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Abstract

Aviation has become increasingly integral to modern society over the years,
addressing daily the needs of millions of travelers worldwide. However,
this comes with a significant environmental cost, including noise emissions.
High noise emissions have important implications for the health, leading
to issues such as insomnia and consequently contributing to cardiovascular
diseases. This has led institutions to develop increasingly stringent regula-
tions for noise pollution control in the vicinity of airports, giving rise to new
challenges in ensuring compliance with acoustic reduction standards.
Acoustic liners are an important ally in noise reduction, allowing to comply
with the regulatory limit. The simpler acoustic liners (single-degree-of-
freedom) can be compared to a Helmholtz Resonator, which is capable of
absorbing a portion of the acoustic energy and dissipating it through fluid
dynamic viscous components. By calibrating the geometric dimensions of
the Helmholtz Resonator, it is possible to achieve the desired resonance
frequency at which the attenuation is maximum. However, shifting towards
ultra-high bypass ratio turbofan engines to allow for increased efficiency res-
ults in a lower fan rotation speed, leading to a lower-frequency and broader
acoustic emission spectrum, and thus making traditional acoustic liners
less effective: lower attenuation frequencies require greater liner depths,
this conflicting with the need for slimmer nacelles due to the significant
increase in their diameter to achieve ever higher bypass ratios. Additionally,
broadband attenuation must be ensured. Hence, the need to develop new
liner geometries and models emerged, along with the necessity for methods
that enable determining the geometric parameters of the liner that best allow
compliance with regulations at certification points.
This thesis presents an optimization code developed in Python that, coupled
with the aeroacoustic calculation software Actran, allows for the definition
of geometric parameters of the acoustic liner, such as cavity depth and dia-
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meter of the orifices, ensuring minimal acoustic emission in the far field. In
doing so, the most suitable semi-empirical models for liner’s response have
been chosen, where the liner’s response depends precisely on the geometric
parameters to be optimized. In particular, the use of both single-degree-of-
freedom and two-degree-of-freedom semi-empirical liner models allowed
for evaluating how much the noise was attenuated depending on the type of
liner used compared to the case without acoustic treatment. Subsequently,
the attenuation achieved was also compared for cases of absence of flow,
uniform flow, and non-uniform flow. To determine the best optimization
approach, the results obtained were compared using both local optimization
algorithms and global optimization algorithms, before leaning towards a
sequential use of the two.
This optimization approach has thus resulted in an improvement of more
than 10 dB for both SDOF and DDOF compared to the scenario of a non-
optimized liner. The sequential use of a global and a local optimizer proved
effective for more complex semi-empirical models, where finding the min-
imum is more challenging. Conversely, for simpler liner models, employing
a global optimizer alone proved sufficient, ensuring significantly reduced
computational times. Additionally, the presence of airflow was found not to
impact the optimal point itself but rather the value of acoustic emission at
the optimal point. Therefore, the optimization framework developed repres-
ents a valuable tool for maximizing available technology to meet regulatory
requirements.
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Chapter 1

Introduction

Aviation has become increasingly integrated to modern society over the
years, addressing daily the needs of millions of travelers worldwide. How-
ever, this comes with a significant environmental cost, including pollutants
and greenhouse gas emissions, as well as noise emissions [30]. High noise
emissions have important implications for the health, leading to issues such
as insomnia and consequently contributing to cardiovascular diseases [8].
This has led the International Civil Aviation Organization (ICAO) to develop
increasingly stringent regulations for noise pollution control in the vicinity
of airports (figure 1.1) [14], giving rise to new challenges in ensuring com-
pliance with new acoustic reduction standards.
The noise produced by an aircraft has two main contributions: the airframe
and the engine. The first is primarily due to the landing gear, flaps, and

Figure 1.1: Historical trend of maximum EPNLs (in EPNdB) through the
revisions of Annex 16 [13]
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Figure 1.2: Noise changes with increasing turbofan engine bypass. [42]

slats, while the second, typically dominant and therefore more significant for
certification purposes, is caused by the jet and the fan. Jet noise is associated
with the high-velocity exhaust gases exiting the engine nozzle, while fan
noise is a result of the interaction of the blades with the turbulent airflow
[30].
Shifting towards ultra-high by-pass ratio (BPR) turbofan allows for increased
efficiency by lowering fuel consumption. However, this has an impact on
the acoustic emissions of the engine (figure 1.2) now primarily attributed to
the fan noise rather than the jet noise: an increase in the by-pass ratio leads
to a reduction in the exhaust gas velocities, making it possible to comply
with regulations [42]. On the other side, a higher BPR results in a lower
fan rotation speed, leading to a lower-frequency and broader acoustic emis-
sion spectrum. This shift makes it more challenging to mitigate the noise
produced by the fan, which now plays a primary role. Moreover, mitigating
fan noise is a complex challenge due to its multiple origins. The emission
spectrum includes both tonal components at multiples of the blade passing
frequency and a broadband component resulting from the interaction of
turbulent flow with blades and mainly vanes because of the fan wake (figure
1.3) [21].
Acoustic liners are an important ally in noise reduction, allowing to comply
with the regulatory limit. The changes mentioned above, however, give rise
to several new challenges: lower attenuation frequencies require greater
liner depths, this conflicting with the need for slimmer nacelles due to the
significant increase in their diameter to achieve ever higher Bypass Ratios
[43]. Additionally, broadband attenuation must be ensured [34]. Hence, the
need to develop new liner geometries and models emerged, along with the
necessity for methods that enable determining the geometric parameters of
the liner that best allow compliance with regulations at certification points.
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Figure 1.3: Example of noise spectrum from a subsonic fan. [30]

Figure 1.4: Noise changes with increasing turbofan engine bypass. [30]

In particular, ICAO has defined the maximum noise levels an aircraft can
generate at specific certification points (figure 1.4) [30]:

• Take-off sideline configuration: in this take-off phase, the engine is
at maximum power, and the produced noise is at its maximum.

• Take-off cutback configuration: in this take-off phase, the engine
is at reduced power, this scenario represents the minimum noise per-
ceived during a take-off operation.

• Approach configuration: this condition represents the noise per-
ceived during the final approach phase.
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Figure 1.5: Schematics of basic structures of (a) SDoF and (b) DDoF liners
[29]

1.1 Acoustic Liners

Various types of acoustic liners exist, ranging from the simplest Single De-
gree of Freedom (SDoF) to the most innovative meta-acoustic ones.
SDoF liners are the cheapest and easiest to manufacture. They are composed
of a rigid honeycomb core with a perforated plate on top (figure 1.5), capable
of both enhancing absorption and maintaining the flow as orderly as possible
on the inner wall of the nacelle [33], and a rigid back plate on the opposite
side. Their behavior is similar to that of a Helmholtz resonator, with an
absorption peak at the resonance frequency, that depends on the depth of
the honeycomb core (deeper liners result in a lower resonance frequency),
and a relatively narrow absorption spectrum. The perforate facesheet can
be characterized by: percentage open area (POA σ ), hole diameter (d) and
thickness (t), honeycomb core by its depth (h). The cell size is chosen so
that the liner can be considered locally reacting [42]. It is possible to modify
these geometric parameters to optimize the performance of the liner and
ensure compliance with regulations [33]. Zandbergen [43] defined a liner
as locally reacting (figure 1.6) if its local response is dependent only upon
the local acoustic pressure, if only plane wave can propagate the liner can
be considered local-reacting, otherwise its response would also depend on
the angle of incidence of the acoustic wave on the liner [22]. Liners are
local-reacting only if theirs cells are acoustically isolated from each other,
the presence of drainage slots for safety reasons actually makes most acous-
tic liners non-locally reacting, allowing the propagation of acoustic waves



1.1 Acoustic Liners 11

Figure 1.6: Schematics of (a) local-reacting liner and (b) bulk-reacting liner.
[29]

parallel to the surface of the liner between two adjacent cavities. If the cell
width of an acoustic liner is allowed to increase, additional cross-modes
may propagate at higher frequencies, and the liner response subsequently be-
comes a function of the incident mode angle, rendering the liner non-locally
reacting. Bulk-reacting liners, such as liners with facing sheets backed by
resistive foams or packed fibers, are also known as non-locally reacting liners
[43]. Gravagnone et al [22] performed a parametric study showing a gain in
insertion loss for non-locally reacting liners with porous cell walls or wide
cell (where also cross modes are cut-on) in comparison with local-reacting
ones, with a broader absorption spectrum. This occurs because multi-modal
sound arriving on these liner types at differing propagation angles will travel
within the bulk material at non-normal angles, with varying path lengths,
permitting these liner types to be optimized to provide absorption over a rel-
atively large frequency range [43]. Despite this broader absorption spectrum,
they are not used in aircraft engines due to their tendency to retain fluid.
Double Degree of Freedom (DDoF) liners (figure 1.5) meet the requirements
of broadening the absorption band thanks to a dual absorption peak, as
demanded by ultra high bypass ratio engines, with the constraint of a nar-
rower nacelle. They are geometrically very similar to SDoF liners but with a
second honeycomb core, separated from the first by an intermediate resistive
sheet, also known as a septum [14], resulting in increased complexity and
weight of the structure.
In recent years, new designs with complex cavities have been studied to max-
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Figure 1.7: Schematics of the Slanted Septum Core (SSC) and the Multi-
FOCAL liner concepts. [34]

imize noise reduction at low frequencies while maintaining an acceptable
structural size. Sugimoto [37] has demonstrated that the inclusion of folded
cavities is effective in reducing noise simultaneously at medium and low
frequencies. The use of folded cavities allows for greater depth compared to
traditional straight cavities while utilizing the same space. At low frequen-
cies, the acoustic wave propagating through the face sheet turns the corner
and propagates as if it does not ’see’ the fold. At high frequencies, the wave
is mostly reflected from the fold. Therefore, this folded cavity behaves as a
deeper cavity at low frequencies and as a shallow cavity for high frequencies
[15]. Palani et al [34] evaluated the attenuation performances of two novel
liners: one with a slanted septum core with varying percentage open area to
increase the propagation path length for low frequency waves [15], the other
a multiple folded cavity acoustic liner (figure 1.7). The computational model
was based on the geometry of the Royal Netherlands Aerospace Centre
(NLR) flow duct facility, test was performed under grazing flow and in the
presence of high intensity sound waves using COMSOL and assuming equal
energy per mode distribution. Both geometries have shown an enlargement
of the attenuation band, while maintaining a smaller dimension compared to
SDoF, with a significant increase in insertion loss, especially at frequencies
below 1.2 kHz, where the insertion loss IL = ∆withliner

PWL −∆withoutliner
PWL is the

difference between the sound power transmission loss with and without the
liner. Broadband attenuation with reduced space requirements can also be
achieved through the use of variable-length liners (figure 1.8). However, the
production of these liners with complex geometries such as folded, slanted,
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Figure 1.8: Schematics of two types of variable-depth liners with (a) narrow
chamber and (b) wide chamber. [29]

Figure 1.9: Example of meta-acoustic liner design. [42]

or multi-depth liners is complex to execute and is not possible with tra-
ditional manufacturing methods. Therefore, it requires the use of additive
manufacturing [15].
The most innovative frontiers for acoustic attenuation involve the use of
metamaterials (figure 1.9), which can be defined as a macroscopic compos-
ite of periodic or non-periodic structure, whose function is due to both the
cellular architecture and the chemical composition [29]. These structures
contain interconnected air volume cells with a large number of degrees of
freedom, enabling attenuation across a lower and broader frequency range
while still fitting within a compact space. Beck et al. [6] have demonstrated
that the absorption coefficient for these liners can be up to 10 times higher
than that of traditional honeycomb ones at the designed resonance frequency.
The introduction of new materials also allows placing the liners not only
near the fan inlet or along the exhaust bypass duct (figure 1.10), where they
are typically inserted, but also in high-temperature areas, opening up new
noise reduction scenarios.
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Figure 1.10: Typical placement of acoustic treatment inside an engine and
nacelle. [42]

Figure 1.11: Helmholtz Resonator scheme

1.1.1 Helmholtz Resonator

SDoF acoustic liner can be compared to an Helmholtz resonator; it is capable
of absorbing a portion of the acoustic energy and dissipating it through fluid
dynamic components. More precisely: the perturbation p′1 is applied at one
end of the duct with length L and cross-sectional area A (figure 1.11), which
opens into the volume Ω where the fluid is at rest and where the induced
oscillations p′2 and ρ ′

2 are uniform [5].
p′1 generates a flow rate Q in Ω:

Q = Ω
∂ 2ρ ′

2
∂ t2 (1.1)

Assuming small, harmonic oscillations ρ ′
2 = ρ̂2eiωt and Q = Q̂eiωt

Q̂ = iωΩρ̂2 (1.2)

ρ̂2 =
Q̂

iωΩ
(1.3)
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p̂2 = c2
0ρ̂2 =

c2
0Q̂

iωΩ

Writing the momentum balance in the duct in the case of incompressibility:

− 1
ρ0

p′2 − p′1
L

=
∂u′

∂ t
(1.4)

for harmonic oscillation and using the the derived formula for p̂2

− 1
ρ0

p̂2 − p̂1

L
= iω û = i

ωQ̂
ρ0S

(1.5)

p̂1 = p̂2+ iω
LQ̂
S

= (
c2

0
iωΩ

+ iω
L
S
)Q̂ = = i(ω2−

c2
0S

ΩL
)
Q̂L
ωS

= i(ω2−ω
2
R)

Q̂L
ωS

(1.6)

p̂1 = i(ω2 −ω
2
R)

Q̂L
ωS

(1.7)

p̂1 is a small but finite value; consequently, as ω approaches the res-
onance frequency, the multiplicative flow term must increase significantly.
This can be interpreted as the action of a fluid piston in duct causing large
oscillations p̂2. The presence of large gradients in a viscous flow results
in dissipation, whose effect is small enough to damp amplitudes only on
the order of acoustic oscillations. By calibrating the geometric dimensions
of the Helmholtz Resonator, it is possible to achieve the desired resonance
frequency. This is where the idea of acoustic liners originates. More specific-
ally, acoustic energy is converted into rotational kinetic energy in the form
of vortex shedding and dissipated through viscous effects due to the shear
layer close to the wall of the cavity. [35].

