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Abstract

The work performed in this thesis focuses on assessing the PICA thermal conductivity

ratio and the cold wall stagnation point heat flux using Bayesian Inference. Within the

inference framework, which has been implemented in MATLAB using UQLab [1], a surro-

gate model based on solutions coming from the McDougall solver [2] has been introduced.

Before building this surrogate by running the solver and storing its solutions, a mesh con-

vergence study, as well as a time step convergence study and a validation campaign using

available experimental data have been conducted.

By examining the uncertainty associated with the two considered parameters, the in-

ference framework allowed the definition of the posterior distributions of α , the thermal

conductivity ratio, and q0, the cold wall stagnation point heat flux. The posterior distribu-

tions of the inferred parameters derived using some thermocouples (TCs) were then used to

estimate the temperature evolution in other thermocouples. This was done to validate the

previously calculated posteriors through a forward propagation analysis.

To determine which thermocouples to use when inferring the two parameters, the

Kullback Leibler Divergence was employed. The KL measured the information gain from

the prior to the posterior distribution for each set of TCs, and both parameters. Using the

Kullback Leibler Divergence, the most informative combinations of thermocouples were

identified, achieving the highest information gain about both the inferred parameters.

Finally, a study about the correlation factor between the two parameters was performed.

This study indicated the possibility of performing a sequential inference analysis, and the

results were compared to those obtained when inferring both parameters within the same

simulation.
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Chapter 1

Introduction

As the quest for space exploration and hypersonic travel advances, the need for protective

materials that can withstand extreme atmospheric conditions becomes paramount.

These materials are essential for ensuring vehicle safety without increasing weight, and

so they are subjected to ongoing research. In this context, their mechanical and thermal

properties are often either declared nominally, with inherent uncertainties, or require costly

experiments for accurate assessment. The integration of statistical tools, such as Bayesian

inference, with experimental outcomes, could be instrumental in precisely defining these

properties while accounting for the associated uncertainties. Such integration could play a

vital role in reducing design phase costs and enhancing the reliability of safety measures.

As part of the vast family of protective materials, ablative materials are essential during

atmospheric re-entry, as they are designed to absorb and dissipate extreme heat generated

during this phase. Re-entry vehicles face one of the most hostile environments known

to man: the intense heat generated due to rapid compression and friction with Earth’s

atmosphere at high speeds. This heating can lead to temperatures that exceed thousands of

degrees Celsius, necessitating a protective shield to prevent the vehicle’s failure.

When exposed to high temperatures, ablative materials undergo a process of pyrolysis

and oxidation. This complex phenomenon is influenced by many factors such as material

composition, heating rate, aerodynamics, and thermochemical reactions. These elements

make it exceedingly challenging to model and predict, so experiments, such as the ones
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performed by Milos and Chen [4], are often needed to assess the ablative material response

to high-enthalpy flows.

However, the computational model developed by McDougall [2], which will be the core

of the inference framework, achieved results that closely mirror experimental outcomes.

This model allows the calculation of the temperature distribution inside a sample of ablative

material, subjected to a heating condition.

This thesis delves into a specific class of ablative materials known as PICA (Phenolic

Impregnated Carbon Ablator), even though the work performed can be seen as a valid tool

for a broad range of materials. PICAs are lightweight ablative composites developed by

NASA Ames Research Center (ARC) and first used in the Stardust sample return capsule,

which is the fastest man-made re-entry vehicle to date. On that occasion, the capsule entered

Earth’s atmosphere with a speed of 12.5 km/s, leading the ablative material to reach a

temperature of more than 2900 °C (Fig. 1.1). PICAs were later successfully used in the

Mars 2001 [7] and Mars Science Laboratory mission [8].

PICA stands out for its low thermal conductivity and high heat capacity, which enables it

to manage the extreme heat fluxes encountered during atmospheric re-entry. PICA is made

of a highly porous carbon fiberform structure infused with a commercial phenolic resin.

When exposed to high enthalpy flows, the phenolic resin breaks down, releasing gaseous

products and leaving behind char [9], which insulates and shields the underlying structure.

The porous nature of the fiberform’s structure, which is prone to oxidation or sublimation, is

essential, as it allows the gases generated from the decomposition of the resin to effectively

leave the surface.

When compared to other ablative materials, PICA is renowned for its low density and

effective ablative capacity. Traditional materials such as reinforced carbon-carbon (RCC) or

silica-based ablators may offer higher strength at extreme temperatures but are often heavier

and less efficient at dissipating heat. PICA’s lightweight nature combined with its ablation

efficiency makes it an excellent choice for missions requiring a reduction in launch mass

without compromising on thermal protection.

The specific makeup of PICA varies with the fibrous preform selected and the quantity

and variety of phenolic resin incorporated. In recent years, PICA ablators first developed by

10



NASA, have been subjected to improvements and changes. SpaceX produced its own PICA,

called PICA-X, employed in the Dragon capsule [10]. Subsequently, the same company

developed another version called PICA-3, first employed in the flight demonstration of the

Crew Dragon Capsule in 2019 and then put into regular service on that same spacecraft.

Figure 1.1: Dr. Mike Taylor (Utah State University) got a spectacular video sequence of the Stardust

capsule re-entry onboard the DC-8 aircraft using a Xybion intensified camera. Credits: Dr. Mike

Taylor. [3]
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Chapter 2

Research Objectives

As previously discussed in the Introduction of this thesis, this work aims to highlight the

great potential of combining computational models and statistical tools to assess material

properties. The key objectives of this thesis can be summarized as follows:

1. Harnessing the powerful tool of Bayesian inference to determine thermal properties

of PICA materials, using the experiments conducted by Milos and Chen [4] as a

guideline;

2. Highlight the broad potential of using inference methods to estimate material pa-

rameters of PICA and, by extension, materials in general. This could help guide

the design phase and allow for a more precise and informed material development

process, saving costs and time;

3. By estimating PICA material properties through Bayesian inference, this work also

provides critical insights into the most informative thermocouple placements used in

the experiments of Milos and Chen [4], needed for capturing specific material proper-

ties. These insights pave the way for more efficient and cost-effective experimental

designs and can be extrapolated to enhance testing methodologies for a broader range

of materials.
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Chapter 3

Thermal Model

In this Chapter, the computational model developed by McDougall [2] is briefly intro-

duced. This model has been the core of the inference framework later employed for the

inference analyses.

The objective of this computational model is to precisely simulate the heat transfer in

an ablative material, replicating the experiments conducted by F.S. Milos and Y.-K. Chen

[4]. These experiments were performed in the Aerodynamic Heating Facility (AHF) at

NASA Ames Research Center (ARC). They focused on the investigation of the ablative

material response to different heating conditions, obtained using arc-jets and represented by

the value of the stagnation point cold wall heat flux, q0. Heat flux at the stagnation point

was recorded with a slug calorimeter, which was designed to match the external shape of the

TPS samples under examination. This device was exposed to the arc-jet stream for about 3

seconds [4]. Based on the previous experience with NASA arc jet facilities, an uncertainty

between ± 10 and 15 % is expected on heat flux measurements [4]. Aiming to reproduce

these experiments, McDougall model [2] aims to calculate the temperature evolution over

time at specific locations inside the ablative material sample, where thermocouples are

placed in the real experimental setup.

The ablative material sample used in the experiments is called "iso-q". This type of

sample offers a significant advantage over the traditional flat-faced geometry by providing a

heat flux distribution that remains relatively constant across most of the front face.
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In this sense, a typical computational fluid dynamics (CFD) heat flux calculation for a 10.16

cm-diameter sample is provided in Section 3.6. These particular samples also retain the

same surface profile as they ablate, as also visualized in Fig. 3.1.

In the experiments, thermocouples have been placed inside the sample, along its axis and

radial coordinates, as presented in Figure 3.1. Among all the thermocouples utilized, those

aligned with the axis of the sample (i.e. along its "z" coordinate axis, y = 0) were inserted

using press-fit plugs. In contrast, the off-axis thermocouples (i.e. thermocouples placed

along the "y" coordinate) were installed with the help of curved plugs. Specifically, within

the on-axis thermocouples, Type R was selected for those positioned nearest to the surface.

Meanwhile, the thermocouples situated deeper inside, along with all radial thermocouples,

were of Type K.

It is crucial to note that the aim of this computational model is not to develop an

exhaustive model covering all aspects of pyrolysis and ablation. Instead, it targets a specific

scenario where minimal pyrolysis takes place within the material. Thus, even though

comparisons will be drawn from the entire spectrum of available experimental data, the

model seeks to represent the initial few seconds of arc-jet testing, a period when temperature

measurements from thermocouples are particularly sensitive to heat transfer only.

Figure 3.1: Coordinate system of the sample and thermocouples locations. Adapted from [4].
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3.1 Assumptions

McDougall’s modelization of the phenomena aims to represent three main aspects:

heat conduction, radiation at exposed surface, and energy exchange through the chemical

reactions of pyrolysis.

The heat conduction in PICA is related to an orthotropic thermal conductivity tensor, due

to the fact that PICAs are often manufactured in layers [6] [11]. Given that, heat conduction

will occur at different rates along the two principal directions (parallel ’y’ and perpendicular

’z’, as represented in Figure 3.1), due to distinct thermal conductivity values for each. This

leads to a different spatial heat propagation speed in the two directions, and as a result, to

an uneven spatial temperature distribution inside the sample. For what concerns the energy

exchange related to pyrolysis, this is taken into account in the energy equation (Eq. 3.1) by

the source term. Finally, the radiation at the exposed surface is taken into account by using

the Stefan-Boltzmann formula for radiation and taken into consideration via the boundary

condition presented in Section 3.3. Absorption is negligible as boundary layer interactions

are not considered in the model.

Some processes, which can be seen as negligible when considering the first few seconds

of exposure and a low heating condition, have not been taken into consideration. These

include convection of pyrolysis gases, boundary layer interactions, and surface recession.

For what concerns surface recession, it is known from the work conducted by Milos and

Chen in [6], that a TPS (Thermal Protection System) sample tested for 200 seconds, with

a radius of 10.16 cm, has had a recession of 1.3 cm at the centerline. Given that we will

consider only a few seconds of exposure (around 40 seconds), recession can be seen as

negligible. For what concerns not including the boundary layer interactions, this means that

the model does not account for the transfer of heat and mass between the material and its

surroundings, as well as the aerodynamic drag experienced by the material during ablation.

A final approximation pertains to the fact that specific heat and thermal conductivity are

considered uniform across the sample and constant over the considered time period, even

though it is known they should change during pyrolysis.
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In order to reduce the impact of the neglected processes, along with a short time scale, a

reference case with a low cold wall heat flux has been used. A reference case is essential

when studying the model’s capability to replicate experimental data. In particular, among

all the heat fluxes samples have been subjected to, a condition of cold wall heat flux of 169

W/cm2 has been chosen as the reference case.

3.1.1 Initial conditions

A uniform initial temperature distribution along the sample has been chosen as the

initial condition and set to 300 K. This temperature is later referred to as T0. However,

this assumption has not been confirmed by experimental data, which highlighted an initial

nonuniform temperature distribution. This discrepancy could stem from the sample’s

sidewall heating before the beginning of the experiment. In particular, it is probably

related to radiative heating on the sample’s surface before its placement in the arc-jet,

coupled with a brief transition phase where the arm holding the sample shifts to the arc-jet’s

core, as supposed by McDougall in [2]. These phenomena have a greater impact on the

thermocouples placed on the side, such as TC9 and TC10 (Fig. 3.1). However, it has been

verified that this initial condition, even if not entirely correct, does not lead to great errors

when comparing model and experimental results.

3.2 Energy equation

McDougall’s model is based on the equation for unsteady heat conduction with a source

term:

ρsCp
∂T

∂ t
= ∇ · (K ·∇T )+(hg − h̄)

∂ρs

∂ t
, (3.1)

where ρs is the density of the solid, Cp is the specific heat, T is the temperature, K is the

thermal conductivity tensor and hg is the gaseous specific enthalpy, which is a function of

pressure and temperature. In Eq. 3.1, the quantity h̄ is referred to the partial heat of charring

introduced by Milos and Chen in [7] and defined as in Eq. 3.2.
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h̄ =
ρchc +ρvhv

ρc +ρv
, (3.2)

ρc is the final (char) density in PICA and ρv is the initial density of virgin PICA, both treated

as constants.

The energy equation is based on three important terms: an unsteady term, proportional

to the temporal derivative of T, a term that accounts for heat conduction, related to the

conductivity tensor K, and a source term due to pyrolysis.

It is important to notice that, within the source term,
∂ρs

∂ t
is always negative, as the

material is pyrolyzing, while the sign of hg − h̄ depends on whether the pyrolysis reaction

is exothermic or endothermic, which ultimately depends on temperature. In fact, although

pyrolysis is typically an endothermic reaction, at lower temperatures the species formed

during this process can subsequently undergo exothermic reactions. Pyrolysis can indeed

generate radicals and other chemical species that, upon interacting with one another, can

release heat. In certain situations, the amount of heat released can exceed the one absorbed,

resulting in a net exothermic effect. This is well represented in Fig. 3.2, where the specific

enthalpy of pyrolysis (hg − h̄) from the TACOT model and its evolution with temperature

has been plotted. Specific enthalpy values from Porous Material Analysis Toolbox based on

OpenFOAM (PATO) [12] [13] were used for values of char, virgin, and gaseous specific

enthalpies for the Theoretical Ablative Composite for Open Testing (TACOT) [14] [15],

which is a low-density porous carbon and phenolic material, similar to PICA but open-

source.

The thermal conductivity in a PICA material is represented by the tensor K and it is

orthotropic. It is possible to define the tensor K using only two components: k∥ and k§.

These, respectively represent thermal conductivity in the radial (i.e. "in plane", y or r)

direction and thermal conductivity in the axial (i.e. "through the thickness" or z) direction,

as defined in Figure 3.1. α is the ratio between the thermal conductivity in the radial and

axial direction. Tensor K is represented by Eq. 3.3.
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K =





k∥ 0

0 k§



= k§





α 0

0 1



 . (3.3)

Figure 3.2: TACOT specific enthalpy of pyrolysis, hg − h̄. Adapted from [2].

