
POLITECNICO DI TORINO
ENGINEERING FACULTY

Master’s Degree in Aerospace Engineering

Master’s Degree Thesis

A deep learning approach to predicting unsteady airfoil
performance from tiny datasets

Supervisor:

Prof. Stefano Berrone

Co-Supervisor:

Prof. Gaetano Iuso

Candidate:

Davide Esposto
Student Number 280241

Academic Year 2023–2024

Abstract

The interaction between fluid and wing surface for the generation of aerodynamic
forces is a complex nonlinear phenomenon with multiple variables. Obtaining the
aerodynamic performance of a body is, therefore, a complex, time-consuming and
costly endeavour. Wind tunnel testing, especially for high-speed flows, requires
special facilities and custom-built, high-precision body models. On the other hand,
high-precision computational fluid dynamics simulations are expensive, and the
possibility of life-like Direct Numerical Simulation for flows of engineering interest
remains impractical for the foreseeable future. Especially during the preliminary
design phase, exploring the effect of freestream conditions on the aerodynamic per-
formance of a profile requires multiple trials with high time and labour input. In
recent years, deep learning has undergone rapid advances in various applications,
from computer vision to natural language processing to time series prediction. The
inherent ability to extract hierarchical complex dependencies between variables
makes neural networks particularly suitable for predicting an airfoil aerodynamic
performance. Therefore, in this work, we explore the possibility of predicting the
principal harmonics frequency and amplitude of the aerodynamic performance of
an airfoil in a high-compressible transonic freestream from near-field data and free
streams parameters obtained from numerical simulations. Neural network archi-
tectures based on convolutional neural networks are proposed with the goal of
learning the data spatio-temporal correlations through the operation of convolu-
tion. Compared to similar works, the architectures of the regression models evalu-
ated here are inspired by well-known architectures deployed in the field of image
classification and computer vision. The hypothesis is then tested that well-tested
computer vision-oriented architectures, due to their feature-extraction capabilities,
can be applied to data with different characteristics.

iii

List of Figures

2.1 Wind tunnel test of a scale model of a Truss Braced Wing config-
uration aircraft at NASA Ames Research Center. Source: NASA,
2023[39]. 9

2.2 Visualization of a Lorentz attractor for different perturbed Initial
Conditions. The parameters value are f=10, d=28, V=8⁄3. Nominal
Initial Condition: (x, y, z)t=0=(0, 1, 1.05). 13

2.3 Illustration of the velocity boundary layer and the thermal bound-
ary layer over a smooth flat plate. Thewall depicted is non-adiabatic,
and the wall temperature is lower than the external flow tempera-
ture (that is, Tw<Te).Source: Anderson, 2017[40]. 15

2.4 An illustration of the universal law of thewall for a turbulent bound-
ary layer over a flat solid wall . Source: Rodney D. W. Bowersox,
2011[47]. 16

2.5 Pressure velocity profile of a laminar boundary layer under an ad-
verse pressure gradient (m?

mG
> 0) and consequent flow reversal and

BL separation, Source: Rodney D. W. Bowersox, 2011[47]. 18
2.6 Visualization of a randomly generatedmultilayer FeedForwardNeu-

ral Network (FFNN). Negative weights are shown as blue, and pos-
itive weights are shown as red. Line width visually represents the
weight’s magnitude. 19

2.7 Simple feedforward Artificial Neural Network (ANN) architecture.
The internal structure of the nodes is highlighted and a bias node
is shown. Note that bias nodes are usually not shown. 21

2.8 Illustration of the underfitting and overfitting problem for both re-
gression and classification problems. Source: MathWorks, Inc., 2023[55]. 22

2.9 Visualization of Dropout regularization. Source: Srivastava et al.,
2014[56]. 23

2.10 Illustration of some of the most common activation functions used
in regressive neural networks. 25

2.11 Example of the convolution operation on a matrix of dimension
4×4, 2×2 filter, and unitary stride. 26

v

List of Figures

2.12 Illustration of a basic CNN architecture, consisting of convolutional
layers, max-pooling layers and fully connected (Dense) layers. 27

2.13 Representation of the average pooling operation on a matrix of size
2x2. 28

3.1 Representation (not at scale) of the computational domain, with di-
mensioning. 31

3.2 One of the considered domain shapes, after mesh refinement. The
circular domain was of excessive size in front of the airfoil, increas-
ing the simulation runtime. 32

3.3 One of the domain shapes initially considered, meshed using a semi-
structured quad-predominant block mesh whose cells presented an
excessive aspect ratio. 32

3.4 Schematization of an upwind Finite Volume Method (FVM) scheme
of a 1D conservation law shown in the space-time plane. Source:
LeVeque, 2002[72]. 34

3.5 Plot of NASA airfoil SC(2)-0714. Airfoil coordinates retrieved from
http://airfoiltools.com/[74]. 35

3.6 Mesh near the airfoil before mesh adaptation. The mesh shown is
referred to the U=6°, Re=107, M=0.7 scenario. Notice how the mesh
around the trailing and leading edges is finer. 36

3.7 Close up of the prism layer and the surrounding quad/tria hybrid
mesh. 36

3.8 Mesh before adaptation. The mesh shown is referred to the U=6°,
Re=107, M=0.7 scenario. Notice how the mesh around the airfoil is
finer and how the wake mesh is finer. 37

3.9 Velocity profiles and boundary layer heights on an adiabatic flat
plate for Prandtl number Pr=0.75 and laminar flow. Source: Rodney
D. W. Bowersox, 2011[47]. 39

3.10 Turbulent compressible boundary layer thickness X as a function of
the Mach-adjusted Reynolds number ReX. 39

3.11 Examples of cell refinement via the hanging node method. 42
3.12 Effect of an increasing first-cell centroid y+ on a flat plate friction

coefficient. Source: ANSYS Inc., 2022[48]. 52
3.13 Effect of a decreasing first-cell centroid y+ on a flat plate friction

coefficient. Source: ANSYS Inc., 2022[48]. 52

vi

http://airfoiltools.com/

List of Figures

3.14 Near-wall modelling of a wall-bounded flow and the two applicable
approaches. Source: ANSYS Inc., 2022[48]. 53

3.15 Position of the rakes relative to the airfoil. The corresponding iden-
tification number is shown next to each rake. The orange arrows
indicate the direction of rake data acquisition and storage, while
the size and number of nodes on each rake are shown in the table. 60

3.16 Pressure coefficient over the airfoil for AoA=3°, Re = 1.5·107, M=0.725.
CFD results and experimental results are overlayed. 63

4.1 Three-dimensional representation of a rank 4 tensor. The tensor
shape represents how the simulation data were stored. Source:
Google LLC, 2023[58]. Modified by the author. 67

4.2 Visualization of rakes’ data. The data shown belongs to the database
2 and refers to the scenario characterized by freestream parameters
AoA=9°, Re=6.25·106, M=0.65. 69

4.3 Fourier transform of the Cd time series (for AoA=9°, Re=6.25·106,
M=0.65), signal analysis, and approximate reconstruction using the
DC component and the two dominant harmonics. 69

4.4 Distribution of the Rakes data after being normalized using the val-
ues given in Tab. 4.3. 72

4.5 Plot of the ReLU, Gaussian Error Linear Unit (GELU) ans Swish ac-
tivation functions in the range [-4, 4]. 75

4.6 The basic Convolutional Neural Network (CNN) shown in the fig-
ure employs the freestream data upsampling and reshaping used
in all the proposed networks. A fully connected layer upsamples
the freestream parameters array, and the output is upsampled and
reshaped by a deconvolutional layer. The resulting tensor is con-
catenated with the near-field data tensor. The resulting 7-channel
(4 channels encoding the near-field data and 3 channels encoding
the freestream parameters upsampled data) is used as the input of
the rest of the network. 77

4.7 Flowchart of the proposed FeedForward Neural Network (FFNN)
(NN0) architecture. 80

4.8 Flowchart of the proposed Basic-CNN (NN1) architecture. 80
4.9 Flowchart of the proposed ResNet-like (NN2) architecture. 81
4.10 Flowchart of the proposed DenseNet-like (NN3) architecture. 81

vii

List of Figures

4.11 A residual block, showing the skipped connection distinguishing of
the ResNet family. Source: He et al., 2016[100]. 82

4.12 ResNet structure defined by the authors in the original paper[100].
Source: He et al., 2016[100]. 83

4.13 Representation of a DenseBlock. Each layer within the DenseBlock
consists of convolutional layers followed by batch normalization
and rectified linear unit (ReLU) activation. The skip connections
concatenate the feature maps of all previous layers with the current
layer’s output, allowing each layer to directly access and utilize the
feature maps produced by all preceding layers. This architecture
improves feature propagation and helps learn hierarchical patterns
by feature reuse and improved information flow[101]. Source: Als-
hazly et al., 2021[102]. 84

4.14 Visualization of the hyperparameter optimization workflow. The
number of training epochs and metrics of the baseline models were
used to define the maximum number of training epochs for each
trial (combination of hyperparameters). In contrast, the structure
of the baseline model was analyzed to identify a set of hyperparam-
eters (structural and training). The HyperBand algorithm explored
the resulting hyperparameter space. For each proposed network,
the best-optimized network was compared with the baseline model
about training computational cost, training CPU time and model
metrics. 87

4.15 The Hyperband algorithm’s iterative process allocates resources to
diverse hyperparameter configurations, progressively discarding poorer
performers in a bandit-like format and concentrating computational
power on promising settings until selecting the best-performing
configuration. Source: Li et al., 2018[104]. 88

5.1 Loss value trends during the training of the FFNN (NN0) network. 96
5.2 Loss and metric value trends during the training of the Basic CNN

(NN1) network for all the Datasets. 98
5.3 Loss and metric value trends during the training of the ResNet-like

network (NN2) network for all the Datasets. 99
5.4 Loss and metric value trends during the training of the DenseNet-

like network (NN3) network for all the Datasets. 100

viii

List of Figures

5.5 Loss value trends during the training of the optimized FFNN (NN0)
network. 102

5.6 Loss and metric value trends during the training of the optimized
Basic CNN (NN1) network for all the Datasets. 106

5.7 Loss and metric value trends during the training of the optimized
ResNet-like network (NN2) network for all the Datasets. 107

5.8 Loss and metric value trends during the training of the optimized
DenseNet-like network (NN3) network for all the Datasets. 108

6.1 Visualisation of the parsec parametrisation system and its parame-
ters. Source: Arias-Montano et al., 2011[107]. 110

A.1 Example of transposed deconvolution applied to a 4×4 matrix with
a 3×3 kernel and a unitary stride. 113

A.2 Visualisation of the checkerboard artefacts produced during the
transposed convolution process. Source: Odena et al., 2016[113]. 113

ix

List of Tables

3.1 Summary of the free parameters of the simulated model and their
respective values. 34

3.2 Summary of the principal mesh properties for each mesh region. 35
3.3 Prism layer settings. 38
3.4 Options of the mesh adaptation algorithm. 40
3.5 Gradient-based cell registers and relative activation thresholds. 42
3.6 Summary of the selected physical models and general settings. 43
3.7 Material properties of the fluid. 43
3.8 The Pressure Far-Field boundary conditions user-defined Values. 54
3.9 Summary of the most relevant solver settings. 58
3.10 Exported field variables on the rake nodes. In the left column are

the variables later used to train the neural network. In the right
column, the variables used as a control to confirm the accuracy of
the exported data. 60

3.11 Rake ID’s (shown in Fig. 3.15) and corresponding geometric prop-
erties. 60

3.12 Value of the parameter sweep free parameters employed in themodel
validation. 62

4.1 Names, number of time-steps and number of nodes of the rakes on
which data were collected for each dataset 67

4.2 Names, input and output sizes of the databases used in neural net-
work training. 71

4.3 Normalization values of the rakes data. for more information on
the values chosen, see section section 3.4.5.3. 74

4.4 The number of samples in each database split. The same split was
applied to all 3 datasets used for training the networks and de-
scribed in section 4.2. 74

4.5 Set training times for baseline models chosen by similar models
with similar characteristics. 85

4.6 Values of the main options of the Hyper-Parameter Optimization
(HPO) HyperBand algorithm. 89

xi

List of Tables

4.7 Hyperparameters chosen for the Basic CNN network optimization
process (NN1). 93

4.8 Hyperparameters chosen for the ResNet-like network optimization
process (NN2). 93

4.9 Hyperparameters chosen for the DenseNet-like network optimiza-
tion process (NN3). 94

4.10 Hyperparameters chosen for FFNN network optimization process
(NN0). Due to the lower complexity of the network, the number of
chosen hyperparameters is lower. 94

5.1 Performance of the baseline models (before HPO) for each of the 3
datasets considered. The training epoch achieving the best possible
validation loss is also shown. 97

5.2 Table summarizing the performance of models optimized by HPO.
The loss values, metrics values, and number of training epochs for
each combination of the proposed model and dataset are shown. 103

5.3 Hyperparameter values of the optimized Basic CNN network (NN1). 104
5.4 Hyperparameter values of the optimized ResNet-like network (NN2). 104
5.5 Hyperparameter values of the optimized DenseNet-like network

(NN3). 105
5.6 Hyperparameter values of the optimized FFNN network (NN0). 105

xii

List of Acronyms

AF Activation Function

ANN Artificial Neural Network

AoA Angle of Attack

BC Boundary Condition

BL Boundary Layer

CFD Computational Fluid Dynamics

CNN Convolutional Neural Network

DES Detached Eddy Simulation

DNS Direct Numerical Simulation

FFNN FeedForward Neural Network

FVM Finite Volume Method

GELU Gaussian Error Linear Unit

HPC High Performance Computing

HPO Hyper-Parameter Optimization

IC Initial Condition

LES Large Eddy Simulation

MSE Mean Square Error

ODE Ordinary Differential Equation

PDE Partial Differential Equation

RANS Reynolds Averaged Navier Stokes

ReLU Rectified Linear Unit

RMSRE Root Mean Squared Relative Error

RNN Recurrent Neural Network

xiii

List of Symbols

Symbol Description Unit

G Position m

D Velocity m s−1

0 Acceleration m s−2

C Time s

` Coefficient of dynamic viscosity Pa s

_ Second coefficient of dynamic viscosity Pa s

a Coefficient of kinematic viscosity m2 s−1

g Fluid stress Pa

d Density kgm−3

? Pressure Pa

[Kolmogorov length scale m

6 Earth gravitational acceleration m s−2

) Temperature K

4 Internal energy J

� Total energy J

¤@ Thermal flux Wm−2

&E Volumetric source of energy Wm−3

^ Conductivity Wm−1 K−1

2 Speed of sound m s−1

5 Frequency Hz

'B?428 5 82 Specific gas constant J kg−1 K−1

2? Specific heat capacity at constant pressure J kg−1 K−1

2E Specific heat capacity at constant volume J kg−1 K−1

W Heat capacity ratio

X Kronecker’s delta

xv

List of Symbols

Symbol Description Unit

'4 Reynolds Number

" Mach Number

�A Froude Number

%A Prandtl Number

(C Strouhal Number

�L Coefficient of lift

�D Coefficient of drag

� M Coefficient of pitching moment

�p Pressure coefficient

〈·〉 Ensamble average

·̃ Favre average
m
m

Partial derivative

_A Regularization rate

F Neural network connection weight

xvi

Contents

Abstract iii

List of Figures v

List of Tables xi

List of Acronyms xiii

List of Symbols xv

1 Introduction 1
1.1 Challenges of assembling a large dataset 2

2 Background 5
2.1 Navier-Stokes equations for a compressible, Newtonian, Fourier fluid 5

2.1.1 Vorticity and vorticity equation 8
2.2 Dimensionless numbers and similitude theory 9
2.3 Phenomenology of turbulence 12
2.4 Boundary layer, transition and separation 14

2.4.1 Wall variables and the turbulent boundary layer internal
structure 16

2.4.2 Separation and reattachment 18
2.5 Artificial Neural Networks and Deep Learning 19

2.5.1 Underfitting and overfitting 22
2.5.2 Regularization 23
2.5.3 Activation Functions 24
2.5.4 CNN 25

3 Simulation setup and methodology 31
3.1 ANSYS Fluent 32

3.1.1 FVM 33
3.2 Parameters sweep 34
3.3 Model description 35

3.3.1 Mesh & domain shape 35

xvii

Contents

3.4 Physical model 42
3.4.1 Fluid Properties 42
3.4.2 Reynolds Averaged Navier Stokes (RANS) & Turbulence

modelling 44
3.4.3 Transition 49
3.4.4 Near Wall Modelling and y+ wall treatment 52
3.4.5 Initial Conditions and Boundary Conditions 54

3.5 Solver options 58
3.5.1 Timestep size and total physical time 58
3.5.2 Flux schemes and convergence 59

3.6 Data acquisition 59
3.6.1 Fluid flow data sets 61

3.7 Model validation 62

4 Neural Networks architecture & training 65
4.1 Problem description 65
4.2 Dataset structure and encoding 67
4.3 Data preparation & Storage 68

4.3.1 Data clean-up 71
4.3.2 Fast Fourier Transform of the nondimensional coefficients

time-series 71
4.3.3 Normalization 72
4.3.4 Database shuffling and splitting 73

4.4 Activation Functions 74
4.5 Loss function & performance evaluation metric 75
4.6 Regularization 76
4.7 Custom cylindrical padding 76
4.8 Pooling 77
4.9 Scalar values input position 77
4.10 Convolutional layers filters’ size 78
4.11 Proposed architectures 79

4.11.1 FeedForward Neural Network (FFNN) 79
4.11.2 Base CNN 79
4.11.3 ResNet-like 82
4.11.4 DenseNet-like 83

4.12 Models training 84
4.12.1 Optimizer 85
4.12.2 Epochs 85

xviii

Contents

4.12.3 Batch Size 86
4.12.4 Baseline models results 86

4.13 Hyperparameter optimization 86
4.13.1 HyperBand Options 87
4.13.2 List of hyperparameters 89

5 Results 95
5.1 Results of the baseline models 95
5.2 Optimized hyperparameters and optimized model results 101

6 Conclusions 109
6.1 Future Works 110

A TensorFlow Layers 113

B TensorFlow Callbacks 117

Acknowledgements 119

Bibliography 129

xix

Chapter

Introduction 1
Deep learning has received considerable attention in recent years due to a signifi-
cant increase in model performance, particularly in fields such as computer vision
and natural language processing, time series prediction, art generation, etc. The
ability of neural networks to extract complex hierarchical relationships between
training data[1,2] and to act as universal approximators of functions[3,4] have made
their use attractive in both industry and research to tackle a wide variety of com-
plex problems. Not surprisingly, the capabilities of neural networks have attracted
interest from the fluid dynamics research community[5]. Different classes of ANNs
have been used for different purposes, such as predicting the aerodynamic perfor-
mance of airfoils[6–12], determining the free parameters of turbulence models used
to solve the RANS equations[13,14], calculation of pressure and velocity distributions
in an airfoil near-field[15,16], improving the accuracy of RANS simulations[17], deter-
mining the physical properties of a medium from flow data[15,18], direct numerical
resolution of the Navier-Stokes equations and other Partial Differential Equations
(PDE)[19], as well as more direct applications such as predicting fluid behaviour in
a range of different engineering problems[18,20].

At the moment, the use of high-accuracy CFD simulations and wind tunnel testing
remains necessary in the industrial environment during the design process, de-
spite the existence of reduced order models, built from the results of high-fidelity
simulations, that reduce the complexity of mathematical models of complex dy-
namic systems to allow a reduction in the computational cost of simulations while
maintaining acceptable accuracy. Therefore, investigating the effects of upstream
freestream conditions during the preliminary design phases remains an indispens-
able, costly process regarding economic resources, labour, and time. Deep learning
and, more generally, all data-driven approaches (e.g. random forests, etc.), with
their capability to learn complex relationships within the training data, are ideal
candidates for producing reduced-order models of complex and multivariable sys-
tems, such as the fluid-surface interaction for the generation of aerodynamic forces.
Accordingly, the ability of neural networks to predict the aerodynamic performance
of airfoils has been repeatedly investigated in recent years, using different classes
of ANN and under different conditions.

1

Chapter 1 | Introduction

In this work, the feasibility of predicting the aerodynamic performance of an airfoil
immersed in a free stream in the high-compressible and transonic regimes is there-
fore explored, using as input the scalar parameters characterizing the free stream
(i.e. AoA, Re, and M) and near-field flow data collected on an envelope in proximity
to the airfoil. The aim is to simulate a hypothetical experimental wind tunnel setup
consisting of a rake positioned in the wake and near-field of the airfoil. As this
work is a proof of concept (at the time of writing, the author is not aware of any
similar work), the density of data collection points (see section 3.6) is significantly
higher than would be possible in a real-world setting without inducing significant
flow obstruction: However, it should also be noted that the sampling rate of the
data collection (~3 kHz; see section section 3.6) is well below the sampling rates of
transducers commonly used in wind tunnel testing.

For this purpose, convolutional architectures derived from well-known image clas-
sification models are proposed and adapted to the regression problem under inves-
tigation. As discussed in section 2.2, the drag and lift produced by a body immersed
in a uniform flow are a function of the freestream characteristics and the geometry
of the body (i.e. the shape and angle of attack) and, as such, it is common in the
literature to use freestream parameters as additional scalar inputs to the network;
the proposed architectures are, therefore, adapted accordingly.

This work is structured as follows: the next chapter provides a basic introduction
to the problem. Then, the methodology followed to obtain the simulation data is
explained. Next, the architecture of the neural networks and the choices of the
hyperparameters made are explained. The training of the networks’ methodology
and the network optimization process are then described. Then, the results are
included, and finally, a concluding section closes the work.

1.1 Challenges of assembling a large dataset

As previously mentioned, CFD simulations remain expensive in terms of time and
computational resources, while wind tunnel testing requires dedicated facilities
and custom-built high-accuracy models. Consequently, analysing multiple cases
and generating a large dataset requires a non-negligible use of resources in both
industrial and research applications. The difficulty of assembling large datasets is
encountered in several fields, such as engineering[21,22] or medicine[23–25], where
the cost, time, or rarity of the phenomenon prevents obtaining a large number of
samples[26]. The present work is focused on creating simulations of real-world sit-

2

1.1 Challenges of assembling a large dataset

uations while dealing with constraints such as limited resources and time. The
main objective is to investigate the difficulties of working with small datasets and
to develop models that can accurately predict outcomes even with limited training
samples. State-of-the-art deep-learning models use datasets composed of millions,
if not billions (and arguably, the increase in state-of-the-art model performance
over the past years can partially be attributed to the ever-increasing size of train-
ing dataset size[26]) of samples, as opposed to the low-hundred samples used in this
work. However, it should be noted that the small size of the datasets refers to the
number of samples and not to the storage size of the data, as each dataset obtained
is approximately 50GB in size.

The decision to use a low number of samples is justified because a hypothetical fu-
ture use of deep learning for the prediction and design of wings and airfoils would
need to be justified by reducing the number of simulations or wind tunnel tests
required. Thus, deep learning models that require a large number of training sam-
ples would not offer a competitive advantage over current high-fidelity CFD simu-
lations.

Issues arising from a small number of training samples, such as overfitting and the
stability of the training process was, addressed by ad hoc methods, such as the use
of dropout layers to reduce the risk of overfitting[27] or multiple iterations of the
model training process to account for the inherent aleatory nature of the neural
network weight initialization process[23]. See Chapter 4 and section 4.12 for more
information.

3

Chapter

Background 2

Below, the theoretical foundations considered essential to the work are presented
and briefly explained. Since the proposed work involves both fluid dynamics and
neural networks, a summary of the basic concepts of both fields is given. The aim
is to make the current work understandable to those unfamiliar with the two fields
involved. This will ensure that the reader has a solid understanding of the relevant
concepts and can easily follow the work. Later sections in subsequent chapters will
provide a deeper theoretical framework where necessary.

2.1 Navier-Stokes equations for a compressible,

Newtonian, Fourier fluid

The Navier-Stokes equation is a nonlinear PDE system that governs the motion of
viscous, conducting fluids. They express the conservation of fundamental physical
properties such as mass, momentum, and energy. The complete derivation of the
equations is not shown here as it is considered outside the scope of this work. The
equation of conservation of mass, also known as the continuity equation, is shown
in eq. (2.1.a); the equation of conservation of momentum, which is a vectorial equa-
tion, is shown in eq. (2.1.b); the equation of conservation of energy (in one form
of the many reported in the scientific literature) is shown in eq. (2.1.c). It should
be noted that the equations reported are valid for a viscous, compressible fluid af-
fected by gravity. Moreover, the system eq. (2.1) shows the Navier-Stokes equations
in their differential form, or strong formulation as their analytical solution (if any)
requires the partial derivatives to be fully defined over the entire domain; thus, the
strong formulation of the Navier-Stokes equations does not allow any discontinuity

5

Chapter 2 | Background

over the flow field.

md

mC
+ m

mG8
(dD8) = 0

m

mC
(dD8) +

m

mG 9

(
dD8D 9

)
= −m?X8

mG8
+ m

mG 9
(g8 9) + d68

d

(
m�

mC
+ D8

m�

mG8

)
= − m

mG8
(?D8) +

m

mG 9
(g8 9D8) + d68D8 +

m ¤@8
mG8

+&E

(2.1.a)

(2.1.b)

(2.1.c)

The true stress tensor f8 9 can be expressed as the sum of hydrostatic pressure (i.e.
the pressure acting on a fluid at rest) and the viscous stress tensor:

f8 9 = −?X8 9 + g8 9 (2.2)

Where hydrostatic pressure is defined as the average normal force on a fluid parti-
cle, the average of the true stress tensor trace.

− ? = f 9 9/3 =
1

3
(f11 + f22 + f33) (2.3)

If the fluid is classified as Newtonian, namely that the fluid is isotropic, that the
strain tensor is a linear function of the strain rate tensor, and the divergence of the
stress tensor is equal to zero for a resting flow (as Δ · 3 = 0), then the stress tensor
3 can be expressed as

g8 9 = `

(
mD8

mG 9
+
mD 9

mG8

)
+ X8 9_

mD:

mG:
= 2`(∗8 9 + _∇ · D̄� (2.4)

Where ` is the fluid’s dynamic viscosity, and _ is the so-called second coefficient
of viscosity, related to the bulk viscosity of the fluid and to the stress produced by
pure compression/expansion of the fluid. It should also be noted that the pure shear
strain rate tensor (∗8 9 , which is the symmetric part of the velocity gradient minus
the velocity divergence, has trace equal to zero and, as such, only represents the
fluid strain caused by pure shear. It is defined as:

(∗8 9 =
1

2

(
mD8

mG 9
+
mD 9

mG8

)
, (∗88 = 0 (2.5)

Under the commonly held Stokes’ Hypothesis, the bulk viscosity is assumed to be
zero, and the two viscosity coefficients are related by the expression in eq. (2.6).

_ = −2

3
` (2.6)

6

2.1 Navier-Stokes equations for a compressible, Newtonian, Fourier fluid

This is correct for monatomic gasses and is a commonly held hypothesis in Com-
putational Fluid Dynamics (CFD)[30]. It follows that an expansion or compression
of the fluid produces no viscous effect, that viscous effect does not contribute to
hydrodynamic pressure, and that g88=0. Even if it is usually used to simplify the
Navier-Stokes equations and it makes it possible to obtain accurate results for most
flows, Stokes’ Hypothesis holds little to no physical basis and can be quite inaccu-
rate depending on the flow and the fluid[31,32].

If the fluid is heat-conducting and can be described by Fourier’s law of conduction,
the heat flux is proportional to the temperature gradient[33].

¤@8 = −^ m)
mG8

(2.7)

It should be noted that the minus sign in eq. (2.7) takes into account thermodynam-
ics second law and ensures that heat flows from a higher temperature region to a
lower temperature one. Substituting eq. (2.4), (2.6) and (2.7) in eq. (2.1) the Navier-
Stokes equations for a compressible, Newtonian, Fourier fluid are obtained. These
are shown in eq. (2.8).

md

mC
+ m

mG8
(dD8) = 0

d

(
mD8

mC
+ D 9

mD8

mG 9

)
= − m?

mG8
+ ` m

mG 9

[(
mD8

mG 9
+
mD 9

mG8

)
− 2

3
X8 9
mD:

mG:

]
+ d68

d

(
m�

mC
+ D8

m�

mG8

)
= − m

mG8
(?D8) + `

m

mG 9

{[(
mD8

mG 9
+
mD 9

mG8

)
− 2

3
X8 9
mD:

mG:

]
D8

}
+ d68D8 + ^

m2)

mG8
2
+&E

(2.8.a)

(2.8.b)

(2.8.c)

(2.8.d)

Two equations of state, which correlate state variables of the thermodynamic sys-
tem, are needed to guarantee closure of the system of equations. One of these is
the ideal gas law (eq. (2.9.a)), as air, which is a mixture of nitrogen, oxygen, car-
bon dioxide, argon, and other trace substances, can be treated as an ideal gas with
reasonable accuracy[34]. The other equation of state, shown in eq. (2.9.b), is the
internal energy per unit of mass for an ideal gas.