1.1.2 Impedance

A liner is characterized in terms of acoustic impedance Z, which is defined
in the frequency domain as the ratio of the acoustic pressure and normal
acoustic velocity [44]:

Z =
p̂
ûn

(1.8)
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Figure 1.12: Effect of the frequency on the SDoF cell: (a) resistance and (b)
reactance. [20]

where p̂ and ûn are the Fourier coefficients of the pressure and normal
velocity. Normalizing by the medium’s characteristic impedance ρ0c0, nor-
malized acoustic impedance z = θ + iχ is obtained, where θ is the normal-
ized resistance θ and χ the normalized reactance. Resistance represents the
real part of impedance and describes the dissipation of acoustic energy. If
it has a positive value, energy is being dissipated; otherwise, it would be
produced. Reactance is a phase and represents the imaginary component
of impedance that provides the frequency at which resonance occurs for a
given geometry, corresponding to the frequency at which reactance equals
zero. Under resonance conditions an absorption peak is expected due to the
cancellation of the reactance and the maximization of the resistance, leading
to a local minimum in the acoustic impedance of the system (figure 1.12)
[20]. This is definitely true in the absence of grazing flow, whose presence
tends to slightly shift the frequency at which resonance occurs, because
both resistance and reactance are influenced by the presence of grazing flow
(the flow that runs along the liner) and bias flow (typically absent, flows in
cavities for high-temperature material survival) (figure 1.13).
To obtain an accurate description of the liner’s behavior, it is therefore cru-
cial to have a precise description of the fluid dynamic field and its interaction
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Figure 1.13: Grazing and bias flow for SDoF liner. [7]

with the acoustic one. Firstly because, as seen, ”the conversion of acoustic
energy into rotational kinetic energy represents the dominant mechanism
for noise reduction” [35]. Tam et al. [40] performed a 2D Direct Numerical
Simulation (DNS), showing that this holds true both in the absence and
presence of grazing flow. However, in the latter case, it was shown that ”the
large-scale vortices, ejected from the resonator’s orifice, are advected by
the grazing flow and interact with downstream cavities”, especially in the
presence of high SPL incident waves. It is also very important to have a
good representation of the the counter-rotating vortices that form upstream
of the liner (and thus of the fluid dynamics in this region) since they, by
obstructing part of the passage, reduce the perceived cavity area, increasing
resistance [35] (figure 1.14). This recirculation region within the orifice
is quasi-steady, because it slightly oscillates within the orifice [17] and is
caused by the interaction of the turbulent flow with the orifice itself and
affects the interaction of the acoustic wave with the liner. In addition to these
vortices within the orifice, figure 1.14 also shows the clockwise circulation
region within the cavity, which is the main cause of viscous dissipation in
the liner. Furthermore, the behavior of the vortices deep inside the cavities
tends to be somewhat random.
However, the evaluation of impedance in the presence of flow still poses
a challenge. Indeed, by performing a numerical evaluation with flow the
calculated impedance value show gap compared to experimental data, partic-
urarly with respect to the resistance values (figure 1.15). This is because the
physics behind the interaction between the acoustic field and the turbulent
flow is still not fully understood, and it remains a research topic [35]. An-
other important aspect contributing to the difference between numerically
and experimentally obtained results, currently under careful evaluation, is
the discrepancy between simulated and experimental geometries. This is
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Figure 1.14: Contour plot of the y velocity component of the flow, stream-
lines inside the cavities and detailed near orifice velocity vectors. [35]

influenced by a series of inaccuracies and defects arising from the manufac-
turing process of the liners, particularly concerning the roundness of cavity
edges, which are imprecise and not perfectly circular. Considering that these
imperfections exist in millimeter-sized holes, they can significantly alter the
liner’s response. Palani et al. [34] also studied the effect of mean flow in
term of boundary layer velocity profile and thickness on optimal impedance
evaluation, a quarter-sine profile and a 1/4th power-law profile were eval-
uated (figure 1.16). The computational model is based on the geometry of
the Royal Netherlands Aerospace Centre (NLR) flow duct facility and the
Linearised Euler Equations (LEE) frequency domain model in COMSOL
is used to describe the propagation of the sound field within the duct. The
results demonstrated a dependence of the optimal impedance on the Mach
number and the shape of the velocity profile (figure 1.17), due to the dif-
ferent refraction effect caused by the presence of a velocity gradient in the
boundary layer zone.

1.1.3 Impedance Evaluation

Winkler et al [42] provided an overview of the main methods for impedance
evaluation. DNS are the gold standard, and with Large Eddy Simulations
(LES) and the Boltzmann Lattice Method (BLM), they fall into the category
of high-fidelity methods. High fidelity simulations direct resolve liner per-
foration and geometry details using a numerical grid and, there is the need
of this method in presence of unsteady flow, high acoustic amplitudes, for
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Figure 1.15: Normalized impedance for the M=0.3 grazing flow case as a
function of the incident acoustic wave frequency (downstream source): (–)
experimental [in-situ]; (- -) experimental [MM]; (-·-) experimental [KT];
(△) numerical [in-situ]; (◦) numerical [MM]; (⋄) numerical [KT]. [35]

Figure 1.16: 1/4th power-law, and quarter-sine. [34]

Figure 1.17: 1/4th power-law, and quarter-sine. [34]
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advanced liner design and for explore in detail a small number of facesheet
holes and a single cavity. These methods allow for a more in-depth focus
on exploring the physics of both traditional and more advanced liners, es-
pecially concerning the transfer of energy from the acoustic component to
vortex motion. LBM VLES [35] maintains good fidelity but with a lower
computational cost compared to DNS, but not low enough to include it in the
design process. These simulations are considered very promising, especially
due to their low numerical dissipation. However, being a relatively new
method, the number of studies on this topic is still limited [42]. Mid-fidelity
methods instead solve wave equation with embedded sub-models for perfor-
ations, or Linearized Eulerian Equation (LEE), commercial software like
COMSOL or Actran follow these approaches. These tools are capable of
either using an impedance boundary condition to represent the liner or a sim-
plified sub-model to capture the leading-order acoustic effects of facesheet
and septum perforations by modeling them as a transfer impedance within
the fluid domain, with empirically determined parameters. Comparisons to
experimental data have shown that these tools can be used with confidence
[42].

1.2 Impedance Models

One of the most critical aspects is the development and evaluation of new
models that can be integrated into the acoustic liner design process. Indeed,
these models often fail in modeling innovative geometries that deviate from
the more conventional SDoF or DDoF liner designs. However, reduced-
order models (ROM) allow for achieving good results in the modeling of
traditional liners, with lower computational costs compared to Actran and
COMSOL and high-fidelity methods, although they represent fewer details.
because of this, despite the development of many semi-empirical models
over the years, different models applied to the same geometry can yield
varying results when diverging from more conventional geometries.

1.2.1 Goodrich Model

A valid ROM for SDoF impedance prediction is the Goodrich Model, ob-
tained by appropriately modifying the Crandall’s solution. The normalized
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Table 1.1: Geometric characteristic of Liners

Configuration 1 2
POA(%) 6.4 15.0

Hole Diameter (mm) 0.99 0.99
Sheet Thickness (mm) 0.64 0.64

Cavity Depth (mm) 38.1 38.1

impedance z = θ + iχ is divided in three main contributes:

z = (θl +θnl +θg f )+ i(χl +χnl +χg f ) (1.9)

where l indicates a linear term associated with the viscous flow through the
orifices, nl a non-linear term associated with high amplitude acoustic waves
leading to the formation of a jet flow through the orifices with vortex ring
generation and turbulence breakdown and g f a linear term accounting for
the effect of the grazing flow over the facesheet.
Winkler et al [42] compared the results obtained with LBM VLES, Goodrich
Model, and experimental approach with no flow and in presence of grazing
and bias flow. Simulations are performed for the NASA Langley Research
Center’s (LaRC) Normal Incidence Tube (NIT) and Grazing Flow Imped-
ance Tube (GFIT) setups and the results are compared to available NASA
experimental data and to Goodrich model. The simulations are performed
with the LBM code PowerFLOW. Two configuration of SDoF liners were
studied (table: 1.1). Acoustic waves consisting of a broadband source from
50 Hz to 5 kHz and OASPL of 130 dB are injected upstream of the SDoF
liner.

Without Flow

In the absence of flow, only the first term of the Goodrich model remains:

zl =
8µt

ρcσa2

√1+
(ksa)2

32
+

√
2ksa2

2t

+

+i

{
ωt
cσ

[
1+
(

9+
(ksa)2

2

)−0.5

+2
8a
3πt

]
− cot(kh)

} (1.10)
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Figure 1.18: SDoF liner impedance predictions from high-fidelity LBM
simulations in comparison to Goodrich linear impedance model. [42]

where ks =
√

ωρ/µ , c is the speed of sound, k = ω/c is the wavenumber,
ρ is the fluid density, µ is the fluid viscosity and a is the perforate hole
radius. The results overlap over a wide frequency range except for the anti-
resonance frequency, this effect is not captured by the ROM but is of little
significance. Therefore, the Goodrich Model can be considered accurate in
this case (figure 1.18).

Non-linear Effects

In the case of high SPL, the contribution of non-linear effects becomes
non-negligible, and it becomes necessary to also include the second term of
the Goodrich model:

znl =

[
1.336541

2c
(1−σ2)

σ2C2
d

− i
(

2.07e−2[s]
k

σ2

)]
urms (1.11)

with
urms =

√
∑ û2 (1.12)

and

|û|=

∣∣∣∣∣∣pre f 10
SPL
20

∣∣∣∣∣∣
|z|ρc

(1.13)

where Cd is the discharge coefficient and have the empirical formulation:
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Figure 1.19: High SPL SDoF liner impedance predictions using high-fidelity
LBM simulations with broadband source of different OASPL, in comparison
to the ROM [42]

Cd = 0.80695

√
σ0.1e

0.5072t
d (1.14)

In this case, the solution must be found iteratively, due to the dependence
of znl from û. Very good agreement is found between all methods for the
reactance, but ROM predictions show a much more pronounced peak near
resonance with the add of equation 1.11, the disagreement increases as the
dB level increases entering the nonlinear regime, the level of agreement is
nevertheless satisfactory (figure1.19).

Grazing Flow

To account for the grazing flow effect, the addition of a third term to the
Goodrich Model is therefore necessary:

zg f =
1
σ

1
2+1.256δ ∗/d

Mg f+ (1.15)

+i

ωt
cσ

1+

(
9+

(ksa)
2

2

)−0.5

+2
8a
3πt

1−0.7
√

σ

1+305M3
g f

− cot(kh)


where δ∗ is the displacement thickness. A good level of agreement between
the impedance values obtained with the Goodrich model and those calculated
with LBM VLES using the Dean microphone method has been demonstrated
(figure 1.20).
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Figure 1.20: Grazing flow SDoF liner impedance predictions from high-
fidelity LBM simulations for 130 dB excitation, compared to semi-empirical
ROM. [42]

Bias Flow

To account for the bias flow effect, the addition of another term is necessary
for Goodrich model:

zb f =
1
σ

πka
2(γ2 +δ 2)

(δ + iγ)− icot(kD) (1.16)

with

γ =
I2
1 (St)

(
1+ 1

St

)
+ 4

π2 exp(2St)cosh(St)K2
1 (St)

(
cosh(St)− sinh(St)

St

)
I2
1 (St)+ 4

π2 exp(2St)cosh2(St)K2
1 (St)

(1.17)
and

δ =
2

πSt I1(St)K1(St)exp(2St)

I2
1 (St)+ 4

π2 exp(2St)cosh2(St)K2
1 (St)

(1.18)

where I1 and K1 are the modified Bessel function and St = ka/Mb f is the
orifice Strouhal number.

