was used for the simulation (6.5).
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COARSE MID
Basic Min size Max size Min size Max size

settings 0.001 0.001 m 0.001 0.001 m

Detail Region Size I.R. Region Size I.R.
vol-ref 0.001 m 0 vol-ref 2.5e-4 m 0

.

FINE EXTRA FINE
Basic Min size Max size Min size Max size

settings 0.001 0.001 m 0.001 0.001 m

Detail Region Size I.R. Region Size I.R.
vol-ref 1e-4 m 0 vol-ref 5e-5 m 0

Table 8.1: Coarse, mid, fine and extra fine grids

The simulations presented in this study were conducted using the RANS models Standard k−ε.
To generate the mesh, we selected the option by which software automatically calculates the
thickness of the first layer of wall elements based on the octant size. In general, it is crucial to
provide an initial estimate of the y+ value near the solid wall when generating the mesh. This
ensures adequate resolution of the boundary layer according to the requirements of the chosen
turbulence model. Subsequently, after making an initial estimate of y+ at 1, a verification is
performed to calculate the thickness of the first layer of wall elements in order to achieve the
desired y+ value. This calculation is facilitated using a tool available on the website [15]. An
increment of 10% was applied to the thickness of the upper prism layers to obtain the necessary
number of prism layers to reach the set element size for the external flow.

Thickness of 1st layer Variation rate of thickness Number of layers
Coarse Auto 1.1 5

Mid Auto 1.1 5
Fine Auto 1.1 5

Extra fine Auto 1.1 5

Table 8.2: Discretization of the boundary layer

Following grid generation, simulations are conducted on each grid, and flow field parameters of
interest are plotted against grid size.
As in [1], the pressure at the inlet in the computational domain is chosen as the convergence
criterion for the grid. The measurements of the variable are obtained by performing a scalar
integration1 on the inlet section, which yields the average pressure over the selected area. The
obtained results are presented below:

1A scalar integration function calculates the total value of a scalar property, such as temperature or pressure,
over a specific area. It is often used to compute averages for scalar quantities across specific regions.
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(a) Pressure field for coarse grid

(b) Pressure field for mid grid

(c) Pressure field for fine grid
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(d) Pressure field for extra fine grid

Figure 8.1: Pressure fields

(a) Velocity field for coarse grid

(b) Velocity field for mid grid
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(c) Velocity field for fine grid

(d) Velocity field for extra fine grid

Figure 8.2: Velocity fields

Typically, there’s a significant change in values from smallest to coarse grids. Starting from
the fine grid, the change in solution becomes minimal, approaching a grid-independent solution.
From the plotted graph, the smallest grid yielding a grid-independent solution for routine pro-
duction runs is selected the optimal grid offering the right solution with minimal solver runtime.
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Figure 8.3: Grid independence study with k − ε model

For a more accurate analysis, the same analyses are repeated using the k − ω method, keeping
the same grid and mesh configuration presented above (Table 8.1 and Table 8.2).
In this case, it was set as a convergence criterion that the physical quantities had an error of
less than 10−3, unlike the previous case (10−4) since an initial exploratory analysis shows that it
is not possible to reach this value below 5000 iterations, which is considered acceptable at this
stage.

(a) Pressure field for coarse grid
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(b) Pressure field for mid grid

(c) Pressure field for fine grid

(d) Pressure field for extra fine grid

Figure 8.4: Pressure fields
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(a) Velocity field for coarse grid

(b) Velocity field for mid grid

(c) Velocity field for fine grid
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(d) Velocity field for extra fine grid

Figure 8.5: Velocity fields

Thus, it can be seen that, again starting from the fine grid, the change in solution becomes
minimal, approaching a grid-independent solution.

Figure 8.6: Grid independence study with k − ω model

In this case, it is also noted graphically that grid convergence is not achieved, so the solution
obtained still depends strongly on the characteristic size of the grid used, and the discretization
error is higher than the previous case.