{
? = 'B?428 5 82d)

4 = 2E)

(2.9.a)

(2.9.b)

7

Chapter 2 | Background

As shown in eq. (2.9.b) the specific heat capacity is assumed to be constant. Under
this hypothesis, the gas is considered as calorically perfect. Such a model can be
considered valid for a gas temperature up to 2500 K[35], well within the range of
temperatures under the scope in this work. Moreover, the heat capacity ratio expe-
riences a variation of ~0.2% in the temperature range 0-200℃[36], so the assumption
of a calorically perfect gas is motivated.

It should be noted that, as evident in eq. (2.8), the coefficient of dynamic viscosity
and the fluid conductivity were assumed to be constants in space. However, as
highlighted in section 3.4, the simulated flow fields show temperature variations in
excess of 100 K due to shocks. Therefore, viscosity cannot be modelled as constant.
The dynamic viscosity dependence on temperature is expressed by Sutherland’s
Law[37].

` = `A4 5

(
)

)A4 5

)3/2)A4 5 + (
) + ((2.10)

From now onwards, the previous assumptions are taken for granted, and the equa-
tion system in eq. (2.8) is the one that governs fluid behaviour and motion.

2.1.1 Vorticity and vorticity equation

Vorticity is a central aspect of fluid dynamics and holds particular significance to
the mechanics of turbulence, as every turbulent flow is necessarily rotational (its
vorticity is non-zero). Intuitively, vorticity is related to the spinning motion of the
fluid around an arbitrary point. It is defined as the curl of the velocity field.

l: = Y8 9:m8D 9 = Y8 9:
mD 9

mG8
(2.11)

Where Y8 9: is the Levi-Civita symbol, defined in three dimension as:

Y8 9: =

+1 if (8, 9, :) is (1, 2, 3), (2, 3, 1), or (3, 1, 2)
−1 if (8, 9, :) is (3, 2, 1), (1, 3, 2) or (2, 1, 3)
0 if 8 = 9, or 9 = :, or : = 8

(2.12)

As previously stated, the velocity gradient factorized into a symmetric and an an-
tisymmetric matrix thanks to the process of matrix decomposition. The symmetric
factor is the previously cited rate of strain tensor, while the antisymmetric factor is

8

2.2 Dimensionless numbers and similitude theory

the rate of rotation tensor.

Ω8 9 ≡
1

2

(
mD8

mG 9
−
mD 9

mG8

)
= −1

2
Y8 9:l: (2.13)

Which, as can be easily noticed, neatly correlates the velocity field rotation to the
flow vorticity.

Vorticity behaviour and evolution can be studied thanks to the vorticity equation. It
can be derived by applying the curl operator ∇× (·) to the conservation of momen-
tum equation (eq. (2.8.b)). The full derivation is lengthy and, therefore, not shown.
The full vorticity equation[38] is shown in eq. (2.14):

�l8

�C
=
ml8

mC
+ D 9

ml8

mG 9
= l 9

mD8

mG 9︸︷︷︸
Vortex stretching-tilting term

−l8
mD 9

mG 9
+ 48 9:

1

d2
md

mG 9

m?

mG:
+ 48 9:

m

mG 9

(
1

d

mg:<

mG<

)
+ 48 9:

m6:

mG 9

(2.14)
The first term is the vortex stretching-tilting term. It is responsible for the stretch-
ing of turbulent structures, the onset of instabilities in the turbulent eddies, and the
subsequent breakup into smaller structures. As such, it is a fundamental aspect of
the mechanics of the energy cascade, later described in section 3.4.2.

2.2 Dimensionless numbers and similitude theory

Fig. 2.1: Wind tunnel test of a scale
model of a Truss Braced Wing configu-
ration aircraft at NASA Ames Research
Center. Source: NASA, 2023[39].

Thermodynamic systems, such as the ex-
ternal flow over a rigid body examined in
this work, are governed by a large num-
ber of parameters. Therefore, designers
are tasked with considering the interplay
of such parameters when aiming to min-
imize or maximize any feature (for exam-
ple, lift, drag, etc.) of the designed body.
This amounts to a large amount of testing,
both experimental in wind tunnels and nu-
merical with CFD. This would not be ideal
and would certainly ramp up the cost and
time expenditure of testing and designing. Dimensional analysis, particularly the
Buckingham π theorem, helps reduce the number of parameters governing the ex-
amined physical system. As such, dimensional analysis is a fundamental tool for

9

Chapter 2 | Background

designers[40]. The Buckingham theorem states that if a physical system is gov-
erned by an equation or a system of equations function on n variables representing
physical quantities, then the former equation can be rewritten as a function of n-k
dimensionless parameters, where k is the number of the fundamental physical unit
of measure involved in the system[41]. Strongly correlated to dimensional analysis
is the engineering branch known as similitude theory. It states that different phys-
ical systems behave the same way as long as the two share the same shape and
the dimensionless number governing the aforementioned functional relationship
of the physical phenomena[42]. Similitude theory is a powerful tool in both test-
ing and design (in the aerospace, automotive, and civil engineering fields, among
others), allowing the testing of scaled-down geometry in wind tunnels, in different
fluid media, and/or in different ambient conditions[35,40,42]. In eq. (2.15) multiple
dimensionless numbers well-known in the fluid mechanics field are shown. It is
by no means an exhaustive list, as it only covers those of particular interest for the
rest of the work.

'4 =
D!

a
=
dD!

`
(2.15.a)

�A =
D√
6!

(2.15.b)

" =
D

2
(2.15.c)

%A =
a

U
=
2?`

:
(2.15.d)

(C =
5 !

*
(2.15.e)

Where:

'4 = Reynolds number; ratio of fluid inertial and viscous forces

�A = Froude number; ratio of fluid inertial to gravitational forces

" = Mach number; effect of inertial flow compression; dimensionless velocity

%A = Prandtl number; ratio of viscous diffusion rate over thermal diffusion rate

(C = Strouhal number; ratio of characteristic oscillatory velocity to flow velocity

Dimensional analysis can be applied to the physical system that is the focus of this
work: a rigid body hit by a compressible, homogeneous, steady freestream. Such
a system is routinely analyzed in both wind tunnels and CFD simulations and, as
previously mentioned, this work is attempting to reduce the designer’s workload
during the design phase and reduce experimental and computational costs. Intu-

10

2.2 Dimensionless numbers and similitude theory

itively, the force F applied by the fluid on the rigid body can be imagined as an
unknown function of the parameters shown in eq. (2.16).

� = 5 (geometry, ℓ,+ , d,) , ?, 4, `, ^,)F , 6) (2.16)

Applying the Buckingham theorem, the expression can be rewritten as[43]:

�
1
2dℓ

2
= 5

(
geometry, '4,",

?/d
22

,
22

4
, %A,

�?)

Y
, �A,

)F

)

)
(2.17)

If the fluid is modelled as an ideal gas, then the following equations hold[35,40]:

22 = W'B), 4 = 2E), W = 2?/2E (2.18)

then the following parameters can be rewritten as

?/d
22

=
1

W
,

22

4
= W (W − 1),

�?)

Y
= W (2.19)

The functional relation is then reduced to: eq. (2.20).

�

d+ 2ℓ2
= 5

(
geometry, W, '4,", %A, �A,

)F

)

)
(2.20)

Under the assumption of a calorically perfect model, W is a constant. Moreover, in
the aerospace field, the effect of gravity acceleration is usually neglected due to a
high-velocity field and a high Froude number. The effect of Prandtl number can be
neglected, and it usually is when the physical system temperature range is narrow
enough. In addition, the term)F

)
relative to heat exchange can be neglected as,

for every scenario considered, the body surface will be considered adiabatic (see
section 3.4.5). The result is:

�

d+ 2ℓ2
= 5 (geometry, '4,") (2.21)

Which is the functional relationship between the coefficient of lift and the coeffi-
cient of drag. A similar result can be derived for the pitching moment coefficient,
but it will be omitted from this section.

The results given by dimensional analysis are notable for developing the neural
network architectures, which will be presented in Chapter 4. Mainly, eq. (2.16)
refers to a generic functional relationship and, as such, offers no insight on the

11

Chapter 2 | Background

structure of the underlying function and cannot be used to obtain numerical results.
However, ANN use training data to learn more and more abstract correlations and
hierarchies between the data[2] and therefore ANN are ideally suited to learn the
unknown functional relationship shown in eq. (2.16).

2.3 Phenomenology of turbulence

Turbulence is one of the fundamental aspects of fluid dynamics, and most flows in
nature and engineering are turbulent (e.g. water flow in a river, the atmospheric
boundary layer, the flow on a bird’s wing, etc.). Turbulence is such a common
phenomenon that it could be argued that laminar flow is an exception. Even so,
a formal, rigorous definition of turbulence is lacking[38]. It is instead defined by
its empirically observed qualitative and quantitative properties. Turbulent flow
presents an inherent non-stationarity, an apparent chaotic behaviour, and eddies
(vorticose structures) of different dimensions. The chaotic behaviour of turbulence
is such that the velocity cannot be predicted in space or time, and the actual value
of the velocity field is random. Obviously, turbulent flow obeys the Navier-Stokes
equation, a fully deterministic set of equations[38,44]. The apparent contradiction
is resolved by the fact that turbulent flows have an acute sensitivity to the system
Boundary Conditions (BC) and Initial Conditions (IC). Even if an experiment or
a numerical simulation sets specific BC and IC, the experimental setup will have
inevitable perturbations to the nominal ones. Similarly, the numerical simulation
BCs and ICs will differ from the nominal ones due to truncation errors, discretiza-
tion errors, and, ultimately, machine errors. Such sensitivity to BCs and ICs will
amount to a different flow realization.

The flow chaotic behaviour is due to its quadratic nonlinearity[38,44], and it can
be shown that different nonlinear systems present the same chaotic behaviour. A
classic example is the Lorentz System[45], a set of Ordinary Differential Equation
(ODE) that, for specific parameters and certain IC exhibits chaotic behaviour. The
Lorenz system is shown in eq. (2.22).

dG
dC = f (~ − G),
d~
dC = G (d − I) − ~,
dI
dC = G~ − VI

(2.22)

Where f, d, V are fixed value parameters. A particular set of solutions to the Lorenz
system is known as the Lorenz Attractor. In Fig. 2.2 a visual representation of a sys-

12

2.3 Phenomenology of turbulence

Fig. 2.2: Visualization of a Lorentz attractor for different perturbed Initial Conditions. The
parameters value are f=10, d=28, V=8⁄3. Nominal Initial Condition: (x, y, z)t=0=(0, 1, 1.05).

tem’s chaotic behaviour is shown by comparing the solution trajectory in the (x,
y, z) space at different IC perturbations. As can be seen, while the overall shape
of the trajectory is the same, the actual shape is different, even for a very small
perturbation of the initial condition. One central aspect of turbulence is that of
multi-scalarity (as captured in verses by Richardson in 1922[46]1) and the process 1

Big whorls have little
whorls,
Which feed on their velocity;
And little whorls have lesser
whorls,
And so on to viscosity
(in the molecular sense).

Lewis F. Richardson
(1922)

known as the energy cascade. In an essentially inviscid phenomenon, the large
eddies (an ill-defined concept that identifies localized coherent turbulent struc-
tures[44]) are squeezed and stretched by the mechanism of vortex stretching and
eventually grow to be unstable, breaking up into smaller turbulent structures. This
process is known as energy cascade and is responsible for energy flow from the
biggest turbulent structures to the smallest ones. The smallest turbulent structures
are those where the viscous forces become significant. At this scale, known as the
Kolmogorov scale, the turbulent energy is dissipated before eddies break up. The
smaller scales are characterized by higher velocities due to the conservation of an-
gular momentum and higher velocity gradients. It can be shown[38] that the range
of scales of turbulent flow widens as the Reynolds number rises. In particular:

[

!
= '4−

3
4 (2.23)

Where [is the Kolmogorov scale, and L is the characteristic length of the largest
eddies. Such separations of scale make turbulent flow hard to simulate, requiring
very fine meshes and short time steps to capture fine flow structures. The numer-
ical method of simulating the entire turbulent flow across all length scales from
the direct resolution of the Navier-Stokes equations is known as Direct Numerical
Simulation (DNS). DNS resolution of most practical purposes flows is often eco-
nomically unviable or downright unfeasible with the currently available compu-
tational power. Other methods include solving the NS equations through a turbu-

13

Chapter 2 | Background

lence model, a mathematical model to predict the average motion of turbulent flow.
The most common turbulence models are Large Eddy Simulation (LES), Detached
Eddy Simulation (DES) and RANS.The turbulent model used in this work is a RANS
model. The reasoning behind such a choice is expanded upon in section 3.4.2.

2.4 Boundary layer, transition and separation

Fundamental to the dynamics of fluids over solid surfaces is the presence of the
boundary layer. On a solid body surface, due to the adhesion between the fluid
molecules and the body surface, the fluid is at rest relative to the surface. This is
the so-called no-slip condition, which acts as a Dirichlet BC for the Navier-Stokes
equations. Far from the body surfaces, the flow velocity fields Ue will depend on
the freestream velocity U∞. Due to the effect of fluid friction on the fluid in the
layers just above and below any point of interest, we anticipate the velocity profile
to shift smoothly between 0 on the body surface and Ue far from the surface. There-
fore, near the body surface, a region develops: the boundary layer (also known as
the momentum or velocity boundary layer). Its defining characteristics are high-
velocity gradients in the direction normal to the body surface and the importance of
the viscosity terms of the Navier-Stokes equations[47]. The boundary layer thick-
ness can be defined in various ways, but it is commonly considered equal to the
distance X at which the fluid reaches 99% of Ue.

Similar changes will occur in the flow temperature above the wall, ranging from
wall temperature Tw on the surface body to the temperature of the external flow at
a distance X) . This region is called the thermal boundary layer. The actual temper-
ature profile is determined by thermal conduction, frictional heating, and kinetic
energy dissipation due to viscous effects[40]. The thermal energy transfer between
wall and fluid is generally referred to as aerodynamic heating[40]. This phenomenon
is generally considered negligible in subsonic flows but becomes increasingly im-
portant at high speeds, particularly in the supersonic regime[40]. The flow consid-
ered in this work is in a compressible transonic regime; therefore, frictional heating
is considered an essential factor in thermal energy transport. Moreover, the effect
of thermal conduction will be disregarded as the airfoil surface is set to be adiabatic
and, as such, no heat is transferred from the wall to the fluid. The effect of the com-
pressible regime on the development of the boundary layer can be summarized by
the fact that the rapid changes in density and temperature (especially in the pres-
ence of shocks) do not allow density and viscosity to be considered constants even
within the limited region of the boundary layer[35,47].

14

2.4 Boundary layer, transition and separation

Fig. 2.3: Illustration of the velocity boundary layer and the thermal boundary layer over
a smooth flat plate. The wall depicted is non-adiabatic, and the wall temperature is lower
than the external flow temperature (that is, Tw<Te).Source: Anderson, 2017[40].

In Fig. 2.3, the development and transition to turbulence of the boundary layer over
a flat, smooth plate are shown. Notably, every momentum boundary layer initially
develops as laminar and eventually transitions, over a region, to fully turbulent
flow[40].

Examining laminar or turbulent boundary layer regimes is essential to understand-
ing how boundary layer theory is applied in engineering. This question is more
than relevant since there are significant differences between the two scenarios in
terms of, for instance, the amounts of skin friction and heat transfer. This variation
is caused mainly by the significantly enhanced mixing brought on by the turbulent
eddies’ unpredictable velocities. The first thing that is crucial to grasp about transi-
tion is that it is a process that involves numerous steps that take place throughout a
region of the flow rather than a single, abrupt occurrence in the flow. It is therefore
of paramount importance to know the boundary layer regime in order to predict
its behaviour correctly and consequently calculate the values of the aerodynamic
wall forces and the resulting flow evolution; for example, the eN approach and the
hydrodynamic stability theory are two of the developed techniques. Since there is
yet to be a comprehensive and thorough theory of the process, predicting when
the boundary layer will change from laminar to turbulent is not an easy task. The
W-Re\ model, which is employed in the current work, is based on the idea of inter-
mittency and models the boundary layer transition by calculating the percentage
of time that the flow is turbulent (see section 3.4.3.1). In this method, the intermit-
tency W of the flow (in this case, the boundary layer) will equal 1 after the turbulent
flow transition is complete[47].

15

Chapter 2 | Background

2.4.1 Wall variables and the turbulent boundary layer internal

structure

Fig. 2.4: An illustration of the universal law of the wall for a turbulent boundary layer over
a flat solid wall . Source: Rodney D. W. Bowersox, 2011[47].

For a pure shear wall flow, which can be seen as a simple model for a generic flow
over a wall, the momentum balance equation in the mean flow direction can be
simplified by neglecting the divergence of the streamlines, as in eq. (2.24).

0 = −m〈?〉
mG

+ m

m~

(
`
m〈D〉
m~

− d 〈D′E′〉
)

(2.24)

The shear stress along the boundary layer can be assumed to be constant and equal
to the wall shear stress if the boundary layer is assumed to have a limited size.
This hypothesis is reasonable in general and true for a zero pressure gradient flow.
Therefore, we can generally say that:

`
m〈D〉
m~

− d 〈D′E′〉 = gF (2.25)

Since the shear stress near the wall is constant, a velocity scale can be defined,
called the frictional velocity D∗ =

√
gF
d
, and a length scale can be similarly defined,

called the viscous length ;E = a
D∗
. This allows two new flow variables to be defined,

called wall variables:
D+ =

D

Dg
, ~+ =

~

ℓE
=
~D∗
a

(2.26)

16

2.4 Boundary layer, transition and separation

We call the viscous sublayer the near-wall region dominated by viscous transport
over turbulent fluctuation transport (in other terms, viscous stresses dominate over
Reynolds’ stresses). This region will be a small fraction of the boundary layer since,
globally, the viscous stresses are negligible compared to the convective terms (and
thus to the Reynolds’ stresses). Neglecting the Reynolds stress term and substitut-
ing the wall variables in eq. (2.25), the result is:

〈D+〉 = 〈~+〉 (2.27)

Which is valid for y+<5.

On the contrary, far from the wall, the shear stress can be assumed to be the result
of Reynolds stresses only. Applying Prandtl’s mixing length theory[38], the shear
stress away from the wall can be rewritten as in eq. (2.28).

g? ' −d 〈D′E′〉 ' d^2~2
(
m〈D〉
m~

)2
(2.28)

Assuming ^ has a constant value, integrating eq. (2.28) and substituting the fric-
tional velocity and wall variables, the result is:〈

D+
〉
=

1

^
log~+ +� (2.29)

Where^ andC are constants, this is known as the logarithmic law of thewall, which
describes the dimensionless velocity profile in the so-called logarithmic layer and
is valid for 30<y+<100. Eq. (2.27) and (2.29) are shown in Fig. 2.4 and are almost
universally valid in the case of a zero pressure and describe turbulent shear flows
close to solid boundaries.

Outside the logarithmic layer, equation eq. (2.29) ceases to be valid and must be
adjusted through the wake functionW, which is flow-dependent[38,47]. In eq. (2.30),
the generic form of a corrected logarithmic law is given without expressing the
wake function.

*

D∗
=

1

^
ln

(~D∗
a

)
+� + Π

^
,

(~
X

)
, where , =

(~
X

)
= 2 sin2

(c
2

~

X

)
(2.30)

The law of thewall can be used to numerically solve the turbulent boundary layer[30,48].
However, in the present work, the turbulence model adopted (see section 3.4.2) al-
lows the boundary layer to be solved directly by integrating the equations of mo-
tion. Nevertheless, it remains necessary to ensure that the spatial resolution of the

17

Chapter 2 | Background

mesh is such that the centroid of the first wall-adjacent cell has a distance from the
wall of approximately y+=1 or less[48] (see section 3.4.4).

2.4.2 Separation and reattachment

Fig. 2.5: Pressure velocity profile of a laminar
boundary layer under an adverse pressure gradi-
ent (m?

mG
> 0) and consequent flow reversal and

BL separation, Source: Rodney D. W. Bowersox,
2011[47].

Flow separation refers to the de-
tachment of the boundary layer
from the surface of a body. Sep-
aration is associated with an ad-
verse pressure gradient at the
body’s surface (thus, for a positive
AoA, generally at the upper sur-
face of an airfoil). As shown in
Fig. 2.5 the presence of a positive
pressure gradient leads to a reduc-
tion in the velocity of the fluid par-
ticles at thewall. Eventually, these

particles arrive at the separation point with zero velocity with respect to the wall
and reverse their direction of motion: the fluid particles upstream of the separation
point collide with the stationary flow, which acts as an effective obstacle that is the
reverse flow, and the flow separates.

Boundary layer separation is associated, in airfoils, with a sharp reduction in lift
and an increase in drag. This is due to the presence of vortices and recirculation
bubbles in the separated flow zone, which cause a drastic change in the pressure
distribution. Furthermore, the assumptions underlying the boundary layer theory
cease to be valid, and the entire recirculation zone is strongly influenced by viscous
phenomena[47]. If the flow reattaches downstream of the separation point, this is
referred to as boundary layer reattachment. It leads to the formation of a separation
bubble (or recirculation bubble), characterized by approximately constant pressure.

In the case of high-velocity flows, the presence of supersonic shocks, which act as
discontinuities in the pressure field, can cause flow separation. This is referred to
as shock-induced separation. In the cases simulated in this work, boundary layer
separation is expected at high AoA and at high Mach numbers due to the presence
of shocks. The resulting drag increase and lift decrease due to a change in the
pressure distribution[40] (also referred to as pressure drag) is also expected.

18

2.5 Artificial Neural Networks and Deep Learning

It should be noted that turbulent flows are less affected by adverse pressure gradi-
ents. That is, a turbulent boundary layer is subject to further downstream separa-
tion than a laminar boundary layer[47]. Consequently, the boundary state transi-
tion point and its relative position to the adverse gradient zone directly influence
boundary state separation. For this reason, it was considered necessary to accu-
rately predict the transition point of the boundary layer from laminar to turbulent
using the W-Re\ model (see section 3.4.3.1).

2.5 Artificial Neural Networks and Deep Learning

Fig. 2.6: Visualization of a randomly gen-
erated multilayer FFNN. Negative weights
are shown as blue, and positive weights are
shown as red. Line width visually represents
the weight’s magnitude.

ANNs are a machine learning model
loosely based on the structure and
function of animal brains[1,49]. The
idea behind neural network engineer-
ing is that the brain is capable of ab-
stract and intelligent reasoning. Em-
ulation and reverse engineering of
the brain’s underlying functioning is,
therefore, one of the possible ap-
proaches to emulating human cogni-
tion. This is closely related to the
common use of neural networks in
problem-solving: tackling problems
intuitive for biological agents, such as
vision or natural language processing,
but have been considered problematic
for computers to solve for decades.
This is because tasks considered ”nat-
ural” or trivial by people actually re-
quire extensive knowledge that is con-
sidered intuitive but complex for a ma-

chine to formalize.

The approach to engineering systems capable of extracting patterns and hierar-
chical relationships from raw data, often used for solving problems ill-fitted to a
traditional hard-coded approach to software development, allows systems to ac-
quire their own knowledge and is known as machine learning. This approach to
formalizing human cognition through connected networks was hypothesized in

19

Chapter 2 | Background

the 1930s and dates to the 1950s and is known as Connectionism[49]. The research
community’s interest in Connectionism has had several waves over the years, start-
ing with the Perceptron by Mcculloch and Pitts (1943)[50]. The second wave began
in the 1980s with the conception of the Multi Layer Perceptron[51] (also known
as FeedForward Neural Network (FFNN), the most straightforward modern neu-
ral network architecture, the operation of which will be expanded upon later) and
training via backpropagation. However, interest died down due to the unrealis-
tic expectations set up at the time. The third wave consists of the current popu-
larization of neural networks in Deep Learning, popularized by the introduction
of newer, less computationally expensive training algorithm[49], generalized avail-
ability of computing power and the opportunity to obtain andmanage massive data
sets. Specifically, Deep Learning refers to using complex models to represent sys-
tems and tasks through multiple levels of abstraction, allowing deep learning to
uncover complex structures in massive data sets.

A complete and exhaustive history of neural networks and deep learning is not the
purpose of this work. For a more in-depth discussion, we refer to other works[52,53].

The elementary unit of a neural network is known as neuron (or Perceptron), in
analogy to the biological neurons part of the animal brain. The single neuron, as
shown in eq. (2.31), obtains an input or inputs, applies an activation function (see
section 2.5.3), sums a constant value, called bias, and returns an output, as shown
in Fig. 2.7. The neuron’s single input is multiplied by the connection weight wi,
which can be viewed in analogy to biological brains as the strength of the synaptic
connection.

I =

#∑
8=1

08F8 (2.31)

0>DC = � (I) + 1 (2.32)

Again, in analogy to animal brains, a single neuron does not have high computa-
tional capabilities and is not capable of complex problems. An increase in com-
plexity is achieved by increasing the number of neurons by arranging them in a
layer. Here, multiple neurons are fed the inputs, and the output of single neurons
is again calculated as in eq. (2.31). Each neuron will be connected to the inputs by
its own connections, each with its weight, leading to an increase in the free param-
eters of the model and its complexity. A further increase in model complexity can
be achieved by stacking multiple layers of neurons. In this case, the input of the
neurons of each specific layer corresponds to the output of the previous layer. The

20

2.5 Artificial Neural Networks and Deep Learning

Fig. 2.7: Simple feedforward ANN architecture. The internal structure of the nodes is high-
lighted and a bias node is shown. Note that bias nodes are usually not shown.

obtained network is called FeedForward Neural Network (FFNN), whose network
structure is shown Fig. 2.6. By updating the weights of the connections between
neurons, the network is able to learn. This occurs during the training process,
in which by analyzing the training samples, comprising both inputs and outputs,
the network learns to associate an input with a specific output. Once the training
process is over, the network can predict the output when provided with a novel,
never-seen-before input. During the training of a neural network, its weights and
thresholds start as random values. The training data enters the input layer and trav-
els through subsequent layers. The data then reaches the output layer. Throughout
the training process, the network adjusts its weights until data withmatching labels
produces similar outputs.

A neural network can thus be conceptualized as a parametric function with domain
Rn (where n is the number of neurons in the input layer) and codomain Rm (where
m is the number of neurons in the output layer)

5 :'= → '< (2.33)

where the weights and biases of the layers are free parameters. As a matter of fact,
neural networks are considered universal approximators of functions, and ideally,
a single-layer network of infinite width can exactly approximate any given func-
tion[3,4]. Given a task to be learned, which can be represented as a generic function
f, the learning process is to find the number of free parameters of the function
(commonly called learnable parameters) such that the error, as defined by a loss
function

|5 (G) − !((G) | (2.34)

21

Chapter 2 | Background

Fig. 2.8: Illustration of the underfitting and overfitting problem for
both regression and classification problems. Source: MathWorks, Inc.,
2023[55].

is minimized for each x in the domain (where the x in the domain corresponds
to the values of the input layer). The training process can then be reframed as a
problem of optimizing the error defined by the loss function with respect to the
input-output pairs provided in the training examples. This is done using optimiza-
tion algorithms called optimizers, which compute the derivative of the loss function
through error backpropagation algorithms, generally based on gradient because
the conformation of the NNs is optimal for computing the derivatives through au-
tomatic differentiation[54]. Usually, gradient of the last layer is used to calculate the
value of the gradient in the previous layers in a backward fashion until the input
layer is reached. Having obtained the derivative of the loss function with respect
to the dimensional space of the weights, the weights are then updated in such a
way as to reduce the value of the loss function, as shown in eq. (2.35).

