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Abstract

Hybrid rockets are promising propulsion systems with wide margins for yet unexplored development.

In order to fully exploit the potential of these systems, the consideration of a hybrid fuel combining a solid

grain and a liquid oxidizer is being examined. To achieve a fuel with low environmental impact and max-

imized performance, a Multidisciplinary Design Optimization (MDO) problem needs to be formulated.

This involves the development of a MDO framework specifically for optimizing the solid grain, taking into

consideration additive manufacturing constraints and utilizing a propulsion model to predict the specific

impulse generated. Ultimately, a multi-objective function is established, combining both structural and

performance goals.

Keywords: Topology optimization, Hybrid propulsion, Multidisciplinary design optimization,

Rocket launcher.
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Sommario

I razzi a propellenti ibridi rappresentano sistemi di propulsione promettenti con ampi margini per uno

sviluppo ancora inesplorato. Al fine di sfruttare appieno il potenziale di questi sistemi, si sta esaminando

la considerazione di un carburante ibrido che combini un grano solido e un ossidante liquido. Per ot-

tenere un carburante con basso impatto ambientale e prestazioni massimizzate, è necessario formulare

un problema di Multidisciplinary Design Optimization (MDO). Ciò comporta lo sviluppo di un framework

MDO specifico per ottimizzare il grano solido, tenendo conto dei vincoli della stampa 3D e utilizzando

un modello di propulsione per prevedere l’impulso specifico generato. In definitiva, viene stabilita una

funzione multi-obiettivo che combina obiettivi strutturali e prestazionali.

Parole chiave: Ottimizzazione topologica, Propulsione ibrida, Multidisciplinary Design

Optimization, Lanciatori.
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Chapter 1

Introduction

This chapter serves the purpose of introducing the work conducted towards the completion of this

master’s thesis. An overview is provided on the chosen topic, the motivations is outlined, the objectives

are defined, and ultimately, the structure of this document is described, with a brief explanation of the

content covered in each chapter.

1.1 Topic Overview

Hybrid Rocket Engines (HREs) represent chemical propulsion systems where propellants are present

in two distinct phases. They possess unique characteristics differing from other rocket typologies,

namely solids and liquids.

In this master’s thesis, the author presents an optimization process for the design of a hybrid rocket

fuel grain. Specifically, the optimization targets a hollow cylinder made of printable Acrylonitrile Butadi-

ene Styrene (ABS) material using Additive Manufacturing (AM) technology. This choice is grounded in

promising research and capitalizes on the full potential and favorable attributes offered by AM. The Multi-

disciplinary Design Optimization (MDO) undertaken aims to simultaneously enhance both the structural

and propulsion aspects of the grain.

1.2 Motivation

HREs represent a promising propulsion system, characterized by significant advantageous features,

although their development has not paralleled that of other rocket types. The primary positive aspects

are primarily rooted in enhanced safety, the potential for reduced costs, and lower environmental im-

pact [1]. The latter, in particular, serves as a focal point increasingly converging in various industrial

domains. To attain these potential benefits, a great research effort is thus essential, directed towards

the optimization of hybrid rocket propulsion systems.

The optimization process of HREs can benefit from the combination of various cutting-edge tech-

nologies, enabling a thorough exploration of design possibilities.
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In this context, from a production perspective, the utilization of AM is considered. This choice en-

ables the creation of complex and innovative geometries, with less restrictive constraints compared to

traditional manufacturing techniques. Additionally, it reduces material wastage during production, lead-

ing to cost savings and a reduced environmental impact. From the optimization process standpoint, the

application of additive manufacturing facilitates the integration of optimization analyses, largely due to

the increased design flexibility it offers [2]. Ongoing research in this field contributes to the development

and enhancement of codes and software that play an increasingly central role in the design domain.

Furthermore, all aspects related to sustainability and environmental impact are taken into account,

in a historical period in which they are more central than ever before. For this reason, it is imperative to

continue researching materials that increase their sustainability through improved recycling processes

and reduce their environmental impact by using or creating less polluting materials.

1.3 Objectives

The primary objective of this work involves developing a multidisciplinary optimization strategy for

designing solid grain geometries to be used in hybrid rocket propulsion systems. This optimization is

pursued from both structural and propulsion perspectives, aiming to achieve structural stability, to prevent

potential failures, and maximize propulsion performance.

The main challenge in this endeavor lies in the interplay between the two distinct optimization do-

mains: structural and propulsion. Regarding structural optimization, the goal was to minimize the com-

pliance of the grain, while from the propulsion perspective, the optimization aimed at maximizing perfor-

mance by maximizing specific impulse. Therefore, separate analyses were initially performed to outline

potential optimization patterns for the two different domains. Subsequently, various MDO processes

were executed to achieve the final optimized design.

Considering this, various subsequent investigations can be delineated, such as conducting experi-

mental tests, exploring propellant combinations for reduced environmental impact, and integrating addi-

tional analyses within the optimization process.

1.4 Thesis Outline

This master’s thesis comprises five chapters.

Chapter 1 introduces the work, providing an overview of the topic and describing the motivation,

objectives, and the structure of the thesis.

Chapter 2 constitutes the primary phase of the literature review. It outlines the major topics that

constitute this work. Firstly, it covers HREs, describing their functioning, delving into relevant studies,

and analyzing propellants and geometries. Secondly, it explores AM, offering an overview of key printing

methods and printable fuels. Lastly, it discusses topology optimization, briefly introducing its potential

integration with 3D printing, and delves into Genetic Algorithms (GAs) to enable MDO implementation.
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Chapter 3 presents the methodology employed, encompassing model definition, meshing process,

structural analysis, regression analysis, performance evaluation, topology optimization, and MDO.

Chapter 4 provides an account of the outcomes derived from the various analyses conducted. It

commences by elucidating the results of the regression analysis, serving to validate and compare the

efficacy of the developed methodology. Subsequently, it delineates the optimization results, separately

delving into both structural and propulsion aspects. Following this, the chapter elucidates the findings

from the Multidisciplinary Design Optimization (MDO) analyses, classified into two categories: the first

employs the original starting domain, while the second introduces double symmetry into the optimiza-

tion process. Finally, the chapter culminates with a comparison, revisiting the latter double symmetry

configuration but employing a different fuel with the aim of increasing sustainability. For this reason, the

best-optimized designs obtained are considered and analyzed from an environmental impact perspec-

tive. By calculating their respective emissions, it is possible to make a comparison between the obtained

designs and, in general, between the considered fuels.

Chapter 5 offers conclusions derived from the analysis results and the entire work in general and

concludes by outlining potential future work and developments that can extend from the groundwork laid

in this study.
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Chapter 2

Literature Review

This chapter aims to present, in an extensive literature review phase, the main macro-topics con-

cerning topology optimization of hybrid rocket fuels for additive manufacturing, with some preliminary

analysis.

2.1 Hybrid Rocket Engines

Hybrid rocket engines (HREs) are chemical rocket propulsion systems with fuels and oxidizers in

different phases of matter, mainly a solid fuel that has a liquid or gas oxidizer. Traditional HREs have a

liquid oxidizer that flow across a solid fuel grain [3]. Figure 2.1 presents a schematization of a general

HRE.

Figure 2.1: Hybrid Rocket Engine [4]

Interest in HREs emerged in the 1930s, culminating in the launch of the first hybrid rocket in 1933.

It was called the Russian GIRD- 09, using gelled gasoline/colophony (solid resin/sap from pine trees)

suspended on a metal mesh and Liquid Oxygen (LOx). Subsequently, significant advancements in hy-

brid rocket technology took place in the United States during World War II [5]. Unfortunately, HREs have

not gained popularity of use like Solid Rocket Enginess (SREs) or Liquid Rocket Enginess (LREs) since

they also suffer from several disadvantages of both. Nowadays HREs are still the object of university,

industry and government research and development all over the world. They are used since 2018 on

the SpaceShipTwo, an air-launched suborbital spaceplane manufactured by Virgin Galactic, and since
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2015, remarkable growth has been seen in the research and development of small launchers vehicles,

with a growing interest in hybrid propulsion vehicles [6, 7].

2.1.1 Overview

The idea of a HREs is to have the two propellants in different phases and to store the oxidizer in a tank

separate from the inert fuel. This renders them less susceptible to chemical explosion than conventional

LRE or SRE designs. The heat of the flame and blowing conditions cause the solid fuel to change its

phase to vapor where it is then released from the fuel wall and contributes to further reactions. Fuel

vaporizing or pyrolyzing at the face of the solid fuel grain causes the surface to regress. HREs are an

attractive choice as an alternative to LREs and SREs, because they combine ideas from both LREs and

SREs and try to benefit from the advantages of these more established engines [8].

Features unique to HREs are higher safety during operation and performance parameters that are

intrinsically associated with the geometry. The performance of HREs is frequently challenged by the

low fuel mass addition, which is a function of fuel geometry, and the flow rate of oxidizer. Often HREs

have varying performance conditions that shift over the run duration. The primary changes that affect

performance are the oxidizer and fuel ratio [9].

The main and unique properties of HREs are summarized below:

• Higher safety and manufacturing conditions;

• Performance parameters coupled with geometry;

• Less mechanical complexity than LREs;

• Less inert mass than LREs;

• Less toxic exhaust products than SREs;

• Simpler control mechanism like LREs.

A comparison of the proprieties with LREs and SREs is reported in Table 2.1, as it is clearly possible

to see how the HREs represent a combination of them.

HREs enjoy several safety and environmental advantages over the other two systems, but it has

never been commercially widespread. The main limiting factors of HREs are the low regression rate,

due to the nature of the combustion process, and the low combustion efficiency [9].

The main factors influencing the regression rate are propellant composition, geometry of the grains,

injector configuration and scale. Regarding the geometry issues, in the last years, new research trends

have been developed that promote additive manufacturing and rapid prototyping as possible solutions

and a beginning point for further studies [9]. For this reason, AM processes and printable fuels are later

presented in this Chapter.
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Table 2.1: Comparison between LRE, SRE and HRE [10]

Liquid Solid Hybrid

Performance (Isp) 250-450 sec 200-280 sec 230-300 sec

Cost High Low Moderate

Complexity High Low Moderate

Throttle-ability Yes No Yes

Restart Yes No Yes

Explosive Hazard Moderate High None

Handling & Transport Risk Moderate High Very Low

Storability Low High Moderate to High

Operational Risk High High Very Low

Environmental Impact Low to High Moderate to High Very Low

2.1.2 Internal ballistic and Combustion process

To explain the basic function of the HRE internal ballistic, it is necessary to begin with the geometric

definition of the following parameters, considered for a cylindrical fuel grain as illustrated in Figure 2.2.

Figure 2.2: Schematic geometric representation of an HRE [9]

Ap = π R2
i (2.1)

ṁcc = ṁox + Ap ṙ ρf (2.2)

Ab = 2π Ri L (2.3)

Equation 2.1 describes the port area Ap as a function of the inner radius Ri. Equation 2.2 determines

the combustion chamber mass flow ṁ by two factors, the oxidizer mass flow ṁox and the fuel mass flow
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due to the regression as a function of Ap, regression rate ṙ and fuel density ρf . Equation 2.3 describes

the burnt area Ab as a function of Ri and length port L.

The main parameter in internal ballistic analysis is the regression rate ṙ, which indicates the rate

of fuel consumption or burning from the burning surface. A more detailed relationship to express this

parameter is derived from the mathematical modeling of Marxman’s analysis [11], as shown in Equation

2.4, where G represents the mass flux, x is the axial combustion port location, µ is the combustion gas

viscosity, and β is the blowing coefficient. This last equation can only be used with English units [9].

ṙ = 0.036 G0.8

ρf

1µ

x

20.2
β0.23 (2.4)

However, the expression for the regression rate is typically simplified as shown in Equation 2.5, where

the coefficients a and n are experimentally determined, specific to fuel and oxidizer combinations and

dependent on many factors such as combustor design, facility effects, measurement approach, etc [12].

On the other hand, the mass flux G relation is obtained analytically as presented in Equation 2.6. This

latter parameter is the driving one for the rocket performance, because it drives the regression of the

port section.

ṙ = a Gn (2.5)

G = ṁ

Ap
(2.6)

This simplification assumes a constant regression rate along the grain, independent of pressure.

It’s worth noting that in place of the mass flux G, the oxidizer mass flux Gox is also used, with the

coefficients adjusted accordingly. In this work, the latter case will be implemented, as described in the

following chapter.

The regression rate’s behavior as a function of mass flux is not uniform. However, it can be divided

into three main regimes, as illustrated in Figure 2.3. The first regime is characterized by thermal radi-

ation effects, the second by turbulent heat transfer, and the third by chemical kinetic effects. Typically,

HREs operate within the second regime, which exhibits dependencies on scale effects, geometry, and

additives.

28/09/23, 20:33 aerospace-10-00500-g004.png (3044×1248)

Figure 2.3: Regression rates regimes and their corresponding parameter dependencies in HREs [8].
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The correlation of the regression rate with mass flux is typical of HREs, unlike the SREs that have

relationship with the pressure, as described by the Saint/Robert law [13]. So, HREs have a weak corre-

lation with pressure and the dependency on mass flux makes their analysis more difficult. By combining

the previous two equations one obtains Equation 2.7. Considering the mass flux as constant and simple

geometries, it shows an inverse proportionality to the port radius.

