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Abstract

The use of alternative fuels for future aerial or naval mobility poses several chal-
lenges, particularly for liquid fuels such as cryogenic hydrogen. When stored in
reservoirs and subjected to external excitation, they experience sloshing, the move-
ment of the free surface. This phenomenon is particularly critical from both an
inertial perspective, as forces are exerted on the tank walls, and from a thermody-
namic perspective, as cryogenic liquids suffer phase changes, leading to fluctuations
in gas pressure inside the tank. Investigating these phenomena and understanding
their underlying dynamics is essential for developing diagnostic tools and creating
a digital twin, enabling control techniques to be implemented to manage these
fluctuations and optimize them for our purposes.

This work aims to investigate the feasibility of identifying a reduced-order model
(ROM) of sloshing in horizontal cylindrical tanks. The proposed approach is to
identify the model from 2D computational fluid dynamics (CFD) simulations in
OpenFOAM. The relevant testing conditions were selected from the scaling of the
problem according to the relevant non-dimensional numbers. Then, the closure
terms of the ROM are identified from the numerical database through a data-
driven inverse method.
This approach requires a non-linear optimization step to minimize the deviations
between the model predictions and high-fidelity CFD, while the ROM’s closure
terms are expressed via parametric functions with varying degrees of complexity.
As a major outcome of this work, we assess the performance of such functions for
the most relevant sloshing condition.
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Chapter 1

Introduction

1.1 Framework

The physical phenomenon investigated in this thesis is sloshing. Formally, this can
be defined as the movement of liquid inside a tank[4]. Sloshing is easily experienced
in everyday life, for example, when we take a hot cup of tea and with involuntary
movements swing the surface from side to side of the cup with the risk of burning
ourselves.
Some examples are reported in figure 1.1

Studies on sloshing began in the 1960s [6] through the National Aeronautics and
Space Administration (NASA) for applications on space launchers. These works
were finalized after some space vehicle failures caused by sloshing, such as the
missile Jupiter IRBM fired from Cape Canaveral by NASA in 1957[7].

In 1984 Miles[8, 9] developed a theoretical study of the effects of a liquid subjected
to external forcing deriving the principal regimes. Ibrahim [4], in 2005, reviewed
the research work developed on sloshing both from a theoretical point of view and
for engineering applications. In addition to the transport part, and in particular
spacecraft, the phenomenon also affects terrestrial structures, of which nuclear
rectors are of considerable study.
From Apollo 11 (1969)[10] to Falcon 1 (2007)[11], propellant sloshing can still
cause instabilities in pitch, roll and yaw, and for that failures occur.

Sloshing is a phenomenon in which a liquid inside a partially filled is subject to
external excitations which trigger its motion. This latter excitation will set in
motion the surface of the liquid in contact with the gas, which through waves will
oscillate from one wall of the cylinder to the other.
The response of the liquid to excitation depends not only on the amplitude of
the oscillation but also on the frequency. The closer the imposed frequency is to
the resonance frequency of the tank, the more the movement of the liquid will no
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CHAPTER 1. INTRODUCTION

(a) Experimental investigation on
sloshing [2]

(b) Sloshing in a cup of coffee[5]

Figure 1.1: Liquid sloshing

longer be planar. Non-linear characters will begin to be present which makes the
regime of movement chaotic with waves jumping and falling.

The theory for vertical cylinders developed over the past 60 years does not see as
much development in detail for horizontal cylinders that are investigated in this
study.
However, more recently, the interest in this application has risen, especially in the
transportation sector (i.e., naval and aeronautics), since in these types of trans-
portation, the ideal design for the tank develops in the longitudinal direction. In
addition to the forces that are discharged on the tank walls, a phenomenon that
affects tanks filled with cryogenic propellant is the effect of pressurization[12, 13].
Pressure fluctuation that occurs in sloshing, causes a pressure variation inside the
tank due to the phase change of the cryogenic liquid, and safety valves are used
to restore the pressure to a normal condition.The drop/rise is dependent on the
boundary conditions of the system, the type of excitation, and the presence of
other species in the ullage[14, 15].
Active sloshing control would allow the oscillations to be dampened so that tech-
niques involving loss of propellant such as the relief valves described above would
not be necessary[16].

3



CHAPTER 1. INTRODUCTION

Figure 1.2: Sloshing inside a truck tank

1.2 Motivation and objectives

The purpose of this thesis is to develop a reduced model by using 2-dimensional
CFD simulations of the sloshing phenomenon inside a half-filled horizontal tank.

The advantage of constructing this Reduced Order Model (ROM) using CFD data
is to obtain results that to a good approximation reproduce those of finite-volume
simulations almost instantaneously, in contrast to CFD simulations that require a
lot of simulation time to solve.

The challenge is to find the closure terms: the damping term, which describes the
loss of mechanical energy from the sloshing waves to the container walls, and the
second is the actual mass of liquid which is "excited" due to the forcing motion.
These two terms are well accounted for in upright cylinders [17, 18], however such
is not the case in horizontal tanks.

From the simulations, we extracted the free surface height at a specific distance
from the center of the tank and the pressure distribution along the tank wall.
From the fluid height, using both the potential fluid model and a mechanical
model, the damping coefficient function is extrapolated and the relative sloshing
mass. By entering the amplitude and frequency of the forcing, to find in this way
an analogous and alternative solution to CFD. Both the force and the position of
the center of gravity were extracted from the pressure probes.

This approach opens up several possibilities for future development. It could be
possible to build a digital twin that takes force inputs from sensors, putting them
into the model gives the prediction of the center of gravity displacement over time,
or wave height movement, and implements behaviors to mitigate or control the
liquid motion inside the tank.

4



CHAPTER 1. INTRODUCTION

1.3 Thesis outline

1. Chapter 1: Introduction to sloshing. The problem is defined, motivat-
ing the engineering problems and short dissertation on the history, finally
defining the objectives.

2. Chapter 2: Definition of sloshing regimes, mathematical formulation of the
problem using potential theory and mechanical model.

3. Chapter 3: Numerical simulation setup. Convergence criteria and grid
convergence study.

4. Chapter 4: Optimization criteria formulation

5. Chapter 5: Results divided in two main sections:

• Sloshing regime identification

• Reduced Order Model identification and reliability evaluation

6. Appendix A: Finite volume solver used

5



Chapter 2

Theoretical Background

2.1 Sloshing dynamics

The present thesis tackles a cylindrical horizontal reservoir with radius R = 1 m,
infinitely long (i.e., L >> R), filled halfway with liquid and subjected to a lateral
excitation in the direction normal to the length.

Figure 2.1: Half filled horizontal cylinder [1]

In Figure 2.1 there is represented the reference tank in cylindrical coordinates
centered on the cylinder’s cross-section.

6



CHAPTER 2. THEORETICAL BACKGROUND

The approximation of the 2-dimensional phenomenon involves some limitations.
In particular, it is not possible to see how the liquid behaves in the longitudinal
direction, thus not all of the physics of the phenomenon can be taken into ac-
count. Nevertheless, for reservoirs that have a fairly low diameter-to-length ratio,
subjected to an excitation in the 2D plane, it can be a good approximation of the
mean field of the fluid inside.

The problem of the lateral excitations applied to the tank can be presented in two
ways:

1. Considering a moving reference frame, where the excitation is applied through
the rigid motion of the container

2. Considering a fixed reference frame, where sloshing is introduced via changes
in the acceleration applied to the fluid volume

Both approaches are analyzed in this work through Computational Fluids Dy-
namics simulations. By comparing them, we aim to understand whether they are
equivalent or if it is preferable to choose one approach over the other.

Considering the first approach, this work imposes a harmonic displacement on the
container with amplitude X0 and frequency Ω.

X(t) = X0 cos(Ωt) (2.1)

With the second approach, it is imposed the x-component of the acceleration to
which the fluid is subject:

f = (−X0Ω
2 cos(Ωt),−g, 0). (2.2)

Equations 2.2.1 and 2.2 are the boundary conditions in the formulation of the
problem.

2.1.1 Governing equations

Considering isothermal sloshing, we can assume that the liquid is incompressible,
ρl = const. From this, we can assume that the velocity of the fluid satisfies:

∇ · u = 0 (2.3)

where u = (ur, uθ, uy) is the velocity of the fluid in cylindrical coordinates.

The Navier-Stokes momentum equation is
∂u
∂t

+ (u · ∇)u = ν∇2u − 1

ρ
∇p+ f (2.4)

where p is the fluid pressure, and ν is the kinematics viscosity, the potential
formulation of the momentum equation is used to derive the relationship for the
displacement of the free surface.

7



CHAPTER 2. THEORETICAL BACKGROUND

2.1.2 Sloshing regimes

According to Miles [9], who investigated the sloshing phenomenon for vertical
cylinders, the response of the fluid can be seen in 3 regimes:

• Planar wave regime (PW): With an excitation frequency away enough
from the resonance frequency and with low excitation amplitude the surface
liquid motion has a planar shape. It is possible to use the linear theory to
describe the movement of the surface. The reduced order model that is de-
veloped in this work is identified using this regime that makes it predictable.

• Chaotic sloshing (CH): Characterized by a chaotic motion and wave
breaking, with many flow frequencies overlapping. Typically, the external
excitation is near the resonance frequency. The wave increases the move-
ment until the inertia equals the gravity acceleration and then there is the
wave breaking.

• Swirling sloshing (SW): In this regime, the waves have a rotational mo-
tion. Since this regime is by its nature 3-dimensional, in that the fluid moves
in a direction transverse to the direction of excitation, the case we studied,
2D, cannot show this type of regime.

Figure 2.2 presents the sloshing regimes described above

Figure 2.2: Visualisation of sloshing regimes in a vertical cylinder [2].

In figure 2.3 the phase diagram is shown applied to a vertical cylinder using
Miles’[8] weakly nonlinear theory just for the first natural frequency which is the
dominant one, as demonstrated in section 6.1 (and most commonly observed in
practical applications [15]). the boundaries between the regimes are derived from

X0

R
=

1

1.684

(
(Ω/ω11)

2 − 1

βi

)3/2

(2.5)

8



CHAPTER 2. THEORETICAL BACKGROUND

Figure 2.3: Sloshing regimes for upright cylinders

ω11 is the first natural frequency for an upright cylinder, βi are fixed values that
separate the different regimes: β2 = −0.36,β3 = −1.55,β4 = 0.735, they are
derived from stability analyses of the solution evaluated with one of the regimes.