F 9 = F 9 − lr ·m !(
mF 9

(2.35)

Where lr stands for the learning rate, and LS stands for the value of the loss func-
tion.

2.5.1 Underfitting and overfitting

The main challenge in training neural networks comes from the fact that the er-
ror minimized during training is calculated with respect to the training set (i.e.,
the input-output pairs used during training). However, the goal during training is
to obtain a model from the generalized predictive capabilities. That is to obtain a

22

2.5 Artificial Neural Networks and Deep Learning

model capable of solving the considered task for the widest possible range of inputs,
especially ”new” data never seen before during the training. Themodel’s predictive
capability is measured by calculating the loss function on an unused test set to train
the model. When a neural network fails to capture the underlying patterns or com-
plexities in the training data, it is called underfitting. Essentially, the model is too
simple to capture the nuances within the data. As a result, it performs poorly not
only on the training data but also on new, unseen test data). It often happens when
the model is too basic and lacks capacity (which can be measured by the number of
trainable parameters) or when the model is undertrained and the training process
is stopped prematurely.

On the other hand, overfitting happens when the model learns not only the under-
lying patterns but also noise or irrelevant details in the training data. The model
becomes too specific to the training data and does not generalize well to new, un-
seen data. Essentially, it memorizes the training data instead of learning the actual
relationships between inputs and outputs. Overfitting occurs when the neural net-
work becomes excessively complex (too much capacity and learnable parameters)
or overtrained, capturing details specific to the training set but not applied to new
data.

An intuitive representation of both underfitting and overfitting is shown in Fig. 2.8.
In both cases, the goal is for the model to learn the essential patterns in the data
without being too simplistic (underfitting) or overly accustomed to the training
dataset (overfitting), aiming for generalized predictive performance. Techniques
such as regularization, dropout, using more data, or adjusting the model’s com-
plexity are often employed to mitigate these issues.

2.5.2 Regularization

Fig. 2.9: Visualization of Dropout
regularization. Source: Srivastava et
al., 2014[56].

As previously mentioned, regularization is
used to avoid overfitting themodel to the train-
ing data, thus increasing the network’s gener-
alization capabilities. Two of the most com-
monly employed techniques, Dropout and L2
regularization, are used in this work and are
discussed below.

23

Chapter 2 | Background

Dropout regularization works by randomly dropping certain neurons and their
weights during training, which improves network accuracy and reduces the risk
of overfitting by introducing noise during the training process and by reducing the
amount of co-adaptations between multiple neurons inside the neural networks.
Neuron dropout was shown to reduce the risk of overfitting in small datasets[57]

and even improve network performance for small datasets[26], making it suitable
to use in this work. The method is implemented in TensorFlow as a layer[58], which
randomly sets a percentage, known as the dropout rate of the input neurons to zero.
The network obtained has fewer free parameters (due to weight dropping) and has
higher sparsity.

L2 regularization lowers the complexity of the model and the risk of overfitting by
reducing the absolute value of the model weights. This is achieved by adding an
extra term to the loss function. The extra term is:

_A

?∑
9=1

V29 (2.36)

where V is one neuron weight and _A is the regularization rate.

2.5.3 Activation Functions

As previously mentioned, the inputs of each neuron are passed to an Activation
Function (AF). Over the years, numerous activation functions have been proposed
and applied to neural networks. Some of the existing activation functions are de-
picted in the figure. The choice of the AF used is critical to the properties of the
neural network and the field of application of the model. Consequently, some AFs
are mainly used for certain categories of neural networks, i.e., ReLU being the first
choice for CNNs, TanH being the first choice for Recurrent Neural Networks (RNN),
Linear being used for the output layer of regressive models, or Softmax being a
common choice for classification models.

Three different AF are used in this work: ReLU, GELU, and SWISH. The recti-
fied linear unit activation function, commonly known as ReLU, was introduced by
Fukushima (1975)[59] and has since been the most used activation function, espe-
cially in convolutional networks[60] Despite its widespread use and computational
inexpensiveness, ReLU suffers from the ”Dying ReLU Problem”. If, during training,
the neuron with the ReLU activation function has a negative input, the neuron will
have an output of zero and will, therefore, be deactivated. Furthermore, since the

24

2.5 Artificial Neural Networks and Deep Learning

ReLU function has a constant gradient of zero for input values less than zero, the
neuron cannot be reactivated during backpropagation[61,62].

Fig. 2.10: Illustration of some of the
most common activation functions
used in regressive neural networks.

In contrast, GELU and Swish are designed
to have a defined gradient for input values
less than zero to reduce the problem of dy-
ing neurons while maintaining the unbound-
edness of the output to avoid saturation prob-
lems. Both activation functions are used in
state-of-the-art deep-learning models. For ex-
ample, Swish[63] activation is used in the Ef-
ficientNet[64] family of models, known to be
particularly deep and accurate. GELU[65], on
the other hand, is used in the field of Natural
Language Processing and is utilized by mod-
els in the Generative Pre-trained Transformers
(GPT)[66] family. Both GELU and Swish have
been shown to outperform ReLU in various im-
age classification tasks[67], and Swish has been
shown to be suitable for particularly deep net-
works[60]. It must be specified how the AF used
for the hidden layers must be a nonlinear func-
tion; otherwise, the neural network will only be able to learn linear models.

2.5.4 CNN

Convolutional Neural Networks are arguably the most popular class of neural net-
works: they have been mainly applied to the fields of image recognition, image
segmentation, image classification, and natural language processing. CNNs are
neural networks that employ the convolutional operation (as defined by the ma-
chine learning community) in the network architecture. It should be noted that the
definition of the convolution operation as used in machine learning does not cor-
respond to the one used in mathematics. As can be seen in eq. (2.37), the definition
used in machine learning actually corresponds to the mathematical definition of
cross-correlation[49,58] which differs from the definition of convolution commonly
used in engineering and pure mathematics (eq. (2.38)).

B (C) =
∫

G (0)F (C − 0)30 (2.37)

25

Chapter 2 | Background

(5 ∗ 6) (C) : =
∫ ∞

−∞
5 (g)6(C − g)3g (2.38)

In the machine learning community, the input of a convolutional operation (actu-
ally a cross-correlation) is applied to N-dimensional matrices (usually referred to as
tensors in contrast with the actual definition of these mathematical objects) where
the first tensor is referred to as input and is usually of bigger size and dimension,
while the second matrix is referred as kernel. The operation of cross-correlation,
which will be from now thereon be referred to as convolution, can be visualized as
a dot product between an N-dimensional input matrix and an N-dimensional slid-
ing filter (the kernel) with a smaller size than the input matrix as shown in Fig. 2.11.
The output of this convolution operation is commonly referred to as feature map.

Fig. 2.11: Example of the convolu-
tion operation on a matrix of di-
mension 4×4, 2×2 filter, and unitary
stride.

Note that The filters of neural networks can
be conceptualized as the neurons of a feedfor-
ward neural network; however, unlike the neu-
rons of a feedforward network, which are con-
nected to each neuron of the next layer, the
filters of a convolutional layer have a limited
receptive field, due to filter size being com-
monly smaller compared to the layer’s input
matrix. Consequently, this leads to a reduc-
tion in the number of learnable parameters
and a reduction in the training time and com-
putational cost of the model, as the convolu-
tion operation reduces the dimensionality of
the data. Furthermore, the same filter/kernel is
used across the input data atmultiple locations.
This means that the weights of a filter remain
constant and are shared across the entire input
space. Consequently, the filter learns to detect
a particular pattern or feature (like edges, tex-
tures, etc.) irrespective of its location in the
input image. This concept is known as weights

sharing, leading to a further reduction in the number of learnable parameters and
increased model effectiveness.

The typical configuration of a Convolutional Neural Network (CNN), illustrated in
Fig. 2.12, follows a specific pattern. The input layer receives raw data, usually im-

26

2.5 Artificial Neural Networks and Deep Learning

Fig. 2.12: Illustration of a basic CNN architecture, consisting of convolutional layers, max-
pooling layers and fully connected (Dense) layers.

ages represented as matrices or tensors. Subsequent layers comprise convolutional
layers, wherein adaptable filters or kernels convolve across the input, producing
feature maps that capture diverse patterns. Activation functions are then applied to
introduce non-linearity, aiding in understanding complex data relationships. Fol-
lowing this, pooling layers decrease feature map dimensions, preserving crucial
information while minimizing computational load and the risks of overfitting.

Additionally, fully connected layers are employed for tasks like classification or re-
gression, establishing connections between neurons across layers to comprehend
relationships among high-level features. A flattening step reshapes the extracted
features into a suitable vector format to prepare for the dense layers. Finally, the
output layer provides the ultimate network prediction, configured based on the
task, utilizing softmax for multi-class classification or linear activation for regres-
sion. This sequential arrangement characterizes the CNN basic architecture.

The main advantage over other classes is the automatic extraction of features from
the data during the training process. The output of the convolution operation
between the input matrix and learned weights consists of a feature map: multi-
ple convolutional layers produce feature maps representing increasingly complex
and abstract hierarchical relationships between the input data[1,68]. Therefore, the
operator-based and error-prone feature extraction necessary on pure FFNNs is no
longer needed. Furthermore, the mechanism of shared weights due to sliding fil-
ters leads to a reduction of model parameters and, thus, a reduction of computa-
tional cost and training time[68]. It should be noted that successful CNN architec-
tures, such as the winning models of the ImageNet Large Scale Visual Recognition
Challenge[69], generally employ one or more fully connected layers downstream of
the convolutional architecture in order to obtain the output. Similarly, this work
employs hybrid CNNs architectures inspired by image classification architectures,

27

Chapter 2 | Background

with fully connected layers for output generation. This choice was made because
CNNs allow capturing complex patterns in the training data, which also applies to
the spatio-temporal relationships in the training dataset used in this work. Fur-
thermore, given the small dataset used, special attention was paid to the ability of
convolutional networks to obtain capable models with a low number of learnable
parameters, thanks to the mechanism of sparse connections and weights sharing,
reducing the risk of overfitting to the training data. This is expanded upon in Chap-
ter 4.

2.5.4.1 Padding

The convolution operation leads to a reduction in the dimensionality of the input.
The padding operation is introduced to keep the tensors’ dimensionality constant
and ensure the full convolution of the edge pixels. The size of the output of the
convolution operation is given in eq. (2.39).

!F × !ℎ =⇒ [(!F − F + 2 · %F) /(F + 1] × [(!ℎ − ℎ + 2 · %ℎ) /(ℎ + 1] (2.39)

Where Lw, Lh are the input tensor width and height, Kw, Kh are the kernel width
and height, Pw, Ph are the padding width and height and Sw, Sh are the stride width
and height. Assuming a unitary stride, the padding required to maintain tensor
dimensionality can be easily calculated.

2.5.4.2 Pooling

Fig. 2.13: Representation of the average pooling operation on a matrix of size 2x2.

Some of the proposed models use the pooling operation, shown in Fig. 2.13, to
reduce the dimensionality of the feature maps produced by the convolution oper-
ations. Thus, while the role of the convolution operation is to extract features, the
role of the pooling operation is to perform the merging of similar features. Conse-
quently, the pooling operation reduces the number of learnable model parameters,
resulting in a lower computational cost of the training process. It should be noted
that most modern CNN architectures do not use pooling layers, as they reduce ten-

28

2.5 Artificial Neural Networks and Deep Learning

sor dimensionality without any learnable parameter and, therefore, cause a net loss
of information within the network.

29

Chapter

Simulation setup and

methodology 3

Fig. 3.1: Representation (not at scale) of the com-
putational domain, with dimensioning.

The CFD simulation results used
to train the proposed neural net-
works were obtained using the
commercial CFD code ANSYS Flu-
ent (see section 3.1). Due to
the vast amount of data required
to train the neural networks, a
large number of simulations were
necessary. Consequently, special
attention was paid to reducing
the runtime as much as possible
while obtaining reasonably accu-
rate simulations. Consequently,

the analysis of high-accuracy 3D models such as DNS or LES simulations was
considered unfeasible (in the case of DNS) or problematic due to the high com-
putational cost and the resulting simulation time required to simulate hundreds of
scenarios. It was therefore decided to use 2D RANS simulations as the best compro-
mise between the time and computational cost constraints imposed by this work.

Preliminary simulations were carried out on common airfoil shapes. In addition,
different combinations of domain shapes and meshing methods were considered:
two of the domain shapes considered and two different meshing methods applied
can be seen in Fig. 3.2 and 3.3. Detailed information on the final choice of domain
shape and meshing method can be found in section 3.3.1. The proposed model
consists of a rectangular-shaped domain, shown and dimensioned in Fig. 3.1, with
a 70×110 m bounding box and discretized by a hybrid unstructured quad-dominant
block-mesh. The airfoil adopted is the NASA SC(2)-0714, part of the NASA SC
family of supercritical airfoils[70] and shown in Fig. 3.5. The airfoil, as can be seen
in Fig. 3.5, has a chord equal to 1 m and is positioned in such a way that for a zero

31

Chapter 3 | Simulation setup and methodology

Angle of Attack (AoA) the leading edge of the airfoil coincides with the origin of
the system axes; for non-zero AoAs, the airfoil has been rotated around the point
located at [0.25 m, 0 m], i.e. approximately around its neutral point.

The following sections explain in more detail the domain shape and the meshing
method used, the physical model used and the physical properties of the fluid, the
solver options, the data acquisition method, and, lastly, a sample of the results ob-
tained from the carried out simulations is presented.

Fig. 3.2: One of the considered do-
main shapes, after mesh refinement.
The circular domain was of excessive
size in front of the airfoil, increasing
the simulation runtime.

Fig. 3.3: One of the domain shapes initially con-
sidered, meshed using a semi-structured quad-
predominant block mesh whose cells presented an
excessive aspect ratio.

3.1 ANSYS Fluent

CFD simulations were carried out on ANSYS Fluent. It is a fluid dynamics sim-
ulation software developed by the American multinational company ANSYS, best
known for its CFD analysis software. The model developed for the numerical sim-
ulations is carefully described in section 3.4 to allow the reproduction of the results
presented here. The simulated systems were modelled locally on a PC thanks to the
ANSYS Fluent license the Politecnico di Torino provided. The high numerical cost
due to the accuracy and the number of simulation runs could not be managed on
a personal computer. The simulations were performed remotely on the Politecnico
di Torino High Performance Computing (HPC) clusters[71], to which I was kindly
granted access to complete this work.

32

3.1 ANSYS Fluent

3.1.1 FVM

The CFD implementation of ANSYS Fluent is based on the FVM formulation of
the Navier-Stokes equations. The Navier-Stokes equations are hyperbolic PDEs
governing the conservation of fundamental physical properties over time (see sec-
tion 2.1) and, as such, are conservation laws. The FVM is widely used in CFD as a
means to discretize the set of PDEs, converting them into an algebraic set of equa-
tions[72].

The integral form of the equations serves as the foundation for the FVM. The in-
tegrals are discretized by dividing the physical domain into finite volumes called
cells, generating a mesh[72,73]. The cell centre is typically assigned as a computa-
tional node where the relevant properties are calculated when solving the PDEs.
The cell centroid value of a physical quantity (e.g. velocity) is usually defined as
the average over the cell volume[72]. The conservation law is then written for each
cell, and by the divergence theorem, any terms containing a divergence or gradient
are written as a flux through the cell boundary. For example, given the eq. (3.1):

m(d&)
mC

+
m
(
dD 9&

)
mG 9

− m

mG 9

(
Γ
m&

mG 9

)
− (& = 0 (3.1)

This is the scalar convection-diffusion equation, a simplified equation that bears
an obvious resemblance to the equation of conservation of momentum shown in
eq. (2.8.b). Applying the divergence theorem, the integral form is as follows:∫

Ω

m(d&)
mC

3Ω +
∫
mΩ
(dD 9&)3 (mΩ) −

∫
mΩ
(Γ m&
mG 9

) (mΩ) −
∫
Ω
(&3Ω = 0 (3.2)

The spatial domain can be discretized by dividing it into cells. Assuming a one-
dimensional domain for simplicity, the previous equation can be rewritten for each
cell as: (

md&8

mC
+ (&,8

)
Ω8 +

8+1/2∑
:=8−1/2

((
dD:&: − Γ:

m&:

mG:

)
mΩ:

)
= 0 (3.3)

In the equation shown above, the volume integral is approximated by multiplying
the cell mean by the cell volume, and the sum of the fluxes at the cell boundary
replaces the surface integral. The time discretization is introduced by dividing the
physical time into discrete steps (timesteps).

The actual numerical scheme based on the FVM depends on both the spatial and
the temporal discretization and, most critically, on the reconstruction/estimation
method of the cell boundary fluxes. A schematization of an upwind FVM scheme

33

Chapter 3 | Simulation setup and methodology

Fig. 3.4: Schematization of an upwind FVM scheme of a 1D conservation law shown in the
space-time plane. Source: LeVeque, 2002[72].

can be seen in Fig. 3.4. The main benefit of the FV formulation is that these ap-
proaches are conservative because, as can be observed in eq. (3.3), the flux entering
a given cell volume is the same as the flux leaving the adjacent volume. These ap-
proaches are then conservative not only at a local (cell) level but over the entire
computational domain[30,72,73].

3.2 Parameters sweep

AoA Re M

Va
lu
es

3.0° 5.000·106 0.500

6.0° 6.250·106 0.550

9.0° 7.500·106 0.600

12.0° 8.125·106 0.625

13.5° 8.750·106 0.650

15.0° 8.375·106 0.675

16.5° 1.000·107 0.700

Tab. 3.1: Summary of the free pa-
rameters of the simulated model
and their respective values.

As shown in section 2.2, the body forces on
a rigid body in a stationary freestream are es-
sentially governed by the body geometry and
the Mach number and Reynolds number of the
freestream.

As mentioned above, the influence of the three
parameters on the dimensionless airfoil param-
eters, on the wake, and on the near-field was
explored by performing numerical simulations
as the parameters varied. A parameter sweep
was then performed, i.e. a simulation was car-
ried out for each combination of parameter val-
ues considered. The parameters under consider-

ation and their values are summarised in Tab. 3.1. For each freestream parameter,
7 different values were considered: the total number of scenarios considered is 343
(as #B8<B = + % = 73 = 343).

34

3.3 Model description

It is worth mentioning that the angle of attack obviously affects the mesh of the
simulated model (see section 3.3.1). In addition, the Reynolds number affects the
model mesh as the effect of the Reynolds number on the boundary layer thickness
was considered when generating a prism layer on the airfoil surface (for more in-
formation, see section 3.3.1.1). In addition, the necessary boundary conditions were
applied to each simulated scenario as the parameters varied. More information on
the BCs used and the relevant considerations for flow field variable matching are
explored in sections 3.4.5 and 3.4.5.3.

3.3 Model description

Fig. 3.5: Plot of NASA airfoil SC(2)-0714.
Airfoil coordinates retrieved from http://

airfoiltools.com/[74].

In the following subsections, the setup
of the simulated models is described
in detail, and the choices made are ex-
plained. The differences between the
various simulated scenarios resulting
from the parametrization of the phys-
ical system and the impact of the var-
ious free parameters on the mesh and
the BCs are also highlighted.

3.3.1 Mesh & domain shape

Mesh region Edge size [m] Growth Rate

Internal 10 1.2

Airfoil 0.004 1.015

Airfoil LE 0.001 1.015

Airfoil TE 0.001 1.015

Near-field 0.010 1.1

Wake 0.010 1.1

Freestream 10 1.2

Tab. 3.2: Summary of the principal mesh properties for
each mesh region.

As mentioned above, dif-
ferent domain geometries
and different domain spa-
tial discretization were eval-
uated, as shown in Fig. 3.2
and 3.3. Ultimately, the cho-
sen geometry is shown in
Fig. 3.1, which also high-
lights the domain dimen-
sions and airfoil positioning.
The rectangular-shaped do-
main was ultimately chosen
despite requiring more cells
at equal domain size compared with other geometries (i.e. D-shaped, parabolic

35

http://airfoiltools.com/
http://airfoiltools.com/

Chapter 3 | Simulation setup and methodology

Fig. 3.6: Mesh near the airfoil before
mesh adaptation. The mesh shown is
referred to the U=6°, Re=107, M=0.7
scenario. Notice how the mesh around
the trailing and leading edges is finer.

Fig. 3.7: Close up of the prism layer and the sur-
rounding quad/tria hybrid mesh.

shape, etc.)[75]. This is because it allowed the generation of a high-quality, high-
orthogonality, unstructured non-conformal mesh. The domain size, with a bound-
ing box of 120m×85m, is such that it allows the pressure freestream condition to be
met at the boundaries and improves the accuracy of the data produced, especially
at high AoAs[76].

Initially, the use of a structured mesh was considered. The advantage of this is that
the algebraic system of equations generated by the solver is diagonally banded: this
allows the use of low-cost matrix inversion methods that allow a less computation-
ally intensive resolution of the algebraic systems[40,75]. However, the inability to
perform adaptive refinement of structured meshes using ANSYS Fluent led to the
choice of using an unstructured, non-conformal mesh. The ability of unstruc-
tured meshes to adapt to complex geometries and cluster points in regions of high
gradient and curvature is another driving factor[40,75]. This feature was considered
critical since the parametric sweep required multiple meshes to be automatically
generated without direct oversight: structured or conformal unstructured meshes
suffered from low-quality elements or poorly formed prism layers for some of the
scenarios considered. In comparison, unstructured non-conformal meshes with the
ability to cluster cells at high curvature points allowed the generation of meshes of
higher quality.

As explained in section 3.2, the parameter sweep encompassed 343 unique scenar-
ios. Of the three free parameters considered (AoA, Re, M), only AoA and Re have an
a priori known effect on the model mesh: AoA because it changes the orientation
of the airfoil, and Re because it governs the thickness of the boundary layer (see
section 3.3.1.1). Therefore, 49 different meshes were automatically generated, one
for each unique combination of the examined values of AoA and Re. During the

36

3.3 Model description

Fig. 3.8:Mesh before adaptation. The mesh shown is referred to the U=6°, Re=107,
M=0.7 scenario. Notice how the mesh around the airfoil is finer and how the wake
mesh is finer.

simulations, the unique conditions of the considered scenario, including the Mach
number of the freestream and their influence on the mesh, were taken into account
by implementing adaptive mesh refinement (see section 3.3.1.2).

The resulting meshes contained an average of approximately 600,000 cells prior to
any adaptive refinement. As can be seen, the mesh on the airfoil is significantly
finer, with the average cell size being ~1 mm (before adaptation; minimum cell size
after adaptation ~0.2 mm). In addition, it was ensured that the near-field mesh
was fine enough to resolve the flow, resulting in an average near-field cell size of
about 8 mm. A wake refinement was also performed, enforcing an average cell size
of approximately 1 cm. A summary of the main mesh properties for each mesh
region is given in Tab. 3.2.

3.3.1.1 Prism Layer

In most practical flows, walls and barriers are a source of vorticity[40,47]. There-
fore, accurate prediction of flow and turbulence characteristics throughout the wall
boundary layer is crucial. To capture the significant transverse gradients (such as

37

Chapter 3 | Simulation setup and methodology

velocity and temperature) within the boundary layer, prism cells were generated by
extruding the airfoil surface. A detail of the mesh prism layer is shown in Fig. 3.7.
The flow-oriented high aspect ratio cells allow a high enough resolution without an
excessively fine mesh in the near-wall region, allowing a reduced mesh cell count.
Fig. 3.7 shows how the length and growth rate of the prism layer have been tuned to
ensure a smooth transition between the prism layer and the quad-dominant mesh.

Quantity Value

Number of cells 55

Growth factor 1.1

Total Thickness f (Re)

Avg. first cell y+ ~1

Tab. 3.3: Prism layer settings.

As highlighted in section 3.4.4, the prism layer
was set to be 55 cells high to resolve the trans-
verse gradient[48] accurately. In addition, as recom-
mended in the user manual[48,77], the cell growth
rate was set to 1.1 (see section 3.4.4). The number
of cells and the growth rate were chosen to ensure
a first cell y+ of ~0.5 (see section 3.4.4). An ad-hoc
mesh adaptation criterion was applied to the prism
layer to ensure a first-cell y+ in the range of 0.1-
10 to avoid excessive coarseness or excessive fineness of the prism layer (see sec-
tion 3.3.1.2).

The prism layer thickness was determined by estimating the boundary layer thick-
ness. Estimating the boundary layer thickness for a compressible turbulent flow
is not trivial as the data in literature is lacking[47]. A rough estimate was obtained
from the results published by Stratford et al. (1959)[78] on the compressible turbu-
lent BL over a flat plate. For a freestream Mach-adjusted Reynolds number ReX the
Boundary Layer (BL) thickness X is:

X (-) = 0.37-'4
−1/5
-

For ReX~106 (3.4)

X (-) = 0.23-'4
−1/6
-

For ReX~107 (3.5)

Where P is the parameter describing the dependence on the Mach number, X is the
integral average of the wall position over the parameter P

% =
[
"/

(
1 +"2/5

)]4 (3.6)

- = %−1
∫ G

0
%3G (3.7)

and the freestream Mach-adjusted Reynolds number is defined as '4- = *-
a
.

It is worth remarking that eq. (3.4) has the same structure as thewell-known Prandtl
expression for a turbulent incompressible boundary layer in a flat channel[79], that

38

3.3 Model description

is:
X (G) ≈ 0.37G'4

−1/5
G (3.8)

The Mach number distribution over the airfoil must be known in order to calcu-
late the factor P shown in eq. (3.6), necessitating a second simulation to estimate
the distribution. This was deemed costly and unnecessary and, as experimental
findings imply that at moderate Mach numbers, the boundary layer thickness is
nearly independent of Mach[78] (as can be seen in Fig. 3.9), it was opted to assume
that X≈x. Moreover, as the minimum simulated Reynolds number is 5·106, eq. (3.5)
(plotted in Fig. 3.10) was deemed the most representative of the actual BL thickness.
The Mach number distribution over the airfoil must be known in order to calculate
the factor P shown in eq. (3.6), requiring a preliminary simulation to estimate the
distribution. This was considered costly and unnecessary, and since experimen-
tal results suggest that at moderate Mach numbers the boundary layer thickness
is nearly independent of Mach[78] (as can be seen in Fig. 3.9), it was opted to as-
sume that X≈x. Furthermore, since the minimum simulated Reynolds number is
5·106 eq. (3.5) (plotted in Fig. 3.10) was deemed most representative of the actual
BL thickness.

The prism layer X?A8B< was then set to 1.2·X (!) to ensure that the entire boundary
layer was resolved (see section 3.4.4). The aforementioned prism layer characteris-
tics are summed in Tab. 3.3. It should be mentioned that, as the prism layer thick-
ness is Reynolds-dependent, every case scenario at different Reynolds resulted in a
different mesh (as previously explained in section 3.2).

Fig. 3.9: Velocity profiles and boundary layer
heights on an adiabatic flat plate for Prandtl
number Pr=0.75 and laminar flow. Source:
Rodney D. W. Bowersox, 2011[47].

Fig. 3.10: Turbulent compressible
boundary layer thickness X as a function
of the Mach-adjusted Reynolds number
ReX.

39

Chapter 3 | Simulation setup and methodology

3.3.1.2 Mesh Adaptation

Option Value

Maximum refinements per cell 3

Minimum cell size 0.0002 [m]

Tab. 3.4: Options of the mesh adaptation algo-
rithm.

As previously mentioned, a new
mesh was generated AoA) and
Reynolds Number. However, an
ideal mesh for every simulated
scenario depends on both the
Mach number and the presence
of shocks, transition regions, flow

separations, and other flow features, which cannot be accurately predicted dur-
ing the mesh generation. By employing solution-adaptive refinement, cells can be
added where needed, improving the flow field’s feature resolution and aiding ac-
curacy and convergence rate[48,77]. As the flow solution itself is used to identify
where additional cells should be placed, the resulting mesh should be well-suited
for the investigated system[48,77]. Ideally, no computational resources are wasted
by including unnecessary cells.

During mesh adaptation, cells are flagged to be refined or coarsened according to
an adaptation function and then adapted via the hanging-node method. The adap-
tation function has been implemented using cell registers, a tool for marking cells
according to specific user-defined criteria. Four user-defined criteria were defined,
based on 4 scalar field variables: d , p, T and |V|2 (that is, the Euclidean norm of
the velocity vector). This criterion was derived using the gradient approach (rec-
ommended with problems with strong shocks[77]). In this method, the Euclidean
norm of the gradient of selected flow field variables is multiplied by a distinctive
length scale (which in 2D corresponds to the cell area). The gradient function in
2D takes the following form:

|48 | = (�cell)
1
2 |∇i8 | (3.9)

Where i8 is the generic field variable value on the cell 8 and 48 is the function value
over the cell 8 . The resulting functions are normalized by their average value over
the domain.