ṙ = a

3
ṁ

π R2
i

4n

(2.7)

Finally, comparing Equations 2.1 and 2.3, it is possible to notice two of the main HRE problems. The

burned surface is always less than the cross-section area and this leads to an inconsistent burn rate

with time and an inability to easily scale for larger performances. Regarding the combustion process,

it is clear that HREs rely on the boundary layer combustion to generate hot gas. The most used HRE

propellants are polymer fuels, which evaporate slowly, making it difficult to reach a high thrust level. For

this reason, the burning surface area needs to be increased, however, this leads also to an increase

of required ports and so to a wagon wheel geometry of the fuel grain [9]. Some types of fuel present

several problems during the combustion process, mainly due to a phenomenon called sloughing. It

happens when a significant portion of the solid wall transforms into liquid droplets before forming a

vapor, instead of vaporizing in preparation for combustion. These fuel droplets are entrained into the

combustion mass flow and this can also produce some fuel grain disfiguration. Fuel can flow toward

the nozzle outlet and this results in a significant amount of un-combusted fuel, fuel slivers/globs, and

obstruction of the outlet. Of course, this issue leads to a different regression rate behaviour [9]. Figure

2.4 depicts the typical HRE flame boundary layer, with and without the sloughing problem.
28/09/23, 14:04 42496_2022_119_Fig1_HTML.png (1506×828)

(a) Generic flame boundary [14] (b) Flame boundary with sloughing [9]

Figure 2.4: Flame boundary layer

2.1.3 Propellants

The evaluation and determination process of the propellant is one of the main starting points for

the propulsion analysis. The fuel and oxidizer combination affects the regression rate and also certain

Oxidizer to Fuel ratio (O/F) ratio values are needed to produce efficient combustion. The most common

fuels and oxidizers are listed in Table 2.2 and are described in the next paragraphs [9].
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Table 2.2: List of most common HREs propellants [9]

Fuels Oxidizers

HTPB (Hydroxyl-Terminated PolyButadiene) LOx cryogenic (Liquid oxygen)

HTPB + Aluminium additives N2O (Nitrous Oxide) cryogenic

PE (Polyethylene) N2O4 (Dinitrogen Tetroxide)

HDPE (High-Density Polyethylene) H2O2 (Hydrogen Peroxide)

MMA (Methyl Methacrylate) HAN (Hydroxyl-Ammonium-Nitrate)

Paraffin wax RFNA (Red Fuming Nitric Acid)

ABS (Acrylonitrile Butadiene Styrene) OF2 (Oxygen Difluoride)

- Hydroxyl-Terminated PolyButadiene (HTPB)

HTPB is one of the most commonly used fuels in HREs and is also a common binder agent used

for solid propellants. Its classical use is paired with Liquid Oxygen (LOx) [15]. Figure 2.5 portrays the

performance of HTPB with the increase of the O/F ratio, for various different oxidizers. The highest

values of specific impulse are obtained for the fluoride oxidizers, and generally the optimum O/F ratio

values are between 2 and 7. The higher performance obtained for the HTPB justifies its widespread use

is shown how much the specific impulse can change using different oxidizers.

Figure 2.5: Specific Impulse of HTPB versus various O/F ratios, considering various oxidizers [9]

- Polyethylene (PE) and High-Density Polyethylene (HDPE)

PE and HDPE are easy to shape form and manufacture into fuel grain. These fuels are often used

for full-scale rocket applications. Studies conducted on them demonstrated easy throttling via a valve

and stable combustion, although their regression rates had limited capability to improve [10]. The high-
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density variant is more efficient when considering thrust efficiency and flight conditions. HDPE is com-

monly used with Nitrous Oxide (N2O), Dinitrogen Tetroxide (N2O4), Liquid Oxygen (LOx), Gaseous Oxy-

gen (GOx) and High-Test Peroxide (HTP), that is a highly concentrated solution (85 to 98%) of Hydrogen

Peroxide (H2O2) [9].

- Methyl Methacrylate (MMA)

MMA is another popular fuel belonging to the family of clear rigid plastics. It is used with Nitrous

Oxide (N2O), Mixed Oxides Nitrogen (MON) of various concentrations, Dinitrogen Tetroxide (N2O4), Red

Fuming Nitric Acid (RFNA), or Liquid Oxygen (LOx) [9].

- Paraffin

Paraffin wax is a commonly used fuel for smaller engines and test applications. It is easy to manu-

facture and shape, and it has shown regression rates up to 3 to 4 times higher than that of other polymer

fuels. This wax has a higher heat of vaporization than that common wax. This fuel has several problems

when burning, mainly due to sloughing. It is classically used with High-Test Peroxide (HTP), Liquid Oxy-

gen (LOx), and Nitrous Oxide (N2O) [9].

Properties and performance metrics of various combinations of propellants previously presented are

reported in Table 2.3, where it is possible to see the compliance of the performances with Table 2.1.

Table 2.3: Performances capability for several hybrid propellants [8]

Fuel Oxidizer Optimum O/F Isp, s c∗, m/s

HTPB LOx 1.9 280 1820
PMMA LOx 1.5 259 1661
HTPB N2O 7.1 247 1604
HTPB N2O4 3.5 258 1663
HTPB RFNA 4.3 247 1591
HTPB OF2 3.3 314 2042
HTPB OF2 2.8 326 2118
PE LOx 2.5 279 1791
PE N2O 8 247 1600
Paraffin LOx 2.5 281 1804
Paraffin N2O 4 248 1667
HTPB/Al (40%) LOx 1.1 274 1757
HTPB/Al (40%) N2O 3.5 252 1637
HTPB/Al (40%) N2O4 1.7 261 1679
HTPB/Al (40%) OF2 2.5 312 2006
Cellulose (C6H10O5) GOx 1 247 1572
Carbon Air 11.3 184 1224
Carbon LOx 1.9 249 1599
Carbon N2O 6.3 236 1522
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Another comparison between different combinations of propellant is shown in Figure 2.6. These

graphs are obtained considering a pressure at the combustion chamber of pc = 20 bar and pc/pe = 20,

in a condition of equilibrium flow. Specific impulse and density specific impulse are plotted for different

oxidizer-to-fuel ratios. The density specific impulse can be calculated to compare the effectiveness of

the potential use of different propellants in rocket vehicles, taking into account not only their specific im-

pulse but also their density. The results of this calculation were done using NASA Chemical Equilibrium

Applications (CEA) Software [5, 16]. It is possible to see the better performances of HTPB and paraffin

fuels with Liquid Oxygen (LOx) oxidizer, similar to Table 2.3. The following comments can be made

regarding the specific impulse of the different fuels by comparing the two graphs: the PE and HTPB

fuels, with HTP oxidizer, present higher values due to the higher density of the propellant combination;

HTPB and paraffin, with LOx, present similar trends due to the almost unitary density of the propellant

mix; while HTPB and paraffin, with Nitrous Oxide (N2O) and NYTROX (mixtures of nitrous oxide and

gaseous oxygen), present lower values due to the reduced density of the propellant. It is clear that it is

possible to load more propellant with less density specific impulse considering a fixed volume, so also

this aspect has to be evaluated.

Figure 2.6: Comparison of ideal specific impulse and density specific impulse of various propellant
combinations [5]

The improvement of the specific impulse of chemical propulsion systems can be reached increasing

the combustion temperature and the hydrogen content in the propellants [17]. Unlike the SREs, using

metal additives does not significantly contribute to the increase of the specific impulse, as it is also possi-

ble to see from Table 2.3 [18]. Another innovative approach considers including reinforcement structures

within the solid fuel grain, which allows for modifying grain mechanical properties, heat transfer and thus

grain regression. Increasing the grain thermal conductivity is the most direct way to enhance the regres-

sion rate. Moreover, the addition of up to a few percent of carbon black to the grain can be considered
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a low-cost solution [5]. Finally, Table 2.4 reports a performance comparison between an HRE and a

typical SRE and LRE. The HRE is equipped with HTPB and LOx, one of the most studied couples of

hybrid propellants. It is possible to see that the hybrid system is potentially better than the solid solution

and also competitive with the liquid solution (both liquid and bipropellants) [15].

Table 2.4: Performance comparison of solid, hybrid and liquid LOx/HTPB fuel type [15]

Propellant Mixture ratio
Equivalent density ISV th

kg/m3 (Pe = 7MPa,
q

= 40)

Solid AP/HTPB/Al 68/18/14 1750 315

Hybrid LOx/HTPB 72/28 1060 354

Liquid NTO/MMH 2.37 1200 341

Bipropellants

H2O2/RP1 7.0 1320 314
LOx/RP1 2.77 1030 358
LOx/CH4 3.45 830 369
LOx/LH2 4.8 320 455

2.1.4 Geometries

The regression rate increase, as mentioned in Section 2.1.1, is the main focus of research and de-

velopment of HREs. In this chapter, some different approaches have been described, each with some

disadvantages, and the discussion is now focused on how the geometry affects the regression rate.

Some typical different fuel port designs are shown in Figure 2.7.

Figure 2.7: Various typical fuel port designs and their dependence with regression rate [19]

The first and simplest fuel port geometry is the single circular one. This is the introductory geometry

used to define and describe basic HREs, as done in Section 2.1.2. Moreover, researches on paraffin

show the effectiveness of a single port, due to the faster regression rate led by this fuel [8].

A possible method to increase the fuel grain surface burn area is the casting of multiple fuel ports,

with a large pre-combustion chamber or multiple injectors. This is done to reach highly efficient and

stable combustion, by improving the fuel mass flows for oxidizer mass flux levels. However, this multiple

port approach presents several disadvantages:
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• Fuel regression rate reduction with the increase in the number of ports, due to the drop in oxidizer

mass flux and the engine diameter size growth, as shown in Figure 2.7;

• Uneven port burning that produces an excessive un-burned mass fraction. Un-burned fuel slivers

can break off the fuel grain and throw chunks out the back of the rocket;

• Increased risk of motor instability related to dynamic flow interactions between ports and/or the

presence of a large pre-combustion chamber.;

• Requirement for a substantial pre-combustion chamber or individual port injectors and embedded

support structure often needed for multi-port design regression [19, 20].

In the last years, rapid prototyping by means of additive manufacturing has been identified to be

a technique to produce geometrically complex grain shapes, that may solve the HREs performance

problems. New concepts like helix ports, coaxial ports, swirls, spiral-star patterns with central ports

have been tested [9, 20]. In comparison to simple port geometry, the star-swirl or helix shapes showed

improvements in regression rate. These are shown in Figure 2.8.

(a) Helical geometry (b) Star-swirl geometry

Figure 2.8: Representation of complex fuel port geometries [9, 20]

Helical fuel port studies showed regression rate increases, from up to 50% to a factor greater than

3 in some instances, and also volumetric efficiency improvement. Many researchers considered Acry-

lonitrile Butadiene Styrene (ABS) with Gas Oxygen as propellant, due to the easy shape building of this

material using Fusion Deposition Modelling (FDM) processes (see Section 2.2). Presented analysis has

demonstrated that the rotational flow velocity within the fuel port is a primary driver for the regression

rate amplification. Centrifugal flow patterns introduced by the embedded fuel port structures dramati-

cally increase fuel regression rates, by enhancing surface skin friction, and reduce the effect of radial

boundary layer “blowing” outflow. These two mechanisms work together to enhance the convective heat

transfer to the fuel surface [9, 20].

Star-swirl geometries studies indicate an increase of the burn surface area at the start of burn to

about 3 times that of a tube grain. Most regression rates of the profile are higher and also combustion

efficiency is better, since the spiral induces a swirl in the aft mixing chamber [21, 22].
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Lastly, it is important to underline the strong dependence between the grain geometry and the thrust

profile. Figure 2.9 shows various fuel solid designs with their respective thrust-time programs. So, it

is clear that the geometry evaluation process has to be considered also in the specific rocket mission

profile.

Figure 2.9: Internal burning change designs with their thrust-time programs [23]

2.2 Additive Manufacturing

Additive Manufacturing (AM), also called 3D printing, consists of the construction of a three-dimensional

object from a digital 3D model. It can be done in a variety of processes in which material is deposited,

joined or solidified under computer control, typically layer by layer [24].

The birth of 3D printing can be attributed to Charles Hull, who filed a patent for stereolithography in

1986 [25]. The primary idea was to use this technology to create a 3D model from a drawing and allow

users to test a design before investing in a larger manufacturing program. He also invented the Standard

Triangle Language (STL) file format, which describes a raw, unstructured triangulated surface, through

the unit normal and the triangles vertices, using a three-dimensional cartesian coordinate system [26].

STL files describe only the surface geometry of a three-dimensional object without any represen-

tation of colour, texture or other common Computer Aided Design (CAD) model attributes. This file

format is supported by many software packages, it is widely used for rapid prototyping, 3D printing and

computer-aided manufacturing [27].
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2.2.1 Printing Methods

The American Society for Testing and Materials (ASTM) group “ASTM F42 - Additive Manufactur-

ing”, formulated a set of standards that classify the range of Additive Manufacturing processes into 7

categories, reported in Table 2.5 [28]. Figures 2.10, 2.11 and 2.12 show three different types of printing

methods that are presented in this section.

