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Abstract

The subject of this thesis focuses on the study, analysis, and current challenges of recently
introduced methods for flow field analysis and decomposition, namely Spectral Proper
Orthogonal Decomposition (SPOD) and Wavelet Transform (WT). Spectral POD is a
decomposition technique designed to identify energy-ranked modes within a flow field,
where each mode corresponds to a specific frequency, allowing for the distinctive separation
of phenomena occurring at different frequencies and energy levels. Wavelet transform is
another powerful method for analysing signals in both time and frequency domains, by
decomposing a signal into different scales with the use of wavelet functions, it provides
a localized representation of signal features, making it suitable for detecting transient
events or localized variations, like identifying coherent structures and turbulence study.
The main topic is the application of these promising techniques to a numerical simulation
of a turbulent flow grazing acoustic liners, which purpose is damping acoustic energy
travelling a duct or a pipe. Acoustic liners exhibit diverse behaviours in response to the
different conditions, such as incident waves’ sound pressure level, frequency, or presence
of a mean flow. Bearing in mind that modal analysis or proper filtering procedures can be
used to decompose the pressure signal into acoustic and hydrodynamic components, which
present different peculiarities, SPOD and WT are supposed capable of identifying these
components for a deeper understanding of the underlying physics. The forementioned
techniques, being very computational power demanding, became available for practical
situations only with recent technological achievements, for this reason, HPC computational
resources offered by Politecnico di Torino are used to analyse acoustic liners functioning
in different characterizing conditions. The results are used firstly to identify the various
functioning regimes of single degree-of-freedom acoustic liners, and after adopted to
investigate whether is possible a separation of acoustic and hydrodynamic components
of the resulting flow field. After a brief introduction of the main topics, an appropriate
description of the used methods, algorithms, and flow conditions analysed is reported, key
parameters and experimental setup is described right after and finally main results and
outcomes are presented.
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Nomenclature

Symbols

S Cross Spectral Density (tensor)

x fluctuating part of a generic variable

a expansion coefficient realtive to the extracted mode

i imaginary unit

Nb number of blocks in wich is subdivided a data series

N f number of snapshots (or frames) forming a block

NT total number of snapshots, of wich consist a data series

No f offset number of frames (snapshot that are removed

Nov number of ovelapping frames, snapshots by which two adjacent blocks
are overlapping

p′ pressure fluctuation

W weight matrix

dB decibel

T generic period

Greek Symbols

λ generic eigenvalue

φ generic mode

Superscripts

(·) mean value



viii Nomenclature

˜(·) elements obtained by a distretized approach that mimic the theoretical
result

Subscripts

rms root mean square

Acronyms / Abbreviations

full the first SPOD ROI, analyzing the whole flow field domain with “great”
resources demanding workload

inlet duct section before the liners array area

liners liners cavities area

main duct section “under” the liners array

orifices 11 square areas comprehending only the orifices of each liner

outlet duct section after the liners array region

BPF Blade Passing Frequency

CSD Cross Spectral Density (tensor)

CWT Continuous Wavelet Transform

DWT Discrete Wavelet Transform

HVAC Heat Ventilation & Air Conditioning

PCA Principal Component Analysis

POD Proper Orthogonal Decomposition

ROI Region of Interest

SDOF, DDOF Single Degree-Of-Freedom, Double Degree-Of-Freedom

SPL Sound Pressure Level

SPOD Spectral Proper Orthogonal Decomposition



Introduction

1.1 Problem description

In every physic phenomenon, it is important to fully understand its origin and quantify
the contribution of different sources to its generation. The generation of sound is a topic
of interest in various fields, such as aerospace, automotive, civil engineering and others,
and common applications that include a moving fluid define the aeroacoustics study and
analysis, such as aircraft and vehicle generated noise, heat ventilation & air conditioning
(HVAC) systems and many others. A common practice to theoretically and numerically
study the generation and suppression of sound in the case of a moving fluid is to use an
acoustic analogy [29, 12, 8], and to obtain the radiated sound in the region of interest
(ROI), the time-dependent flow field solution in the source region is required. For generic
model problems, the flow field can be given by analytic functions based on assumptions
on homogeneous turbulence [20]. For more complex flows, time-dependent solutions of
equations as non-linear Euler or Navier–Stokes need to be obtained numerically1, with
increasing computational power, the possibility of overcome intrinsic difficulties such as
very fine computational mesh, suitably large computational domain or high-order accurate
time marching computational scheme has increased greatly [1], but remains unfeasible for
design purposes.

An alternative approach is to investigate and identify the main elements that characterize
and influence the entire flow field and its acoustic behavior, by decomposing the flow field
resulting from an experimental setup. Hence, a distinction between sound and pseudo-
sound can be made in the near field of an aeroacoustic source. The sound or acoustic
component is associated with sound waves propagating at the speed of sound and governed
by the linear wave equation, while the pseudo-sound, also called the hydrodynamic
component, is weakly influenced by compressibility and does not radiate [12]. It results

1In a Direct Numerical Simulation (DNS), the non-linear Navier–Stokes equations are solved numerically,
yielding time-dependent data of e.g. the pressure and velocity field. However, it can be difficult to clearly
isolate and identify the sound generating structures in the solution. Furthermore, performing DNS at realistic
Reynolds numbers is computationally expensive, and the amount of raw data produced is large enough such
that storage becomes an issue. The same issues also hold for Large Eddy Simulations (LES) or Detached
Eddy Simulations (DES).
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of interest of scientific community efficiently distinct and analyze separately the two
components. Such a separation could be achieved by a proper filtering procedure2, since
the hydrodynamic component is dominant in the low-frequency region of the spectrum,
whereas the acoustic component is predominant at high frequencies [27, 52]. Difficulty
stems from the fact that only a small part of the energy associated with the pressure
fluctuations radiates as sound, and e.g. in the vicinity of a jet, the pressure field is
dominated by the pseudo-sound, but this contribution decays very rapidly, and at large
distances, the pressure field reduces solely to the acoustic one [20]. When a measurement
of fluctuating pressure is performed in the near field, the acoustic contribution is buried
by the hydrodynamic contribution, and it is indistinguishable with a single microphone
signal. The problem of decomposing the whole signal into acoustic and hydrodynamic
pressure can be overcome through the modal analysis or application of a proper filtering
procedure3.

1.2 Acoustic liners

Since the beginning of the modern aviation, aircraft’s noise emission has been one of the
main topics, and one of the effectively adopted techniques for reducing derived noise is the
installation of acoustic liners, being introduced since the early 1950s [21], they rely on
the concept of the Helmholtz resonators disposed in an array to absorb acoustic energy
from the incoming flow. Among several peculiarities, these are passive devices, hence, by
selecting proper design parameters they can absorb acoustic energy from waves travelling
along surfaces on which these liners are installed, such as tonal noise generated by the
fan or a more complex broadband noise due to turbulent flow resulting in specific regions.
When the facing flow contains acoustic waves within certain levels, noise is damped via
thermal and viscous losses within the orifices in the face-sheet [36]; but in the case of
sound pressure levels greater than a threshold, acoustic energy is converted into vorticity
by vortex shedding at the edges of the orifices [36]. Acoustic liners are effective absorbers
in a narrow frequency band [5] which depends on geometrical design parameters, but,
under certain conditions, they can provide noise mitigation in a sufficiently broad range.

2A Fourier filtering procedure for the separation of hydrodynamic and acoustic pressures in the near field
was presented by Kerhervé et al. (2008) and Tinney & Jordan (2008). Pseudo-sound and sound pressures
were isolated because of their phase velocity in the wave number–frequency spectrum. Even though these
results are encouraging, it must be pointed out that the use of Fourier-based filters can lead to an incomplete
description of the acoustic near field. Indeed, the use of high-pass or low-pass filters implies that properties
of sound at low frequencies and of pseudo-sound at high frequencies are filtered out and thus are definitely
lost.

3Indeed, Arndt et al. (1997) and Coiffet et al. (2006) proposed an ad hoc separation of the near-field
pressure spectra into a low-frequency hydrodynamic region and a high-frequency acoustic region. They
definitely suggested that a separation between sound and pseudo-sound can be achieved by a low-pass or
high-pass filter of the data.
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This happens, for example, with high-amplitude incident sound waves, or the presence of a
flow, for which the liners present a non-linear behavior. Under these conditions, vortex
shedding occurs in the orifices on the face-sheet and the Reynolds number (Re) regulates
the frequency range of acoustic energy reduction [51]. This setup is known as Single DOF
(degree-of-freedom) while the addition of a porous septum inside the cavity, simulating
two cavities in series, allows a second absorption peak and a broader frequency range of
noise dampening, in this case, the system is referred to as Double DOF [36].

Continuous technological developments have permitted to alleviate the dominant
source’s contribution to overall noise generation, causing the main noise component to
shift from a single tone to a broadband emitter. As a result, acoustic liners are now needed
to absorb sound over a wide frequency range, preferably up to at least two octaves [24].
Several investigations have been conducted in order to demonstrate the effectiveness of
liners for acoustic damping, e.g. optimization studies conducted on constructive parameters
of lined flaps for trailing edge noise reduction [5], and in recent years, leading aircraft
engine manufacturers adopted this technology to comply with the most recent aircraft
noise emission regulations concerned for future environmental impact like the single-layer
and double-layer liners with perforations and mesh facing sheets adopted on the latest
models of Rolls-Royce turbofan engines [26]. Furthermore, liner technology is constantly
being studied for noise reduction of aircraft broadband sources [40, 41].

The key for optimal performance (minimal impact on aerodynamic characteristics)
is the sizing, design and distribution of the cavities and holes on the surfaces facing the
grazing flow containing acoustic waves, hence to increase the acoustic energy absorption
and a more profound understanding of the implied physics, more studies are necessary.
Valuable data of the flow fields produced in the presence of acoustic waves travelling
through the ducts and their interaction with liners in different conditions can be obtained
from experimental setups or through numerical simulations. Fluid dynamic fields data,
nowadays, can reach a very high level of definition, limited only by the computational
power available, it follows that appropriate analysis methods are needed to effectively and
methodically inspect these data.

1.3 Flow Field decomposition techniques

There are available several techniques which allow to successfully decompose and analyze
a flow field, and the common step for the most promising of them relies on a shift of
domain such as Fourier or Wavelet transform, allowing this way a deep inspection of the
underlying dynamics.
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Modal decomposition is a mathematical technique for extracting energetically and
dynamically important features from some sort of data, and in particular out of fluid
flows. The extracted coherent features, called modes, can be used to acquire insight into
the underlying physics of the particular phenomenon; these modes are accompanied by
characteristic values that represent either the energy content levels, the growth rates, or
frequencies. In fluid dynamics, these modes can be determined from the flow field data
or from the governing equations, and in case the flow field data is used as input, these
analyses are called data-based techniques [34, 50] while the seconds are usually referred
to as operator-based techniques; meaning that, data-driven techniques, such as Proper
Orthogonal Decomposition (POD), do not require knowledge of the governing equations
to extract valuable data. POD is one of the most adopted methods in fluid dynamics, and
it is available with several variations to exploit particular features or domain of coherent
structures of the examined situation e.g. Space or Standard, Spectral, Balanced and many
others [50].