This theory, although valid for vertical cylinders, is also valid to explain the phe-
nomenon for horizontal cylinders although the boundary values between the vari-
ous regimes are not the same.

2.2 Linear sloshing potential flow

Following the strategy described by [18][1][19] which are based on a linear model
using the potential vector Φ. We reported the approximations of the linear model
that uses a potential function

• Irrotational velocity field −→ ∇× u = 0

• Incompressible fluid −→ ρ = cost. −→ ∇2u = 0

• uy(y = 0) ≃ ∂η
∂t

≃ (∂ϕ
∂z
)z=0

• Linear phenomena: Low velocity and small displacements

• No surface tension σ = 0

• Rigid container walls

• 2D phenomena

9



CHAPTER 2. THEORETICAL BACKGROUND

With this hypothesis we can build a potential function, whose directional deriva-
tive of this velocity potential function Φ(r, θ, t), at any point in the fluid, is the
velocity of the fluid in that direction at the given point:

u = ∇Φ

2.2.1 Potential solution for half filled tank

The velocity potential function Φ(r, θ, z, t) satisfy Laplace equation 2.6

∇2
Φ = 0 (2.6)

which in polar coordinates, using the notation described in the Figure 2.1, becomes
equation 2.7

∇2
Φ =

1

r

∂

∂r

(
r
∂Φ

∂r

)
+

1

r2
∂2
Φ

∂θ2
+

∂2
Φ

∂z2
= 0 r < R,−π/2 < θ < π/2, 0 < z < L

(2.7)
considering a 2D hypotesis we have also:

∂2
Φ

∂z2
= 0

We can linearize the problem by assuming that the displacements we apply are
small enough to derive the free-surface condition described by

∂Φ

∂t
− gη = 0 at θ = ±π/2, r < R, 0 < z < L (2.8)

with η the displacement of the free surface, and

±1

r

∂Φ

∂θ
+

∂η

∂t
= 0 at θ = ±π/2, r < R, 0 < z < L (2.9)

Another boundary condition of fundamental importance is the kinematic condition
described by equation 2.10

∂Φ

∂r
= −Ẋ(t) sin(θ) r = R (2.10)

in which the forcing of our system that sets the fluid in motion appears for the
first time in the set of equations. We assume a harmonic displacement reported
in equation the velocity of the displacement is:

Ẋ = −X0Ω sin(Ωt) (2.11)

10



CHAPTER 2. THEORETICAL BACKGROUND

Thus, we can divide the motion of the rigid body from the sloshing motion inside
the tank as two contributions, the first given by the uniform motion of the outer
cylinder and the second given by the motion of the fluid inside the cylinder

Φ(r, θ, z, t) = ΦU + Φ̃ (2.12)

Dividing the two contributions in this way, we have that the cylinder’s motion is
simply described by the equation describing its oscillation in time

ΦU = Ẋ(t) = −Ẋ(t)r sin(θ) (2.13)

and the final equation is

∂2
Φ̃

∂t2
± g

r

∂Φ̃

∂θ
= −∂2

ΦU

∂t2
θ = ±π

2
(2.14)

From [1], we have that the solution of the sloshing motion for half-filled cylindrical
tanks is given by a function of the time q multiplying a function of form which for
the case of a half-filled cylinder has a very simple shape:

Φ̃(r, θ, t) =
∞∑
n=1

q̇n(t)r
n sin(nθ), z = const (2.15)

that can be simplified by using only the first two terms, so we can write

Φ(r, θ, t) = q̇1r sin(θ) + q̇2r
2 sin(2θ). (2.16)

Then, we derive q̇1 by solving the boundary condition equation 2.8 that reduces
to the

q̈1 + 2ωnζq̇1 + ω2
nq1 = X0Ω

2 cos(Ωt) (2.17)
in which appears the natural frequency ωn and the damping ratio ζ. This result
comes out by considering the truncation to the first term of the proposed solution
for the potential flow, where we see that the term relating to q̇2 for evaluating the
maximum wall displacement is not needed.

Finally is it possible to derive the displacement we are interested in, η by solving
the boundary equation eq. 2.8 valid for θ = ±π/2:

η = −1

g

∂Φ

∂t
(2.18)

considering that we wish to extract the displacement of the surface at a fixed
radius r̄ and for θ = π/2 which allows us to calculate the vertical displacement,
the equation 2.16 becomes,

Φ(r̄, π/2, t) = q̇1r̄

therefore the displacement will be

η = − r̄

g
q̈2 (2.19)

11



CHAPTER 2. THEORETICAL BACKGROUND

2.2.2 Natural frequencies and sloshing masses

Considering a non-deformable tank under transverse excitation along the x-direction
is possible to derive the sloshing frequencies of the system using the procedure de-
scribed in [19]. This approach identifies the sloshing frequencies as the eigenvalues
of the linear system:

([K]− ω2
k[M ])Ψk = 0, k = 1, 2, 3, ..., Ñ (2.20)

in which the mass [M ] and stiffness [K] matrices are defined as function of the
particular spatial functions [N ]:

[M ] =
1

g

∫
Σ

[N ]T [N ]dΣ

[K] =

∫
Σ

[B]T [B]dV

with V the volume of the fluid, and Σ the free surface area.

The indices of the mass and stiffness matrices are computed with

Kmn =


2mnLRm+n sin

(
m−n
2

π
)

(m− n)(m+ n)
, m ̸= n

mπ

2
LR2m, m = n

Mmn =
2LRm+n+1

g(m+ n+ 1
sin

(mπ

2

)
sin

(nπ
2

)
Solving the corresponding eigenvalue problem yields the resonance frequencies for
a half-filled cylinder, considering L = 1 m and R = 1 m natural frequencies ωi of
the system were obtained. It was seen how the choice of N̄ and thus the size of
the matrix system is important since the more we increase the size of the system
the more the eigenvalues, natural frequencies of the system, achieve convergence.
In our case N̄ = 20 was imposed to obtain the results described in table 2.1

Table 2.1: Natural frequency half filled tank

Natural frequency [rad/s]

ω1 3.645
ω2 6.751
ω3 8.754
ω4 10.369

From this formulation, it is possible also extract the sloshing masses for the half-
filled cylinder that are reported in table 2.2. It can be seen that the preponderant
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CHAPTER 2. THEORETICAL BACKGROUND

mass is that relating to the first natural frequency, in according with [4], while
those relating to the other resonance frequencies being orders of magnitude smaller,
they can be neglected.

Table 2.2: Sloshing masses from potential theory

m1|sl m2|sl m3|sl m4|sl

0.569 0.0177 0.00405 0.00153

2.3 Equivalent mechanical model

The linear models commonly used to describe the sloshing are the pendulum model
and the mass-spring-damper model[20][21].

We use the latter, in this model there is a fixed mass m0 in the bottom of the
container and several mobile sloshing masses mn|sl, these masses are connected to
the container by springs and damping with stiffness kn and damping constant ζn
as we can see in figure 2.4

Figure 2.4: Sloshing mechanical model

According to [20], considering a container moving only along the transverse axis
the motion can be described by the equation

ẍn + 2ζnωnẋn + ω2
nxn = X0Ω

2cos(Ωt) (2.21)

in which xn is the displacement of the n-th sloshing mass.

This model makes it possible to evaluate the displacement of the liquid at the
wall η̄, where the radius is maximum: r = R. However, considering that the

13



CHAPTER 2. THEORETICAL BACKGROUND

phenomenon considered is linear, it is possible to use interpolation to find the
height of the liquid at points inside the horizontal cylinder.

The maximum height η̄ is the sum of the height caused by each sloshing mass ηn

η̄ =
4
∑

n xnmn|sl

πR3ρ
, (2.22)

mn|sl, the n-th sloshing mass can be considered as a percentage of the total mass,
it is possible to derive it from the potential solution as described in section 2.2.2.
The total mass in our case with an half-filled horizontal cylinder is:

mtot =
πR2

2
ρ

The advantages of this model are:

• Obtain real-time data

• Derive responses for weakly nonlinear motion.

• It’s possible to apply to any shape of tank

• It is possible to change the filling percentage of the tank and obtain result
changing the natural frequency parameter ωi

2.4 ROM formulation

The two models for extracting the surface height of the liquid inside the cylinder
can now be compared:
Equation 2.21 from the mechanical model can be compared with the Eq. 2.17
from the potential model, both approaches are based on a second-order differential
equation. The difference between the two models is that the mechanical model
takes into account the sloshing mass and uses this information to calculate the
surface height.

One of the aims of this thesis is to compare the two models, the mechanical model
and the potential fluid model, to assess which model is better at identifying the
reduced model, so both models were taken into account for the reduced model.

As shown in the following chapters with numerical simulations (chapter 4), the
response we expect when we input a harmonic displacement/acceleration force,
looking at the evolution of the height, can be divided into two, depending on the
sloshing regime:

14
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• Planar sloshing: In planar sloshing, looking at the evolution of the height
of the surface at a fixed radius as a function of time, we monitor how the
output oscillates between a maximum and a minimum value where, as time
passes, the amplitude of the motion decreases. This decay occurs because,
in the initial phase, in addition to the frequency of the forcer, the natural
frequencies are also excited. Then, as the power of the natural frequencies is
damped, periodic conditions are reached. Here, the surface height oscillates
at the frequency of the forcer.

• Chaotic sloshing: In the chaotic regime, the behavior of the evolution of
the surface with a fixed radius as a function of time is completely different,
periodic conditions are never reached and the excited frequencies are many
more. Moreover, in this case, where the displacements are large and therefore
so are the velocities, the assumptions of the linear model decay, and the
waves seen on the surface of the liquid increasingly increase in height until
the force of inertia equals the force of gravity, at which time the wave falls
and the cycle resumes.
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Chapter 3

Nondimensionalization and Scaling

When approaching a fluid dynamics problem, scaling and non-dimensionalization
are powerful techniques that allow for the simplification of the governing equations.
This process also helps in identifying the key dimensionless numbers that govern
the flow behavior, which can be crucial for understanding the physics involved and
for scaling the results to different situations.