Grid convergence studies ensure simulation results stem from boundary conditions and physics,
not mesh resolution. Achieving grid independence requires discerning the difference between
asymptotic numerical values and true values. While grid-independent numerical values elimi-
nate spatial discretization errors, the asymptotic value may still be affected by modeling errors,
leading to convergence toward a value different from the true one.
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8.1 Convergence order evaluation
When performing simulations with different grid resolutions, if the numerical solution tends to
an asymptotic value, then the scheme is considered convergent.
The discretization error is given by:

E = Uh − U0 = khp + . . . (8.1)

where U is a generic quantity of interest extracted from the CFD calculation; k is a constant;
p is the order of the scheme; h is the characteristic size of the cells. The asymptotic range is
the range in which the scheme begins to behave as predicted in the theoretical Taylor analysis,
where the cell size tends to zero. Evaluating the known order of convergence using the exact
solution allows us to verify whether or not we fall within the asymptotic range; if not, further
grid refinement could be necessary.
When the exact solution is not available for complex fields and geometries to calculate the
discretization error, it can be estimated using various techniques as presented below.

Richardson Extrapolation (with Theoretical Order)

Suppose we have two grids of sizes h and rh, where r > 1. The error is:Uh − U0 = khp + . . .

Urh − U0 = krphp + . . .

Assuming p is equal to the theoretical value (asymptotic range), the system is characterized by
two equations in two unknowns (U0, k). Solving this system yields:k = Uh−U0

hp

Urh − U0 = Uh−U0
hp rphp

From which:
U0 = rpUh − Urh

rp − 1 =⇒ Eh = Uh − U0

U0

Where Eh is the relative error. In conclusion, given two simulations with two different grid
levels, Richardson extrapolation extracts the exact solution from these as if it were obtained
with an infinitely fine grid. Richardson extrapolation works well within the asymptotic range
as it assumes that the error decreases according to a law derived from Taylor analysis, and is
therefore true with sufficiently fine grids.

Grid Convergence Index

In a complex problem, there are several possible sources of error, such as discretization or
modeling.
GCI allows us to assess the error due to discretization, having estimated the exact solution with
Richardson extrapolation, from which the error is derived; it is evaluated as:

GCI = FsEh

Where Fs is a scaling factor, which takes into account the ratio of grid refinement steps depending
on the problem; in our case Fs = 3.
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Richardson Extrapolation (with Empirical Order)

Richardson extrapolation with empirical order is more effective when p is not within the asymp-
totic range (for example, when shock waves are present). Compared to the previous case, an
additional unknown is introduced: for this reason, three grid levels are considered.
Assuming r = 2; the error is: 

Uh − U0 = khp

U2h − U0 = k2php

U4h − U0 = k4php

The system consists of 3 equations in 3 unknowns (U0, p, k). We obtain:

p =
ln
1

U4h−U2h

U2h−Uh

2
ln 2

U0 = Uh − U2h − Uh

2p − 1
From which the relative error can be estimated as:

E = Uh − U0

U0
; GCI = FsE

8.1.1 Results
In conclusion, we report the obtained values of pattern order (p), Error Eh and GCI as described
before. For the turbulence model k − ε:

Richardson - theoretical order
k − ε model

p 1
Eh 0.0087
GCI 0.0262
Richardson - empirical order

k − ε model
p 0.8330
Eh 0.0112
GCI 0.0337

Table 8.3: Convergence order evaluation for k − ε model

In this case, the results confirm those obtained in Figure 8.3: the relative discretization error is
small in the case of theoretical order; in the case of empirical order, the order of convergence is
very close to the theoretical value of 1, and similarly, the relative discretization error is contained.
The same study is repeated with the turbulence model k − ω.
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Richardson - theoretical order
k − ω model

p 1
Eh 0.03
GCI 0.0899
Richardson - empirical order

k − ω model
p −0.5677
Eh −0.0171
GCI −0.0512

Table 8.4: Convergence order evaluation for k − ω model

As shown in the table, the empirical order p turns out to be negative: this means that the
calculation is far from convergence, so we would have p = 1; consequently, the values of Eh and
GCI also turn out to be negative. This result is consistent with having set as a convergence
criterion with a threshold equal to 10−3.

8.1.2 Model verification

(a) Pressure field in [1] (b) Velocity field in [1]

Starting from the obtained results, a comparison is performed with those presented in [1]. It is
important to note that the comparison is purely qualitative: despite the similar valve opening,
the analysis under study is a stationary analysis performed at a fixed lift of the shutter at 1 mm;
conversely, the comparison is made with results from a dynamic analysis, at the end of which
the presented results are obtained with a slightly different valve opening, even if very similar.
The two simulations, although executed using the same turbulence model, exhibit differences in
the results. Notably, from the comparisons, it is observed that the attained velocities and the
pressure field have slightly lower values than those of the reference [1].
The difference may arise from a combination of factors related to the numerical methods used
and variations in the implementation of the fluid dynamics model.