Proper Orthogonal Decomposition (POD) outputs modes based on optimizing the
mean square of the field variable being examined. It was introduced to the fluid dynamics
and turbulence study community by Lumley [34] as a mathematical technique to extract
coherent structures from turbulent flow fields. The POD technique is also known as the
Karhunen-Loève method, principal component analysis (PCA), Hotelling analysis etc.
depending on the field of adoption; it provides an algorithm to decompose a set of data
into a minimal number of basis functions or modes that represent the set of coherent
structures with own energy levels involved. POD modes are by definition orthogonal
and hierarchically ordered regarding their energetic contribution. Since this, the POD
method (and its variations) appears to be well suited for turbulence and coherent structures
dynamics analysis. Space-only POD Determines low-rank approximations based on
modes orthogonal only-in-space and each mode is related to several frequencies, while
Spectral POD (SPOD) extracts modes that vary in space and time and are orthogonal
under a space-time inner product, and consequently resulting optimal in expressing data’s
coherence in both space and time. As a consequence, they can be associated to single
frequencies, excelling, this way, in extracting coherent structures in experimental, turbulent
and statistically stationary data (meaning that the mean and variance do not change in
time). Mathematically, SPOD modes are the eigenvectors of a Cross-Spectral Density
(CSD) tensor at each frequency.

In contrast to the modal analysis offered by the use of classical statistical tools, an
alternative and also novel approach is offered through wavelet-transform based techniques
[44] which do not require hypotheses such as the stationarity and homogeneity of the flow,
meaning that also intermittent phenomenons can be represented as well, relying upon a
representation utilizing analyzing functions, called wavelets, localized in space, and scaled
before convolving with the signal for frequency inspection, resulting well localized in both
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physical and frequency domain. Therefore, by filtering of such coefficients allows us to
inspect different involved phenomenons preserving the spatial information, in opposition
to Fourier modes, which are localized in the frequency domain and, for the record of the
physical information, the phase of all coefficients is required. The continuous wavelet
transform (CWT) offers a continuous and redundant unfolding in terms of both space and
scale, which may enable us to track the dynamics of coherent structures and measure their
contributions to the energy spectrum, while the discrete wavelet transform (DWT) allows
an orthonormal projection on a minimal number of independent modes which might be
used to compute or model the turbulent flow dynamics in a better way than with Fourier
modes.

As Spectral POD and Wavelet transform seem well suited for inspection of coherent
structures presence and contributions decomposition of the flow fields corresponding to
acoustic liners, these novel techniques will be adopted in the course of this investigation
work, but before investigating on whether SPOD or Wavelet transform could be valid
analysis methods in characterizing acoustic field’s dynamics and separating it from the
hydrodynamic component, the next chapter will provide necessary background knowledge
of the basic idea, the method’s concept, the algorithm behind as well as differences,
similarities, and advantages between Spectral and Classic (standard / space-only) POD,
and the same introduction, reporting the key aspects and features, will be faced for the
Wavelet Transform based decomposition as well.

1.4 Thesis objectives and structure

The idea that a flow field could be analyzed with proper attention on a particular aspect
or mechanics is very attractive, as it could permit an easier and objective design study
and investigation process, allowing immediate and reliable feedback from testing and
analysis phases based on specific requirements and objectives. The examined study case
is a perfect example where these recent methods could be the game changers for a more
appropriate design characterization for acoustic noise control, where liners, to be defined
by parametrization, require separate overview of aerodynamic and aeroacoustic damping
performance.

The main objective of the current work is the investigation of whether is possible
the characterization of certain phenomenons, their starting mechanics and dynamics by
associating them to specific modes (or their combinations) through the use of Spectral
Proper Orthogonal Decomposition and Wavelet transform for the analysis of flow fields
resulting from numerically simulated turbulent flow grazing acoustic liners in a duct,
in presence of acoustic waves, and possibly to determine a relation between generated
structures responsible for noise absorption and the forementioned modes. The secondary
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objective is the comparison of the selected modern techniques, relative feasibility, used
parameters and detection of possible advantages or weaknesses, in terms of information
delivered, for a better and properly selected aeroacoustic analysis technique, to be chosen
in relation to the requested information of the specifically faced situation.

The thesis is structured as follows, the following chapter is dedicated to the required
primary background information, functioning principles, theory, and design parameters
of acoustic liners, modal decomposition techniques, with particular attention to POD,
space-only and spectral, and Wavelets transform based methods. The simulation data
processing details and methods, as well as defined parameters selection and setup adopted
for the analyses, will be reviewed in the third chapter, the case study analysis results
acquired by forementioned methods will be compared, organized and reviewed in chapter
four. The concluding chapter will face and discuss any future outlooks as well as personal
considerations and impressions.



Background and theory

2.1 Acoustic Liners

2.1.1 Generalities

The aeroacoustic noise generated by aircrafts in the vicinity of an airfield may be a
great limitation to its regular operation, especially in urban and suburban areas. Aircraft
noise emissions are regulated by international, regional, and local authorities, which
is why manufacturers, designers, and researchers are constantly working to find new
effective solutions to comply with these regulations and certify their products. The main
acoustical sources on turbofan-powered aircraft are key components of the engine itself
(fan, compressor, turbine, jet). The demand for greater efficiency and lower pollutant
emissions has led aeronautical engine manufacturers to increase their engine bypass ratios,
increasing this way on the one hand the fan size and the relative blade-passing-frequency
(BPF) overall dominance and on the other hand the resulting broadband spread due to
blade-stator flow interactions. Although many improvements have been made to reduce
emitted noise, many difficulties stem from separating various contributions (especially
at the aft end of a turbofan engine), effectively reducing one source’s emission could be
negligible or undistinguished from overall combined emission levels. One of the most
adopted and effective solutions to achieve the desired levels of noise suppression in aircraft
engines is the installation of acoustic liners in the intake, bypass, exit ducts and other wet
surfaces that interact with the relevant flow contributing acoustically (Figure 2.1).

The main idea behind acoustic liners is to exploit the effectiveness of Helmholtz
resonators, which consist of a chamber of relatively large volume (compared to the duct
in which acoustic waves are propagating) with fluid under quiet conditions. At resonance
frequencies, small pressure disturbances induce great flow fluctuations, and by properly
calibrating the geometry of this chamber in relation to the duct’s dimension and wave’s
frequency, it is possible to obtain effective acoustic damping because of the viscous
dissipation induced by the velocity gradients which occur inside the chamber, a behavior
similar to the mass-spring-dumper model excited by a force which absorbs kinetic energy.
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Fig. 2.1 A sketch of an aeronautical turbofan engine with acoustic liners installed on the inlet and
aft duct exhaust walls [24].

This setup results in an acoustic discontinuity that generates a reflected wave and attenuates
the transmitted one [1]. A proper dimensioning and combining of different layouts permits
us to concentrate the dissipation on a single or multiple bandwidths. The single degree-
of-freedom (SDOF Figure 2.2-a) design, consists of honeycomb cavities between a rigid
backplate and a perforated sheet facing the flow containing acoustic energy, which are
disposed in the stream from ducts and walls, are effective within a narrow frequency range,
approximately one octave, and need to be designed ad hoc to the frequency band of
primary concern for suppression, such as fan tone. The double degree-of-freedom (DDOF
Figure 2.2-b) design is obtained by adding another layer with a porous septum inside
the cavity, analogous to stacking two SDOF sandwiches with possible different cavities’
geometry. With careful design, the DDOF setup can cover the frequency of major concern,
for example, the blade passing frequency (BPF), and its next two harmonics, providing
a useful bandwidth of attenuation of about two octaves, which is typically sufficient for
turbofan engine applications. This concept can also be extended to multiple stacked layers
and proper bandwidths. There are more designs with their peculiarities that rely on the
same principle, e.g. the bulk absorber, which allows suppression in the widest bandwidth,
but its use in civil aviation is limited because of installation and construction issues.

In aeronautical applications, the common objective is reducing emissions of specific
sources (not only acoustically speaking), and both SDOF and DDOF liners, with their
perforated face sheets, allow for absorption that is spatially concentrated; in fact, they
are referred to as local-reacting, in opposition to extended-reacting liners, which can
be thought like a layer of foam without the partitioning of the various chambers, and
possessing less resonant behavior, they effectively absorb a broad range of frequencies, but
result impractical for aeronautical applications. Hence, the local-reacting liners produce a
greater dumping over a narrow frequency bandwidth matched to the noise sources of main
concern; these, in fact, act like arrays of the previously mentioned Helmholtz resonators,
and with proper distancing of orifices from each other, their mutual interaction can be
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(a) SDOF (b) DDOF

Fig. 2.2 An example of SDOF design (a) and DDOF design (b). The geometry of cavities can
change through a single layout and between different layouts(in case of multiple DOFs) [24]

neglected and account for the whole array’s contribution. In this way, the microfluid flow
field of a resonator perturbed by an incident or grazing wave can be analyzed independently.

2.1.2 Liners’ design

Acoustic impedance, Z, is used to measure the opposition of a system to acoustic flow
and is defined as the ratio of acoustic pressure p to velocity v measured on a surface
perpendicular to the defined direction n (Equation 2.1). Both pressure and velocity are
complex coefficients and functions of frequency ω , therefore, the result is a complex
number, the real part of which is named resistance R, and the imaginary part X , reactance.
It can characterize the behavior of acoustic liners and, in particular, help to determine how
well the absorption of acoustic energy will occur under particular flow conditions [1].

Ẑn(ω) =
p̂(ω)

v̂(ω) ·n
= R+ iX (2.1)

Acoustic impedance can be normalized by the characteristic impedance of air (or
medium, in general), ρc, where ρ is the density of air and c the speed of sound propagation,
both under reference conditions. Thus, it is possible to express the specific acoustic
impedance with ζ and with θ and χ the real and imaginary parts, respectively [1].

Ẑn

ρc
= ζ = θ + iχ (2.2)
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The general formula for a single degree-of-freedom acoustic liner can be expressed as
follows.

Ẑ

ρc
= ζ = θm + i

(
χm +χc

)
(2.3)

accounting for the resistance and reactance of the face sheet, θm and χm, respectively,
and χc the cavity reactance which can be approximated to −cot(kh) (wave number k,
cavity depth h). To better understand the roles and functioning of acoustic liners, it is
possible to introduce an analogy to a mass spring-damper model (MSD) [32], Equation
2.4.

mẍ+ cẋ+ kx = Fext (2.4)

By assuming an oscillating velocity, ẋ = |ẋ|eiωt , it is possible to express the impedance
of the mass-spring-damper system as the force-to-velocity ratio and intuitively relate it to
the acoustic impedance.

Z(ω) =
F
ẋ
= c+ i

(
ωm−

k

ω

)
(2.5)

Where F is intended as the sum of the reaction forces of the mass, the spring and
the damper; comparing the Equation 2.5 with 2.2, in terms of aeroacoustic analogy, it
is evident that resistance θ is conceptually the damping term c, accounting for viscous
dissipation and vortex shedding, while the reactance χ is a combination of mass inertia
and elastic term, assigned to fluid inertia and compressibility [32].

The impedance presented to a sound wave that travels along the liners’ surface depends
upon the direction in which it is measured, frequency, and environment of the incident
wave. The fraction of incident energy absorbed by the surface is denoted by α , with φ the
angle of incidence (φ = 0◦ for the perpendicular incidence of a wave on a surface), and the
following formula expresses this for the idealized case of an incident plane wave on a flat
surface [36].

α =
4θ cosφ

(1+θ cosφ)2 +(χ cosφ)2 (2.6)

Consequently, results that both the impedance of an acoustic liner, and the correspond-
ing sound absorption, are frequency dependent; thou the Equation 2.6 is invalid in the case
of waves propagating along a surface (parallel to it). The duct geometry directly affects
sound absorption, while the impedance is an intrinsic property of an acoustic liner, and
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being independent of duct geometry, its use results more appropriate in the liners’ design
process, where a controlled environment can be used to determine its acoustic impedance
and consequently indicate the final sound power absorption occurring in the end product,
e.g., aircraft engine nacelle. Since the last considerations, it is possible to associate the
acoustic resistance θ as a measure of the forces responsible for the dissipation of the
acoustic energy, while the reactance χ is related to the phase relationship between pressure
and velocity, accounting only for hydrodynamic fluctuations but without possessing an
acoustically relevant energy content, as arises in case the phases do not match [1].