Table 2.5: Additive Manufacturing processes categories [28]

VAT Photopolymerization Powder Bed Fusion Material Jetting Sheet Lamination
Binder Jetting Direct Energy Deposition Material Extrusion

Figure 2.10: Stereolithography (SLA) [29]

- Stereolithography (SLA)

SLA, developed and patented by Chuck Hull in 1986, is the best-known technique that uses the

principle of photopolymerization to create new models. The SLA process is carried out by means of

Digital Light Processing, i.e. a photochemical transformation of a polymer. SLA printers are made up of

a beam of ultraviolet light, a system of mirrors, a tank designed to contain the liquid polymer, a lift platform

that will support the object to be made and move it progressively downwards after the completion of each

individual layer, an ultraviolet light oven and possible supports to withstand the parts of the object during

construction. After virtually subdividing the CAD into horizontal two-dimensional planes, the software

transmits the information to a laser source. The laser strikes the liquid photopolymer contained in the

mirror system, causing it to harden. Once solid, the thin layer formed is lowered thanks to the platform-lift:

new liquid resin is exposed and ready to be hardened. The new layer formed will overlap the previous

one. It is the joining of these layers that will determine the construction of the object. At the end of

manufacture, the solid extracted from the liquid resin is placed in an ultraviolet light oven to complete

polymerization [29].
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- Fused Deposition Modelling (FDM)

FDM is a Material Extrusion (ME) process that consists of a heated plastic material ejected from a

nozzle that builds the two-dimensional planes of the object layer by layer. The material used is in the

form of a filament, that is led to the extruder, which uses torque and a pinch system to feed and retract

the precise filament amounts. Then a heater block melts the filament to a usable temperature and forces

it out of a heated nozzle at a smaller diameter, so the extruded material is laid down on the model

where it is intended. The temperature of the extrusion head and working surface is very important for

the success of the object. The platform has a lower temperature so that the plastic hardens as soon

as it is deposited. Once each layer is completed, the platform lowers and the extrusion head deposits

another layer of material. This method has restrictions on the shapes, structures with hollow parts must

be avoided or supports must be used, which will be removed once the process is complete [30].

The main parameters of this method are:

• Material properties;

• Distance between the nozzle and the print bed;

• Thickness of the layer;

• Temperature of the printed model during the printing;

• Printing speed, which depends on the nozzle diameter, the printing temperature and the material

pressure inside the liquefier chamber.

Figure 2.11: Fused Deposition Modelling (FDM) [30]
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- Selective Laser Sintering (SLS)

SLS is the first commercialized Power Bed Fusion (PBF) process and its working is similar to the SLA

process. It is made by a moving laser beam to selectively sinter powder into successive cross-sections

of a three-dimensional part. As in all rapid prototyping processes, the parts are built upon a platform that

adjusts in height equal to the thickness of the layer being built. Additional powder is deposited on top of

each solidified layer and sintered. This powder is rolled onto the platform from a bin before building the

layer. The powder is maintained at an elevated temperature so that it fuses easily upon exposure to the

laser. Unlike SLA, special support structures are not required because the excess powder in each layer

acts as a support to the part being built. SLS was originally developed for plastic materials but then it

was subsequently extended to metal and ceramic powders. After the printing process, the part is placed

in a furnace and the polymer binder is burned off and bronze infiltration is made to improve density [31].

Figure 2.12: Selective Laser Sintering (SLS) [31]

2.2.2 Printable Fuels

As aforementioned in Section 2.1, the most significant limitation of HREs is the low regression rate.

In order to reach sufficient levels of regression rates, it is necessary to implement certain structural and

chemical modifications to the fuel grains. A possible solution is the use of paraffin-based fuels, which

inherently exhibit superior regression rates compared to other polymeric fuels due to the lower viscosity

that promotes droplet entrapment within the lame zone [32]. Despite these advantages, paraffin-based

fuels suffer from poor mechanical strength compared to polymeric fuels, which led to the utilization of

additives such as elastomers and thermoplastics at the expense of regression rate [33].

About the possibility of using printable fuels to improve performance, researches have been made

about ME processes to print thermoplastic hybrid rocket fuel grains as ABS, High Impact Polystyrene

(HIPS), HDPE and Poly(methyl Methacrylate) (PMMA). In particular, ABS presents good properties

to replace the HTPB, as it is reported in the studies conducted by Stephen Whitmore at Utah State
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University [34, 35].

Whitmore studies led to the development of a model to evaluate the effects of helical fuel ports

on regression rates decomposing it into two components, the skin friction enhancement and the radial

wall blowing suppression. A comparison between helical geometries of ME-printed ABS burned using

Gaseous Oxygen (GOx) reported an increase of 75% in regression rate, attributed to the rising of skin

friction levels due to the helical rotation [36].

It was also concluded that ME printed ABS samples were also found toexhibit higher consistency in

burn performance, due to the automatednature of the additive manufacturing process [37].

Additionally, ME printing has been highlighted for its efficient use of volume in HREs. Despite its

affordability and simplicity, one of the main limitations of thermoplastic material extrusion is the immisci-

bility of the polymers into efficient, novel, composite hybrid rocket fuels [34].

A comparison between seven different printed fuel grains, through a small-scale static fire test, is re-

ported in a research conducted by McFarland and Antunes at James Cook University [38]. The materials

evaluated are shown in Figure 2.13 (before and after the burning test), with the respective properties and

results presented in Tables 2.6 and 2.7. In this study, the Acrylonitrile Styrene Acrylate (ASA) and Ny-

lon fuel grains showed the highest regression rates ṙ, while Polyethylene Terephthalate Glycol (PETG)

regression rates were relatively poor. Instead Polylactic Acid (PLA), PLA with aluminum particles, and

Polypropylene (PP) exhibited values similar to each other and within the average range. The experi-

ment design of this study was very simple, as the main objective was to select the FDM materials for a

large-scale test [38].

Table 2.6: The selection of seven different fuel grains tested, with their properties [38]

Material Structure ρ (g·m-3)
Tensile Yield Printing

Strength (MPa) Temperature (°C)

ABS Non-crystalline, amorphous 1010 55 220-260
ASA Non-crystalline, amorphous 1000 40 220-250
PLA Moderate degree of crystallinity 1225 63 190-220

PLA-Al Moderate degree of crystallinity 1330 70 200-220
PETG Moderate degree of crystallinity 1230 50 230-250
Nylon Moderate degree of crystallinity 1150 55 220-260

PP High degree of crystallinity 980 40 230-260

(a) Before test, in order: ABS, PLA, PETG, PP,
ASA, Nylon, PLA-Al

(b) After test, in order: ABS, PLA, PP, ASA,
PETG, PLA-Al

Figure 2.13: Fuel grain specimens, before and after combustion test [38]
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As mentioned at the beginning of this section, the use of composite fuels can be necessary to im-

prove the performance of HREs, and especially for this reason the ME methods have high importance.

Through this process it is possible to build structural frameworks of composite fuel, where a second

material can be casted or pulverized in printed molds, obtaining intricate shapes and superior ballis-

tic performances. The additives of the polymeric matrix are usually pulverized coal, petroleum coke,

graphite, and paraffin, as mentioned at the beginning of this section. ME printed Acrylonitrile Butadiene

Styrene (ABS) with casted paraffin composite solid fuel grains are a very new and attractive type of

fuel, because the melting point of the paraffin is lower than the glass transition temperature of the ABS,

making the choice of this process perfect for this combination of materials [34].

In literature, there are several studies about increasing the performance of ABS-Paraffin fuel and here

are reported some examples. Firstly, a research about a fabricated fuel grain with helical and straight

ports with minimal post-processing, facing the incomplete combustion of ABS and marginal regression

rate enhancement of hybrid rockets. Ballistic tests conducted using GOx resulted in an amplification

of the regression rate of about 6 to 7 times under a low O/F ratio of 0.6 [39]. Secondly, another study

on printed ABS substrates with swirl patterns as a framework for casted paraffin, tested using methane

and GOx, reported an increase of 20% in regression rate [40]. Thirdly, another research conducted by

McCulley, about composite fuel grains with varying amounts of ME-printed ABS and paraffin burned with

N2O, showed a maximum regression rate of 3 mm/s under an O/F ratio of 3.9 [41]. Finally, McKnight

made a comparison between star-swirl port samples in ME-printed ABS and different configurations of

diaphragm samples in paraffin and acrylic. The first ones reported an average regression rate between

0.58 and 1.00 mm/s, whereas the second ones marked between 0.48 and 4.79 mm/s, clearly proving a

higher regression rate than paraffin [42]. Figure 2.14 shows ME printed composite fuel grains of ABS

and paraffin.

Table 2.7: Result of the small-scale test fire of the selected 3D printed fuel grains [38]

Material ρ (kg m-3) ṁox (kg s-1) ṁfuel (kg s-1) O/F Ratio ṁtotal (kg s-1) ṙ (mm s-1)

ABS 1010 0.0100 0.0023 4.35 0.0123 1.05
ASA 1000 0.0125 0.0030 4.17 0.0155 1.05

Al 1330 0.0108 0.0025 4.32 0.0133 1.20
PLA 1225 0.0100 0.0025 4.00 0.0125 1.23

PETG 1230 0.0108 0.0035 3.09 0.0143 0.94
Nylon 1150 0.0100 0.0027 3.70 0.0127 1.51

PP 890 0.0100 0.0023 4.35 0.0123 1.23

Over the already mentioned low mechanical strength of the paraffin, there are other negative as-

pects. The most significant drawback of pristine paraffin is the liquefaction behaviour, opposite to the

softening phenomenon in thermoplastics, that makes hard the ME-printing. Therefore, the utilization of

3D-printed thermoplastic base structure becomes essential for integrating paraffin-based fuels, resulting

in a marked reduction in regression rates [34].
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Figure 2.14: Structure of composite fuel grain: a) Acrylonitrile Butadiene Styrene (ABS) matrix, b) Grain
filled with paraffin, c) Real image of the grain [40]

In conclusion, it is possible to affirm that the ME printed composite fuel grains made of ABS and

paraffin, mostly with helical port, represent one of the best-studied solutions in the field of HRE fuels

printable with additive manufacturing. So, it could be considered a good beginning point for future

research and optimization.

2.3 Topology Optimization

Topology Optimization (TO) involves determining whether there is material present at every point

within a given space. When applied using a Finite Element Method (FEM) discretization, each element

can potentially be treated as either a void or a structural component. As the structure’s topology is not

predetermined, a generalized formulation should enable the prediction of the structure’s layout [43].

Illustrated in Figure 2.15, topology optimization can be conceptualized as a mathematical technique

that optimizes the distribution of structural material within a designated design space, considering a

defined set of loads, boundary conditions, and constraints, all with the aim of maximizing system perfor-

mance. This approach has been under development since the 1990s. The initial standard methodology

involves introducing boundary variations to a given structural topology.

In the conventional approach to topology optimization, the finite element method is used to assess

structural performance. The design is then optimized using various methods. Notable among these

methods are Solid Isotropic Material with Penalization (SIMP) and Evolutionary Structural Optimization

(ESO), along with Bi-directional Evolutionary Structural Optimization (BESO) [44]. A succinct descrip-

tion of these three methods is provided in Table 2.8. Similarly, several algorithms have been devised,

and a summary of these can be found in Table 2.9 [45, 46].
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Table 2.8: Description of some topology optimization approaches [44]

Topology Optimization Approaches

Element-based approaches

Solid Isotropic
Microstructures with
Penalization (SIMP)

Density-based approach that involves the discretization of the
problem domain in a number of finite elements whose solution
is known or can be approximated [43].

Discrete approaches

Evolutionary Structural
Optimization (ESO)

Iterative process with discrete variables that remove material
deleting elements with the lowest criterion function value [47]

Combined approaches

Extended Finite Element
Method (xFEM)

The purpose is the introduction of a generalized and adaptive
finite element scheme that could allow us to work with meshes
that can represent smooth and accurate boundaries [48].

Table 2.9: Description of some topology optimization methodologies [45, 46]

Topology Optimization Methodologies

Optimality Criteria Algorithm
(OC)

Fundamental gradient-based mathematical method with pro-
portional dependency between the design variables and the
values of the objective function [49].

Convex Linearization
(CONLIN)

Linear mathematical programming method with mixed vari-
ables and respect to the problem’s characteristics [50].

Method of Moving
Asymptotes (MMA)

More aggressive version of CONLIN that is expanded by mov-
ing limits. It creates an enormous sequence of improved feasi-
ble solutions of the examined problem and it can handle gen-
eral non-linear problems and simultaneously take into account
both constraints, design variables and characteristics of the
structural optimization problem [51].

Successive Linear
Programming (SLP)

Technique for approximately solving nonlinear optimization
problems by a sequence of model linearizations [52].

Sequential Quadratic
Programming (SQP)

Iterative method for constrained nonlinear optimization. It
solves a sequence of optimization subproblems, each of
which optimizes a quadratic model of the objective subject to
a linearization of the constraints [52].
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Figure 2.15: Illustration of different categories of structural optimization by: a) size, b) shape, c) topology
[45]

2.3.1 Topology Optimization for Additive Manufacturing

The emergence of topology optimization was closely intertwined with the advent of AM processes, as

it naturally aligns with this method, enabling the comprehensive utilization of topology optimization ben-

efits [53]. Applying topology optimization to additive manufacturing introduces an unparalleled avenue

for design and manufacturing freedom, constituting an effective lightweight methodology. Leveraging

the unique advantages of additive manufacturing, such as the realization of intricate spatial arrange-

ments and voxel-by-voxel digitized printing, requires a profound comprehension of the intricate Process-

Structure-Property-Performance (PSPP) relationship, as elucidated in the study by Li et al. to which ref-

erence will be made [54]. This understanding is pivotal in establishing a quantitative correlation between

part properties and various process variables, encompassing laser parameters, processing conditions,

and material attributes.