Despite achieving grid convergence and utilizing a similar turbulence model, each CFD sim-
ulation software employs different algorithms for equation approximation or resolution, leading
to results that may differ even minimally; additionally, even with analogous boundary condi-
tions, the distinct implementation of resolution algorithms can influence flow calculations within
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the domain cells and, consequently, the computation of conservative variables. Finally, round-
ing errors and approximations can accumulate and impact the final results, with each software
handling errors differently.

However, the primary distinction lies in the use of only liquid, which has a compressibility
of 0.5 GPa−1, employed for stabilization purposes in the calculation. This differs from the ref-
erence [1], which includes a gas volume percentage of 2%.
The presence of gas can alter the behavior of fluid flow. For instance, the existence of bubbles
or vortices can modify the velocity and pressure distribution within the domain or in specific
regions, impacting heat exchange and local temperatures in the fluid. Additionally, simulations
involving a liquid-gas interface in the computational domain require specific models to handle
the effects of this interface. These models account for surface tension, frictional forces, and
density variations between the two phases; if the gas possesses different thermal or chemical
properties than the liquid, it can influence temperature distribution and the concentration of
chemical species. Lastly, the number of cells used is lower in the second case, and the fluid
passage section opening of 1 mm is approximately of the same order as that associated with
reaching the equilibrium position from the "Shutter" side, but it remains an approximation.
However, qualitatively, the two simulations yield similar results with errors on the order of 5%,
considered acceptable for performing the cosimulation with Adams.
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Chapter 9

Results

In a hydraulic valve, the stable operating conditions are significantly influenced by the flow forces
resulting from the alteration of fluid momentum within the valve. It can be shown that, with
a consistent pressure drop across the valve, the steady-state force increases in direct proportion
to the displacement of the spool, as a virtual spring. Additionally, the force’s magnitude is
influenced by the fluid velocity at the point where the jet exits the deflector, thus contingent on
the degree of jet dispersion.

The following results provide an initial evaluation of the valve’s behavior at the end of the
opening transient, examining numerous effects following the variation of specific parameters an-
alyzed below. It is emphasized that, to capture all the fluid dynamics aspects of the problem
under consideration, it is essential to use very fine computational grids; in this specific case,
sufficiently fine computational grids have been used while also considering the computational
times required to perform a cosimulation.

9.1 First analysis
The initial approach to the problem involved simplifying the valve geometry. Indeed, the "Car-
tridge assembly" part posed a critical issue as it was not possible to measure whether the pressure
between the walls of the chamber surrounding the spring was exactly equal to that of outlet port.
The purpose of the analysis, conducted without damping, was to obtain an initial approximate
assessment of the displacements and velocities of the "Shutter" part, in order to evaluate possible
damping values to use so that the problem reflects real conditions.
An initial exploratory analysis was then carried out by modifying the geometry of the walls,
particularly by reducing their extent, as follows:
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Figure 9.1: Cartridge assembly modifications

A preliminary analysis was then performed using the following conditions:

Outlet pressure (bar) Damping (Ns/m)
50 No

Table 9.1: First analysis configuration

From the analysis, the following results were obtained:

Figure 9.2: Shutter displacement and Shutter speed in x, z and y-direction
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Figure 9.3: Spring deformation and Spring deformation velocity

Figure 9.4: Spring force

Figure 9.5: Shutter Limit Switch force
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Figure 9.6: Gforce in y-direction and Gforces in x and z directions

As a result, the oscillations of the shutter around its equilibrium position dampen, as well as
its velocity after approximately 0.0025 s oscillates around zero (shutter at rest). The magnitude
of the "Limit Switch" force has an initial peak due to the contact of the shutter with its seat,
preventing penetration in the y-direction motion.
Finally, the values of the force acting on the shutter following the opening and passage of the
fluid flow at the inlet indicate that the major force acting on the shutter is in the direction of
motion (y), although the components in other directions are also significant.

From the evaluation of the displacement and velocity magnitudes involved, since typically for a
realistic problem, it is empirically found that:

Fe = 10 ÷ 100 Fv (9.1)

where Fe represents the elastic forces and Fv the viscous forces, it is inferred that a compatible
damping value for the problem at hand is c = 0.1 Ns/m.