1.2.2 Reformulation of Kooi’s Equation

Murray et al [33] validated a low cost liner impedance model for SDoF
liners. In situ measurements were performed in the Federal University of
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Santa Catarina grazing flow duct facilities using Dean’s in situ method that
assume only plane wave and fully reflective walls, under both grazing flow
and high SPL. Test were performed both in pure tone and broadband source.
Semi-empirical impedance model adopted is a reformulation of the Kooi’s
equations with the addition of a nonlinear term. The normalized resistance:

θ = θlin,no flow +θlin,grazing flow +θnon-lin (1.19)

θlin,no flow =
k1µt

ρcσCDd2 (1.20)

θlin, grazing flow =
k2M

[
5−
( t

d

)]
4σ

− k3d f
σc

(1.21)

θnon-lin =
u′k4

(
1−σ2)

2c(Cdσ)2 (1.22)

where the ki are four constant and Cd is the discharge coefficient (setted to
0.76) and u′ the acoustic velocity. For normalized reactance:

χ = χm +χc (1.23)

where the former is the facing sheet reactance, the latter is the cavity react-
ance:

χm = k(t + εd)/σ (1.24)

with

ε =
0.85(1−0.7σ0.5)

(1+200M3)
(1.25)

and

χc =−cot(kh) (1.26)

where ε represents a corrective term. The semi-empirical impedance model
provides a good confidence in the evaluation of resistance and reactance
(figure: 1.21 )
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Figure 1.21: SDoF Perforate Impedance Prediction vs Measurement, low
POA, varying SPL. [33]

1.2.3 Hersh Model

Giaccherini et al [20] validated a model for the acoustic impedance of triple
degree of freedom (TDOF) liner, extension of the analytical model provided
by Hersh for SDoF and DDoF liners. The Hersh model is based on the
assumption that the liner functions as a Helmholtz resonator, this is true
when the wavelength of the acoustic wave is much greater than the size
of the cell. The original Hersh model for the evaluation of SDoF liners
impedance shows excellent agreement with high fidelity result and in case
of low SPL and very low grazing flow speed, the following models for linear
resistance and reactance are obtained:

X
ρ0c0

=
ωH1

σ1c0
− cotkL1 (1.27)

RL

ρ0c0
= (

4ν0w1

σ1c0d2
1
)

KSS +Kac

√
ωd2

1
ν0

 (1.28)

In the presence of high SPL and grazing flow, the formulation for resistance
can be extended as follows:

R
ρ0c0

=

√
(
1−Cd

Cd
)(

P0

ρ0c2
0σ2

1
)+(

VCV

2σ1c0
+

RL

2ρ0c0
)2 +(

RL

2ρ0c0
) (1.29)
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Figure 1.22: Control volumes for the Hersh model derivation. [20]

where: P0 is the amplitude of the acoustic pressure at the neck ends, w1 the
facesheet thickness, H1 is the inertial length of the air mass oscillations, KSS

and Kac are empirical constant function of d1/w1, S1 is the orifice cross-
sectional area, Svc is the vena contracta area due to blockage effects, SV

the grazing flow cross sectional area, Cd = Svc/S1 the acoustic discharge
coefficient and CV = SV/S1 the grazing flow discharge coefficient.
If non-linear effects becomes non-negligible a frequency-dependent Cd is
required to correctly reproduce the acoustic resistance over the entire fre-
quency range. However, moving away from the linear regime with increasing
SPL, the Hersh model becomes increasingly inaccurate. The effects of the
SPL and the grazing speed can be embedded also into the reactance model,
for this purpose, experimental campaigns are required to determine how the
H1 inertial length parameter is influenced by the high grazing speeds and
the nonlinear SPL.
TDOF liner can be interpreted as a series of three independent Helmholtz
Resonators with different cavity depth, facesheet thickness and orifice dia-
meter, on the base of this interpretation, the Hersh model can easily be
expanded to a case for TDOF liner. TDOF Hersh model extension proves
reliable only for very high or very low frequencies. The difference between
SDoF and TDOF liner is that the former generally has a single impedance
minimum, while the latter has three valleys and two peaks of anti-resonance,
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Figure 1.23: SDoF and TDOF impedance predicted by the Hersh model.
[19]

for which there is no attenuation, the acoustic liner becomes transparent
(figure 1.23). More minima ensure attenuation over a broader frequency
range.

1.2.4 Motsinger and Kraft Model

Motsinger and Kraft [32] proposed an impedance model for SDoF liners
that can be easily extended to the case of DDoF liners. The general nondi-
mensional impedance formula for a SDoF liner is [10]:

z = θ + i(χm +χc) (1.30)

where θ is the porous-surface resistance, χm is the porous-surface mass
reactance and χc is the cavity reactance:

χc =−cot(kh) (1.31)

where h is the total honeycomb thickness (figure 1.24). For a DDoF liner,
the general formula becomes:

z = z1 +


(

z2
cos(kh1)sin(kh2)

sin(kh)
− icot(kh)

)
1+ iz2

sin(kh1)sin(kh2)

sin(kh)

 (1.32)
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Figure 1.24: Illustration of DDoF liners. [10]

where:
z1 = θ1 + iχ1 (1.33)

z2 = θ2 + iχ2 (1.34)

Supposing that acoustic levels are not high enough to induce nonlinear
energy losses, only linear contributions are considered:

θ = θlin,no f low+θlin,grazing f low =
64µτ

2ρcσCdd2 +
Me

σ

(
2+1.256

δ∗
d

) (1.35)

χm =
k[τ +0.85d(1−0.7

√
σ)/(1+305M3

e )]

σ
(1.36)

where τ is the porous-surface thickness, Me is the boundary-layer asymp-
totic Mach number, δ∗ is the boundary-layer displacement thickness, σ =

Nsπd2/4 is the surface porosity defined as the ratio between the orifices area
and the total area, Ns being the number of orifices for unit surface.

1.3 Optimization

Winkler et al [42] showcase a liner design approach considered represent-
ative for the aerospace industry (figure 1.27). The liner design approach is
divided into 3 steps, the first involves impedance optimization, the second
evaluates the attenuation in the far field, and finally, the calculation of the
Effective Perceived Noise Level (EPNL) based on flight trajectories. The
optimization cycle aims to define the liner specifications that best match
the target, based on a defined target attenuation spectrum. In fact, some
geometric parameters of the liners, such as the POA σ , the width d and



30 Introduction

Figure 1.25: Normalized Resistance Motsinger and Kraft Model (SDoF)

Figure 1.26: Normalized Reactance Motsinger and Kraft Model (SDoF)
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Figure 1.27: Summary of the liner design process. [42]

depth h of each core cavity, along with their number [15], can be optimized
to maximize their performance in terms of directivity or acoustic emission
intensity, allowing compliance with regulations. In addition to a reliable
model for acoustic impedance prediction, a finite element acoustic prediction
software like Actran is incorporated into the optimization process, enabling
the evaluation of acoustic emissions in far field based on input data such as
noise excitation, boundary conditions and CFD field previously solved.
Dilillo et al [14] investigated the effect of the engine fan source (instead of
using the easier assumption of equal energy per propagation mode source)
and the wall boundary layer refraction (instead of using the easier assump-
tion of uniform flow), the impedance was first optimized while neglecting
theirs effects, and then re-optimized taking them into account. Optimization
is carried out for three liner designs (linear SDoF, perforated SDoF and
DDoF) by minimizing the SPL at a distance of 18.5 meters from the duct,
for angles between 40° and 90°, with an Engine Order (EO) ranging from
6 to 83 and using NextGen Liner Multiphysics Code (NLMC). NLMC is a
propagation code written in MATLAB that propagates the fan source modes
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Figure 1.28: Predicted levels of the overall attenuation in the far-field for
optimised and re-optimised design. [14]

along a cylindrical inlet duct in presence of shear flow predicting directivity
and EPNL for a given flight path. This code ensures very fast computational
evaluations (order of second for each cut-on mode), allowing it to be coupled
with the Matlab Optimization Toolbox in order to obtain impedance that
minimise cost function. However, the reduced computation time is due to
the following assumptions: rigid and fully-lined cylindrical duct, adiabatic
and inviscid flow, constant thickness boundary layer and uniform impedance
modeled using Leonardo semi-empirical model. The results showed that not
including the effects of the engine fan source and the boundary layer in the
optimization process leads to an inaccurate prediction of liner performance,
with an overestimation of liner attenuation. Furthermore, the geometry has
a significant impact: DDoF liners and linear SDoF liner are more sensitive
than perforate SDoF liner. The optimal impedance of perforated SDoF liners
varies much less when re-optimized considering the boundary layer and
engine fan source (figure 1.28). It is therefore concluded that it is important
to include both effects in liner design.
In a later work [15], the NLMC was used by Dilillo et al to optimise liner
geometry minimising various objective functions on a desired frequency
bandwidth considering both the impact of the engine fan noise modal con-
tent and that of the wall boundary layer on the design of the inlet liner.
Impedance was modeled using weighted admittance approach [25]. The
optimization was performed for two different liners, one with a total panel
depth of 24mm and another one deeper at 40mm, each of them optimized
for a four-cavity cluster and a six-cavity cluster case. In a first case, the
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Figure 1.29: Predicted attenuation of the hard wall overall SPL in the far-
field, at 18.5m from the duct end, between 40° and 90°, for a subset of
four-cavity cluster-based ComplexCav geometries. [15]

choice was to minimize the Overall Sound Pressure Level (OASPL), and in
a second case, it was to minimize the ∆Z (minimising the difference with
the optimum impedance in the 6 < EO < 83 interval evaluated in the pre-
vious work). The results show that significantly greater attenuation (where
∆OASPL = OASPLHardWall −OASPLlined) can be achieved by minimizing
the OASPL, especially in the case of a 24mm depth with a four-cavity cluster
and in the case of a 40mm deep cavity with a six-cavity cluster (figure 1.29).
Results for optimised liners are also compared to the performance of tradi-
tional liners (figure 1.30), highlighting a higher attenuation at higher EO for
both 6CC,40mm,minOASPL and 4CC,24mm,minOASPL and lower EO for
6CC,40mm,minOASPL.

1.4 Objectives

This thesis aims at defining the geometric parameters of a liner that minim-
izes the SPL in the far-field and ensures an optimum in term of directivity.
To do this, the aeroacoustic simulation code Actran is used, providing a nor-
malized impedance value as a boundary condition, obtained by modifying
parameters within a previously selected model. Once the simulation setup is
validated, it will be possible to proceed with initial parametric evaluations,
assessing how the variation of a specific geometric parameter and different
flow conditions affect the SPL values detected by the microphones in the



34 Introduction

Figure 1.30: Predicted attenuation of the hard wall overall SPL in the far-
field at 18.5m from the duct end, between 40° and 90°, using the measured
fan noise source and assuming shear flow in the inlet duct. [15]

far field. Finally, the intention is to automate the process by coupling the
NLopt optimization library with Actran to evaluate the optimal point corres-
ponding to the minimum of a specific objective function. In doing so, one
also aims to evaluate the effect that different optimization approaches and
various choices regarding optimization parameters have on the search for
the minimum.



Chapter 2

Actran DGM

Actran is a simulation software developed by Free Field Technologies (FFT)
for modelling sound propagation, transmission and absorption in an acoustic,
vibro-acoustic or aero-acoustic context. Particularly, Actran DGM module
implements the discontinuous Galerkin method for solving the Linearized
Euler Equations. It is designed for predicting the propagation of tonal engine
noise components in a moving fluid with shear layers and in the presence of
acoustically lined ducts, as typically happens in engine nacelle exhausts [1].

2.1 General Description of the process

Actran DGM employs an hybrid method that distinctly separates the com-
putation of the fluid dynamics solution from the acoustic one, unlike direct
methods where the two fields are directly solved together. This separation is
driven by the difficulty of solving both fields together, given the significant
disparity in terms of energy content and the difference between the size of
turbulent structures and the wavelength of acoustic propagation [18]. This
allows for a significant reduction in computational cost. The assumption
underlying these methods is that the effect of the acoustic field on the fluid
dynamics field is negligible, thus allowing the flow to generate acoustic
waves that do not exhibit a retroactive effect on the flow [18]. The process
generally involves four steps (figure 2.1) [1]:

• Computational Fluid Dynamics Analysis: the fluid dynamics field
is evaluated outside of Actran using one of the compatible computa-
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Figure 2.1: Computational process of a complete ACTRAN DGM analysis.
[4]

tional fluid dynamics software such as Star CCM+, OpenFOAM, and
ANSYS Fluent.

• Integrated Computational Fluid Dynamics Analysis: the fluid dy-
namics field previously evaluated on the fluid dynamics mesh is re-
interpolated onto the acoustic mesh in Actran. This allows for the
calculation of source terms that will appear on the right-hand side of
the Euler equations.

• Acoustic Analysis: the fluid dynamics field (i.e. u0, p0, ρ0 distribu-
tions) and the previously evaluated source terms are taken as input to
solve the linearized Euler equations

• Post processing: the solution in the far field is evaluated through the
FWH analogy.
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2.2 Near Field analysis
Actran DGM solves the Linearized Euler Equations (LEE) in time domain
through an iterative approach until achieving an harmonic steady-state solu-
tion (convergence is checked on the surface between the buffer region and
the radiation domain) [1]. Since the phenomenon of acoustic propagation is
isoentropic, it can be studied starting from the Euler equations [5]:

∂ρ

∂ t +ρ∇ ·u+u ·∇ρ = 0

ρ

(
∂u
∂ t +u ·∇u

)
=−∇p

ρT
(

∂ s
∂ t +u ·∇s

)
= 0

(2.1)

By separating the quantities of the propagation medium from those of the
acoustic perturbation, which we know to be small compared to the former, it
is possible to perform a linearization:

u = u0 +u′, | u′

u0
|≪ 1,

p = p0 + p′, p′
p0

≪ 1,

ρ = ρ0 +ρ ′, ρ ′

ρ0
≪ 1,

c = c0 + c′, c′
c0
≪ 1.