By harnessing data-driven methodologies to explore the PSPP relationships, it becomes feasible to

optimize multiple process parameters alongside structural topology. This optimization process can be

achieved through employing one of the topology optimization algorithms outlined in Table 2.9. Three

scenario-specific optimizations exemplify the effectiveness of this approach, yielding advancements in

lightweight performance when contrasted with conventional optimization methods [54].

Figure 2.16, taken from Li et al. work’s, provides a schematic overview of the entire topology opti-

mization process tailored for additive manufacturing. Following the delineation of manufacturing process

parameters and the establishment of PSPP relationships, the subsequent step involves characterizing

the material properties of the structure. Subsequently, topology optimization techniques and algorithms

are applied to assess a plethora of potential structural configurations, as elaborated in the preceding

section, ultimately culminating in the attainment of the optimal structural design.
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Figure 2.16: Overview of multidisciplinary topology optimization for additive manufacturing [54]

2.4 Genetic Algorithms

A Genetic Algorithm (GA) draws its inspiration from Darwin’s theory of natural evolution and serves

as a heuristic search approach. This algorithm mirrors the process of natural selection, where the most

adept individuals are chosen for reproduction in order to generate the next generation’s offspring [55].

The process of natural selection commences by selecting the most adept individuals from a pop-

ulation. These individuals generate progeny that inherit their parents’ traits and become part of the

subsequent generation. If the parents possess higher fitness, their progeny might outperform them

and have an enhanced chance of survival. The population remains of fixed size: as new generations

emerge, individuals with lower fitness are removed, creating space for new progeny. The genetic pro-

cess is recurrently executed to try to produce individuals in each successive generation that surpass the

proficiency of the preceding generation. This iterative process continues, ultimately yielding a generation

characterized by the most adept individuals [56].

This concept can be extended to address search problems. It involves identifying a subset of the

best solutions from a pool of potential solutions.
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Usually, genetic algorithms consist of five distinct main phases. Figure 2.17 presents a general

flowchart depicting these phases [57].

Figure 2.17: Flowchart of a typical genetic algorithm [58]

1. Initial Population

The process commences with a group of individuals, termed a population. Each individual repre-

sents a solution to the given problem. An individual is defined by a set of parameters known as

genes. These genes are combined into a string to form a chromosome, which represents a solu-

tion. In a genetic algorithm, an individual’s set of genes is expressed as a string using an alphabet,

often employing binary values (a sequence of 1s and 0s). This process is referred to as encoding

the genes into a chromosome.

2. Fitness Function

The fitness function gauges an individual’s aptness, which reflects its capacity to compete with

other individuals. This function assigns a fitness score to each individual, influencing the probability

of an individual being selected for reproduction.

3. Selection

During the selection phase, the emphasis lies in choosing the most adept individuals and enabling

them to pass on their genes to the subsequent generation. Two pairs of individuals (parents) are

selected based on their fitness scores. Individuals with higher fitness scores possess an increased

likelihood of being chosen for reproduction.
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4. Crossover

Crossover constitutes a pivotal phase within a genetic algorithm. For every pair of parents intended

for mating, a random crossover point is chosen from within their respective genes. Offspring are

produced through the exchange of genes between parents until the crossover point is reached.

These new offspring are introduced into the population. As illustrated in Figure 2.18, it is possible

to have either a single or a double crossover point.

Figure 2.18: Crossover process [57]

5. Mutation

In the formation of new offspring, some of their genes can potentially undergo mutation with a

low, random probability. This implies that certain bits within the bit string may be flipped. Mutation

is introduced to maintain diversity within the population and thwart premature convergence. This

step is depicted in Figure 2.19.

Figure 2.19: Mutation process [57]

The algorithm concludes when the population converges, signifying that it no longer generates off-

spring that significantly deviate from the previous generation. At this point, the genetic algorithm has

provided a set of solutions to the problem.
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Chapter 3

Methodology

This chapter presents the heart of this thesis work. All the MATLAB R⃝ codes used for the var-

ious types of analysis performed are dealt with and discussed in detail. Starting with the geometry

creation and the meshing process, carried out using PolyMesher, followed by the structural analysis

and an initial topological optimisation phase, implemented using PolyTop. Next, the propulsive part is

presented, consisting of the regression analysis code, developed from scratch, and the performance

analysis, performed using NASA CEA Software. Everything, with the exception of the geometry defini-

tion, is implemented within an optimization environement, namely using the NSGA-II genetic algorithm,

in order to obtain a combined structural and propulsive optimisation. Figure 3.1 portrays the workflow

of the MDO methodology developed in this work. It illustrates all the key functions, along with their

respective input and output parameters, as well as the data structures used, highlighting their main pa-

rameters. Throughout this chapter, the principal data structures utilized by the key functions discussed

are presented.

3.1 Model Definition

This first part consists of propellants selection, creation and definition of the geometry, and all the

material and propulsive parameters that will form the model under analysis.

The optimization was performed on a two-dimensional domain due to the greater simplicity of mod-

eling and computation, which significantly reduces the computational cost compared to a similar three-

dimensional study and allows to the test the developed methodology. However, this approach limits the

ability to obtain more complex geometries, as discussed in Section 2.1.4, necessitating additional anal-

yses at another level, such as Computational Fluid Dynamics (CFD) to model the combustion process.

To obtain a 3D model, the two-dimensional domain obtained is then extruded, greatly simplifying the

printing process in terms of production techniques, support usage, and study.

After the research phase conducted in Chapter 2, especially the reported results [38], the increased

availability and ease of printing, the numerous studies conducted by Whitmore et al. [35, 37], and the

data available in the work of Yu et al. [59], it was decided to use ABS as the fuel and gaseous oxygen

27



START

Diagram Key

Functions

Data struct

Design Variables Results

PolyMesher
INPUT OUTPUT

Elements Number fem struct

Iteration Number

GrainDomain
INPUT OUTPUT

Internal Radius r fem struct

External Radius R

Load pressure p on Internal Elements

Fixed External Elements

PolyReg
INPUT OUTPUT

Oxidizer Flow mox Regression Rate r

Regression Coefficients a, n Oxidizer Mass Flux Gox

fem struct Chamber Area Ac

Design Variables V Chamber Perimeter pc

PolyPerf
INPUT OUTPUT

Regression Rate r O/F Ratio

Chamber Area Ac Chamber Pressure pcc

Chamber Perimeter pc Chamber Temperature Tc

prop struct Chamber Density rhoc

CEA Database struct Heat Capacity Ratio gamma

Pressure Coefficient cp

Characteristic Velocity c*

Thrust Coefficient cF

Specific Impulse Isp

Specific Impulse Ivac

FEAnalysis
INPUT OUTPUT

fem struct Displacement U

Young Modulus E Global load vector F

NSGA-II
INPUT OUTPUT

Population Number Chromosomes

Generation Number

Variables Number

Max & Min Range Variables

fem struct

prop struct

CEA Database struct

fem
NNode Number of nodes

NElem Number of elements

Node Nodes

Element Elements

Supp Supports

Load Loads

Nu0 Poisson's ratio

E0 Young?s modulus

Pc Coordinates of the element centroids

ElemArea Element areas

R Radius of the external circumference

r Radius of the internal circumference

IntELements Elements of the internal circumference

ExtELements Elements of the external circumference

FixELements Fixed elements 

FreeELements Free elements

prop
mox Oxidizer Mass Flow

a Regression coefficient of ABS

n Regression coefficient of ABS

dens Density of ABS

To Temperature at sea level

L Length of the grain

CEA Database
of Oxidizer to fuel ratio

p Pressure

T Temperature

rho Density

gammas Heat capacity ratio

cp Specific Heat

cstar Characteristic Velocity

cf Thrust Coefficient

Isp Specific Impulse

Ivac Vacuum Specific Impulse

END Chromosomes

Figure 3.1: Workflow overview highlighting the main functions and data structures utilized

as the oxidizer.

The grain size and propulsive values were chosen taking into account the state of the art and the

possibility of combustion tests to evaluate the results obtained. Specifically, the works of Yu et al. [59],

Mahjub et al. [60] and McFarland et al. [38] were considered most. Particularly, the regression param-

eters, introduced in Eq. 2.5, were taken from the work of Yu et al. [59], considering 3D-printed ABS

itself. On the other hand, the value of the oxidizer flow was established as a function of the previously

established geometrical parameters to obtain results comparable with those present in the state of the

art.

Figure 3.2 presents a schematization of the considered domain and Table 3.1 reports all the model

parameters, considering the propellants and the geometry, material and propulsion specifications. The

propulsion parameters of the model, used by the PolyReg and PolyPerf functions, are stored within the

prop data structure as outlined in Table 3.2.
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Figure 3.2: Representation of the domain

Table 3.1: Model parameters [59, 61]

Fuel ABS (Acrylonitrile Butadiene Styrene)

Oxidizer O2 Gaseous

Geometry Material Propulsion

External Radius / Diameter Young Modulus Oxidizer Mass Flow

R = 2.5 cm / D = 5 cm E = 2.5 GPa ṁox = 5 g/s

Internal Radius / Diameter Poisson’s ratio Regression coefficient

r = 0.75 cm / d = 1.5 cm ν = 0.36 a = 0.07

Length Density Regression coefficient

L = 10 cm ρ = 1070 kg/m3 n = 0.442

Table 3.2: Fields list of the prop data structure

prop struct

prop.mox Oxidizer Mass Flow [kg/s]

prop.a Regression coefficient of ABS

prop.n Regression coefficient of ABS

prop.dens Density of ABS [kg/m3]
prop.To Temperature at sea level [K]

prop.L Length of the grain [m]

3.2 Meshing Process

After selecting and defining the parameters, the next step involved creating the mesh of the model.

The MATLAB R⃝ codes PolyMesher and PolyTop were used for model creation and optimization, respec-
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tively [62, 63]. These codes are implemented within the main code, PolyScript. The decision to use

these codes as a starting point was made for several reasons. Firstly, their versatility in creating meshes

for domains with specific geometries makes them particularly suitable, especially when a polygonal

mesh is preferred. Additionally, the availability of all the codes and well-drafted documentation made

them easily accessible, thanks to the work of Professor Paulino on topology optimization at Princeton

University [64, 65]. Furthermore, the codes exhibit simple, efficient, and robust characteristics, further

supporting their selection as the starting point for the mesh creation and optimization process.

The Voronoi tessellation implemented within the meshing process allows the use of polygons for

domain creation and requires a brief introduction. The Voronoi tessellation starts with a set of n distinct

points or seeds P and creates, for each of these points, sets of other domain points that have a smaller

distance to the seed than any other seed. These sets are called Voronoi cells. A notable property in two

dimensions is that a bounded Voronoi cell is always a convex polygon. This is because it is formed by the

finite intersection of half-planes, each of which is a convex set. To achieve a higher level of regularity, the

algorithm focuses on a specific category of Voronoi tessellations known as Centroid Voronoi Tessellation

(CVT). In a CVT, each point y coincides with the centroid yc of its corresponding region. For a variational

characterization of a CVT, it is possible to compute an energy functional based on the deviation of each

region from its reference seed. By minimizing this energy functional, it is possible to converge to an

optimal tessellation. PolyMesher implements Lloyd’s algorithm to compute CVTs and built more uniform

polygonal meshes. This algorithm iteratively replaces the given generating seeds with the centroids

of their corresponding Voronoi regions. It can be seen as a descent method for the energy functional

[62]. A visualization of the Voronoi tessellation with Lloyd’s iteration method is showed in Fig.3.3. For

detailed information on Voronoi tessellation, CVT, and Lloyd’s algorithm, it is recommended to refer to

the sources cited at the beginning of this section and the work by Aurenhammer [62, 66].

Figure 3.3: Voronoi tessellation with Lloyd’s iteration method

The domain is created within the GrainDomain function, which is called within the PolyMesher func-

tion responsible for generating the mesh for the selected domain. The input data for GrainDomain

includes the inner radius r and outer radius R of the cylindrical domain, as well as the applied pressure

pc as a load condition. As for the load and constraint conditions, highlighted in Fig.3.4c, the structure is

constrained at the nodes along the outer circumference of the domain, while a radial pressure pc of 1

bar is applied at the nodes along the inner circumference of the domain. Regarding the choice of load,
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it is important to clarify that this is considered more as an exploratory load rather than an actual load.

For this reason, the value used is far from the pressures typically present in combustion chambers. The

rationale behind the exploratory load lies in the type of structural optimization being performed. Minimiz-

ing compliance leads to the attainment of a design that is superior in terms of structural response and

robustness, rather than, for instance, the configuration with the absolute lowest stress levels. Hence, re-

garding our configuration of geometry and load condition, the optimized design is nearly independent of

the imposed load value. Variations in load may result in minor adjustments, such as thickness changes,

but the overall design remains unchanged.

The input data for PolyMesher are the function containing the domain (Domain), the desired number

of elements (NElem), the maximum number of Lloyd’s iterations (MaxIter), and optionally, an initial set

of seeds (P). A double symmetry of the mesh was enforced, as described in Section 6 of "PolyMesher:

a general-purpose mesh generator for polygonal elements written in MATLAB" [62]. A number of 500

elements were chosen to ensure that each element’s area is larger than the average resolution of FDM

printing. This precautionary measure helps avoid printing issues or the requirement for subsequent AM

filters. Additionally, a higher number of elements was chosen to maximize the number of iterations in

the regression analysis. This choice is linked to the nature of the regression code, as described in

Section 3.4, where the number of elements is directly proportional to the number of iterations required

to complete combustion, thereby yielding more output data. The obtained mesh is reported in Fig.3.4c.