9.2 More accurate analysis
Therefore, using the same boundary conditions, the simulation is repeated with the complete
"Cartridge assembly" part in the following configuration:
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Figure 9.7: Cartridge assembly modifications

For similar reasons to the previous case, a hole is made in the right wall to ensure that the
pressure in the chamber is equal to that of the outlet port, while maintaining the geometry of
the "Cartridge assembly" part intact.
Since the equilibrium position of the shutter is not influenced by the presence of a damping
component, a damping coefficient is assigned to the spring-damper system as determined in the
previous evaluation (Eq. 9.1). The simulation starts with the conical shutter already slightly
open, with a lift of approximately 1 mm. The following results are obtained:

Figure 9.8: Shutter displacement in y-direction
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Figure 9.9: Shutter displacement in x and z-direction

Figure 9.10: Shutter speed in y-direction

Figure 9.11: Shutter speed in x and z-direction
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Figure 9.12: Spring deformation

Figure 9.13: Spring deformation velocity

Figure 9.14: Spring force

From the results, it is observed that the Shutter has reached an equilibrium position along the
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y-direction with a lift of approximately 4.3 mm from its base; its velocity in the y-direction also
oscillates around zero (Shutter at rest). The displacement and velocity components in the x and
z directions are small compared to those in the direction of motion.
Similarly, the deformation of the spring and the elastic force follow the same trend as the
displacement of the "Shutter" part, and the spring deformation velocity follows the trend of the
shutter velocity. In particular, both the spring displacement and the spring force have a linear
trend with respect to the displacement of the shutter:

Figure 9.15: spring displacement and the spring force linear trend with respect to the displace-
ment of the shutter

The "Lower Spring Support" part also has similar displacements and velocities as the "Shutter"
part, since it is constrained with a fixed joint to it, as follows:

Figure 9.16: Lower Spring Support displacement in y, x and z-directions
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Figure 9.17: Lower Spring Support speed in y, x and z-directions

The forces and moments acting on the closure are then shown.

Figure 9.18: Shutter Limit Switch force

Figure 9.19: Translational joint Force in x and y-directions
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Figure 9.20: Translational joint Force in z-direction and magnitude

Figure 9.21: Translational joint Torque in x and y-directions

Figure 9.22: Translational joint Torque in z-direction and magnitude
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Figure 9.23: Gforce in x and y-directions

Figure 9.24: Gforce in z-direction and magnitude

Figure 9.25: Gforce, torque components in x and y-directions
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Figure 9.26: Gforce, torque components in z-direction and magnitude

The magnitude of the "Limit Switch" force has an initial peak and another one due to the contact
of the shutter with its seat, preventing penetration in the y-direction motion.
Lastly, the values of the force acting on the shutter following the opening and passage of the
fluid flow at the inlet; at the end of the simulation, the value of the force acting on the shutter
should be constant, and the oscillations are numerical errors not representative of reality.

Figure 9.27: Pressure field at end of simulation
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Figure 9.28: Velocity field at end of simulation

Figure 9.29: Velocity vector field at end of simulation

The presented results represent pressure and velocity fields at the end of the co-simulation (10000
cycles). At the end of the simulation, it can be assumed, through comparison with the results
in Adams, that the shutter has reached an equilibrium position, and the results can be assumed
as those obtained at the end of the transient.
The pressure is higher in the chamber below the shutter, in accordance with reality, and de-
creases towards the outlet. The pressure drop between inlet and outlet is not excessive thanks
to the valve opening due to the movement of the shutter.
From the velocity field, recirculation vortexes generated following the flow reflection on the de-
flector are noticeable; to better capture the phenomenon, it would be advisable to further densify
the grid near the recirculation.
Furthermore, an increase in velocity is observed between the lower cylindrical part of the shut-
ter, acting as a damper, and its support: the clearance, which has a beneficial damping effect,
however, has the disadvantage of slightly lengthening the transient.

However, some inconsistencies are observed. In the pilot chamber, the pressure is lower than
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outside, as if the spool were still moving to the right and the volume of the pilot chamber were
still increasing. On the other hand, in Figure 9.28, it can be seen that in the annular gap, the
fluid velocity is not zero. Therefore, either it is a drag flow due to the velocity of the spool, or
it is a flow entering because the chamber is increasing in volume.

In this regard, a steady-state analysis can be performed with the spool displacement held con-
stant, in order to evaluate the correct pressure field.