The advantages of presenting fluid dynamics problems in their nondimensional
form are:

• Reduction in the number of parameters: By expressing the problem in terms
of dimensionless numbers, making it easier to identify the controlling physical
processes.

• Universal solutions: Nondimensionalization allows the results of a particular
problem to be generalized and applied to other problems with similar di-
mensionless parameters, facilitating the comparison of different flow regimes.
Very important if we are to compare the results obtained with experimental
analyses.

• Enhanced insight into physical behavior: The relative magnitudes of the
dimensionless numbers highlight the significance of various forces or effects,
such as inertia, viscosity, pressure and gravity, in the flow field.

Dimensionless numbers can be derived using the Buckingham theorem [22] or by
scaling the governing equations of the flow as described in [23], the second approach
was used. In the scaling equation approach, these non-dimensional numbers are
directly given by the governing equations as well as the boundary and initial
conditions of the system.
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CHAPTER 3. NONDIMENSIONALIZATION AND SCALING

3.1 Dimensionless numbers

To derive the non-dimensional numbers, we started from the momentum equation
by dividing it into parameters and variables.
The reference values were chosen for the variables, and the equations were rewrit-
ten in dimensionless form by dividing by those reference quantities momentum
balance for incompressible fluid.

Considering Eq. 2.4, which describes the Navier-Stokes momentum equation we
change the dimensional variables with the reference quantities, chosen based on
the main parameters of our phenomenon and reported in table 3.1

Table 3.1: Reference quantites for scaling

Quantity Reference quantity

Reference length R
Reference time R

X0Ω

Reference velocity ΩX0

Reference acceleration g
Reference pressure ρ(ΩX0)

2

The non-dimensional conservation of mass and momentum equations are

∇∗ · u∗ = 0 (3.1)

∂u∗

∂t∗
= −∇∗p∗ +

1

Fr
f∗ +

1

Re
∇∗2u∗ (3.2)

The dimensionless number that emerged is the Froude number, representing the
ratio between inertia and gravitational forces, defined as:

Fr =
convection

gravity
=

V̄ 2

gL̄

and the Reynolds number, representing the ratio between inertial forces and vis-
cosity forces defined:

Re =
convection
viscosity

=
V̄ L̄

ν
(3.3)

where V̄ and L̄ are the general reference velocity and length, using the reference
values defined before, Fr and Re number becomes:

Fr =
(X0Ω)

2

gR
(3.4)

Re =
X0ΩR

ν
(3.5)
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neglecting viscosity due to the potential solution assumption the only non-dimensional
parameter is the Froude number and the non-dimensional momentum equation is
reduced to:

∂u∗

∂t∗
= −∇∗p∗ +

1

Fr
f∗ (3.6)

from the non-dimensioning of the kinematic boundary condition (Eq. 2.2.1) we
derive two additional non-dimensional numbers that are used to define the simu-
lation database:

L1 =
X0

R
(3.7)

L2 =
Ω

ω1

(3.8)

The first natural frequency ω1, as reported in section 2.2.2, is a function of the
tank’s fill percentage and its dimensions. Since both parameters are treated as
constant in this work, ω1 is also constant. Substituting equation 3.7 into equation
3.4, we obtain the new definition for the Froude number, which becomes:

Fr =
(L1L2)

2ω2
1R

g
(3.9)

By defining a range of values for the dimensionless parameters L1 and L2, we
generate the various cases to be evaluated with fluid dynamic simulations. Thus,
the excitation conditions tested in work (i.e., the databse generated from CFD
simulations) are reported in the simulation matrix table 3.2.

Table 3.2: Simulation matrix

Simulation parameters

L1 0.01 0.0325 0.055 0.0775 0.1

L2 0.603 0.634 0.664 0.694 0.724 0.754 0.784 0.815 0.845 0.875
0.905 0.935 0.965 0.996 1.026 1.056 1.086 1.116 1.146 1.177

3.2 Scaling similarity

3.2.1 Geometry similarity

In order to have a scaling relationship between the simulations we have performed
with experimental results, we must ensure that the ratio of the lengths of the two
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CHAPTER 3. NONDIMENSIONALIZATION AND SCALING

set-ups are the same (e.g. the ratio of radii sholud be equal to the length ratio),
possible geometry reference variables can be

• Radius of the cylinder

• Filling percentage(height of the liquid)

• Length of the cylinder

The length of the cylinder radius and thus its transverse dimensions are fixed at
R = 1 m. The filling percentage is fixed too at 50% of the tank. The length of
the cylinder is not taken into account as the model is focused on a 2-dimensional
formulation of the phenomenon, both through the analytical model and the nu-
merical simulations performed. This assumption is valid if are considered cylinders
subjected to transverse forcing and sufficiently long, the theory would predict that
the length tends to infinity or at least that the ratio between radius and length is
sufficiently low

L

R
≪ 1

3.2.2 Kinematic similarity

Kinematic similarity is imposed by the excitation parameters of the system derived
from the boundary condition 2.10. The excitation parameters are the amplitude
and frequency of the imposed harmonic displacement. These are written in di-
mensionless form L1 and L2. Besides dictating the amplitude of the motion, these
parameters also dictate the observed wave regime.

These two parameters are expressed in terms of the Froude number. Thus, by
preserving this parameter the kinematic similarity is confirmed

3.2.3 Dynamic Similarity

Dynamic similarity: force scale ratios are the same. It is assured if the dimension-
less numbers defined in the problem are preserved.

Since the model used is that of the potential fluid, it is possible to neglect the
surface tension and the viscous terms. So, the only nondimensional number is the
Froude number defined with the input amplitude and frequency of the displace-
ment applied to the tank.

By exemplifying the fluid model so much several nondimensional numbers are lost.
Some are very important for sloshing such as the Reynolds number defined before
and the Weber number defines the ratio between the pressure forces and Surface
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tension. From the Weber number and the Froude number it can be defined the
Bond number:

Bo =
We
Fr

With all these numbers the hydrodynamic regimes of the sloshing phenomena are
defined and in figure 3.1 it is possible to see the different hydrodynamic regimes
defined via the non-dimensional numbers.

Figure 3.1: Hydrodinamic regimes [3]

An assessment of the number of Bonds makes it possible to evaluate which of the
surface tension and the force of gravity has more importance in the phenomenon.
Given the boundary conditions, it is to be expected that gravity will predominate
and the Bond number will be very high. In any case, an evaluation of it is always
appropriate to assess a priori what the sloshing conditions are.
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Chapter 4

Numerical simulations for lateral
sloshing

In this chapter, CFD simulations are conducted to create a database for calibrating
the simplified models: the potential model and the mechanical model described
in sections 2.3 and 2.2, which, given their nature of simplification, do not account
for all the physics.
By simulating excitation frequencies close to the first resonance frequency, the
results from potential flow or the linear mechanical model are no longer applicable.
Furthermore, there is no information on the values of the damping coefficient ζ
and sloshing mass mi|sl other than values derived from theories.

This chapter describes how the numerical simulations were set up: the software
used, the convergence criteria and the methods for post-processing the results.

4.1 Numerical set-up

To conduct the simulations, the open-source software OpenFOAM (v2206) [24] is
utilized, by using the Finite Volume Method (FVM).

After discretizing the spatial domain into an ensemble of finite volumes, the FVM
implements conservation laws over the volumes comprising the mesh, transform-
ing partial differential equations into algebraic equations. These equations are
iteratively solved, adhering to boundary and initial conditions, until convergence
is achieved. An overview of the cycles used is reported in Appendix A. Given the
transient nature of the problem, the iteration loop is resolved for each time-step.

Parameters that change between one simulation and another are the amplitude
and frequency of oscillation applied to the tank. These input parameters were
chosen through changing the Froude number defined in the previous chapter.
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Figure 4.1: Volume of Fluids approach

The two fluids chosen for the simulations are water and air, their properties are
evaluated at room temperature conditions and they are reported in table 4.1. The
interface surface tension between the two phases is set to σ = 0.07kg/s2. Since the
models used for comparison of the phenomenon are 2-dimensional, the simulations
are also be 2-D.

Table 4.1: Simulation phases

Phase Density [kg/m3] Kinematic viscosity [m2/s]

water 998.2 10−6

air 1 1.48 ∗ 10−5

4.1.1 Volume of Fluids

The solver uses the Volume of Fluids approach which is a technique used to sim-
ulate two immiscible fluids, it is used to predict the flow dynamics in free surface
flows as in our case.

The VoF method [25] in OpenFOAM divides the computational domain into cells
as figure 4.1 shows, and assigns each cell a fraction value that represents the
volume fraction of one of the fluids. This fraction is 1 in cells fully occupied by
the fluid, 0 in cells with no presence of the other fluid, and between 0 and 1 in
cells that are at the interface between fluids.

In figure 4.2 we can see the α field with the half-filled tank considered in our study,
in rest conditions. In the middle of the tank, we can see the interface of the surface
where there is the highest gradient of α, for this reason, the refinement of the grid
is applied in this region of the domain with a structured mesh. The criterion of
how the mesh is refined is described later in this chapter.
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Figure 4.2: Half filled cylinder

The density ρ and the kinetics viscosity ν are defined

ρ = αρ1 + (1− α)ρ2

ν = αν1 + (1− α)ν2

The movement of the free surface is given by solving the advection equation

∂α

∂t
+∇ · (αu) = 0 (4.1)

4.1.2 interFoam solver

The solver used is interFoam, which allows for 2 incompressible and immisci-
ble phases in the computational domain. It enables time-dependent simulations,
allowing us to obtain the transient behavior of the simulation in isothermal con-
ditions. The approach use the Volume of Fluids approach used in the solver is
described in section 4.1.1.

The solver does not consider the energy equation as it is isothermal, the mass con-
servation equation consists of the incompressibility condition expressed in equation
2.3, the equation of conservation of momentum, already reported in equation 2.4,
in cartesian coordinates is:

∂(ρui)

∂t
+

∂

∂xj

(ρujui) = − ∂p

∂xi

+
∂

∂xj

(τij + τtij) + ρfi + fσi

where τij and τtij are the viscous and turbulent stresses and fσi is the surface
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tension. Surface tension is modeled as continuum surface force calculated

fσi = σκ
∂α

∂xi

whith α that is the relative percentage of one fluid in the considered cell and κ
the curvature of the volume, given by:

κ = ∇ ·
(
∇α

|α|

)

The pressure in this solver is:

prgh = p− ρf · x (4.2)

where x is the position vector and prgh is the pressure obtained removing the
hydrostatic component to the total pressure.
This change of variable modifies the momentum equation replacing the pressure
with the new reference pressure.