In order to describe the acoustic properties of liners, an appropriate model for acoustic
impedance has to be adopted and the most popular of semi-empirical models is the one
developed by Guess [16], which derives the expressions for non-dimensional resistance
θ(ω) and reactance χ(ω), as functions of geometrical and design parameters, there are
available more specific and advanced impedance models for accurately predicting new
experimental data of a particular setup.

θ(ω) =

√
8νωτ∗

σcd
+

π2

2σ

(
d

λ

)2

+
(1−σ2)

σ
·
|ṽor|+ |u′|

c
(2.7)

χ(ω) =

(
ωτ

σc
+

√
8νωτ∗

σcd

)
+

ωδ

σc
− cot

(
ωL

c

)
(2.8)

Where ν is the cinematic viscosity, σ the surface porosity, d the diameter of the
orifice, τ the thickness of the plate, and λ the acoustic wavelength. In addiction, this model
attempts to account for non-linear effects on resistance due to orifice velocity magnitude ṽor

and using the magnitude of tangential velocity fluctuations u′ to account for the mean flow
effect. The end correction τ∗ represents the small mass of air driven to the exterior of the
holes due to the elastic behavior of fluid within the cavity, and δ is the term ’end correction’
of the orifice. Although several studies [23] were conducted to validate the behavior of the
model, there was evidence of some difficulties in predicting new experimental data and
highlighting the dominant effect of grazing flow on acoustic resistance.

By defining p′ the variation of pressure in respect to the reference pressure, and p′rms

its root-mean-squared value which is, in case of a signal with period T ,

p′2rms =
1

T

∫ t0+T/2

t0−T/2
p′2(t)dt (2.9)

Sound pressure level (SPL) is a measure of the intensity of sound, it measures the
pressure of an acoustic wave in reference to a defined pressure level, as it relates signals
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variating on different orders of magnitude, it results appropriate to express it in decibels
(dB).

SPL = 10Log
( p′2rms

p2
re f

)
= 20Log

( p′rms

pre f

)
(2.10)

If air is considered, it is common to use the threshold of human audibility as the
reference pressure pre f = 20µPa.

2.1.3 Non-linear behaviours

Sound pressure level dependency: SPL plays an important role in determining the
response of acoustic liners, which can behave linearly or non-linearly [32]. In fact, a
very complicated and not fully understood behavior is observed when acoustic liners are
exposed to pressure waves above a certain SPL, the liners’ response passes from being
linear to nonlinear.

At SPL lower than 130 dB and at low Mach numbers, the linear response of the
liners consists of laminar flow at the entrance of the resonance cavity and up to 60% of
acoustic energy being depleted through viscous dissipation[51], Figure 2.3a. But, for
SPL greater than 140 dB, intense vortex shedding occurs in the region of the orifice,
internally and externally. The shedding mechanism involves the formation of counter-
rotating vortices pairs, and it is of particular interest because in these conditions the
sound absorption mechanism is about 12.5 times more efficient than in the case of simple
viscous damping [51], Figure 2.3b, in order to observe this particular non-linear behavior,
it results necessary to set up a particular frequency threshold, as the phenomenon results
also frequency dependent [38].

The Grazing Flow’s effect: is referred to the presence of a mean flow in the duct,
resulting in a vortex sheet formed in the upstream corner of a hole. This induces an
interaction between the acoustically induced flow and the duct’s grazing flow, followed
by a partial transfer of the acoustic energy from the incoming waves towards the vortex
sheet, affecting broader frequency bands than in no-flow condition [55]. At higher Mach
numbers, interaction between the upstream and the downstream vortices occurs, resulting in
a more complex flow field, and even more interactions occur in the presence of turbulence.
Furthermore, this vortex street is swept downstream, interfering with regular flow and also
reducing the effective area useful for flow into the cavity [51].
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(a) linear (b) non-linear

Fig. 2.3 a) Instantaneous streamline pattern at the neck (orifice) of the resonator SPL=120 dB, f=3
kHz; b) Instantaneous streamline patter showing the shedding of vortices inside and outside the
resonator at SPL=150 dB, f=3 kHz [51].

Fig. 2.4 Instantaneous vorticity contours near orifice wall in presence of grazing flow for three
different Mach numbers, e.g. M={0.15, 0.5, 0.85} f=500 Hz.

Drag increase: Turbulent flow sees the presence of liners, in particular orifices that
define the permeable surface, such as roughness, characterized by geometrical factors
such as orifice size, shape, and their distribution (porosity) on the surface. The interaction
occurs between the drag-produced and the sound-induced pressure gradients, resulting in
an increase in wall shear stress together with a thickening of the boundary layer before entry
into the cavity. As an additional effect, the presence of liners influences the overlaying
turbulent stream, decreasing the streamwise velocity fluctuations [22]. Recent studies were
directed to establish a relationship between relative drag contributions as a function of SPL
[55], and apparently the liner-induced drag is also likely a function of sound amplitude
also, Figure 2.5. As the decibels increase, the relative drag contributions of the face sheet
and the orifice tend to be comparable. In general, the installation of the liners results in
a large increase in drag (up to 70%, depending on the particular geometry and porosity)
compared to a smooth wall.
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Fig. 2.5 Relative contributions of the face sheet (squares), cavity (circles), and orifice walls
(triangles) to drag for different SPL at f=3 kHz.

2.2 Modal Decomposition

Lumley introduced Proper Orthogonal Decomposition (POD) for statistically stationary
flows (flow fields whose mean and variance do not change over time) [34, 30], it is known
by names like principal component analysis (PCA), Karhunen–Loève decomposition and
many other denominations depending on the field of application. Currently, classical
POD is one of the most adopted techniques for extracting structures based on their spatial
coherence from time-dependent flow field data, POD seeks a set of deterministic modes
that optimally capture the energy, or variance, of an ensemble of stochastic flow data, these
modes do not necessarily evolve coherently in time, and the part of the flow described
by a particular space-only POD mode is not necessarily correlated with the part of
the flow described by the same mode at a later time, nor it is necessarily uncorrelated
with the part of the flow described by a different mode at a later time. Once a proper inner
product has been defined, it is possible to represent the total or a defined fraction of the
energy of the flow field by the sum of the eigenvalues corresponding to the extracted modes,
since each of them gives the average energy captured by its respective mode. Consequently,
classic POD modes optimally represent spatial correlations within the flow.

The Spectral POD (SPOD)4 is a particular form of classic POD and is not itself a recent
achievement. Introduced by Picard & Delville [39] and based on the early work of Lumley
[34] in 1970, it involves the decomposition of the cross-spectral density (CSD) tensor and
leads to orthonormal modes that represent physically meaningful coherent structures
in the sense that each mode evolves coherently in space and time and the part of the

4A homonymously named technique was introduced by Sieber et al. [47], Spectral Proper Orthogonal
Decomposition, which improves and smoothens the information obtained from classical POD using a
Discrete Fourier Transform (DFT) and by filtering the temporal correlation matrix, which represents the
spectral content of the coherent structures captured. Describing this different technique can be misleading,
so further details are omitted.
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flow described by a particular SPOD mode is perfectly correlated with the part of the
flow described by that same mode at all times and entirely uncorrelated with the part
of the flow described by all other modes at all times; in this sense, with an appropriate
inner product, it is possible to represent a certain fraction of energy of the flow field not
only relying on spatial coherence but also focussing on particular frequency at all times
[53].

The main difference between the two techniques, Spectral POD and Classic POD,
stems from the definition of their source of information; the first uses time-dependent
flow data keeping the evolution and the correlation of certain structures, and thus retains
its dynamical information, while the second considers each snapshot as an independent
realization of a random process discarding temporal evolution of the flow.

In a recent study [28], proper orthogonal decomposition was used to detect the most
energy-containing structures to be used as base functions in the reduced-order model [6].
In a reduced-order model, perturbations from steady state are approximated by a linear
combination of the eigenmodes. The dynamics of the flow field was decomposed into its
global modes5, and a reduced order model, consisting of only the most dominant modes,
was used as source data. Demonstrating the strength of the method used and the ability to
identify sound-generating structures. The flow field eigenmode decomposition was applied
to a low-Mach number flow over a long, shallow cavity with smoothed corners, and the
sound generated by the individual global modes was calculated. From the decomposition,
it was concluded that the most sound-generating modes were governed by the collision
of convecting instabilities in the shear layer and disturbances in the recirculation zone, as
they impinged on the downstream edge of the cavity [28].

Despite their differences and those of other techniques, previously mentioned and
omitted, the common objective is to decompose a complex phenomenon into a series
of simpler components, or modes, defined in a certain domain in which coherence is
requested, and possibly assign to each of them a specific role in the global picture. Once
decomposed, the initial problem can be reformulated using a reduced-order model by
keeping the principal components (dominant modes) which effectively account for the
most energetically meaningful structures or mechanisms observed, or can be analyzed one
piece at a time, as is usually desired for most complex cases. In the following figure (2.6) a
simple example is presented: The reported diagram shows a complex non-linear flow field,
resulting from two-dimensional laminar separated flow over a flat-plate wing, captured by
a time series of instantaneous snapshots, by applying space-only POD first and then using
only the mean flow field and the first two POD modes; it is possible to accurately represent
the Von Kármán vortex street in the wake. By including additional (less energetically
meaningful) modes (and structures), it is possible to reconstruct the original flow field

5Global modes are eigenmodes to the Navier–Stokes equations, linearized about a steady base flow [28].
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more accurately, but with only minor changes with respect to the previous result. One
more interesting aspect is that the dominant modes obtained and reported in Figure 2.6 are
almost identical to those obtained from a different experiment [25] investigating a NACA
0012 airfoil in a three-dimensional turbulent flow.

Fig. 2.6 Modal decomposition of two-dimensional incompressible flow over a flat-plate wing [7, 49]
(Re = 100 and α= 30°). Visualized are the streamwise velocity profiles.

In order to properly approach the SPOD definition, use, algorithm, and comparison
with other data-based techniques, some fundamental tools and concepts will be presented
first.

2.2.1 SVD

Modal decomposition is an essential tool in every field from finance to facial recognition,
to medical profiling, to fluid dynamics, and in anything else involving large data to be
analyzed, and its foundation is singular value decomposition (SVD), which has many uses
and interpretations, in order to determine the singular values (generalized eigenvalues) of
matrix formatted data, detecting in this way the main elements, or patterns, or specifically
modes of the entered data; once calculated, the eigenmodes can reveal certain physics
underlying the observed phenomena, making it possible the use of SVD to obtain optimal
low-rank matrix approximations to reconstruct a reduced order model: just like in the
previous example (Figure 2.6, where complex flow condition was modelled using only the
first two dominant modes), data variables and entries can greatly outnumber the details
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necessity or capability of the final application, it can also be demonstrated that very
high order modes can be associated with signal noise [50].

The decomposition of eigenvalues is performed on square matrices, whereas the
singular value decomposition is of a more general understanding, its singular values can
measure the distance of a decomposed matrix from the set of singular matrices and can
be performed on rectangular matrices also. The data of the flow fields can be compiled in
vector form captured in different snapshots and dynamically stored in rows (or eventually
columns), resulting in a rectangular matrix A ∈ Cm×n with generally m ̸= n. In matrix
form, the key relationship can be expressed as

AV = UΣ

where U = [u1u2 · · ·um] ∈ Cm×m and V = [v1v2 · · ·vn] ∈ Cn×n are unitary matrices
of left and right singular vectors (columns), respectively 6. Σ ∈ Rm×n is the matrix of
singular values of A, with hierarchically ordered elements [σ1 ≥ σ2 ≥ σ3 · · · ≥ σp ≥ 0],
and p = min(m,n). To isolate A, we multiply V−1=V∗ from the right side, obtaining the
canonical form:

A = UΣV∗ (2.11)

Figure 2.7 gives a visual and intuitive understanding of the dimensions of the respective
matrices involved, assuming m>n.