Figure 9.30: Pressure field in steady-state simulation

Figure 9.31: Velocity field in steady-state simulation
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Figure 9.32: Velocity vector field in steady-state simulation

As can be seen from the comparison, the pressure and velocity values at the end of co-simulation
are higher than those obtained from the stationary analysis. Qualitatively, however, the results
are comparable, except in the domain section above the shutter, where the error in the pressure
range is marked.
There are several possible sources of error: first, in order to obtain excellent results, it is necessary
to refine the grid considerably more around the moving part, so that the pressure force acting on
the shutter is calculated accurately. Second, a critical issue is the stabilization of the pressure
field when the shutter reaches an equilibrium position. In this case, the evolution of the pressure
field obtained from the co-simulation could not be representative of reality. This may be due
to numerical instability related to the use of a too large time step. By imposing a constant
time step during the simulation, as the field evolves during the transient, it’s possible that the
time step was satisfactory at the beginning of the simulation but violated numerical stability
toward the end of the simulation. However, by directly imposing the CFL number, the time
step is automatically adjusted, and if strong convective terms appear in the fluid, the time step
is automatically reduced to maintain the same CFL number.

9.3 Effect of damping
To evaluate the damping effect on the transient, since according to Eq. 9.1, c = 0.11;Ns/m
has been assumed, a simulation is performed in the No Damping configuration to turn off all
damping forces and create a pure spring. A simulation is conducted starting from the closed
valve configuration, i.e., the shutter is in contact with its seat. The following results are obtained:
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Figure 9.33: Shutter displacement and Shutter speed in x, z and y-direction

Figure 9.34: Spring deformation and Spring deformation velocity

Figure 9.35: Spring force
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Figure 9.36: Shutter Limit Switch force

It is clear that the transient is significantly longer, and the oscillations dampen much more
slowly compared to the damped case. In fact, the default 10000 cycles set for the simulation are
not sufficient to reach the equilibrium position, which nonetheless remains the same as it is not
influenced by damping.
Indeed, several peaks in the "Limit Switch" force are observed, representing the contact of the
shutter with its seat.

9.4 Effect of initial lift
Since all simulations were performed starting from a lift of the "Shutter" part of 1 mm to partially
reduce the transient, a simulation is conducted under the same conditions but in the No Damping
configuration, in order to be compared with the previous one.

Figure 9.37: Shutter displacement and Shutter speed in y-direction

It is observed that the effect of the 1 mm lift has minimal influence on the transient. There is a
reduction in the magnitude of the velocity of the "Shutter" part but not in the displacements.
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9.5 Effect of preload
Two simulations are conducted to assess the effect of preload variation on valve performance. In
order not to overly complicate the analysis, which requires quite high computational times, the
effect of preload is evaluated only on the first oscillation to observe its effect on the maximum
lift of the "Shutter" part.
The first simulation is carried out by increasing the valve’s cracking pressure from 75 to 125 bar.
It is expected that, under the same boundary conditions, a higher cracking pressure, and thus a
higher preload assigned to the spring, will reduce the opening of the shutter.

Figure 9.38: Shutter displacement and Shutter speed in y-direction

Figure 9.39: Gforce in y-direction and Gforces in x and z-directions
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Figure 9.40: Pressure field at maximum shutter lift

Figure 9.41: Velocity field at maximum shutter lift

Indeed, it is observed that the maximum opening is reduced compared to the first case. The
force acting on the shutter also exhibits higher values because a greater force is required to open
the valve, as reflected in the pressure field.
It is worth noting that the comparison with the first case should be limited to the first oscillation
and not over the entire simulation time.

The analysis is repeated by decreasing the valve’s cracking pressure from 75 to 25 bar.
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Figure 9.42: Shutter displacement and Shutter speed in y-direction

Figure 9.43: Gforce in y-direction and Gforces in x and z-directions

Figure 9.44: Pressure field at maximum shutter lift
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Figure 9.45: Velocity field at maximum shutter lift

In this case, since the preload of the spring is significantly reduced, higher displacements are
obtained, and the force acting on the shutter in the direction of motion is lower compared to
the previous case. It is also observed that after an initial peak in the opening displacement, the
shutter already begins to oscillate with amplitudes close to the equilibrium position, unlike the
other cases where the oscillations are more pronounced.

9.6 Effect of outlet pressure
Finally, the effect of boundary conditions on the valve behavior is evaluated. Specifically, the
outlet pressure is modified from 50 to 60 bar. Therefore, a lower valve opening and a smaller
displacement of the "Shutter" part are expected.