3.3 Boundary conditions

The first boundary condition pertains to the energy balance at the exposed surface which,

neglecting the contributions of pyrolysis gas and char, is taken to be:

K∇T ·n+σεT 4
w = q, (3.4)

where Tw is the surface temperature and σ is the Stefan-Boltzmann constant. Emissivity,

denoted by ε , is assumed to be 0.89 for a surface that is completely charred from [16]

and [17]. q is the cold wall heat flux along the sample’s surface, which representation

is available from a CFD simulation performed by Milos and Chen in Figure 3.3. For a

10.16cm-diameter sample, it can be seen how the heat flux, along a surface curvilinear

coordinate1, varies only 10 % on the front face, while varying between 10 and 20 % of the

1Measures the distance along the surface from the stagnation point, which corresponds to the point of

coordinates (0,1) in Fig. 3.3
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stagnation value on the cylindrical side.

Figure 3.3: Heat flux (scaled by q0) spatial distribution as a function of a curvilinear coordinate.

Adapted from [4].

The bottom surface temperature of the material is then assumed to be constant and equal

to the initial temperature, giving a Dirichlet condition:

T = T0. (3.5)

A Neumann condition is finally applied on the axis of the sample:

∂T

∂ r

∣

∣

∣

∣

r=0

= 0, (3.6)

representing the "symmetry" of the temperature field across the sample’s rotational axis,

corresponding to the z-axis.
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3.4 Nondimensional equations

A method to nondimensionalize the thermal model’s equations has then been employed

by McDougall [2]. This allows for solving the problem in nondimensional terms, managing

less variables, and making the model computationally lighter. The approach is based on the

definition of a reference temperature, time and enthalpy, defined as follows:

Tre f =
q0R

k§
, (3.7)

tre f =
ρvCp,0R2

k§
, (3.8)

hre f =Cp,0Tre f , (3.9)

where R is the sample radius and Cp,0 is the initial specific heat of the solid.

Using these reference quantities, the following dimensionless variables are defined.

r̃ =
r

R
, (3.10)

z̃ =
z

R
, (3.11)

T̃ =
T −T0

Tre f

, (3.12)

t̃ =
t

tre f

, (3.13)

K̃ =
K

k§
, (3.14)

q̃ =
q

q0
, (3.15)
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ρ̃s =
ρs

ρv
, (3.16)

h̃ =
h

hre f

. (3.17)

By doing so, it is possible to re-write the energy balance of Eq. 3.1 in a nondimensional

form as follows:

∂ T̃

∂ t̃
= ∇̃ · (K̃ · ∇̃T̃ )+(h̃g − ˜̄h)

∂ ρ̃s

∂ t̃
. (3.18)

3.5 Material model

In a pyrolyzing material, heat coming from its exterior leads to its decomposition, re-

leasing gases that move toward the surface. What remains is predominantly carbon char and

carbon fibers, intended as part of the carbon matrix not charred.

Figure 3.4: Cross-section of a pyrolyzing material in an external flow. Adapted from [2].
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It is possible to conceptualize the ablative substance as an amalgamation of virgin

material, gases from pyrolysis, carbon fibers, and char, as seen in Figure 3.4. In order to

model the response of PICA material to external heating, two different chemical models

were used by McDougall [2] and then compared. First, the competitive model developed

by Torres Herrador, et. al. [5], and then the second based on the Aerotherm’s Charring

Material Thermal Response and Ablation Program (CMA) and Fully Implicit Ablation

Thermal Response (FIAT) code [18]. For the purpose of this work, the competitive model is

chosen to be part of the solver, as comparison studies performed by McDougall [2] did not

highlight great differences in using one or another.

3.5.1 Competitive model

The competitive model enables the material to undergo decomposition through various

reactions in a branching fashion, as visualized in Figure 3.5. This indicates that the original

solid substance breaks down into various intermediary entities that can further decompose

into the end products.

Figure 3.5: Competitive reaction mechanism. Adapted from [5].

Every element in the reaction comes with a corresponding production rate (the positive

term in Eq. 3.19) as the intermediary and final entities emerge from preceding reactions.

Simultaneously, there is a rate of destruction (negative term in Eq. 3.19) for each component

as it undergoes decomposition via multiple competing pathways leading to the final products.

This modelization with two branches represents a “low heating rate” and a “high heating

rate” decomposition pathway, as proposed by Torres-Herrador, et. al. [5]. In their work,

they proposed a model for PICA ablation, according to which subjecting the material to low
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heating rates enhances the formation of ρs∗
2 . Conversely, at high heating rates, the dominant

pathway leads to the production of ρs∗
3 . However, the overall rate of density change of

component i is then given by:

∂ρi

∂ t
=−

nP
i

∑
j=1

ki, jρi +
n

∑
j=1

nP
j

∑
l=1

k j,lγ j,l,iρ j, (3.19)

where nP
i is the number of competitive reactions by which component i decays into sub-

species j, γ j,l,i is the mass ratio of species j in the products and n is the number of reactants.

Conservation of mass gives γ j,l,i = (1− γ j,l,i−1). As it can be seen by the competitive

reaction mechanism implemented, the initial solid, ρs
1, decomposes into two intermediate

solids, ρs∗
2 and ρs∗

3 , without producing pyrolysis gases. These two further decompose into

solid species ρs
4 and ρs

6 (char) along with gaseous species ρ
g
5 and ρ

g
7 (pyrolysis gases),

respectively. The rate at which component i decomposes into j via reaction Pi, j is modeled

using a first-order Arrhenius equation:

ki = Aie
(
−εi
R̄T

), (3.20)

where Ai is the pre-exponential factor, R̄ is the universal gas constant and εi is the activation

energy for the reaction. The density in the solid material is then:

ρs =
ns

∑
i=1

εiρi, (3.21)

where εi is the volume fraction of component i. Rate coefficients, activation energies, and

mass coefficients were utilized as specified in [2]. The ODE system solved for the rate of

change of component densities can then be written in matrix form as in Eq. 3.22.
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. (3.22)

7 species have been considered as seen to be overall representative of the physical phe-

nomenon. The reaction rate coefficients ki have also been nondimensionalized using the

reference quantities as follows:

k̃i = (AiTref)exp

(

− ε̃i/R

T̃ (Tref)+T0

)

. (3.23)

The dimensional system represented in Eq. 3.22 has then been nondimensionalized.

3.6 Implementation in MATLAB

Experiments were conducted on a PICA sample of which geometry is symmetrical with

respect to the scaled axial coordinate axis, visualized in Figure 3.6.

The vertical axis corresponds to the axis of rotation and the shoulder radius is 12.5% of

the sample radius R. All samples that were tested with a heat condition of q0 = 169 W/cm2,

which will be our reference case, had a 5.08 cm radius.

The thermal model has then been implemented in MATLAB [2].

In order to address the mathematical problem, the MATLAB’s PDE Toolbox has been used

to model conduction through the material. It incorporates the possibility of building a

triangular elements mesh (visualized in Figure 3.7) for a given geometry and then solves

partial differential equations with a finite element method.
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Figure 3.6: Iso-q geometry, with coordinates scaled by sample radius R. Adapted from [2].

Figure 3.7: Triangular mesh for 2499 nodes and 1186 elements.
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The finite element discretization originally used by McDougall has been changed with

the purpose of building the inference model. The one that will be used can be visualized

in Figure 3.7 and consists of 2499 nodes and 1186 elements, being coarser than the one

previously used. A coarser mesh gives the possibility to run the analysis much faster but

can affect negatively the accuracy of the model. Given that, a grid convergence study was

performed, presented in Chapter 4, Section 4.1.

A second-order splitting method to improve computational efficiency was used. By

doing so, for each time step, a PDE is solved for half a time step accounting solely for heat

conduction (with appropriate boundary conditions applied):

∂ T̃

∂ t̃
= ∇̃ · (K̃ · ∇̃T̃ ), (3.24)

giving an intermediate temperature field, T̃ ∗ = T̃ ∗(r̃, z̃; t̃
n+ 1

2
).

Then, this is taken to be the initial condition to solve the system of ODEs, defined by

the competitive model, for the seven phases and temperature, at each element over a full

time step from t̃n to t̃n+1, according to Eqs. 3.19 and 3.21. Finally, the temperature field

obtained in this manner is advanced over a half time step accounting for conduction and

boundary conditions, using again Eq. 3.24. The obtained solution has then been interpolated

at thermocouple locations, visualized in Fig. 3.1.

Due to limited space for installation, it was not possible to position thermocouples at all

ten designated locations within a single model. For our cold wall heat flux reference case,

the sample has been tested by using two different types of thermocouple placements, called

Placement A and Placement D. Placement A had thermocouples at locations 1 to 5, while

Placement D at locations 5 to 10. Their coordinates are presented in Table 3.1.
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TC Number TC Placement Axial depth (cm) Radial distance (cm)

1 A 0.381 0.000

2 A 0.762 0.000

3 A 1.143 0.000

4 A 1.524 0.000

5 A and D 3.048 0.000

6 D 2.286 0.000

7 D 2.286 2.540

8 D 2.286 3.810

9 D 2.286 4.445

10 D 3.048 4.445

Table 3.1: Thermocouples coordinates from Milos and Chen [4].

3.7 Model sensitivity to pyrolysis

To assess the importance of particular physical processes, McDougall [2] sequentially

introduced individual terms of the energy equation and compared them with experimental

data. The key discovery is that conduction itself failed to offer a basis for comparison, even

for brief periods and close to the surface. However, upon integrating radiation, the disparity

between models incorporating pyrolysis and those without was negligible. Throughout

these simulations, it has been shown that conductive and radiative effects dominate early on

during the exposure to the flow and that pyrolysis begins to affect some thermocouples after

10 or 20 seconds of simulation. In particular, McDougall [2] found that pyrolysis begins to

affect TC1 at around 10 seconds while beginning to affect TC2, TC9, and TC10 at around

20 seconds. This discovery yields attention to which thermocouples to use when testing the

model’s predictions against experimental data, as the model only accounts for a situation

where very little pyrolysis is occurring in the material.
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Chapter 4

Surrogate Model

The computational model presented in the previous Chapter allows the calculation of

the temperature evolution over time at specific thermocouple locations for a PICA ablative

material. The material is defined in the model through its virgin density, thermal conductivity

tensor, and volumetric thermal capacity (product of virgin PICA density and initial specific

heat of the solid PICA). However, through the nondimensionalizing process described in

Section 3.4, it is possible to operate a nondimensional problem that allows the calculation

of nondimensional temperatures in nondimensional times. Nondimensional temperatures

are then transformed in dimensionals through the definition of Tre f via Eq. 3.12, while

nondimensional times in dimensionals through tre f and via Eq. 3.13. In particular, this

nondimensionalization process allows for solving a problem that only relies on one variable,

α , which is the ratio of thermal conductivities:

α =
k∥
k§

. (4.1)

To perform the inference process, which will require running the solver for a large

number of iterations, it becomes necessary to build a surrogate model for a matter of

computational efficiency. A surrogate is nothing less than a library in which model results

(i.e. nondimensional temperatures in nondimensional times) are already stored and ready

to be used by the inference framework, without the need to run the solver each time a new

solution is required.
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Given that α is the only variable of the nondimensional problem defined in MATLAB, the

surrogate will consist of a library of solutions for every chosen value of α . By building the

surrogate, solutions will be already available for different values of α and ready to be used

by the framework.

However, as the solutions to be stored in the surrogate will be calculated through the

computational model, it is necessary to first decide a mesh size and a time step for solving

the differential equations involved, presented in Section 3.6. In fact, these will affect the

accuracy of the solutions to be stored within the surrogate and so, of the inference process

itself. To define a proper mesh size and time step, the solver has been run several times using

different settings and comparing each time model and the experimental results, as explained

in this Chapter in Section 4.1. By doing so, specific values have been chosen aiming to

minimize the error between model and experimental results, as well as the computational

time required by each analysis.

Another crucial aspect that needs to be addressed before building the surrogate is

deciding for which values of α the solutions will be calculated and stored, as this will also

have a role in the accuracy of the inference process, as detailed in Section 4.2.

Before defining the surrogate, the thermal model itself has been subject to changes. In

fact, the solver has been dismembered into two major parts: a part that contains static1

parameters of the analysis (such as sample geometry, heat flux spatial distribution, ther-

mocouples placements, boundary, and initial conditions, etc.), and a part that contains the

solver core, in which mesh and equations are included. By doing so, the computational time

of each analysis has been reduced, given that the "static" part of the solver has been run only

the first time, creating variables that remained unchanged throughout the following analysis.

1Parameters that are not subject to changes between consecutive analyses.
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4.1 Mesh & Time step

The surrogate building process consists in nothing more than running the thermal solver

for specific values of α and storing the solutions. In order to decide the mesh size and the

time step to use for the solver, an optimization study has been conducted. This has been

necessary to investigate how changing the mesh size and the PDE’s time step affects the

model accuracy when comparing its results with experiments. In particular, comparisons

were always performed utilizing experimental data for a cold wall heat flux at a stagnation

point of 169 W/cm2, available from the work of Milos and Chen [4]. Analyses have been

performed by using six different mesh sizes and five different time steps, as reported in

Table 4.2 and 4.3. Only TCs from Placement D have been utilized.

Throughout this study, nominal values for the thermal model inputs have been used, as

defined in [2] and reported in Table 4.1.

k§, W/mK q0, W/cm2 rhoCp, J/m3K α

0.358 169 3920000 2

Table 4.1: Thermal analysis inputs nominal values.

Case Nodes Elements

1 2499 1186

2 3568 1715

3 4447 2150

4 5909 2872

5 8741 4276

6 13394 6585

Table 4.2: Mesh sizes tested.

For each mesh size tested (Case 1 to 6 of Table 4.2), 5 different nondimensional time

steps (reported in Table 4.3) have been used, for a total of 30 simulations.
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Nondimensional Dimensional (s)

0.0014 4

0.0007 2

0.0004 1

0.0003 0.8

0.0002 0.5

Table 4.3: Timesteps used for analysis.