Fig. 2.7 SVD graphical decomposition with A m-by-n matrix [50].

It becomes instantly clear that once the product on the right-hand side occurs, some
elements are lost due to multiplication by zeros (dashed rectangular areas in the Figure 2.7)
so they can be omitted to save storage and the decomposition is denominated as reduced or
economy-sized SVD. Therefore, the reduced-Σ (Σ̃) becomes a diagonal matrix of singular
values.

6Unitary matrices U and V satisfy, U∗=U−1, V∗=V−1, with ∗ denoting conjugate transpose.
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As SVD is applied to a rectangular matrix, it is necessary to have two sets of basis
vectors to define the domain and range of the matrix: the right singular vectors V that span
the domain of A and the left singular vectors U that span the range of A, as illustrated
in Figure 2.7. This is different from the eigenvalue decomposition of a square matrix,
in which case the domain and the range are (generally) the same. While the eigenvalue
decomposition requires the square matrix to be diagonalizable, SVD, on the other hand,
can be performed on any rectangular matrix, making this last condition evident.

One of the resulting properties of the decomposition (also the most appreciated) is
that the initial information contained in A is transferred and ordered hierarchically in
[U,Σ,V]. That is, by selecting only a part of the singular values, it is possible to obtain a
good approximation of A. The most common example of an application of SVD is digital
images compression, the most part of the information is stored in only a fraction of the
beginning storage size. In the Figure 2.8, it is possible to observe the portion of total
information (energy) energy captured by the first r eigenvalues resulting from the SVD
decomposition, version b) reproduces most of the details of the original picture, c) reliably
reproduces most of the main features, while version d) despite it necessitates only 1.67%
of the original’s storage, is sufficient just for a basic understanding of the subject.

Fig. 2.8 Example of image compression obtained by using SVD.

2.2.2 PCA

Principal Component Analysis (PCA) is one of the central uses of the SVD, providing
a coordinate system to represent highly dimensional correlated data. The key operation
executed is the subtraction of the mean value and normalizing the variance before perform-
ing the SVD, the proper inner product will determine the orthogonality properties, so the
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principal components will result uncorrelated (orthogonal) with each other, but will have
maximal correlation with the measurements [13, 19, 3].

Typically, a number of measurements are collected in a single experiment, and these
measurements are arranged into a row vector. A measurement may be the pressure
registered in nodes of a grid from an instantaneous flow fields recording. A number of
experiments are conducted, and each measurement vector is arranged as a row in a large
matrix A, individual features snapshots are arranged as columns.

Recording data from n different experiments (e.g. instantaneous pictures) for m
measurements (probes available in a domain), a matrix A (n-by-m) is obtained. Subtracting
the mean value, A from A itself, results in the mean-subtracted data B, and its covariance
matrix C:

B = A−A

C =
1

n−1
B∗B

CV = VD (2.12)

The first principal component u1 will be the eigenvector of B∗B corresponding to
the maximum magnitude eigenvalue; consequently, it becomes obvious that u1 is the left
singular vector of B corresponding to the largest singular value. The principal components
are computed by the eigendecomposition of C, with matrix V resulting the equivalent of V
during SVD.

2.3 Classic POD

2.3.1 Generalities

Classic POD (and all of its alternative denominations previously presented), since now
space-only POD or simply POD, has its roots in SVD and is a modal decomposition
practice for extracting modes from a set of data, more precisely and general from any
matrix, providing the algorithm to obtain minimal number of basis functions or modes
φ that, on average, best approximate a zero-mean stochastic process, based on a finite
ensemble of samples, permitting also to set a threshold for desired approximation accuracy,
or energy fraction to keep, relying on optimizing the mean square of the field variable
being examined.
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The starting point, similarly to PCA, is subtracting the temporal mean value from the
examined field variable (e.g. velocity):

q′(ξ , t) = q(ξ , t)−q(ξ )

with ξ spatial coordinate vector and by defining φ j(ξ ) spatial modes and a j(t) time-
dependent expansion coefficients; stems the following decomposition7:

q′(ξ , t) = ∑
j

a j(t)φ j(ξ ) (2.13)

representing the flow field on the basis of a series, analogously to a generalized Fourier
series with set of functions φ j. By defining the stochastic ensemble to consist of snapshots
of the flow field in different time instances, the flow is treated as instantaneous realizations
of a stochastic process. In the framework of POD, we seek the optimal set of basis functions
for a given flow field data.

There are numerous different variations of POD, indeed it is one of the most used and
simplest techniques in post-processing and analysis in fluid dynamics, based on coherent’s
structures domain of interest for every kind of applications, among which fundamental
analysis of fluid flows, aerodynamic design optimization and flow control, reduced order
modelling, etc.

As inputs for the POD, it is possible to use snapshots of any scalar or vector field
(pressure, temperature, velocity, vorticity, etc.) regardless of the dimensional extension
(dimension of ξ ) over discrete times ti. And the outputs are a set of modes φ j(ξ ), orthogo-
nal according to a defined inner product, with their corresponding temporal coefficients
a j(t), and energy levels λ j, hierarchically ordered. The fluctuations in the original field
are expressed as a linear combination of the modes and their corresponding temporal
coefficients according to the equation. 2.13.

2.3.2 Procedure for space-only POD

Reporting for simplicity the formulation of Equation 2.13, we define x(ξ , t) as the fluctuat-
ing part of the vector.

x(ξ , t)≡ q′(ξ , t) = ∑
j

a j(t)φ j(ξ ) (2.14)

7Note that Equation 2.13 explicitly employs a separation of variables, which may not be appropriate for
all problems; alternatively, a fallback to the original version of POD is possible, where a j are only expansion
coefficients and φ(ξ , t) are the spatio-temporal modes [18].
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The objective is to find vectors φ j(ξ ) to represent q(ξ ) with the least number of
elements (modes).

q(ξ , t)−q(ξ ) = x(ξ , t) ∈ Rn, t = t1, t2, . . . , tm

X = [x(t1),x(t2), . . . ,x(tm)] ∈ Rn×m (2.15)

R = (1/m)XXT =
m

∑
i=1

x(ti)xT (ti) ∈ Rn×n (2.16)

In Equation 2.15 we have introduced the matrix X representing all available data, that
is, m-snapshots of a domain long n-points, and also the spatial dependence was reduced to
emphasize the time dependence of the snapshots (x(ξ , t)⇒ x(t)), and in Equation 2.16 its
covariance matrix R. Now we have the solution to Equation 2.14 that can be formulated
using the eigendecomposition.

Rφ j = λφ j, λ1 ≥ λ2 ≥ . . .≥ λn ≥ 0 (2.17)

The eigenvectors obtained this way are the orthogonal POD modes, having their inner
product8 to meet the condition

⟨φ j,φk⟩ ≡
∫

V
φ j ·φkdV = δ jk, j,k = 1, . . . ,n.

In case the velocity vector is used in x(t), the eigenvalues λ j will account for the
kinetic energy captured by a single mode φ j, ordered in terms of energetic importance
(magnitude); using a vorticity field will produce the entropy content. Analogously to the
SVD, by keeping only a set of first r modes (truncating the series) will limit the level of
energy captured by the selected modes, and the smallest scales will be ignored in favor
of the greatest, dynamically important, structures representing the dominant phenomenon
of the flow (e.g. vortex shedding, Kelvin-Helmholtz instability, etc.). Analogously to the
previous example of the use of SVD (Figure 2.8), where instead of the energy captured by
coherent structures representing the main features of the phenomenon, different amounts of
pixels were used to represent the details of the cat, the relative energy (instead of conserved

8In general, where a non-uniform grid is used, the volume integral (inner product) should include the cells
weights W for each data point. Consequently, the covariance matrix will be formulated as R≡ (1/m)XXT W,
with W the defined spatial weights.
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information) f captured by the first r modes over a total of n modes, can be expressed by

f =
r

∑
j=1

λ j/
n

∑
j=1

λ j.

The temporal coefficients a j(t), generally contain a mix of frequencies, and this aspect
will be compared with respect to spectral POD.

a j(t) = ⟨q(ξ , t)−q(ξ ),φ j(ξ )⟩= ⟨x(t),φ j(ξ )⟩

The presented procedure to perform the POD is the classic one, but there are several others
that obtain the same result in a more efficient way [50], such as the method of snapshots
or simply by using SDV.

Reduced-order modelling: Thanks to their orthogonality property, POD modes ca, and
have been used to obtain reduced-order models for various flow conditions [37, 43]. In
addition, the Galerkin projection method can be used to reduce the high-dimensional
discretization of partial differential equations into reduced-order ordinary differential
equation models for temporal coefficients a j(t) [50].

Outlook: Space-only POD, is a simple yet powerful method that produces an orthogonal
set of basis vectors with minimal dimension (this property is useful in constructing a
reduced-order model of the flow field). The resulting modes are arranged by their energy
content but not by dynamical importance, and hence it is unclear how many modes are
relevant for a reliable model not to lose some of the small-scale yet dynamically important
structures; from a different point of view, this feature can be useful to filter higher-order
modes assuming them as incoherent noise data.

Example: the example represented in Figure 2.6 of the previous section is a perfect
showcase of the Proper Orthogonal Decomposition potential; in fact, POD modes are
commonly used to construct a reduced order model to study main features of the flow fields,
extract characteristic behaviors, and observe analogies between different experiments.
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2.4 Spectral POD

2.4.1 Generalities

In order to overcome some of the limitations imposed by space-only POD, we can seek
modes that depend on both space and time instead of only space; just as it happens in every
other field: once a phenomenon is observed, to reveal more of the underlying physics and
mechanisms, it is very useful to inspect the same information in the frequency domain.
Hence, by realizing temporal Fourier transforms of the flow field, power spectra can be
obtained, and after a specific process, time-harmonic modes at discrete frequencies can be
extracted; these form an orthogonal basis optimally ranked in terms of energy, defining
the Spectral POD functionality. Since space-only POD reduces to harmonic analysis over
directions that are stationary or periodic, SPOD is effective in extracting coherent structures
from statistically stationary flows, where the mean flow field remains constant. One of
the different requirements is that flow field data is composed of a set of realizations of the
time-dependent flow, not just a stochastic set of snapshots, as happens with standard POD.

2.4.2 Method

When stationarity is an appropriate assumption, it can be exploited in different ways. By
considering both spatial and temporal variables xi(ξ , t), and defining the inner product as

⟨x1,x2⟩=
∫

∞

−∞

∫
Ω

x∗1(ξ , t)W (ξ , t)x2(ξ , t)dξ dt (2.18)

with a properly selected, positive-definite Hermitian matrix W ∈CN×N , which accounts
for spatial weights and the numerical quadrature on the discrete grid, W (ξ ). In this way, it
is possible to solve a series of POD problems in Fourier space, one frequency at a time.
The cross-spectral density (CSD) tensor is the kernel of the eigenvalue problem to find a
set of modes that result orthogonal under the whole space-time domain.