∂ρ ′

∂ t
+(ρ0 +ρ

′)∇ · (u0 +u′)+(u0 +u′) ·∇(ρ0 +ρ
′) = 0 (2.2)

and collecting the terms of order 1 and those of the acoustic oscillation
order:

∇ · (ρ0u0) = 0 (2.3)

∂ρ ′

∂ t
+ρ0∇ ·u′+ρ

′
∇u0 +u0 ·∇ρ

′+u′ ·∇ρ0 = 0 (2.4)

By applying the same procedure to the momentum and energy balance
equations the linearized Euler equations are obtained:


∂ρ ′

∂ t +u0 ·∇ρ ′+u′ ·∇ρ0 +ρ0∇ ·u′+ρ ′∇ ·u0 = 0,

ρ0

(
∂u′

∂ t +u0 ·∇u′+u′ ·∇u0

)
+ρ ′u0 ·∇u0 =−∇p′,

ρ0T0

(
∂ s′
∂ t +u0 ·∇s′+u′ ·∇s0

)
+(ρ0T ′+ρ ′T0)u0 ·∇s0 = 0,

(2.5)
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The resolution of these equations allows for the assessment of the propaga-
tion of small acoustic perturbations within a given mean flow. Depending on
the cases, Actran allows choosing whether to solve the Isentropic Linearized
Euler Equations or the Homentropic Linearized Euler Equations. The former
is composed of a set of 5 differential equations (in 3D case) and describes a
more general case, thus ensuring a broader range of validity as it is applic-
able for the propagation of acoustic fluctuations in rotational mean flows,
in supersonic mean flows, and through a shock. This solution, however,
has the disadvantage of requiring the solution of one additional equation
compared to the homentropic system, in which some physical aspects of
acoustic propagation are not accurately modeled [2]. This is due to the fact
that in a homoentropic process, entropy remains constant in space and time.
As a result, the conservation equation of acoustic energy is automatically
satisfied, reducing the dimension of the system of equations to be solved.
However, this simplification leads to an inaccurate description of acoustic
energy transport under certain conditions, such as in the presence of shocks,
where there is an entropy jump.

Homoentropic Linearized Eulerian Equation

In an homoentropic process ∂ s′
∂ t = ∇s′ = 0. [2]

{
∂ρ ′

∂ t +∇ · (ρ0u′+ρ ′u0) = 0

ρ ′u0 ·∇u0 +ρ0(
∂u′

∂ t +u′ ·∇u0 +u0 ·∇u′) =−∇(c2ρ ′)
(2.6)

Energy equation is automatically satisfied.

Isentropic Linearized Eulerian Equation

In an isentropic process ∂ s′
∂ t +u0 ·∇s′ = 0 [2].


∂ρ ′

∂ t +∇ · (ρ0u′+ρ ′u0) = 0

ρ ′u0 ·∇u0 +ρ0(
∂u′

∂ t +u′ ·∇u0 +u0 ·∇u′) =−∇p′
∂ p′
∂ t +u0 ·∇p′+u ·∇p0 = c2(∂ p′

∂ t +u0 ·∇ρ ′+u∇ρ0)

(2.7)
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Figure 2.2: Example: 4th order element [2]

2.2.1 Mesh and Solution Scheme

The Discontinuous Galerkin method used for solving Linearized Euler Equa-
tions combines the high parallelizability of a finite volume scheme with the
accuracy of a finite element method [1]. One characteristic of the Discon-
tinuous Galerkin method is that degrees of freedom are not shared between
neighboring elements. This implies that the solution could be different on
the two sides of an element face, and continuity is not enforced. Therefore,
the discontinuity becomes a measure of solution convergence.
The acoustic domain is meshed using triangular elements in 2D and axisym-
metric configurations (figure 2.2) and the numerical quality of the simulation
is measured by:

• Dispersion error: related to the change in propagation speed with
respect to the expected one.

• Dissipation error: related to amplitude decrease along the acoustic
propagation path.

Each element order is automatically adapted from 1 to 16 to minimize these
errors and maintaining the same level of accuracy across the entire domain
based on the local minimal wavelength [3]:

λmin =
c−||u0||

f
(2.8)

In particular:
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Figure 2.3: Example of Good and Bad shape for mesh elements. [3]

• if the elements are large (high Lmax and small
λmin

Lmax
) the order of the

element increases to accurately represent the small length scales

• if the elements are small (small Lmax and large
λmin

Lmax
) low order can

be used as spatial fluctuation are larger relatively to the element size.

For efficiency reason mesh generation should target an order of 6, this order
is achieved by constructing the mesh in such a way that:

λmin < Lmax < 1.5λmin

It is also important that the elements are as equilateral as possible for faster
computation because highly distorted elements can cause an overestimation
of the order for the side with a smaller dimension than Lmax, resulting in a
decrease in efficiency (figure 2.3). Very small elements are still necessary in
some situations to properly discretize geometries or the flows.
Assuming the following as the general form of the equations [1]:

∂q
∂ t

+∇ · (F ·q) = s ·q (2.9)

(where the values of Fj contains local mean flow information and q is a vector
where all unknowns are store), the spatial discretization of the problem can
be carried out as follows:

∫
Ω

Nα

∂q
∂ t

dV =
∫

Ω

∇ · (NαF ·q)+Nαs ·qdV −
∮

∂Ω

NαF ·q ·ndS (2.10)



2.2 Near Field analysis 41

where Nα is the Lagrange polynomial function (order from 1 to 16) for
interpolation on mesh element, dS is the the surface delimiting one element
and dV is the volume of one element.
Regarding the temporal discretization, Actran DGM utilizes the Runge-Kutta
scheme for its properties in terms of accuracy and stability, by default a 4th
order Runge Kutta scheme is use. This time scheme is explicit and the time
step is therefore limited by a Courant-Friedrichs-Lewy (CFL) like condition.
The CFL condition is a numerical stability criterion used to determine the
time step in a numerical scheme. This condition is particularly important in
explicit time schemes because it directly affects the stability of the numerical
solution. More specifically, it requires that the time step be smaller than a
critical value to ensure the correct propagation of information through the
grid. For the specific case of Actran:

∆(t)≤C(p)
r

v+ c
(2.11)

where:

• C(p):
1

2p+1
⇒ CFL number

• p: element order

• r: radius of the element inscribed sphere

• c: speed of sound

• v: mean flow velocity norm

From this, it follows that, since the timestep of the global simulation is the
smallest timestep among all elements, elements that are too small have to be
avoided to reduce the computation time, therefore, a single skewed element
can impact the performance of the whole model, hence, in this case as well,
the mesh should have elements as equilateral as possible (figure 2.4). An
appropriate CFL parameter helps avoid numerical instability issues. The
CFL condition can also be interpreted as the requirement that the distance
traveled by a wave during one timestep must be less than the length of the
element (figure 2.5) [3].
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Figure 2.4: Example of Good and Bad shape for mesh elements[3]

Figure 2.5: How to interpret the CFL criterion [3]
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2.2.2 Boundary Conditions

Non-reflecting boundary condition

To allow propagation in free field, this condition enforces that all the in-
coming modes are set to zero while allowing outgoing modes to propagate
outside [1]. This condition is easy to enforce if the waves propagate per-
pendicularly to the wall; however, it becomes more complex when the
propagation is transverse. This can result in potential reflection in the pres-
ence of transverse components. Since this surface is located close to the near
field to reduce computational costs, such spurious numerical reflection can
influence the solution. To minimize this effect, the non-reflecting surface is
preceded by a buffer zone that intervenes by gently damping the outgoing
waves.

Buffer Zones

In this zone (figure 2.6), damping is added to the numerical scheme pro-
gressively along the thickness of the Buffer Zone as follows [1]:

σ(x) = σmax|1+
d(x)−L

L
|β (2.12)

where σmax is the value of the damping near the non-reflecting boundary
condition, L is the thickness of the buffer zone, β controls the order of the
damping increase and d(x) is the distance from the point considered to the
bottom of the buffer zone.

Wall condition

The wall condition imposes that the normal velocity component un is set to
zero. This condition generates a pure reflection of the acoustic waves [1].

Admittance

Admittance is the inverse of impedance. This boundary condition allows
us to simulate the presence of acoustic treatment in the simulation. In the
frequency domain, this condition is expressed in frequency domain as [1]:

u′n = A(ω)p′ (2.13)

where A(ω) is the admittance value.
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Figure 2.6: Acoustic analysis domain components [4]

2.2.3 Aeroacoustic Sources

Actran DGM allows for the calculation of aeroacoustic sources, introduced
as additional terms on the right-hand side of the Linearized Euler Equations
that in non conservative form and in the presence of source terms can be
expressed as follows [1]:



∂ρ ′

∂ t
+∇ · (ρ ′u0 +ρ0u′) = Qp

ρ ′u0 ·∇u0 +ρ0(
∂u′

∂ t
+u′ ·∇u0 +u0 ·∇u′)+∇p = Qm

(
Dρ ′

Dt
+u′ ·∇ρ0)c2

0 = Qs

(2.14)

where Qp is the mass source, Qm is the momentum source and Qs is the
energy source. This calculation is performed based on a CFD file provided as
input, originating from one of the compatible computational fluid dynamics
simulation software like Star CCM+, Ansys Fluent, or OpenFOAM, this
procedure allows for the calculation of p0, ρ0, u0 which must be known to
proceed with the resolution of the LEE. Depending on the theory used these
terms can take different forms, in fact Actran DGM implements various
aeroacoustic models. The aeroacoustics models are presented below with
the indicial notation as it appears in the original papers [9], [31] and [41] in
which they were introduced, which is preferred for a simplification of the
treatment, where:
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•
∂ (u j)

∂x j
= ∇ · (u)

•
∂ (ρu j)

′

∂x j
= ∇ · (ρ ′u0 +ρ0u′)

Bogey, Bailly & Juvé model

The source terms are computed from a CFD solution obtained by solving
the unsteady Navier-Stokes equations with an appropriate turbulence model.
Bogey et al. proposed as follows [9]:



∂ρ ′

∂ t
+

∂ (ρu j)
′

∂x j
= 0

∂ (ρui)
′

∂ t
+

∂ [ū j(ρui)
′+ ūi(ρui)

′−ρ ′ūiū j + p′δi j]

∂x j
=−

∂ (Tij)

∂x j
∂ (ρe)′

∂ t
+

∂ [h̄(ρu j)
′+ ū j(ρh)′−ρ ′h̄ū j]

∂x j
= 0

(2.15)

δi j ≡

{
0 for i ̸= j

1 for i = j.

where Tij = ρu′iu
′
j −ρuiu j, e and h denotes the energy and enthalpy respect-

ively. The over bar terms denote time averaging resulting from Reynolds
decomposition.

Turbulent Entropic model

Billson et al. proposed the Turbulent Entropic model [31]. Unlike the previ-
ous one, in this model, there are two source terms. The first is the derivative
of the Reynolds stress tensor appearing in the momentum equation, and the
second is a function of temperature appearing in the energy balance equation
[1]:

∂ρ ′

∂ t
+

∂ (ρu j)
′

∂x j
= 0

∂ (ρui)
′

∂ t
+

∂ [ū j(ρui)
′+ ūi(ρui)

′−ρ ′ūiū j + p′δi j]

∂x j
=−

∂ (Tij)

∂x j
∂ (ρe)′

∂ t
+

∂ [h̄(ρu j)
′+ ū j(ρh)′−ρ ′h̄ū j]

∂x j
=

∂ (Qi)

∂xi

(2.16)
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where Tij = ρu′iu
′
j −ρuiu j, Qi = cp(ρT ′′u′′i −ρTui)− ũ jTij and cp is the

heat capacity at constant pressure. Tilde variables and double prime rep-
resent the mean flow and fluctuating parts respectively using Favre’s de-
composition, that is an alternative way of decomposing a variable in time
average plus a fluctuating part: H(x, t) = H̃(x, t)+H ′′(x, t). To simplify the
calculation, Actran DGM implements standard Reynolds’s decomposition

H0(x) = lim
T→∞

1
T
∫ t+T

t H(x, t) instead of Favre’s one.

Stochastic Noise Generated Randomly (SNGR) model

∂ρ ′

∂ t
+

∂ (ρu j)
′

∂x j
= 0

∂ (ρui)
′

∂ t
+

∂ [ū j(ρui)
′+ ūi(ρui)

′−ρ ′ūiū j + p′δi j]

∂x j
=−

∂ (Tij)

∂x j
∂ (ρe)′

∂ t
+

∂ [h̄(ρu j)
′+ ū j(ρh)′−ρ ′h̄ū j]

∂x j
= 0

(2.17)

where Tij = ρu∗i u∗j . In the SNGR model [41], the source term is computed
from synthesized turbulent velocities u∗i generated as a sum of random Four-
ier modes and through a steady RANS-CFD solution for the calculation
of the Turbulent Kinetic Energy, while in Bogey, Bailly & Juvé’s model
the velocities (and the other flow variables) are computed using a unsteady
CFD method [1]. This approach allows for a reduction in the cost of CFD
simulation. The basic assumptions are that the flow is incompressible and at
a low Mach number, the reconstructed turbulence is homogeneous and iso-
tropic, acoustic sources are spatially uncorrelated, and the velocity spectrum
depends on local turbulent kinetic energy (TKE) [18].