(a) Initial Random Points (b) After 10 Iterations (c) Final Mesh

Figure 3.4: Meshing process with Voronoi tessellation and Lloyd’s iteration method

Within PolyMesher, several functions are invoked. The DistFnc function utilizes the implemented

functions dCircle and dDiff to compose the desired domain. The BndryCnds function identifies the

nodes belonging to the inner and outer circumferences to apply respective loads and constraints. The

PolyMshr_RndPtSet function generates a pool of points, equal to the desired number of elements, which

will serve as the centers of the polygons tessellating the domain. Table 3.3 provides a comprehensive

list of all the functions used by PolyMesher.

The data generated during the meshing process as described earlier, along with the results derived

from the structural analysis, discussed in the next section, are stored within the fem data structure. Table

3.4 presents the data obtained from the meshing process, which is complemented by the information

provided in Table 3.6.
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Table 3.3: List of functions used by PolyMesher [62]

Domain Functions Meshing Functions

GrainDomain PolyMshr_RndPtSet PolyMshr_CllpsEdgs

DistFnc PolyMshr_Rflct PolyMshr_RsqsNds

dCircle PolyMshr_CntrdPly PolyMshr_RbldLists

dDiff PolyMshr_ExtrNds PolyMshr_PlotMsh

Table 3.4: Fields list of the fem data obtained by PolyMesher [63]

fem struct (data from PolyMesher)

fem.NNode Number of nodes

fem.NElem Number of elements

fem.Node [NNode × 2] array of nodes

fem.Element [NElem × Var] cell array of elements

fem.Supp [NSupp × 3] support array

fem.Load [NLoad × 3] load array

fem.Nu0 Poisson’s ratio of solid material

fem.E0 Young’s modulus of solid material

fem.Pc* Coordinates of the centroid of each element

fem.R* Radius of the external circumference [m]

fem.r* Radius of the internal circumference [m]

fem.IntElements* Elements of the internal circumference

fem.ExtElements* Elements of the external circumference

fem.FixElements* Fixed elements (IntElements + ExtElements)

fem.FreeElements* Free elements

fem.nV* Number of variable elements

fem.Reg Tag for regular meshes
* Added fields, not presented in PolyScript

3.3 Structural Analysis

The structural analysis is done applying the Finite Element Method (FEM) to calculate the com-

pliance of the entire structure, which is computed as the dot product of forces and displacements of

individual nodes [63]. The subsequent goal of the structural optimization is to minimize this parame-

ter, corresponding to the minimization of structural deformations. This objective is pursued to ensure

greater structural integrity of the 3D-printed grain, avoiding excessive deformations during combustion

and unexpected variations in rocket propulsion parameters and performance.

To perform this analysis, the FEAnalysis function within the PolyTop code is utilized, and its docu-

mentation is referred to for a deeper understanding of the implemented code [63]. FEAnalysis enables
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FEM analysis of meshes composed by bidimensional polygonal elements. It assembles the stiffness

matrix of the entire structure, starting from the stiffness matrix of each polygonal element, and calcu-

lates the displacement of each individual node, considering the forces acting on the nodes resulting from

the boundary conditions. FEAnalysis has been used as an objective function both within PolyTop and

as a standalone implementation in NSGA-II, as showed in Fig.3.1 and will be clearer in the subsequent

sections. Therefore, the function takes into account the design variables, namely the volume fraction of

each element, in the evaluation of the stiffness value for each element. Table 3.5, depicting the concep-

tualization of Talischi et al.’s work [63], lists all the functions utilized within FEAnalysis, accompanied

by a brief description of their main purpose. Table 3.6 presents the data obtained from the structural

analysis, which complements the fem data structure.

Table 3.5: List of functions used by FEAnalysis [63]

Function Purpose

TabShapeFnc Tabulation of shape functions values and their gradients at the integration
points of the reference element with the related quadrature weights.

PolyShapeFnc Computation of the linear shape functions for a reference polygon at an interior
point.

LocalK Computation of the local stiffness matrix of the isoparametric polygonal ele-
ments.

PolyTrnglt Generation of a directed triangulation of the reference poligon by connecting
its vertices to the interior point.

PolyQuad Polygonal quadrature of the reference polygon divided into triangles.

TryQuad Provision of the usual quadrature rule for the reference triangle.

TryShape Provision of the linear shape functions of the reference triangle.

Table 3.6: Fields list of the fem data obtained by FEAnalysis [63]

fem struct (data from FEAnalysis)

fem.ElemNDof Array showing number of DOFs of elements

fem.ShapeFnc Cell array with tabulated shape functions and weights

fem.k Array of local stiffness matrix entries

fem.i Index array for sparse assembly of fem.k

fem.j Index array for sparse assembly of fem.k

fem.e Array of element IDs corresponding to fem.k

fem.ElemArea Array of element areas

fem.F Global load vector

fem.FreeDofs Array of free degrees of freedom
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3.4 Regression Analysis

The grain regression analysis has been implemented through the PolyReg function, which has been

developed from scratch. PolyReg simulates the grain regression based on the geometry of the structure

(fem struct), the design variables V , and the propulsion parameters (prop struct), which have been

described in Section 3.1 and are listed in Table 3.1. Table 3.7 presents the input and output parameters

of the PolyReg function and Figure 3.5 illustrates the respective flowchart.

The PolyReg function incorporates a while loop that iterates until all the fuel elements in the domain

are combusted, that is, when the sum of volume fractions of all domain elements becomes zero. In

each iteration, the Fuel Elements (solid elements with V = 1) and Chamber Elements (empty elements

with V = 0) are initially identified. At this point, calculating the combustion chamber’s area Ac becomes

straightforward by summing up the areas of the individual elements previously identified. It’s important

to specify that the area enclosed by the inner circumference of the domain is consistently treated as a

component of the combustion chamber, with its area being added to the total.

Consequently, the values for regression rates ṙ and oxidizer mass flux Gox are calculated as follows:

ṙ = a · Gox
n (3.1)

Gox = ṁox

Ac
(3.2)

Where a, n are the regression coefficient and ṁox is the oxidizer mass flow, all reported in Table 3.1.

Table 3.7: Input and output parameters of the PolyReg function

INPUT Parameters OUTPUT Parameters

Oxidizer Mass Flow ṁox Regression Rate ṙ

Regression Coefficients a, n Oxidizer Mass Flux Gox

fem struct Chamber Area Ac

Design Variables V Chamber Perimeter Pc

Subsequently, starting from the identified Fuel Elements, those adjoining the combustion chamber

are selected, referred to as Fuel Border Elements. Taking into consideration the sides of these ele-

ments that border the combustion chamber, the perimeter of the chamber is calculated. Finally, all the

Fuel Border Elements are combusted by setting V = 0, allowing progression to the next iteration until

the domain’s combustion is completed. Each iteration essentially concludes with the combustion of the

Fuel Border Elements. Therefore, the number of iterations is heavily dependent solely on the quantity

of Fuel Elements and their positioning relative to the Chamber Elements. In this context, temporal de-

pendence during the regression process is not considered. This choice is supported by specific reasons

and considerations.
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Figure 3.5: PolyReg Flowchart

Initially, an attempt was made to implement temporal dependence by defining a time resolution and

considering the regression rate to ascertain whether regression covered the distance between the cen-

ters of Fuel Border Elements and adjacent Chamber Elements, thereby allowing for combustion. How-

ever, this approach posed challenges in cases where some Fuel Elements failed to combust, leaving

them unburned even after numerous iterations, with no correspondence to real-world behavior. Fur-

thermore, this implementation increased the analysis time. The decision to assume uniform and simul-

taneous combustion of all Fuel Border Elements was made by approximating the distance between

Fuel Border Elements and adjacent Chamber Elements as equal across the board, owing to the large

number of elements and their small dimensions. This assumption can be considered acceptable and

simplified the analysis due to the absence of temporal dependence.

Figure 3.6 illustrates the regression process of the fully solid domain under consideration. The fuel

elements are depicted in black, while the voids are represented in white. The gradual combustion of

the grain can be observed, commencing from the inner circumference. In this instance, the process is

completed within 10 iterations.

(a) Iteration 0 (b) Iteration 2 (c) Iteration 4 (d) Iteration 7

Figure 3.6: Regression process completed within 10 iterations
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3.5 Performance Analysis

The calculation of performance is carried out using the PolyPerf function, which is also developed

from scratch. PolyPerf utilizes a database created using NASA CEA Software [16], relying on chemical

equilibrium to conduct a performance analysis. The inputs of this function are the prop struct and the

PolyReg output, i.e. regression rate ṙ, chamber area Ac and chamber perimeter Pc.

NASA CEA Software is based on the principle that by knowing the chemical equilibrium compositions

of a chemical system, it is possible to calculate the theoretical thermodynamic properties of the system.

The respective software documentation is referred to [16, 67, 68] for a deeper understanding.

The PolyPerf function includes a for loop that calculates the propulsion performance for each iter-

ation required for the complete combustion of the grain, performed within the PolyReg function. Initially,

various propulsive parameters are calculated, including fuel mass flow ṁf , combustion chamber mass

flow ṁc, oxidizer to fuel ratio O/F , and combustion chamber pressure pc, as described by Equations

3.3, 3.4, 3.5 and 3.7 [69], respectively.

ṁf = ṙ ρf Pc L (3.3)

ṁc = ṁox + ṁf (3.4)

O/F = ṁox

ṁf
(3.5)

p0 = ṁc

ζd At

ó
T0 R

γ

3
γ + 1

2

4 γ+1
γ−1

(3.6)

pc = p0

3
Tc

T0

4 γ
γ−1

(3.7)

Regarding these presented equations, some specifications need to be made. In Equation 3.3, L

represents the length of the grain. Equation 3.6 represents the chamber pressure p0 assuming an ideal

nozzle, where ζd denotes the discharge correlation factor (due to cooling, changes in specific heat ratios

and incomplete combustion) that is considered to be unity. At represents the throat area of the nozzle

and is considered equal to the chamber area Ac. Equation 3.7 corrects the previous chamber pressure

p0 calculation using the combustion gas burning rate, obtaining the correct chamber pressure pc. This

assumes an adiabatic expansion with a constant specific heat ratio, which is valid only for small pressure

changes [69]. In this equation, Tc represents the chamber temperature, a value provided iteratively by

the CEA Database. Furthermore, it should be noted that other parameters used as input for the initial

iteration include the temperature value T0 = 298 K, the air heat capacity ratio value of γ = 1.4 (whose

values are iteratively updated) and the specific gas constant value of R = 287 J/(KgK).

The combustion chamber pressure pc and the oxidizer to fuel ratio O/F are used as input for the CEA

Database data structure, from which the corresponding performance values are extracted.
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The CEA Database was generated utilizing the NASA CEA Software, following the criteria summa-

rized in Table 3.8. Problem type settings were configured as "rocket", with Option defined as "eq",

implying the assumption of equilibrium composition during expansion. Output data was extracted from

the NASA CEA Software, considering a comprehensive array of input pressures pc ranging from 0.1

(considered instead of 0) to 50 bar, with increments of 1 bar except for the first one. Simultaneously,

oxidizer to fuel ratios O/F were varied from 0.5 to 54, in intervals of 0.5, leading to a comprehensive

collection comprising 5508 individual cases. It’s important to note that due to the discrete nature of the

database, the input values were pre-rounded. The intervals were determined following an evaluation of

various test analyses, taking into account potential limit values and variations in the results obtained.

Furthermore, the aim of these studies is to discover the best designs, so the primary purpose of perfor-

mance calculations is the comparison between different geometries rather than the calculation itself.

Table 3.8: Settings of the NASA CEA Software for the creation of the CEA Database [68]

Problem Type rocket Pressure Range 0.1 - 50 bar O/F Range 0.5 - 54

Option eq Pressure Step 1 bar O/F Step 0.5

The NASA CEA Software enables the calculation of theoretical rocket performance considering either

an Infinite-Area Combustion chamber (IAC) [70] or a Finite-Area Combustor (FAC) [71].

This calculation requires the imposition of several assumptions, most of which are similar for both

models and are summarized in Table 3.9. In this case, the IAC model has been considered as it is based

on reproducing a practical combustion test of the fuel only, without the interference of the nozzle.

Table 3.9: Assumptions of the NASA CEA Software for the rocket performance calculation [67]

One-dimensional form of the continuity, energy and momentum equations

Zero velocity at the combustion chamber inlet

Complete combustion

Adiabatic combustion

Isentropic expansion in the nozzle

Homogeneous mixing

Ideal-gas law

Zero temperature and velocity lags between condensed and gaseous species

The calculation of performance begins with the conservation equations of continuity, momentum, and

energy. These are given respectively by Eq. 3.8, 3.9, and 3.10, where they involve the mass flow ṁ,

density ρ, cross-sectional area A, flow velocity u, pressure p, and specific enthalpy h.
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ṁ = ρ A u = const (3.8)

p + ρ u2 = const (3.9)

h + u2

2 = const (3.10)

Subsequently, it is possible to calculate the exit flow velocity ue, as shown in Eq. 3.11, which is valid

for the IAC model. Here, the subscripts "inf " and "e" refer to conditions upstream and downstream,

respectively. It is noted that velocity is expressed in m/s and enthalpy in J/kg.

ue =
ñ

2 (hinf − he) (3.11)

Moving forward, it is possible to compute the thrust F (Eq.3.12), the specific impulse Isp (Eq.3.13),

the vacuum specific impulse Ivac (Eq.3.14), the characteristic velocity c∗ (Eq.3.15), and the thrust coef-

ficient CF (Eq.3.16).