The interface is captured by solving the advection equation with a compression
term that reduces the numerical diffusion, in this compression term that is defined

∇ · (α(1− α)uc (4.3)

where the relative velocity uc is defined

uc = Cα|u|
∇α

|∇α|
(4.4)

where the Cα parameter is set in the controlDict file and quantify the magnitude
of the compression term, in the simulations that we did was set Cα = 0.1

Table 4.2: Simulation set-up values

Variable Value

Max Co 0.1
Max Cα 0.1
Output Sample 10 Hz
Time-tep Adjustable
Time-scheme Euler

In table 4.2 are reported some setup settings adopted in the simulations.

4.2 Forcing application

The sloshing of the liquid inside the tank can be implemented using two methods,
as mentioned in section 2.1:
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• By imposing a rigid movement of the tank, numerically, it is achieved through
the motion of the mesh using the dynamicMesh tool from the software.

• Considering a reference frame that keeps the tank stationary, the acceleration
term in the Navier-Stokes equations is made to be time-dependent, such that
the x-component is the forcing, equation 2.2.

Both methods were tested to assess differences in the results and the simulation
runtime as we describe in section 4.3.1. Following this, one was selected based on
various considerations related to the results and the progression of the work.

4.2.1 Dynamic Mesh

With the dynamic mesh a rigid movement is imposed on the tank using the dy-
namic mesh solver adding in the dynamicMeshDict file, the algorithm chosen is
the one below:

motionSolver solidBody;

solidBodyMotionFunction oscillatingLinearMotion;

in this case the mesh moves in oscillatory motion, through the amplitude and
frequency inputs each point of the mesh moves according to the law

x(t) = X0 sin(Ωt)

At each simulated time instant, the mesh must be regenerated, which means that
we have an additional computational cost associated with this process. As de-
scribed in section 4.3.1, this increase in simulation time is considerable, especially
when the oscillation frequency is very close to the resonance frequency.

4.2.2 Time-dependent acceleration

After conducting tests with the dynamic mesh, we use the other approach using
a time-dependent acceleration. The solver, which previously accepted a constant
acceleration (typically used to represent the constant value of gravitational acceler-
ation), has been modified to accommodate a time-dependent value, in x-Direction.
The momentum equation previously reported in Eq. 4.1.2 becomes

∂(ρui)

∂t
+

∂

∂xj

(ρujui) = − ∂p

∂xi

+
∂

∂xj

(τij + τtij) + ρ(X0ω
2 cos(ωt), g, 0) + fσi.

25



CHAPTER 4. NUMERICAL SIMULATIONS FOR LATERAL SLOSHING

The modified solver, called interDispFoam, accepts an input file named accelerationDict,
which contains the magnitude and frequency of the tank acceleration, as well as
the gravitational acceleration in this form:

accelerationCoeffs
{

amplitude (ForcingAmplitude 0 0); // [m]
omega (ForcingFrequency 0 0); // [rad/s]

}
gravityAcceleration
{

gravity (0 -9.81 0); // [m/s^2]
}

The implementation of this code is described in Appendix A.1.

One of the reasons for choosing this method is to utilize ‘dynamicMeshRefinement‘,
a technique for adapting mesh refinement based on the gradient of one variable, in
this case, α. This approach allows to refine the mesh in proximity of the surface
interface, where there’s a need for higher resolution to accurately evaluate the
interface position, while creating a coarser mesh in areas of lesser interest.
This strategy aims to reduce the number of cells and, consequently, shorten simu-
lation times by concentrating computational resources on the most critical areas.

However, the dynamicMeshRefinement was later abandoned due to conflicts be-
tween the dynamic Mesh Refinement tool, which works well for 3-D domains or
2-D structured mesh, but creates problems for our conditions, polar mesh, and 2D
domain.

These two approaches are compared in section 4.3.1, the outcomes of that com-
parison determine the strategy employed to generate the database.

4.3 Simulation outputs

The quantities of interest taken from the simulation for the sake of comparison
with reduced-order models are:

• The height of the free surface for a specific point at a fixed radius as a
function of time. The point chosen is for r̄ = 0.75 m as can be seen in figure
4.3.

• The pressure distribution at the wall of the domain.
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to obtain a visual result of the simulations, the entire field of results was also saved
for certain simulated instants.

For the height extrapolation, a certain number of probes are inserted along the line
shown in figure 4.3, which outputs the value of α at the fixed sampling frequency
of 10 Hz.
These values are interpolated to determine the height of the interface location
which we approximate to the height relative to α = 0.5. With good approximation,
this point can be considered as the location of the liquid’s free surface.

Figure 4.3: Probe location

The second parameter is the wall pressure distribution, where a series of probes
provide pressure information normal to the domain with a specific acquisition
frequency of 10 Hz. By decomposing the pressure into the two Cartesian con-
tributions x and y, and integrating these components along the reference surface
(which, in this case, is the arc of a circle between two continuous probes), the
force in the two Cartesian directions can also be determined.

As shown in figure 4.4, the pressure contribution in the transverse direction to the
tank is depicted for a specific simulation time. Observing the contribution on the
y-axis reveals it to be orders of magnitude greater than the contribution in the
x-direction. This discrepancy is attributed to the weight force of the fluid, which,
in the scenario under consideration, is primarily exerted in the y-direction.

From the wall pressure probes, the position of the center of gravity can also be
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Figure 4.4: Pressure x-direction

derived by calculating the the torque, per unit length, in the two directions:

Tx =
∑
i

xi · pi (4.5)

Ty =
∑
i

yi · pi (4.6)

where Tx and Ty are the torque per unit length relative at each probe, then dividing
by the sum of the pressures, the coordinates of the center of gravity are obtained

xCG =
Tx∑
i pi

(4.7)

yCG =
Ty∑
i pi

(4.8)

In rest conditions, the center of gravity of the tank with respect to the center of
the cylinder is:

xCG = 0.0008 m
yCG = −0.733 m

and is also shown in figure 4.5, the motivations about the x-position of the CG
that is not exactly centered in 0 should be a caused by the mesh or by the finite
number of pressure probes..

4.3.1 Simulation strategy comparison

It is crucial to verify whether the two approaches, dynamic mesh, and time-
dependent acceleration, yield the same results and thus prove to be equivalent.
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Figure 4.5: Centre of Gravity in rest conditions

For these reasons, the relevant data have been extrapolated, and figure 4.6 shows
the difference between the two approaches. In this case, simulation No. 42
(L1 = 0.0325, L2 = 0.633) was taken as a reference, comparing the two simu-
lation methods at the initial and final moments.

Figure 4.6: Dynamic mesh vs. acceleration

It can be observed that, initially, the simulations are not in phase. This discrep-
ancy arises from the method of acceleration implementation within the solver;
specifically, the time-dependent acceleration utilizes a cosine function, whereas
the dynamic mesh employs a sine function. Despite this phase variation, it is ev-
ident that the solution involving the moving mesh exhibits higher surface height
values than the acceleration.

Especially in the transient, we can better see the difference between the two ap-
proaches by plotting the envelopes, a technique to track the peaks of the simula-
tion better described in section 5.1, of the two simulations in figure 4.7. Although
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under periodic conditions the maximum height reached is the same for the two
simulations we have a not inconsiderable difference between the two approaches in
the transient. Surface height at initial instants is 22% greater for dynamic mesh
than the time-dependent acceleration.

Figure 4.7: Dynamic mesh vs. acceleration: Envelope

Another problem identified with using the dynamic mesh is that, at each time
step, the solver has to reconstruct the computational grid, which increases the
simulation runtime.

To show this, a benchmark was conducted. test by considering 2 simulations, one
near resonance and the other far from resonance as an example of planar and
chaotic regime (Sim No. 42 L1 = 0.0325, L2 = 0.633, Sim No.54 L1 = 0.0325,
L2 = 0.996). As observed in the figure 4.8, we show, for each second of physical
simulation, how many seconds of computational simulation are used.
These benchmark tests were carried out using the same hardware under the same
operating conditions.

Considering the necessity to conduct numerous simulations, it is preferable to
minimize simulation time.

Figure 4.8: Calculation Time
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Defining τ a parameter representing the time it takes the software to simulate one
second of physical time If an average of the simulation times is considered with
the two approaches, simulations using a dynamic mesh realize a +820% of average
simulation time for the chaotic simulation and +51% for the planar simulation.

From the tests and considerations reported in this section, it was decided to choose
the time-dependent acceleration for the simulation strategy. In this way, we greatly
reduced simulation times, especially under chaotic conditions. A comparison study
with experimental data is deemed necessary.

4.4 Grid convergence study

A grid study is conducted to evaluate the required level of grid refinement neces-
sary to achieve consistent results. Especially for sloshing simulations the choice
of the mesh plays a critical role in the success of the simulation. The effects of
the wall are by no means negligible, a large part of the sloshing mass is in contact
with the wall where friction develops and tends to dampen the movement.

Given the geometry of the domain, represented by a 2-D circle, a semi-polar mesh
is utilized, wherein a band is defined of varying height in the center in which
a structured mesh is to be constructed. This hybrid approach is used because
building a structured mesh over the entire domain is complex due to the presence
of wall curvature, whereas a purely polar mesh would have problems in the center
of the domain where the polar lines converge, resulting in cells with too much
difference in size.

The criterion for choosing how refined the mesh starts from the results of the
potential flow theory, at least in cases where it fell within the planar sloshing
regime. The AR ratio parameter was defined. between the cell’s height in the
refinement zone and the wave’s height according to the potential theory, section
2.2:

AR =
Cell Height

Potential Height
Then, a series of simulations was conducted wherein this ratio was gradually de-
creased until a plateau value was reached through calculation.