Once introduced the classic POD, there are only a few more steps to formulate its
spectral version. Spectral POD can be estimated from a time series of snapshots in the form
of X (Equation 2.15, reported hereafter for simplicity), moving to the frequency domain,
using Welch’s averaging method [54] to estimate the CSD tensor, and finally solving the
SVD problem, or eventually the eigenvalue problem:

X = [x(t1),x(t2), . . . ,x(tm)] ∈ RN×Nt
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1. Firstly, the whole time series is subdivided into a number of Nb blocks of significant
temporal duration, long enough to allow overlapping, consisting of N f snapshots
each. Again, spatial dependence was dropped to emphasize frequency content,
x(ξ , t)⇒ x(t), and denoting by l the l-th block

X(l) = [x(t1),x(t2), . . . ,x(tN f
)] ∈ RN×N f . (2.19)

2. Under the ergodicity hypothesis, each block can be regarded as a statistically in-
dependent realization of the flow. Welch’s periodogram averaging method is used
by executing the Fourier transform of each block, obtaining data on the discrete
frequency range:

X(l)(ξ , t) −→ X̂(l)(ξ ,ω)

X̂(l) = [x̂(ω1)
(l), x̂(ω2)

(l), . . . , x̂(ωN f )
(l)] ∈ RN×N f (2.20)

X̂(l)(ξ ,ω) = ∑
j

â j(ω)φ j(ξ ,ω) (2.21)

â j(ω) = ⟨X̂(ξ ,ω),φ j(ξ ,ω)⟩x (2.22)

3. All realizations of the Fourier transform at a specific frequency ωk are collected into
a new data matrix X̂ωk

X̂ωk = [x̂(ωk)
(1), x̂(ωk)

(2), . . . , x̂(ωk)
(Nb)] (2.23)

X̂ωkX̂T
ωk

φωk, j = λωk, jφωk, j , φωk, j ∈ RN , λωk,1 ≥ λωk,2 ≥ . . .≥ λωk,Nb
≥ 0

The cross spectral density (CSD) matrix is obtained from the product X̂ωkX̂T
ωk

, and
its eigenvalue decomposition produces the spectral modes φωk, j (principal components)
and λωk, j their respective modal energies. Furthermore, the resulting modes are orthogonal
under the space-time inner product, so each mode at each frequency can be considered as a
distinct mode, uncorrelated with all other modes. The spectral POD formulation leads to
modes that oscillate, each at a single frequency, and optimally represent the second-order
space-time flow statistics, representing coherently evolving structures, in space and time.
In other words, the part of the flow described by a particular SPOD mode is perfectly
correlated with the part of the flow described by that same mode at all times and entirely
uncorrelated with the part of the flow described by all other modes at all times SPOD
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modes decouple flow phenomena at different time scales, which can be helpful for
understanding the flow dynamics and deriving non-empirical models [53].

2.4.3 Algorithm and key parameters

While various algorithms for space-only POD computing are available and widely adopted
(including the previously described method)9, the precise universally adopted algorithm
for determining SPOD modes is still a poorly documented matter, a subject of research,
and requires several additional considerations. In the following paragraphs, one of the
most recent formulations of the procedure to calculate the spectral POD will be described,
the one updated and reviewed by A.Towne, T.Schmidt, and T.Colonius [53]. It is worth
specifying that the authors mentioned above have introduced a version of the SPOD
specifically meant for situations where the data becomes too “large” for actual technology,
named “streaming” SPOD (sspod) [46], computing decomposition on-the-go by saving
storage and operating memory requirements, by updating the results dynamically and
without limitations on the number of snapshots imported; as it calculates them one small
batch at-a-time: as SPOD requires a large amount of data and information to analyze,
higher spatial and time resolutions will give more information and details (one of the
reasons why its adoption was unfeasible until recent times). Despite its flexibility in
managing large data, only the main method will be described and adopted.

Using the previously introduced nomenclature, we denote by x j ∈ RN the jth instan-
taneous flow field data (snapshot) of a scalar or vector variable, e.g. pressure or velocity,
x(ξ , t) in a discrete set of points ξ of spatial domain Ω at a specific time t j. N is the length
of the snapshot vector equal to the number of flow variables qi(ξ , t) times grid points:

x j = x(ξ , t j) = [q1(ξ , t j),q2(ξ , t j),q3(ξ , t j)] j = 1,2, . . . ,N

Considering M equidistant in time snapshots, the whole resulting flow field matrix X
will be:

X = [x1,x2, . . . ,xM] ∈ RN×M (2.24)

Increasing indefinitely M does not guarantee the convergence of the CSD estimates,
as the uncertainty will result comparable to the estimate magnitude itself [14]. In order
to obtain convergence, by the ergodicity hypothesis10, it is necessary to increase the
number of different experiments (with the appropriate averaging). A proven alternative

9One of the most adopted is based on the method of snapshots by Sirovich (1987) [48, 50]
10A sufficiently large collection of random samples from a process can represent the average statistical

properties of the entire process.
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solution is to use Welch’s method [54], by using an improved periodogram spectrum
estimation method (signal averaging of requested periods) reduces the noise by sacrificing
the frequency resolution, in this way, it is also possible to estimate the uncertainty based
on the length and noisiness of the data record [2]. The process is the same as that used to
compute the power spectral density (PSD) of a single time series, but performed Nb times
on subdivisions of the beginning data set.

The first step is to partition the time series of M snapshots, data matrix, into a set of
smaller, overlapping Nb blocks composed of N f snapshots each.

X(l) = [x(l)1 ,x(l)2 , . . . ,x(l)N f
] ∈ RN×N f (2.25)

Denoting by Nov the number of snapshots by which one block overlaps with the adjacent
one, the total number of blocks will result11

Nb =

⌊
M−Nov

N f −Nov

⌋
(2.26)

The next step is to calculate the Discrete Fourier Transform (DFT) on each block of N f

snapshots, so the block lth (l = 1, . . . ,Nb) will result in:

X̂(l) = DFT(X(l))

X̂(l) = [x̂(l)1 , x̂(l)2 , . . . , x̂(l)N f
] l = 1,2, . . . ,Nb (2.27)

Once transformed, the data are represented at discrete frequencies fk = kN f /T , and if
the original data are real-valued, then transformed data at negative frequencies in the above
expression are redundant: they are conjugates of the corresponding positive frequencies and
only positive frequencies need to be considered. However, the data are often complex, as is
the case when the data have already been Fourier transformed in one or more homogeneous
spatial directions. In this case, there is a subtlety. In the sampled data, the negative
frequencies will not be redundant. However, the true (as opposed to sample) statistics of
the positive and negative frequencies should be identical; for every POD mode of positive
frequency, there should exist an identical one (with identical eigenvalue) for negative
frequency. Therefore, it is advisable to average together positive/negative frequencies. The
resolved frequencies will be:

11⌊·⌋ denotes the floor operation.
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fk =


k−1

N f ∆t
for k ≤ N f /2

k−1−N f

N f ∆t
for k > N f /2

(2.28)

x̂(l)k will contain the lth realization (block) of the Fourier mode at the kth discrete
frequency fk, and its inverse transform x(l)j will be respectively:

x̂(l)k =
N f

∑
j=1

x(l)j e−i2π jk/N f k =−N f /2, . . . ,N f /2 (2.29)

x(l)j =
1

N f
∑

l
x̂(l)k ei2π jk/N f j = 1,2, . . . ,N f (2.30)

Fig. 2.9 A schematic representation of the snapshots’ time series transform using DFT and over-
lapping: the whole time series is divided into overlapping Nb blocks (top) each block, on the left
(represented by different colors) are then transformed in frequency domain on the right (each
block has a discrete frequency set, multiple colors per each block). Finally, for each frequency,
contributions are collected in X fk matrices, corresponding to the fk frequency, with κ = ∆t/(sNb).
[53]
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The cross-spectral density (CSD) tensor, S(ξ ,ξ ′, f ) for frequency fk can be estimated
by the average

S fk =
∆t

sNb

Nb

∑
l=1

x̂(l)l x̂∗(l)l with s =
N f

∑
j=1

w2
j (2.31)

By adopting a compact notation (Equation 2.32): assembling the matrix X̂ fk out of
Fourier realizations from the columns corresponding to each kth frequency of X̂(l)

fk
(noting

that will result only one X̂ fk per frequency), the remaining analysis has to be performed
one frequency at-a-time, and the following steps have to be repeated for each frequency.

X̂ fk =

√
∆t

sNb
· [x̂(1)k , x̂(2)k , . . . , x̂(Nb)

k ] ∈ RN×Nb (2.32)

Consequently, the CSD tensor S for the frequency fk can be expressed as

S fk = X̂ fkX̂∗
fk (2.33)

As stated, this CSD estimate converges as the number of blocks Nb increase, represent-
ing in this way a series of different experiments conducted in identical conditions [54, 2].
The number of snapshots N f , determining the length of a single block, puts a limit on
the frequency resolution of the final result, while the total number of snapshots M ≡ NT ,
together with the number of overlapping frames Nov, define the total number of blocks
obtainable from a single data series long snapshots (both these aspects will be faced in
the next paragraphs). Using this estimate, the infinite-dimensional SPOD singular value
problem reduces to a N ×N matrix eigenvalue problem at each frequency:

S fkWΨ fk = Ψ fkΛ fk (2.34)

The retrieved SPOD modes for the discrete frequency fk, are the columns of Ψ fk ,
hierarchically ordered according to their corresponding modal energies (eigenvalues)
stored in the diagonal matrix Λ fk . The obtained, approximate, modes mimic the properties
of the continuous modes, e.g. orthogonality (Equation 2.35) and CSD tensor expansion
(Equation 2.35):

Ψ
∗
fkWΨ fk = I (2.35)

Ψ fkΛ fkΨ
∗
fk = S fk (2.36)
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As the number of blocks Nb in reality happens to be much smaller than the discretized
problem of size N, also the solution will be obtained from a matrix of size Nb ×Nb instead
of N ×N, hence the tilde sign in equations 2.37 and 2.38, defines the matrices and own
elements obtained by facing a discretized problem instead of the theoretical one. By using
the definition of S fk in Equation 2.33, it is possible to observe that the Nb ×Nb eigenvalue
problem in Equation 2.37, supports the same non-zero eigenvalues as the problem defined
in Equation 2.34 with the corresponding eigenvectors in Equation 2.38.

X̂∗
fkWX̂ fkΘ fk = Θ fkΛ̃ fk (2.37)

Ψ̃ fk = X̂ fkΘ fkΛ̃
−1/2
fk

(2.38)

2.4.4 Sampling Parameters

The accuracy of the estimation of modes and the respective modal energies depends
on an accurate estimation of the CSD tensor S from time-dependent data, consequently
the appropriate choice of parameters used to discretize (sample) the continuum (real)
phenomenon is the key in obtaining the best approximation [2].

Weight Matrix: The proper weight matrix W choice, expressed during the continuous
inner product computation (Equation 2.18), plays a role of great importance in SPOD
analysis. It determines the optimality and orthogonality of the out coming modes, by
representing the discrete quadrature of the inner product itself [45]. The weight matrix can
also be used to apply SPOD to subdomains or a subset of the variables that comprise the
solution vector, this can be done by assigning zero weight to the portions of the domain or
variables that are to be excluded, alternatively, these parts can be removed from the data
before computing the SPOD, this can be done by selecting determinate regions of interest
(ROI)12. The most common choices of normalization for flow fields are the: Variance,
Weighted 2-Norm, Turbulence Kinetic Energy and Compressible Energy norm.

Sampling frequency fs: determines the number of snapshots obtained in 1 [s] or (con-
versely) the ∆t between each of them; depends on the used instrumentation to acquire
the measurements. fs can be limited by the technological means or the desired timescale

12The advantage of retaining certain elements (grid nodes, cells or regions) with zero weight, is that
they remain part of the spatially coherent SPOD modes, allowing their physical interpretation, but without
changing the final spectrum [45].
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dynamics to capture. Usually, a higher fs is wanted because pre-processing techniques
allow to reject unwanted information by filtering or averaging.

fs =
1

∆t
(2.39)

Moreover, the maximum resolvable (Nyquist) frequency, above which the signal at higher
frequencies (if present in the data) introduces bias in the form of aliasing error, will be
determined as

fmax =
fs

2
(2.40)

Block size N f : can be determined by the desired frequency resolution (bin size) ∆ f , that
corresponds to the lowest resolvable frequency13.