Y8 =
|48 |
|4 |

(3.10)

The 4 functions obtained were used to define 4 cell registers to be used for adapta-
tion refinement and 4 cell registers to be used for adaptation coarsening, as sum-
marised in Tab. 3.4. The cell registers were used to construct the mesh adaptation
criteria, shown in eq. (3.11), boolean conditions governing the automatic mesh re-

40

3.3 Model description

finement.(
∇d'46. ∧ ∇?'46. ∧ ∇|\ |'46 ∧ '��2>D=C .

)
∨

(
∇d'46. ∧ ∇)'46. ∧ ∇|\ |'46 ∧ '��2>D=C .

)
∨

∨
(
∇?'46. ∧ ∇)'46. ∧ ∇|\ |'46 ∧ '��2>D=C .

)
∨

(
∇d'46. ∧ ∇?'46. ∧ ∇)'46. ∧ '��2>D=C .

)
(3.11)

Where:

• ∨ is the boolean OR operator.
• ∧ is the boolean AND operator.
• ∇d'46. is the cell register boolean value related to the density gradient on the
cells, averaged over the average domain gradient value.

• ∇?'46. is the cell register boolean value related to the gauge pressure gradient
on the cells, averaged over the average domain gradient value.

• ∇)'46. is the cell register boolean value related to the static temperature gra-
dient on the cells, averaged over the average domain gradient value.

• REFcount. is the refinement number boolean condition, which returns true if
the cell has been adapted fewer times than the maximum number of refine-
ments allowed (i.e. 3 cell adaptations). It can be expressed as Nref.<3.

The cells were flagged to be refined in cells where the adaptation function returned
a True value.

The boolean condition governing the automatic mesh coarsening, built from the
coarsening cell registers summed up in Tab. 3.4, is shown in eq. (3.12).

∇d'46. ∧ ∇?'46. ∧ ∇)'46. ∧ ∇|\ |'46 (3.12)

The cells were flagged to be coarsened in cells where the coarsening function re-
turned a True value. Once the cells are marked for adaptation, the mesh is adapted
via the hanging node method[48]. The method is named after the fact that the
meshes it produces are distinguished by nodes on edges and faces (known as hang-
ing nodes), generated by splitting cells. An example of the hanging node method is
shown in Fig. 3.11. To ensure accuracy, neighbouring cells cannot differ by more
than one level of refinement: this prevents the adaptation from causing excessive
variations in cell volume and ensures that the positions of the parent (original)
and child (refined) cell centroids are identical (reducing errors in the flux evalua-
tions)[48].

41

Chapter 3 | Simulation setup and methodology

Fig. 3.11: Examples of cell re-
finement via the hanging node
method.

Cell register Threshold value

(∇d)Reg., coars. <0.3

(∇?)Reg., coars. <0.3

(∇))Reg., coars. <0.3

(∇|\ |)Reg., coars. <0.3

(∇d)Reg., ref. >5

(∇?)Reg., ref. >4

(∇))Reg., ref. >4

(∇|\ |)Reg., ref. >5

Table 3.5: Gradient-based cell registers
and relative activation thresholds.

3.4 Physical model

This section discusses the selected physical models. The chosen models are sum-
marised in Tab. 3.6. The following subsections describe the selected models in more
detail if deemed necessary.

As already mentioned, the simulated system is two-dimensional and turbulent. The
free stream is assumed to be fully developed, i.e. the flow is already transitioned
(this corresponds to an intermittency W=1). The physics of the phenomena is ex-
pected to be unsteady, especially at high AoAs where processes such as separation
and reattachment are expected (see section 2.4.2). Due to the range of Mach num-
bers simulated and the compressible flow regime, adopting a coupled energy model
was deemed necessary, as recommended in the manual[48]. The coupled density-
based model simultaneously solves the governing equations for momentum, conti-
nuity and (as the coupled flow option was enabled) energy. Th equations for addi-
tional scalars (SST k-l model equations, W-Re\ equations) are solved sequentially
(i.e. separately from each other and from the coupled set).

3.4.1 Fluid Properties

In Tab. 3.7, the physical properties of the fluid are shown. The working fluid, air, is
considered to be an ideal gas. The molecular weight has been set as the constant
for dry air, i.e. a mixture of nitrogen, oxygen, hydrogen, argon and other trace

42

3.4 Physical model

Models and general settings Description/Notes

Gas See section 3.4.1

Ideal Gas See section 3.4.1

Transient

Coupled Flow

Turbulent

Two Dimensional

Operating Pressure 0 Pa

Density Based solver

Reynolds-Averaged Navier-Stokes See section 3.4.2

SAS-SST (Menter) k-l Turbulence See section 3.4.2.3

W-Re\ Transition See section 3.4.3.1

y+-Independent Wall Treatment See section 3.4.4

Tab. 3.6: Summary of the selected physical models and general settings.

gases. The molecular weight can be set as a constant as the fluid is considered non-
reactive. The specific heat is assumed to be constant: this is in agreement with what
was established in section 2.1, namely that the fluid can be considered calorically
perfect in the temperature range considered.

The dynamic viscosity and the thermal conductivity of the fluid have been set as
variable, following Sutherland’s Law, according to:

`

`0
=

(
)

)0

)3/2
)0 + (
) + (`0 = 1.716 · 10−5 Pa s)0 = 273.15 (= 110.4 (3.13)

Material Properties Value

Dynamic Viscosity f (Sutherland’s Law)

Molecular Weight 28.9664 kg kmol−1

Specific Heat 1003.62 J kg−1 K−1

Thermal Conductivity f (Sutherland’s Law)

Tab. 3.7: Material properties of the fluid.

43

Chapter 3 | Simulation setup and methodology

^

^0
=

(
)

)0

)3/2
)0 + (k
) + (k

^0 = 0.02414Wm−1 K−1)0 = 273.15 (^ = 194.0

(3.14)

It should be noted, however, that the freestreamdynamic viscosity and the freestream
thermal conductivity are set as constant since for each considered variation of the
freestreamMach and Reynolds numbers, the freestream temperature is set to a con-
stant value of T∞=293.15 K. Therefore, the Prandtl number of the freestream is set
as a constant.

%A∞ =
2?` ()∞)
^ ()∞)

= 0.6989 (3.15)

For more information on the topic, see section 3.4.5.3.

3.4.2 RANS & Turbulence modelling

Turbulence is an inherently tridimensional phenomenon. As such, it can be ar-
gued that 2D CFD simulations, which will be used to train the neural network (see
Chapter 4), cannot calculate an accurate flow field. Moreover, we cannot simulate
a fully 2D flow as 2D fluid dynamics and 2D turbulence present radically differ-
ent properties, such as the absence of the vortex stretching and tilting mechanism,
which causes local instabilities in the flow and the subsequent breakup of the vor-
tices into smaller ones. In fact, from the vorticity equation (eq. (2.14)) it can be
shown that, in a 2D fluid, as the velocity field u(x,y) only has 2 components (and
obviously holds no dependence on the x3 direction, so that any partial derivative
on that direction equals to zero) then the vorticity vector only has 1 component (to
be more precise 8=(0, 0, mD2

mG1
− mD1

mG2
). The vortex stretching-tilting term is equal to 0

as

l 9
mD8

mG 9
⇒ l3

(
mD1

mG3
+ mD2
mG3

)
=

(
mD2

mG1
− mD1

mG3

) (
mD1

mG2
+ mD2
mG3

)
= 0 (3.16)

In the absence of the stretching-tilting term, the energy cascade cannot be sus-
tained[38]. In these conditions, the vorticity’s material derivative is null, so each
particle retains its initial vorticity (ignoring the aid of viscous diffusion, which
tends to spread the vorticity out and make it uniform and the effect due to the
compressibility and baroclinic terms in eq. (2.14)). Moreover, it can be shown (and
it has been done by DNS of pure 2D flows[80]) that the breakup of turbulent struc-
tures into smaller ones does not occur. Instead, smaller turbulent structures tend
to coalesce into bigger ones, an obvious non-physical behaviour[80].

44

3.4 Physical model

A pseudo-2D simulation can be achieved by RANS turbulence modelling. The
RANS formulation is obtained by, in its most general form, by ensemble average of
the Navier-Stokes equations[30], where the ensemble average in defined as:

〈G (C1)〉 = lim
#→∞

1

#

#∑
8=1

G (8) (C1) (3.17)

And represent the average of the time-dependent quantity x over N realizations
of the same phenomena (e.g. wind tunnel experiments). The RANS equations are
obtained by applying the average operator in the Navier-Stokes equation. For ex-
ample, in eq. (3.19), the RANS for an incompressible flow are shown.

m 〈D8〉
mG8

= 0 (3.18)

d

(
m 〈D8〉
mC

+ m

mG 9

〈
D8D 9

〉)
= −m〈?〉

mG8
+ `∇2 〈D8〉 + d68 (3.19)

However, the averaged quantities can be decomposed as〈
D8D 9

〉
= 〈D8〉

〈
D 9

〉
+

〈
D′8D

′
9

〉
(3.20)

Resulting in the following expression of the averaged conservation of momentum
for an incompressible fluid.

d

(
m 〈D8〉
mC

+ m

mG 9

(
〈D8〉

〈
D 9

〉))
= −m〈?〉

mG8
+ `∇2 〈D8〉 +

m

mG 9

(
−d

〈
D′8D

′
9

〉)
+ d68 (3.21)

The RANS formulation allows the simulation of 2D turbulent flows as the equations
describe the behaviour of the average flow. As such a 2D turbulent can be described
by the RANS equations as a flow with a zero average velocity in one direction (for
example x3) and no dependence on that direction (such that every derivative on
that direction is equal to 0 and m(·)

G3
= 0). It can be observed that the linear terms in

the NS equations are left untouched. However, the average operation applied to the
nonlinear terms produced additional terms. For example, the incompressible equa-
tion of conservation of momentum in the RANS formulation shown in eq. (3.21) is
characterized by the presence of an additional term: the divergence of the tensor
'8 9 = d

〈
D′8D

′
9

〉
. This tensor, known as the Reynolds stresses tensor, can be interpreted

as the convection of momentum due to turbulent motion.

The RANS equations are solved for the average flow velocities 〈*8〉. Consequently,
the presence of the Reynolds Stresses gives rise to the so-called closure problem of

45

Chapter 3 | Simulation setup and methodology

turbulence[38,79] due to additional unknowns in the equations. A turbulence model,
which correlates the average flow to the Reynolds stress tensor, is needed to close
the equation system and numerically solve it. The choice of the appropriate turbu-
lence model is discussed in section 3.4.2.3.

3.4.2.1 Favre averaging

Applying the ensemble average operator (shown in eq. (3.17)) to the incompress-
ible Navier-Stokes equations will produce additional new terms due to the presence
of nonlinear terms. While in the incompressible formulation, the only new term
produced was the Reynolds Stress tensor, in the compressible formulation, the con-
tinuity equation presents an additional nonlinear term:

md

mC
+ m

mG8
(dD8)︸︷︷︸

Nonlinear term

= 0 (3.22)

Therefore, the continuity equation would produce the Reynolds stresses term due
to the 〈dD′8 〉 average. Moreover, averaging the compressible conservation of mo-
mentum equation would produce an additional term due to the decomposition (as
shown in eq. (3.20)) of the term 〈dD′8D′9〉. This further complicates the RANS for-
mulation for a compressible flow. However, as shown by Morkovin (1962)[81], even
at supersonic speed, the turbulence perturbations caused by turbulence are small.
The hypothesis holds if there is no significant heath conduction in the flow or if the
fluid can be considered chemically inert (e.g. absence of combustion). In such con-
ditions, the ensemble average can be substituted by the Favre average, also known
as mass average, shown in eq. (3.23).

D̃8 =
1

d̄
lim
)→∞

1

)

∫ C+)

C

d (x, g)D8 (x, g)3g (3.23)

Which can be rewritten as:
D̃8 =

〈dD8〉
〈d〉 (3.24)

So that the nonlinear terms in the compressible Navier-Stokes equations can be
rewritten as:

〈dD8〉 = 〈d〉D̃8 ⇒ −〈d〉D̃′8 (3.25)〈
dDDD 9

〉
= 〈d〉D̃8D 9 ⇒ −〈d〉D̃′8D′9 (3.26)

46

3.4 Physical model

From now on, to improve the notation readability, the Favre average and the en-
semble average will be represented by the overline symbol (·). Moreover, it should
be noted that

dD̃8 = dD8 + d′D′8 (3.27)

Where the ’ superscript denotes the fluctuating component of the ensemble aver-
age. Similarly, the Favre decomposition is written as:

D8 = D̃8 + D′′8 (3.28)

It follows that:
dD8 = d̄D̃8 + dD′′8 (3.29)

More detailed information on the Favre average and its application can be found in
Wilcox (2006)[30].

3.4.2.2 Compressible RANS equations

By applying eq. (3.23) to the compressible Navier-Stokes equations for a Newtonian
Fourier ideal gas (eq. (2.8)) the RANS compressible equations can be obtained.

md̄

mC
+ m

mG8
(d̄D̃8) = 0

m

mC
(d̄D̃8) +

m

mG 9

(
d̄D̃ 9D̃8

)
= − m?

mG8
+ m

mG 9

[
ḡ 98 − dD′′9 D′′8

]
m

mC

[
d̄

(
4̃ + D̃8D̃8

2

)
+
dD′′8 D

′′
8

2

]
+ m

mG 9

[
d̄D̃ 9

(
ℎ̃ + D̃8D̃8

2

)
+ D̃ 9

dD′′8 D
′′
8

2

]
=

=
m

mG 9

[
−@! 9 − dD′′9 ℎ′′ + g 98D′′8 − dD′′9

1

2
D′′8 D

′′
8

]
+ m

mG 9

[
D̃8

(
ḡ8 9 − dD′′8 D′′9

)]

(3.30.a)

(3.30.b)

(3.30.c)

(3.30.d)

It should be mentioned that the equations in the system shown in eq. (3.30) are
identical to their laminar counterpart except for the presence of the Favre-averaged
and ensemble-averaged terms.

3.4.2.3 SAS-SST k-8 model

The chosen turbulence model to achieve closure of the system shown in eq. (3.30)
is the SAS-SST k-l model. It is a modification of the Shear Stress Transport tur-
bulence model introduced by Menter (1994)[82]. The SAS-SST model is an eddy-
viscosity model which employs the so-called Boussinesq approximation winch cor-

47

Chapter 3 | Simulation setup and methodology

relates the Reynolds stresses to the eddy viscosity of the flow (a measure of the addi-
tional flow diffusivity due to the chaotic, turbulent motion) to the average velocity
field of the flow. It is a two-equation model which combines the widely used k-n
and k-l turbulencemodels: more specifically, the SAS formulation is amodification
of the classical RANS SST formulation that allows the resolution of smaller-scale
turbulence, resulting in improved accuracy of numerical results[48].

− D′8D′9 = aC
(
mD8

mG 9
+
mD 9

mG8

)
− 2

3
:X8 9 (3.31)

The additional eddy viscosity term aC has to be determined. By means of dimen-
sional analysis, it can be shown that aC = :

l
[84]1, where : is the turbulent kinetic2

Formally, the formula is
valid only for incompress-
ible flows. However, due to
the Morkovin’s hypothesis, it
holds true for moderate Mach
numbers.

energy andl is the kinetic energy specific dissipation rate. One fundamental differ-
ence between the molecular viscosity a and the eddy viscosity aC is that aC depends
on the fluid properties and the flow field structure. Thus, the value of aC over the
whole field needs to be calculated. The SAS-SST model’s modified ^-l transport
equation is shown in eq. (3.32) and (3.34)[82].

md:

mC
+ m

mG8
(dD8:) = �: − d2`:l + m

mG 9

[(
` + `C

f:

)
m:

mG 9

]
(3.32)

mdl

mC
+ m

mG8
(dD8l) =U

l

:
�: − dVl2 +&(�(+

m

mG8

[(
` + `C

fl

)
ml

mG 9

]
(3.33)

+ (1 − �1)
2d

fl,2

1

l

m:

mG 9

ml

mG 9︸ ︷︷ ︸
Cross-diffusion term

(3.34)

The turbulent kinetic energy can be directly obtained from the RANS conservation
of momentum equation (eq. (3.30)). The derivation is not shown as it is beyond
the scope of this work. The l equation is usually postulated in k-l models, and,
indeed, most of them differ on nothing but the structure of thel equation. The SST
model itself differs from the standard k-l model by the addition of a cross-diffusion
term in thel equation (shown in eq. (3.34)) and by the usage of different modelling
constants shown in eq. (3.35). While the omega quantity transport equation in the
SST model is postulated from the basic mechanical processes characterizing the
flow (i.e. unsteadiness, convection, production, dissipation, etc.) according to a
heuristic methodology, the SAS-SST formulation uses the formulation proposed by
Rotta (1968, 1972). In general, both equations are adapted by adopting additional
terms, the value of which is obtained semi-empirically and based on the turbulence
length scale.

48

3.4 Physical model

The family of k-l models have been widely used, and it’s proven to be accurate
in the near wall for attached boundary layers and in mildly separated flows[30,85].
Moreover, it provides good prevision even in the presence of shocks and shocks-
induced separations[30]. Even the standard k-l model has a sharp sensitivity to the
freestream value of l and gives less accurate results in free shear flows such as jets,
stratified flows or wake[30,82,85], the SAS-SST model overcomes such deficiencies.

�2 = tanh

[
max

(
2
√
:

V∗l~
,
500a

~2l

)]2
%: = min

(
g8 9
m*8

mG 9
, 10V∗:l

)
�1 = tanh

{
min

[
max

(√
:

V∗l~
,
500a

~2l

)
,
4fl2:

��:l~
2

]}4
��:l = max

(
2dfl2

1

l

m:

mG8

ml

mG8
, 10−10

)
q = q1�1 + q2 (1 − �1)

U1 =
5

9
, U2 = 0.44

V1 =
3

40
, V2 = 0.0828

V∗ =
9

100

f:1 = 0.85, f:2 = 1

fl1 = 0.5, fl2 = 0.856

(3.35.a)

(3.35.b)

(3.35.c)

(3.35.d)

(3.35.e)

(3.35.f)

(3.35.g)

(3.35.h)

(3.35.i)

(3.35.j)

The model mentioned above is implemented, in ANSYS Fluent, as the SAS-4 equa-
tion Transition SST model as it includes the necessary corrections to include the
W-Re\ transition model quantities W and Re\ .

3.4.3 Transition

As highlighted in section 2.4, the boundary layer is expected to transition near the
leading edge due to the high Reynolds number. Additionally, for high AoA, the BL
is expected to separate (stalling the airfoil) and, eventually, reattach to the surface,
producing recirculation bubbles over the airfoil upper surface. Additionally, at high
AoA, the boundary layer is expected to detach on a periodic basis, producing a von
Kármán vortex sheet, essentially behaving like a buff body. However, the boundary
layer separation region depends on the BL regime. That is, turbulent boundary lay-

49

Chapter 3 | Simulation setup and methodology

ers detach later than laminar ones[40,47] (see section 2.4.2). Due to the compressible
flow regime and high Reynolds number of the freestream, other complex flow be-
haviours are expected, such as shock-induced separations, consequent reattachment
of the boundary flow and later transition of the reattached boundary layer.

While the sparse flow field data used to train the neural network (Chapter 4) is
measured in the wake far from the body surface, the wake structure depends on
the separation point and the transition region. This required the implementation
of an additional transition model. The chosen model was the W-Re\ model.

3.4.3.1 $ -Re) transition model

The W-Re\ model is a two-equation transition model based on the coupling of the
aforementioned SST k-l turbulence model with the transport equations of two ad-
ditional scalar quantities: the flow intermittency W (see section 2.4) and the transi-
tionmomentum thickness Reynolds number '̃4\C (themomentum thickness Reynolds
number at the point of transition)[86]. The two equations are shown below.

m(dW)
mC

+
m
(
dD 9W

)
mG 9

= %W1 − �W1 + %W2 − �W2 +
m

mG 9

[(
` + `C

f5

)
mW

mG 9

]
(3.36)

m

(
d'̃4\C

)
mC

+
m

(
dD 9 '̃4\C

)
mG 9

= %\C +
m

mG 9

[
f\C (` + `C)

m'̃4\C

mG 9

]
(3.37)

Eq. (3.36) is the transport equation for intermittency, which regulates the produc-
tion and dissipation of turbulent kinetic energy k in the boundary layer.

Eq. (3.37) is the transition momentum thickness Reynolds number transport equa-
tion. The momentum thickness Reynolds number at transition is considered to
be dependent on the freestream flow conditions such as turbulence, fluid prop-
erties, etc.[86] (see eq. (3.39)). However, the turbulence properties and the Re\ t

value can change across the whole domain. The transition model then estimates
the freestream Re\ t value and treats Re\ t as an additional transported scalar which
can be convected and diffused into the boundary layer[48,86]. The momentum thick-
ness Re\ is defined as rescaled vorticity Reynolds number, that is:

'4\ =
'4lmax

2.193
=

d~2

`
mD
m~

2.193
(3.38)

The vorticity Reynolds number shown in eq. (3.38) is a local property easily com-
puted as it is a simple function of density, viscosity and vorticity.

50

3.4 Physical model

Both eq. (3.36) and (3.37) include unsteady, convection, dissipation/diffusion terms
and production/destruction terms. Those are not expanded upon so as not to devi-
ate from the scope of the present work.

It is important to note that the suggested transport equations are postulated (just as
the SST modell transport equation is) and serve as a foundation for the incorpora-
tion of experimentally derived correlations into general-purpose CFDmethods and
do not make any attempt at simulating the physics of the transition process[86].

The model employs 3 empirical correlations, whose values must be experimentally
measured[48,86]. They are shown in eq. (3.39).

'4\C = 5 ()D, _)
�length = 5 ('4\C)
'4\2 = 5 (4̃\C)

(3.39)

Re\ t is the Reynolds number value at the place where the velocity profile first de-
parts from a purely laminar profile, whereas Re\c is the Reynolds number value at
the location when turbulence first begins to develop. Flength is the distance from
the stagnation points at which the transition process starts.

The empirical correlations in eq. (3.39), obtained fromnumerical tuning of empirical
measurements

The functional relationship of the empirical correlations shown in eq. (3.39) was
obtained from the results published by Malan et al. (2009)[87] for the calibration
of the W-Re\ model for commercial CFD codes. The above relations were obtained
from numerical tuning of empirical measurements[87]. The empirical correlations
are shown in eq. (3.40).

'4\C = '4\2 = min
[
0.615 · R̃e\C + 61.5, R̃e\C

]
�length = min

[
exp

(
7.168 − 0.01173 · R̃e\C

)
+ 0.5, 300

] (3.40)

The coupling between the W-Re\ model and the standard SST turbulence model is
implemented by modification of the k equation (shown in eq. (3.32)). The equation
is modified as follows[48]:

m

mC
(d:) + m

mG8
(d:D8) =

m

mG 9

(
Γ:
m:

mG 9

)
+�∗

:
− . ∗

:
+ (: (3.41)

�∗
:
= W4 5 5 · �̃: (3.42)

51

Chapter 3 | Simulation setup and methodology

. ∗
:
= min

(
max

(
W4 5 5 , 0.1

)
, 1.0

)
· .̃: (3.43)

Where �̃: and .̃: are, respectively, the original production and destruction term of
turbulent kinetic energy shown in eq. (3.32).

The W-Re\ imposes new mesh requirements: that the mesh prism layer must have a
first cell centroid y+ value close to one in order to accurately represent the laminar
and transitional boundary layers[48]. In Fig. 3.12 and 3.13, the dependency between
the transition point and first cell centroid y+ for a flat plate is shown and compared
with experimental results. As shown in Fig. 3.12, if the y+ is too high (y+>5), the
starting position of the transition is moved upstream towards the leading edge of
the flat plate. In contrast, if the value of the first cell y+ is less than 0.001, the
transition location tends to move towards the trailing edge of the plate. As shown
in section 3.3.1.1, the first cell centroid y+ was chosen to have a value between 0.001
and 10, as this range of values had little effect on the solution[48]. Indeed, during
the performed simulations, the value assumed by y+ varied in the range 0.005-2.
An inflation layer expansion factor greater than 1.2 causes a noticeable upstream
offset of the transition point, presumably due to non-physical pressure gradients
between cells[48]. Therefore, as shown in section 3.3.1.1, the prism layer growth
factor was set as equal to 1.1.

Fig. 3.12: Effect of an increasing first-cell cen-
troid y+ on a flat plate friction coefficient.
Source: ANSYS Inc., 2022[48].

Fig. 3.13: Effect of a decreasing first-
cell centroid y+ on a flat plate fric-
tion coefficient. Source: ANSYS Inc.,
2022[48].

3.4.4 Near Wall Modelling and y+ wall treatment

The presence of walls considerably impacts every flow, be it turbulent or laminar.
The no-slip condition, which must be met at the wall and impose a null velocity on

52

3.4 Physical model

the body surface, significantly affects the velocity field. Moreover, the near wall re-
gion (particularly the buffer layer, see section 2.4) is where a significant amount of
turbulent kinetic energy is produced and is one of the primary sources of vorticity
in most flows[47,79]. In wall-bounded flows, the near-wall regions, where the flow
fields have significant gradients, and themomentum and other scalar transports are
most active successful predictions of the flow behaviour and the accuracy of nu-
merical solution strongly depends on near-wall modelling and precise description
of the flow in the region near the wall[40,47,79].

Fig. 3.14: Near-wall modelling of a wall-
bounded flow and the two applicable ap-
proaches. Source: ANSYS Inc., 2022[48].

The near-wall method is usually mod-
elled using two methods. The first ap-
proach uses wall functions and avoids
modelling and resolving the turbu-
lent boundary later innermost lay-
ers, the viscous sublayer and buffer
layer, which are strongly impacted
by viscosity[48,77]. To connect the
viscosity-affected region between the
wall and the fully turbulent zone,
semi-empirical formulas. In the Near-
Wall Modelling Method, the turbu-
lence models are changed to allow the viscosity-affected region, which includes
the viscous sublayer and the buffer layer, to be resolved with a mesh all the way
to the wall[48,77]. This method requires a sufficient spatial resolution of the bound-
ary layer mesh, requiring at least 20 cells to resolve the BL[48]. Moreover, the prism
layer must be thicker than the boundary layer in order to prevent the border layer’s
growth from being constrained by the prism layer[48]. For more information on the
model prism layer construction, see section 3.3.1.1.

3.4.4.1 The y+-Insensitive Wall Treatment ω-Equation

Thechosen k-l turbulentmodel (see section 3.4.2) employs, by default, a y+-insensitive
wall treatment, which can be applied for both well-resolved prism layers with low
y+ values and coarse prism layers with high y+ values. This is because the l equa-
tion (eq. (3.34)) can be integrated all the way down to the wall through the vis-
cous sublayer (in contrast with the n equation on which the k-n models family are
based)[48]. However, to obtain a y+ insensitive model, the viscous sublayer formu-
lation and the logarithmic layer formulation have to be blended through a blending

53

Chapter 3 | Simulation setup and methodology

function to obtain a law-of-the-wall applicable to the entire near-wall region. Us-
ing a function proposed by Kader (1981)[88] this is accomplished by combining the
linear (laminar) and logarithmic (turbulent) laws of the wall[48].

D+ = 4ΓD+
;0<

+ 41/AD+turb. (3.44)

) + =

(
)F −)?

)
d2?D

∗

¤@ = 4ΓC) +
;0<

+ 41/ΓC) +
turb (3.45)

Γ = −0 (~
+)4

1 + 1~+ (3.46)

ΓC = − 0 (%A~+)4

1 + 1%A3~+
(3.47)

Where a=0.001 and b=5.

3.4.5 Initial Conditions and Boundary Conditions

The following sections show the boundary and initial conditions applied to the sim-
ulated model. Additionally, the motivations behind the decisions made are high-
lighted. It should be noted how the boundary conditions described below depend
on the values assumed by the free parameters of the parametric sweep (see sec-
tion 3.2). Consequently, different BCs were applied for each simulated scenario.