Once these convergence conditions were reached, the ratio was maintained con-
stant and applied in all simulations to derive the height of the cell in the refinement
zone. Therefore, with this approach, a different mesh is employed for each simu-
lation (since the periodic-state maximum height varies for each forcing). Just one
simulation with specific amplitude and frequency values, away from resonance,
was used to assess this ratio.

Since most of the fluid is in contact with the wall, the addition of a structured
boundary layer is fundamental in our mesh. As described in [26], excluding a
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Boundary Layer near the wall yields significant differences in the final results,
viscous damping effect captured by the boundary layer grid also has an important
influence on wave elevation.

According to this reference, the boundary layer thickness can be estimated as

yBL =
4.6√

ω1/(2ν)
.

Since the resonance frequency depends only on the percentage of cylinder fill
and on the Radius of the cylinder, we have a constant value of Boundary Layer
refinement height, yBL = const..

As depicted in Figure 4.9, including wall-structured mesh results in increased
damping throughout the cylinder. Notably, both the periodic wave height and
damping factor exhibit variations. With the additional damping introduced by
the boundary layer, it is observed that the wave height diminishes, while the
transient behavior is characterized by more pronounced damping.

Figure 4.9: Simulation comparison without Boundary Layer

For grid studies, the simulation began with the coarser grid and was gradually
refined to lower the aforementioned ratio.

Once the fluid motion becomes purely harmonic for one mesh, the result of that
mesh is interpolated onto a finer mesh using the OpenFOAM tool mapFields.
It’s a utility for transferring field data (i.e. pressure, velocity, and α in our case)
between different meshes and is useful for comparing results across refining meshes.

Subsequently, the simulation is restarted to reach the periodic state again for the
new mesh, and the differences between the meshes are evaluated until convergence
on the periodic height from one mesh to another is achieved.

In particular, this work was carried out for a case where it was known that the
phenomenon resulted in pure planar motion, namely for L1 = 0.01 and L2 = 0.68.
In table 4.4 we reported the values for the meshes, and in figure 4.14 are shown
the values of height of the free surface at r = 0.75 m. The periodic peak height is
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Figure 4.10: very Coarse mesh

Figure 4.11: Middle mesh

taken by taking an average of the height in the last 3 peaks in steady conditions.
In figure 4.10,4.11 and 4.12 we reported 3 meshes from the grid refinement study

After this study, free-damping simulations were conducted: once convergence in
the meshes had been reached, the acceleration in the x-direction was set to 0
letting the system dampen the oscillatory movement.

Figure 4.13 shows that in this case, the choice of mesh plays a significant role,
much more so than in simulations where acceleration was present. In this case,
the damping factor varies considerably from one mesh to another and then settles
at a constant value.

Once the free damping envelopes are obtained, the damping coefficient is evaluated

Figure 4.12: Fine mesh
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ζ by using the average logarithmic decrease[27]:

δ̄ =
∑
n

ln

(
ηn
ηn+1

)

ζ =
δ̄√

4π2 + δ̄2

in table 4.3 the evaluation of ζ is reported for the meshes used.

Table 4.3: Damping coefficient in free damping

Mesh ζ

very Coarse 0.007848
Middle 0.005451
Fine 0.005431
very Fine 0.005429

Figure 4.13: Grid refinement study in free damping

Table 4.4: Grid studies

Mesh Layers number Cell height [mm] CFD
periodic height [mm] AR CFD/potential

[-]

Very coarse 20 20 9.216 2.068 0.953
Coarse 34 11.765 8.810 1.217 0.911
Middle 46 8.696 8.603 0.899 0.890
Fine 66 6.061 8.683 0.627 0.898

Very fine 80 5 8.750 0.517 0.905
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Figure 4.14: Grids refinement

Figure 4.15: Grids refinement study

After these considerations, the process involved selecting the most appropriate AR
value, considering both the convergence of the peak value of the wave height and
the free damping factor. This led us to choose, as shown in the table4.4

AR = 0.627

By simulating in free damping, however, it was seen that the value of AR varies
considerably between the "Middle" and "Fine" meshes, while it differs little be-
tween the latter two meshes. This led us to choose the "Fine" mesh for the correct
value of AR.
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Chapter 5

Reduced-order model calibration

Various optimization algorithms were used to identify the reduced model, based on
minimizing a variable that indicates how far the model deviates from the results
produced by CFD.

In this part of the thesis we aim to employ the results derived from CFD to formu-
late an optimization problem from which we can fit the results of the mechanical
model, thereby identifying its unknown parameters. From this model, the two un-
knowns are the damping coefficient and the percentage of mass relative to the first
sloshing mode. These two parameters must be optimized to match the envelope
of heights from the CFD simulations with those predicted by the reduced model.

5.1 Cost Function

The cost function, quantifies the difference between the predicted output of the
model and the actual output, which in our case are the CFD results. It serves as
a measure of error or loss, guiding the optimization process.
The goal of the optimization part is to minimize this value to find the optimal
parameters of the model. The choice of cost function depends on the nature of
the problem and significantly influences the effectiveness and convergence of the
optimization algorithm used.

Three types of cost functions were tested, based on the mean square of some
function of the difference between the predicted function and the CFD data, this
3 difference functions are:

1. Difference Point to point

2. Difference between Hilbert transforms functions
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3. Difference between Envelopes

Point to point difference: we subtract the height of the surface extracted by
the CFD from the height of the surface output of the reduced model time instant
by time instant. The cost function is defined

J =
∑
i

(ηmodel,i − ηCFD,i)
2

main problem using this approach is that if the predicted data from the model
is not in phase with the CFD data the does not provide valuable insight on the
model performance.The main reason it does not work is because if the reduced
model result gives us a solution that is not exactly in phase with the numerical
results, the cost function is comparing different time instants. And so you are not
comparing the model with the numerical results in the best possible way.

Hilbert transform: Hilbert transformation is a mathematical operation that
transforms a real-valued function into another real-valued function, providing the
analytic signal from the original function. The transform is found by calculating
the convolution of the signal x(t) with the function h(t) = 1/(πt).
The equation to find this transformation is defined as follow:

H(x)(t) =
2

π
lim
ε→0

∫ ∞

ε

x(t− τ)− x(t+ τ)

2τ
dτ

The Hilbert transform of a signal is a useful tool because it gives us the envelope
of the peaks of our function. Having this envelope shape, the cost function is
constructed. as the difference between the Hilbert transform predicted by the
model minus the CFD transform:

J = (H(ηmodel)−H(ηCFD))
2

One problem encountered in this formulation is the strong presence of secondary
peaks in the signal, both from the model and from CFD. This gives us a Hilbert
transform signal with a strong oscillation, which we tried to correct with a low-pass
filter.

Envelopes: finally, the decision was made to utilize the envelope of the signal
constructed skipping the peaks within a period of our choice. To evaluate the
envelope we divide the signal into a discrete number of time steps, for each time
step we calculate the maximum height of the liquid in that interval, the envelope
of the signal will be the conjunction of the envelopes of each interval.

This last way of defining the cost function is the one that has proved to be the
best for evaluating the difference between the predicted values and the CFD data.

J = (Env(ηmodel)− Env(ηCFD))
2
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Figure 5.1: Peaks envelope

Figure 5.1 shows the envelope algorithm applied in one simulation.

In the point-to-point solution and the unfiltered Hilbert transform the optimizer
can’t find better values of parameters than the first guesses. The filtered Hilbert
function and envelope provide better converge behavior. The main reason for
this is that with the first two cost functions, multiple minima were found, which
if evaluated would show up as non-optimal. Whereas for the envelope after the
optimiser has reached the minimum result, we see how the solution, if we consider
a single simulation, matches the reduced model with the CFD results.

Therefore, the envelope was chosen as the cost function.

5.2 Optimization algorithms

Three optimization algorithms were used:

• BFGS: developed by Broyden, Fletcher, Goldfarb, and Shanno employs the
quasi-Newton approach[28]. This technique relies solely on first derivatives
and has demonstrated effective results in optimizing even non-smooth func-
tions.

• Nelder-Mead: employs the Simplex algorithm[29]. This approach is de-
pendable across a wide range of applications. Nonetheless, in cases where
the numerical calculation of derivatives is reliable, algorithms that utilize
first and/or second-derivative information may generally be favored due to
faster convergence.

• Stochastic Gradient Descent: Unlike traditional gradient descent, which
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calculates the gradient of the loss function using the entire dataset to update
model parameters, SGD updates parameters using only a small batch of
samples at a time. This approach makes SGD much faster, allowing for
efficient training of models on large datasets. The stochastic nature of the
algorithm, which introduces randomness in the selection of data points, helps
in avoiding local minima and can lead to better generalization on unseen
data.

5.3 Optimization with multiple simulations

It was decided to start the optimization process by considering only one simulation,
thus finding the desired parameter values. Then these parameters were used as
initial guesses into the optimization that considers all the planar cases.

To do this, we consider all simulations in the cost function that is defined:

J =
1

J

J∑
j

(Env(ηmodel,j)− Env(ηCFD,i))
2

where index J is the number of simulation considered. In this way, we take an
average of the cost functions of each simulation.
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Chapter 6

Results

The results reported in this chapter are divided into two sections the first in
which we characterize the sloshing dynamics, verifying the sloshing regime for
each simulation, and the second deals with ROM identification from numerical
data.

A summary of all simulated cases is shown in the figure 6.1 where the Froude
number is plotted as a function of L2, each point on the graph is a different
forcing condition so a different simulation. Froude number that has as input both
L1 and L2 defines completely the input of the simulation.

Figure 6.1: Simulation matrix
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6.1 Sloshing regime identification

As mentioned in the first chapter 1, sloshing depends on the amplitude and fre-
quency of the forcing, and can occur in two regimes: the planar regime and the
chaotic regime. The ROM, built on a linear model, can only predict those simula-
tions that fall into the former category. To assess the type of regime, the evolution
of height as a function of time was viewed and the phase plane plots described
below were exported.

In this section, two simulations are shown, one falling in the planar regime (sim
ID. 42: L1 = 0.0325, L2 = 0.63) and one in the chaotic regime (Sim ID. 53:
L1 = 0.0325, , 0.96), to show the differences between the two conditions and to
establish the criterion to identifying the sloshing regime.