N f =
fs

∆ f
(2.41)

Hence, we can deduce that an accurate spectral estimation requires the highest possible fs

and N f , such that sampling reproduces the true underlying spectrum best approximating
the real phenomenon dynamics. However, by using Welch’s method, all the data will come
from a single time series long M snapshots, limiting the number of blocks to be created,
especially when a large N f is chosen. In order to achieve the convergence of the spectrum,
an appropriate number of blocks has to be analyzed. A good practice to increase Nb, for
statistically stationary flows, is overlapping the segments, shifting the starting point of
a segment to 50% of the previous one, increasing this way their number. However, this
number this can slightly differ to make use of all available snapshots.

2.5 Wavelet transforms method

2.5.1 Generalities

It is well known, that hydrodynamic pressure, being induced by the turbulent structures, is
intrinsically intermittent, and this physical evidence motivated the use and improvement of
the wavelet decomposition techniques rather than the Fourier transform for the analysis
of vorticity and hydrodynamic pressure in turbulent flows. As the Fourier modes are
not well suited to represent and describe intermittent events since they are localized in
the spectral space but not in the physical one, the use of a wavelet basis results more

13That is not equal to zero. The close to zero frequency component itself is expected to be present if the
block mean is close to the experiment’s (true) mean.
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advisable due to its localization in both the physical and the transformed spaces. With
the purpose of analysing the near-field pressure, such an idea was exploited to develop
a novel post-processing technique based on the application of wavelet transforms, as a
procedure to separate the hydrodynamic from the acoustic pressures[15]; assuming that
the hydrodynamic contribution related to localized eddy structures compresses well onto
a wavelet basis so that it can be described by a few but with large amplitude wavelet
coefficients. Thus, the pseudo-sound can be extracted by selecting the wavelet co-
efficients exceeding a proper threshold. The acoustic counterpart associated with
more homogeneous and low-energy fluctuations is represented by those coefficients
having an amplitude lower than the threshold. The advantage of this wavelet-based
method with respect to previous approaches was mainly in the simplicity of the required
set-up. Indeed, only two microphone signals in the near field, acquired (or computed) in
two positions sufficiently close to each other, are needed to compute the cross-correlation
between the presumed hydrodynamic and acoustic components. The computation of the
cross-correlation was necessary to determine, through an iterative process, the amplitude
of the threshold level.

Wavelet transforms are a recent mathematical technique, based on group theory and
square integrable representations, which allows unfolding a signal, or a field, into both
space and scale, and possibly directions, making use of analysing functions, called wavelets,
which are localized in space. The scale decomposition is obtained by dilating or contracting
the chosen analysing wavelet before convolving it with the signal. The limited spatial
support of wavelets is important because then the behaviour of the signal at infinity does
not play any role. Therefore, the wavelet analysis or synthesis can be performed locally
on the signal, as opposed to the Fourier transform which is inherently non-local due to
the space-filling nature of the trigonometric functions. Wavelet transforms have been
applied mostly to signal processing, image coding, and numerical analysis, and they are
still evolving [11].

By considering the presence of coherent structures in turbulent flows, which correspond
to the condensations of the vorticity field into organized patterns, which contain most of the
energy of the flow, and where non-linearity is reduced, or even cancelled when the coherent
structures are axisymmetric; these coherent structures seem to play an important, but not
yet well understood, dynamical role. And it may seem much more sense in decomposing
a turbulent field into such localized oscillations of finite energy as wavelets, rather than
into space-filling trigonometric functions which do not belong to the L2(Rn) functional
space and therefore are not of finite energy. Hence, as the continuous wavelet transform
(CWT) offers a continuous and redundant unfolding, in terms of both space and scale,
which may enable us to track the dynamics of coherent structures, and measure their
contributions to the energy spectrum. In particular, the CWT is well suited for analysing
the local differentiability of a function, and for detecting and characterizing its possible
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singularities. The discrete wavelet transform (DWT) allows an orthonormal projection on
a minimal number of independent modes, which might be used to compute or model the
turbulent flow dynamics in a better way than with Fourier modes [11].

Despite its fundamentals and concept are dated back to Haar (1909) [17], the wavelet
transform method has been accurately described and introduced by Morlet, Grossmann
and Meyer only a few decades ago (1980 [35]). The scale decomposition, of an integrable
function with zero mean, is obtained by the translation and dilation of only one "mother
wavelet" function. Consequently, all analysing wavelets should therefore be mutually
similar, namely scale covariant with one another, in particular they should have a constant
number of oscillations. Thus, this dilation procedure allows an optimal compromise con-
sidering the uncertainty principle: the wavelet transforms can give good spatial resolution
in the small scales as well as in the large scales.

In the next sections it will be shown how the wavelet approach, together with an
appropriate threshold filter process, can lead to a selective separation of acoustic and
hydrodynamic pressures, without any a priori definition of their frequency content. Since
the original method formulation, improvements in efficiency and simplicity were made
with the development of new algorithms for finding the appropriate threshold level, and in
particular, in according to the WT1/WT3 by Mancinelli [31] the hydrodynamic pressure
is filtered out through the application of the technique proposed by Ruppert-Felsot et al.
[44] for the extraction of coherent structures in a vorticity field. The application of such a
procedure requires two microphones in the near field, for the WT1 procedure, and only
one for a WT3 wavelet transform filtering method.

2.5.2 Method

The separation between hydrodynamic and acoustic components of the near-field pressure
is based on the application of the wavelet transform to pressure signals. A detailed and
complete guide for wavelet transforms, its limitations and properties is published by authors
such as Farge1992 [11], Daubechies1992 [9], Meyer1993 [33], and only key aspects will
be covered in this document.

The continuous wavelet transform (CWT) of a pressure time signal consists of a
projection over a basis of compact support functions obtained by dilations and translations
of the mother wavelet Ψ(t), localized both in the physical and transformed spaces, the
resulting wavelet coefficients result functions of the time and of the spatial scale. According
to [15], the CWT of a time signal can be defined as follows:

wp(s, t) =C−1/2
Ψ

∫ +∞

−∞

p(τ)Ψ∗

(
t − τ

s

)
dτ (2.42)
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with CΨ a coefficient that takes into account the mean value of the mother wavelet, and
Ψ∗ its complex conjugate scaled by s and translated by τ , while the integral represents a
convolution between p(t) and Ψ∗(t)

CΨ = (2π)n
∫

Rn
|Ψ̂(k)|2

dnk
|k|n

< ∞ (2.43)

Ψ̂(k) = (2π)−n
∫

Rn
Ψ(x)e−ik·xdnx (2.44)

n being the number of spatial dimensions.If Ψ(x) is integrable, this actually implies
that it has zero mean ∫

Rn
Ψ(x)dnx = 0

As it is computationally unfeasible to analyse a signal using all wavelet coefficients,
instead of using a continuous wavelet transform (CWT), which operates on all possible
scales and translations, a discrete wavelet transform (DWT), which relies on a discrete
subset of values, can be performed in order to decompose the pressure signal. Arranging
the scales e.g. s j = 2 j (dyadic distribution) and considering translations multiples of the
scale s j, the orthonormal basis ψ(t), obtained by dilations and translations of the mother
wavelet Ψ(t) can be represented in the following manner

ψ
( j)
[k] (t) = 2− j/2

Ψ

(
t −2 jk

2 j

)
(2.45)

The discrete wavelet coefficients are obtained as follows:

w(s)
p (n) =

+∞

∑
k=−∞

Ψ
(s)(n−2sk)p(k) (2.46)

s will represent now, the discretized scales, and Ψ(s)(n−2sk) the discretized version14

of Ψ(s)(t) = 2−s/2Ψ(t/2s) [4].

With the current approach, it is assumed that the hydrodynamic component of the
near-field pressure, being related to coherent localized vortices, compresses well onto the
wavelet basis. The component of the signal associated with the hydrodynamic pressure can
be extracted by selecting the wavelet coefficients exceeding, in absolute value, a proper
threshold, and the remaining part of the signal can be assumed as gaussian component,
or in this case, the acoustic pressure. It appears clear that the selection of the threshold

14In the present approach, the wavelet transform is performed using an orthogonal wavelet basis to ensure
the reversibility condition and the wavelet kernel used is the Daubechies–12 type.
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represents a crucial step in the separation procedure, and its selection has to be related
to physical properties, e.g. coherence and gaussianity, of the signal’s components, e.g.
static pressure. An initial guess for the threshold value T0 is required, based on statistical
reasoning introduced in the de-noising procedure [10]

T0 =
√

2⟨p′2⟩ log2 Ns (2.47)

with ⟨p′2⟩ indicating the variance of the pressure signal and Ns the number of samples.
The threshold is discretely changed until a proper convergence criterion capturing the
hydrodynamic or acoustic nature of the separated signals is satisfied.

2.5.3 WT1 Algorithm

The following signal’s components separation technique, “Wavelet Transform 1”, is based
on continuous comparison of the computed wavelet coefficients and iterative update of the
threshold based on cross-correlation between the measured pressure in the near-field with
the one delivered in the far-field. This method requires the presence of two microphone
probes respectively in the near and the far fields to determine the relation of the signals.
The fundamental hypothesis of this approach is that the amplitude of hydrodynamic
oscillations decreases rapidly as a function of the distance from the source region, hence
only the acoustic component is able to reach the far-field obtaining in this way a high
cross-correlation value.

The starting point is, once selected the initial threshold value T0, this one is iteratively
adapted after an optimization method based on the gradient in order to reach the peak of
the cross-correlation between the registered “noise”, in the far-field, and acoustic pressure
in the near field, considering everything that appears under the selected threshold value
as hydrodynamic, low energy, oscillations. Once the convergence criterion is satisfied,
the coherent and gaussian, e.g. acoustic and hydrodynamic pressures are considered
successfully separated.



Simulation Setup and Data

3.1 Acoustic Liners: Simulation data

The main experiment, simulation of acoustic liners functioning in different regimes, is
used as source data for the analyses with different methods formerly presented. The
simulation is conducted in a rectangular section duct with length L = 14400mm, height
H = 40mm and width W = 12mm. The array of acoustic liners is composed of 11 square
section cavities of width w = 10mm and height h = 38.61mm, communicating with the
duct through 8 orifices of diameter d = 1.3mm. The array is positioned, by considering the
left border of the first (in order from left to right) liner as the center of the local reference
coordinate system X(X ,Y,Z), at x = 7125mm ≡ X = (0,0,0).

Fig. 3.10 Z-Plane section of the liners computational domain view. Also are indicated the direction
of the flow (flow), acoustic waves (source) and the red point to indicate the origin of the coordinate
system X.

Fig. 3.11 Representation of orifices of each cavity disposition on the faceplate.

The main experiment is conducted for different conditions of flow and acoustical
sources power and frequency to adequately simulate different behaviors of the liners’
damping, e.g. linear and non-linear, as well as frequency dependency regimes. The initial
intentions were to analyze all the flow solutions in different conditions, but several major
limitations were faced:
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• SPOD and Wavelet analyses require, in first place, an enormous amount of operative
memory, processing units and relative storage to process data (this issue was partially
solved by relying on the computational power provided by HPC [42]), and secondly,
even possessing the necessary computational power, the analyses time and successful
result remains an open question.

• in order to obtain good results, the solutions data required a significant amount of
storage and time to process because of the intrinsic difficulty of the adopted method,
lattice Boltzmann methods (LBM), and different stages of grid refinement submitted.

Hence, available data for the analyses sees the simulation of the duct with liners at the
resonance frequency f = 1400Hz and with high amplitude source waves SPL = 145dB,
in flow and no-flow conditions, by denoting the no-flow condition as zero-valued Mach
number, M = 0, and as M = 0.3 a turbulent flow situation, it is schematically reported in
the following Table 3.1. It is worth mentioning that two different solutions were available,
but their conditions can hardly relate to each other and to the examined ones to obtain
significant and unequivocal comparisons and considerations.

flow Mach SPL source frequency number of snapshots sampling frequency

M = 0 145dB f = 1400Hz NT = 6321 fs = 421.86kHz

M = 0.3 145dB f = 1400Hz NT = 4741 fs = 421.86kHz

Table 3.1 Analyzed simulations main parameters.