3.4.5.1 Boundary Conditions: stationary walls and pressure far field

Quantity Value

Gauge Pressure p∞ [Pa]

Mach Number M∞

Flow Direction [1, 0]

Turbulent Intensity 0.5%

Turbulent Viscosity Ratio 10

Static Temperature T∞

Tab. 3.8: The Pressure Far-Field bound-
ary conditions user-defined Values.

The external domain boundaries have been
assigned the Pressure Far-Field Boundary
Condition. The BC is defined by the vari-
ables shown in Tab. 3.8: Gauge pressure,
Mach Number, Flow direction, Turbulent
Intensity, Turbulent viscosity ratio and
Static Temperature of the flow on the con-
sidered boundary.

Gauge Pressure The gauge pressure was
set to p∞ for every considered scenario.

This is because ANSYS Fluent solves the NS equations by substituting the real pres-

54

3.4 Physical model

sure with the gauge pressure[48,77], defined as:

?abs. = ?op. + ?gauge (3.48)

Where p is the thermodynamic static pressure, and pop. is the user-defined oper-
ating pressure, which was set, for each and every simulated scenario, as 0. Con-
sequently, the Gauge pressure was set as the freestream pressure p∞ computed as
described in section 3.4.5.3. This is done to reduce round-off errors during the solv-
ing process. Therefore, for all boundaries, as the operating pressure is equal to the
freestream pressure, the gauge pressure was set to zero; for more information on
the operating pressure, see sections 3.5 and 3.6.

Turbulent Intensity The turbulent intensity defined as:

) � =
D′

*
(3.49)

where U is the mean velocity and u’ is the root mean square of the turbulent ve-
locity fluctuations (defined as u′=u-〈u〉=u-U), has been set to 0.5%. This value was
considered acceptable and representative of the flow quality in a high-speed wind
tunnel[40,89].

Turbulent Viscosity Ratio The turbulent viscosity ratio, defined as the ratio be-
tween the eddy viscosity and the molecular viscosity `C ⁄` could not be estimated.
Additionally, as this parameter could have been used to fine-tune the heat conduc-
tion results, which could be argued to be a bad practice, it was set to the recom-
mended value for external aerodynamics problems equal to 10[48,77].

Adiabatic Wall BC A wall boundary condition was assigned to the airfoil surface.
The BC prescribes the no-slip condition (zero speed on the rigid stationarywall) and
a zero heat flow condition. This is equivalent to wall adiabaticity. Consequently,
the wall is expected to have a zero-tangent thermal boundary layer profile (see
section 2.4).

3.4.5.2 Initial Conditions and Hybrid Initialization

The simulation’s Initial conditions have been set thanks to the hybrid initialization
method provided by ANSYS Fluent. It solves two Laplace equations to produce a

55

Chapter 3 | Simulation setup and methodology

pressure field that smoothly connects high and low-pressure values in the compu-
tational domain and a velocity field that conforms to complex domain geometries.
The patching of all other variables, such as temperature and turbulence, is carried
out using domain averaged values[48]. Compared to the standard, uniform values
initialization, hybrid initialization aims to speed up convergence in the first itera-
tions.

Velocity Field The velocity field is obtained by solving the Laplace equation for
the velocity potential and applying the proper boundary conditions.

∇2i = 0 (3.50)

Where i is the velocity potential, defined as
®+ = ∇i (3.51)

The velocity normal to the wall is set to zero in a potential flow. Consequently, on
a wall:

mi

m=

����
wall
= 0 (3.52)

On a far field boundary (the only inlet/outlet boundaries applied to the model) the
user-specified free stream conditions are used to compute the velocity normal to
the boundaries.

mi

m=

����
inlet
= +⊥ (3.53)

Pressure Field To produce a uniform pressure field in the domain, a pressure
Laplace equation is solved with the suitable boundary condition.

∇2? = 0 (3.54)

On stationary walls, the pressure gradient normal to the surface is set to zero
m?

m=

����
wall
= 0 (3.55)

Additionally, on inlet boundaries (such as the Pressure Far-Field boundary condi-
tion) the applied pressure on the boundary is the gauge total pressure, namely the
total pressure on the boundary minus the set operating pressure on the model.

?1>D=30A~ = ?
0
1>D=30A~

− ?>?. (3.56)

Temperature Field The temperature is initialized on the entire domainwith a con-
stant value equal to the average of the specified temperatures on the boundaries.

56

3.4 Physical model

Turbulent Parameters Constant domain averaged values are used to initialize the
turbulent parameters.

3.4.5.3 Freestream conditions parametrization

As was shown in section 2.2, the body forces on a rigid body are essentially gov-
erned by the body geometry and the freestream flow Mach number and Reynolds
number. As previously mentioned, the Pressure Far-Field BC, which is specified by
the freestream Mach number, pressure and temperature, was applied to the model
inlet and outlet boundaries. As such, the proper pressure and temperature value to
apply to the BC needed to be found for every considered combination of M and Re.

Starting with the definition of Mach number and Reynolds number:

"∞ =
+∞
0
, '4∞ =

d+∞!

`
(3.57)

and substituting the following expression is obtained.

'4∞ =
d (?,))"∞2 ())!

`
(3.58)

Substituting the ideal gas law (? = d')) and the speed of sound formula (2 =
√
W'))

it can be shown that:

'4∞ =
?"∞

√
W')!

') ` ()) =
?"∞

√
W!

√
') ` ())

(3.59)

Where the dynamic viscosity is a function of temperature according to Suther-
land’s Law. The previous expression can be solved either for pressure as a function
of temperature or as temperature as a function of pressure. However, due to the
Sutherland model for viscosity, solving for temperature needs an iterative method.
Therefore, it was decided to solve for pressure as a function of temperature.

? =
'4∞` ())

√
')

"∞!
√
W

(3.60)

Note that the equation has 3 degrees of freedom. For this reason, it was decided
to have a constant temperature of 243.15 K (or -30℃). Subsequently, the freestream
dynamic viscosity was also fixed as a constant equal to `∞=f (T∞) according to
Sutherland’s Law. The pressure and temperature boundary conditions are shown

57

Chapter 3 | Simulation setup and methodology

in eq. (3.61).
)∞ = 293.15 K

?∞ =
'4∞` ()∞)

√
')

"∞!
√
W

Pa

(3.61.a)

(3.61.b)

3.5 Solver options

The following sections describe the most relevant solver settings and highlight the
reason such choices weremade. Some of the applied solver settings are summarised
in Tab. 3.9.

3.5.1 Timestep size and total physical time

Quantity Value

Timestep Fixed

Timestep size 0.0002 s

Number of timesteps 1500

Total flow time 0.3 s

Maximum inner iterations 10

Flux Scheme AUSM+

Courant number 100

Multi-grid coarsening 5

Operating pressure 0

Tab. 3.9: Summary of the most relevant
solver settings.

Timesteps were set to be of fixed size. The
choice to adopt a fixed timestep rather
than an adaptive one was made because
doing so allowed the dataset’s number of
features to be reduced (see section 4.3).
The simulation data, such as rake flow field
values and the airfoil dimensionless coeffi-
cient values, are time-dependent. There-
fore, each exported data item would need
to include the relevant physical time if
the timestep had been configured to be
simulation-dependent: given how the data
was encoded, this would have been equal
to adding a data channel to the 2D im-
age tensor of the exported data, which is
more precisely equivalent to adding a fea-

ture column to the dataset. Section 4.3 can be read for further details on the dataset
structure. As a result, a new channel and more trainable parameters would have
been added to the neural network. This was not deemed preferable due to the small
size of the dataset. Consequently, the fixed timestep size was set to 0.0002 s. This
value resulted frommultiple trials to obtain a timestep size that would allow amod-
erate number of maximum inner iterations (section 3.5.2) to be used and allow for
an appropriate accuracy and temporal resolution.

58

3.6 Data acquisition

The simulation total physical time was established both on a physical basis and by
iteratively running multiple simulations to establish the minimum required run-
time to resolve periodic unsteady flow features accurately and to obtain accurate
unsteady values of the nondimensional coefficients Cd, Cl, Cm.

3.5.2 Flux schemes and convergence

As previously stated, a density-based implicit transient solver was used. The eval-
uation of the flows on the cell faces is carried out in ANSYS Fluent using two pos-
sible schemes: Roe-FDS or AUSM+. Given the presence of supersonic shocks on
the airfoil’s upper surface, the AUSM+ scheme was chosen. With a comparable
computational cost[90], the AUSM+ scheme has several desirable properties: unlike
the ROE-FDS scheme, it does not suffer from shock instabilities and carbuncle flux
oscillations[91]. Furthermore, it preserves the positivity of scalar quantities (unlike
the Roe-FDS scheme, which can lead to the calculation of negative densities)[48,90]

and does not introduce artificial dissipation terms and is free from supersonic shock
flux oscillations[48,90]. Furthermore, in the case of tetrahedral and triangular grids,
it generates the most accurate results for supersonic shocks[92].

The inner iterations pseudo-timestep required to solve the algebraic system at each
timestep is governed by the user-defined implicit transient solver Courant num-
ber[48]. It was iteratively set to reach a good convergence of the inner iterations in
as few iterations as possible without compromising simulation stability[48].

3.6 Data acquisition

The dimensionless airfoil coefficients (Cl, Cd and Cm) data were exported for each
timestep. Rakes, surfaces with a predetermined number of nodes evenly spaced
between two predetermined endpoints[77], were used to sample the wake temper-
ature, pressure, and velocity data. Rakes simulates the instrumentation used to
measure experimental data in wind tunnel testing[93]. Fig. 3.15 displays the rakes,
each rake’s ID, and the position relative to the airfoil. Additionally, the number
of nodes on each rake, their size, and the spacing between nodes are tabulated
in Tab. 3.11. Instead, the physical quantities exported on each node are shown
Tab. 3.11. It should be noted that the rakes’ nodes have no connectivity. There-
fore, there is no guarantee that a rake node coincides with a cell centroid[77]: when
the rakes’ node does not coincide with a cell centroid, the value on the node is

59

Chapter 3 | Simulation setup and methodology

Exported training field variable Exported control field variable

Static pressure [Pa] Flow time [s]

Velocity magnitude [m/s] Node XY coordinates [m]

Velocity Angle [deg] Total pressure [Pa]

Static temperature [K]

Tab. 3.10: Exported field variables on the rake nodes. In the left column are the
variables later used to train the neural network. In the right column, the variables
used as a control to confirm the accuracy of the exported data.

Rake ID Rake Length [m] N. of nodes Node spacing [m]

1 2 201 0.01

2 3 301 0.01

3 2 201 0.01

4 3 301 0.01

5 4 401 0.01

Tab. 3.11: Rake ID’s (shown in Fig. 3.15) and corresponding geometric prop-
erties.

Fig. 3.15: Position of the rakes relative to the airfoil.
The corresponding identification number is shown
next to each rake. The orange arrows indicate the di-
rection of rake data acquisition and storage, while the
size and number of nodes on each rake are shown in
the table.

60

3.6 Data acquisition

computed by interpolation with the actual value of the surrounding cell centroids.
Node values interpolation involves two steps: first, the initialization sets the values
to the weighted average of adjacent cell values, with weights being inverses of the
cell volumes neighbouring the nodes. Then, at boundaries, the initially computed
node values are replaced by the straightforward average of the boundary face val-
ues[48]. The flow field values exported are shown in Tab. 3.10; note that only some
were used to train the neural network.

3.6.1 Fluid flow data sets

The collected data were used to compile 3 different datasets. Each one shares the
airfoil performance tensor (for the derivation and numerical procedure, see sec-
tion 4.3). The datasets are differentiated by the data collected on the rakes. Each of
the proposed neural network architectures was trained with each of the 3 datasets
to analyze the different learning capacities of the networks as the completeness
of the near-field information (see sections 3.6.1.1 and 3.6.1.2) and the quality and
spatial resolution of the wake data varied (see sections 3.6.1.2 and 3.6.1.3).

3.6.1.1 Box rake data set

The data from dataset 1 were continuously collected on rakes 1-4, as shown in
Fig. 3.15. It should be noted that as a result, the last data point collected on rake 4
and the first data point collected on rake 1 relate to physically adjacent nodes. This
dataset contains the most information about the near field. Consequently, higher
model performance is expected from neural networks trained with this dataset.

3.6.1.2 Wake rake data set

Thedata from dataset 2 was collected along the nodes of rake 1. As such, the dataset
only refers to wake data.

3.6.1.3 Far wake rake data set

The data from dataset 3 was collected along the nodes of rake 5. As shown in
Fig. 3.15, this rake is the furthest from the trailing edge of the wing, and most of
the rake surface falls outside the wake of the airfoil. As a result, neural networks
trained with this data set are expected to have lower accuracy.

61

Chapter 3 | Simulation setup and methodology

3.7 Model validation

Parameter Value

Angle of attack (AoA) 3.0°

Reynolds number (Re) 1.5·107

Mach number (M) 0.725

Tab. 3.12: Value of the parameter
sweep free parameters employed in
the model validation.

The model described in the previous sections
was validated by comparison with the experi-
mental data provided by Jenkins (1989)[94] and
Bartels and Edwards (1997)[95]. As previously
pointed out, themaximum accuracy of the sim-
ilarities was different from the goals of this
work due to the time and computational cost
limitations imposed by the number of simula-
tions to be carried out to construct the datasets.

Given the preliminary nature of this work, the primary aim was to create a dataset
of data with obvious physical sense, even if not of absolute accuracy. This choice
was partially imposed by the fact that few experimental data on dimensionless air-
foil coefficients in the transonic regime are accessible in the literature. In addition,
almost no data regarding coefficients in the post-stall field at high AoAs can be
found in the literature; consequently, a validation for high angles of attack was not
carried out, and the model was only validated for low AoAs.

Model validation was performed by comparing the pressure coefficient profile on
the airfoil for a physically stationary case at low AoA. Experimental data were ob-
tained from Jenkins (1989)[94] and Bartels and Edwards (1997)[95]. The simulations
were conducted according to the same methodology reported in the previous sec-
tions, and the values of the freestream parameters are shown in Tab. 3.12. As can
be seen in Fig. 3.16, the pressure coefficient values collected through CFD simula-
tions showed a good correspondence with the experimental results collected in the
wind tunnel. It can be seen that the CFD simulations predict a higher back pressure
near the leading edge than the wind tunnel tests found. This was expected, as it is
well known that RANS simulations of 2D airfoils tend to overestimate the lift and
underestimate the drag of airfoils.

62

3.7 Model validation

Fig. 3.16: Pressure coefficient over the airfoil for AoA=3°, Re = 1.5·107, M=0.725. CFD
results and experimental results are overlayed.

63

Chapter

Neural Networks

architecture & training 4
This chapter outlines the methodology for processing simulation data and design-
ing and implementing the deep-learning models. The architectures of the proposed
neural networks are explored, their main components are listed, and the design
choices are explained based on the literature and similar works.

The proposed networks were generated on TensorFlow[96], an open-source library
for artificial intelligence developed by Google, and the multi-branch, more complex
architectures were generated thanks to the TensorFlow Functional API[58].

4.1 Problem description

The proposed neural networks aim to predict the aerodynamic performance of an
airfoil in a compressible field as the angle of attack, Reynolds number, and Mach
number vary (from now on, these quantities will be referred to as freestream pa-
rameters). As expanded in Section 232, the time series of the airfoil aerodynamic
performance (i.e., the time-series of the 3 dimensionless coefficients Cl,Cd,Cm) are
expressed as the amplitudes and frequencies of the 3 principal harmonics of the
time series of the 3 dimensionless coefficients Cl,Cd,Cm

This is achieved by using as input the scalar parameters characterizing the free
stream (i.e. AoA, Re, andM) and near-field temperature, pressure, and flow velocity
wake data collected during every time-step of the CFD simulations on an envelope
in proximity to the airfoil. The aim is to simulate a hypothetical experimental wind
tunnel setup consisting of a rake positioned in the wake and near-field of the airfoil.

The networks then search for a relationship

� (U, '4,", Z ,p, \mag., \ang.) (4.1)

65

Chapter 4 | Neural Networks architecture & training

Since the proposed neural networks have a branched multi-input architecture in
which scalars (the freestream parameters) and spatiotemporal matrix data (the rake
data) are used as inputs, the function sought by the proposed neural networks can
be formalized as:

� :
(
R; ∪ R<×=×>

)
→ R?×@×A (4.2)

Where:

l is the number of freestream parameters U , Re, M. Its value is 3.

m is the number of rake nodes on which the near-field data has been collected on.

n is the number of time-steps in which the rake data has been collected. Its value is
750, i.e., the number of time-steps of the simulations actually used to calculate
the aerodynamic performance of the airfoil.

o are the physical quantities whose values have been collected in the near field (T,
p, Vmag., Vang.). Its value is 4.

p is the number of major harmonics obtained by the Fourier Transform of the time
series of dimensionless coefficients. As previously stated, it is equal to 3.

q is the data of the three major harmonics. Its value is 2, as only the frequency and
magnitude for each harmonic have been calculated.

r is the number of nondimensional coefficients (i.e. Cl, Cd, Cm) that have been
collected. Its value is 3.

The value of m, the number of rake nodes on which the near-field data has been
collected, differs for each of the three datasets considered (see section 3.6). The
number of nodes used for each dataset is given in Tab. 3.11 and 4.1. Consequently,
three different networks were produced for each of the proposed models, which
differ in the physical meaning of the datasets (full near-field envelope, near wake
data and far wake data) and the dimension of the inputs.

A fourth neural network (NN0) consisting of a simple FFNN was also trained to
compare the proposed models with a network of lower complexity. The proposed
FFNN has a simple single-input architecture in which scalars (the freestream pa-
rameters) are used as inputs, and the principal harmonics are used as network out-
puts. The function sought by the proposed neural networks can be formalized as:

� : R; → R?×@×A (4.3)

66

4.2 Dataset structure and encoding

Dataset Name # of timesteps # of rake nodes

Parameters & Harmonics (Dataset 0) N.A. N.A.

Box Rake (Dataset 1) 750 1000

Wake Rake (Dataset 2) 750 201

Far Wake Rake (Dataset 3) 750 401

Tab. 4.1: Names, number of time-steps and number of nodes of the rakes on which data
were collected for each dataset

4.2 Dataset structure and encoding

Fig. 4.1: Three-dimensional repre-
sentation of a rank 4 tensor. The ten-
sor shape represents how the sim-
ulation data were stored. Source:
Google LLC, 2023[58]. Modified by
the author.

The simulation data was encoded in tensors
to be used for training and testing the neural
network. As previously explained, the archi-
tectures considered are hybrid convolutional-
fully connected architectures. Therefore, the
rake data has been encoded as a 2D image with
multiple stacked channels.

Thus, for each sample, the near-field data has
dimension R<×=×2 . Where< × = is the size of
the image. n is the number of time-steps used
for training and thus encodes temporal infor-
mation;m is the number of nodes along which
rake data were collected and thus encodes spa-
tial information. Each of these 2D images en-
codes the data on all rake nodes and during
all time-steps for one of the physical quanti-
ties considered (e.g., the static pressure p). c is
the number of channels, corresponding to the
number of physical quantities collected from the rakes; thus, each of the 2D images
containing the near-field data for the physical quantities considered (T, p, Vmag.,
Vang.) is thus stacked along dimension c. The single sample near-field data is thus
encoded as a 3D tensor. The entire dataset dimension is R(×<×=×2 , as the 3D ten-
sors encoding the individual samples of near-field data are stacked along the S axis,
which indicates the number of samples. A visualization of the data structure that
was just stated is depicted in Fig. 4.1.

67

Chapter 4 | Neural Networks architecture & training

In contrast, the freestream parameters have no spatial or temporal component, as
the freestream parameters are kept constant during the simulations. The 3 param-
eters AoA, Re, and M were thus stored, for each dataset sample, as an array in
the space R? , where p=3. The entire dataset freestream parameter dimension is
thus R(×? , as the 1D arrays encoding the individual samples of near-field data are
stacked along the S axis, which indicates the number of samples.

The neural network output consists of the frequency and amplitude of the 3 primary
harmonics of the time series of the aerodynamic performance coefficients. The
output for each individual sample and individual coefficient has dimension R5 ×6,
where f corresponds to the number of harmonics considered, and g corresponds to
the calculated quantities (i.e., frequency and amplitude). Thus, for each individual
sample, the output is a tensor in the spaceR5 ×6×ℎ, where h is equal to the number of
dimensionless coefficients considered (i.e., 3). The entire dataset output dimension
is thusR(×5 ×6×ℎ, as the 3D arrays encoding the individual samples are stacked along
the S axis, which indicates the number of samples in the dataset.

A fourth dataset was compiled (named (Dataset 0) Parameters & Harmonics) con-
sisting only of the freestream parameters as input and the principal harmonics of
the aerodynamic coefficients as output. This dataset was used to train and perform
hyperparameter optimization on a simple FFNN (see Section 2324).

4.3 Data preparation & Storage

The data obtained from the 343 simulations carried out (see section 3.2 and Tab. 3.1)
were used to compile three different datasets. The 343 simulations were obtained by
varying the three freestream parameters (AoA, Re, and M). Each of the 3 freestream
parameters was assigned 7 equispaced values, and a simulation was carried out
for each combination of parameter values considered. The values assigned to the
parameters during the sweep are given in Tab. 3.1. The data obtained from the
simulations are:

• freestream parameters, which govern the parameter sweep performed.

• the near-field temperature, static pressure, velocity magnitude, and velocity
angle time-series data. Data were collected on rake nodes, surfaces that ap-
proximate the experimental setup for measuring data. The location of the
rakes and the number of nodes are shown in Fig. 3.15 and Tab. 3.11.

68

4.3 Data preparation & Storage

Fig. 4.2:Visualization of rakes’ data. The data shown belongs to the database 2 and
refers to the scenario characterized by freestream parameters AoA=9°, Re=6.25·106,
M=0.65.

Fig. 4.3: Fourier transform of the Cd time series (for AoA=9°, Re=6.25·106, M=0.65),
signal analysis, and approximate reconstruction using the DC component and the
two dominant harmonics.

69

Chapter 4 | Neural Networks architecture & training

• time-series of the dimensionless aerodynamic coefficients, i.e., the value of
the coefficients Cl, Cd, Cm over time.

Freestream parameters and rake data were used as inputs to the neural networks.
The encoding of the data is discussed in detail in section 4.2. The time series of the
aerodynamic performance coefficients Cl, Cd, and Cm were not directly used as out-
puts of the proposed networks. However, a Fourier transform was performed on
the time-series data to obtain, for each of the 3 dimensionless coefficients, the am-
plitude and frequency of the 3 primary harmonics of the time-series. The data thus
obtained was used as the output of the proposed neural networks. More detailed
information on the procedure is given in section 4.3.2.

The resulting data were used to compile 3 datasets, which differ in the location and
number of rake nodes on which the near-field temperature, pressure, and velocity
data were collected. It is good to note that all 3 datasets share the freestream pa-
rameters as inputs to the networks and the principal harmonics of the aerodynamic
coefficient time series as outputs. The datasets differ only in the near-field data’s
acquisition location and number of acquisition nodes. The 3 compiled datasets are
thus:

Parameters & Harmonics (Dataset 0) The dataset consist only of the freestream
parameters as input and the principal harmonics of the aerodynamic coefficients as
output. This dataset was used to train and perform hyperparameter optimization
on a simple FFNN (see Section 2324).

Box rake data set (Dataset 1) The data from dataset 1 were continuously collected
on rakes 1-4, as shown in Fig. 3.15. It should be noted that as a result, the last
data point collected on rake 4 and the first data point collected on rake 1 relate
to physically adjacent nodes. This dataset contains the most information about
the near field. Consequently, higher model performance is expected from neural
networks trained with this dataset.

Wake rake data set (Dataset 2) The data belonging to dataset 2 was collected
along the nodes of rake 1. As such, the dataset only refers to wake data.

Far wake rake data set (Dataset 3) The data belonging to dataset 3 was collected
along the nodes of rake 5. As shown in Fig. 3.15, this rake is the furthest from the

70

4.3 Data preparation & Storage

Dataset Name
Freestream parameters input

[samples×n. of parameters]

Rakes data input

[samples×timesteps×# of nodes×channels]

Principal harmonics of the coefficient time series

[samples×# of harmonics×frequency and amplitude×# of coeffs.]

Box rake data set (Dataset 1) 343×3 343×1000×1000×3 343×3×2×3

Wake rake data set (Dataset 2) 343×3 343×1000×201×3 343×3×2×3

Far wake rake data set (Dataset 3) 343×3 343×1000×401×3 343×3×2×3

Tab. 4.2: Names, input and output sizes of the databases used in neural network training.

trailing edge of the wing, and most of the rake surface falls outside the wake of the
airfoil. As a result, neural networks trained with this data set are expected to have
lower accuracy.

The input and output sizes of the 3 datasets are shown in Tab. 4.2. Thus, 3 variants
(one per dataset) were produced for each of the proposed architectures, differing in
the size of the rake data input and the size of the upsampled freestream data.

The processes of data clean-up, normalization of the input data, and Fourier trans-
form are discussed in the following subsections.

4.3.1 Data clean-up

The results of the first time steps are the consequence of a transient between the
initialized field and the real flow field of the simulated system. The data of the first
700 time-steps of the simulation were considered non-physical and not fit to train
the neural network as they were overly dependent on the ICs of the simulations.
Consequently, for each dataset, the data from the first 700 time-stepswere not taken
into account, and the dataset is comprised only of the last 750 time-steps.

4.3.2 Fast Fourier Transform of the nondimensional coefficients

time-series

As mentioned previously, the airfoil performance prediction networks (see sec-
tion 4.11) use the scalar parameters of the freestream and near-field data to predict
the airfoil performances, which are encoded as the amplitudes and frequencies of
the 3 principal harmonics of the time series of the nondimensional airfoil coeffi-
cients (i.e. Cd, Cl, Cm).

The nondimensional coefficient time series were processed by applying a Fourier
transform to obtain the dominant harmonics of the time series. The dominant har-
monics were then identified, and the original signal was reconstructed by extrapo-
lating the DC component of the signal (i.e. the 0 Hz harmonic) and the magnitude

71

Chapter 4 | Neural Networks architecture & training

and phase of the successive two dominant harmonics. A visualization of the pro-
cess of time series transformation and subsequent signal reconstruction is shown in
Fig. 4.3. The reconstructed signals were then encoded, for each sample, as a 3×2×3
tensor, where the first axis refers to the 3 dominant harmonics, the second axis
refers to the magnitude and frequency of the dominant harmonics, and the third
axis refers to the various nondimensional coefficients (in order,Cd, Cl, Cm).

4.3.3 Normalization

Fig. 4.4: Distribution of the Rakes data after being normalized using the values given in
Tab. 4.3.

Data normalization aims to obtain data with a similar scale, i.e., a comparable nu-
merical value. The importance of normalization in obtaining high-quality and ro-
bust models has long been recognised[97].

The scalar parameters characterizing the free stream (i.e. AoA, Re, M) have been
normalized by scaling over a fixed range as shown in eq. (4.4).

G=>A< =
G − G<8=

G<0G − G<8=
(4.4)

where x is the normalized quantity, xmin is the minimum value assumed by that
quantity and xmax is the maximum value assumed. Fixed range normalization could
be applied because the values and distribution assumed by the scalars character-
izing the freestream were known a priori, having been set and varied during the

72

4.3 Data preparation & Storage

parameter sweep (see section 3.2). Therefore, the normalization values applied are
the minimum and maximum parameter sweep values given in Tab. 3.1.

The near-field flow data acquired on the rakes did not appear to follow a normal
or otherwise simple distribution along each of their axes. For this reason, it was
decided not to standardize the data and scale the rake data over a fixed range ac-
cording to the physical quantity represented. Each of the physical quantities (Vangle,
Vmag, T, p) was normalized according to the formula in eq. (4.4): the normalization
values applied are shown in Tab. 4.3. It should be noted that the applied values are
known a priori and are derived from a physical knowledge of the simulated system,
as they refer to the maximum and minimum values assumed in the freestream dur-
ing the parameter sweep by the relevant physical quantities (see section 3.4.5.3).
The fixed range normalization could be applied equally to all datasets and splits, as
the a priori knowledge would not cause any information leakage from the training
dataset to the validation and test datasets.