In this Table, dimensional time steps have been calculated applying Eq. 3.13 with nominal

values available from Table 4.1.

So, for every case reported in Table 4.2, five simulations with five different time steps

have been performed, where every analysis simulated 40 seconds of experiment. From

each analysis, ten values of dimensional temperatures have been saved, in order to perform

comparisons with experimental data. In particular, temperatures from specific thermocouples

of Placement D at specific instants in time have been taken, as reported in Table 4.4. As an

example, starting from the first values, the temperature at thermocouple 8 was taken at 4

seconds, while temperature in thermocouple 9 at 8 seconds, and so on.

Time (s) 4 8 12 16 20 24 28 32 36 40

TC 8 9 10 8 9 10 7 8 9 10

Table 4.4: Temperatures from TCs saved, at specific time instants.

4.1.1 Results

Saving specific temperatures for each analysis allowed for a relevant comparison with

experimental data, as they are available at the same time instants as the ones in which

model results are saved. To define their accuracy with respect to experimental data, two

indicators were used: Mean Absolute Error (MAE) and Ecludian Norm (L2). These, have

been calculated as follows:
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• MAE (Mean Absolute Error) has been calculated as the absolute difference between

experimental and model temperatures, at the same TC locations and at the same times

indicated in Table 4.4. Then, of the 10 difference values available, the arithmetic

mean has been considered;

• Eucledian Norm (L2) has been calculated by considering the ten available differences,

of which each one has been squared and summed up. Then, the square root of this

value has been taken.

Calculating MAE and L2 Norm for each one of the 30 analyses, allowed to withdraw an

important consideration:

• From the most imprecise analysis (relative to 2499 nodes and 0.0014 time step) to the

most precise (relative to 13394 nodes and 0.0002 time step), MAE only diminishes by

5.7 % while L2 norm by 2.5 %. Also, the run time of the solver2 increases from 375

seconds to 6302 seconds, when going from the most imprecise to the most refined

analysis.

It is then clear how refining the mesh and reducing the time step, within the intervals

before specified, does not seem to produce a huge difference in terms of results precision

when comparing model results to experimental values. Figs. 4.1, 4.2, 4.3 and 4.4 show the

negligible variation of MAE and L2 norm within a specific mesh and time step case.

To confirm this hypothesis, another run of the model was performed. The objective was

to perform a very accurate analysis, with a very refined mesh and very short time step, to

verify how much model results would gain precision. This analysis was performed with

105482 nodes and 52615 elements, along with a timestep of 0.0002. This simulation showed

a decrease of MAE and L2 norm, with respect to the most imprecise run of 2499 nodes and

0.0014 time step, of only 6 % and 2.65 %, respectively. This MAE and L2 norm results are

plotted in Fig. 4.1 and 4.3 with a dashed line, as reference. In light of this, it can be said that

to obtain a significant difference in terms of MAE and L2 Norm, an unreasonable number

2Run time only refers to the run time of the solver "core" (hence, without the static part), introduced in

the introduction of this Chapter.
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of mesh nodes/elements and a really short timestep would be needed, massively increasing

the run time of the solver.
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Figure 4.1: MAE variation with the number of

mesh nodes, relative to a 0.5 s time step.
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Figure 4.2: MAE variation with dimensional

time step, relative to 5909 mesh nodes.
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Figure 4.3: L2Norm variation with the number

of mesh nodes, relative to a 4 s time step.
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Figure 4.4: L2Norm variation with dimensional

time step, relative to 5909 mesh nodes.

Taking this into consideration and for a matter of computational efficiency, a mesh size

of 2499 nodes and 1186 elements, represented in Figure 3.7, has been selected and will

be used for the thermal solver when building the surrogate model. Even though the mesh

chosen was the coarsest of the ones tested, model results still appeared to be representative

of experimental data. For what concerns the time step, the study did not show the necessity

of using a specific value between 0.0014 (4 seconds) and 0.0002 (0.5 seconds), considering

the negligible differences in terms of MAE and L2 norm showed when using either one of

the time steps tested. However, a major dissimilarity concerns the run time, which increases
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from 375 s to 1446 s when going from 0.0014 to 0.0002 and considering a 2499 nodes’

mesh size. Nevertheless, the time step choice has been addressed by taking into account

another crucial aspect that will be detailed in the next section.

4.2 α Discretization

Now that a mesh size has been decided, it is important to define for which values of α

the surrogate will be developed. Considering the nominal value of α = 2 from Milos and

Chen [4], a surrogate incapsulating model results for values of α between 0.1 and 5 has

been built, as it enables to have a wide selection of results available to be used during the

inference process. In particular, in the above-mentioned α range, the following intervals of

α have been taken:

First Value Increment Last Value

0.1 0.1 1

1 0.05 3

3 0.1 5

Table 4.5: α values for which the solutions are determined.

In particular, as indicated in Table 4.5, solutions between 1 and 3 were obtained every

α = 0.05, instead of every α = 0.1. This choice is led by the fact that a value of α comprised

between 1 and 3 is taken to be more probable to be representative of the real material physics,

so it has been decided to build a surrogate with more available solutions in that interval. In

fact, having more results in that range also allows for increasing the accuracy of the process,

as the query of the surrogate, which will be performed by the inference framework, will

also comprehend an interpolation process when required. Specifically, when a solution

will be desired for a value of α for which a solution is not immediately available in the

surrogate, the code will perform a linear interpolation between the solutions available for

the two values of α contiguous to the one needed by the framework. For example, if a

solution is needed for α = 1.13, it will be obtained by interpolating the solutions available

for α = 1.10 and α = 1.15 (this applies for the whole 0.1-5 interval). In this sense, having
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more solutions stored within the interval α = 1-3 will allow getting more precise results,

when the interpolation process is involved.

As previously said, the solutions for α values in Table 4.5 have been obtained by running

the solver with the mesh specifics described in Section 4.1.

The PDEs time step has been set as 0.5 seconds (0.0002 in nondimensional time). To

understand why this time step has been chosen, let’s recall that all the analyses presented

in Section 4.1 simulated 40 seconds of arc-jet material’s exposition. Nevertheless, the

thermal model solves the problem in nondimensional times, which are calculated from the

dimensional times divided by the reference time (see Eq. 3.9). As it can be seen from Eq.

3.13, in the time nondimensionalizing process, the quantities ρv ·Cp,0 (later always referred

to as rhoCp) and k§ are involved. The key fact is that these quantities could later be inferred

and assume statistical distributions, more or less centered in their nominal value, hence not

assuming a static value throughout the inference process. This means that the reference

time could possibly change at every iteration of the inference process, as different values of

rhoCp and k§ are withdrawn from their respective distributions. It is then fundamental to be

sure that the surrogate has solutions available even for the largest possible nondimensional

time span, which is related to the smallest possible tre f by Eq. 3.13. Following this idea,

and by taking into consideration a maximum variation of rhoCp and k§ of two times their

nominal values, the smallest tre f has been calculated:

tre f =
ρvCp,0R2

4 · k§
= 706.4322 s. (4.2)

By using this value of reference time, the dimensional time interval from 0 to 40 seconds

in which we want to obtain our solutions will now correspond to a very large nondimensional

time interval. At this point, in order to maintain a high accuracy of model results with

respect to experiments, it has been necessary to utilize the smallest dimensional time step

between the ones presented in Table 4.3, of 0.5 seconds. By doing so, the solver solution will

always be made of 81 temperatures, as the simulation is run for 40 seconds and temperatures

are calculated every 0.5.
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Chapter 5

Fundamental Concepts of Statistics

The objective of this Chapter is to give the reader a brief but yet comprehensive overview

of some statistical concepts and tools that have been later used during the inference process,

useful for the interpretation of its results. Along with these, the objective is also to give a

clear representation of what inference is and how it works.
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5.1 Bayesian Inference

"Bayesian inference is a statistical method that uses Bayes’ theorem to update

the probability of a hypothesis as new evidence or information is obtained."

Analytics Vidhya

Usually, the presence of the following fundamental aspects can be easily distinguished

in every Bayesian inference setting:

• Prior: the prior probability, often simply called the "prior", reflects what is known

or believed about a variable before considering the new evidence. It represents our

initial belief/hypothesis about the distribution of a parameter;

• Likelihood: refers to the probability of observing the data given a model or hypothesis.

It measures how well the model explains the observed data;

• Posterior: the posterior probability is the probability of the hypothesis given the

observed data. It combines the likelihood and the prior to give the new parameter’s

distribution, after considering the evidence. It constitutes the actual output of the

analysis.

So, Bayesian inference will be the crucial statistical tool that will help refine PICA

material’s properties. These, which are firstly declared as constant, will be re-assessed using

the experimental data available and the computational model previously presented, in order

to obtain a posterior distribution of the properties finally accounting for uncertainties. The

three aspects previously presented are mathematically related through Bayes’ Theorem.

5.1.1 Bayes’ Theorem

Before delving into the actual Theorem formulation, an example from [19] will help

understand how Bayes’ Theorem works, and how powerful this tool is.
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Example

You wake up one morning and you feel a little bit sick. No particular symptoms, just

not at your 100%. So, you go to the doctor and she also does not know what is going on

with you, so she suggests they run a battery of tests. After a week goes by, the results

come back, turns out you tested positive for a very rare disease that affects only 0.1%

of the population.

How certain is it that you have the disease?

The doctor replies saying that the accuracy of the test is to correctly identify 99% of the

people that have the disease and only incorrectly identify 1% of people who don’t.

At this point, most people would think they have a 99% possibility to actually have the

disease, because that is the accuracy of the test. But that is.. incorrect. Let’s use Bayes to

get some perspectives.

Bayes’ Theorem can help by giving the probability that some hypothesis (that you

actually have the disease) is true, given an event (that you tested positive for the disease).

This probability can be defined as P(H|E), where H stands for Hypothesis and E for Event,

whereas "|" is used to symbolize "given that". In order to calculate that, and so, to find out

your actual probability of having the disease, you will need to take into account several

aspects. Among these, two in particular have a key role:

1. Prior P(H), defines how likely you thought it was that you had this disease before the

event occurred, so, before you got the results;

2. Likelihood P(E|H), which is the probability of the event, given that the hypothesis is

true. This is the probability that you would test positive if you had the disease;

Along with them, you will need to define the probability of not having the disease, that

can be written as P(−H) and the probability of being falsely identified, P(E|−H).

All these come together when defining Bayes’ Theorem:

P(H|E) = P(H) ·P(E|H)

P(H) ·P(E|H)+P(−H) ·P(E|−H)
. (5.1)
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which is essential to define the posterior probability P(H|E).
Estimating the prior probability P(H) can sometimes be tricky. For example, in this

case, a reasonable starting point could be the frequency of the disease in the population:

0.1%. Along with this, the other probabilities can be applied to Equation 5.1:

• P(E|H) = 0.99, as there is a 99% chance to be tested positive, if you have the disease;

• P(−H) = 0.999, which is the probability of not having the disease among the popula-

tion;

• P(E|−H) = 0.01, which is the probability of being falsely identified, if you do not

have the disease.

Combining these data gives out a probability of having the disease which is: P(H|E) = 9%.

This, which is the ultimate output of the Bayes’ Theorem, is called posterior probability. In

fact, as the name suggests, it consists on an update from the prior probability (of having the

disease inside the population) through evidence and data (the fact that you tested positive).

It is also important to keep in mind that posteriors can always be updated when observing

new evidence.

As an example, let’s say that you then go to another doctor to be tested in another

laboratory and the test comes back positive another time. This evidence would update again

your probability of having the disease, which can be simply calculated through Eq. 5.1,

except that this time the prior probability of having the disease would not be 0.001, but it

would be the posterior probability coming from the previous analysis, 0.09. Applying Eq.

5.1, you will find out a new posterior probability of 91%. This use of the Bayes’ Theorem

is typical of an inference analysis, where the posterior probability keeps getting updated by

adding new evidence and data.

In the context of material properties estimation, the Bayesian inference process can be

applied in a manner analogous to the provided Bayes’ theorem example. Let us consider a

material property, named X, which is nominally stated as a constant. This represents our prior

knowledge (the prior) about the material’s behavior in the absence of additional experimental

data. However, similar to a medical diagnosis scenario, we possess experimental data

providing new evidence on the actual characteristics of the material.
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Within the inference framework that will be defined in MATLAB, presented in the next

Chapter, we will employ our computational model to simulate the experiments and compare

its results against the actual experimental data. This comparison aligns with the use of the

likelihood function in Bayes’ theorem, where our computational model plays the role of the

diagnostic test, and the experimental data represent the test result (the event E). Through

this comparison, we are able to update our prior knowledge about property X, redefining

it to more accurately reflect the experimentally observed behavior of the material. This

updated result is known as the posterior probability of the property X’s value.

Ultimately, just as Bayesian inference allows us to update the likelihood of a diagnosis

based on test outcomes, similarly, we update our understanding of material property X. This

approach enables us to incorporate experimental uncertainties and material variations into

the model, providing a more accurate and reliable estimation of the material properties that

will be used for further analysis and engineering applications.

5.1.2 Prior probabilistic distributions

In Bayesian inference, prior distributions play a pivotal role in encoding our pre-existing

knowledge or beliefs about the parameters of the model before observing any data. They

represent our initial understanding or assumptions about the parameters’ values. In particular,

two probability distributions will later be used during inference the inference process:

uniform and log-normal.

Uniform distribution

Uniform distributions, also referred to as rectangulars, are a family of symmetrical

distributions. This distribution is characterized by its simplicity and fundamental nature

in representing a scenario where all outcomes are equally likely, and it is always bounded

between two values, that we can call a and b. Mathematically, a uniform distribution can be

defined in two forms: discrete and continuous.

In the case of a discrete uniform distribution, which is applicable when dealing with a

finite set of equally likely outcomes, the probability mass function is given by:
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P(X = x) =
1

N
, (5.2)

defined for x = 1,2,3,...,N. The outcomes range from 1 to N. P(X = x) represents the

probability of the random variable X taking a particular value x.