2.3 Duct Modes

The methods described above are not accurate in assessing the noise gener-
ated by the fan due to the complex flow field through and downstream of it.
Since this is the main cause of noise, it is crucial to have the most accurate
representation, therefore, an injection of the modal content generated by
the fan, previously evaluated through experimental [38] or numerical [11]
methods, is introduced into the duct [1].
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Figure 2.7: Rectangular Duct

2.3.1 Wave propagation in duct

In the context of wave propagation in a duct, only waveforms that satisfy
the wave equation and the boundary conditions imposed by the walls, which
are assumed to be non-absorbing and therefore rigid, exist. In this case, the
solution of the wave equation can be represented as an expansion in a series
of particular solutions called modes that satisfy the boundary conditions.
For simplicity of treatment, a case with a rectangular duct and constant
cross-section is presented (figure 2.7).
Through a linear combination of the Linearized Euler Equations, it is pos-
sible to obtain the wave equation for describing the propagation of acoustic
waves in the medium [5]:

1
c2

0

∂ 2 p′

∂ t2 −∇
2 p′ = 0 (2.18)

Along the rigid walls, the following boundary condition holds:

∂ p′

∂n
= 0 (2.19)

where n is the normal to the wall. Through the separation of the variables
the solution can be expressed as:

p′(x, t) = f (x)g(y)h(z)eiωt (2.20)

∂ 2 p′

∂ t2 =−ω
2 p′ (2.21)

∂ 2 p′

∂x2 =− f ′′

f
p′
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∂ 2 p′

∂y2 =−g′′

g
p′

∂ 2 p′

∂ z2 =−h′′

h
p′

Wave equation become:

−ω2

c2
0
− f ′′

f
− g′′

g
− h′′

h
= 0 (2.22)

f ′′

f
=−ω2

c2
0
− g′′

g
− h′′

h

f ′′+α
2
1 f = 0 (2.23)

The solution will be in the form:

f (x) = A1 cos(α1x)+B1 sin(α1x) (2.24)

d f
dx

(x) = α1 [−A1 sin(α1x)+B1 cos(α1x)] (2.25)

For the boundary condition: df/dx=0 at x=0 and x=aB1 = 0

sin(α1a) = 0 ⇒ α1a = mπ ⇒ α1 = m
π

a

with m=0,1,2,...
f (x) = A1 cos

(
mπ

x
a

)
(2.26)

Similarly for g(y):

g(y) = A2 cos
(

nπ
y
a

)
(2.27)

with n=0,1,2,...
Instead for h(z) : with f ′′/ f =−m2π2/a2 and g′′/g =−n2π2/a2

d2h
dz2 +

[
ω2

c2
0
− π2

a2 (m
2 +n2)

]
h (2.28)
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h(z) = Amne−iKmnz +BmneiKmnz (2.29)

with wavenumber (different from free-field wavenumber):

Kmn =

√
ω2

c2
0
− π2

a2 (m
2 +n2) (2.30)

If A1 = A2 = 0 the solution can be expressed as follow:

p′mn(x, t) = cos
(

mπ
x
a

)
cos
(

nπ
y
a

)[
Amnei(ωt−Kmnz)+Bmnei(ωt+Kmnz)

]
(2.31)

Each mode thus propagates harmonically in time and in t ans z with both
regressive and progressive waves and with the wavenumber Kmn. Only in
the case where Kmn is real do we have wave propagation of the mode:

ωa > πc0

√
m2 +n2 (2.32)

ωa = πc0

√
m2 +n2 ⇒ fco =

c0

2a

√
m2 +n2 (2.33)

f =
c0

2π

√
K2

mn +
π2

a2 (m
2 +n2) (2.34)

fco is called cut-off frequency:

• If f > fco mode (m,n) propagates

• If f < fco mode (m,n) decays exponentially. These waves are called
evanescent waves.

The mode (0,0) is a plane wave. Note that in this case, fco = 0, so plane
waves always propagate, as f increases a new (m, n) mode begins to propag-
ate . Additionally, note that the decay of the mode is not associated with
energy dissipation; instead, energy is transferred to propagating modes after
a transient.
For a given f the general solution will have only a finite number of propagat-
ing modes and it is of the form:

p′(x, t) =
m=∞

∑
m=0

n=∞

∑
n=0

p′mn(x, t) (2.35)
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Figure 2.8: Transverse distributions of pressure along a rectangular duct [16]

Figure 2.9: Regions of uniform phase in a cylindrical duct [16]

In the specific case of propagation inside a cylindrical duct, m is defined as
the ”azimuthal order” or ”circumferential order” and n as the ”radial order”
(figure 2.9).

2.4 Far field Analysis

For the evaluation of far-field acoustic emission, once the harmonic steady-
state is reached, Actran DGM solves the Ffowcs-Williams and Hawkings
equation based on the results obtained in the near-field (section 2.5.2). The
following FWH equation can be derived by considering a moving surface
St , which in our case is a surface including the near-field, moving uniformly
with respect to a fixed frame but stationary in the reference frame [1]:
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4π p′(x)=
∫

St

(
e

−iω
c0

rβ

rβ (1+Mr)2
(iω − c0(Mr + ||M||2)

rβ (1+Mr))
(Un+

Lr

c0
)+

Lr +Lm

rβ

)dSt(x̂)

(2.36)
with:

• x and x̂ are the observer and source position, respectively,

• R = x - x̂ is the vector in the radiation direction, and n =
R

||R||
is its

corresponding norm,

• M0 =
u0
c0

is the local Mach number vector of the source,

• β is defined by β 2 = 1−M2.

and introducing the following variables:

rβ = (
R ·u0

c0
+

√
(R ·u0)

2

c2
0

+β 2||R||)/β
2 (2.37)

r = R− rβ M0 (2.38)

u0n = u0 ·n (2.39)

û′n = û′ ·n (2.40)

Un = ρ0û′n + ρ̂
′u0n (2.41)

L = p̂′n+ρ0u0nû′ (2.42)

Lm = L ·M0 (2.43)

Lr = L · r
rβ

(2.44)
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Mr = r/rβ ·M0 (2.45)

Where p̂′(x̂), ρ̂ ′(x̂), û′(x̂) are the acoustic pressure, velocity and density
variables on the moving surface at the source position x̂ and c0, u0, ρ0 the
constant static mean velocity, density and speed of sound in the far field.
By solving this equation, we can obtain the value of p′(x) at every point in
the far field.

2.5 Acoustic Analogies

2.5.1 Lighthill Analogy

In 1952, Lighthill developed an acoustic analogy based on the recombination
of the Navier-Stokes equations [5]:

∂ p′

∂ t
+

∂ (ρui)

∂xi
= 0

∂ (ρui)

∂ t
+

∂ρuiu j

∂xi
=

∂σi j

∂x j

(2.46)

where σi j =−pδi j+τi j. The effects of heat are neglected by not considering
the energy equation. By differentiating the continuity equation with respect
to t and the conservation of momentum equation with respect to xi:

∂ 2 p′

∂ t2 +
∂ 2(ρui)

∂ t∂xi
= 0

∂ 2(ρui)

∂ t∂xi
+

∂ 2(ρuiu j −σi j)

∂xi∂x j

(2.47)

Subtracting the second equation of the system from the first:

∂ 2 p′

∂ t2 =
∂ 2(ρuiu j −σi j)

∂xi∂x j
(2.48)

Subtracting c2
0

∂ 2ρ

∂xi∂x j
δi j from both sides:

∂ 2 p′

∂ t2 − c2
0

∂ 2ρ

∂xi∂x j
δi j =

∂ 2(ρuiu j −σi j)

∂xi∂x j
− c2

0
∂ 2ρ

∂xi∂x j
δi j (2.49)
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∂ 2ρ

∂ t2 − c2
0

∂ 2(ρui)

∂xi∂x j
δi j =

∂ 2(ρuiu j +(p− c2
0ρ)δi j − τi j)

∂xi∂x j
(2.50)

Defining fluctuations with respect to a reference state with constant proper-
ties p0 = cost, ρ0 = cost and at rest u0 = 0

p′ = p− p0

ρ
′ = ρ −ρ0

u′i = ui −ui0

Lighthill equation is obtained:

∂ 2ρ

∂ t2 − c2
0

∂ 2(ρui)

∂xi∂x j
δi j =

∂ 2Ti j

∂xi∂x j
(2.51)

where Ti j = ρuiu j +(p− c2
0ρ)δi j − τi j is the Lighthill Tensor which impli-

citly contains all the sound generation effects within it. This equation is exact
because derived from a simple reformulation of the Navier-Stokes equations
and not from a linearization. It cannot be treated as a classical wave equation
because the right-hand term contains the acoustic field and cannot simply be
considered a source term. The equation cannot be explicitly solved using the
formalism of Green’s functions, to do so, Some approximations are made
under conditions of low Mach and high Reynolds numbers:

• Mechanical actions dominate over viscous effects: τi j << ρuiu j

• Mechanical actions dominate over thermal effects p′− c2
0ρ ′ = 0

• For small Mach numbers ρ ≈ ρ0

therefore:

Ti j ≈ ρ0uiu j. (2.52)

Lighthill equation is now explicit:

∂ 2ρ

∂ t2 − c2
0

∂ 2(ρui)

∂xi∂x j
δi j =

∂ 2(ρ0uiu j)

∂xi∂x j
(2.53)
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Figure 2.10: Ffowcs Williams & Hawkings Surface[5]

Now it is possible to solve the non-homogeneous wave equation using the
Green’s functions technique:

c2
0ρ

′(x, t) = c2
0 (ρ(x, t)−ρ0) =

1
4π

∂ 2

∂xi∂x j

∫
ΩS

Ti j

(
y, t − |x−y|

c0

)
|x−y|

dy (2.54)

However, the simplifications lead to the absence of feedback. Indeed, since
the source term is expressed only as a function of the Reynolds tensor and
not also of the acoustic fluctuations, the acoustic and fluid dynamics fields
are decoupled.

2.5.2 Ffowcs Williams & Hawkings Analogy

Is possible to extend the Lighthill analogy to the case of a moving body
obtaining the formulation of Ffowcs Williams & Hawkings .
It is assumed that the acoustic field is identically zero inside σy, and this is
enforced through the following formalism (figure 2.10) [5]:

H(g) =
{

0 inside σ (g < 0)
1 outside σ (g > 0)

The constant value g = 0 follows the motion of the surface σy:

Dg
Dt

=
∂g
∂ t

+Ui
∂g
∂xi

= 0 (2.55)

Multiplying the balance equations by H(g):
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H(g)[

∂ρ

∂ t
+

∂ (ρui)

∂xi
]

H(g)[
∂ (ρui)

∂ t
+

∂ (ρuiu j −σi j)

∂x j
]

(2.56)

δ (g) =
∂H
∂g

⇒ ∂H
∂ t

= δ (g)
∂g
∂ t

e
∂H
∂xi

= δ (g)
∂g
∂xi

:

H(g)
[

∂

∂ t
(ρ −ρ0)+

∂

∂xi
(ρui)

]
= 0,

∂

∂ t
[(ρ −ρ0)H]+

∂

∂xi
[ρuiH] = (ρ −ρ0)

∂H
∂ t

+ρui
∂H
∂xi

,

∂

∂ t
[(ρ −ρ0)H]+

∂

∂xi
[ρuiH] = (ρ −ρ0)

∂g
∂ t

δ (g)+ρui
∂g
∂xi

δ (g),

∂

∂ t
[(ρ −ρ0)H]+

∂

∂xi
[ρuiH] = [ρ (ui −Ui)+ρ0Ui]

∂g
∂xi

δ (g)︸ ︷︷ ︸
Qmδ (g)

.

The continuity equation becomes a continuity equation with variables that
are zero inside sigma since they are now multiplied by H. Additionally, a
source term Qm has appeared on the right-hand side of the equation, localized

on the surface as it is multiplied by the δ (g) function. δ (g) =
∂H
∂g

= 0

everywhere except at the crossing of σy, where it goes to infinity. This
corresponds to the Dirac delta function.
Qm can be interpreted as a distribution of mass sources:

Qm = [ρ(ui −Ui +ρ0Ui]
∂g
∂xi

(2.57)

Similarly, in the momentum equation, a force surface distribution of force
on sigma is obtained on σy:

Fi = uiQm +ρ0 fi (2.58)

with:

ρ0 fi =−[ρ0uiU j +σi j + p0δi j]
∂g
∂xi

(2.59)
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∂ [(ρ −ρ0)H]

∂ t
+

∂ [ρuiH]

∂xi
= Qmδ (g)

∂ [ρuiH]

∂ t
+

∂ [(ρuiu j −σi j − p0δi j)H]

∂xi
= Fiδ (g)

(2.60)

By differentiating the first equation with respect to time, taking the diver-
gence of the second, and subsequently subtracting the second equation from
the first:

∂ 2

∂ t2 [(ρ −ρ0)H] =
∂

∂ t
(Qmδ (g))− ∂

∂xi
(Fiδ (g))

+
∂ 2

∂xi∂x j

[(
ρuiu j −σi j − p0δi j

)
H
] (2.61)

∂ 2

∂ t2

(
ρ
′H
)
−c2

0
∂ 2

∂xi∂xi

(
ρ
′H
)
=

∂

∂ t
(Qmδ (g))− ∂

∂xi
(Fiδ (g))

+
∂ 2

∂xi∂x j

[(
ρuiu j −σi j − p0δi j − c2

0ρ
′
δi j
)

H
] (2.62)

{
−σi j − p0δi j =−τi j + pδi j − p0δi j =−τi j + p′δi j

Ti j = ρuiu j − τi j +
(

p′− c2
0ρ

′
δi j
) (2.63)

Finally, FWH equation is obtained.This equation represents an extension
of the Lighthill equation in the case where the sought solution is nonzero
only outside the moving surface σy. Compared to before, the presence of the
moving boundary results in the appearance of two additional source terms
on the right-hand side of the equation:

∂ 2[ρ ′H(g)]
∂ t2 − c2

0
∂ 2[ρ ′H(g)]

∂xi∂x j
=

∂Qmδ (g)
∂ t

− ∂ (Fiδ (g))
∂xi

+
(Ti jH(g))

∂xi∂x j
(2.64)

Also in this case, the formalism of Green’s functions can be used for the
solution of the equation:

H(g)c2
0ρ

′(x, t) =
∫

∞

−∞

∫
Ω∞

G0

[
∂

∂τ
(Qmδ (g))− ∂

∂yi
(Fiδ (g))

+
∂ 2

∂yi∂y j

(
Ti jH(g)

)]
dydτ

(2.65)



2.5 Acoustic Analogies 57

where:

G0 =
1

4π|x−y(τ)|
δ

(
t − τ − |x−y(τ)|

c0

)
(2.66)

H(g)c2
0ρ

′(x, t) =
1

4π

∂ 2

∂xi∂x j

∫
Ω(t∗)

[
Ti j

R |1−Mσ cosθ |

]
t∗

dy

+
1

4π

∂

∂ t

∫
σ(t∗)

[
ρ0Ui +ρ (ui −Ui)

R |1−Mσ cosθ |

]
t∗

ni dσ

− 1
4π

∂

∂xi

∫
σ(t∗)

[
ρui
(
u j −U j

)
−σi j

R |1−Mσ cosθ |

]
t∗

n j dσ .