The neural network output was normalized by z-scaling, which usually involves
transforming each feature in the dataset to have a mean of 0 and a standard devi-
ation of 1. For the present work, z-scaling was done to ensure a mean of 1 and a
standard deviation of 1. This choice was imposed by the metrics chosen (see the
dedicated section 2424) that measure relative error. An output mean of 0 would
have led to a floating-point exception because of the division by 0. A z-scaling of 1
prevents this. This is achieved by applying the following formula to each feature:

I =
G − `
f

+ 1 (4.5)

Where x is the feature data, z is the normalized feature data, ` is the feature mean,
and f is the feature standard deviation. It should be noted that the mean and stan-
dard deviation data used for normalization of the output are referenced to the train-
ing datasets to avoid information leakage from the training datasets to the valida-
tion and test datasets.

4.3.4 Database shuffling and splitting

The data was shuffled before using the datasets to train the neural networks. This
was done to prevent the model from being influenced by the order of the data.
Additionally, the training data was shuffled between epochs, to prevent the models
from memorizing the order of the training data.

73

Chapter 4 | Neural Networks architecture & training

Physical quantity Channel xmax xmin

Velocity angle [rad] 1 c
2 0

Velocity magnitude [m/s] 2 M∞,max·c(T∞) M∞,min·c(T∞)

Temperature [K] 3 T∞ 0

Pressure [Pa] 4 '4∞,<0G ` ()∞)
√
')

"∞,<8=!
√
W

'4∞,<8=` ()∞)
√
')

"∞,<0G!
√
W

Tab. 4.3:Normalization values of the rakes data. for more information on the
values chosen, see section section 3.4.5.3.

The datasets have been split into three subsets, resulting in a training set to train
the networks, a validation set to verify the models’ effectiveness, and a test set.
Due to the small dataset, the validation and test split used are respectively 0.2 and
0.1: that is, 20% of the original datasets were reserved for model validation, and
an additional 10% were reserved for model testing. After the split, it was manually
checked that the validation and test datasets were representative of the original
datasets and did not have different characteristics from the original dataset.

4.4 Activation Functions

Database Split # of samples

Total 343

Training 240

Validation 68

Test 35

Tab. 4.4: The number of samples in each
database split. The same split was ap-
plied to all 3 datasets used for train-
ing the networks and described in sec-
tion 4.2.

The effect of using different activation
functions was investigated. The func-
tions considered are Rectified Linear Unit
(ReLU), GELU, and Swish. All 3 activation
functions are plotted in Fig. 4.5. Their for-
mulas are shown below:

RELU(G) =<0G (0, G) (4.6)

GELU(G) = 1

2
G

(
1 + erf

(
G
√
2

))
(4.7)

SWISH(G) = G sigmoid(VG) = G

1 + 4−VG
(4.8)

The three activation functions were set as hyperparameters of the middle layers of
the hypermodels to guarantee the use of the activation function that guarantees
the best model per architecture. For each hypermodel, the ReLU activation was set

74

4.5 Loss function & performance evaluation metric

as the default. Similarly, the base models evaluated prior to the optimization of the
hyperparameters were constructed using the ReLU activation. Since the problem
addressed is regressive, the output layers of the proposed models have a linear
activation function[61].

Fig. 4.5: Plot of the ReLU, GELU ans Swish
activation functions in the range [-4, 4].

At the time of writing, no other work
is known in which models employing
GELU or Swish activation functions
have been used to predict the aero-
dynamic performance of wings or air-
foils. This was not considered a prob-
lem as Swish and GELU were consid-
ered valid to be a drop-in replacement
for ReLU[63].

4.5 Loss function & performance evaluation metric

For each proposed architecture, the loss function implemented is the Root Mean
Squared Relative Error (RMSRE). Initially, the use of Mean Square Error (MSE), a
common choice for regressive networks, was considered; however, MSE was dis-
carded because preliminary tests showed that the loss function RMSRE produced
networks with better generalization capability, both in terms of RMSRE metric and
MSE metric. The formula for calculating the RMSRE is shown in eq. (4.9).

XSYXK =

√√√
1

#

#∑
8=1

(~̂8 − ~8)2

~̂8
2

(4.9)

As a relative function, RMSREmeasures the relative error between the ground truth
and the output of the neural network and exactly as MSE characteristic of the RM-
SRE is that it strongly penalizes outliers.

MSE was kept as a metric to ensure multiple ways of evaluating the performance
of neural networks were available. The formula for calculating the MSE is shown
in eq. (4.10).

MSE =
1

#

#∑
8=1

(~̂8 − ~8)2 (4.10)

75

Chapter 4 | Neural Networks architecture & training

4.6 Regularization

Given the small dataset, the use of regularisation techniques to reduce the risk of
overfitting was considered necessary[26,27,98], even tough CNNs are particularly re-
silient to overfitting[26]. This was achieved by employing Dropout Regularization
and L2 regularization. The combination of those regularization techniques is not
uncommon and was initially proposed by Srivastava et al. (2014)[56] in the work
which introduced the Dropout method. The working of both regularization tech-
niques is discussed in section 2.5.2

For every model proposed, the actual value of the dropout rate and regularization
rates value have been determined by setting them as hyperparameters and per-
forming hyperparameter optimization (see section 4.12).

4.7 Custom cylindrical padding

Similar works usually employ zero-padding, where the tensor is padded with ze-
ros[9] Although this preserves the tensor dimensionality, the operation is obviously
non-physical. Furthermore, as reported in section 3.6, Dataset 1, which collects
data from rakes 1, 2, 3, and 4, is cylindrical on the space axis. i.e., the data at the
beginning and end of the space axis are referenced to adjacent points in the com-
putational domain. In order to ensure a complete convolution of the edge pixels
and to introduce padding with physical reasoning behind it, a custom padding layer
was implemented in TensorFlow. An example of the custom padding layer imple-
mented in TensorFlow is shown in eq. (4.11). The padding is here applied to a 2D
slice of a 4D tensor. As can be seen, zero padding is applied along the temporal
axis, while periodic padding is applied along the spatial axis.

2 3 4 5 6

7 8 9 10 11

12 13 14 15 16

17 18 19 20 21

22 23 24 25 26

================⇒
Cylindrical Padding

0 0 0 0 0 0 0 0 0

5 6 2 3 4 5 6 2 3

10 11 7 8 9 10 11 7 8

15 16 12 13 14 15 16 12 13

20 21 17 18 19 20 21 17 18

25 26 22 23 24 25 26 22 23

0 0 0 0 0 0 0 0 0

(4.11)

76

4.8 Pooling

It should be noted that although dataset 1 was the only periodic dataset along the
spatial axis, cylindrical padding was used for each dataset. This is because, in ad-
dition to being considered closer to the actual physical conditions of the system,
cylindrical (or periodic) padding leads to comparable or better results when ap-
plied to fluid-dynamic data, as demonstrated by Morimoto et al. (2021)[9]. More-
over, the padding algorithm follows the built-in implementation within Tensor-
Flow Conv2D[58] convolutional layer. This is because, although not explicitly ex-
plained in the documentation, the padding applied by layers belonging to the Conv
class differs in implementation and behaviour from the padding applied by the Ze-
roPadding2D[58] layer.

4.8 Pooling

The pooling operations considered in this work during the HPO process are max
pooling and average pooling.

In addition, the proposed networks use Global Average Pooling (GAP) as an al-
ternative to flattening at the network’s end for dimensionality reduction and fea-
ture extraction. Global Average Pooling performs spatial pooling across the entire
feature map of each convolutional kernel and allow for a reduction in the model
parameters.

4.9 Scalar values input position

Fig. 4.6: The basic CNN shown in the figure employs the freestream data upsampling
and reshaping used in all the proposed networks. A fully connected layer upsamples the
freestream parameters array, and the output is upsampled and reshaped by a deconvolu-
tional layer. The resulting tensor is concatenated with the near-field data tensor. The re-
sulting 7-channel (4 channels encoding the near-field data and 3 channels encoding the
freestream parameters upsampled data) is used as the input of the rest of the network.

77

Chapter 4 | Neural Networks architecture & training

As noted in section section 2.2, the drag and lift produced by a body immersed
in a uniform freestream are governed by the characteristics of the freestream and
the geometry of the body, i.e. shape and angle of attack.As such, in literature on
predicting airfoil aerodynamic performance, freestream parameters are commonly
used as additional inputs to neural networks[7,9–11]. Generally, for convolutional
networks, the scalar inputs are added to the network in the last layers after flat-
tening the output of the convolutional layers. However, as noted by Morimoto
et al. (2021)[9], the predictive ability of CNNs for estimating aerodynamic perfor-
mance can be improved, particularly for small datasets, by introducing the addi-
tional scalar inputs (AoA, Re, M) in the upstream layers. This was done by up-
sampling the scalar inputs via ConvTranspose2D[58] layers and concatenating the
resulting matrix to the input tensor of the neural networks. The process is shown
and expanded upon in Fig. 4.6. The approach of introducing scalar inputs into CNNs
through upsampling is not unprecedented, and there are works in the literature that
apply the same technique to other tasks[99].

4.10 Convolutional layers filters’ size

Convolutional networks generally use square kernels (as the inputs to the networks
are generally square tensors). However, preliminary tests on incomplete datasets
highlighted that all proposed baseline models performed better with non-square
kernels. This can be explained by the fact that the tensors’ numerical data encodes
data with different physical meanings on the first two axes (the first axis refers to
the time-series, the second axis to the spatial location of the data; see section 4.2)
with two different scales (the rakes data are collected over several metres, while the
data are collected over a flow time of 0.15 s). For this reason, the kernels’ height
and width were set as hyperparameters of the hypermodels, and the use of a non-
square kernel of size [3, 5] was initially considered for the baseline models but
it was discarded in favour of a kernel size [3, 3] to reduce the number of model
parameters. A default lower-size kernel was preferred as it was assumed that this
could lead to a reduction in the number of trainable parameters and, consequently,
facilitate the training process

78

4.11 Proposed architectures

4.11 Proposed architectures

As previously mentioned, multiple CNN-based neural network architectures were
considered.

4.11.1 FeedForward Neural Network (FFNN)

The Feed-Forward architecture considered is the simplest in this paper. It consists
of a sequence of fully connected layers followed by a single Dropout layer. It uses
the freestream parameters as input and the principal harmonics of the aerodynamic
coefficients as output. It is used as a benchmark to test the performance of convo-
lutional networks against a simpler network that lacks the additional information
given by the near field flow data obtained on the rakes.

4.11.2 Base CNN

The proposed basic CNN architecture (conceptually shown in Fig. 4.6) is the sim-
plest convolutional network considered in this work. Comprising alternating con-
volutional layers and average pooling layers, each convolutional layer employs
small filter sizes (5×5)to capture local features, followed by average pooling lay-
ers to downsample and extract the most relevant information, utilizing rectified
linear unit (ReLU) activation functions throughout the network introduces non-
linearity and aids in feature extraction. The multi-branch input comprises fully
connected layers and a Transposed Convolution layer to upsample the freestream
input, which is then concatenated to the rake data (see section 4.9). The final layers
consist of fully connected layers, a linear activation for the regression task, and a
reshape layer to obtain the output tensor with the desired shape.

This basic CNN architecture is intended to learn the essential input data patterns
while keeping the model’s complexity low. It was used as a benchmark against
which successive, more complex architectures were evaluated. The proposed ar-
chitecture is shown in Fig. 4.8.

79

Fi
g.
4.
7:

Fl
ow

ch
ar
to

ft
he

pr
op

os
ed

Fe
ed

Fo
rw

ar
d
N
eu

ra
lN

et
w
or

k
(F
FN

N
)

(N
N
0)

ar
ch

ite
ct
ur

e.
Fi
g.

4.
8:

Fl
ow

ch
ar
to

ft
he

pr
op

os
ed

Ba
si
c-
CN

N
(N

N
1)

ar
ch

ite
ct
ur

e.

80

Fi
g.

4.
9:

Fl
ow

ch
ar
to

ft
he

pr
op

os
ed

Re
sN

et
-li

ke
(N

N
2)

ar
ch

ite
ct
ur

e.
Fi
g.

4.
10

:F
lo
w
ch

ar
to

ft
he

pr
op

os
ed

D
en

se
N
et
-li

ke
(N

N
3)

ar
ch

ite
ct
ur

e.

81

Chapter 4 | Neural Networks architecture & training

4.11.3 ResNet-like

Fig. 4.11: A residual block, showing the
skipped connection distinguishing of the
ResNet family. Source: He et al., 2016[100].

The ResNet (Residual Network) fam-
ily of neural networks has been pri-
marily employed in computer vision
problems, and it has been designed to
address the degradation problem en-
countered when training very deep
neural networks. The degradation
problem refers to the difficulty of
training deep networks as their depth
increases. Deeper networks tend to
suffer from diminishing accuracy, becoming more challenging to optimize and
prone to overfitting. ResNet introduces the concept of residual learning to over-
come this issue.

The core building blocks of ResNet are residual blocks, shown in Fig. 4.11. These
blocks contain skip connections, shortcut connections or identity mappings, allow-
ing the network to learn residual functions. Instead of directly attempting to learn
the desired underlyingmapping from the input to the output, residual blocks aim to
learn the residual mapping by fitting the difference between the input and output.
This helps in training deeper networks more effectively. The skipped connections
allow information to bypass one or more layers and be directly fed into deeper lay-
ers. Doing so, they mitigate the vanishing gradient problem, which occurs during
backpropagation in very deep networks. Skip connections facilitate the flow of gra-
dients through the network, enabling easier optimization of deeper architectures.
This enables the possibility of building a very deep network without an excessive
increase in the free parameters of the network.

Typically, a global average pooling layer is employed at the end of the network
instead of fully connected layers with large numbers of parameters. This pool-
ing layer reduces overfitting and the number of parameters, making the network
more computationally efficient. The global average pooling is used in the proposed
ResNet-like architecture.

As noted in section 4.9, the proposed architecture upsamples the freestream param-
eters input and concatenates the resulting tensor to the rakes input. The resulting
tensor is used as input to the ResNet network. Additionally, unlike the ResNet
networks used for computer vision, the output of the proposed network consists
of a fully connected layer and subsequent reshaping of the output to obtain the

82

4.11 Proposed architectures

principal harmonics of the aerodynamic coefficients. The architecture is shown in
Fig. 4.9.

The proposed architecture is based on ResNet-34, whose original architecture was
first proposed in the original work of He et al. (2016)[100], as shown in Figure 23. As
seen in Fig. 4.9, in ResNet-34, the basic residual block consists of two convolutional
layers along with a shortcut connection that skips one layer. Thus, the proposed
baseline architecture employs two convolutional residual blocks.

Fig. 4.12: ResNet structure defined by the authors in the original pa-
per[100]. Source: He et al., 2016[100].

In contrast, more complex architectures such as ResNet101 employ bottleneck blocks,
which consist of three convolutional layers: 1x1, 3x3, and 1x1 convolutions, where
the 1x1 convolutions are used to reduce and then restore the dimensions of the
input feature maps. The use of bottleneck layers was set as a hyperparameter for
ResNets.

4.11.4 DenseNet-like

DenseNet (Densely Connected Convolutional Network) is a deep convolutional
neural network architecture based on ResNet, withwhich it shares the use of skipped
connections—known for its densely connected layers, designed to address the chal-
lenges of feature propagation and gradient vanishing in very deep networks[101].
Within each dense block, layers share information through densely connected fea-
turemaps. The structure of a dense block is shown and further explained in Fig. 4.13.
DenseNet architectures typically employ bottleneck layers, consisting of a com-
bination of 1x1 convolutions followed by 3x3 convolutions. This design reduces
the number of input feature maps before the 3x3 convolution, which reduces the
number of parameters. Between dense blocks, transition layers are used to down-

83

Chapter 4 | Neural Networks architecture & training

Fig. 4.13: Representation of a DenseBlock. Each layer within the Dense-
Block consists of convolutional layers followed by batch normalization
and rectified linear unit (ReLU) activation. The skip connections concate-
nate the feature maps of all previous layers with the current layer’s out-
put, allowing each layer to directly access and utilize the feature maps
produced by all preceding layers. This architecture improves feature
propagation and helps learn hierarchical patterns by feature reuse and
improved information flow[101]. Source: Alshazly et al., 2021[102].

sample feature maps by incorporating convolutional layers and pooling operations
(e.g., through the use of 1x1 convolutions). These layers help reduce the dimen-
sionality of feature maps while controlling the number of parameters and reducing
computational cost. The dense connections mitigate the vanishing gradient prob-
lem, enabling the practical training of very deep networks while enabling feature
reuse (by skipping connections); DenseNet efficiently utilizes parameters, leading
to better parameter efficiency[101].

As noted in section 4.9, the proposed architecture upsamples the freestream param-
eters input and concatenates the resulting tensor to the rakes input. The resulting
tensor is used as input to the DenseNet network. Additionally, unlike the ResNet
networks used for computer vision, the output of the proposed network consists
of a fully connected layer and subsequent reshaping of the output to obtain the
principal harmonics of the aerodynamic coefficients. The architecture is shown in
Fig. 4.10

4.12 Models training

The methodology for training the proposed architectures and the subsequent HPO
process to improve the performance of the models is presented in the following sec-
tion. The main choices made in the training process are described, and the reasons

84

4.12 Models training

for them are discussed. The results of the baseline models before the optimization
of the hyperparameters are then shown. The hypermodels and hyperparameters
that varied during the HPO process are then defined. A schematic representation
of the procedure is shown in Fig. 4.14.

Baseline models were trained on CPU for ease of testing and to compensate for the
limited availability of GPU resources. The hyperparameters optimisations were
carried out on the high-power nVidia Tesla V100 available at the HPC clusters of
the Politecnico di TorinoHPC GPU units, allowing a significant reduction in com-
putation time.

4.12.1 Optimizer

The optimizer used is Adam, with a starting learning rate of 0.005. To make up
for the lack of the ability to use an adaptive learning rate and to avoid using the
learning rate as a hyperparameter (increasing the size of the search space during
the HPO operation), the TensorFlow callback ReduceLROnPlateau was used. It is
used to adjust the learning rate during training dynamically. For more information,
see section appendix B.

4.12.2 Epochs

Baseline Model Epochs

FFNN (NN0) 400

Basic CNN (NN1) 750

ResNet-like (NN2) 750

DenseNet-like (NN3) 750

Tab. 4.5: Set training times for baseline
models chosen by similar models with
similar characteristics.

The number of training epochs governs
the trade-off between the neural network’s
performance, as measured by the chosen
metric (see section 4.5), and the general-
ization capabilities of the network. That
is, generally, as the number of epochs in-
creases, there is an improvement in the se-
lected metric on the training and valida-
tion set. On the other hand, an excessive
increase in the number of epochs results
in poorer performance over the validation
set and a loss of network generalization capability, i.e. overfitting. Albeit the risk of
overfitting was reduced by taking various precautions (i.e. reducing the number of
parameters and regularisation), the number of epochswas limited by early stopping
(see appendix B). Then, for each trained model, the number of epochs was chosen
by referring to the number of epochs used by networks with similar architecture

85

Chapter 4 | Neural Networks architecture & training

and number of parameters. Tab. 4.5 shows the number of set training epochs for
each of the baseline models. The training was then stopped at the epoch of mini-
mum RMSRE metric one the validation split thanks to Early Stopping callback (for
more information see appendix B).

4.12.3 Batch Size

The batch size was determined by testing different values to obtain maximum per-
formance for each model while minimizing the time and resources needed to train.
Even if the data sets used for training were small enough to be fully loaded in mem-
ory on the computer resources made available by the Politecnico di Torino, it was
decided to use a mini-batch size of 32.

4.12.4 Baseline models results

The training results of the baseline models (i.e., the proposed architectures before
undergoing the hyperparameter optimization process), divided by dataset and pro-
posed architecture, are shown in Tab. 5.1. The number of training epochs corre-
sponds to the number of epochs for which the minimum value of the loss function
on the validation split was obtained via an early stopping callback (see appendix B).
Note how, for each of the proposed architectures (and their variations due to differ-
ent dataset sizes), the optimal number of training epochs was used as the basis for
the maximum number of training epochs during the hyperparameter optimization
process.

4.13 Hyperparameter optimization

The HPO process was performed using KerasTuner[103], a hyperparameter opti-
mization framework compatible with the TensorFlow and Keras libraries. The al-
gorithm employed to select better-performing models is HyperBand[104], a bandit
system optimization algorithm that tests randomly sampled configurations of hy-
perparameters for a limited number of epochs by early stopping, discards the worst
performers and continues training by matching the best performers for a larger
number of epochs[104]. The optimization process was evaluated and visualized us-
ing TensorBoard, a tool provided by TensorFlow that enables the visualization, de-
bugging, and testing of Keras and TensorFlow models to show the relationship be-
tween model performance and preferred hyperparameter combinations[105]. As the

86

4.13 Hyperparameter optimization

Fig. 4.14: Visualization of the hyperparameter optimization workflow. The num-
ber of training epochs and metrics of the baseline models were used to define the
maximum number of training epochs for each trial (combination of hyperparam-
eters). In contrast, the structure of the baseline model was analyzed to identify
a set of hyperparameters (structural and training). The HyperBand algorithm ex-
plored the resulting hyperparameter space. For each proposed network, the best-
optimized network was compared with the baseline model about training compu-
tational cost, training CPU time and model metrics.

algorithm’s authors noted, HyperBand can suffer from the bias of selecting poorer-
performing models that converge quickly[104]. This was avoided by not considering
the learning rate as a hyperparameter (an adaptive learning rate optimizer was cho-
sen; see section 4.12.1).

4.13.1 HyperBand Options

The HyperBand algorithm provides several options to configure and execute the
optimization process efficiently. The main options are shown in Tab. 4.6 and are
discussed below.

Objective The metric or objective function to optimize during the hyperparame-
ter search. The algorithm’s goal is to reduce the value of the loss function as much
as possible.

Max Epochs Determines the maximum number of epochs allocated for training
each combination of hyperparameters. It utilizes this parameter to limit the train-
ing time for each set of hyperparameters. For each hypermodel, this parameter was

87

Chapter 4 | Neural Networks architecture & training

set at 500 training epochs. Although the baseline models were trained for a max-
imum number of epochs equal to 750, the maximum number for the HPO process
was set equal to 500 for all hypermodels to reduce computational time and cost.
This was considered valid because although some baseline models were trained for
a maximum of 750 epochs, this was due to the strict early stopping criteria of 100
epochs, and the network improvement in the last 300 epochs was negligible or null.

Factor The reduction factor is applied to the number of configurations and epochs
in each successive halving iteration. It controls the ratio by which the configura-
tions are reduced in each round of the algorithm. It sets the total number of epochs
of the algorithm’s duration according to the formula:

(<0G 4?>2ℎB) (log5 02C>A (<0G 4?>2ℎB))2 (4.12)

It has been set to 3.

Iterations The number of times the full HyperBand algorithm is iterated. Higher
values lead to better results. It has been set to 2

Fig. 4.15: The Hyperband algorithm’s itera-
tive process allocates resources to diverse hy-
perparameter configurations, progressively
discarding poorer performers in a bandit-
like format and concentrating computational
power on promising settings until selecting
the best-performing configuration. Source:
Li et al., 2018[104].

Max model size Trials with more
learnable parameters than specified
are rejected and not trained. The value
was set to 8000000. Doing so reduced
the HPO time by avoiding training
networks that would not yield satis-
factory results due to the high number
of parameters and small dataset size.

Max retries per trial The number of
times a specific combination of hyper-
parameters (trials) can be retried in
case the trial crashes. It has been set
to 5.

Max consecutive failed trials The termination criterion defines themaximumnum-
ber of consecutive failed trials that prompt the algorithm to halt. This limit was

88

4.13 Hyperparameter optimization

Option Value

Max epochs 500

Factor 3

Iterations 2

Max model size 8000000

Max retries per trial 5

Max consecutive failed trials 150

Executions per trial 3

Tab. 4.6: Values of the main options of the HPO HyperBand algorithm.

fixed at 150 due to occasional invalid combinations of hyperparameters resulting
from chosen settings. Setting a high value for this parameter, Max consecutive tri-
als enables the optimization process to persist without manually excluding invalid
hyperparameter combinations, albeit at the expense of increased computational
time.

Executions per trial The number of times a specific model architecture and set
of hyperparameters are evaluated during the hyperparameter tuning process. It
allows for a more robust model performance evaluation with a particular hyperpa-
rameter. It allows every model to have a fairer evaluation, considering the random
differences in trial performance caused by different initialization weights.

4.13.2 List of hyperparameters

Hyperparameters are the internal settings of the model that affect the training pro-
cess (e.g., learning rate) or the structure of the model (e.g., number of nodes in a
fully connected layer). Hyperparameters are external configuration choices that re-
main constant during training, in contrast to model parameters, which are learned
during training (e.g., weights in a neural network). They affect how the model
learns, generalizes, and are set before the learning process starts.

For every suggested network, several hyperparameters were found; these are dis-
played in Tab. 4.7 - 4.10. The hyperparameters and the allowed values during the
hyperparameter optimization process are given for each architecture. In the fol-
lowing list, all hyperparameters considered are explained.

89

Chapter 4 | Neural Networks architecture & training

Filter Height Kernel height (i.e., the first dimension of 2D kernels) was chosen as
the hyperparameter and applied to all hypermodels considered. The default value
was considered to be 5 since the first dimension of the tensor rake data encodes the
temporal data. Given the low time-step utilized (ts=0.0002), it was considered pos-
sible to use a larger kernel size since the expected variation between two adjacent
tensor elements is smaller than expected on the axis that encodes spatial data.

Filter Width Kernel height (i.e., the first dimension of 2D kernels) was chosen as
the hyperparameter and applied to all hypermodels considered. The default value
was considered 3, smaller than the default kernel height, as the variation of adja-
cent elements on the second axis of the rake data tensor is expected to be more
significant given the distance between rake nodes of 1 cm.

Number of filters in the 1st conv. layer The number of filters in the first convo-
lutional layer governs the number of filters in subsequent layers. For example, in
the Basic CNN architecture, each successive convolutional layer has twice as many
filters as the previous layer.

Width of the last fully connected layers The number of nodes in the last fully
connected layer produces the output of the neural network (then reshaped by a
reshape layer in the expected shape 3×2×3).

Pool layer type The type of Pooling used by the network, when provided. Pooling
considered are Average Pooling and Max Pooling.

Activation function The activation function used by fully connected layers and,
when provided, by convolutional layers. Three activation functions were consid-
ered: ReLU, GELU, and SWISH.

Number of convolutional layers The number of convolutional layers used in the
network. This hyperparameter was applied only to the Basic-CNN network.

Number of deconvolutional layers The number of deconvolutional layers used
for upscaling of scalar parameters. See section 4.9 for more information.

90

4.13 Hyperparameter optimization

Number of dense layers The number of fully connected layers downstream of the
tensor data flattening used before the output layer. To reduce the number of hyper-
parameters, each fully connected layer has the same number of nodes, governed by
the hyperparameter ”Width of the last fully connected layer.”

L2 regularization value As previously mentioned, L2 regularization reduces the
model weights’ absolute value. This is achieved by adding an extra term to the loss
function.

_A

?∑
9=1

V29 (4.13)

The hyperparameter is thus the value of the regularization parameter _A .

Dropout rate The dropout rate is the probability of dropping out neurons in a
neural network layer during training. The hyperparameter determines the fraction
or percentage of neurons that will be randomly ignored or ”dropped out” during
each training iteration.

Stride size The stride size is the number of tensor elements (or pixels, by analogy
with a 2D picture) by which the kernel moves across the input image or feature
map.

Number of Residual Blocks repetitions The ”dense block repetitions” parameter
signifies how many times residual blocks are stacked or repeated in the overall
architecture of the ResNet. A higher number of repetitions generally allows for
deeper and more complex feature extraction within each block, potentially cap-
turing more intricate patterns in the data. However, it also increases the model’s
parameters and computational requirements. As the information encoded in the
datasets is relatively simple, fewer repetitions are expected to fare better. The num-
ber of repetitions has been chosen to comply with the number used in the original
ResNets variants (ResNet18, ResNet34, ResNet50, ResNet101, ResNet152)[100].