In contrast, a continuous uniform distribution is used when the outcomes are spread

across an interval. In this case, a probability density function (PDF) is defined, for an

interval [a, b], as:

f (x) =











1
b−a

for a f x f b,

0 for x < a or x > b.

(5.3)

This equation defines that the distribution is constant over the interval [a, b] and zero

otherwise, as it can be also visualized in the next Figure.

Figure 5.1: Continuous uniform distribution defined for an interval [a, b]. Adapted from Wikipedia.

In the discrete case, each outcome has an equal chance of occurring, and in the continu-

ous case, every point in the interval [a,b] has the same density. This characteristic makes the

uniform distribution a fundamental reference point in probability and statistics. In practical

applications, the uniform distribution is often used to model scenarios where there is no

preference or bias towards any outcome within a specified range.
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Log-normal

The log-normal distribution is a key concept in probability and statistics, particularly

useful in representing variables whose values are positively skewed and confined to the

positive real line. The log-normal distribution is defined for a random variable whose natural

logarithm (log) is normally distributed. So, if X is a random variable with a log-normal

distribution, then log(X) (the natural logarithm of X) follows a normal distribution.

Mathematically, if Y = log(X) is normally distributed with mean µ and variance σ2,

then the probability density function (PDF) of X is given by:

f (x; µ,σ) =
1

xσ
√

2π
exp

(

−(lnx−µ)2

2σ2

)

, (5.4)

for x ∈ [0,+∞), µ real number and σ > 0. For a normal distribution of Y = log(X), it is

always true that the 68% of data will be inside one standard deviation σ from the mean

value µ , and 95% will be inside 2σ . However, this exact relation does not apply to the

log-normal distribution.

It is possible to determine the mean and the variance values of the log-normal distribution

by knowing the values of mean and variance of the normal distribution of log(X):

Log-normal Mean : µX = e

(

µ+σ2

2

)

, (5.5)

Log-normal Variance : σ2
X =

(

eσ2 −1
)

e2µ+σ2

. (5.6)

It is also possible to calculate the standard deviation and mean values of the underlying

normal distribution by using the ones for the log-normal. The mean of the normal distribution

can be calculated by knowing the median value (median) of the log-normal as:

µ = log(median). (5.7)
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The standard deviation σ can be computed by first defining the percentiles, for example

the 2.5th and 97.5th percentiles1, of the log-normal distribution. By doing that, z-scores2

can be calculated:

zlower = Φ−1(A) = Φ−1(0.025), (5.8)

zupper = Φ−1(B) = Φ−1(0.975), (5.9)

where A and B are, respectively, the 2.5th and the 97.5th percentiles. In these expressions,

Φ−1 represents the inverse cumulative distribution function (CDF)3 of the normal distribu-

tion. Now, the standard deviation of the normal distribution σ can be computed as follow:

σ =
log(upperbound)−µ

zupper
, (5.10)

where upperbound is the parameter’s value which defines the 97.5th percentile.

As it can be seen from Figure 5.2, log-normal distribution is characterized by its

asymmetry and heavy right tail. Unlike the normal distribution, which is symmetrical and

can take on negative values, the log-normal distribution is always positive and skewed to the

right. It is also not uncommon to see log-normal distributions, as well as normal ones, to

have right and left tails truncated. This is useful in applications where we know for sure that

our parameter cannot assume values greater than or less than specific values, that can be

used to limit the curve. In our context, the log-normal distribution, which will be applied to

the variable α as detailed in Chapter 7, will be truncated from 0.1 to 5, which is the interval

of α taken into consideration in the surrogate.

1The 2.5th percentile represents a value below which 2.5% of the data falls, while the 97.5th percentile

represents a value below which 97.5% of the data lies, typically used in statistics to define the lower and upper

bounds of a 95% confidence interval.
2z-scores are used as points of reference of the distribution, as they defined the number of standard

deviations between the mean value and the value for which the z-score is calculated (for example, the STD

will be at 1 z-score, while the mean at 0).
3The Cumulative Distribution Function (CDF) represents the probability that a random variable will take

a value less than or equal to a specific value, essentially quantifying the cumulative probability up to that point

in the distribution.
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Figure 5.2: Visual difference between a log-normal and a normal distribution. Adapted from

CalcWorkshop.

5.2 Markov Chain Monte Carlo & AIES

Moving from the foundational concepts of Bayesian inference, where we updated our

beliefs about a material property with new data, we now delve into the practical tools that

make such computational updates feasible and efficient when inference is performed within

a software. This is where the Markov Chain Monte Carlo (MCMC) and, by extension, the

Affine Invariant Ensemble Sampler (AIES) become pivotal.

In the context of our framework, MCMC will serve as the workhorse for Bayesian

updating, facilitating the sampling from posterior distributions. The method does so by

generating sequences of samples that eventually converge to the target posterior distribution,

thus mimicking the Bayesian process of updating prior knowledge with new evidence. The

process involves proposing new samples and deciding whether to accept or reject them

based on their likelihood, given the observed data and prior information.

AIES, a specific implementation within the MCMC framework, excels by employing a

group of "walkers", parallel chains of samples that simultaneously traverse the parameter

space. This collaborative movement ensures a thorough and unbiased exploration, effectively

sidestepping the pitfalls of local optima that single-chain MCMC methods might fall into.

In order to better understand these concepts, let’s go back to the example concerning the

estimation of our material property, X. Initially, we only have a rough estimate for X based

on prior knowledge, which forms our prior distribution. The MCMC algorithm begins by

taking an initial sample of X from this prior distribution.
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It then inputs this sample into our computational model (which, in our framework, will

be divided into the surrogate and the later dimensionalizing process) which simulates

the material’s behavior under experimental conditions. The output of this model is then

compared to actual experimental observations. If the model’s output closely matches the

experimental data, the sample of X is considered to be a good estimate and is "accepted." If

not, the algorithm may either discard the sample or accept it with a certain probability that

depends on how closely the simulated results match the experimental data. The MCMC

process iteratively continues this procedure, taking new samples of X, running the model,

comparing with the experimental data, and accepting or rejecting each sample based on how

well it predicts the observed results. Over many iterations, this procedure constructs a chain

of accepted X values which forms the posterior distribution.

In applying the MCMC algorithm to our material property X, we will not actually rely

on a single sampling chain but rather implement multiple chains that operate in parallel.

These parallel chains are crucial as each one can independently explore different parts

of the parameter space. While each chain follows the described mechanism (drawing

samples from the prior distribution and testing them against the computational model and

experimental data) the existence of multiple chains allows for cross-validation of the results.

By employing several parallel chains, the posterior distribution of the parameter will be

calculated using a combination of the accepted samples from all the chains. The presence of

multiple parallel chains also increases computational efficiency. While a single chain might

require an extended period to adequately explore the parameter space, multiple chains can

do this work more swiftly and thoroughly.

The mean of the posterior distribution gives us the most probable estimate of X after

considering the experimental evidence, while the variance provides insight into how certain

we are about this estimate. From now on, X will not refer anymore to the material property,

only used until now as an example, but will change its significance based on the context.

5.2.1 Gelman-Rubin statistics

The Gelman-Rubin statistic (R̂) is a diagnostic measure of convergence for Markov

Chain Monte Carlo (MCMC) simulations [20].
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The statistic is crucial in the context of Bayesian analysis, as it provides a quantitative

method to evaluate whether the chains have sufficiently explored the parameter space and if

they have converged to the target posterior distribution.

This statistic is particularly useful because it does not require the samples to be indepen-

dent and identically distributed (i.i.d.), a condition that is often not met in the initial phases

of an MCMC simulation. In fact, in typical MCMC runs, the initial samples may be highly

correlated and may not reflect the true underlying distribution as the chains are still ’burning

in’ and have not yet reached their stationary distribution. The Gelman-Rubin statistic

circumvents this issue by comparing the variation within and between chains, allowing for

an assessment of convergence even when the assumption of i.i.d. samples is violated.

To calculate the Gelman-Rubin statistic, one first computes the within-chain variance

(W), which reflects the average variance of samples within each chain, and the between-chain

variance (B), which measures the variance between the means of each chain, respectively

reported in Eqs. 5.11 and 5.12:

W =
1

m

m

∑
j=1

1

n−1

n

∑
i=1

(xi, j − x̄ j)
2, (5.11)

B =
n

m−1

m

∑
j=1

(x̄ j − x̄ovll)
2, (5.12)

where xi, j is the i-th sample in the j-th chain, x̄ j is the mean of the j-th chain, x̄ovll is the

overall mean of all samples (i.e. the mean of the m x̄ j values of chain means), m is the

number of chains, and n is the number of iterations per chain.

The estimated variance of the target distribution (σ̂2) is then a weighted average of W

and B:

σ̂2 =

(

1− 1

n

)

W +
1

n
B. (5.13)

Finally, the Gelman-Rubin statistic is calculated as:

R̂ =

√

σ̂2

W
. (5.14)
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Values of R̂ close to 1 indicate that convergence has likely been achieved, as the between-

chain and within-chain variances are similar, suggesting that the chains are sampling from

the same distribution. In fact, a Gelman-Rubin statistic near 1 implies that the different

chains have become indistinguishable from one another in terms of their distributional

properties. This homogeneity among chains is a strong indication that they are all exploring

the same underlying posterior distribution and that the Markov Chain Monte Carlo process

is generating consistent and reliable samples across all chains.

5.3 Kullback Leibler Divergence

"The Kullback-Leibler divergence metric (also known as relative entropy) is

a statistical measurement from information theory that is commonly used to

quantify the difference between one probability distribution from a reference

probability distribution (for example, between distributions P and Q)." Towards

Data Science

The Kullback Leibler Divergence (later also named only KL) was introduced by Solomon

Kullback and Richard Leibler in 1951 and has since become a fundamental concept in

information theory, statistics, and machine learning.

In our context, where one of our objectives will be finding which thermocouples can

be more informative about the definition of a certain parameter (for example, the material

property X), the Kullback Leibler Divergence is a tool of paramount importance, as it

defines how much information we can gain about that parameter using some thermocouples

rather than others. This information gain is related to how much the posterior probability

distribution of the inferred parameter narrows, with respect to the prior, during the inference

process. It is important to say that, even though the KL could possibly be visualized as a

distance between two distributions, it is not actually a metric, as it is not symmetric (i.e. the

relative entropy from Q to P is not the same as the one from P to Q).

Mathematically, it can be defined for discrete probability distributions as well as for

distributions of a continuous random variable. Taking two discrete probability distributions

P and Q defined on the same sample space, X, the relative entropy from Q to P is defined as:

47



DKL(P ∥ Q) = ∑
x∈X

P(x) log

(

P(x)

Q(x)

)

. (5.15)

For distributions P and Q of a random continuous variable, we have:

DKL(P ∥ Q) =
∫ ∞

−∞
p(x) log

(

p(x)

q(x)

)

dx, (5.16)

where p(x) and q(x) are probability densities of P and Q. In Bayesian Inference analysis, Q

plays the role of prior distribution probability while P of the posterior distribution probability,

so that the divergence measures the information gain by revising one’s belief considering

new evidence or data.
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Chapter 6

Inference Framework

In this Chapter, all the parts that compose the inference framework and their intercon-

nections will be discussed, from the definition of the prior distributions to the discrepancy

model, along with the sampling mechanism.

With the goal of performing inference analyses using MATLAB, an open-source software

called UQLab has been used. UQLab is an Uncertainty Quantification framework, developed

at ETH Zurich (Switzerland), made of open-source scientific modules which are smoothly

connected to perform uncertainty quantification [1].

UQLab’s framework is constituted of different parts, represented in Figure 6.2. All these

components play different roles and are overall complementary during the process. These,

with the exception of the Seed and the Solver, which are mainly related to the software used,

are usually shared between every inference framework. Between them, the forward model

will be the core of our analysis and it will encapsulate the surrogate model presented in

Chapter 4.
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6.1 Prior distributions

As discussed in the previous Chapter, in Section 5.1, every inference analysis needs

the definition of a prior distribution for the inferred parameters, which has to best reflect

the user’s knowledge about their distribution before new evidence is considered. Inside the

UQLab framework, several prior distributions for the inferred parameters can be defined,

such as uniform, log-normal, Gaussian, and Beta, each one reflecting different types and

degrees of prior knowledge.

Specifically, our inference process in UQLab will employ the use of uniform and log-

normal distributions. Within the software, these distributions can be set by defining the

mean and the standard deviation of the underlying normal distribution, for what concerns

the log-normal, and by its bounds, a and b, for what concerns the uniform.

6.2 Seed & Solver

In statistical analyses that involve random sampling, such as Markov Chain Monte Carlo

(MCMC) methods, commonly used in Bayesian inference and used in UQLab, the Seed

sets the starting point for the sequence of random samples generated by the algorithm.

In particular, these random numbers will always be withdrawn from the specified prior

distribution of the inferred parameter, and will constitute what is called a "chain".

In order to better understand this concept, it is important to know that in UQLab the

MCMC solver can be configured to use various sampling algorithms, such as the Affine

Invariant Ensemble Sampler (AIES), that will be used for our inference analyses. The AIES

relies on multiple parallel chains for sampling. So, the "Seed" initializes the random number

generator determining the starting points for these chains. In every iteration of the process,

so for every value of the chain, the surrogate model and the later dimensionalization process

will be called and resolved, allowing for comparison with experimental data.

After the first iteration, subsequent values in each chain are generated based on the prior

distribution and evaluated using the likelihood function and the model’s forward predictions.

This iterative process involves accepting or rejecting proposed samples based on their

probability (to give, as output, the experimental data), ensuring that the sampling explores
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the parameter space effectively while converging toward the high-probability regions.

A key factor is that by fixing the Seed, it is possible to ensure the reproducibility of

the results. In fact, as UQLab utilizes the Mersenne Twister algorithm for the generation

of random numbers, employing the rng(10, ’twister’) command in MATLAB before every

analysis ensures that the values generated from the Seed and throughout the MCMC process,

under the AIES sampler, will always be consistent. This is fundamental as it ensures that, in

every analysis, the forward model will be evaluated with the exact same samples, allowing

for reproducibility of results and comparisons between analyses.