(2.67)

In far field: c2
0ρ ′ = p′, [R]t∗ ≈ R, ∂

∂xi
≈−xi

R
1
c0

∂

∂ t e H = 1

p′(x, t)≈ 1
4πc2

0

xix j

R3
∂ 2

∂ t2

∫
Ω(t∗)

[
Ti j

|1−Mσ cosθ |

]
t∗

dy

+
1

4πR
∂

∂ t

∫
σ(t∗)

[
ρ0Ui +ρ (ui −Ui)

|1−Mσ cosθ |

]
t∗

ni dσ

+
1

4πc0

xi

R2
∂

∂ t

∫
σ(t∗)

[
ρui
(
u j −U j

)
−σi j

|1−Mσ cosθ |

]
t∗

n j dσ .

(2.68)

The first term is a quadrupole and is the cause of ”turbulence noise” gener-
ated by turbulent structures rearranging. The volume integral is very chal-
lenging to solve numerically. Typically, one attempts to extend the surface
sigma so that it encompasses all fluid motion, incorporating all effects into
the monopole and dipole, which are the second and third terms, respectively.
These are the causes of ”thickness noise,” determined by the accelerated
movement of the body, and ”loading noise,” determined by fluctuations of
force exchanged between the body and fluid.
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Chapter 3

Validation

In turn to validate the numerical Actran set-up preliminary simulation,
for which the solution is known, have been run. The selected engine for
validation and subsequent analysis is the Pratt&Whitney Canada JT15D
(figure 3.1).
The JT15D is a turbofan engine with a nominal bypass ratio of 3.3 and a
thrust of 9790 N. The fan features 28 blades and a diameter of 53.5 cm [26].
It was chosen for:

• Extremely simple engine geometry.

• By design, the inlet geometry and the blade passage frequency support
only one propagating mode with m = 13 and n = 1 [39].

• The test is conducted under static conditions.

• The availability of experimental data, both with and without liner,
enables verification that the numerical attenuation effect of the liner is
consistent with the experimental results.

Experimental acoustic emission values have been investigated at the NASA
Lewis Vertical Lift Facility to develop finite difference and finite element
programs for simulating sound propagation in turbofan engines. To reduce
turbulence and distortion in the inlet flow, a spherical inflow control screen
covering the inlet was employed. Additionally, a large muffler was connected
to the engine exhaust to suppress after-fan and jet noise (figure 3.2). The
engine was mounted 5.4 fan diameters above the ground to minimize its
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Figure 3.1: Detailed geometry of JT15D engine inlet [26]

Figure 3.2: Test Configuration [27]
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Table 3.1: Experimental Relative SPL [dB] values at 24.38m and 3150Hz

40 50 60 70 80 90
Hard Wall 91.6 99.0 100.0 99.1 93.4 89.1
With Liner 81.3 82.2 78.6 73.6

Figure 3.3: Acoustic mesh

effect [26]. The microphones signals were recorded on magnetic tape and the
processed on a spectrum analyzer [27]. Sound Pressure Level (SPL) results
were obtained for a microphone array positioned 24.38 meters from the inlet
at a blade passage frequency of 3150 Hz. The data were then normalized
so that the value at the microphone positioned 60° relative to the engine
axis was set to 100 dB (table 3.1). The evaluation was conducted for both
a hard wall case, without liner, and a case with acoustic treatment, with an
estimated impedance value of 1.136 + 0.5i and a liner extension of 3.15”.
The model used for impedance calculation is reported in [28].

3.1 Simulation set-up and validation results

Firstly, the 2D engine CAD was imported in IGES format into Actran.
Afterward, the acoustic mesh was generated (figure 3.3), following the
aforementioned criteria. The analysis was set for a frequency of 3150 Hz
(multiple frequencies could be set), and it was configured as axisymmetric
to save computation time. However, this limited the injection of modes to
those with the same azimuthal order. Then, the geometry was divided into
domains, and each domain was assigned to its component and/or boundary
condition. Specifically, all simulations injected the acoustic mode (13,1) with
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Figure 3.4: Microphones distribution

Figure 3.5: Run simulation

an intensity of 1W/m2 into the modal component. Since the real amplitude
of the acoustic mode is unknown, this value serves as a reference. Finally,
an array of 40 microphones was positioned from 40° to 110° relative to the
engine axis and at a distance of 24.48m (figure 3.4).
With this setup complete, the simulation could be launched (figure 3.5).
Examining the obtained results, it can be concluded that the experimental and
numerical data demonstrate a good degree of agreement, both concerning
the directivity of the acoustic emission and the achieved attenuation (figure
3.6).
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Figure 3.6: Comparison between experimental and numerical data at 24.28
m [3150 Hz]
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Chapter 4

Results and discussion

Initially, three analyses were conducted in the absence of flow: one without
a liner, one with SDoF liner, and one with DDoF liner, aiming to evaluate
the achievable attenuation with a non-optimized acoustic treatment. The
impedance model used is the Motsinger and Kraft Model, and the model
parameters used are listed in tables 4.1 and table 4.2, chosen based on
typical literature values. It was chosen not to start from geometric values that
already determined a resonance condition at 3150 Hz in order to generalize
the optimization process starting from an initial condition that disregarded
any previous evaluations and to highlight the importance of the cavity depth
in achieving resonance conditions and minimizing acoustic emission.
By plotting the impedance modulus curve against frequency for this non-
optimized condition, it is observed that the representative minima of the
resonance condition do not coincide with the frequency of 3150 Hz (figure

Table 4.1: SDoF model parameters for h and d optimization

h [m] 0.004
d [m] 0.0012
σ [%] 28
t [m] 0.002
f [Hz] 3150
c [m/s] 343

µ [Pa · s] 1.716×10−5

ρ[kg/m3] 1.225
Cd 0.76

Normalized Impedance 0.00852 + 1.4503i
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Table 4.2: DDoF model parameters

h1 [m] 0.02
h2 [m] 0.0012
d1 [m] 0.02
d2 [m] 0.0012
σ1 [%] 28
σ2 [%] 28
t [m] 0.002
f [Hz] 3150
c [m/s] 343

µ [Pa · s] 1.716×10−5

ρ[kg/m3] 1.225
Cd 0.76

Normalized Impedance 0.0251 +1.1799i

4.1 and 4.25), which is the frequency we aim to minimize the generated noise.
Therefore, it is expected that after optimization, these valleys will coincide
with the frequency of 3150 Hz, resulting in an increase in attenuation.
An improvement of approximately 12 dB is observed compared to the
case without a liner (figure 4.3), with a slightly more attenuated curve for
the DDoF case. This attenuation is also evident when comparing the two
pressure fields in the absence and presence of the SDoF liner , showing a
reduction in acoustic oscillation at the location of the liner in the bypass duct.
In figure 4.4 and figure 4.5, the pressure fields in the absence and presence
of the SDoF acoustic liner at the pre-optimized impedance value are shown.
These fields result from injecting mode (13,1) with an amplitude of 1W/m2

into the bypass duct in the case of no flow. The color scale for visualizing
the acoustic oscillation relative to the reference value of 101325, taken as 0,
has been limited to [+5 Pa; -5 Pa] in order to better highlight the attenuation
effect of the liner.

4.1 Flow effect

In order to assess the effect of flow on far-field results and subsequently
on optimization parameters, the iCFD (integrated Computational Fluid Dy-
namics) module of Actran was used to interpolate the fluid dynamics field,
previously calculated on an external CFD code, onto the acoustic mesh.
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Figure 4.1: Non optimized impedance modulus for SDoF liner

Figure 4.2: Non optimized impedance modulus for DDoF liner
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Figure 4.3: Attenuation effect of SDoF and DDoF liners in the absence of
flow

Figure 4.4: Limited pressure field [5 Pa ; -5 Pa] without liner
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Figure 4.5: Limited pressure field [5 Pa; -5 Pa] with SDoF liner

4.1.1 CFD analysis

To solve the fluid dynamics field, Star-CCM+ was chosen. Star-CCM+ is a
CFD calculation software developed by CD-Adapco and widely used both in
academic and industrial settings for solving engineering problems through
the solution of the Navier-Stokes equations using the finite volume method.
The internal CAD tool within STAR-CCM+ was utilized to create the engine
geometry. Subsequently, parts and regions (figure 4.7) were generated:

• Inlet: Stagnation Inlet

• Outlet 2: Pressure Outlet

• Outlet 1: Velocity Inlet

• Engine: Wall

• Up: Symmetry Plane

• Down: Symmetry Plane

Given the unavailability of the actual JT15D fan geometry, a 3D simulation
was not conducted. Instead, a representative axisymmetric simulation under
static engine operation conditions was established. To simulate the fan suc-
tion effect, an outlet velocity equal to Mach=0.15 was set at the fan section.
Although this simulation does not precisely replicate the real fluid dynamics
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Figure 4.6: CFD boundary conditions

Figure 4.7: CFD regions definition
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Figure 4.8: CFD Mesh

Figure 4.9: CFD physiscs

field within the bypass duct, it still offers a credible description suitable for
assessing the impact of flow on the outcomes of the aeroacoustic simulation
in Actran. The fluid dynamics mesh (figure 4.8) was then developed, and
the problem’s physics (figure 4.9) were defined as stationary, axisymmetric,
utilizing a k− ε turbulence model.
Once the CFD field was calculated (figure 4.10), the results were exported in
Ensight Gold format, compatible with Actran, to import them into Actran’s
iCFD module, achieving the interpolation of the field on the acoustic mesh
(figure 4.11).
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Figure 4.10: CFD pressure field

Figure 4.11: Interpolation pressure field on acoustic mesh
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Figure 4.12: Flow effect in the absence of liner

4.1.2 Flow effect results

Therefore, it was possible to compare the results obtained in the absence
of flow, in the presence of uniform flow equal to Mach=0.1 throughout the
field (a condition specified directly within Actran), and in the presence of
the variable flow interpolated from the solution obtained with Star-CCM+.
M=0.1 has been chosen since M=0.15 represents the maximum velocity in
the bypass duct reached at the fan section, but the velocity distribution in the
duct is generally lower on average. The results show that in the absence of
an acoustic liner, the effect of the flow is minimal (figure 4.12). The curves
representing the three conditions differ by approximately 1dB, with the case
without a liner weakly tending to overestimate the SPL.
However, the same cannot be said in the presence of an acoustic liner.
Indeed, the effect of the flow in the presence of an SDoF liner is much more
pronounced (figure 4.13). The acoustic emission with uniform flow is over
5dB higher than the cases without flow and with variable flow, whose curves
are almost overlapping, but with a slightly altered directivity due to the
presence of uniform flow.
Finally, in the case of a DDoF liner (figure 4.14), the presence of uniform
flow also results in an SPL curve approximately 5dB higher than that without
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Figure 4.13: Flow effect in the presence of SDoF liner

flow, perceptibly modifying the directivity of the curve in this case as well.

4.2 Optimization

A Python code was developed to allow finding the minimum acoustic emis-
sion. Python was chosen because Actran is written in this language, which
greatly simplifies coupling the optimization code with the software. Specific-
ally, the Motsinger and Kraft model for an SDoF liner was utilized, initially
optimizing only h and d, and subsequently also σ . Additionally, the impact
of flow on the optimization results was assessed for this liner. Finally, an
optimization was conducted for a DDoF, optimizing h1, h2, d1, and d2 of the
Motsinger and Kraft model.

4.2.1 Optimization approach

Actran contains the Python free/open-source library NLopt, which imple-
ments various local and global optimization algorithms, both derivative-free
and derivative-based. NLopt also allows limiting the exploration field to
search for the optimum by specifying constraints that ensure finding phys-
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Figure 4.14: Flow effect in the presence of DDoF liner

ically acceptable solutions for the optimization parameters. The chosen
optimization strategy involves investigating the most promising areas of
minimum acoustic emission by initially employing the global optimization
algorithm DIRECT [24]. Subsequently, these areas are further explored
using the local optimizer COBYLA [36].