Figure 9.46: Shutter displacement and Shutter speed in y-direction
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Figure 9.47: Shutter displacement in x and z-direction

Figure 9.48: Shutter speed in y-direction

Figure 9.49: Shutter Limit Switch force
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Figure 9.50: Pressure field at end of simulation

Figure 9.51: Velocity field at end of simulation
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Figure 9.52: Velocity vector field at end of simulation

The results presented represent the pressure and velocity fields in the middle of the full co-
simulation, for computational simplicity, that is, when the shutter position begins to stabilize on
an equilibrium position. As in Chapter 9.2, it is reasonable to assume that the trend is similar.
Thus, through comparison with the results in Adams, it can be assumed that the shutter has
reached an equilibrium position.
Since the pressure in the outlet has a greater value, in this case the equilibrium position is
reached for a smaller displacement in the y-direction than in the case before mentioned. Again,
the pressure field, although qualitatively correct, has higher values in the domain part above the
shutter.
The velocity field, on the other hand, has a trend that mirrors the real case, and the recirculation
vortexes generated following the flow reflection on the deflector are noticeable.
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Chapter 10

Conclusion

This thesis work focused on the preliminary study of the transient opening of a Pressure Relief
Valve, until an equilibrium position is reached.
Since in a hydraulic valve, the stable operating conditions are significantly influenced by the
flow forces, when there is a consistent pressure drop across the valve, the force experienced at
a steady state increases proportionally with the displacement of the spool, as a virtual spring.
Moreover, the force magnitude is affected by the velocity of the fluid where it exits the deflector,
which relies on the extent of jet dispersion.
The study was carried out by coupling CFD and multibody simulation software; the approach,
which is innovative from an engineering perspective, is to use co-simulation software, MSC
Cosim, to couple the two software scFLOW and Adams.

As a first step, models were made individually in the above two software. In Adams, a spring-
damper system was inserted in order to allow movement of the moving part, calculating its
preload based on the cracking pressure, at which the valve opens; later, kinematic and flexible
couplings were added, allowing for displacements in appropriate directions, constraining others.
Coupling with fluid dynamics is performed through the use of a Gforce, whose force and dis-
placement components are filled during the course of co-simulation by the forces of pressures
calculated by CFD simulation software.
In scFLOW, the geometry used on Adams itself was imported, simplifying elements that were
redundant or could cause errors during the calculation. We then define a background domain,
which is fixed for the duration of the calculation, and an Overset domain, which is defined around
the moving part and follows its movement during the calculation. Since relizing a co-simulation
using incompressible fluids can result in instability, very small compressibility was assigned to
the fluid to avoid instability in the calculation. In addition, k − ε was used as the turbulence
model. Finally, to verify that the results obtained from the simulation were independent of the
discretization, i.e., the grid, a convergence analysis was performed using a stationary simulation
with the k − ε and k − ω models to check the correctness of the model.

Comparison with the benchmark results [1] shows some discrepancies that may be due to several
factors in combination:

· The data used to perform the simulations are different; in particular, in the case of the
present work, a liquid-gas interface is not convolved, which would require specific models to
handle the effects of this interface and to take into account, for example, if the gas possesses
different thermal or chemical properties than the liquid, that can influence temperature
distribution and the concentration of chemical species. As a result, cavitation models or
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related features are not used to account for the formation and collapse of vapor bubbles in
the fluid.

· The simulation was performed by establishing a fixed time step during the calculation.
Although this is the most efficient method of performing the co-simulation, as a result of
the field evolution during the transient, it is possible that numerical stability was violated
toward the end of the simulation. A possible correction would be to impose the number of
CFL and automatically adapt the time step to the calculation.

·

Despite the aforementioned discrepancies, it is crucial to recognize the value of this approach in
providing a multidisciplinary perspective and capable of integrating different software simulta-
neously. The present work falls within this context, and the main objective of this research was
to assess the potential and limitations of this methodology, using the case of a Pressure Relief
Valve as an example. Various factors, such as system complexity, model approximations, and
simulation conditions, can affect the accuracy of the results. Thus, this study aims to contribute
to the understanding and effective application of this methodology, highlighting its potential
and outlining areas that require further development and investigation, and is merely a starting
point for analysis that can be the subject of further study and investigation in the future.
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