After the posterior distribution is obtained, the posterior samples are always subjected

to burn-in. In fact, in UQLab, the first half of generated samples are typically eliminated

to guarantee the convergence of the sampling by eliminating poorly conditioned chains.

This process ensures that the remaining samples accurately reflect the posterior distribution,

providing reliable insights into the parameters being analyzed.

6.3 Forward model

In UQLab, the "Forward Model" plays a crucial role as it represents the mathematical or

computational model that describes the system or process under investigation. Essentially,

it is a set of equations or algorithms that simulate how the system behaves under various

conditions. The forward model takes the parameters of the system, either stochastics or

constants, producing predicted outcomes or responses. These predictions are then compared

with the actual experimental or observational data.

The forward model links the parameters (and their uncertainties) to the observable

data, thus bridging the gap between theoretical models and real-world observations. By

integrating the forward model within the Bayesian framework, we can update our beliefs

about the system’s parameters based on how well the model’s predictions match with the

observed data.

For the purpose of the inference analyses regarding PICA, the forward model will

include the surrogate and the following dimensionalization, previously discussed in Chapter

3 and 4. In particular, at each iteration of the inference process, a solution will be withdrawn
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from the surrogate based on the α value used. This solution, will be then dimensionalized by

using the definition of reference time and temperature. After that, six temperatures, related

to six different times (from 15 to 40 seconds and every 5) will be taken to be compared with

experimental values available at the same simulation times.

The process of retrieving adimensional results from the surrogate requires the definition

of α , while the subsequentially dimensionalization involves the specification of inputs such

as rhoCp, q0 and k§, as presented in Fig. 6.1. Depending on which ones of those are

inferred, these inputs can either be defined as constant (and so, not "participating" in the

inference process) or assuming a statistical distribution defined by their prior. By employing

a prior distribution for a specific parameter, the forward model will accept as input the

samples that have been withdrawn from its distribution by the solver. Otherwise, if the

variable is set as constant, it will take as an input just its value, which will not change during

the following iterations.

It is important to focus on the definition of the reference quantities, as they contain

parameters that could later be inferred. In fact, a crucial aspect lies in the fact that tre f is

linked to rhoCp and k§ through Eq. 3.13, so its definition could possibly change at each

iteration when these inputs are not constants during the inference process. This would lead

to obtaining dimensional temperatures referred to dimensional time intervals that will not

match the ones at which experimental data are available so that comparison will no longer

be logical. An interpolation is then required and is carried out during the dimensionalizing

process. In this process, a dimensional time interval with a specific time step (for example,

from 0 to 40 seconds, with 1 second of time step) can be defined by the user. On this,

a spline interpolation of the dimensional temperatures retrieved from the surrogate will

be performed, so that the final output of the forward model will consist of dimensional

temperatures calculated with respect to the user-defined dimensional time interval, allowing

for a reliable comparison with experimental values.
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Figure 6.1: Forward model diagram.

6.4 Experimental data

In Bayesian inference, "Experimental Data" plays a pivotal role as it represents the

real-world observations or measurements against which theoretical models are tested and

refined. Within UQLab, these experimental results are used as a critical benchmark for

evaluating the accuracy and validity of the computational model employed in the analysis,

in our case, the forward model described by Figure 6.1.

In the case of our inference analyses, the set of experimental data available from the work

of Milos and Chen [4] will be used. Depending on which thermocouples will be employed

in the process, experimental data relative to them will be inserted into the framework.

Through the application of Bayes’ Theorem (Chapter 5, Section 5.1.1) and by using

experiments, the initial beliefs about the parameters will be updated, resulting in posterior

distributions. Therefore, in UQLab, experimental data is not merely a set of observations

but a fundamental component that drives the iterative process of model improvement and

uncertainty quantification in Bayesian inference.
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6.5 Discrepancy

In the Bayesian inference framework implemented in UQLab, the Discrepancy is used

to account for the differences between the predictions of the computational model and

the actual experimental observations. This discrepancy is crucial as it encompasses both

the model’s inherent limitations in accurately representing reality and the experimental

measurement errors.

In our scenario where the model does not account for certain physical phenomena,

such as pyrolysis or the recession of the sample, along with the ones explained in Chapter

3 Section 3.1, the discrepancy term helps to bridge this gap. Additionally, it includes

thermocouple measurement errors, which in our case are estimated to be ± 5 %, as well

as errors in the measurement of the cold wall heat flux, estimated as ± 10 and 15 % from

[4]. In UQLab, the discrepancy model will be defined by the variance of its Gaussian (i.e.

normal) distribution.

The Gaussian distribution is particularly useful for representing discrepancy allowing

for a symmetrical, bell-shaped representation of errors. Furthermore, the variance of the

discrepancy model itself can be treated as a parameter subject to inference. By assigning

a prior distribution of the discrepancy, either uniform or Gaussian, it becomes an integral

part of the Bayesian inference process. This approach allows for a more comprehensive and

nuanced estimation, as it not only seeks to infer the model parameters but also the degree of

uncertainty associated with the model’s ability to replicate reality.

All the aspects previously discussed regarding the Bayesian inference process and their

interrelationships are summarized in Figure 6.2, which concisely illustrates the flow of the

analysis by following the incoming arrows to each block, indicating which parts of the

inference framework interact with each other.

The Prior Distributions set the stage with initial parameter assumptions, while the Seed

ensures consistent random number generation for reproducibility. These elements feed

into the Forward Model which uses the parameters to simulate the system’s behavior. The

Solver is at the heart of the Bayesian update, considering the Forward Model outputs and the

Experimental Data to refine the parameter estimates. It also accounts for the Discrepancy
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representing the gap between model predictions and actual observations, encompassing both

modeling errors and experimental uncertainties.

The goal of the Solver is to reduce this discrepancy, thereby fine-tuning the parameters to

better reflect the observed data.

Figure 6.2: Inference framework functional diagram.
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Chapter 7

Framework Settings

Inference has been made on two of the thermal analysis inputs represented in Figure 6.1.

Namely, α , the ratio of thermal conductivities, and q0, the cold wall heat flux at stagnation

point. Throughout this process, the other two inputs of the model, rhoCp and k§, have been

set as constants, assuming nominal values reported in Table 4.1. In this context, it is crucial

to remember that assuming k§ constant but varying α , which are related by Eq. 4.1, means

that a change of α is related to a change in k∥.

All the parts presented in the previous Chapter will play their specific role inside

the inference framework, aiming to obtain a posterior distribution for both the inferred

parameters. To correctly set this parts, some studies have been first carried out in order to

investigate the inference results dependency on the Sampler, part of the Solver, and Seed

chosen. To perform these simulations, which results are presented in Sections 7.3 and 7.4,

sets of single and double thermocouples have been used.

Along with these, a study assessed how many iterations are needed for the MCMC

chains to converge to the posterior distribution. This is crucial as it indicates the number

of iterations to set in order to get reliable posterior distributions. To investigate the chain

convergence, visual comparisons of the posterior PDFs of α and q0, obtained with a different

number of iterations, have been made. Alongside this, the calculation of the Gelman-Rubin

statistics (presented in Chapter 5, Section 5.2) allowed for further confirmation. Studying

the convergence of the chains has been crucial to prove the reliability of the results but, also,

to limit the computational time of the following analyses, which have been possible to run

56



using limited iterations. Before performing the real inference process on α and q0, inference

about the discrepancy model’s variance has been performed, as presented in Section 7.5.

After this process, which has been carried out using different sets of thermocouples, two

values of variance have been chosen to be tested during the actual inference on α and q0.

Inference results obtained with both variances have then been compared in Chapter 8.

Studies have also investigated the relation between the number of parallel chains and

iterations. It has been demonstrated that using a N1 number of parallel chains, each with a

N2 number of iterations, gives the same results as using N2 number of parallel chains and a

N1 number of iterations each.

N.B.: Analyses regarding MCMC chains convergence, inference dependency on Seed,

and discrepancy have all been run using the AIES sampler. All analyses simulated 40

seconds of testing.
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7.1 Prior distributions of α and q0

Before performing all the subsequent analyses, it has been crucial to decide which priors

to use for α and q0. From now on, whenever one of the two parameters is inferred, its prior

distribution will always be defined as the one presented in this Section. In particular, for

α , given that it can only assume positive values, a log-normal distribution has been chosen.

For what concerns q0, a uniform distribution has been selected.

Log-Normal Distribution of α

The log-normal α distribution chosen is characterized by these values:

• Median value, α = 2;

• 2.5th percentile, α = 1.2;

• 97.5th percentile, α = 2.8.

By using the median value, the mean of the normal distribution (of the natural logarithm

of α) has been calculated via Eq. 5.7, while its standard deviation (STD) has then been

estimated by applying the above-mentioned percentiles to Eq. 5.10. Results are: µ = 0.6931

(mean) and σ = 0.1717 (STD).

By employing these percentiles, the log-normal distribution will have 5% of α values

below 1.2, while 97.5% below 2.8. This in turn means that the 95% of α will be between 1.2

and 2.8. This distribution is displayed in Fig.7.1, with a dashed line indicating the median.

Uniform Distribution of q0

The q0 uniform distribution bounds (a and b as introduced in Chapter 5) have been chosen

as:

• Inferior bound, q0 = 84.5 W/cm2;

• Superior bound, q0 = 338 W/cm2,

which consist of half and two times the given nominal value of 169 W/cm2, reported in

Table 4.1. The probability density is constant between its bounds and its value can be

estimated by Eq. 5.3.
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Figure 7.1: α prior.
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Figure 7.2: q0 prior, bounded from a to b.

7.2 Markov Chains convergence

To study the convergence of the chains, analyses have been run by inferring only one

parameter at a time and by changing the number of iterations for each simulation. Posterior

distributions of both parameters obtained with different iterations have then been compared,

as visualized in the next Figures. Analyses have been performed using a specific Seed for

both parameters, which have then been later proven to be reliable by following analyses,

presented in the next Section.
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Figure 7.3: α posteriors, obtained with a different number of iterations. Seed 0.5 - 4.5.
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Figure 7.4: q0 posteriors, obtained with a different number of iterations. Seed 84.5 - 500 W/cm2.

As it can be visualized in Figure 7.3 and 7.4, the posterior PDFs of α and q0, obtained

with different numbers of iterations, stay consistent. By the way, the real confirmation is

obtained by employing the Gelman-Rubin statistics. R̂ values have been obtained for each

case by applying Eqs. 5.11, 5.12 and 5.14. As it can be seen from Table 7.1 and 7.2, all R̂

values are close to 1. This indicates that the Markov Chains have likely settled into their

stationary distribution and that the sampling process is providing reliable estimates of the

posterior distributions. These tests have been run using only TC6, whose placement can be

seen in Fig. 8.1.

Iterations R̂

100000 1.0001

50000 1.0003

10000 1.0014

1000 1.0155

Table 7.1: G.-Rubin statistics for α PDFs.

Iterations R̂

100000 1.0001

50000 1.0002

10000 1.0014

1000 1.0184

Table 7.2: G.-Rubin statistics for q0 PDFs.
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7.3 Inference dependency on Seed

In order to investigate the relationship between the posterior PDFs obtained through

inference and the Seed chosen, posterior distributions of α and q0 obtained with different

Seeds have been compared. Along with a visual comparison, the mean and standard

deviation values related to each distribution have been taken into account to investigate

possible differences. It is important to note that, in the context of these analyses, these

two values have been taken as nothing else as indicators of the difference between PDFs

calculated using different Seeds, as the real inference process that will allow the assessment

of these values related to the posteriors of α and q0 will be carried out later.

To perform this study, a discrepancy model’s variance of 100 K has been employed, a

value that has been justified by later analyses reported in Section 7.5.

The study has been performed using 3 different sets of thermocouples, employing axial

and radials. These have been taken to be representative of every possible combination of

TCs that could be possibly used for the inference process. In fact, thermocouples chosen for

testing are: TC6, placed on the axis, TC8, placed in a radial position, and the combination

of the two tested together. Their placements are represented in Fig. 8.1.

The posterior PDFs obtained using TC6, displayed in Figs. 7.5 and 7.6, have been

obtained using 50000 iterations and 100 parallel chains. PDFs for sets TC8 and TC6-TC8

have been obtained using 10000 iterations and the same number of parallel chains, using the

proven convergence. For the sake of brevity, given that they all demonstrated consistency as

the ones for TC6, they are presented in Appendix [1].

7.3.1 Seed variaton of α

When testing the Seed variation on α , q0 has been taken constant.

Considering the nominal value of q0 = 169 W/cm2 from Table 4.1, three different Seeds

(Case 1 to 3) of α have been used for testing, as reported in the next Table:
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Case 1 0.5 - 4.5

Case 2 1 - 3

Case 3 1.5 - 2.5

Table 7.3: α Seeds tested.

By comparing the posterior density functions for all the Seeds tested, only a slight

change in the PDF of α when employing different Seeds has been observed. This is also

proven by the calculation of mean and standard deviation from each PDF, reported in the

next Tables. It is then possible to draw the conclusion that using either one of the three

different Seeds proposed in Table 7.3 does not have any implications on the result (i.e. the

posterior) of the inference process of this variable.
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Figure 7.5: Posterior PDFs of α with different Seeds for TC6.

Case Mean STD

1 2.0281 0.35

2 2.0275 0.34

3 2.0284 0.34

Table 7.4: TC6.

Case Mean STD

1 1.9509 0.046

2 1.9508 0.046

3 1.9510 0.046

Table 7.5: TC8.

Case Mean STD

1 1.9514 0.046

2 1.9511 0.046

3 1.9505 0.046

Table 7.6: TC6-TC8.
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7.3.2 Seed variation of q0

Considering the nominal value of α = 2 from Table 4.1, q0 has been inferred considering

three different Seeds (Case 1 to 3), as reported in the next Table:

Case 1 84.5 - 500

Case 2 84.5 - 400

Case 3 84.5 - 300

Table 7.7: q0 Seeds tested, in W/cm2.