We can observe from the “snapshots”, instantaneous flow fields, the Figure 3.12 refers
to a generic instantaneous flow field generated in the duct without the mean “grazing” flow.
Event thou, the high amplitude waves (SPL = 145) let the liners work in non-linear regime,
its functioning is clearly observable from the strong attenuation after the liners array
containing section (“main” region of interest). In the case of a M = 0.3 mean turbulent
flow, Figure 3.13, definitely the attenuation occurs but weaker, and it is difficult to assign
the exact function to every point, also more dynamics are observable near the proximity of
orifices region.
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Fig. 3.12 Z-Plane section, M = 0: generic instantaneous static pressure field of the liners computa-
tional domain view.

Fig. 3.13 Z-Plane section, M = 0.3: generic instantaneous static pressure field of the liners compu-
tational domain view.

3.2 Spectral analysis

The first step, before executing a Spectral POD analysis, is to preview what useful infor-
mation is obtainable with traditional “classic” analysis methods, e.g. the pressure signal
analysis, SPL calculation and power spectral analysis.

Static pressure signal was sampled for the whole solution duration in discrete points
along the X axis of the duct (Figure 3.14): 643 points in X = (−0.5,0.5)m and in three sec-
tions before, in occurrence of and after the liners section (Figure 3.15):3 sections located at
X = [−0.05,0.068,0.186]m and in 7 points Y = [−0.005,−0.010,−0.015,−0.020,−0.025,−0.030,−0.035].

The first information acquired is that the pressure field (and the whole flow field
variables), present a transitory effect before the source’s waves arrive in the liners region
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Fig. 3.14 Surface plane (probe plane), used for measurement of pressure along the duct axis.

Fig. 3.15 Section probes used for measurement of pressure in the duct’s reference sections (inlet,
main, outlet).

and after the last traveling wave passes the main section. Hence, a trimming operation was
executed for the pressure signals and the new beginning and ending frames for the next
analysis were set. After this preliminary trim operation (and also before trimming), the
two solution data available from the main experiment simulations, M = 0 and M = 0.3
with SPL = 145dB and forcing frequency f = 1400Hz, had a slightly different snapshot
amount (duration), to compensate this difference and work on data in “same conditions”,
a second trim operation was executed to equalize the content to analyze. Final length is
of NT = 4000 frames per both the flow field solutions. In Figure 3.16 (and in every other
successive graphs in this document) the set color scheme refers with “blue” color to the
M = 0 condition and the “red” to the M = 0.3 condition.
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Fig. 3.16 Pressure data, before and after trim operation. It can be observed that before the trim
operation both the signals, the blue and the red one (referring to the “no-flow” and “flow” conditions
respectively), present a transitory period, the same phenomenon is present in the ending (outlet)
sections, determining the time when the wave’s train ends.

3.3 SPOD: analysis parameters

The SPOD reveals itself very computational- (and even more memory-) power demanding
operation, for this purpose, the resources of the HPCPolito [42] were successfully borrowed
and used. Apart from the necessary “power” to execute the spectral POD, a high sensitivity
on input parameters was registered and accounted for, in the operation submission phase.
The input is divided into three sections:

• The power request section, managed by SLURM (“Job Scheduler” of HPCPolito).

• The spectral analysis input section, with parameters influencing the spectral analysis
such as bandwidth, minimum and maximum frequency and frames used for the
analysis, and overlap factor for Welch average method.

• The SPOD section, referring to the requested number of modes extracted, the
Cartesian extraction blocks determination and the mesh size.
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3.3.1 Regions of interest determination

Since the first attempts to execute the SPOD it appeared necessary to divide the whole
analysis into several regions of interest (ROI), the issue is that the SPOD of the whole
domain necessitates enormous amount of operating memory allocation15, and moreover the
scales and dynamics involved in such a big area are either lost (or integrated) or covered by
the greater (more energetic) scales dynamics. Even by increasing the memory allocation,
calculation time and requesting the very fine mesh of analysis, the final result is still relying
on the input file timeframe, which is not sufficient for a high-resolution, in frequency and
in space, analysis.

To overcome this issue, a very reasonable solution was to divide the whole flow field
domain into sub areas (this denomination, will be kept in the next chapters referring to
SPOD analysis):

• full: the first SPOD ROI, analyzing the whole flow field domain with “great” re-
sources demanding workload.

• inlet: duct section before the liners array area.

• main: duct section “under” the liners array.

• outlet: duct section after the liners array region.

• liners: liners cavities area.

• orifices: 11 square areas comprehending only the orifices of each liner.

ROI width [m] height [m] X-center [m] Y-center [m] mesh [m]

full 0.300 0.08 0.050 0.00 0.0010

inlet 0.100 0.04 -0.050 -0.02 0.0003

main 0.136 0.04 0.068 -0.02 0.0003

outlet 0.064 0.04 0.168 -0.02 0.0003

liners 0.136 0.04 0.168 0.02 0.0003

orifices 0.010 0.01 liners 0.00 0.0001

Table 3.2 SPOD: ROI determination and geometrical parameters used for analysis. For orifices X
center, as the whole orifices ROI is composed of 11 square blocks, the location of liners reference
X position was used for their center determination.

15During the “full” (coarse) domain analysis, the requested power was of 32 CPUs with 64 GB of RAM
each
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Fig. 3.17 SPOD Analysis, regions of interest (ROI) definition.

3.3.2 Input Parameters

The key parameters to influence the successful termination of the SPOD analysis are those
used to define the spectral analysis, as they directly influence the cross-spectral density
matrix definition and amount of “blocks” used during the Welch’s spectral analysis method
Parameters and reasons for using them during the SPOD analysis, as well as region of
interest subdivision and purpose.

Accordingly to the Equation 2.26, once the available NT snapshots are determined and
the Nov of overlapping frames is set (optimal value is overlap factor of Nov/N f = 0.5, but
this can slightly change in order to make use all of the available frames), the only “free”
parameters are the number of blocks Nb and the number of frames per each block N f .

The necessary N f is determined, according to Equation 2.41, by the sampling frequency
fs and the desired frequency resolution (bin size). Our intent is to have the maximum
possible frequency resolution, corresponding to the minimum bin size (∆ f ), to have the
most detailed spectral information (by sacrificing in this way the block average operation).
Hence, having the limiting available number of frames (also trimmed to cut off the
transitory effects and equalized in duration), the minimum allowable ∆ f = 200Hz.
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3.4 Wavelet: analysis parameters

As well as for the SPOD, the Wavelet analysis relies on a very high power and mem-
ory demanding operations, firstly because the solution data is large due to the solving
method used for the near-microfluid dynamic scale (in proximity of the orifices, also
considering the non-linear regimes), also the “Opty-dB’s” analysis algorithm executes
the hydrofilter (the operation denominated and designated for the wavelet transform
analysis and decomposition) on the whole domain without consenting the choice of regions
of interest, as in the SPOD’s case. Alternatively, it was possible to divide the complete
solution file into several spatially cropped sub-data, but this kind of operation seemed to
be more appropriate for an intensive (spatially localized) analysis with different techniques
set-up ad hoc for the purpose and not an investigation on different methods like this one.

The number of the wavelet coefficients, commonly named the wavelet mother function
type, is set to 12 [31], and the factor of the threshold coefficient (necessary during the use
of the iterative algorithm) to unitary, by setting this value higher or lower would imply
transferring some wavelet series terms, and in consequence assigning more or less energy
content, to the Coherent or to the Gaussian contributions.

Fig. 3.18 Wavelet analysis, region of solution domain used for wavelet transform analysis.

The first attempts to execute the wavelet transform and decomposition were conducted
by using the same spectral parameters as in the case of the SPOD (in the first place to make
some considerations on data analyzed in the “same conditions”), but unfortunately the
highest obtainable frequency resolution was with bands of ∆ f = 300Hz (a slightly broader
spectral content is to expect).

The wavelet transform "WT1" technique [31], necessitates of a microphone probe
positioned in a way to capture the acoustic signal in order to correlate it to the pressure
fluctuations recorded in the fluid domain. The most suitable location was considered to be
in the outlet region (in the area after the waves pass the liners array), exactly located at
X = 186mm and on the axis of the duct Y =−0.02 (center of the outlet ROI), Figure 3.19.
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Fig. 3.19 Wavelet analysis, microphone probe location used for WT1 method.



Results analysis

4.1 Spectral analysis

4.1.1 Data overview

The first results to be observed, are the 3D representations of the pressure fluctuations
along the axis of the duct, Figures 4.20 reporting the “no-flow” (only acoustics) condition,
and 4.21 for the turbulent flow M = 0.3 condition. The “smoothness” of the pressure time
history without the presence of the grazing flow, indicates the absence of turbulent pressure
fluctuations due to the stationarity of the flow field. Also, it is very clear the amount of
damping in the post-liners area and the regularity of the oscillations, unlike the case of the
“flow” condition (Figure 4.21) where the spikes indicate the random nature of turbulent
flow. Also, in the case of grazing flow, even at preliminary point, is observable that the
attenuation deriving from the liners presence, is present but much lower in comparison to
the only-acoustics.

Fig. 4.20 M = 0: Acquired pressure 3D visualization.
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Fig. 4.21 M = 0.3: Acquired pressure 3D visualization.

4.1.2 Pressure signal

The pressure signal acquired from the probe surfaces, is here reported only for 6 points
corresponding to key locations: X ≈−0.05m, X = 0m, X ≈ 0.05m, X ≈ 0.10m, X ≈ 0.137
and X ≈ 0.185. Each of these points represents dynamically significant locations: the
center of the inlet, the edge of the liners’ main area, two of its internal points, and its
terminal point, and the center of the outlet.

The first thing to observe, is that, as expected, the pressure in case of the absence of
flow, Figure 4.22 is smooth and only perturbed by the passage of the forcing wave. It
presents higher rms value and higher peaks in the inlet region, after the middle of the liners
area, most of the acoustical energy seems depleted and remains constant until the exit. An
additional and not completely described effect is visible from the liners area and advancing,
the liners’ presence induces a second wave (probably after that a “double reflected” wave
is transmitted) that appears to have the same frequency but an offset phase to the main
forcing waves train, also interesting to observe that the second wave seems to increase in
time (as to indicate the cumulative residual energy).

For the flow (“red”) condition (Figure 4.23), two main behaviors are observed: the
spikes observed in the Figure 4.21, appear to have a specific high-frequency content along
the whole duct extension (at certain locations these seem to increase in amplitude e.g. at
X ≈ 0.01m); secondly, unlike for the case of the “no-flow” condition, the rms value (and
consequently the amplitude of the waves) doesn’t seem to decrease monotonically through
the duct.
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Fig. 4.22 M = 0: Pressure signal data acquired in key locations(after trim operation).
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Fig. 4.23 M = 0.3: Pressure signal data acquired in key locations (after trim operation).

4.1.3 Sound Pressure Level: SPL

For the SPL formulation (Equation 2.10), and its successive behavior through the duct, the
“standard” reference pressure was used pre f = 20µPa of human threshold of audibility.
The first thing to observe is that the SPL does not have the constant value before the
liners array region, meaning that all the incoming waves have their maxima in definite
locations, defined by a spatial period which appears to be shorter for the flow condition,
which is an unexpected behavior considering that the two experiments conducted in the
same conditions (apart from the flow presence).
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The boundary conditions include that both the experiments must have the same power
forcing wave, SPL = 145dB and at the same frequency f = 1400Hz, but what is evident
is that for the case of the grazing flow condition, before reaching the liners area, the
maximum registered SPL is few dB lower than the expected and respected by the blue
condition, and the average (spatial) SPLav, f low ≈ 141.3dB.