DIRECT DIRECT (DIviding RECTangles) is a global derivative-free
optimization algorithm, this makes it particularly suitable for optimization
problems in numerical simulations, where the objective function is often non-
differentiable [12]. The approach involves subsequent exploration of areas of
minimum search in increasingly smaller hyper-rectangles and evaluates the
objective function at their center points (figure 4.15). However, the search
begins by heating bound constraints to a hypercube, ensuring that all search
directions have equal weight.

COBYLA COBYLA (Constrained Optimization by Linear Approxima-
tion) is a local derivative-free optimization algorithm. ”It works by iteratively
approximating the actual constrained optimization problem, that is, by con-
structing linear polynomial approximations to the objective and constraint
functions. Therefore, during an iteration, an approximating linear program-
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Figure 4.15: Direct optimization approach [24]

ming problem is solved to obtain a candidate for the optimal solution. The
candidate solution is evaluated using the original objective and constraint
functions, yielding a new data point in the optimization space. This informa-
tion is used to improve the approximating linear programming problem used
for the next iteration of the algorithm” [23].

4.2.2 Optimization results

The optimization was initially carried out for a case with no flow, both
for a SDoF liner and a DDoF liner. For both cases, the function chosen to
minimize was the average SPL (the average SPL calculated over the 40 mi-
crophones along the arc). By doing this, it was decided to give equal weight
to all microphones. A different approach could have involved assigning
different weights to the various microphones to give more importance to
one or another. Furthermore, for both scenarios, the use of a single local
optimizer was compared against the sequential use of a global optimizer
followed by a local one. Subsequently, the effect of flow was evaluated
for SDoF liner optimization. For all optimizations, the values used as the
starting point were those with which an initial assessment of attenuation
for a non-optimized case was performed. The optimization was initially
conducted for scenarios without flow, encompassing both SDoF and DDoF
liners. In each case, the objective function selected for minimization was the
average SPL, calculated over the 40 microphones along the arc. Furthermore,
for both scenarios, the use of a single local optimizer was compared against
the sequential use of a global optimizer followed by a local one.
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Figure 4.16: Direct SDoF optimization (h,d) values without flow

SDoF without flow

A first optimization, whose results are reported in table 4.3, was performed
by optimizing only h and d. Tracking the values during the optimization

Table 4.3: SDoF optimization results, no flow (h, d)

Direct+Cobyla Only Cobyla
h [m] 0.02 0.02
d [m] 0.0009 0.000915

Average SPL [dB] 55.0880 55.1248
Normalized impedance 0.0152 + 0.0678i 0.0147 + 0.0694i

cycle makes it clear how the optimization algorithm tends to quickly ap-
proach resonance conditions by reducing h and moving towards χ = 0, while
also reducing d to increase resistance (figure 4.16 and 4.17). This becomes
evident by reasoning with the Motsinger and Kraft Model, where reactance
is mainly governed by the geometric parameter h and resistance by d (figure
1.25 and 1.26). Hence, this initial optimization problem appears to be very
simple, as it is observed that comparing the results obtained using only a
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Figure 4.17: Direct SDoF optimization (h,d) values without flow

local optimization algorithm and those obtained by sequentially using a
global optimizer to determine the most promising areas and then the local
algorithm, they coincide; both values quickly approach the lower limits of
the provided physical constraints. On the other hand, this second approach
results in a significant increase in the necessary iterations, greatly extending
the computation times to find the minimum (figure 4.18).
It should be noted that by plotting the impedance modulus curve with the
newly optimized parameters against frequency, the valley aligns precisely
with the frequency of 3150 Hz at which we aim to maximize attenuation
(figure 4.19). Comparing these results with the unoptimized SDoF liner case
(with a resonance frequency different from 3150 Hz), a significant increase
in attenuation of an additional 13 dB can be observed (figure 4.20) .
A second optimization, whose results are reported in table 4.4, was car-
ried out by adding σ to the optimization parameters in addition to h and d.
This allowed reducing the average SPL from 55.088 to 54.6712. However,
this improvement resulted in a significant increase in the computation time,
requiring over 50 iterations to meet the stopping criteria (figure 4.21). Ob-
serving the values of the various iterations, it is noted that the optimizer,
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Figure 4.18: SDoF optimization (h,d) iterations without flow

Figure 4.19: Comparison between optimized and non-optimized impedance

Table 4.4: SDoF optimization results, no flow (h, d, σ )

Direct+Cobyla
h [m] 0.02
d [m] 0.0011
σ [%] 30

Average SPL [dB] 54.6712
Normalized impedance 0.0109 + 0.0443i
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Figure 4.20: Optimization results with SDoF liner

Figure 4.21: SDoF optimization (h,d,Q) iterations without flow
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Figure 4.22: Direct SDoF optimization (h,d,Q) values without flow

while moving towards zero reactance, does not explore areas with higher
resistance that could guarantee greater attenuation (figure 4.22).

DDoF without flow

The optimization for the DDoF liner, whose results are reported in table 4.5,
was carried out by optimizing h1, h2, d1, and d2. Following the results during

Table 4.5: DDoF optimization results, no flow

Direct+Cobyla Only Cobyla
h1 [m] 0.0133 0.0176
h2 [m] 0.02 0.0139
d1 [m] 0.00097 0.00099
d2 [m] 0.0012 0.0097

Average SPL [dB] 52.0091 52.5080
Normalized impedance 0.0224 - 0.0513i 0.0166 - 0.0390i

the iterations, it is noticed that even in this case, the optimization algorithm
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Figure 4.23: Direct DDoF optimization (h1,d1,h2,d2) values without flow

quickly moves towards resonance conditions (figure 4.23). However, the
global optimizer does not seem to explore zones with higher resistance,
which could potentially ensure greater attenuation. Also in this case, the
optimization approach, which also involves the use of direct methods, leads
to much longer computation times, increasing from 20 to 42 iterations
(figure 4.24). However, unlike before, going through a global optimization
lowers the Average SPL of the optimum by about half a dB, also obtaining
different optimization parameter values with the two approaches (table 4.5).
It is possible to plot the impedance modulus curve which exhibits two
valleys (figure 4.25). Following optimization, one of them coincides with
the frequency of 3150Hz (figure 4.26). Comparing the SPL curves for the
optimized and non-optimized cases, an increase of over 13dB is observed in
this case, resulting in an average SPL of 52.0091 dB, lower than the 54.6712
dB for the SDoF case (figure 4.27).
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Figure 4.24: DDoF optimization (h1,d1,h2,d2) iterations without flow

Figure 4.25: Non optimized impedance mod for DDoF liner
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Figure 4.26: Optimized impedance mod for DDoF liner

Figure 4.27: Optimization results with DDoF liner
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SDoF with flow

By optimizing h and d for an SDoF liner in the presence of flow (results in
table 4.6), it is observed that in this case, the optimization parameters tend
towards the same values as they did in the absence of flow. However, what

Table 4.6: SDoF optimization results, with flow (h, d)

Direct+Cobyla, uniform flow Direct+Cobyla, variable flow
h [m] 0.02 0.0202
d [m] 0.0009 0.000918
σ [%] 0.28 (Non optimized) 0.28 (Non optimized)

Average SPL [dB] 54.1149 52.8133
Normalized impedance 0.0151 + 0.0678i 0.0152 + 0.0678i

changes significantly are the values of average SPL reached, with reduced
attenuation for variable flow and increased attenuation for uniform flow.
Again, it can be observed how the variability of the flow determines a vari-
ation in the directionality of the noise (figure 4.28), with a maximum shifting
towards larger angles relative to the major axis, while uniform flow results
in a single translation of the SPL curve towards lower values.The number
of iterations required to meet the stopping criteria remains approximately
unchanged (figure 4.29 and figure 4.30).
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Figure 4.28: Flow effect on the optimization results with SDoF liner

Figure 4.29: SDoF optimization (h,d) iterations with uniforme flow
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Figure 4.30: SDoF optimization (h,d) iterations with variable flow

Figure 4.31: Direct SDoF optimization (h,d) values with uniforme flow
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Figure 4.32: Direct SDoF optimization (h,d) values with variable flow



Chapter 5

Conclusions and future
developments

In conclusion, this study investigated the optimization of acoustic liners for
fan noise attenuation. Initially, analyses were conducted without flow to
evaluate the achievable attenuation with non-optimized acoustic treatments,
utilizing both SDoF and DDoF liner models. The optimization process in-
volved varying parameters such as cavity depth, thickness, and porosity to
minimize the average SPL across multiple microphones.
The results demonstrated significant improvements in attenuation, with op-
timized liners achieving up to 13 dB of additional reduction compared to
non-optimized conditions. The optimization algorithms utilized, including
DIRECT and COBYLA, effectively converged towards optimal solutions,
although the choice of optimizer and its sequential application impacted
computational efficiency. It is concluded that for particularly simple imped-
ance models, choosing a more complex optimization approach is inefficient,
but it is preferable to simply use an algorithm that finds the local minimum.
However, for more complex models, the choice of initially passing through a
global optimizer has proven to be more effective. Therefore, it is advisable to
apply more complex approaches to more complex models that can determine
a plurality of local minima of acoustic emission. Additionally, in order to
increase the complexity of the problem, it is possible to consider additional
parameters to further enhance attenuation performance, even pushing to-
wards optimizations with more than 10 parameters. Future research could
also explore more sophisticated optimization techniques involving the use
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of Machine Learning algorithms to speed up the search for the minimum.
Moreover, the study investigated the influence of airflow on liner perform-
ance. It was found that while flow had minimal impact on attenuation in the
absence of liners, the presence of liners exacerbated the effects, with variable
flow tending to also alter the directionality of noise emission. Overall, the
findings underscore the importance of accurately modeling flow conditions
in optimizing acoustic liners, to ensure compliance with regulations. There-
fore, future steps could involve applying the code to geometric cases where
the real flow field is known, and where the swirl effect at the inlet caused
by fan suction is present, in order to compare the results with the simplified
resolution of the fluid dynamic field conducted in this thesis. Another aspect
to be investigated is how much the results obtained through an axisymmetric
simulation differ from a three-dimensional one; the latter would also allow
injecting acoustic modes with different azimuthal orders, further complic-
ating the optimization scenario. The simplicity of the analysis is indeed
also linked to the fact that only a single mode was injected; further, more
advanced analyses could involve optimization in a multimodal case. Finally,
experimental validation of optimized liner designs would provide valuable
insights for real-world applications in reducing aircraft engine noise.
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Python Optimization Code

1 from numpy i m p o r t *
2 from pyfemtown . Command i m p o r t O p t i m i z e r
3

4 d e f myfunc ( x , g r ad ) :
5

6

7 ge= o p t i m i z e r . g l o b a l e n v i r o n m e n t
8 a c t r a n = o p t i m i z e r . a c t r a n
9 a c t r a n p l t = o p t i m i z e r . a c t r a n p l t

10

11 d g m a n a l y s i s 1 =\
a c t r a n . r e a d a n a l y s i s ( f i l e = ’C : f i l e d i r e c t o r y ’ ,
t y p e = ’ACTRAN’ , l o a d t o p o l o g y =True ,
f o r c e m o d a l c o m p o n e n t s =None )

12

13

14 h=x [ 0 ]
15 d=x [ 1 ]
16

17 Q=0.28
18 f =3150
19 c =343
20 l u n g h e z z a o n d a =c / f
21 k = 2 * 3 . 1 4 / l u n g h e z z a o n d a
22 rho =1.225
23 mu= 1 .716 e −5
24 t a u =0.002
25 Cd=0.76
26 Z 0= rho * c
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27

28 r e s i s t e n z a n o r m a l i z z a t a =\
29 (64*mu* t a u ) / ( 2 * rho * c *Q*Cd *( d **2) )
30 r e a t t a n z a n o r m a l i z z a t a =\
31 k *( t a u +0.85* d * ( 1 − 0 . 7 * (Q* * 0 . 5 ) ) ) /Q−1/ math . t a n ( k*h )
32

33 r e s i s t e n z a = r e s i s t e n z a n o r m a l i z z a t a * Z 0
34 r e a t t a n z a = r e a t t a n z a n o r m a l i z z a t a * Z 0
35

36 impedenza=complex ( r e s i s t e n z a , r e a t t a n z a )
37

38 a d m i t t a n z a =1/ impedenza
39

40 a c t r a n . s e t p r o p ( a c t r a n . g e t b c ( d g m a n a l y s i s 1 ,
t y p e = ’ Admi t t ance ’ , i d =4 ) , f i e l d = a d m i t t a n z a )

41 a c t r a n . s e t p r o p ( a c t r a n . g e t o u t p u t f r f ( d g m a n a l y s i s 1 ) ,
f i l e n a m e = ’ r e s . p l t ’ )

42

43 a c t r a n . run ( a n a l y s i s = d g m a n a l y s i s 1 ,
a rgumen t s = ’−− t max =0 .1 ’ )

44

45 s e t 1 = a c t r a n p l t . i m p o r t f i l e ( f i l e = r ’ r e s . 1 3 . p l t ’ ,
f t y p e = ’ p l t ’ )