As Figure 7.6 shows, the study confirmed that, as for α , no major differences are evident

when using different Seeds for q0, in terms of posteriors and their characteristics.
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Figure 7.6: Posterior PDFs of q0 with different Seeds for TC6.

Case Mean STD

1 189.47 59

2 189.61 59

3 190.08 59

Table 7.8: TC6, in W/cm2.

Case Mean STD

1 166.71 2.5

2 166.75 2.5

3 166.69 2.5

Table 7.9: TC8, in W/cm2.

Case Mean STD

1 166.71 2.5

2 166.70 2.5

3 166.76 2.5

Table 7.10: TC6-8, in W/cm2.
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7.4 Inference dependency on the Sampler

UQLab supports four different samplers that can be used and incorporated in the solver

when running inference analysis: Metropolis Hastings (MH), Adaptive-Metropolis (AM),

Hamiltonian Monte Carlo (HMC) and Affine Invariant Ensemble Sampler (AIES).

Even though a complete study about the sampling mechanisms and related theoretical

aspects has not being the focus of this thesis, the relevancy of the sampler choice on the

inference process has been investigated. To do so, the 3 different sets of thermocouples used

in Section 7.3 have been utilized.

Analyses have been carried out with a discrepancy variance of 100 K and by only

inferring the parameter α , choosing its Seed to be 0.5 - 4.5. By doing so, a posterior

distribution for each sampler used has been derived, and their main values (such as mean

and STD) have then been compared, as in the previous simulations.

As it can be depicted from Figure 9.5, for TC6 the posterior distribution functions of α ,

obtained with 100 parallel chains and 10000 iterations, stay consistent while using different

Samplers. The same results have been obtained for TC8 and TC6-TC8, represented in

Appendix [3]. Consistency is also confirmed when comparing STD and mean values of the

different PDFs, reported in Tables 7.11, 7.12 and 7.13.
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Figure 7.7: Posterior PDFs of α with different samplers for TC6.
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Case Mean STD

AIES 2.0281 0.35

AM 2.0275 0.34

MH 2.0257 0.34

HMC 2.0283 0.35

Table 7.11: TC6.

Case Mean STD

AIES 1.9509 0.046

AM 1.9509 0.046

MH 1.9508 0.047

HMC 1.9508 0.046

Table 7.12: TC8.

Case Mean STD

AIES 1.9514 0.046

AM 1.9509 0.046

MH 1.9508 0.047

HMC 1.9509 0.047

Table 7.13: TC6-TC8.

Throughout this process, all samplers demonstrated similar computational times with

the exception of HMC, which required at least 10/12 more times when compared to the

others. Among these options, the AIES sampler has been chosen for the following inference

analyses.

7.5 Discrepancy choice

Performing inference on α and q0 also requires the definition of a discrepancy model.

In order to choose an adequate model, which is defined in UQLab through the variance of

its distribution, inference on this parameter has been performed. To do so, different sets of

single, double, and triple thermocouples, as resumed in the next Tables, have been used.

For each set, simulations have been performed with 100 parallel chains and 1000 iterations.

TC3 TC4 TC5 TC6 TC8

Table 7.14: Sets with single TCs tested.

TC5-TC7 TC5-TC8 TC6-TC7 TC6-TC8

Table 7.15: Sets with double TCs tested.

TC6-TC7-TC8 TC5-TC7-TC8

Table 7.16: Sets with triple TCs tested.
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As the variance of the discrepancy model is now the inferred parameter, its prior

distribution has to be defined, as required by the framework. In particular, a uniform

distribution has been used, which bounds have been chosen to be 25 K and 6400 K. The

prior uniform distribution has been taken to be uniform and fairly wide, reflecting our

limited prior knowledge about this variable, which encapsulates several different aspects. Its

Seed has also been set as going from 25 K to 6400 K. Throughout these analyses, only the

variance has been inferred, and by doing so the thermal inputs have been all set as constant

and equal to their nominal values reported in Table 4.1.

For every set described in Tables 7.14, 7.15 and 7.16, a Gaussian posterior distribution

of the discrepancy has been obtained through inference and its mean and standard deviation

values have been considered and reported in Table 7.17. The Table clearly shows how using

sets with double and triple TCs, compared to sets with one thermocouple, gives a lower

STD of the posterior, related to a narrower distribution and hence a bigger information gain.

However, between the two and three TCs’ sets, TC5-TC7 and TC5-TC8 showed higher

STD values, indicating more inaccuracy.

Thermocouple Set Mean (K) STD (K)

TC3 849.29 810

TC4 583.74 650

TC5 380.04 460

TC6 77.25 120

TC8 177.22 350

TC5-TC7 122.04 74

TC5-TC8 144.21 95

TC6-TC7 41.44 20

TC6-TC8 49.92 28

TC5-TC7-TC8 92.34 39

TC6-TC7-TC8 44.02 17

Table 7.17: Mean and STD of the discrepancy model’s variance distribution.

Upon examining Table 7.17, it is apparent how in every set containing the TC5 ther-

mocouple, the standard deviation (STD) of the posterior is higher compared to sets with
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the same number of thermocouples but without this specific thermocouple. This could

be attributed to the fact that TC5, being the deepest axial thermocouple, may not provide

comprehensive insights into the discrepancy. In fact, discrepancies serve to narrow the gap

between experimental results and the model, which in our case primarily reflects the initial

seconds of testing. Therefore, employing a deep thermocouple like TC5 might not yield

relevant information since it may not have sufficient time to detect the heat flux through the

sample. This is also confirmed by experimental data in [4]. In fact, it can be seen from Milos

and Chen how the temperature in TC5 only increases by 30 K during the first 40 seconds

of testing, when considering a low cold wall heat flux such as 169 W/cm2. At the same

time, experimental data related to higher cold wall heat fluxes, show a higher temperature

increase in the same simulation interval in TC5. Finally, a higher temperature increase is

also shown at 169 W/cm2 but in thermocouples positioned closer to the sample’s surface.

However, given the uncertainty regarding the discrepancy factor, which accounts for

several aspects not entirely known, two variances have been selected for later use in the

inference process, giving space for comparisons between results.

One variance has been taken to be 36 K, as the mean between the mean values of the

STDs for the sets TC6-TC7, TC6-TC8, and TC6-TC7-TC8. Another value has been taken

to be 100 K, as representative of mean values of the STDs obtained through sets TC5-TC7,

TC5-TC8, and TC5-TC7-TC8.
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Chapter 8

Inference Results

In this Chapter, the results of the inference process performed on α and q0 will be

presented. The process has been carried out using the prior distributions and the two

discrepancy model’s variances presented in Chapter 7, comparing the results obtained

with both. The Seed for both parameters have been chosen between the ones previously

investigated and the sampler as the AIES.

A first round of inference analyses, in which the parameters have both been inferred in

the same simulation, have been performed with 100 parallel chains and 1000 iterations each.

These analyses aimed to assess which thermocouple sets are more informative about the

inferred parameters. To define the most informative sets, the information gain1 has been

calculated through the Kullback Leibler Divergence presented in Chapter 5. A high KL

value indicates a high difference between the posterior and the prior distribution, hence a

high information gain achieved through the inference process. However, unlike what has

been displayed in Eq. 5.15, a small increment ε has been added to both P(x) and Q(x) in

their ratio, to ensure not to obtain undefined values in MATLAB during the calculation. The

KL has then been computed as visualized in the next equation:

DKL(P ∥ Q) = ∑
x∈X

P(x) log

(

P(x)+ ε

Q(x)+ ε

)

. (8.1)

1In this context, "gain" refers to how much the prior distribution of the parameter has narrowed after the

inference process has been performed
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However, in order to make sure the increment ε had not influenced the outcomes, the

Kullback Divergences have been computed with other values of ε , verifying their value was

not changing. KL calculated with different ε increments demonstrated consistency and can

be visualized in Appendix [5] and [6].

To compare KL values obtained using different thermocouple sets, every analysis

performed employed the same prior distribution of α and q0, as presented in Section 7.1.

Simulations included sets of single, double, and triple thermocouples, presented in Section

8.1. The most informative sets have later been used for performing more in-depth inference

analysis, presented in Section 8.2. These have been run with 100 parallel chains and 500000

iterations each, for a total of 50 million samples generated by the framework. To validate

the results of these analyses, a forward propagation study, presented in Section 8.3, has

been conducted. By doing so, it has been possible to test the reliability of the posterior

distributions formerly calculated by utilizing them to guess the temperature evolution in

other thermocouples.

Inference performed using different thermocouple sets also allowed for the investigation

of the correlation factor between the two inferred parameters, as presented in Section 8.4.

Correlation studies also highlighted the possibility of performing a sequential inference

analysis (i.e. inferring one parameter first, using a specific set, and then inferring the

other, using a second different set), which results have been compared to the ones obtained

inferring both parameters within the same simulation.

Utilizing both discrepancy models’ variances for the inference process did not highlight

major differences. In particular, using the variance value of 36 K allowed for obtaining lower

STDs of the posterior distributions and so higher values of KLs, as reported in Appendix

[4]. This result is in line with expectations, as a declared lower discrepancy between model

and experimental data necessarily leads to narrower posterior distributions and hence higher

Kullback Divergences. However, a change in the variance did not lead to changes in terms

of which thermocouple sets are more informative about the two variables, q0 and α , which

is by far the most important aspect.

69



8.1 Definition of the most informative sets

Analyses were performed using the Case 1 Seed for α and the Case 2 for q0, respectively

reported in Tables 7.3 and 7.7. Simulations have not been performed on sets including

TC1, TC2, TC9 and TC10. In fact, as it has been demonstrated in Chapter 3, Section 3.7,

these TCs are found to be not reliable throughout the whole 40 seconds interval of sample’s

exposition to the arc-jet simulated by the Model, failing to represent the physical reality

after 10 or 20 seconds.

For every simulation performed, the mean and standard deviation values of the posterior

distributions have been calculated and reported in the next Table. The Kullback Divergence,

also reported in Table 8.1, has been calculated between the posterior and the prior of each

variable’s distribution.

Set Thermocouples α Mean α STD q0 Mean q0 STD α KL q0 KL

1 TC3 1.96 0.33 171.47 4.58 0.02 2.62

2 TC4 2.02 0.34 142.67 8.83 0.01 1.91

3 TC5 2.04 0.35 212.98 73.36 0.01 0.06

4 TC6 2.02 0.34 186.46 59.39 0.01 0.15

5 TC7 1.96 0.33 155.32 30.55 0.02 0.71

6 TC8 1.92 0.14 171.13 7.75 0.52 2.11

7 TC5-TC7 1.96 0.33 156.08 30.37 0.03 0.70

8 TC5-TC8 1.92 0.14 171.35 7.80 0.53 2.11

9 TC6-TC7 1.95 0.32 157.19 30.05 0.04 0.75

10 TC6-TC8 1.92 0.14 171.39 7.71 0.51 2.10

11 TC5-TC7-TC8 1.87 0.12 173.59 7.35 0.66 2.17

12 TC6-TC7-TC8 1.87 0.12 173.40 7.17 0.66 2.17

13 TC5-TC6-TC7-TC8 1.87 0.12 173.62 7.33 0.65 2.17

Table 8.1: Inference results for σ2 = 100 K. q0 values are reported in W/cm2. Mean and STD are

referred to posterior PDFs. KL have been calculated with an increment of ε = 10−10.

As resumed in Table 8.1, the KL calculation clearly shows how using some sets instead

of others allows for a higher information gain about the inferred parameters. This is the case

of sets 6, 8, 10, 11, and 12, for which the KL value is significantly higher.
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This first round of simulations has been particularly crucial in demonstrating two major

general facts about how thermocouple placement impacts the information gain for a specific

variable. These can be resumed as follows:

• Information gain on α: the presence of a radial thermocouple is instrumental for

achieving a high information gain on α , as a variation of α is induced by a variation

in k∥, which is the thermal conductivity of the material in the radial (i.e. parallel)

direction. This is clearly shown by the comparison between the α KL calculated

using an axial thermocouple and a radial thermocouple, such as TC3 and TC8. In

fact, as visualized in Table 8.1, the information gain is significantly higher using

TC8, which is the radial one. The same consideration is valid when looking at TC8

and TC7, which comparison highlights a lower KL in TC7, being in a lower radial

coordinate, and so closer to the axis (see thermocouple locations in Fig. 8.1);

• Information gain on q0: information gain seems to be linked to the position of the

thermocouple with respect to the outer wall and shoulder of the sample. In fact, by

looking at Tabe 8.1, it can be seen that using thermocouples closer to the surface,

such as TC3 or TC4, gives a higher value of KL when compared to using deeper TCs

like TC5 or TC6. This can also be noticed by comparing the sets using TC7 or TC8

with the one using TC6, where the first two give more information gain, as they share

the same axial coordinate with TC6 but they correspond to a higher radial coordinate,

hence, being closer to the shoulder of the sample (see TCs locations Fig. 8.1).

Figure 8.1: Thermocouple locations. Adapted from [6].
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So, it is evident that thermocouple sets using a combination of radial and axial TCs will

lead to a higher value of Kullback Divergence.

In this sense, set number 6, containing only thermocouple 8, seems really interesting, as

it represents the intersection of these two concepts in one spot. This thermocouple is in fact

close to the surface, resulting in a high information gain of q0, and it is radial, essential for

a high information gain on α . Moreover, this thermocouple does not suffer the inaccuracies

of the Model linked to pyrolization. In fact, as demonstrated in Chapter 3 Section 3.7,

pyrolization does not occur on TC8 throughout the 40 seconds of arc-jet exposition.

Finally, a simulation ran using a set with four thermocouples (set 13) showed, through

the KL calculation, that using more than three thermocouples does not lead to a greater

information gain. Cases with five or six thermocouples in one set, technically possible using

all TCs within Placement A and D respectively, have not been investigated, as they would

have included thermocouples that fail after 10 or 20 seconds, as discussed before.