F = ṁ ue

gc
+ (pe − pa) At = ṁ ue

gc
(3.12)

Isp = F

ṁ
= ue

gc
(3.13)

Ivac = Isp + pe Ae

ṁ
(3.14)

c∗ = pinf At gc

ṁ
(3.15)

CF = u

c∗ (3.16)

Clarifications are now provided for the aforementioned equations. gc is a conversion factor and for

the International System assumes a unitary value. The subscript "a" refers to ambient conditions and in

this case is assumed to be equal to the exit conditions. The subscript "t" pertains to throat conditions,

implying that At = Ae since the cross-sectional area remains constant. Equation 3.13 expresses the

specific impulse Isp in m/s, although it is more commonly represented in seconds. This conversion is

accomplished by utilizing the gravitational acceleration g instead of the conversion factor gc. Further-

more, it is specified that thrust F is not treated as a direct output from the CEA Database. Instead, it is

calculated subsequently using Equation 3.12.

For the purpose of schematization, Table 3.10 presents the input and output parameters associated

with the PolyPerf function. Figure 3.7 depicts the respective flowchart, which also includes all fields of
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the CEA Database data structure. The outputs obtained from the PolyPerf function can be divided into

two groups. The first group consists of the characteristics and properties of the combustion chamber,

including the oxidizer to fuel ratio O/F , chamber parameters such as pressure pc, temperature Tc, and

density ρc, the heat capacity ratio γ, and the specific heat cp. The second group comprises the propulsion

performance parameters, namely characteristic velocity c∗, thrust coefficient CF , specific impulse Isp,

and vacuum specific impulse Ivac.

Table 3.10: Input and output parameters of the PolyPerf function

INPUT Parameters OUTPUT Parameters

Regression Rate ṙ Oxidizer to Fuel Ratio O/F Characteristic Velocity c∗

Chamber Area Ac Chamber Pressure pc Thrust F

Chamber Perimeter Pc Chamber Temperature Tc Thrust Coefficient CF

prop struct Chamber Density ρc Specific Impulse Isp

CEA Database struct Heat Capacity Ratio γ Vacuum Specific Impulse Ivac

Specific Heat cp

Start

Fuel Mass Flux 
Calculation

Chamber Pressure 
Calculation

Performance Parameters

for                             
each iteration of the 
regression analysis

End

O/F Ratio          
Calculation

CEA Database data struct
a                                                                                                                     

of                                     
a

a                                                                                                                     

Oxidizer to fuel ratio                                     
a

                                                                                                                     

p                                     
a

a                                                                                                                     

Pressure                                     
a

a                                                                                                                     

T                                     
a

a                                                                                                                     

Temperature                                     
a

a                                                                                                                     

rho                                     
a

a                                                                                                                     

Density                                      
a

a                                                                                                                     

gammas                                     
a

a                                                                                                                              

Heat capacity ratio                                     
a

a                                                                                                                     

cp                                     
a

a                                                                                                                     

Specific Heat                                      
a

a                                                                                                                     

cstar                                     
a

a                                                                                                                     

Characteristic Velocity                                      
a

a                                                                                                                     

cf                                     
a

a                                                                                                                     
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a
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Isp                                     
a

a                                                                                                                     

Specific Impulse                                      
a

a                                                                                                                     

Ivac                                     
a

a                                                                                                                     

Vacuum Specific Impulse                                      
a

Figure 3.7: PolyPerf Flowchart

Finally, the results obtained from the analysis of the full domain carried out with the PolyPerf function

are presented. The oxidizer to fuel ratio O/F , chamber pressure pc, chamber temperature Tc, thrust F ,

thrust coefficient CF , characteristic velocity c∗, specific impulse Isp, and vacuum specific impulse Ivac

are reported respectively from Figure 3.8 to 3.15. Each graph displays the iterations performed for the

combustion, equal for all cases, on the abscissa. On the ordinate, the output value is plotted along with

its respective unit of measurement, expressed in the graph’s title.
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Figure 3.8: Oxidizer to fuel ratio O/F Figure 3.9: Chamber pressure pc

Figure 3.10: Chamber temperature Tc Figure 3.11: Thrust F

Figure 3.12: Thrust coefficient CF Figure 3.13: Characteristic velocity c∗
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Figure 3.14: Specific impulse Isp Figure 3.15: Vacuum specific impulse Ivac

It can be observed that practically all parameters exhibit a substantial increase following the initial

iteration, attributed to the commencement of combustion, followed by a stable phase, and subsequently,

a more or less pronounced decrease during the final iteration, marking the culmination of combustion.

Only the oxidizer to fuel ratio O/F demonstrates an inverse behavior, owing to its fuel flow component

in the denominator (Eq.3.5), which tends to approach zero at the conclusion of combustion. These

parameter behaviors align with physical plausibility.

3.6 Topology Optimization

As mentioned in Section 3.2, in the early part of this work, the PolyTop function implemented in the

PolyScript code, along with PolyMesher, was used. PolyTop performs the topological optimization of

the domain generated by PolyMesher by implementing the Optimality-Criteria Algorithm (OC) using the

SIMP Method [63]. In the later part of this work, it was replaced by NSGA-II to leverage the character-

istics of genetic algorithms for multidisciplinary optimization of the structural and propulsion aspects, as

explained in the next section. This could not be implemented in PolyTop due to the lack of sensitivities

regarding the propulsion part, as there are no explicit connections with the geometry.

PolyTop internally uses numerous functions and, again, reference is made to the respective doc-

umentation for in-depth understanding [63]. Table 3.11, depicting the conceptualization of Talischi et

al.’s work [63], lists all the functions utilized within PolyTop, accompanied by a brief description of their

main purpose. Input and output parameters of the function are presented in Table 3.12. The inputs are

the geometric and structural parameters, contained in the fem struct, and the optimization parameters,

contained in the opt struct and described in Table 3.13.
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Table 3.11: List of functions used by PolyTop [63]

Function Purpose

ObjectiveFnc Computation of the objective function of the optimization problem.

FEAnalysis Structural analysis necessary for the objective function.

ConstraintFnc Computation of the constraint function of the optimization problem.

UpdateScheme Computation of the design variable changes through the implementation of
the bisection method, by knowing the gradients of the objective and constraint
function, the design variables values and the constraint function.

Table 3.12: Input and output parameters of the PolyTop function [62]

INPUT OUTPUT

Design Variables Bounders Optimized Design Variables

Volume Fraction Constraint

Maximum Iteration Number

Initial Design Variables

Table 3.13: Fields list of the opt data structures [63]

opt struct

opt.zMin Lower bound for design variables

opt.zMax Upper bound for design variables

opt.zIni Initial array of design variables

opt.MatIntFnc Handle to material interpolation function

opt.P Matrix that maps design to element variables

opt.VolFrac Specified volume fraction constraint

opt.Tol Convergence tolerance on design variables

opt.MaxIter Max. number of optimization iterations

opt.OCMove Allowable move step in the OC update scheme

opt.OCEta Exponent used in the OC update scheme

The design variables considered are the volume fractions of each Free Elements of the domain.

The Free Elements are defined as all elements within the domain to which no loads or constraints are

applied, i.e., all elements except those forming the boundary of the inner and outer circumferences (Int

Elements and Out Elements). The constraint function is formed by the volume fraction, which repre-

sents the percentage of final domain area compared to the initial area. The default objective function
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is compliance, addressed in Section 3.3, which is minimized until convergence is reached. As already

explained in Section 3.2 regarding the load condition, the minimization of compliance is pursued with

the aim of achieving the best possible design in terms of robustness and structural response. For exam-

ple, structural integrity is not guaranteed as stress analysis is not conducted. This latter analysis could

be easily implemented later but was not deemed of primary importance in this initial phase, especially

considering the grain’s purpose, which is to be combusted.

The output of PolyTop consists of the optimal values of the design variables, considering the imposed

parameters. Figure 3.16 shows an example of a general topology optimization, performed with an 80%

volume fraction constraint.

Figure 3.16: Optimized domain with 80% Volume Fraction constraint

3.7 Multidisciplinary Design Optimization

MDO was implemented using the NSGA-II algorithm [72]. The choice of the optimizer fell on genetic

algorithms due to the difficulty in computing sensitivities. Genetic algorithms, with their strong numerical

nature, can be helpful in cases where the gradient of the objective function is unknown. The only obstacle

in this case is the large number of variables, specifically the 404 free elements in the considered mesh,

which led to high computational costs and long execution times.

NSGA-II is a non-domination based genetic algorithm for multi-objective optimization, and its docu-

mentation is referred to [72] for a complete understanding of the code. Table 3.14, depicting the concep-

tualization of Seshadri’s work [72], enumerates and provides basic descriptions for all the primary steps

comprising the NSGA-II algorithm.

In the algorithm, two objective functions are set, namely compliance and specific impulse Isp. There

are 404 design variables with lower and upper limits set to 0 and 1, respectively. In order to perform the

structural analysis, zeros are considered as very small values (1e-4) within FEAnalysis.
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Table 3.14: Main steps of the NSGA-II genetic algorithm [72]

NSGA-II Steps

Population Initialization Generating an initial population while taking into account the
limits and constraints of the analyzed problem.

Non-Dominated Sort The population is sorted using the non-domination sort algo-
rithm, which ranks the population based on the best values of
objective solutions.

Crowding Distance Each element in the population is assigned a crowding dis-
tance to encourage diversity. The crowding distance rep-
resents the density of solutions around a particular solution
type. This occurs because subsets of solutions of the same
type are formed, resulting in significant similarities.

Selection Individuals are selected based on their rank and crowding dis-
tance. This selection is specifically carried out through a bi-
nary tournament with a crowd-comparison operator.

Genetic Operators Genetic operators are applied to generate new individuals.
Specifically, the Simulated Binary Crossover [73, 74] and
Polynomial Mutation [74, 75] operators are employed.

Recombination and Selection The offspring population is merged with the existing popula-
tion of the current generation. A selection process is executed
to determine the individuals for the subsequent generation.
This approach guarantees elitism by incorporating the best
individuals from both the current and previous generations.

Input and output parameters of the function are presented in Table 3.15. The main genetic param-

eters include the population size (pop) and the number of generations (gen), which determine the size

of the initial pool of chromosomes and the number of crossbreeding iterations between chromosome

families. Initially, analyses were conducted with pop = 1000, which is an order of magnitude larger than

the number of design variables, and gen = 100, which is the same order of magnitude as the number

of design variables. This principle is considered as a rule of thumb and was taken as a starting point,

considering a substantial pool relative to the problem at hand. We were aware that further evaluations

would be made depending on the results and the required analysis times of the initial tests [76].

Table 3.15: Input and output parameters of the NSGA-II function

INPUT OUTPUT

Population number pop Chromosomes

Generation number gen

fem struct

prop struct

CEA Database struct
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Figure 3.1 in the beginning of this chapter depicts the complete workflow of the main multidisciplinary

optimization performed. It includes all the functions used, along with their input and output parameters,

as well as all the data structs utilized, highlighting their key parameters. It can be observed that the work-

flow begins with the model definition, involving the construction of the fem struct using the GrainDomain

and PolyMesher functions. The core of the process is represented by the NSGA-II genetic algorithm,

which takes all the data structures (fem, prop, CEA Database) as input. NSGA-II invokes the FEAnalysis

function to compute the structural objective function and the PolyReg and PolyPerf functions in se-

quence to calculate the propulsion objective function. At the end of the analysis, the chromosomes are

obtained, representing the set of design variables for each population family along with their respective

objective function values. These chromosomes are then used to form the Pareto front of the obtained

solutions, which represents their visualization on a graph with the two considered objective functions as

the horizontal and vertical axes. These will be presented as outcomes in the following chapter.
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Chapter 4

Results

This chapter presents the results obtained from the conducted analyses. Utilizing the methodology

explained in the preceding chapter, a range of analytical investigations was carried out. The model un-

der consideration is the one described in the previous chapter, with its parameters listed in Table 3.1 and

its mesh visualized in Figure 3.4c. The initial investigation, focused on regression analysis, was under-

taken to validate the effectiveness of the developed code concerning propulsion aspects. Subsequent

sections reveal distinct analyses conducted to optimize the structural and propulsion characteristics of

the examined grain. Concluding the presentation, the chapter introduces a comprehensive multidisci-

plinary design optimization that integrates both structural and propulsion objectives. Initially, the domain

is considered as a whole, as previously presented, allowing for complete optimization freedom. Sub-

sequently, a double symmetry was enforced by dividing the domain into quarters and mirroring them.

Finally, this same double symmetry case is considered again, but a different fuel is used for comparison

purposes, aimed at reducing environmental impact.

4.1 Regression Analysis Results

To validate the regression analysis performed using the PolyReg function, a combustion test simula-

tion was conducted for which experimental results were known. The geometric and propulsive conditions

reported by Yu et al. [59] were recreated, and the regression coefficients mentioned in Section 3.1 and

Table 3.1 were used. The grain considered has a cylindrical type with R = 8 mm and r = 2.3 mm.

Fuel and oxidizer were consistently considered as ABS and pure GOx, respectively. Specifically, the

regression coefficients for printed ABS with 100% packing density were considered.