In figure 6.2 (a) the surface of the liquid at two successive time instants is shown, as
can be seen for the planar solution the displacement of the points is relatively little.
On the other hand, figure 6.2 (b) is an example of a chaotic regime, it is possible
to see that especially near the wall where there is a large mass displacement and a
large velocity of displacement of the surface, as well are present wave jump. This
underscores the impracticality of employing linear approximations in scenarios
where the phenomenon lacks a planar nature.

6.1.1 Wave height at fixed point

In Figure 6.3 and 6.4 the liquid height is plotted as a function of time for the
two cases mentioned before and, through the Fourier transform, the frequencies
excited during both the transient and steady state.

From the height graphs, we observe two completely different behaviors for the
two forcing conditions. The first in the planar regime has a transient that is
extinguished after a certain period, while the second in the chaotic regime has no
harmonic character anywhere in the simulation. As illustrated by the latter plot
there is no symmetry around the initial position if the regime is chaotic, this is a
problem in the realization of the reduced model because the models are derived
from second-order dynamical systems that have solutions that do not admit this
behavior.

From the Discrete Fourier transforms of the surface height signal as a function of
time, figures 6.3 and 6.4, it is possible to see both the frequency of the imposed
displacement with its harmonics, which have a non-negligible amplitude and the
natural frequencies, especially the latter has a large amplitude that manifests
itself in the transient. Furthermore, for the chaotic simulation, we see how the
amplitudes of the transform are very high at all frequencies, compared to the
planar transform, this is due to the chaotic nature of the regime we are in where the
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(a) Planar regime

(b) Chaotic regime

Figure 6.2: Free surface position

highest frequencies are the excitation frequency but the others are not negligible.

Another tool that gives us information beyond the discrete Fourier transform is
the Short-Time Fourier Transform, this gives us information about the power of a
relative frequency as a function of time. Refer to Figure 6.5 (a) for an illustration
of the planar regime. This figure highlights the frequency of the forcer, constantly
active throughout the simulation, visible at the bottom. The strip at the top
represents the resonant frequency. Initially, this resonant frequency showcases a
higher power. It then gradually decreases as the fluid starts to oscillate solely at
the force’s frequency.

Figure 6.5 (b) presents a different scenario, depicting a chaotic case. Here, the
frequency closely matches the resonant frequency. The graph’s bottom band illus-
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(a) Fluid height Sim no. 42 (b) Fourier transform Sim no. 42

Figure 6.3: Surface height planar simulation

(a) Fluid height Sim no. 53 (b) Fourier transform Sim no. 53

Figure 6.4: Surface height chaotic simulation

trates the forcer’s frequency, which is almost indistinguishable from the resonant
frequency due to the graph’s resolution limitations. The top band introduces the
second resonant frequency, absent in the first graph. Though subtle, this second
resonant frequency slightly contributes to the system’s response frequency.

(a) Planar simulation (b) Chaotic simulation

Figure 6.5: STFT applied to the surface height time-series.
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6.1.2 Centre of gravity

From the measurements made with the pressure probes on the wall, the position
of the cylinder’s center of gravity is derived as a function of time to observe how
the position of the center of gravity fluctuates and determine if there is a law
governing its movement.

To show these results, the same simulations of the previous section are chosen: in
figure 6.6 we plot the x-displacement of the center of gravity with its associated
Fourier transform, while figure 6.7 shows the y-displacement for simulation no.
42, figure 6.10 and 6.11 with the results for simulation no. 53.

(a) Displacement of CG sim no.42 x-
direction

(b) Fourier transofrm x-CG-displacement
sim no. 42

Figure 6.6: Centre of gravity displacement x-direction planar simulation

(a) Displacement of CG sim no.42 y-
direction

(b) Fourier transofrm y-CG-displacement
sim no. 42

Figure 6.7: Centre of gravity displacement y-direction planar simulation

The displacement in x for the planar simulation follows a very similar law to
that described for the displacement of the fixed radius surface, and the DFT
also confirms that the frequencies involved are that of the forcing and the first
resonance frequency. Furthermore, comparing the DFT of this signal with that of
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the surface position shows that it is cleaner with far fewer and more pronounced
peaks. On the other hand, the x-position of the CG for the non-planar simulation
has a different behavior, but this time, unlike the surface, the signal is symmetrical
over the initial position, which would more easily allow the creation of a differential
model that fits both the planar and non-planar cases.

Referring to the y-position of the centre of gravity, for the planar example figure 6.6
and 6.7 there is an oscillation that will cause the CG position in the y-direction to
oscillate around a point when the transient is over, for the non-planar simulation,
figure6.10 and 6.11, the behaviour is different and there are many more peaks
which cause the centre of gravity to drop, these are due to the sloshing wave that
detaches itself from the surface and falling back very abruptly lowers the centre
of gravity, this phenomenon can be seen from the α field of the CFD simulations
and therefore it is possible to extract the frequency at which the waves detach and
fall back. The last affirmation is possible to see in figures 6.8 and 6.9 were where
the α field for two successive instants is shown with the position of the centre of
gravity as a function of time alongside. It can be seen how passing from t to t+∆t
there is an abrupt collapse of the position of the barycentre with respect to the
y-axis to which corresponds the collapse of the wave.

Figure 6.8: Wave breaking t = t̄

With regard to the frequency, figure 6.7(b) and 6.11(b), analysis in the figures,
it can be seen that the frequencies with more power for the y-direction of the
centre of gravity are neither the frequency imposed by the forcer nor the natural
frequency of the cylinder.

Figure 6.12 shows a zoom of the figure 6.11 for the first 30 seconds simulated. It
can be clearly seen that even if the total regime is not planar, it is possible to
derive a law, at least for the position in x of the barycentre that approximates its
time evolution.
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Figure 6.9: Wave breaking t = t̄+∆t

(a) Displacement of CG sim no.53 x-
direction

(b) Fourier transform x-CG-displacement
sim no. 53

Figure 6.10: Centre of gravity displacement x-direction chaotic simulation

(a) Displacement of CG sim no.53 y-
direction

(b) Fourier transofrm y-CG-displacement
sim no. 53

Figure 6.11: Centre of gravity displacement y-direction chaotic simulation

46



CHAPTER 6. RESULTS

(a) Displacement of CG sim no. 53 x-
direction

(b) Displacement of CG sim no. 53 y-
direction

Figure 6.12: Closeup CG chaotic regime
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6.1.3 Phase plane plot

One tool that shows in which regime is the system’s response is the phase plot
where the displacement of the free surface η/X0 is plotted over the velocity of the
free surface

1

X0Ω

η̇

∂t

The velocity of the free surface was extracted from displacement data obtained
from CFD using a forward finite difference scheme.

The shape of the plot gives information about the type of phenomenon and espe-
cially the effect of damping in the simulation. If the damping equals the inertial
forces, it can be seen as a circular shape, instead, a more elliptical shape represents
the presence of damping. This then demonstrates whether the mode is planar or
chaotic in that once periodic-state conditions are reached in planar motion the
damping is balanced with the inertia of the system, in chaotic motion there is a
continuous loss of energy and thus the shape of the phase plot is more elliptical.

In figure 6.15 the phase plot shows the two simulations, as before simulation no.
42 and simulation no. 53, one which is known it be planar and another in a chaotic
regime, the time considered is the last 20 seconds of both simulations.

Following observations from the height of the free surface, the plot for simulation
no. 42 exhibits a mostly circular shape, while the second one shows irregularities
suggesting the motion is not planar. By visualizing these plots, it is possible to
qualitatively categorize the simulated cases as “fully planar” and “non-planar”.

From these graphs, it is possible to extract a measure of circularity by calculating
the variance of the distances between the points and the centroid of the pseudo-
circular shape formed. In figure 6.16, the variance is reported as a function of
the frequency dimensionless with the resonance frequency. It is evident that the
closer the imposed frequency is to the resonance frequency, the higher the vari-
ance, indicating a non-planar region. To distinguish between the two regimes,
a threshold value can be established, classifying all simulations with a variance
below this threshold as planar.

From this consideration, figure 6.17 reports all the cases simulated where it is
possible to observe the boundaries between the planar and chaotic test cases. In
red is the line derived from the extrapolation of Miles’ weakly non-linear theory,
which marks the boundary between planar and chaotic simulations for an upright
cylinder using the Eq. 2.5. We can see a slight discrepancy between the identifi-
cation of the regime in the two geometries.
This graph for upright cylinders was reported by Ludwig [30] through values ex-
tracted from Miles [8][9] using weakly nonlinear theory.
To the best of our knowledge, this is the first plot of this nature applied to horizon-
tal cylinders. While the figure was generated from purely numerical simulations,
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Figure 6.13: Phase plane plot Sim no. 42

Figure 6.14: Phase plane plot Sim no. 53

Figure 6.15: Phase plane plots
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Figure 6.16: Regime Identification by circular score

yet to be validated experimentally, it provides a first approximation for the bound-
aries between these two sloshing wave regimes

Figure 6.17: Regime Identification

Another option for determining the regime through phase plane plots is to go and
evaluate the position of the centroid. It can be seen that the centroid is positioned
very close to the origin of the axes (0,0) for planar simulations, it shifts in our
case towards positive values in the case of chaotic simulations.
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6.2 Damping evaluation

According to [18] and [17] the damping ratio in deep water condition (h/R > 1 )
is approximable with the follow equation

ζ = 0.79

√
ν√
gR3

(6.1)

With this formulation, applying the definition of damping ratio, the constant
damping coefficient for our case should be ζ = 0.00046911. This value will then
be compared with the values of the various CFD simulations and the damping
values that are resolved by the optimizations.

Among the optimizers described in the previous chapter, the results below make
a case for the Nelder-Mead optimizer. The other two optimizers: BFGS and the
Stochastic Gradient Descent were used but set aside because the BFGS optimizer
in optimizations that included all simulations tended to crash after a certain num-
ber of iterations, failing to converge and giving results that if evaluated would
cause the cost function to explode. The stochastic solver works, the results con-
verge but require a large number of iterations and a low learning rate, so since
the optimizations were taking a long time, the N-M optimizer was used, which is
faster and is also independent of initial values as shown through multiple restarts
in the next section.