46

47 SPL 1= s e t 1 [ ” POINT 2 ” , ” 1 ” , ” fp ” ]
48 SPL 2= s e t 1 [ ” POINT 2 ” , ” 2 ” , ” fp ” ]
49 SPL 3= s e t 1 [ ” POINT 2 ” , ” 3 ” , ” fp ” ]
50 SPL 4= s e t 1 [ ” POINT 2 ” , ” 4 ” , ” fp ” ]
51 SPL 5= s e t 1 [ ” POINT 2 ” , ” 5 ” , ” fp ” ]
52 SPL 6= s e t 1 [ ” POINT 2 ” , ” 6 ” , ” fp ” ]
53 SPL 7= s e t 1 [ ” POINT 2 ” , ” 7 ” , ” fp ” ]
54 SPL 8= s e t 1 [ ” POINT 2 ” , ” 8 ” , ” fp ” ]
55 SPL 9= s e t 1 [ ” POINT 2 ” , ” 9 ” , ” fp ” ]
56 SPL 10= s e t 1 [ ” POINT 2 ” , ” 10 ” , ” fp ” ]
57

58 SPL 11= s e t 1 [ ” POINT 2 ” , ” 11 ” , ” fp ” ]
59 SPL 12= s e t 1 [ ” POINT 2 ” , ” 12 ” , ” fp ” ]
60 SPL 13= s e t 1 [ ” POINT 2 ” , ” 13 ” , ” fp ” ]
61 SPL 14= s e t 1 [ ” POINT 2 ” , ” 14 ” , ” fp ” ]
62 SPL 15= s e t 1 [ ” POINT 2 ” , ” 15 ” , ” fp ” ]
63 SPL 16= s e t 1 [ ” POINT 2 ” , ” 16 ” , ” fp ” ]
64 SPL 17= s e t 1 [ ” POINT 2 ” , ” 17 ” , ” fp ” ]
65 SPL 18= s e t 1 [ ” POINT 2 ” , ” 18 ” , ” fp ” ]
66 SPL 19= s e t 1 [ ” POINT 2 ” , ” 19 ” , ” fp ” ]
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67 SPL 20= s e t 1 [ ” POINT 2 ” , ” 20 ” , ” fp ” ]
68

69 SPL 21= s e t 1 [ ” POINT 2 ” , ” 21 ” , ” fp ” ]
70 SPL 22= s e t 1 [ ” POINT 2 ” , ” 22 ” , ” fp ” ]
71 SPL 23= s e t 1 [ ” POINT 2 ” , ” 23 ” , ” fp ” ]
72 SPL 24= s e t 1 [ ” POINT 2 ” , ” 24 ” , ” fp ” ]
73 SPL 25= s e t 1 [ ” POINT 2 ” , ” 25 ” , ” fp ” ]
74 SPL 26= s e t 1 [ ” POINT 2 ” , ” 26 ” , ” fp ” ]
75 SPL 27= s e t 1 [ ” POINT 2 ” , ” 27 ” , ” fp ” ]
76 SPL 28= s e t 1 [ ” POINT 2 ” , ” 28 ” , ” fp ” ]
77 SPL 29= s e t 1 [ ” POINT 2 ” , ” 29 ” , ” fp ” ]
78 SPL 30= s e t 1 [ ” POINT 2 ” , ” 30 ” , ” fp ” ]
79

80 SPL 31= s e t 1 [ ” POINT 2 ” , ” 31 ” , ” fp ” ]
81 SPL 32= s e t 1 [ ” POINT 2 ” , ” 32 ” , ” fp ” ]
82 SPL 33= s e t 1 [ ” POINT 2 ” , ” 33 ” , ” fp ” ]
83 SPL 34= s e t 1 [ ” POINT 2 ” , ” 34 ” , ” fp ” ]
84 SPL 35= s e t 1 [ ” POINT 2 ” , ” 35 ” , ” fp ” ]
85 SPL 36= s e t 1 [ ” POINT 2 ” , ” 36 ” , ” fp ” ]
86 SPL 37= s e t 1 [ ” POINT 2 ” , ” 37 ” , ” fp ” ]
87 SPL 38= s e t 1 [ ” POINT 2 ” , ” 38 ” , ” fp ” ]
88 SPL 39= s e t 1 [ ” POINT 2 ” , ” 39 ” , ” fp ” ]
89 SPL 40= s e t 1 [ ” POINT 2 ” , ” 40 ” , ” fp ” ]
90

91 SPL 1 Ampl i tude = abs ( SPL 1 )
92 SPL 2 Ampl i tude = abs ( SPL 2 )
93 SPL 3 Ampl i tude = abs ( SPL 3 )
94 SPL 4 Ampl i tude = abs ( SPL 4 )
95 SPL 5 Ampl i tude = abs ( SPL 5 )
96 SPL 6 Ampl i tude = abs ( SPL 6 )
97 SPL 7 Ampl i tude = abs ( SPL 7 )
98 SPL 8 Ampl i tude = abs ( SPL 8 )
99 SPL 9 Ampl i tude = abs ( SPL 9 )

100 SPL 10 Ampl i tude = abs ( SPL 10 )
101

102 SPL 11 Ampl i tude = abs ( SPL 11 )
103 SPL 12 Ampl i tude = abs ( SPL 12 )
104 SPL 13 Ampl i tude = abs ( SPL 13 )
105 SPL 14 Ampl i tude = abs ( SPL 14 )
106 SPL 15 Ampl i tude = abs ( SPL 15 )
107 SPL 16 Ampl i tude = abs ( SPL 16 )
108 SPL 17 Ampl i tude = abs ( SPL 17 )
109 SPL 18 Ampl i tude = abs ( SPL 18 )
110 SPL 19 Ampl i tude = abs ( SPL 19 )
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111 SPL 20 Ampl i tude = abs ( SPL 20 )
112

113 SPL 21 Ampl i tude = abs ( SPL 21 )
114 SPL 22 Ampl i tude = abs ( SPL 22 )
115 SPL 23 Ampl i tude = abs ( SPL 23 )
116 SPL 24 Ampl i tude = abs ( SPL 24 )
117 SPL 25 Ampl i tude = abs ( SPL 25 )
118 SPL 26 Ampl i tude = abs ( SPL 26 )
119 SPL 27 Ampl i tude = abs ( SPL 27 )
120 SPL 28 Ampl i tude = abs ( SPL 28 )
121 SPL 29 Ampl i tude = abs ( SPL 29 )
122 SPL 30 Ampl i tude = abs ( SPL 30 )
123

124 SPL 31 Ampl i tude = abs ( SPL 31 )
125 SPL 32 Ampl i tude = abs ( SPL 32 )
126 SPL 33 Ampl i tude = abs ( SPL 33 )
127 SPL 34 Ampl i tude = abs ( SPL 34 )
128 SPL 35 Ampl i tude = abs ( SPL 35 )
129 SPL 36 Ampl i tude = abs ( SPL 36 )
130 SPL 37 Ampl i tude = abs ( SPL 37 )
131 SPL 38 Ampl i tude = abs ( SPL 38 )
132 SPL 39 Ampl i tude = abs ( SPL 39 )
133 SPL 40 Ampl i tude = abs ( SPL 40 )
134

135 SPL 1 dB =20 * math . log10 ( SPL 1 Ampl i tude / (2 e −5) )
136 SPL 2 dB =20 * math . log10 ( SPL 2 Ampl i tude / (2 e −5) )
137 SPL 3 dB =20 * math . log10 ( SPL 3 Ampl i tude / (2 e −5) )
138 SPL 4 dB =20 * math . log10 ( SPL 4 Ampl i tude / (2 e −5) )
139 SPL 5 dB =20 * math . log10 ( SPL 5 Ampl i tude / (2 e −5) )
140 SPL 6 dB =20 * math . log10 ( SPL 6 Ampl i tude / (2 e −5) )
141 SPL 7 dB =20 * math . log10 ( SPL 7 Ampl i tude / (2 e −5) )
142 SPL 8 dB =20 * math . log10 ( SPL 8 Ampl i tude / (2 e −5) )
143 SPL 9 dB =20 * math . log10 ( SPL 9 Ampl i tude / (2 e −5) )
144 SPL 10 dB =20 * math . log10 ( SPL 10 Ampl i tude / (2 e −5) )
145

146 SPL 11 dB =20 * math . log10 ( SPL 11 Ampl i tude / (2 e −5) )
147 SPL 12 dB =20 * math . log10 ( SPL 12 Ampl i tude / (2 e −5) )
148 SPL 13 dB =20 * math . log10 ( SPL 13 Ampl i tude / (2 e −5) )
149 SPL 14 dB =20 * math . log10 ( SPL 14 Ampl i tude / (2 e −5) )
150 SPL 15 dB =20 * math . log10 ( SPL 15 Ampl i tude / (2 e −5) )
151 SPL 16 dB =20 * math . log10 ( SPL 16 Ampl i tude / (2 e −5) )
152 SPL 17 dB =20 * math . log10 ( SPL 17 Ampl i tude / (2 e −5) )
153 SPL 18 dB =20 * math . log10 ( SPL 18 Ampl i tude / (2 e −5) )
154 SPL 19 dB =20 * math . log10 ( SPL 19 Ampl i tude / (2 e −5) )
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155 SPL 20 dB =20 * math . log10 ( SPL 20 Ampl i tude / (2 e −5) )
156

157 SPL 21 dB =20 * math . log10 ( SPL 21 Ampl i tude / (2 e −5) )
158 SPL 22 dB =20 * math . log10 ( SPL 22 Ampl i tude / (2 e −5) )
159 SPL 23 dB =20 * math . log10 ( SPL 23 Ampl i tude / (2 e −5) )
160 SPL 24 dB =20 * math . log10 ( SPL 24 Ampl i tude / (2 e −5) )
161 SPL 25 dB =20 * math . log10 ( SPL 25 Ampl i tude / (2 e −5) )
162 SPL 26 dB =20 * math . log10 ( SPL 26 Ampl i tude / (2 e −5) )
163 SPL 27 dB =20 * math . log10 ( SPL 27 Ampl i tude / (2 e −5) )
164 SPL 28 dB =20 * math . log10 ( SPL 28 Ampl i tude / (2 e −5) )
165 SPL 29 dB =20 * math . log10 ( SPL 29 Ampl i tude / (2 e −5) )
166 SPL 30 dB =20 * math . log10 ( SPL 30 Ampl i tude / (2 e −5) )
167

168 SPL 31 dB =20 * math . log10 ( SPL 31 Ampl i tude / (2 e −5) )
169 SPL 32 dB =20 * math . log10 ( SPL 32 Ampl i tude / (2 e −5) )
170 SPL 33 dB =20 * math . log10 ( SPL 33 Ampl i tude / (2 e −5) )
171 SPL 34 dB =20 * math . log10 ( SPL 34 Ampl i tude / (2 e −5) )
172 SPL 35 dB =20 * math . log10 ( SPL 35 Ampl i tude / (2 e −5) )
173 SPL 36 dB =20 * math . log10 ( SPL 36 Ampl i tude / (2 e −5) )
174 SPL 37 dB =20 * math . log10 ( SPL 37 Ampl i tude / (2 e −5) )
175 SPL 38 dB =20 * math . log10 ( SPL 38 Ampl i tude / (2 e −5) )
176 SPL 39 dB =20 * math . log10 ( SPL 39 Ampl i tude / (2 e −5) )
177 SPL 40 dB =20 * math . log10 ( SPL 40 Ampl i tude / (2 e −5) )
178

179

180 OSPL=( SPL 1 dB + . . . + SPL 40 dB ) / 4 0
181

182 o b j f u n c =OSPL
183

184

185 ge . r e p o r t f i l e . w r i t e ( s t r ( ge . i t e r a t i o n ) + ’ ’+ s t r ( x [ 0 ] ) + ’
’+ s t r ( x [ 1 ] ) + ’ ’+ s t r ( o b j f u n c ) + ’ \n ’ )

186 ge . r e p o r t f i l e . f l u s h ( )
187 ge . i t e r a t i o n +=1
188

189 o p t i m i z e r . c l e a r a l l ( )
190

191 r e t u r n o b j f u n c
192

193 d e f main ( ) :
194

195 o p t = o p t i m i z e r . o p t i m i z e r ( o p t i m i z e r . GN DIRECT , 2 )
196

197 o p t i m i z e r . g l o b a l e n v i r o n m e n t . i t e r a t i o n =0
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198 o p t i m i z e r . g l o b a l e n v i r o n m e n t . r e p o r t f i l e =\
199 o p t i m i z e r . o p e n f i l e ( ’ o u t p u t . d a t ’ , ’w’ )
200

201 o p t . s e t m i n o b j e c t i v e ( myfunc )
202 o p t . s e t l o w e r b o u n d s ( [ 0 . 0 2 , 0 . 0 0 0 9 ] )
203 o p t . s e t u p p e r b o u n d s ( [ 0 . 0 6 , 0 . 0 0 1 5 ] )
204 o p t . s e t x t o l r e l (1 e −1)
205

206 x= o p t . o p t i m i z e ( [ 0 . 0 3 , 0 . 0 0 1 3 ] )
207

208 minf= o p t . l a s t o p t i m u m v a l u e ( )
209 o p t i m i z e r . message ( ” T o t a l numer o f i t e r a t i o n :

%d ”%( o p t i m i z e r . g l o b a l e n v i r o n m e n t . i t e r a t i o n −1) )
210 o p t i m i z e r . message ( ”Optimum a t %s ” %s t r ( x ) )
211 o p t i m i z e r . message ( ”Minimum v a l u e = %g ” %minf )
212 o p t i m i z e r . message ( ” R e s u l t code = %g ”

%o p t . l a s t o p t i m i z e r e s u l t ( ) )
213

214 o p t i m i z e r = O p t i m i z e r ( )
215 main ( )

Listing A.1: Python optimization code for SDoF liner
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