Figure 4.1 presents the data obtained using the PolyReg function alongside the experimental data

reported in the work of Yu et al. [59], regarding the printed ABS with 100% packing density and solid

ABS. Specifically, Figure 4.1a presents the results in a linear scale, while Figure 4.1b depicts them in

a logarithmic scale. The latter is employed for a comparison with Figure 2.3, illustrating the theoretical

regression rate trend. It is observed that a linear trend is obtained, as expected from theory, repre-

sented by a sample function in green, within the region of modeled turbulent heat transfer. Regarding
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the comparison with experimental data, it is noticeable that the regression rate trends are completely

overlapping with the experimentally obtained ones, indicating the effectiveness of the developed code.

Furthermore, it is noticeable that the regression rate of printed ABS is higher than that of solid ABS, and

for a detailed understanding of this phenomenon, reference is made to the aforementioned paper [59].
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Figure 4.1: Comparison of regression rate values obtained experimentally [59] and by the PolyReg code
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4.2 Structural Optimization Results

The structural topology optimization was conducted utilizing the PolyTop code. As expounded upon

in Section 3.3, the structural analysis function extracted from this code was subsequently integrated into

the NSGA-II framework to enable multidisciplinary optimization. Consequently, dedicated topological op-

timizations were performed solely at the structural level. The objective entailed minimizing compliance,

employing the well-defined model, mesh, and parameters expounded upon earlier. Varied constraint

parameters were considered, specifically the volume fraction of the desired structure in relation to the

initially defined solid design, enabling the exploration of potential design configurations.

Figure 4.2 presents the designs obtained through topological optimization, wherein the volume frac-

tion constraint parameters were systematically varied, spanning from 50% to 80%. Table 4.1 displays

the compliance values corresponding to their respective analyses. Considering the boundary conditions

encompassing constraints and loads, the achieved solutions align consistently with expected ones. The

domain’s volume is curtailed by selectively removing elements positioned within the limits delineated by

the inner and outer circumferences, both of which are prescribed. The propagation of stresses is facil-

itated through radial arrays of elements, resulting in configurations reminiscent of the classical "wagon

wheel" design, which finds notable applicability in the domain of rocket fuel grain design. Furthermore,

a progressive thickening of the "rays" of the domain can be observed as the total volume fraction in-

creases.

Table 4.1: Structural optimization results

Volume Fraction Compliance Figure

50% 2.54 · 10−3 Figure 4.2a

60% 2.17 · 10−3 Figure 4.2b

70% 1.93 · 10−3 Figure 4.2c

80% 1.74 · 10−3 Figure 4.2d

(a) 50% Volume Fraction (b) 60% Volume Fraction (c) 70% Volume Fraction (d) 80% Volume Fraction

Figure 4.2: Structural optimized designs with varying volume fraction constraint values
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4.3 Propulsive Optimization Results

Propulsive optimization was carried out using genetic algorithms, employing the MATLAB R⃝ ga al-

gorithm [77]. This choise was needed, as previously indicated in Chapter 3, due to the challenges in

sensitivity computation within the propulsive field. The ga software employs genetic algorithm techniques

for the minimization of a single objective function. Consequently, in the context of multidisciplinary op-

timization, a transition was made to the NSGA-II algorithm. The decision was made not to introduce a

dedicated section for this algorithm in the methodology chapter, as it follows the same foundations of

the introduced NSGA-II. The significant distinctions from the latter lie in the exclusive consideration of

variables with binary values and a single objective, thereby decreasing the required computational time.

Several optimization runs were conducted with the objective of maximizing the specific impulse Isp.

These analyses utilized predefined genetic parameters within the ga algorithm. Specifically, each analy-

sis featured 100 populations and a maximum number of generations determined by the number of vari-

ables. However, it’s important to note that this maximum generation limit might not always be reached,

especially if the solutions obtained converge early. To ensure robustness, multiple analyses were per-

formed, consistently yielding the same results, thus affirming their validity, which are reported herein.

The top-performing designs are depicted in Figure 4.3, and their corresponding outcomes are de-

tailed in Table 4.2. Notably, the optimum Isp value is attained by the hollow configuration, possibly due

to the minimization of the grain mass and the maximization of the exposed grain surface area. The

next five superior results consist of both solid-domain configurations and those featuring void elements,

though without a clearly discernible geometric pattern.

Table 4.2: Propulsive optimization results

Design Isp Figure

1 112.25 s Figure 4.3a

2 103.24 s Figure 4.3b

3 102.34 s Figure 4.3c

4 102.21 s Figure 4.3d

5 102.21 s Figure 4.3e

6 102.21 s Figure 4.3f

All remaining designs exhibit specific impulse values oscillating between 90 and 100 s, translating

to a maximum variation of 18% from the peak value. The overall findings from the various analyses

suggest that the optimization algorithm did not discern a distinct correlation between specific impulse

and grain geometry, i.e., no specific geometric form was identified to pursue.
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(a) Design 1 (b) Design 2 (c) Design 3

(d) Design 4 (e) Design 5 (f) Design 6

Figure 4.3: Propulsive optimized designs

Subsequently, the next step involved combining the two optimization approaches, structural and

propulsive, thereby conducting multidisciplinary optimization. In this regard, the aim was to leverage the

strong geometric correlation derived from the structural optimization, upon which to anchor the propul-

sive optimization characterized by a relatively weaker geometric connection.
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4.4 Multidisciplinary Design Optimization Results

Several multidisciplinary design optimizations were conducted with the aim of optimizing both struc-

tural and propulsive objectives, achieving the simultaneous minimization of compliance and maximiza-

tion of specific impulse Isp. The same mesh, as previously shown, was used to allow for comparisons

between different analyses. In this instance, two distinct cases were considered separately. The first

case involves the original domain, as previously illustrated, wherein optimization enjoys maximal free-

dom. The second case entails the imposition of double symmetry even during the optimization phase.

Various genetic parameters were tested to obtain the best possible analyses, balancing both the quality

of the results and the predicted simulation times.

4.4.1 Simple Domain

Initially, the previously presented initial domain was taken into consideration, composed of 404 vari-

ables as explained in Section 3.7. Table 4.3 presents the key data of the three main performed analyses,

which yielded the best results, including the initial genetic parameters, the values of the objective func-

tions, and the corresponding figure for each analysis. The expected Pareto front line, considering the

optimization type, is showed in Figure 4.4. Figures 4.5, 4.7 and 4.9 depict the Pareto front of the per-

formed analyses. All the figures show the obtained solutions plotted in blue on a graph with compliance

on the horizontal axis and specific impulse on the vertical axis. Figures 4.6, 4.8, and 4.10 portray the

output designs of the top three solutions obtained from the conducted analyses.

Table 4.3: Multidisciplinary optimization results

Analysis Population Generation Ispmax Compliancemin Pareto Front Designs

1 1000 100 100.3 s 3.8 · 10−3 Figure 4.5 Figure 4.6

2 2000 50 98.5 s 4.2 · 10−3 Figure 4.7 Figure 4.8

3 2000 90 100.3 s 3.2 · 10−3 Figure 4.9 Figure 4.10

Upon analyzing the obtained Pareto fronts resulting from the multidisciplinary design optimizations, it

becomes evident that the values of the objective functions are significantly influenced by the initial pop-

ulation. While the Pareto fronts generally exhibit the expected behaviour, it is important to underline that

a considerable portion of the obtained chromosomes still hold a rank higher than 1, indicating that the

solutions have not yet fully converged. This is expected due to the high-dimensionality of the problem,

with numerous design variables and complex interactions. Regarding the obtained designs, it is evident

that a discernible geometric pattern has not been achieved as for the propulsion optimization case. The

results of all three analyses have yielded configurations marked by noticeable randomness, exhibiting

similarities among them while lacking practical implementability due to the presence of disconnected

fuel elements and highly fragmented patterns within the geometry.
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Figure 4.4: Expected trend line of the Pareto front for the conducted analyses
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Figure 4.5: Pareto front of the MDO analysis 1
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(a) Design 1 (b) Design 2 (c) Design 3

Figure 4.6: Multidisciplinary optimized designs of the analysis 1
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Figure 4.7: Pareto front of the MDO analysis 2

(a) Design 1 (b) Design 2 (c) Design 3

Figure 4.8: Multidisciplinary optimized designs of the analysis 2
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Figure 4.9: Pareto front of the MDO analysis 3

(a) Design 1 (b) Design 2 (c) Design 3

Figure 4.10: Multidisciplinary optimized designs of the analysis 3
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4.4.2 Double Symmetry Domain

Subsequently, other analyses were conducted by imposing double symmetry within the optimization

process. To achieve this, all the free elements in the first quadrant were initially identified, these are

the ones with both center coordinates positive. The volume fractions corresponding to these selected

elements became the new variables for the optimization problem. This transition reduced the number

of variables from 404 to 101, representing a reduction of 75%. Subsequently, all the mirrored elements

in the remaining three quadrants were paired with those in the first quadrant. Finally, to enforce the

double symmetry, it was sufficient to replicate the values of the 101 variables (i.e., the elements in the

first quadrant) for their corresponding mirrored elements in the other quadrants.

In this case, several analyses were conducted considering various genetic parameters. These pa-

rameters were initially selected based on those considered in the previous section and adjusted progres-

sively in these new optimizations to expedite the process. Overall, populations of 1000 or 2000 elements

were considered with the number of generations ranging from 20 to 100.

Table 4.4 presents the results of the main analyses with the imposition of double symmetry. Three

analyses are reported, each of which includes three different designs. These designs are denoted

starting with S1.1, where "S" indicates that these are the symmetric analyses, and the two numbers

separated by a period refer to the analysis number and the design number within that analysis, respec-

tively. The choice to present only the best analysis results together, unlike what was done previously, is

due to the fact that this time, multiple analyses with different genetic parameters led to the same designs

already present in these three analyses. This further underscores the quality of the solutions found.

Table 4.4: Multidisciplinary optimization results of the double symmetry domain

Designs Isp Compliance Figure

S1.1 102.2 s 3.1 · 10−3 Figure 4.12a

S1.2 100.3 s 3.0 · 10−3 Figure 4.12b

S1.3 95.8 s 2.9 · 10−3 Figure 4.12c

S2.1 102.3 s 3.1 · 10−3 Figure 4.12d

S2.2 100.3 s 2.8 · 10−3 Figure 4.12e

S2.3 97.3 s 2.5 · 10−3 Figure 4.12f

S3.1 102.2 s 3.4 · 10−3 Figure 4.12g

S3.2 100.3 s 2.9 · 10−3 Figure 4.12h

S3.3 98.5 s 2.7 · 10−3 Figure 4.12i
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Figure 4.11 displays the Pareto front of all three presented analyses, differentiated by color. In this

case, unlike the results shown earlier, it is evident that the trend of the Pareto front is much more as

expected, that is, hyperbolic. This is because, for each analysis, there is a design that maximizes one of

the two aspects and, conversely, minimizes the other aspect, as well as a design that has intermediate

values of the two objective functions.

2.4 2.6 2.8 3 3.2 3.4

Compliance 10-3

94

96

98

100

102

104

S
p

ec
if

ic
 Im

p
u

ls
e 

Is
p

 [
s]

Analysis S1
Analysis S2
Analysis S3

Figure 4.11: Pareto front of the double symmetry domain MDO

Figure 4.12 shows the designs obtained from the three presented analyses. It can be noted that

there are four feasible designs out of the nine reported (i.e., S1.1, S2.1, S3.1, S3.3). As previously

highlighted in Section 4.4.1, this is attributed to the lack of geometric, and hence physical, connection

between some fuel elements and the main grain structure. With disconnected fuel elements, the fuel

grain cannot be realized as a single piece and thus becomes unusable.

The first three designs among these have the highest specific impulse values, and design S2.1

specifically has the highest Isp value, at 102.3 s, and a compliance value equal to that of design S1.1,

i.e., 3.1·10−3. Therefore, this design has a slightly lower specific impulse value compared to the full initial

design, with a difference of approximately 1%, and represents the most promising geometry obtained.
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(a) Design S1.1 (b) Design S1.2 (c) Design S1.3

(d) Design S2.1 (e) Design S2.2 (f) Design S2.3

(g) Design S3.1 (h) Design S3.2 (i) Design S3.3

Figure 4.12: Optimized designs of the double symmetry domain

4.5 Multidisciplinary Design Optimization Green Fuel Comparison

In order to assess combinations of propellants with a lower environmental impact, the same method-

ology as described so far has been pursued to make comparisons with the results reported thus far.

Firstly, some clarification is needed regarding sustainable fuels for hybrid rockets. As previously men-

tioned, this type of propulsion can lead to improvements in terms of environmental impact. To enhance

the sustainability of plastic-based fuels, three main approaches are identified. The first involves the

use of recycled plastic, thereby reducing the environmental impact in the production cycle. The second

and third focus on bio-derived fuels and synthetic fuels produced from renewable sources, respectively.

These latter two approaches are sources of innovative research but are not yet fully developed [78].

For this reason, in this case, the choice was made to evaluate more sustainable fuels from the per-

spective of recycling. From this point of view, the ABS considered so far has a generic recycling code

of 7, which applies to various types of plastics with more complex chemical compositions, leading to a

more intricate recycling process [79].
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Considering the state of the art and the various available research, it is observed that Polyethylene

(PE) presents itself as a possible alternative. This material has a less complex chemical structure, and

its recycling is facilitated by its more abundant use. It comes in different versions, including the basic

one, depending on its density, namely High-Density Polyethylene (HDPE) with recycling code 2, and

Low-Density Polyethylene (LDPE) with recycling code 4.