6.2.1 Performance of the potential flow model

Between the two reduced models that we explore in the theory part, the potential
fluid model which consists of solving the differential equation 2.17 described in
section 2.2, cannot quite identify the term damping. The main problem, that is
possible to see in figure 6.18 is that there is a discrepancy between the solution
at the beginning of the transient, the potential solution underestimates the height
of the fluid, and the optimizer acting only on the damping coefficient cannot find
an optimal solution even when optimizing for one simulation as in this case. This
led to the exclusion of this model from the development of the reduced model in
preference to the mechanical model which, as discussed below, succeeds through
the sloshing mass parameter in achieving a good result on ROM performance

In spite of this, the potential fluid theory described in section 2.2.2 facilitates
evaluation of the natural frequencies of the system. As seen in the Short-time
Fourier transform and Discrete Fourier Transform figure 6.3 (b) and 6.4(b), the
peaks depicted by the plots from the CFD simulation align precisely with the
frequencies predicted by the potential theory.
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Figure 6.18: Optimization with potential solution

6.2.2 Performance of the mechanical model

In section 2.3, it is mentioned that for the mechanical model, the optimization
parameters are defined as the damping coefficient ζ and the sloshing mass msl

relative to the first resonance frequency, in the ways that will be discussed below.

By only considering the planar simulations and knowing that the model only gives
the solution for wall displacement, it is assumed that the surface has a linear shape
and interpolate the model’s solution with the position of the probe at r̄ = 0.75
m. the displacement of the free surface as described equation 2.22 is multiplied
by the evaluation radius (applying the linearity assumption)

η(t) =
4ml|slx(t)

πR3ρ
r̄

Constant damping coefficient

ζ = const.

The optimization is initially conducted on a single simulation, utilizing the simu-
lation input values. Subsequently, the optimization is repeated taking all planar
simulations into account in the cost function.

Figure 6.19 shows the envelope of the surface height at a fixed radius over time
showing the CFD simulation and the result of the optimized model. o provide a
clearer view, a zoom-in at the beginning and end of the simulation in figure 6.20
is also included.

The results that come out of this simulation are:
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Figure 6.19: Envelope of surface height

(a) Start of simulation (b) End of simulation

Figure 6.20: Constant damping ROM

• ζ = 0.00062829

• msl = 0.687

the result obtained for the damping coefficient is comparable with the result de-
scribed in the literature which we find in Eq. 6.1, we can see that the results have
the same order of magnitude, the value from the literature being about 30% lower
than the value we found. This could be due to the fact that the geometries taken
into consideration are different and that in our case the deep-water condition is
not perfectly realized the reservoir is exactly half-filled. Furthermore, it is possible
to state that for the horizontal cylinder, more liquid moving is in contact with the
wall and therefore we expect there to be an increase in damping compared to the
case of the vertical cylinder.

Optimizing for only one simulation finds a model that is in good agreement with
the CFD results, both the point evolution of the signal and the envelope in the
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transient are well predicted.

Starting from the results of the previous optimization, the process continues taking
all planar simulations into account, which were chosen through sorting by phase
plane plots.

As described in section 5.3, the cost function is defined as the sum of the cost
functions of the individual simulation divided by the number of simulations.

The following parameters are found after the optimization processes considering
all the planar simulations:

• ζ = 0.00060896

• msl|1 = 0.7794

The quality of the predictions of the model can be assessed through the cost
function plotted over the Froude number relative to the simulation considered,
which is shown in figure 6.22 while figure 6.21 shows the cost overall cost function
over the iterations.

Figure 6.21: Overall cost function

the cost function, only considering the range of Froude inputs in the simulations
has minima, when the Froude number is low, then when it’s increased the model
turns out to be unreliable, and the unreliability is not monotonically increasing as
the number of Froude increases, so is difficult to have a wide range of applicability
of the model.

The results of the model that optimizes all simulations were used to evaluate simu-
lation no. 42 that had been optimized earlier. The model in this case overestimates
the sloshing mass that has increased, figure 6.23.
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Figure 6.22: Cost function of each simulation

It is possible to conclude that estimating the constant sloshing mass constant in
all simulations is an error and that as the damping coefficient should at least be
a function of the Froude number.

In figures 6.23 and 6.24, it is observed that, unlike the previous case where only one
simulation was optimized, an error exists between the two estimations. Notably,
the envelope highlights a discrepancy between the CFD results and the model
results.

Figure 6.23: Envelope Reassessment of simulation with the new parameters

In the quest to identify the minima within that define the optimization problem,
the strategy of employing multiple restarts is a robust technique that enhances the
efficacy of the search process. Initiating the optimization algorithm from various
starting points can increase the probability of circumventing local minima, thereby
facilitating the discovery of the global minimum. The starting points were choosed
by taking random values in the range centered in the derived optimum value and
two orders of magnitude wide. Each restart acts as an independent trial, exploring
the solution space from a different vantage point.

Multiple restarts were performed by considering the total optimization and going
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(a) Start of simulation (b) End of simulation

Figure 6.24: Reassessment of simulation with the new parameters

to evaluate the 2 parameters after a set number of iterations. In figure 6.25 is
evaluated the result of multiple optimizations as a function of the restart.

Figure 6.25: Multiple restarts

It can be seen that after all optimizations the results obtained tend to converge
to the same value for the two parameters considered it is therefore shown that the
optimizer has reached a minimum which can be considered global.

Non-constant damping coefficient Damping coefficient

ζ = f(Re(t),Fr)

The second approach used is to express the damping coefficient ζ as a parametric
function of the state of the system and the forcing conditions. The simulation
dependence is expressed by the Froude number defined:

Fr =
(X0Ω)

2

gR

instead, the velocity dependence is done using the Reynolds defined on the verti-
cal velocity of the surface, extracted by deriving in time the displacement signal
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already processed,

Re(t) =
u∗(t)R

ν

where with finite differences forward of the first-order is used to extract the velocity
of the free surface

u∗(ti) =
∂η(ti−1)

∂t

The damping coefficient is finally defined in the form:

ζ = a Frb
(

Re
Recr

)c

Where parameters a, b and c are the optimization parameters, as well as the
sloshing mass.

As in the previous section, the same method is employed, starting with optimiza-
tion for one simulation before proceeding to create a total optimization considering
all planar simulations.

Figure 6.26 shows the cost function for the total optimization as a function of
iterations and figure 6.27 shows the evaluation of the cost function for each sim-
ulation, which is shown as a function of the number of Froude that characterizes
the single simulation.

Figure 6.26: Overall cost function

the parameter values derived from the total optimization are:

• a = 0.0023
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Figure 6.27: Cost function of each simulation

• b = −0.0992

• c = 0.0064

• msl = 0.7785

Finally, figure 6.28 displays the envelope of simulation no. 42 with the damping
coefficient as a function of time. It is observed that there is similar behavior to
considering constant damping. By optimizing for all simulations, achieving a very
good result for individual simulations proves challenging. From the figure 6.29 it

Figure 6.28: Envelope of the simulation no. 42
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is possible to visualize an average of the damping coefficient as a function of time,
as is to be expected this decreases as in the initial transient there is more mass
movement and the velocities involved are higher than in the final periodic regime,
in which the fluid is only moved at the frequency imposed by the forcing.

Figure 6.29: Variable damping

6.2.3 Comparison between the two models

In this last section, is evaluating the performance of the two models, the first
considering constant damping and the second considering variable damping by
viewing the cost functions in figure 6.30. From the graph, it can be concluded
that the model where ζ = f(Re, Fr) is superior because it yields lower values of
the cost function, indicating minimal deviation from CFD simulations. From the
same graph, we can see that the more we increase the Froude number and the
closer we get to the resonance frequency, the more the model fails.

In both approaches, an increase in error is observed as the number of Froude
increases.

Finally, we wanted to evaluate how the 2 models used behave and compare them
with literature values and numerical simulations. In table 6.1 data from 3 simula-
tions, with increasing Fr are reported. with the increasing of the Froude number
we can see that also the cost function J is increasing demonstrating a loss of re-
liability of the model. We can see that for all three simulations considered, the
lowest cost function turns out to be the one expressing damping as the parametric
function described above.

With the same definition of damping, we find that by increasing the Froude num-
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(a) Cost function for constant damping (b) Cost function for variable damping

Figure 6.30: Comparison between the two models

Table 6.1: ROM compared

ID X0 Ω Ω/ω1 Fr J Literature J constant J variable

10 0.01 2.943 0.81 8.84E-05 0.286 0.115 0.043
42 0.033 2.309 0.63 0.000575 0.311 0.241 0.179
87 0.078 2.859 0.78 0.00501 67.45 8.344 6.444

ber, the cost function increases. This increment of the cost function can be ex-
plained as a more non-linear behaviour in that there is increasing the Froude
number or it is due to the fact that the damping formulation are missing other
terms.

The findings derived from the table 6.1 are further displayed by figures 6.31 and
6.32, we can see the envelopes of the simulations compared with the literature
value of damping and sloshing mass and the optimization functions.

It is also analyzed the possibility of using the reduced model for the simulations
not taking into account to train the model, which are the chaotic regime simula-
tions.
Table 6.2 reports the average of the cost function for each damping model uti-
lized considering first only all the planar simulations and then only the chaotic
simulations.

The average of the cost function increases by around two orders of magnitude and
the model is, therefore, no longer reliable.
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(a) Envelope surface height simulation ID 10

(b) Envelope surface height simulation ID 42

Figure 6.31: Envelope of surface height simulations ID 10 and 42

Table 6.2: ROM extended to chaotic cases

Approach Average J in planar case Averege J non Planar cases

Literature 7.81 200.04
Constant 2.27 174.5
Function 2.25 193
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Figure 6.32: Envelope of surface height simulation ID 87
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Conclusions

The result of this work can be summarised in two main findings:
The first is the identification of the sloshing regime for a horizontal cylinder as
a function of the amplitude and frequency of the imposed displacement. From
the literature review carried out, this is the first time such a phase diagram has
been derived from a horizontal cylindrical tank undergoing transverse excitation
sloshing. It is possible to visualize the boundaries for the planar and chaotic
regimes not yet analyzed in detail by existing theories such as the weakly non-
linear theory already mentioned several times [8] described by Miles.
The second is to evaluate the possibility of introducing a reduced order model to
visualize the displacement of the liquid surface in the planar regime, which works
in a certain range of Froude numbers.