The central part of the chart, Figure 4.24, reports the black markers to indicate the
positions of the single probes reported in Figures 4.22 and 4.23 for the respective conditions
(the background aids to locate relative to the duct locations). While both the experiments
present a decrease in SPL due to the presence of the liners, the presence of flow does
not allow the monotone local damping of the pressure e.g., there appear zones where are
present local maxima, unlike for the only-acoustic condition where the decrease appears to
be constant till the end of the liners’ array.

The outlet is not supposed to alter the pressure behavior after the damping (lower for
the “flow” condition) in the main ROI was registered. Small amplitude spatial oscillations
are still visible for the “red” flow with remaining SPL > 135dB while the “blue” seems to
remain steady under 130dB.

Fig. 4.24 SPL-Decay(X), full view along the duct and black markers to indicate locations of the
probes used to sample pressure of Figure 4.22, 4.23.

Additional SPL measurements were conducted in the sections defined by the probes
positioned as described in the previous chapter, Figure 3.15. This allowed the measurement
of the cross-sectional SPL, showing a certain degree of asymmetry due to the presence of
liners in the relative section, and a Y-axes variability for the flow condition.

4.1.4 Spectra

In order to extract the spectra of the simulations, several actions were taken, the first of
which was dividing all the points into three groups in agreement with the precedently
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Fig. 4.25 SPL decay chart, cross-sectional measurement, in inlet, main and outlet reference sections.

explained criteria and in accordingly to the used scheme: inlet, main and outlet. Afterward,
the whole the pressure signal (vector of the respective probes) was averaged with the Welch
method (MATLAB function, pwelch).

As for the no-flow condition, there is a clean behavior due to the only acoustic phe-
nomenons. The Spectra magnitude presents several peaks at the frequencies corresponding
to the main signal and its next three harmonics. The magnitude referred to the main and
outlet sections is a few orders of magnitude lower than the inlet one, Figure 4.26.

The flow condition presents the peaks corresponding to the main frequency and its next
one harmonic, Figure 4.27, but are as well evident peaks at high frequency ft ≈ 14.2kHz
which are present in the inlet and the outlet of the duct, corresponding to the high-frequency
oscillations registered in the pressure signals, due to the turbulence. These high-frequency
oscillations do not appear to resent in substantial way of the liners’ presence, while a
small damping is present, it remains orders of magnitude higher than the second harmonic.
By setting the chart range on a larger scale, it is possible to observe the typical turbulent
spectra.

The spectra comparisons, Figure 4.28, highlights the power content of the two ex-
periments before and after the liners’ region. In input, both the spectra appear to have
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Fig. 4.26 Pressure spectra, the color scheme identifies the region in which the pressure signal was
sampled and averaged.

Fig. 4.27 Pressure spectra, the color scheme, identifies the region in which the pressure signal was
sampled and averaged.

similar power while differently distributed due to the reasons already cited. In output, the
inversion occurs, the no-flow condition presents lower power in relation to a better liners
functioning.

4.2 SPOD analysis

4.2.1 Output Data

The main outputs produced by the SPOD procedure software (Opty-dB) consist of four
sets of files:

• files containing the real part of every Fourier component of the SPOD mode of order
n for the imported pressure variable. These files can be visualized via the dedicated
software “PowerVIZ”, and contain the spectral content of the respective mode, e.g.
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Fig. 4.28 Pressure spectra comparison, the color scheme identifies the flow condition while the line
style identifies the region in which the pressure signal was sampled and averaged.

every mode visualized in the domain for the available discrete frequencies resulting
from the input parameters.

• files containing the reconstructed transient solution for each extracted SPOD mode.
After the extraction process completes, each mode is used for its time transient flow
field.

• the matrix of containing the complex expansion coefficients â j( f ) (Equation 2.22)
as well as the complex eigenvalues Ψ̃ fk (Equation 2.37) [45].

4.2.2 Average pressure field

Additionally, during the PCA and other decomposition techniques, the first step is to
subtract the average from the flow fields (or in general matrices), so is done here, and
additionally this average flow field is exported. Furthermore, the average flow field can
be summed up together with the other extracted modes in order to reconstruct the initial
fluid solution [53]. In the following extracted average pressure flow fields contours, it is
possible to observe a minimal relative pressure changes in comparison to the standard
pstd = 101325Pa for the case of only-acoustics, and slightly greater differences smoothed
by the grazing flow for the flow conditions as well as increased in the center contours for
the presence of the boundary layer.

4.2.3 Modal Spectra

The extracted eigenvalues (to the eigenmodes), as expected from the SPOD spectral
analysis input parameters, a maximum of 4 to 5 modes were successfully extracted, this is
due to the fact that, as stated in the Chapter 2 (SPOD algorithm), the solution is obtained
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Fig. 4.29 M = 0: Average pressure field contour extracted.

Fig. 4.30 M = 0.3: Average pressure field contour extracted.

by reduced extracted matrices via the “snapshot” method; hence, a maximum number of
obtainable modes, and relative eigenvalues, is equal to the number of analyzed blocks,
and lower scales energy content (usually supposed as noise) results integrated in the most
energetically dominant modes.
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Fig. 4.31 M = 0: modal spectra. Only the first 3 modes are reported per each ROI (the higher order
modes lay on several orders of magnitude lower scales). Only the 1st mode (the most dominant)
presents energy content at frequencies corresponding to the forcing wave and its harmonic. More-
over, this evidence is maintained in the whole domain and all the ROIs. After the attenuation occurs,
keeping the same magnitude scales in the plot, only the first mode is observable in outlet.
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Fig. 4.32 M = 0.3: modal spectra. As well as for the no-flow condition, most part of the energy
content is stored in the 1st mode at the forcing wave frequency, and the second harmonic is barely
distinguishable from other noise. While in the case of no-flow condition in outlet only the first
mode survived, in this case energy content is still well distributed on higher order modes.
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4.2.4 Modal Energies

The Modal Energies chart, represents the integrated energy content per each mode in each
ROI. While for the M = 0.3 flow condition, Figure 4.33, apart from the first mode to
dominate the scales, the other ones cover lower energy scales in a well distributed behavior
in every ROI analyzed, and the decrease seems to cover all of the modes in equal manner.
Unlike for the previous case, the energy distribution in outlet for the only-acoustics firstly
increases the dominance of the first mode (behavior already observed in the spectra chart,
Figure 4.31), and secondly the perception of a stronger damping is on several orders of
magnitude greater than for the other examined case.

Fig. 4.33 modal energies.

4.2.5 Modal Comparison

In comparing only the first mode between the two experiments analyses, it is interesting
to observe that while for inlet and main sections the spectra result very similar, the outlet
presents a broader frequency content for the turbulent flow case experiment (apart from
the lower attenuation).

One more interesting behavior is seen in the ROIs corresponding to the orifices and
liners: while the absence of the flow admits the regular entrance of the modal energy in
that regions, its presence limits this behavior, partly the non-linear regime is the cause of
this as a “virtual” restriction of the orifices occurs by limiting the regular flow and partly
occlusion occurs for the boundary layer and non-regular vortex shedding presence.
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Fig. 4.34 SPOD: modal spectra comparison
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Fig. 4.35 SPOD: modal energies’ comparison: for every ROI and mode number, apart from
the liners and orifices areas (like already commented), the no-flow condition determines a more
“dominant-only” behavior with a greater attenuation in all the modes and ROIs, in respect to the
grazing flow case.
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Fig. 4.36 M = 0: SPOD: modal spectra contour comparison at f = 1400Hz
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Fig. 4.37 M = 0.3: SPOD: modal spectra contour comparison at f = 1400Hz
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4.3 Wavelet analysis

4.3.1 Output Data

The wavelet decomposition tool from “Opty-dB” relies its functioning on a wavelet
transform-based method WT1 [31], by splitting into Coherent and Gaussian content where
the value of the threshold is calculated in an iterative way, according to the cross-correlation
assumptions between the received “acoustic” signal by a microphone probe and the pressure
fluctuations registered in a domain’s point.

The main outputs of this wavelet analysis tool are SPL spectra for each contribution,
coherent, gaussian and total. disposed on the set frequency bands. And the transient
reconstruction based on this Coherent/Gaussian splitting.

From the SPL contours comparisons, it is very difficult to extrapolate some unequivocal
judgments, but few aspects of the liners functioning are still observable.

4.3.2 Only Acoustics case

• The first useful information from the output data is that most of the acoustical energy
is classified as coherent, because of the WT 1 method used, and is almost exclusively
present at the wave frequency ≈ 1400Hz, which ranges from 120 to 147 dB, with
a minimum zone located under the lasts liners in the array. After the liners area,
the SPL content is almost constant at the value ≈ 130dB, in agreement with the
precedent spectral analysis. The firsts liners have to deal with greater amounts of
acoustic energy, evidenced by the red zone ≈ 145dB.

• The Gaussian content at the key frequency of 1400Hz, results much lower than the
same at the frequency of ≈ 411Hz (this frequency shift is observable also in the case
of turbulent flow). Nevertheless, its content remains orders of magnitude below the
coherent contributions.

• The orifices zoom-in view shows a high gaussian related power content, while the
coherent has a regular passage of waves that after a short distance become plane
wave propagation.
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Fig. 4.38 Wavelet (M = 0): SPL contour comparison
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4.3.3 Grazing Flow case

• The most interesting aspect in the case of flow presence is the maximum/minimum
coherent contribution areas that form on the orifices edges and traces of vortex
shedding occurrence right after it. Again, the most energy containing frequencies
are those corresponding to the forcing wave, f = 1400Hz.

• As well as for the case of only-acoustic waves, the spectral content of the gaus-
sian contribution is shifted to lower frequencies, 411Hz, this frequency band (ap-
proximately ±150Hz) appears to contain more energy content than the lower one,
≈ 200Hz.

• Due to the presence of the flow and the consequent Boundary layer formed, its
presence is observable in the proximity of the walls only of the gaussian contribution.
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Fig. 4.39 Wavelet (M = 03): SPL contour comparison



Conclusions

Two solutions of a duct with a section facing an array of acoustic liners were analyzed with
different techniques, the classical and the novel ones. While the lasts rely on not so recently
introduced methods, these remained unfeasible until recent technological advancements.

Spectral Analysis The traditional spectral analysis tools remain a necessary first step for
every subsequent analysis, independently of their nature and field of application. These
analyses remain very flexible, easy to implement and offer a rapid introspection on possible
“hidden” behaviors. Furthermore, these methods serve as the launchpad for any other
operation. like in the examined case, spectral analysis was necessary for the correct setup
of the successive SPOD and Wavelet analyses.

SPOD Analysis The Spectral Proper Orthogonal Decomposition application was exam-
ined and successfully applied to the test case of acoustic liners. Modal decomposition
offers a great way to understand the behavior of highly energetic structures and phe-
nomenons. The power and memory demand for its use remains an open issue, but with a
proper preliminary study and a very localized applications, it is possible to minimize these
“minimum” requirements. SPOD’s use, with a more profound understanding, can become
one of the basic tools for any kind of analyses, along with a “standard” spectral or others
like the “classic” POD.

Wavelet Analysis The Wavelet Analysis remains the most recent of the adopted tech-
niques. In fact, its algorithm and tool introductions were just recent to several months prior
to its the application, and in consequence present less flexibility in comparison to the other
adopted techniques. Nevertheless, even being novel, it offers an alternative point of view
with different possibilities in comparison to the other common methods. Certainly, with
a more profound understanding, it can reveal useful aspects of the dynamics involved in
aeroacoustically perturbed flow fields.
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