Bottleneck layer in Convolutional Block Only employed in the ResNet-like archi-
tecture controls whether a bottleneck layer is employed in the network. The bottle-
neck layer typically consists of a 1x1 convolutional layer responsible for reducing
the dimensionality of the input feature maps and a successive convolutional layer

91

Chapter 4 | Neural Networks architecture & training

(whose kernel size is governed by the hyperparameters ”Filter Width” and ”Filter
Height”). Then, another 1x1 convolutional layer expands the feature maps back to
their original dimensions. This expansion helps maintain the network’s represen-
tational power[100]. The bottleneck layer is usually employed in the more complex
ResNet variants, such as ResNet101 and ResNet152[100]. For additional information,
see section 4.11.3.

DenseBlock employs activation function at end Controls whether or not an acti-
vation function is used at the output of a DenseBlock. The activation function used
is governed by the hyperparameter ”Activation Function”.

Number of DenseBlock repetitions The ”dense block repetitions” parameter sig-
nifies how often these dense blocks are stacked or repeated in the overall architec-
ture of the Dense Net. A higher number of repetitions generally allows for deeper
and more complex feature extraction within each block, potentially capturing more
intricate patterns in the data. However, it also increases the model’s parameters
and computational requirements. As the information encoded in the datasets is
relatively simple, fewer repetitions are expected to fare better.

Tensor flattening To process and prepare the convolutional layer output for the
final fully connected output layer, the tensor data has to be flattened into a 1-D
array. Flattening achieves this, that is, by reshaping a multi-dimensional tensor
(such as a 2D image or a higher-dimensional feature map) into a 1D vector while
maintaining the order of elements or by Global Average Pooling that computes the
average value for each feature map channel across the spatial dimensions of the
feature map. The usage of one of these layers has been set up as a hyperparameter.

92

4.13 Hyperparameter optimization

Hyperparameters (NN 1) Value

Number of filters in the 1st conv. layer [8, 16, 32, 64]

Width of the last fully connected layers [512, 1024, 2048, 4096]

Filter Height [3, 5, 7]

Filter Width [3, 5, 7]

Pool layer type [Average, Max]

Activation function [GELU, ReLU, SWISH]

Number of convolutional layers [3,5,7,9]

Number of deconvolutional layers [1,2,3]

Number of dense layers [1,2,3]

L2 regularization value [0, 0.00025, 0.00050, 0.00075, 0.00100]

Dropout rate [0.0, 0.3, 0.5, 0.7]

Tab. 4.7:Hyperparameters chosen for the Basic CNN network optimization process (NN1).

Hyperparameters (NN 2) Value

Number of filters in the 1st conv. layer [16, 32, 64, 128]

Width of the last fully connected layers [512, 1024, 2048, 4096]

Filter Height [3, 5, 7]

Filter Width [3, 5, 7]

Activation function [GELU, ReLU, SWISH]

Number of deconvolutional layers [1,2,3,4]

Pool layer type [Average, Max]

Tensor Flattening [Flattening, Global Avg. 2D Pool.]

Stride size [2, 3]

Number of dense layers [1,2,3,4]

L2 regularization value [0, 0.00025, 0.00050, 0.00075, 0.00100]

Dropout rate [0.0, 0.3, 0.5, 0.7]

Number of Residual Blocks repetitions

[2, 2, 2, 2], [3, 4, 6, 3],
[3, 4, 23, 3], [3, 8, 36, 3]

Tab. 4.8:Hyperparameters chosen for the ResNet-like network optimization process (NN2).

93

Chapter 4 | Neural Networks architecture & training

Hyperparameters (NN 3) Value

Number of filters in the 1st conv. layer [16, 32, 64, 128]

Width of the last fully connected layers [512, 1024, 2048, 4096]

Filter Height [3, 5, 7]

Filter Width [3, 5, 7]

Activation function [GELU, ReLU, SWISH]

Number of deconvolutional layers [1,2,3,4]

Number of dense layers [1,2,3,4]

L2 regularization value [0, 0.00025, 0.00050, 0.00075, 0.00100]

Dropout rate [0.0, 0.3, 0.5, 0.7]

Stride size [2, 3]

DenseBlock employs activation function at end [TRUE, FALSE]

Number of DenseBlock repetitions

[6, 12], [6, 12, 24, 16],
[6, 12, 24], [6, 12, 32, 32],
[6, 12, 32], [6, 12, 48, 32],
[6, 12, 48],
[6, 12, 64]

Tab. 4.9: Hyperparameters chosen for the DenseNet-like network optimization process
(NN3).

Hyperparameters (NN 0) Value

Width of the fully connected layers [512, 1024, 2048, 4096]

Activation function [GELU, ReLU, SWISH]

Number of fully connected layers [1,2,3,4,5,6,7,8,9,10]

L2 regularization value [0, 0.0025, 0.0050, 0.0075, 0.00100]

Dropout rate [0.0, 0.3, 0.5, 0.7]

Tab. 4.10: Hyperparameters chosen for FFNN network optimization process (NN0). Due
to the lower complexity of the network, the number of chosen hyperparameters is lower.

94

Chapter

Results 5
In this chapter, the baseline model training results are shown and discussed. In
addition, the results of the optimisation of the hyperparameters are shown, and
the metrics of the optimised models are compared with the metrics of the baseline
models to establish the effectiveness of the HPO procedure.

5.1 Results of the baseline models

Training results for all networks considered and matched datasets are shown in
Tab. 5.1 and the loss and metric value trends over training can be seen in Fig. 5.1
- 5.4.

All networks achieved similar results, both in terms of loss and metric value. Prob-
ably due to the limited size of the dataset, all networks achieved saturation; having
extracted all relevant information from the small datasets has extracted all the rel-
evant information the dataset, it is often described as having reached saturation or
having achieved the maximum capacity for the given dataset. This suggests that
the complexity of the problem requires a larger amount of data for training. Indeed,
some preliminary testing performed joining the train and test dataset (effectively
increasing the size of the training dataset by 10%) showed improved results. The
results were not included because the absence of test data does not allow for eval-
uating the generalizing network well to unseen data.

The network that obtained better results is the Basic CNN, which has a computa-
tional cost of training and reduced training time compared to other convolutional
networks. In addition, convolutional networks using the DS1 Wake rake dataset
obtained better results. This could be due to the fact that the dataset includes only
the most representative results concerning the wake. This is in contrast to what
was initially expected: that the DS1 Box rake would allow the networks to have a
better predictive ability due to the larger amount of near-field data collected.

Fig. 5.1 and Tab. 5.1 show that the FFNN network achieved comparable results to
convolutional networks, but CNNs showed better generalization capabilities on the

95

Chapter 5 | Results

validation and test datasets. The better generalization capabilities of the CNN net-
works are probably due to the additional near-field information collected on the
rakes and the better resistance of the CNNs to overfitting. The similar performances
suggest that the chosen baseline architectures either do not take full advantage of
the additional near field information encoded in the DS1, DS2 and DS3 datasets or
that the fluid dynamic field data are too sparse to provide the network additional
information to gain better prediction capabilities. Indeed, similar works that have
used convolutional networks to predict airfoil performance have used the entire
flow field to gain better network performances[9]. It is also worth noting that simi-
lar works that employed neural networks to predict the aerodynamic performance
of airfoils in the transonic field achieved comparable network predicting capabili-
ties[106].

It can be seen that some networks converged to the maximum number of training
epochs. This was not considered problematic and may be caused by the strict pa-
tience value for the early stopping callback of 100 epochs. Indeed, for networks
trained for the maximum number of epochs, the gain on validation loss in the last
400 epochs is negligible or null.

(a) Loss of the FFNN network (NN0). (b) Metric of the FFNN network (NN1).

Fig. 5.1: Loss value trends during the training of the FFNN (NN0) network.

96

5.1 Results of the baseline models

Baseline Model FFNN (NN0) Basic CNN (NN1) ResNet-like (NN2) DenseNet-like (NN3)

Parameters 206,098 426,123 2,963,403 3,886,283

D
at
as
et

0

Epochs 458 - - -

Train Loss 0.01699 - - -

Val. Loss 0.05154 - - -

Test Loss 0.04443 - - -

Train Metric 0.05022 - - -

Val. Metric 0.04350 - - -

Test Metric 0.02736 - - -

D
at
as
et

1

Epochs - 747 744 583

Train Loss - 0.04744 0.05858 0.02634

Val. Loss - 0.04666 0.0562 0.03907

Test Loss - 0.04763 0.0518 0.0301

Train Metric - 0.04259 0.05073 0.0740

Val. Metric - 0.04048 0.04955 0.07399

Test Metric - 0.04231 0.04977 0.07318

D
at
as
et

2

Epochs - 747 442 213

Train Loss - 0.04642 0.05613 0.04830

Val. Loss - 0.04565 0.05340 0.05000

Test Loss - 0.04630 0.05569 0.04990

Train Metric - 0.04658 0.0500 0.04414

Val. Metric - 0.04641 0.05078 0.04218

Test Metric - 0.04693 0.04993 0.04378

D
at
as
et

3

Epochs - 746 742 164

Train Loss - 0.04692 0.05507 0.04988

Val. Loss - 0.04673 0.05230 0.05448

Test Loss - 0.04679 0.05519 0.05187

Train Metric - 0.05029 0.05001 0.04417

Val. Metric - 0.04934 0.04982 0.04772

Test Metric - 0.05011 0.05153 0.04672

Tab. 5.1: Performance of the baseline models (before HPO) for each of the 3 datasets con-
sidered. The training epoch achieving the best possible validation loss is also shown.

97

Chapter 5 | Results

(a) Loss (RMSRE) and metric (MSE) of the Basic CNN network (NN1) for the Box Rake dataset.

(b) Loss (RMSRE) andmetric (MSE) of the Basic CNNnetwork (NN1) for the LineWake Rake dataset.

(c) Loss (RMSRE) and metric (MSE) of the Basic CNN network (NN1) for the Far Wake Rake dataset.

Fig. 5.2: Loss and metric value trends during the training of the Basic CNN (NN1) network
for all the Datasets.

98

5.1 Results of the baseline models

(a) Loss (RMSRE) and metric (MSE) of the ResNet-like network (NN2) for the Box Rake dataset.

(b) Loss (RMSRE) and metric (MSE) of the ResNet-like network (NN2) for the Line Wake Rake
dataset.

(c) Loss (RMSRE) andmetric (MSE) of the ResNet-like network (NN2) for the FarWake Rake dataset.

Fig. 5.3: Loss and metric value trends during the training of the ResNet-like network (NN2)
network for all the Datasets.

99

Chapter 5 | Results

(a) Loss (RMSRE) and metric (MSE) of the DenseNet-like network (NN3) for the Box Rake dataset.

(b) Loss (RMSRE) and metric (MSE) of the DenseNet-like network (NN3) for the Line Wake Rake
dataset.

(c) Loss (RMSRE) and metric (MSE) of the DenseNet-like network (NN3) for the Far Wake Rake
dataset.

Fig. 5.4: Loss and metric value trends during the training of the DenseNet-like network
(NN3) network for all the Datasets.

100

5.2 Optimized hyperparameters and optimized model results

5.2 Optimized hyperparameters

and optimized model results

The hyperparameters of the optimized networks are shown in Tab. 5.3 - 5.6. Train-
ing results for all the optimized networks are shown in Tab. 5.2 and the loss and
metric value trends over training can be seen in Fig. 5.5 - 5.8.

The optimized networks achieved similar performance to the baseline models. This
suggests that the networks, regardless of the values of the hyperparameters, have
achieved themaximumpredictive capabilities allowed by the dataset and that better
results can only be obtained by increasing the size of the training datasets.

Since all networks achieved comparable results, the bandit-like system of the Hy-
perBand HPO optimizer selected models with fewer parameters and shorter train-
ing times.

Hyperparameter values for the Basic CNN optimized networks are given in Tab. 5.3.
Every network variant employs fewer filters, possibly to reduce the number of
trainable parameters of the model. Moreover, all the network variants selected
the SWISH or GELU activation function. The SWISH activation function has been
shown to reduce training time in deeper networks[63]; however, the optimized net-
works have fewer convolutional layers (possibly to reduce training time): this could
show, as hypothesized, that the GELU and SWISH activation functions can be used
as drop-in substitutes of ReLU activation. Furthermore, for all variants of Basic
CNNs, the HyperBand optimizer selected Global Average Pooling for flattening the
feature maps, once again prioritizing lowering the number of model parameters. It
should also be noted how all Basic CNN networks exhibit unitary stride and low
dropout rate and L2 regularization values: low values of the regularization hyper-
parameters could be traced to the fact that convolutional networks are known to
be resistant to overfitting.

Hyperparameter values for the ResNet-like optimized networks are given in Tab. 5.4.
Every network variant employs fewer filters, possibly to reduce the number of
trainable parameters of the model. Moreover, all the network variants selected the
SWISH activation function. This is likely due to the deepness of the network, as
the SWISH activation function has been shown to reduce training time in deeper
networks[63]. Finally, all variants selected the Global Average 2D pooling and a
low number of ResNet Block repetitions. This is probably because HyperBand op-
timized for smaller, lower training time models and that models using Flattening

101

Chapter 5 | Results

Layer and a higher number of ResNet block repetitions were discarded due to the
limit of trainable parameters set to 8000000.

Hyperparameter values for the DenseNet-like optimized networks are given in
Tab. 5.5. Every network variant employs fewer filters, possibly to reduce the num-
ber of trainable parameters of the model. Moreover, all the network variants se-
lected the GELU or ReLU activation function. Finally, all variants selected the
Global Average 2D pooling and a low number of DenseNet Block repetitions. This
is probably because HyperBand optimized for smaller, lower training time mod-
els and that models using Flattening Layer for the flattening of the feature maps
and a higher number of ResNet block repetitions were discarded due to the limit of
trainable parameters set to 8000000.

(a) Loss of the optimized FFNN network (NN0). (b) Metric of the optimized FFNN network
(NN0).

Fig. 5.5: Loss value trends during the training of the optimized FFNN (NN0) network.

102

5.2 Optimized hyperparameters and optimized model results

Optimized Model FFNN (NN0) Basic CNN (NN1) ResNet-like (NN2) DenseNet-like (NN3)
D
at
as
et

0

Parameters 53,906 - - -

Epochs 571 - - -

Train Loss 0.05823 - - -

Val. Loss 0.0419 - - -

Test Loss 0.04357 - - -

Train Metric 0.06153 - - -

Val. Metric 0.04479 - - -

Test Metric 0.04397 - - -

D
at
as
et

1

Parameters - 109,107 24,027 157,643

Epochs - 458 215 150

Train Loss - 0.04940 0.05051 0.1368

Val. Loss - 0.04734 0.05045 0.1428

Test Loss - 0.05264 0.05129 0.1334

Train Metric - 0.05283 0.04383 0.3239

Val. Metric - 0.04922 0.04898 0.3746

Test Metric - 0.04462 0.04738 0.3214

D
at
as
et

2

Parameters - 796,603 682,635 2,483,417

Epochs - 211 426 376

Train Loss - 0.04295 0.05569 0.05707

Val. Loss - 0.04492 0.05132 0.05803

Test Loss - 0.04297 0.05132 0.0805

Train Metric - 0.04133 0.04853 0.04143

Val. Metric - 0.04574 0.04325 0.04385

Test Metric - 0.04349 0.03706 0.03809

D
at
as
et

3

Parameters - 2,415,507 407,963 411,291

Epochs - 174 426 428

Train Loss - 0.04092 0.04004 0.04635

Val. Loss - 0.03968 0.046675 0.04647

Test Loss - 0.03925 0.05147 0.0625

Train Metric - 0.04117 0.03592 0.04184

Val. Metric - 0.04141 0.04277 0.04587

Test Metric - 0.03791 0.04686 0.07995

Tab. 5.2: Table summarizing the performance of models optimized by HPO.The loss values,
metrics values, and number of training epochs for each combination of the proposed model
and dataset are shown.

103

Chapter 5 | Results

Hyperparameter (NN1)
Values

DS1 DS2 DS3

Number of filters in the 1st conv. layer 16 8 64

Width of the last fully connected layers 1024 512 512

Filter Height 3 3 3

Filter Width 5 3 3

Pool layer type Avg. Avg. Avg.

Activation function SWISH GELU SWISH

Tensor Flattening Gl. Avg. 2D Pool. Gl. Avg. 2D Pool. Gl. Avg. 2D Pool.

Number of convolutional layers 3 6 4

Number of deconvolutional layers 3 3 3

Stride size 1 1 1

Number of dense layers 1 1 1

L2 regularization value 0 0 0

Dropout rate 0.3 0 0

Tab. 5.3: Hyperparameter values of the optimized Basic CNN network (NN1).

Hyperparameter (NN2)
Values

DS1 DS2 DS3

Number of filters in the 1st conv. layer 8 8 16

Width of the last fully connected layers 512 512 218

Filter Height 5 5 5

Filter Width 5 3 5

Activation function SWISH SWISH SWISH

Number of deconvolutional layers 3 3 3

Stride size 3 3 3

Pool layer type Max Average Max

Tensor Flattening Gl. Avg. 2D Pool. Gl. Avg. 2D Pool. Gl. Avg. 2D Pool.

Number of dense layers 2 2 1

L2 regularization value 0 0.0001 0.0001

Dropout rate 0 0 0

Number of Residual Blocks repetitions [2, 2, 2, 2] [2, 4, 4, 2] [2, 2, 2, 2]

Tab. 5.4: Hyperparameter values of the optimized ResNet-like network (NN2).

104

5.2 Optimized hyperparameters and optimized model results

Hyperparameter (NN3)
Values

DS1 DS2 DS3

Number of filters in the 1st conv. layer 16 8 8

Width of the last fully connected layers 1024 1024 512

Filter Height 3 3 3

Filter Width 5 5 3

Activation function GELU GELU ReLU

Number of deconvolutional layers 3 3 3

Number of dense layers 1 1 2

L2 regularization value 0 0.0001 0.00005

Stride size 3 2 2

Number of DenseBlock repetitions [6, 12, 32] [6, 12, 16] [6,12]

Tab. 5.5: Hyperparameter values of the optimized DenseNet-like network (NN3).

Hyperparameters
Values

DS0

Width of the fully connected layers 128

Activation function ReLU

Number of fully connected layers 4

L2 regularization value 0

Dropout rate 0.5

Tab. 5.6: Hyperparameter values of the optimized FFNN network (NN0).

105

Chapter 5 | Results

(a) Loss (RMSRE) and metric (MSE) of the optimized Basic CNN network (NN1) for the Box Rake
dataset.

(b) Loss (RMSRE) and metric (MSE) of the optimized Basic CNN network (NN1) for the Line Wake
Rake dataset.

(c) Loss (RMSRE) and metric (MSE) of the optimized Basic CNN network (NN1) for the Far Wake
Rake dataset.

Fig. 5.6: Loss andmetric value trends during the training of the optimized Basic CNN (NN1)
network for all the Datasets.

106

5.2 Optimized hyperparameters and optimized model results

(a) Loss (RMSRE) and metric (MSE) of the optimized ResNet-like network (NN2) for the Box Rake
dataset.

(b) Loss (RMSRE) and metric (MSE) of the optimized ResNet-like network (NN2) for the Line Wake
Rake dataset.

(c) Loss (RMSRE) and metric (MSE) of the optimized ResNet-like network (NN2) for the Far Wake
Rake dataset.

Fig. 5.7: Loss and metric value trends during the training of the optimized ResNet-like
network (NN2) network for all the Datasets.

107

Chapter 5 | Results

(a) Loss (RMSRE) and metric (MSE) of the optimized DenseNet-like network (NN3) for the Box Rake
dataset.

(b) Loss (RMSRE) and metric (MSE) of the optimized DenseNet-like network (NN3) for the Line
Wake Rake dataset.

(c) Loss (RMSRE) and metric (MSE) of the optimized DenseNet-like network (NN3) for the FarWake
Rake dataset.

Fig. 5.8: Loss and metric value trends during the training of the optimized DenseNet-like
network (NN3) network for all the Datasets.

108

Chapter

Conclusions 6
The possibility of applying convolutional neural networks to predict aerodynamic
performance and near-field flow data of an airfoil immersed in a freestream flow in
the highly compressible/transonic regime has been investigated.

Firstly, different datasets were obtained by simulating the airfoil in a 2D domain in
the commercial code ANSYS Fluent by varying the scalar values of the freestream
parameters governing the phenomenon under investigation, i.e. AoA, Re, M.

We considered airfoil performance prediction networks with input from the near-
field flow data collected near the airfoil and additional scalar inputs. Several ar-
chitectures based on well-known image classification neural networks have been
proposed. Themodels attempted to estimate the magnitudes and frequencies of the
3 dominant harmonics of the time series of the nondimensional airfoil coefficients
(i.e. Cd, Cl, Cm) using near-field data and additional input scalar values. Each
proposed model was adjusted for 3 different datasets, which differed in the num-
ber and collection position of the near-field data. Each variation of the proposed
models was then trained and evaluated.

All baseline models achieved similar performance, with relative errors (RMSRE) on
the order of 4-5%. This could be due to the small size of the dataset, which has only
about 200 training samples. Moreover, CNN networks did not perform significantly
better training loss performance than the FFNN, but they showed better general-
ization capabilities on the validation and test datasets. The better generalization
capabilities of the CNN networks are probably due to the additional near-field in-
formation collected on the rakes and the better resistance of the CNNs to overfit-
ting. Therefore, better performance of the networks can be achieved by increasing
the size of the dataset or by reducing the variation of scalar parameter values (i.e.,
AoA, Re, M) during the parameter sweep.

Next, each of the proposed models was subjected to HPO using the HyperBand
algorithm. During the HPO process, several hyperparameters, such as the num-
ber of filters, network depth, activation function, etc., were varied. Each model
instance trained during the HPO process was evaluated for multiple iterations to

109

Chapter 6 | Conclusions

avoid excessive influence of the randomness of the network initialization, which
can affect the network training process, especially for small datasets. This ensured
a fair evaluation of each model and the effect of each hyperparameter considered.

Hyperparameter optimization led to unsatisfactory results, with the networks opti-
mized with hyperparameters chosen by the HyperBand hyperparameter optimizer
achieving comparable performance to the baseline models, in which hyperparam-
eters were selected by limited trial and error and an educated guess. HyperBand
selected hyperparameters resulting in smaller, fewer-parameters models with less
training time and computational cost and with similar, and in some cases worse,
model performance than the baseline models. This is probably because, due to the
size of the training datasets the networks generally achieved the best possible per-
formance, given the size of the datasets.

6.1 Future Works

As proof of concept, this paper presents a possible framework for constructing
deep-learning models to predict the near-flow field and aerodynamic performance
of airfoils.

The present work could be expanded upon by including a higher-accuracy dataset,
either acquired from experimental data or high-accuracy simulations. Furthermore,
the effect of a more spatially sparse dataset to simulate the actual data collection
possibilities in an experimental wind tunnel setup could be explored.

Fig. 6.1: Visualisation of the parsec
parametrisation system and its pa-
rameters. Source: Arias-Montano et
al., 2011[107].

Furthermore, the effect of the airfoil shape
could be investigated, as initially planned in
the present work, but it is not possible to study
due to time and cost constraints. The proposed
alternatives are the PARSEC parametrization
system[108] (shown in Fig. 6.1) or a binary rep-
resentation of the airfoil shape as an image, to
be fed as input to a neural network convolu-
tional layers. Shape parametrization has been
long used during the design and aerodynamic characterization of airfoils, and dif-
ferent similar works in the literature employ parametrization to represent airfoil
shape[109]; however, as the PARSEC system and similar ones employ 11 param-
eters, it can be argued that it could add excessive complexity to the neural net-
work. Indeed, it was initially considered to employ an image representation of

110

6.1 Future Works

the airfoil shape; several similar works in the literature employ an image repre-
sentation[110,111]; moreover, such a representation adds the possibility of novel ap-
proaches, such as image augmentation, dataset augmentation, or the use of Signed
Distance Function to represent the geometry.

In addition, the use of transfer learning, i.e., pre-trained and fine-tuned models for
the task at hand (both regression and classification tasks)[28], was considered to
compensate for the small size of the dataset. In this specific case, the use of pre-
trained networks for image classification was considered: the hypothesis was that
the feature detection capability of image classification networks could be exploited
by fine-tuned layers at the bottom of the network to extract relationships in the
data between the features detected by the pre-trained network to obtain the output
data, allowing an increase in performance when applied to a task with a small
training dataset[22,26,28] or, more generally, when confronted with a similar task[29].
At present, no work is known that has utilized transfer learning for the prediction
of airfoil performance. The use of transfer learning was not included in this work
due to unsatisfactory results.

111

Appendix

TensorFlow Layers A
In TensorFlow, deep-learning models are composed of layers: reusable functions
that accept a tensor input and provide a tensor output, with a defined structure and
trainable parameters[58]. Some of the layers adopted in the proposed architectures
are presented and discussed, while the design choices behind their adoption are
motivated.

Convolutional

As previously mentioned, the data collected on the near-airfoil envelope were en-
coded in an image-like format where, in analogy to a colour image, different phys-
ical quantities are stored on different channels (see section 4.3). Consequently, it
was decided to use CNN architectures for analysing the data and extracting spatio-
temporal relations within the input data; convolutional layers are therefore em-
ployed in the proposed architectures. In particular, the Conv2D layer is adopted,
which performs the convolution operation on 4-D tensors and whose operation
was illustrated in section 2.5.

Transposed Convolution

Fig. A.1: Example of transposed decon-
volution applied to a 4×4 matrix with a
3×3 kernel and a unitary stride.

Fig. A.2: Visualisation of the checkerboard
artefacts produced during the transposed con-
volution process. Source: Odena et al.,
2016[113].

Generative networks for near-field data prediction (see section 4.11) require upsam-
pling of the input data to obtain the 4D output matrix from a 2D input matrix (with
shape [samples×parameters]. In addition, both families of proposed architectures
require upsampling to input the freestream scalars by concatenation with the data

113

Appendix A | TensorFlow Layers

rakes matrix. This upsampling is achieved by the TensorFlow Conv2DTranspose
layer, which implements the transposed convolution[58] operation, also improperly
called deconvolution. An example of the transposed convolution operation is shown
in the figure. The transposed convolution operation is known to produce checker-
board artefacts[113] that are difficult to avoid. For this reason, an architecture has
also been proposed that does not use transposed convolution for upsampling but
instead uses bilinear upsampling followed by a dimensionality-preserving convo-
lution (i.e. the convolution output has the same shape as the input).

Dropout

As explained in section 2.5.2, the dropout layer was applied to the proposed neu-
ral networks to increase generalisation capacity and reduce overfitting. A design
choice was made and, in line with the work that first introduced the dropout con-
cept[56], Dropout layers were applied only after a fully connected layer; however,
there are works in the literature that implement dropout layers after convolutional
layers; albeit with lower dropout rates. The layers’ dropout rate was then consid-
ered a hyperparameter for the HPO process. More information on dropout can be
found in sections 2.5.2 and 4.12.

Tensor Flattening

Convolutional architectures for image classification and regression commonly flat-
ten the feature maps obtained from the first portion of the neural network through
convolution operations and then pass the flattened vector to one or more fully con-
nected layers to obtain the network output. As described in section 4.11, airfoil
performance prediction architectures follow this structure. The proposed models
use, by default, the commonly used Flatten layer; however, during the HPO pro-
cess, the effect of using the GlobalAveragePooling2D layer is investigated, which
is currently employed in modern image classification architectures such as Mo-
bilenets[114], ResNets[100], and EfficientNets[64].

While the Flatten Layer maintains the number of tensor elements and simply re-
shapes it to a vector, the GlobalAveragePooling2D layer applies the pooling oper-
ation. It averages all the values according to the last axis. That is, it preserves the
size of the channel axis and batch axis, while the other spatial axes of the feature
maps are reduced to 1.

114

Pooling

The pooling operations considered in this work during the HPO process are max
pooling and average pooling. It should be noted that most modern CNN architec-
tures do not use pooling layers, as they provide a reduction in tensor dimensional-
ity without any learnable parameter and, therefore, cause a net loss of information
within the network.

Batch normalization

Batch normalisation layers have been implemented to improve convergence speed.
By shifting the input layers around the mean and scaling them by their variance[58],
the network learning speed and training stability are improved[115–117]. In addition,
batch normalisation could help with model performance and generalisation as it
has been shown to have a weak regularisation effect and allows the use of larger
learning rates[117].

Although it was initially claimed that this was due to a reduction in internal co-
variate shift, i.e. the change in distribution and variance of the layer inputs during
training caused by updates in the upstream layers, the exact reasons for the effec-
tiveness of the batch normalisation effect are not fully understood[116,117].