The combination of the two results produces a simplified model capable of pre-
dicting the sloshing dynamics in isothermal conditions, where therefore the ther-
modynamic component of the system is neglected. This would lead to the creation
of a surrogate model that from input signals of displacement and frequency would
create a real-time prediction of the displacement for a future implementation to
control the sloshing within the tank to dampen the oscillations that bring several
criticalities to the system.

7.1 Future work

Continuing with the considered case of a half-filled cylinder, other types of valid
functions for the damping coefficient and sloshing mass could be analysed. In
addition, it will be useful to analyse a more homogeneous range of Froude input
values by considering the planar region of the graph described in figure 6.17 in
order to have a higher number of different Fr and to calibrate the reduced model
with this data.
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Since the simulations used assume that the tank is half-filled, part of the future
work will be to analyse different tank-filling rates in order to assess whether the
damping solutions used in this work are still valid in those cases. There are other
resonance frequencies to take into account such as the sloshing mass predicted
by the theory changes but the relationship for the damping coefficient could re-
main the same perhaps also considering the resonance frequency related to the
percentage of filling the tank.

Another consideration on the movement of the centre of gravity, even in the chaotic
regime, it presents a symmetry in response, taking this data into account will
certainly be a plus for the identification of the reduced system.
In addition, predicting the position of the centre of gravity with a reduced system
would lead to future implications in the engineering plan as one could put a system
of tank movement in counter-phase that would dampen the oscillations due to the
sloshing of the liquid inside the tank.

Finally, given that cryogenic fluids are generally used in tanks of this kind as
fuel transport, it is certainly a step to take to assess the implications of a non-
isothermal model of the system. At this stage, there is also the component of
phase change of the liquid, typically cryogenic, which also damages the pressure
inside the tank. The search for a possible relationship between damping under
isothermal conditions with a model that takes into account the thermodynamics
of the system is suggested.
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Appendices
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OpenFoam algorithms

The algorithm utilized by the solver is PIMPLE, which combines the PISO (Pressure-
Implicit with Splitting of Operators) and SIMPLE (Semi-Implicit Method for Pres-
sure Linked Equations) algorithms.

• Solve the Momentum Equation: Update the velocity field by solving the
momentum equation, including the pressure gradient term. The α equation
is solved with the MULES scheme.

• Pressure Correction Equation: Compute corrections to the pressure field to
ensure mass conservation, a step that’s iterated to refine both pressure and
velocity fields towards divergence-free conditions.

• Update Velocity and Pressure Fields: Apply the pressure corrections to up-
date the velocity and pressure fields, ensuring that the continuity equation
is satisfied.

In particular the interFoam solver use for two-liquid VOF method is described in
[31]:

1. Initial data

2. t = t+∆t

3. Adjustment of the time step according to maximum Courant number

• START: Iteration over the PIMPLE Loop

• Solving the α equation by VOF and MULES (Multidimensional Uni-
versal Limiter with Explicit Solution)

• Calculations of mixture properties (ρ,α, σ)

• PISO Loop over pressure equation
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• Indicator of Error

• END: Iteration over the PIMPLE Loop

• Calculations of the turbulence properties
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A.1 Modified interFoam solver

InterFoam solver present in OpenFoam does not allow the specify a variable accel-
eration field with time. It is present a constant acceleration field, that is usually
used to model the gravity acceleration.

As described in chapter 4, a variable acceleration allows the sloshings phenomenon
to be simulated without using mesh motion, which has a considerable computa-
tional cost as seen in 4.3.1. The modified interFoam solver source code that allows
for a variable acceleration field, called interDispFoam is presented below. in the
parts where the code varies from the initial source. This code is valid for version
v2206, it may have some variations in the way variables and fields are called in
other versions of openFOAM.

The following code is a modified version of the interFoam.C file in the solver folder:
∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗\

========= |
\\ / F i e l d | OpenFOAM: The Open Source

CFD Toolbox
\\ / O pera t i on |
\\ / A nd | www. openfoam . com
\\/ M an ipu l a t i on |

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

[ . . . ]
i n t main ( i n t argc , char ∗argv [ ] )
{
#inc lude " postProces s .H"
#inc lude " setRootCaseL i s t s .H"
#inc lude " createTime . H

[ . . . ]
IOd ic t ionary ioAcce lD i c t (

IOobject (
" a c c e l e r a t i o nD i c t " , // d i c t i ona ry name
runTime . constant ( ) , // d i c t i s found in " constant "
mesh , // r e g i s t r y f o r the d i c t
IOobject : :MUST_READ, // must ex i s t , o the rw i se f a i l u r e
IOobject : :NO_WRITE // d i c t i s only read by the s o l v e r

)
) ;
// Read the a c c e l e r a t i o n d i c t i ona ry
d i c t i ona ry a c c e l e r a t i o nD i c t ( i oAcce lD i c t ) ;

word a c c e l e r a t i o nCo e f f s = " a c c e l e r a t i o nCo e f f s " ;
word g r av i t yAcc e l e r a t i on = " g rav i t yAcc e l e r a t i on " ;

// Access the subd i c t i ona ry " a c c e l e r a t i o nCo e f f s "
const d i c t i ona ry& subDict =

a c c e l e r a t i o nD i c t . subDict ( a c c e l e r a t i o nCo e f f s ) ;
vec to r amplitudeAcc ;
vec to r omegaAcc ;
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i f ( subDict . r e ad I fP r e s en t ( " amplitude " , amplitudeAcc ) &&
subDict . r e ad I fP r e s en t ( "omega" , omegaAcc ) ) {
In f o << " Acce l e r a t i on amplitude [m] = " << amplitudeAcc

<< endl ;
In f o << " Acce l e r a t i on omega [ rad/ s ] = " << omegaAcc << endl ;

} e l s e {
In f o << "Values ’ amplitude ’ and ’ omega ’ not found in

the subd i c t i ona ry . " << endl ;
}

// Access the subd i c t i ona ry " g r av i t yAcc e l e r a t i on "
const d i c t i ona ry& grav i tyD i c t = a c c e l e r a t i o nD i c t . subDict ( g r av i t yAcc e l e r a t i on ) ;
vec to r gravityAcc ;

i f ( g rav i tyD i c t . r e ad I fP r e s en t ( " g rav i ty " , gravityAcc ) ) {
In f o << "Gravity a c c e l e r a t i o n [m/ s2 ] = " << gravityAcc << endl ;

} e l s e {
In f o << "Value ’ g rav i ty ’ not found in the subd i c t i ona ry . " << endl ;

}
// End o f a c c e l e r a t i o n d i c t i ona ry read ing
// ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ //

Info<< "\ nStar t ing time loop \n" << endl ;

whi l e ( runTime . run ( ) )

[ . . . ]

/Current a c c e l e r a t i o n f i e l d vec to r ( Harmonic o s c i l l a t i o n
// + constant value ) f o r the 3 components

const d imens ionedSca lar gun i t s ( " gun i t s " , dimensionSet (0 , 1 , −2 ,0 , 0 , 0 , 0 ) , 1 ) ;

Foam : : dimensioned<Foam : : Vector<double>> grav=gun i t s ∗amplitudeAcc [ 0 ] ∗
Foam : : pow(omegaAcc [ 0 ] , 2 ) ∗Foam : : cos ( omegaAcc [ 0 ] ∗ runTime . va lue ( ) )
∗Foam : : vec to r (1 ,0 ,0)+ gun i t s ∗ gravityAcc [ 0 ] ∗Foam : : vec to r (1 ,0 ,0)+

gun i t s ∗amplitudeAcc [ 1 ] ∗Foam : : pow(omegaAcc [ 1 ] , 2 ) ∗
Foam : : cos ( omegaAcc [ 1 ] ∗ runTime . va lue ( ) )∗Foam : : vec to r (0 ,1 ,0)+

gun i t s ∗ gravityAcc [ 1 ] ∗Foam : : vec to r (0 ,1 ,0)+

gun i t s ∗amplitudeAcc [ 2 ] ∗Foam : : pow(omegaAcc [ 2 ] , 2 )
∗Foam : : cos ( omegaAcc [ 2 ] ∗ runTime . va lue ( ) )∗Foam : : vec to r (0 ,0 ,1)+

gun i t s ∗ gravityAcc [ 2 ] ∗Foam : : vec to r ( 0 , 0 , 1 ) ;

In f o << " Current Gravity @ t=" << runTime . timeName ( )
<< " : (g_x g_y g_z) = ( " << grav . component ( vec to r : :X) . va lue ( )
<< " " << grav . component ( vec to r : :Y) . va lue ( )
<< " " << grav . component ( vec to r : : Z ) . va lue ( )
<< " ) "
<< endl ;

Info<< " Ca l cu la t ing f i e l d g . h\n" << endl ;
v o l S c a l a rF i e l d gh ( "gh" , grav & mesh .C( ) ) ;
s u r f a c e S c a l a rF i e l d ghf ( " ghf " , grav & mesh . Cf ( ) ) ;
// −−− Pressure−v e l o c i t y PIMPLE co r r e c t o r loop

whi l e ( pimple . loop ( ) )
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{
[ . . . ]
In fo<< "End\n" << endl ;

r e turn 0 ;
}

The new dictionary into which we enter the amplitude and frequency of the forcing
is accelerationDict, should be placed in the folder costant of our simulation
folder and is presented as follow:

/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗− C++ −∗−−−−−−−−−−−−−−∗/
| ========= | |
| \\ / F i e l d | OpenFOAM: The Open Source CFD Toolbox |
| \\ / O pera t i on | Vers ion : v2206 . 0 |
| \\ / A nd | Web: www.OpenFOAM. org |
| \\/ M an ipu l a t i on | |
\∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
FoamFile
{

ve r s i on 1 . 0 ;
format a s c i i ;
c l a s s d i c t i ona ry ;
l o c a t i o n " constant " ;
ob j e c t a c c e l e r a t i o nD i c t ;

}
// ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ //

a c c e l e r a t i o nCo e f f s
{

amplitude (0 .0325 0 0 ) ; // amplitude o f the a c c e l e r a t i o n
omega (4 . 75 0 0 ) ; // f requency o f the a c c e l e r a t i o n

}
g r av i t yAcc e l e r a t i on
{

g rav i ty (0 −9.81 0 ) ;
}
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