8.2 Posterior distributions of α and q0

After assessing the most informative sets through the analysis reported in the previous

Section, three sets have been chosen to perform analyses with more iterations. In particular,

simulations with 500000 iterations for each of the 100 parallel chains have been run for

sets number 6, 8, and 12, containing respectively TC8, TC5-TC8, and TC6-TC7-TC8. By

doing so, the parameters’ posterior distributions have been obtained. In the following part,

posterior distributions, along with their mean and standard deviation values, are reported,

for both the inferred parameters.

Set 6: TC8

Parameter Mean STD

α 1.92 0.14

q0 171.26 7.70

Table 8.2: Mean and STD values. q0 values are reported in W/cm2.
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Figure 8.2: Posterior PDF of α , with dashed

line indicating the mean value.
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Figure 8.3: Posterior PDF of q0, with dashed

line indicating the mean value. Values in W/cm2.

Set 8: TC5-TC8

Parameter Mean STD

α 1.92 0.14

q0 171.26 7.70

Table 8.3: Mean and STD values. q0 values are reported in W/cm2.
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Figure 8.4: Posterior PDF of α , with dashed

line indicating the mean value.
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Figure 8.5: Posterior PDF of q0, with dashed

line indicating the mean value. Values in W/cm2.
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Set 12: TC6-TC7-TC8

Parameter Mean STD

α 1.87 0.12

q0 173.70 7.30

Table 8.4: Mean and STD values. q0 values are reported in W/cm2.
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Figure 8.6: Posterior PDF of α , with dashed

line indicating the mean value.

1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3

q
0

10
6

0

1

2

3

4

5

6

P
D

F

10
-6

Figure 8.7: Posterior PDF of q0, with dashed

line indicating the mean value. Values in W/cm2.

As can be noticed from the posterior distributions, the application of Bayesian inference

to the experimental data has yielded insights that challenge the nominal values initially

declared for α and q0, reported in Table 4.1. The results obtained through these three

different sets did not highlight great dissimilarities. By the way, set 12, containing three

TCS, allowed for obtaining lower values of STD for both distributions, of α and q0. The

estimations obtained with all these sets have later been proven to be strongly reliable by the

forward propagation analyses.

However, while the results of the Bayesian inference provide a promising indication,

the current inference model incorporates aspects that warrant further refinement. One such

aspect is the choice of the discrepancy model, which plays a critical role in capturing the

divergence between the model predictions and observed data, and that incorporates aspects

that could benefit from further studies.
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8.3 Forward propagation

In order to validate the inferential outcomes of the most informative sets presented in the

previous Section, a comprehensive forward propagation analysis has been conducted. For

seek of brevity, only forward propagations obtained using TC8 (set 6) and TC6-TC7-TC8

(set 12) are displayed, as the ones for TC5-TC8 showed very similar results. For both sets 6

and 12, the temperature estimation for TC5 and TC9, is displayed in Appendix [9], [10],

[11], and [12].

A forward propagation analysis utilizes couples (α , q0) withdrawn from the posterior

PDFs obtained using a specific set, as inputs for the Forward Model. The Forward Model

returns as a result the temperature over time calculated in selected thermocouples, which

have not been part of the inference analysis from which the posteriors have been previously

calculated. For every sample (α , q0), a vector of temperatures over time, in a specific TC

location, is calculated and given as output. In particular, six values of temperature inside the

vector are always given, with respect to six different instants in time. By obtaining a vector

of temperatures for each sample, with all the samples tested, a temperature probability

distribution will be obtained for each one of the six instants in time. From each distribution,

the mean value has then been taken and compared to the experimental data available for that

instant in time, to define the prediction’s accuracy. In this way, it is possible to investigate

the accuracy of the previously calculated posterior PDF from which the samples have been

withdrawn.

In the next Figures, the mean temperature of each one of the six distributions has been

taken and plotted together with experimental data. The orange area represents the STD from

the mean values calculated by the Model. The absolute value of these differences, along

with the STD of every distribution of temperature, are resumed in the next Tables.

Set 6: TC8

As shown in Figs. 8.8. 8.9, 8.10, 8.11, and 8.12 the posteriors of α and q0 obtained with

TC8 seem to predict temperatures in other thermocouples with good precision, given that

experimental results are also expected to have a 5 % of uncertainty.
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Figure 8.8: TC1 temperature evolution, predicted

using TC8 posterior.

Figure 8.9: TC2 temperature evolution, predicted

using TC8 posterior.

Figure 8.10: TC3 temperature evolution, pre-

dicted using TC8 posterior.

Figure 8.11: TC4 temperature evolution, pre-

dicted using TC8 posterior.

Figure 8.12: TC10 temperature evolution, predicted using TC8 posterior.

Higher inaccuracy is seen in predicting the temperature evolution in TC1, as well as
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around 20 seconds in TC2. The inaccuracy about TC1 could be related to the impact of the

initial condition, which from the Model is taken to be 300 K uniformly, disagreeing with

experimental data. Also, it could be related to the fact that this thermocouple is the first to

experience pyrolysis, which is not taken into account by the Model. The inaccuracy in TC2

is most probably linked to the fact that from 20 seconds of simulation, the computational

Model starts to fail in representing the physics, as thoroughly discussed in Chapter 3. In

fact, as can be noticed from the next Tables, TC1, TC2, and TC10 predictions were made

for a time interval of 10 and 20 seconds respectively, in order to not exceed the time interval

in which the Model predictions are reliable. The STD value reported refers to the standard

deviations of the temperature distributions for each instant in time.

Time (s) Mean - Exp (K) STD (K)

3 94.68 12.90

4 107.63 16.95

5 103.17 20.28

6 92.04 23.17

8 2.23 25.68

10 45.67 29.80

Table 8.5: TC1, differences and STD.

Time (s) Mean - Exp (K) STD (K)

5 15.75 0.90

8 6.18 3.60

10 3.27 5.86

12 2.34 8.16

15 26.66 11.47

20 61.35 16.44

Table 8.6: TC2, differences and STD.

Time (s) Mean - Exp (K) STD (K)

15 15.57 2.18

20 24.13 4.43

25 19.03 6.93

30 8.66 9.50

35 5.77 12.03

40 23.48 14.45

Table 8.7: TC3, differences and STD.

Time (s) Mean - Exp (K) STD (K)

15 3.20 0.26

20 5.99 0.83

25 17.19 1.71

30 23.11 2.83

35 21.99 4.10

40 17.96 5.46

Table 8.8: TC4, differences and STD.
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Time (s) Mean - Exp (K) STD (K)

5 22.28 3.25

8 7.02 3.37

10 6.47 3.32

12 12.23 3.67

15 21.81 5.02

20 32.68 8.04

Table 8.9: TC10, differences and STD.

Set 12: TC6-TC7-TC8

Similar results are obtained when using the posterior of TC6-TC7-TC8 for the forward

propagation of the temperature in thermocouples 2, 3, 4, and 10, as displayed in the next

Figures and confirmed from the next Tables. However, even though these estimation stay

consistent with the previous results, in this case, a major dissimilarity with respect to

experimental data is found in TC1.

Figure 8.13: TC1 temperature evolution, pre-

dicted using TC6-TC7-TC8 posterior.

Figure 8.14: TC2 temperature evolution, pre-

dicted using TC6-TC7-TC8 posterior.
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Figure 8.15: TC3 temperature evolution, pre-

dicted using TC6-TC7-TC8 posterior.

Figure 8.16: TC4 temperature evolution, pre-

dicted using TC6-TC7-TC8 posterior.

Figure 8.17: TC10 temperature evolution, predicted using TC6-TC7-TC8 posterior.

Time (s) Mean - Exp (K) STD (K)

3 259.86 22.20

4 237.32 24.61

5 210.87 26.70

6 180.59 28.56

8 146.62 30.27

10 81.89 33.30

Table 8.10: TC1, differences and STD.

Time (s) Mean - Exp (K) STD (K)

5 15.48 0.87

8 5.10 3.47

10 5.03 5.65

12 0.11 7.86

15 23.21 11.05

20 56.41 15.83

Table 8.11: TC2, differences and STD.

79



Time (s) Mean - Exp (K) STD (K)

15 16.20 2.12

20 25.40 4.30

25 21.02 6.72

30 11.40 9.22

35 2.29 11.66

40 19.29 14.00

Table 8.12: TC3, differences and STD.

Time (s) Mean - Exp (K) STD (K)

15 3.14 0.25

20 6.22 0.81

25 17.65 1.68

30 23.88 2.78

35 23.10 4.02

40 19.43 5.36

Table 8.13: TC4, differences and STD.

Time (s) Mean - Exp (K) STD (K)

5 23.69 2.93

8 8.42 3.15

10 7.58 3.20

12 11.54 3.61

15 21.81 4.94

20 33.86 7.81

Table 8.14: TC10, differences and STD.

Overall, these results, as the ones calculated using set 6, show that the posterior distribu-

tions obtained are reliable, given that they predict with good accuracy the other thermocou-

ples’ temperature evolution. For what concerns the temperature estimation in TC5 and TC9,

both sets lead to very close results, so no major differences in using one or the other are

registered.

8.4 Correlation between α and q0

Inferring q0 and α within the same simulation allows the calculation of a correlation

matrix through UQLab. This 2x2 matrix expresses the correlation between the two inferred

parameters, with values ranging from -1 to 1. A correlation equal to 1 expresses a perfect

positive correlation, indicating that when one of the two increases, the other increases

proportionally. At the same time, a correlation of -1 indicates a perfect negative correlation,

that is when a parameter increases, the other decreases proportionally. Full independence

between the two is implied by a 0, even though the inverse is not always true by necessity.
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The correlation matrix thus provides valuable information on how the parameters interact.

This can be particularly useful for identifying non-obvious relationships between parameters

or for better understanding the structure of the model used within the inference framework. A

correlation matrix calculated through UQLab, for two inferred parameters, has the following

structure:

A =

q0 α

q0 1 A1,2

α A2,1 1

. (8.2)

Along the matrix’s diagonal values will always be equal to 1, as every variable is perfectly

correlated with itself, while nondiagonal values express the actual correlation between

the two variables. Also, values in position A2,1 and A1,2 will always be identical since

correlation is a measure of linear association that does not depend on the order of the

variables. Said so, we will later refer to correlation factors and not matrices, only mentioning

the values of A2,1 (equal to A1,2).

Correlation factors have been calculated for every inference analysis performed in

Section 8.1 with 1000 iterations each, and reported in Table 8.15. Particular attention has to

be given to the most informative sets, such as sets number 6, 8, 10, 11, and 12. For these

sets, even analyses with more iterations confirmed a correlation factor of -0.93 or -0.94.

In fact, as can be seen from the Table and the next Figures, the sets give a strong (nearly

perfect) negative correlation between α and q0. This means that when α decreases, q0 is

expected to increase. This type of correlation may be due to the fact that a decrease in α is

led by a decrease in k∥, given that k§ is constant. So, as thermal conductivity in the radial

direction decreases, and so the material isolation increases, a higher value of q0 is then

required to obtain the same temperature in a specific TC location.

Also, as Table 8.15 shows, sets not including radial thermocouples, such as set numbers

1, 2, 3, or 4, which contains axials TCs, all show lower values of correlation between

the inferred parameters, when compared to the other sets. This seems to show that the

correlation intensifies when a radial thermocouple is introduced.
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Perhaps, this may be also due to a non-investigated relation between the information gain

and the correlation factor. In fact, all the sets that show low values of correlation, also show

low KL values as reported in Table 8.1.

Set Thermocouples Correlation Factor

1 TC3 -0.80

2 TC4 -0.56

3 TC5 0.02

4 TC6 -0.12

5 TC7 -0.88

6 TC8 -0.94

7 TC5-TC7 -0.87

8 TC5-TC8 -0.94

9 TC6-TC7 -0.87

10 TC6-TC8 -0.94

11 TC5-TC7-TC8 -0.93

12 TC6-TC7-TC8 -0.94

Table 8.15: Correlation factors for every set simulated, σ2 = 100 K.

Overall, a correlation between α and q0 indicates that the value of one parameter depends

on the value of the other. This leads to the conclusion that experiments performed by Milos

and Chen [4] are probably not suitable to determine their value separately, as they instead

give information about (α , q0) couples. However, this correlation is most probably born by

using our specific thermal model within the framework.

In fact, in reality, these two parameters are probably not related, as α is a characteristic of

the material, while q0 is the stagnation point cold wall heat flux, and they are assessed with

different methods.

In the next Figures, the joint posterior PDF of the two variables α and q0 can be

visualized. The attention is given to the three most informative sets for which posterior

distributions have been discussed in Section 8.2.
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Figure 8.18: Variables distributions and joint PDF, obtained with TC8.

Figure 8.19: Variables distributions and joint PDF, obtained with TC5-TC8.

The joint PDF is visualized as a heatmap. The color intensity within the heatmap

corresponds to the density of samples: regions with warmer colors (red to yellow) indicate

higher densities of samples, whereas cooler colors (blue) represent lower densities. The

elliptical shape of the high-density region on the heatmap indicates a strong negative

correlation between q0 and α .
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The variable’s marginal distributions are displayed on the top and right sides of the heatmap.

These histograms represent the frequency distributions of the samples for the parameters, as

derived from the Bayesian inference analysis. To transition from these discrete histograms

to smooth curves, mostly used in the context of this thesis, a kernel density estimation (KSD)

technique has been employed using the ksdensity command in MATLAB. This transition has

been done as it helps visualize the density of samples in a more interpretable form.

Figure 8.20: Variables distributions and joint PDF, obtained with TC6-TC7-TC8.

However, as correlation factors for sets number 3 and 4 show, some sets define a weaker

correlation between the parameters, when compared to the rest of the sets simulated. This

suggests the possibility of performing inference with a sequential analysis, in which one

parameter is inferred using a specific set, and the other is inferred using a different one. In

particular, as shown in Table 8.1, sets 3 and 4 are found to be more informative about q0, as

they do not include radial thermocouples.