The layer works by normalising each mini-batch during training to produce an
output with a mean of zero and a variance of 1[58]. Batch normalisation has been
found to be more effective for larger mini-batch sizes, as the mini-batch statistics
are found to be more representative of the entire dataset: the selected mini-batch
size (see section 4.12.3) of 64 was found to be representative of the entire data set
of 173 shuffled samples (see section 4.3).

115

Appendix

TensorFlow Callbacks B
Callbacks are a tool the TensorFlow API provides to customise model behaviour
during the training and validation phases[58]. They allow the execution of custom
code triggered by user-specified events that occur during training and validation,
such as a call to a class method or the declaration of an attribute. The following
callbacks were implemented in the models.

History The automatically applied History callback made it possible to obtain the
model’s loss and validation loss values for each epoch and batch.

Custom Early Stopping A custom early stopping callback (based on the standard
EarlyStopping callback included in the TensorFlow API). It allows training to be
stopped early if the validation loss of the model does not improve for a specific
number of epochs (patience parameter, set to 200

epochs). In addition, when training is stopped, the trainedmodel returned by the fit
method is the one which corresponds to the lowest validation loss value obtained
during training. This is accomplished by temporarily storing the model weights for
a maximum number of epochs equal to the patience parameter.

CSV Logger It allowed the data of the epochs to be obtained in a numerical format
and then stored in a CSV file to be used to plot the training curves of the models.

Reduce LR On Plateau The callback was used to dynamically adjust the learning
rate of the optimizer (Adam) during training. It monitors a specifiedmetric (the val-
idation loss was the chosen metric) throughout the training process. If the chosen
metric shows no improvement over a certain number of epochs (controlled by the
patience parameter, set to 20), the learning rate is adjusted by a factor. This adap-
tive approach helps prevent the model from getting stuck in suboptimal solutions
or converging too quickly.

117

Appendix B | TensorFlow Callbacks

TensorBoard TensorBoard is a tool provided by TensorFlow that enables the vi-
sualisation, debugging and testing of Keras and TensorFlow models. In particular,
TensorBoard was used in this work to visualise the link between model perfor-
mance and hyperparameter values during the hyperparameter optimisation pro-
cess.

This callback provided the training process logs required to visualise the data via
TensorBoard.

118

Acknowledgements

I would like to express my gratitude to my supervisor, Prof. Stefano Berrone, for
his support, advice, and guidance throughout the completion of thisMaster’s thesis.
His assistance was crucial to the completion of this thesis. I would also like to thank
my co-supervisor, Prof. Gaetano Iuso, whose courses and lectures have sparked
my intense fascination and curiosity for fluid dynamics, an interest I will retain
regardless of my future career. I would like to express my gratitude to Francesco
Della Santa and Fabio Vicini for their assistance and explanations, which enabled
me to complete this thesis on a previously unfamiliar subject. Their input and
constructive criticism were essential to the success of this project.

I would like to express my gratitude to the Politecnico di Torino for providing me
with the opportunity to pursue a Master’s degree and for the resources, facilities,
and faculty support necessary to complete this thesis.

Additionally, I would like to thank the DAUIN department of the Politecnico di
Torino and their HPC Section for providing the computing resources that made
this work possible.

119

Bibliography

[1] Y. LeCun, Y. Bengio, and G. Hinton. “Deep learning”. In: Nature 521.7553
(2015), pp. 436–444.

[2] J. Schmidhuber. “Deep Learning in Neural Networks: An Overview”. In:
CoRR abs/1404.7828 (2014).

[3] S. Sonoda andN.Murata. “Neural networkwith unbounded activation func-
tions is universal approximator”. In: Applied and Computational Harmonic
Analysis 43.2 (2017), pp. 233–268. issn: 1063-5203.

[4] K. Hornik, M. Stinchcombe, and H. White. “Multilayer feedforward net-
works are universal approximators”. In:Neural networks 2.5 (1989), pp. 359–
366.

[5] J. N. Kutz. “Deep learning in fluid dynamics”. In: Journal of Fluid Mechanics
814 (2017), pp. 1–4.

[6] S. Suresh, S. Omkar, V.Mani, and T. G. Prakash. “Lift coefficient prediction at
high angle of attack using recurrent neural network”. In: Aerospace science
and technology 7.8 (2003), pp. 595–602.

[7] S. Ahmed, K. Kamal, T. A. H. Ratlamwala, S. Mathavan, G. Hussain, M. Alka-
htani, et al. “Aerodynamic Analyses of Airfoils Using Machine Learning
as an Alternative to RANS Simulation”. In: Applied Sciences 12.10 (2022),
p. 5194.

[8] F. G. Oztiryaki and T. Piskin. “Airfoil Performance Analysis Using Shallow
Neural Networks”. In: AIAA Scitech 2021 Forum.

[9] M. Morimoto, K. Fukami, K. Zhang, A. G. Nair, and K. Fukagata. “Convolu-
tional neural networks for fluid flow analysis: toward effective metamod-
eling and low dimensionalization”. In: Theoretical and Computational Fluid
Dynamics 35.5 (Aug. 2021), pp. 633–658.

[10] Q. Wang, C. E. Cesnik, and K. Fidkowski. “Multivariate recurrent neural
network models for scalar and distribution predictions in unsteady aerody-
namics”. In: AIAA Scitech 2020 Forum. 2020, p. 1533.

[11] H. Chen, L. He, W. Qian, and S. Wang. “Multiple aerodynamic coefficient
prediction of airfoils using a convolutional neural network”. In: Symmetry
12.4 (2020), p. 544.

121

Bibliography

[12] B. Yu, L. Xie, and F. Wang. “An Improved Deep Convolutional Neural Net-
work to Predict Airfoil Lift Coefficient”. In: Jan. 2020, pp. 275–286. isbn:
978-981-15-1772-3.

[13] J. Ling, A. Kurzawski, and J. Templeton. “Reynolds averaged turbulence
modelling using deep neural networks with embedded invariance”. In: Jour-
nal of Fluid Mechanics 807 (2016), pp. 155–166.

[14] Y. FreyMarioni, E. A. de Toledo Ortiz, A. Cassinelli, F. Montomoli, P. Adami,
and R. Vazquez. “A machine learning approach to improve turbulence mod-
elling from DNS data using neural networks”. In: International Journal of
Turbomachinery, Propulsion and Power 6.2 (2021), p. 17.

[15] N. Thuerey, K. Weißenow, L. Prantl, and X. Hu. “Deep learning methods for
Reynolds-averaged Navier–Stokes simulations of airfoil flows”. In: AIAA
Journal 58.1 (2020), pp. 25–36.

[16] S. Bhatnagar, Y. Afshar, S. Pan, K. Duraisamy, and S. Kaushik. “Prediction
of aerodynamic flow fields using convolutional neural networks”. In: Com-
putational Mechanics 64 (2019), pp. 525–545.

[17] J. Holland, J. Baeder, and K. Duraisamy. “Towards Integrated Field Inver-
sion and Machine Learning With Embedded Neural Networks for RANS
Modeling”. In: Jan. 2019.

[18] C. Schenck and D. Fox. “SPNets: Differentiable Fluid Dynamics for Deep
Neural Networks”. In: CoRR abs/1806.06094 (2018).

[19] X. Jin, S. Cai, H. Li, and G. E. Karniadakis. “NSFnets (Navier-Stokes flow
nets): Physics-informed neural networks for the incompressible Navier-
Stokes equations”. In: Journal of Computational Physics 426 (2021), p. 109951.

[20] Q. Zhu, Z. Liu, and J. Yan. “Machine learning for metal additive manufac-
turing: predicting temperature and melt pool fluid dynamics using physics-
informed neural networks”. In:Computational Mechanics 67 (2021), pp. 619–
635.

[21] S. Feng, H. Zhou, and H. Dong. “Using deep neural network with small
dataset to predictmaterial defects”. In:Materials &Design 162 (2019), pp. 300–
310.

[22] P. Cao, S. Zhang, and J. Tang. “Preprocessing-free gear fault diagnosis us-
ing small datasets with deep convolutional neural network-based transfer
learning”. In: Ieee Access 6 (2018), pp. 26241–26253.

[23] T. Shaikhina and N. A. Khovanova. “Handling limited datasets with neu-
ral networks in medical applications: A small-data approach”. In: Artificial
intelligence in medicine 75 (2017), pp. 51–63.

122

Bibliography

[24] A. Pasini. “Artificial neural networks for small dataset analysis”. In: Journal
of thoracic disease 7.5 (2015), p. 953.

[25] J. Bullock, C. Cuesta-Lázaro, and A.Quera-Bofarull. “XNet: A convolutional
neural network (CNN) implementation for medical X-Ray image segmen-
tation suitable for small datasets”. In: CoRR abs/1812.00548 (2018).

[26] L. Brigato and L. Iocchi. “A Close Look at Deep Learning with Small Data”.
In: CoRR abs/2003.12843 (2020). url: https://arxiv.org/abs/2003.
12843.

[27] S. Liu and W. Deng. “Very deep convolutional neural network based im-
age classification using small training sample size”. In: 2015 3rd IAPR Asian
conference on pattern recognition (ACPR). IEEE. 2015, pp. 730–734.

[28] K. Choi, G. Fazekas, M. B. Sandler, and K. Cho. “Transfer learning for music
classification and regression tasks”. In: CoRR abs/1703.09179 (2017). url:
http://arxiv.org/abs/1703.09179.

[29] C. Tan, F. Sun, T. Kong, W. Zhang, C. Yang, and C. Liu. “A survey on deep
transfer learning”. In: Artificial Neural Networks and Machine Learning–
ICANN 2018: 27th International Conference on Artificial Neural Networks,
Rhodes, Greece, October 4-7, 2018, Proceedings, Part III 27. Springer. 2018,
pp. 270–279.

[30] D. C. Wilcox. Turbulence Modeling for CFD. third. DCW Industries, 2006.
isbn: 978-1-928729-08-2.

[31] G. Buresti. “A note on stokes’ hypothesis”. In:Acta Mechanica 226.10 (2015),
pp. 3555–3559.

[32] M. V. Papalexandris. “On the applicability of stokes’ hypothesis to low-
mach-number flows”. In: Continuum Mechanics and Thermodynamics 32.4
(2019), pp. 1245–1249.

[33] J. B. J. Fourier and A. Freeman. The analytical theory of heat. New York:
Dover Publications, Inc, 1955.

[34] Y. Park and R. E. Sonntag. “Thermodynamic properties of ideal gas air”. In:
International Journal of Energy Research 20.9 (1996), pp. 771–785.

[35] J. D. Anderson. Modern Compressible Flow: With Historical Perspective. Mc
Graw Hill Education, 2020. isbn: 978-1260471441.

[36] J. A. Dean. Lange’s handbook of chemistry. Mc Graw Hill Education, 1999.
isbn: 0-07-016384-7.

[37] W. Sutherland. “The viscosity of gases and molecular force”. In:The London,
Edinburgh, and Dublin Philosophical Magazine and Journal of Science 36.223
(1893), pp. 507–531.

[38] S. B. Pope. Turbolent flows. Mc Graw Hill Education, 2017.

123

https://arxiv.org/abs/2003.12843
https://arxiv.org/abs/2003.12843
http://arxiv.org/abs/1703.09179

Bibliography

[39] NASA. nasa.gov. 2023. url: https://www.nasa.gov (visited on 03/10/2023).
[40] J. D. Anderson. Fundamentals of aerodynamics. Cambridge University Press,

2017.
[41] E. Buckingham. “On Physically Similar Systems; Illustrations of the Use of

Dimensional Equations”. In: Phys. Rev. 4 (4 1914), pp. 345–376.
[42] C. P. Coutinho, A. J. Baptista, and D. R. José. “Reduced scale models based

on similitude theory: A review up to 2015”. In: Engineering Structures 119
(2016), pp. 81–94.

[43] R. Arina. Fondamenti di aerodinamica. Levrotto & Bella, 2015. isbn: 8-88-
218187-1.

[44] D. Tritton. Physical FLuid Dynamics. First. Oxford University Press, 1988.
isbn: 978-0198544937.

[45] E. N. Lorenz. “Deterministic Nonperiodic Flow”. In: Journal of Atmospheric
Sciences 20.2 (1963), pp. 130–141.

[46] L. F. Richardson. Weather prediction by numerical process. University Press,
1922.

[47] J. A. S. and Rodney D. W. Bowersox. Boundary Layer Analysis, Second Edi-
tion. Second. American Institute of Aeronautics andAstronautics, 2011. isbn:
978-1-60086-823-8.

[48] ANSYS Inc. Ansys Fluent Theory Guide. Version Release 2022 R2. July 2022.
[49] I. Goodfellow, Y. Bengio, and A. Courville.Deep Learning. Adaptive Compu-

tation and Machine Learning series. MIT Press, 2016. isbn: 9780262035613.
[50] W. Mcculloch and W. Pitts. “A Logical Calculus of Ideas Immanent in Ner-

vous Activity”. In: Bulletin of Mathematical Biophysics 5 (1943), pp. 127–147.
[51] A. Ivakhnenko and V. Lapa. Cybernetic Predicting Devices. Jprs report. CCM

Information Corporation, 1973.
[52] S. Haykin.Neural Networks: A Comprehensive Foundation. International edi-

tion. Prentice Hall, 1999. isbn: 9780132733502.
[53] J. Schmidhuber. “Deep learning in neural networks: An overview”. In: Neu-

ral Networks 61 (2015), pp. 85–117. issn: 0893-6080.
[54] S. Linnainmaa. “Taylor Expansion of the Accumulated Rounding Error”. In:

BIT 16.2 (1976), pp. 146–160.
[55] MathWorks, Inc. 2023. url: https://www.mathworks.com/discovery/

overfitting.html (visited on 01/16/2023).
[56] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov.

“Dropout: A Simple Way to Prevent Neural Networks from Overfitting”. In:
Journal of Machine Learning Research 15.56 (2014), pp. 1929–1958.

124

https://www.nasa.gov
https://www.mathworks.com/discovery/overfitting.html
https://www.mathworks.com/discovery/overfitting.html

Bibliography

[57] K. Pasupa andW. Sunhem. “A comparison between shallow and deep archi-
tecture classifiers on small dataset”. In: 2016 8th International Conference on
Information Technology and Electrical Engineering (ICITEE). 2016, pp. 1–6.

[58] Google LLC. Tensorflow Python API Documentation. 2023. url: https://
www.tensorflow.org/api_docs/python/ (visited on 01/16/2023).

[59] K. Fukushima. “Cognitron: A self-organizing multilayered neural network”.
In: Biological cybernetics 20.3 (1975), pp. 121–136.

[60] C. Nwankpa, W. Ijomah, A. Gachagan, and S. Marshall. “Activation Func-
tions: Comparison of trends in Practice and Research for Deep Learning”.
In: CoRR abs/1811.03378 (2018).

[61] T. Szandała. “Review and comparison of commonly used activation func-
tions for deep neural networks”. In: Bio-inspired neurocomputing (2021),
pp. 203–224.

[62] S. Hayou, A. Doucet, and J. Rousseau. “On the impact of the activation func-
tion on deep neural networks training”. In: International conference on ma-
chine learning. PMLR. 2019, pp. 2672–2680.

[63] P. Ramachandran, B. Zoph, and Q. V. Le. Searching for Activation Functions.
2017.

[64] M. Tan and Q. V. Le. “EfficientNet: Rethinking Model Scaling for Convo-
lutional Neural Networks”. In: CoRR abs/1905.11946 (2019). url: http://
arxiv.org/abs/1905.11946.

[65] D. Hendrycks and K. Gimpel. “Gaussian Error Linear Units (GELUs)”. In:
(2016).

[66] A. Radford, K. Narasimhan, T. Salimans, I. Sutskever, et al. “Improving lan-
guage understanding by generative pre-training”. In: (2018).

[67] X. Zhang, D. Chang, W. Qi, and Z. Zhan. “A Study on Different Functionali-
ties and Performances among Different Activation Functions across Differ-
ent ANNs for Image Classification”. In: Journal of Physics: Conference Series
1732.1 (Jan. 2021), p. 012026.

[68] L. Alzubaidi, J. Zhang, A. J. Humaidi, A. Al-Dujaili, Y. Duan, O. Al-Shamma,
et al. “Review of deep learning: Concepts, CNN architectures, challenges,
applications, future directions”. In: Journal of big Data 8 (2021), pp. 1–74.

[69] ImageNet Large Scale Visual Recognition Challenge. url: https://www.
image-net.org/challenges/LSVRC/ (visited on 02/05/2023).

[70] C. D. Harris.NASA Supercritical Airfoils: AMatrix of Family-Related Airfoils.
Tech. rep. NASA, 1990.

[71] HPC@POLITO. HPC@POLITO. url: https : / / www . hpc . polito . it /
about.php (visited on 12/12/2022).

125

https://www.tensorflow.org/api_docs/python/
https://www.tensorflow.org/api_docs/python/
http://arxiv.org/abs/1905.11946
http://arxiv.org/abs/1905.11946
https://www.image-net.org/challenges/LSVRC/
https://www.image-net.org/challenges/LSVRC/
https://www.hpc.polito.it/about.php
https://www.hpc.polito.it/about.php

Bibliography

[72] R. J. LeVeque. Finite Volume Methods for Hyperbolic Problems. Cambridge
Texts in Applied Mathematics. Cambridge University Press, 2002.

[73] R. Eymard, G. Thierry, and R. Herbin. “Finite Volume Methods”. In: 7 (Dec.
2000).

[74] Airfoil Tools. url: http://airfoiltools.com/ (visited on 02/05/2023).
[75] J. Thompson, B. Soni, and N. Weatherill. Handbook of Grid Generation. CRC

Press, 1998. isbn: 9781420050349.
[76] Langley Research Center. Turbulence Modeling Resource. 2021. url: http://

turbmodels.larc.nasa.gov/naca0012_val.html (visited on 01/13/2023).
[77] ANSYS Inc. Ansys Fluent Users Guide. Version Release 2022 R2. July 2022.
[78] B. S. Stratford, G. S. Beavers, and The Aeronautical Research Council and

National Gas Turbine Establishment. The Calculation of the Compressible
Turbulent Boundary Layer in an Arbitrary Pressure Gradient: A Correlation
of Certain Previous Methods. ARC-21399. H.M. Stationery Office, 1959.

[79] H. Schlichting, C. Mayes, E. Krause, H. J. Oertel, and K. Gersten. Boundary-
Layer Theory. Springer Berlin Heidelberg, 2003. isbn: 9783540662709.

[80] N. T. Ouellette. “Turbulence in two dimensions”. In: Physics Today 65.5 (2012),
pp. 68–69.

[81] M. V. Morkovin. “Effects of compressibility on turbulent flows”. In: Mé-
canique de la Turbulence 367.380 (1962), p. 26.

[82] F. R.Menter. “Two-equation eddy-viscosity turbulencemodels for engineer-
ing applications”. In: AIAA Journal 32.8 (1994), pp. 1598–1605.

[83] J. Boussinesq. Theorie Analytique de La Chaleur Mise En Harmonie Avec La
Thermodynamique Et Avec LaTheorieMecanique de la Lumiere, Tome II. Gauthier-
Villars, 1903.

[84] A. N. Kolmogorov. “Equations of turbulent motion in an incompressible
fluid”. In: Dokl. Akad. Nauk SSSR 30.4 (1941), pp. 299–303.

[85] D. C. Wilcox. “Formulation of the k-w Turbulence Model Revisited”. In:
AIAA Journal 46.11 (2008), pp. 2823–2838.

[86] F.Menter, R. Langtry, S. Likki, Y. Suzen, P. Huang, and S. Völker. “ACorrelation-
Based Transition Model Using Local Variables—Part I: Model Formulation”.
In: ASME J. Turbomach 128 (July 2006).

[87] P. Malan, K. Suluksna, and E. Juntasaro. “Calibrating the y-Re\ transition
model for commercial CFD”. In: AIAA (2009), p. 1142.

[88] B. Kader. “Temperature and concentration profiles in fully turbulent bound-
ary layers”. In: International Journal of Heat and Mass Transfer 24.9 (1981),
pp. 1541–1544. issn: 0017-9310.

126

http://airfoiltools.com/
http://turbmodels.larc.nasa.gov/naca0012_val.html
http://turbmodels.larc.nasa.gov/naca0012_val.html

Bibliography

[89] C. Britcher and D. Landman. Wind Tunnel Test Techniques: Design and Use
at Low and High Speeds with Statistical Engineering Applications. Elsevier
Science, 2023. isbn: 9780128180990.

[90] M.-S. Liou. “A sequel to ausm: Ausm+”. In: Journal of computational Physics
129.2 (1996), pp. 364–382.

[91] S.-s. Kim, C. Kim, O.-H. Rho, and S. K. Hong. “Cures for the shock instability:
development of a shock-stable Roe scheme”. In: Journal of Computational
Physics 185.2 (2003), pp. 342–374.

[92] S. Phongthanapanich and K. Takayama. “A Comparison of the Roe’s FDS,
HLLC, AUFS, and AUSMDV+ Schemes on Triangular Grids”. In: Applied
Science and Engineering Progress 12.3 (2019), pp. 150–157.

[93] A. Pope and K. Goin. High Speed Wind Tunnel Testing. John Wiley & Sons,
1965. isbn: 9780471694021.

[94] R. Jenkins. NASA SC(2)-0714 Airfoil Data Corrected for Sidewall Boundary-
layer Effects in the Langley 0.3-meter Transonic Cryogenic Tunnel. NASA
technical paper. NASA, Scientific and Technical Information Division, 1989.
url: https://books.google.it/books?id=6qUTAQAAIAAJ.

[95] R. Bartels and J. Edwards. “Cryogenic Tunnel Pressure Measurements on a
Supercritical Airfoil for Several Shock Buffet Conditions”. In: (Oct. 1997).

[96] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, et al. Ten-
sorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software
available from tensorflow.org. 2015. url: https://www.tensorflow.org.

[97] J. Sola and J. Sevilla. “Importance of input data normalization for the appli-
cation of neural networks to complex industrial problems”. In: IEEE Trans-
actions on nuclear science 44.3 (1997), pp. 1464–1468.

[98] M. M. Bejani and M. Ghatee. “A systematic review on overfitting control in
shallow and deep neural networks”. In: Artificial Intelligence Review (2021),
pp. 1–48.

[99] S. Levine, P. Pastor, A. Krizhevsky, J. Ibarz, and D. Quillen. “ coordination
for robotic grasping with deep learning and large-scale data collection”. In:
The International Journal of Robotics Research 37.4-5 (2018), pp. 421–436.

[100] K. He, X. Zhang, S. Ren, and J. Sun. “Deep residual learning for image recog-
nition”. In: Proceedings of the IEEE conference on computer vision and pattern
recognition. 2016, pp. 770–778.

[101] G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger. Densely Con-
nected Convolutional Networks. 2018.

127

https://books.google.it/books?id=6qUTAQAAIAAJ
https://www.tensorflow.org

Bibliography

[102] H. Alshazly, C. Linse, M. Abul-Dahab, E. Barth, and T. Martinetz. “COVID-
Nets: deepCNNarchitectures for detecting COVID-19 using chest CT scans”.
In: PeerJ Computer Science 7 (July 2021), e655.

[103] T. O’Malley, E. Bursztein, J. Long, F. Chollet, H. Jin, L. Invernizzi, et al.Keras-
Tuner. https://github.com/keras-team/keras-tuner. 2019. (Visited
on 01/16/2023).

[104] L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh, and A. Talwalkar. “Hyper-
band: A Novel Bandit-Based Approach to Hyperparameter Optimization”.
In: Journal of Machine Learning Research 18.185 (2018), pp. 1–52.

[105] Google LLC. TensorBoard. https://github.com/tensorflow/tensorboard.
2023. (Visited on 01/16/2023).

[106] O. A. Olayemia, O. I. Salakoa, A. Jinadu, and A. Martins. “Aerodynamic
lift coefficient prediction of supercritical airfoils at transonic flow regime
using convolutional neural networks (CNNs) and multi-layer perceptions
(MLPs)”. In: Al-Qadisiyah Journal for Engineering Sciences 16.2 (2023).

[107] A. Arias-Montano, C. Coello, and E. Mezura-Montes. “Evolutionary Algo-
rithms Applied to Multi-Objective Aerodynamic Shape Optimization”. In:
Studies in Computational Intelligence 356 (2011), pp. 211–240.

[108] R. Derksen and T. Rogalsky. “Bezier-PARSEC: An optimized aerofoil param-
eterization for design”. In: Advances in engineering software 41.7-8 (2010),
pp. 923–930.

[109] M. Khurana, H. Winarto, and A. Sinha. “Application of Swarm Approach
and Artificial Neural Networks for Airfoil Shape Optimization”. In: 12th
AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, MAO
(Sept. 2008).

[110] H. Chen, L. He, W. Qian, and S. Wang. “Multiple Aerodynamic Coefficient
Prediction of Airfoils Using a Convolutional Neural Network”. In: Symmetry
12 (Apr. 2020), p. 544.

[111] Y. Zhang, W. Sung, and D. N. Mavris. “Application of Convolutional Neural
Network to Predict Airfoil Lift Coefficient”. In:ArXiv abs/1712.10082 (2017).
url: https://api.semanticscholar.org/CorpusID:19039547.

[112] ANSYS Inc. Ansys Fluent Text Command List. Version Release 2022 R2. July
2022.

[113] A. Odena, V. Dumoulin, and C. Olah. “Deconvolution and checkerboard ar-
tifacts”. In: Distill 1.10 (2016), e3.

[114] M. Sandler, A. Howard,M. Zhu, A. Zhmoginov, and L.-C. Chen. “Mobilenetv2:
Inverted residuals and linear bottlenecks”. In: Proceedings of the IEEE con-
ference on computer vision and pattern recognition. 2018, pp. 4510–4520.

128

https://github.com/keras-team/keras-tuner
https://github.com/tensorflow/tensorboard
https://api.semanticscholar.org/CorpusID:19039547

Bibliography

[115] S. Ioffe and C. Szegedy. “Batch normalization: Accelerating deep network
training by reducing internal covariate shift”. In: International conference on
machine learning. pmlr. 2015, pp. 448–456.

[116] S. Santurkar, D. Tsipras, A. Ilyas, and A. Madry. “How does batch normal-
ization help optimization?” In: Advances in neural information processing
systems 31 (2018).

[117] N. Bjorck, C. P. Gomes, B. Selman, and K. Q. Weinberger. “Understanding
batch normalization”. In: Advances in neural information processing systems
31 (2018).

129

	Abstract
	List of Figures
	List of Tables
	List of Acronyms
	List of Symbols
	Introduction
	Challenges of assembling a large dataset

	Background
	Navier-Stokes equations for a compressible, Newtonian, Fourier fluid
	Vorticity and vorticity equation

	Dimensionless numbers and similitude theory
	Phenomenology of turbulence
	Boundary layer, transition and separation
	Wall variables and the turbulent boundary layer internal structure
	Separation and reattachment

	Artificial Neural Networks and Deep Learning
	Underfitting and overfitting
	Regularization
	Activation Functions
	CNN

	Simulation setup and methodology
	ANSYS Fluent
	FVM

	Parameters sweep
	Model description
	Mesh & domain shape

	Physical model
	Fluid Properties
	RANS & Turbulence modelling
	Transition
	Near Wall Modelling and y+ wall treatment
	Initial Conditions and Boundary Conditions

	Solver options
	Timestep size and total physical time
	Flux schemes and convergence

	Data acquisition
	Fluid flow data sets

	Model validation

	Neural Networks architecture & training
	Problem description
	Dataset structure and encoding
	Data preparation & Storage
	Data clean-up
	Fast Fourier Transform of the nondimensional coefficients time-series
	Normalization
	Database shuffling and splitting

	Activation Functions
	Loss function & performance evaluation metric
	Regularization
	Custom cylindrical padding
	Pooling
	Scalar values input position
	Convolutional layers filters' size
	Proposed architectures
	FFNN
	Base CNN
	ResNet-like
	DenseNet-like

	Models training
	Optimizer
	Epochs
	Batch Size
	Baseline models results

	Hyperparameter optimization
	HyperBand Options
	List of hyperparameters

	Results
	Results of the baseline models
	Optimized hyperparameters and optimized model results

	Conclusions
	Future Works

	TensorFlow Layers
	TensorFlow Callbacks
	Acknowledgements
	Bibliography