Between these two, set 4 offers more information gain about q0 than set 3, as it includes

TC6, which is closer to the surface and hence feels more the heat flux conducted through

the sample. Given that, a sequential analysis could be employed by inferring q0 using set 4

and inferring α using a different set that offers a high KL on this parameter.
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8.5 Sequential analysis

Following the considerations just discussed, a sequential analysis has been performed. In

order to verify its reliability, results have been compared with the ones previously obtained

by inferring both parameters within the same simulation and using the most informative sets.

In particular, a sequential analysis has been employed by inferring q0 using set 4, containing

TC6, and inferring α using set 6, which includes TC8. Set 4 has been chosen between the

two sets which define an almost null correlation, sets 3 and 4, as it offers the highest values

of KL on both parameters, hence being more informative. In particular, its KL on q0 is way

higher than the one for α , as displayed in Table 8.1, so it has been used for estimating this

parameter.

The first analysis has been run by setting α as constant and equal to 1.90 when inferring

q0 through set 4. This value has been chosen as it represents the arithmetic mean between

the mean values of the posterior distributions of the most informative sets reported in Section

8.2. After inference has been performed on q0, the mean value of its posterior distribution

has been taken and used as a constant value for q0 when inferring α through set 6.

Both analyses of inference have been run with 100 parallel chains and 300000 iterations,

using the AIES sampler. When inferring q0, its Seed has been chosen as equal to the Case 2

reported in Table 7.7, while, when inferring α , to the Case 1 reported in Table 7.3.

Set 4: Inference on q0

The inference performed on q0, as can be depicted in the next Table and Figure, led to

very different results when compared to the ones obtained with the most informative sets.

Both the mean and standard deviation values of the posterior are very different from the

values previously calculated, such as the ones reported in Table 7.9, for example.

Parameter Mean STD

q0 191.73 60.18

Table 8.16: Mean and STD values of the posterior, reported in W/cm2.
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This disagreement is most probably due to the very low value of Kullback Divergence

on this parameter that this set gives. In fact, the KL value on q0 for set 4 is 0.15, which is

way lower when compared to the ones obtained for the most informative sets, for example,

2.11 for set 6, as reported in Table 8.1. This is made visually very clear when looking at the

posterior PDF obtained, which is really wide, indicating a high inaccuracy.
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Figure 8.21: Posterior PDF of q0, with dashed line indicating the mean value. Values are in W/cm2.

Set 6: Inference on α

The other parameter, α , has then been inferred by taking q0 constant and equal to 191.73

W/cm2, the mean value of the posterior previously obtained.

Parameter Mean STD

α 1.6 0.035

Table 8.17: Mean and STD values of the posterior, reported in W/cm2.
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As can be visualized from the next Table and Figure, the inaccuracy regarding q0 reflects

on the estimation of α too. So, even though set 6 offers a really high KL on this parameter,

the inaccurate estimation previously obtained through set 4 leads to obtaining a posterior

distribution of α which is still very different from the ones obtained through the most

informative sets. This is a common aspect of sequential analyses, where the first analysis

always introduces a bias into the second one.
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Figure 8.22: Posterior PDF of α , with dashed line indicating the mean value.
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Chapter 9

Conclusions

The work performed in this thesis allowed for assessing the thermal conductivities ratio

and the stagnation point cold wall heat flux, respectively α and q0, through a Bayesian

inference analysis.

Before running the inference, the studies performed assessed the independence of the

inference process with respect to three different Seeds and to the Sampler chosen for the

MCMC mechanism. The convergence of the 100 parallel chains has also been investi-

gated, for both parameters, by using the Gelman-Rubin statistics. For what concerns the

discrepancy model, two values have been found by inferring the variance of the discrepancy

distribution. By performing these analyses, the inference framework later used has been set.

The inference analyses have then been run by using three of the most informative

thermocouple sets, early defined by using the KL Divergence. The discrepancy used was

100 K. Analyses using a discrepancy of 36 K did not highlight major differences. Using

a lower discrepancy variance simply allowed for obtaining higher KL values and lower

STDs, as was expected, but without leading to changes on which thermocouple sets were

more informative. The sets used, with a 100 K discrepancy variance, were set 6, containing

TC8, set 8 containing TC5 and TC8 and finally set 12, containing TC6, TC7, and TC8.

Through these, the nominal values of the two variables early declared as constant from

the work of Milos and Chen [4] have been refined. In particular, the analyses allowed for

obtaining posterior log-normal statistical distributions, finally accounting for uncertainties,

as displayed in Section 8.2.
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Of the posteriors obtained, the mean value of α has been found to be 1.92 using two of

the most informative sets, set 6 and 8, while equal to 1.87 using set 12. For what concerns

q0, its value has been found to be 171.26 W/cm2 by using sets 6 and 8, and 173.70 W/cm2

using set 12. These, along with a visualization of the distributions, have been reported in

Chapter 8.

Between the three sets used, set 12, demonstrated a slightly higher information gain

for both variables, as reported in Table 8.1. Also, set 12 showed a lower value of standard

deviation of the posterior distributions for both variables, when compared to the other two

sets (i.e. a narrower and so more precise distribution). Following these considerations, it

can be said that this set is probably slightly more reliable than the other two in estimating

the parameters’ distributions.

The results obtained (i.e. the posterior distributions) with these three most informative

sets have later been tested, by using them to estimate the temperature evolution in other

thermocouples. These forward propagation analyses showed that the posteriors calculated

using these three sets can estimate with good accuracy the temperature over time in other

TCs with the only great disagreement found to be in estimating the temperature in TC1.

As these analyses showed that the posteriors previously calculated can estimate with good

precision the experimental data in other thermocouples, they have ultimately demonstrated

that the previously found posteriors are reliable.

The inference performed on both parameters within the same simulation also allowed for

the investigation of the correlation factor between the two. In particular, this value has been

calculated for all the sets tested, as reported in Table 8.15. The most informative sets (i.e.

the most reliable) defined a correlation of -0.94. This strong negative correlation defines

that when α decreases, q0 is expected to increase almost proportionally. The correlation

between the two parameters indicates that they are dependent, and so, their value cannot be

determined separately. However, two sets, set 3 and 4, defined an almost null correlation

between the two. This result has suggested the possibility of running an inference analysis

sequentially, by inferring one parameter with one of those two sets, and the other parameter

with a different one.
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The sequential analysis has so been performed by inferring q0 using set 4 and inferring

α using set 6. The sequential analysis highlighted very different results from the ones

obtained with the sets previously tested by inferring both parameters at the same time. This

is most probably due to the fact that the KL Divergence for set 4 (even though being higher

than the one in set 3) is still very low compared to the most informative sets. For instance,

the KL, for q0, is 0.15 for set 4, while being 2.11 for set 6.

This lack of information, besides providing a value of q0 that is very different from the

previous ones when inferring this variable, has also been reflected in the inference regarding

the variable α , since the average value of the previously found q0 distribution was then used

in this simulation. At the same time, both set 3 and set 4, give even lower KL values about

α . The sequential analysis employed has so been found to be not reliable since set 3 and set

4 are not informative about either one of the two parameters. Nevertheless, the possibility of

performing a sequential analysis could still be really interesting in the context of this work,

given that by inferring other parameters higher KL values could be found in the sets that

give an almost zero correlation.
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Appendix

1.
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Figure 9.1: Posterior PDFs of α with different

Seeds for TC8.
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Figure 9.2: Posterior PDFs of α with different

Seeds for TC6-TC8.
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Figure 9.3: Posterior PDFs of q0 with different

Seeds for TC8.
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Figure 9.4: Posterior PDFs of q0 with different

Seeds for TC6-TC8.
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3.
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Figure 9.5: Posterior PDFs of α with different

samplers for TC8.
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Figure 9.6: Posterior PDFs of α with different

samplers for TC6-TC8.

4.

Set Thermocouples α Mean α STD q0 Mean q0 STD α KL q0 KL

1 TC3 1.86 0.30 172.38 3.72 0.12 2.85

2 TC4 2.01 0.35 142.57 6.80 0.01 2.17

3 TC5 2.06 0.36 217.79 73.74 0.01 0.06

4 TC6 2.00 0.34 178.00 44.90 0.01 0.36

5 TC7 1.94 0.31 157.28 37.21 0.04 0.82

6 TC8 1.91 0.08 171.50 4.85 0.96 2.58

7 TC5-TC7 1.94 0.31 157.26 27.46 0.04 0.81

8 TC5-TC8 1.91 0.09 171.50 4.87 0.96 2.58

9 TC6-TC7 1.89 0.30 161.59 26.67 0.08 0.84

10 TC6-TC8 1.91 0.08 171.53 4.86 0.96 2.58

11 TC5-TC7-TC8 1.86 0.07 173.92 4.68 1.08 2.62

12 TC6-TC7-TC8 1.86 0.07 174.09 4.67 1.10 2.62

13 TC5-TC6-TC7-TC8 1.86 0.07 174.08 4.67 1.09 2.62

Table 9.1: Inference for σ2 = 36 K, q0 in W/cm2. Mean and STD referred to posterior PDFs. KL

have been calculated with an increment of ε = 10−10.
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5.

Set Thermocouples ε = 10−12 ε = 10−10 ε = 10−08

1 TC3 0.0206 0.0206 0.0206

2 TC4 0.0088 0.0088 0.0086

3 TC5 0.0073 0.0073 0.0072

4 TC6 0.0093 0.0093 0.0092

5 TC7 0.0167 0.0167 0.0165

6 TC8 0.5306 0.5306 0.5306

7 TC5-TC7 0.0298 0.0298 0.0298

8 TC5-TC8 0.5253 0.5253 0.5253

9 TC6-TC7 0.0372 0.0372 0.0372

10 TC6-TC8 0.5090 0.5090 0.5090

11 TC5-TC7-TC8 0.6553 0.6553 0.6553

12 TC6-TC7-TC8 0.6641 0.6641 0.6641

13 TC5-TC6-TC7-TC8 0.6478 0.6478 0.6475

Table 9.2: α KL calculation dependency on ε , σ2 = 100 K.

6.

Set Thermocouples ε = 10−12 ε = 10−10 ε = 10−08

1 TC3 0.1189 0.1189 0.1184

2 TC4 0.0098 0.0098 0.0096

3 TC5 0.0092 0.0092 0.0089

4 TC6 0.0076 0.0075 0.0075

5 TC7 0.0355 0.0355 0.0352

6 TC8 0.9640 0.9640 0.9640

7 TC5-TC7 0.0387 0.0387 0.0386

8 TC5-TC8 0.9610 0.9610 0.9610

9 TC6-TC7 0.0786 0.0786 0.0785

10 TC6-TC8 0.9608 0.9608 0.9603

11 TC5-TC7-TC8 1.0789 1.0788 1.0788

12 TC6-TC7-TC8 1.0982 1.0982 1.0980

13 TC5-TC6-TC7-TC8 1.0902 1.0902 1.0901

Table 9.3: α KL calculation dependency on ε , σ2 = 36 K.
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7.

Set Thermocouples ε = 10−12 ε = 10−10 ε = 10−08

1 TC3 2.6170 2.6170 2.6168

2 TC4 1.9128 1.9128 1.9127

3 TC5 0.0586 0.0585 0.0585

4 TC6 0.1549 0.1549 0.1549

5 TC7 0.7102 0.7102 0.7103

6 TC8 2.1061 2.1061 2.1060

7 TC5-TC7 0.7033 0.7033 0.7031

8 TC5-TC8 2.1142 2.1140 2.1140

9 TC6-TC7 0.7467 0.7467 0.7467

10 TC6-TC8 2.1028 2.1027 2.1027

11 TC5-TC7-TC8 2.1697 2.1697 2.1695

12 TC6-TC7-TC8 2.1692 2.1692 2.1690

13 TC5-TC6-TC7-TC8 2.1685 2.1685 2.1683

Table 9.4: q0 KL calculation dependency on ε , σ2 = 100 K.

8.

Set Thermocouples ε = 10−12 ε = 10−10 ε = 10−08

1 TC3 2.8546 2.8546 2.8545

2 TC4 2.1704 2.1703 2.1703

3 TC5 0.0586 0.0585 0.0585

4 TC6 0.3644 0.3644 0.3642

5 TC7 0.8171 0.8171 0.8170

6 TC8 2.5809 2.5809 2.5809

7 TC5-TC7 0.8066 0.8066 0.8065

8 TC5-TC8 2.5789 2.5789 2.5789

9 TC6-TC7 0.8378 0.8378 0.8375

10 TC6-TC8 2.5805 2.5805 2.5804

11 TC5-TC7-TC8 2.6152 2.6152 2.6150

12 TC6-TC7-TC8 2.6182 2.6182 2.6181

13 TC5-TC6-TC7-TC8 2.6178 2.6178 2.6174

Table 9.5: q0 KL calculation dependency on ε , σ2 = 36 K.
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9.

Time (s) Mean - Exp (K) STD (K)

15 24.11 0.08

20 11.89 0.02

25 0.69 0.01

30 3.49 0.05

35 5.05 0.01

40 4.73 0.02

Table 9.6: TC5 estimation, differences and STD, obtained with TC8 posterior.

10.

Time (s) Mean - Exp (K) STD (K)

15 24.11 0.08

20 11.91 0.02

25 0.69 0.01

30 3.59 0.05

35 5.05 0.01

40 4.74 0.02

Table 9.7: TC5 estimation, differences and STD, obtained with TC6-TC7-TC8 posterior.

11.

Time (s) Mean - Exp (K) STD (K)

5 40.57 3.72

8 23.23 3.83

10 11.07 3.74

12 0.49 4.41

15 13.14 6.63

20 19.93 11.14

Table 9.8: TC9 estimation, differences and STD, obtained with TC8 posterior.
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12.

Time (s) Mean - Exp (K) STD (K)

5 42.18 3.36

8 24.81 3.57

10 12.19 3.61

12 0.02 4.35

15 13.66 6.50

20 22.17 10.79

Table 9.9: TC9 estimation, differences and STD, obtained with TC6-TC7-TC8 posterior.
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