Thanks to research on PE as a potential fuel in hybrid propulsion [78, 80, 81] and the physical and

chemical characterization of this material [82, 83], it has been possible to obtain and use the experimen-

tal data necessary to perform the same studies as reported earlier, for the case of ABS.

Therefore, the same model, with identical dimensions and the same oxidizer mass flow rate, was

considered to facilitate a comparison between the two different fuels. The propellants considered are

PE and, as before, GOx, with all their respective parameters listed in Table 4.5. It should be noted that

despite the higher expected performance of HDPE, PE was chosen due to the greater availability of

data for the latter. Furthermore, the PE considered, taken from the work of Kim et al. [81], already has

densities intermediate between HDPE and Low-Density Polyethylene (LDPE), so it was chosen to use

its more generic version.

Table 4.5: Model parameters with PE as fuel [81, 82]

Fuel PE (Polyethylene)

Oxidizer O2 Gaseous

Geometry Material Propulsion

External Radius / Diameter Young Modulus Oxidizer Mass Flow

R = 2.5 cm / D = 5 cm E = 2.0 GPa ṁox = 5 g/s

Internal Radius / Diameter Poisson’s ratio Regression coefficient

r = 0.75 cm / d = 1.5 cm ν = 0.40 a = 0.026

Length Density Regression coefficient

L = 10 cm ρ = 950 kg/m3 n = 0.58

Considering the recent results obtained in the preceding section, a similar study is conducted. Specif-

ically, the double-symmetry configuration is reintroduced, and various optimizations are performed with

different genetic parameters, ranging from 1000 to 2000 populations and 10 to 50 generations. In this

case, the number of generations was further reduced because it was observed that even with a low

number of generations, solutions were already converging.

Table 4.6 presents the outcomes of the primary analyses employing PE as the fuel. Three analyses

are outlined, each encompassing four to five distinct designs, resulting in a total of 13 designs. These

designs are denoted beginning with PE1.1, where "PE" signifies that these analyses employ PE as the

fuel. The two numbers separated by a period denote the analysis number and the design number within

that analysis, as before.
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Table 4.6: Multidisciplinary optimization results of the double symmetry domain with PE as fuel

Designs Isp Compliance Figure

PE1.1 103.8 s 6.6 · 10−3 Figure 4.14a

PE1.2 103.1 s 3.9 · 10−3 Figure 4.14b

PE1.3 101.2 s 3.8 · 10−3 Figure 4.14c

PE1.4 98.0 s 3.4 · 10−3 Figure 4.14d

PE2.1 103.8 s 6.1 · 10−3 Figure 4.15a

PE2.2 103.1 s 4.2 · 10−3 Figure 4.15b

PE2.3 102.1 s 3.8 · 10−3 Figure 4.15c

PE2.4 99.1 s 3.7 · 10−3 Figure 4.15d

PE2.5 98.0 s 3.7 · 10−3 Figure 4.15e

PE3.1 103.8 s 6.3 · 10−3 Figure 4.16a

PE3.2 103.1 s 3.9 · 10−3 Figure 4.16b

PE3.3 101.2 s 3.8 · 10−3 Figure 4.16c

PE3.4 91.2 s 3.7 · 10−3 Figure 4.16d

Figure 4.13 displays the Pareto front of all presented analyses, differentiated by color. In this case,

even more than the previous results, it is evident that the trend of the Pareto front is as expected for this

type of analysis, as explained in the section before.
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Figure 4.13: Pareto front of the double symmetry domain MDOs with PE as fuel
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Observing these reported results allows for an initial comparison between the models with ABS and

PE. Firstly, it can be noted that the compliance values are generally higher in the latter case analyzed.

This was expected due to the inferior physical properties of PE compared to ABS. Regarding perfor-

mance, it can be observed that the specific impulse values are very similar between the two models

with different fuels, with differences of less than 1% in favor of PE. However, concerning the propulsion

aspect, the most unexpected result concerns the performance improvement achieved through optimiza-

tion. The initial solid configuration in PE yielded a specific impulse value of 94.8 s, while considering the

best optimized designs resulted in improvements of around 10%. This significantly deviates from what

was reported for the ABS model, which showed improvements on the order of 1%.

(a) Design PE1.1 (b) Design PE1.2 (c) Design PE1.3 (d) Design PE1.4

Figure 4.14: Optimized designs of Analysis 1 with PE as fuel

(a) Design PE2.1 (b) Design PE2.2 (c) Design PE2.3

(d) Design PE2.4 (e) Design PE2.5

Figure 4.15: Optimized designs of Analysis 2 with PE as fuel
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Figures 4.14, 4.15 and 4.16 displays the designs obtained from the three presented analyses. It

can be observed that out of the thirteen designs reported, eight are feasible (i.e., PE1.2, PE1.4, PE2.2,

PE2.3, PE2.4, PE2.5, PE3.1, and PE3.3). As with the previous results, this is due to the lack of connec-

tion between some fuel elements and the main grain structure.

Design PE3.1 exhibits the best propulsion performance with the highest value of Isp at 103.8 s, while

maintaining a compliance value of 6.3 · 10−3. The next best designs in terms of propulsion performance

are PE1.2, PE2.2, and PE3.2, with a slight decrease in specific impulse, approximately 1%, but also a

more significant reduction in compliance, around 33% to 38%. As previously mentioned, these designs

have shown an improvement in performance of about 10% compared to the initial full domain.

(a) Design PE3.1 (b) Design PE3.2 (c) Design PE3.3 (d) Design PE3.4

Figure 4.16: Optimized designs of Analysis 3 with PE as fuel

Finally, to assess the environmental impact of the different proposed solutions, a Life Cycle Assess-

ment (LCA) is carried out the emissions resulting from the combustion process, namely using the Global

Warming Potential (GWP) metric.

This is one of the most widely used environmental metrics and allows for the measurement of the

environmental impact of a specific greenhouse gas. Specifically, it quantifies its contribution to the

greenhouse effect in relation to the effect of Carbon Dioxide (CO2), which has a reference potential of

1. Each GWP value is calculated on a timescale ranging from 20 to 500 years, with the commonly used

100-year timescale [84]. In the present work, a timescale of 100-year was also chosen.

This analysis was conducted on the best-optimized designs obtained, namely design S2.1 for ABS

and design PE3.1 for PE. Using the CEA Software, it was possible to obtain data related to the mass

fractions of the products resulting from the complete combustion of the two grains.

Table 4.7 presents this data along with the fuel mass value for each iteration of the combustion pro-

cess. This is because the output data are provided for each iteration of the combustion process, denoted

by a superscript in the first row of the table. Therefore, in this case, there are two iterations for design

S2.1 in ABS and only one for PE3.1 in PE.
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Table 4.7: Mass fractions of the combustion products from the best optimized designs

Products ABS Design S2.11 ABS Design S2.12 PE Design PE3.1

Fuel mass [g] 116.4 25.9 103.5

CH4 0.00003 0 0.00006

CO 0.58353 0.67549 0.87521

CO2 0.00001 0.12453 0.00005

C2H2 0.00001 0 0

H 0.00001 0.00435 0

HCN 0.00041 0 0

HNC 0.00001 0 0

H2 0.05699 0.01623 0.07184

H2O 0.00001 0.11352 0.00005

N2 0.07004 0.04176 0

C 0.28895 0 0.05279

NO 0 0.00084 0

O 0 0.00461 0

OH 0 0.01575 0

O2 0 0.00292 0

Table 4.8: Global Warming Potential (GWP) emissions computation of the best optimized designs

ABS Design S2.1 PE Design PE3.1

Total fuel mass [g] 142.3 103.5

CH4 (GWP=34) g CO2eq 0.11873 0.21114

CO2 (GWP=1) g CO2eq 3.22649 0.00518

C2H2 (GWP=0.0468) g CO2eq 0.00005 0

Total g CO2eq 3.34527 0.21632

Table 4.8 reports the calculation of emissions using GWP. To calculate emissions, expressed as the

value of equivalent Carbon Dioxide (CO2), it is necessary to multiply the mass fractions of the products

by the fuel mass, both of which are reported in Table 4.7, and finally by the respective GWP value for

each different molecule, as shown in Table 4.8. The calculation is carried out for each individual iteration

and then summed in the case of multiple iterations. Table 4.8 exclusively presents the substances that

contribute the most to the GWP calculation, along with their respective GWP values.

The GWP estimation was obtained using the SimaPro R⃝ software [85], employing the Recipe database

and a mid-point approach. SimaPro is a commercial software designed for conducting LCA [86]. The

utilized data were derived from the research of Figueiras et al. [87], from which only the values with the

highest impact, as per their developed model, were employed.
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From the results provided, it can be observed that the environmental impact of the PE design, in

terms of Carbon Dioxide Equivalent (CO2eq), is 93.5% lower. Furthermore, the mass of design PE3.1

is also lower, with a weight saving of 27.3%. Therefore, based on both environmental and propulsion-

related data, design PE3.1 outperforms design S2.1, highlighting the lower environmental impact of PE

compared to ABS.
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Chapter 5

Conclusions and Recommendations

This chapter serves as the conclusion to this work, summarizing the key findings and insights gained

from the research, and providing recommendations for potential future implementations.

5.1 Conclusions

Considering the methodologies employed, as discussed in Chapter 3, and the results presented in

Chapter 4, it is now feasible to formulate conclusions regarding the various analyses conducted and,

more broadly, the entire developed work.

In this context, the main conclusions related to the entire work are initially outlined, analyzing the

achievements and key limitations. Subsequently, more explanatory and detailed concluding remarks will

be drawn for all the various analyses conducted.

The identified limitations at the end of this work include the absence of a clear correlation between

specific impulse and grain shape, sought in the maximization of performance, and the lack of a specific

target geometry to pursue in multidisciplinary design optimizations.

The accomplishments of this work undoubtedly involve the validation of the developed regression

analysis code and the results obtained from multidisciplinary optimizations with double symmetry con-

sidering both different fuels. Optimizing the ABS model led to obtaining feasible geometries with perfor-

mances similar to the initial configuration of the full model. On the other hand, optimizing the PE model

resulted in better outcomes. Multiple feasible designs with enhanced performance compared to the initial

PE configuration were obtained, showing a 10% improvement. Furthermore, comparing emissions from

the two best-optimized designs in ABS and PE, respectively, with similar performances demonstrated

the lower environmental impact of PE, with a 93.5% reduction in emissions compared to the ABS model.

This outcome highlights the potential for sustainability improvements through the use of materials with a

lower environmental impact.

Upon examining in detail all the different analyses conducted, it is possible to outline the following

specific conclusions.
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• Regression Analysis

The regression analysis performed using the developed PolyReg code effectively simulated the

experimental test reported in the work of Yu et al. [59], also aligning with the expected theoretical

trends.

• Structural Topology Optimization

The results obtained from structural topology optimization have consistently revealed wagon wheel-

type designs, as anticipated. This outcome is attributed to the improved stress distribution within

these designs.

• Propulsive Topology Optimization

Conversely, the results of the propulsive topology optimization have led to distinct conclusions.

The designs exhibiting the best performance were those with either completely hollow or com-

pletely solid simple geometries. Subsequent top-performing designs displayed undefined and

rather random patterns, which are not feasible for practical implementation. These outcomes

underscore the inability to establish a specific correlation between grain geometry and specific

impulse.

• Multidisciplinary Design Optimization

The results obtained from the multidisciplinary design optimizations using genetic algorithms have

provided valuable insights.

One noteworthy observation is the considerable influence of the initial population configuration on

the outcomes of the optimizations conducted, as expected given the large number of design vari-

ables. By observing Table 4.3, it is evident that there are significant variations in the optimized

values of compliance and Isp among the different analyses. This suggests that increasing the

number of populations may be necessary to obtain more robust and reliable results. However, it

is important to consider the trade-off between the quality of results and the computational time, as

the latter tends to exponentially increase with larger population sizes.

• Multidisciplinary Design Optimization with Double Symmetry

The results obtained from the MDO with double symmetry have shown an improvement compared

to the previous ones without geometric imposition.

First and foremost, the significant reduction in the number of variables has led to a substantial

decrease in the influence of the initial population on the obtained designs. This is demonstrated

by the fact that, unlike the previous MDO analyses, multiple analyses with different geometric

parameters, but values consistent with the previous optimizations, sometimes led to the same

solutions or designs that were still similar to each other.
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Furthermore, the organization of the results forming the Pareto fronts of the various analyses has

proven to be in line with expectations, improving compared to the previous optimizations. All of

this translates into greater effectiveness in the optimization carried out with genetic algorithms

and, consequently, better results.

Feasible geometries have been obtained, with performance values very similar (1% difference) to

those obtained from the full initial geometry, as presented in Table 4.4. In this case as well, a

well-defined geometric pattern has not been achieved. However, these results have demonstrated

greater feasibility and geometries that are not primarily random.

• Multidisciplinary Design Optimization Green Fuel Comparison

The results obtained from the MDO considering double symmetry and PE as fuel have shown

comparable performance to those obtained previously with ABS.

The Pareto front obtained from the various analyses exhibited a trend that aligns perfectly with

expectations, even improving the overall result compared to the previous optimization.

The geometries obtained are mostly feasible and have demonstrated performance on par with

those of the ABS model, with small variations of around 1% from the maximum value. These

results endorse the use of PE as a potential substitute for ABS to reduce environmental impact

through improved recycling. Furthermore, these optimizations, compared to the previous case,

have yielded a significant performance improvement of up to 10% compared to the initial configu-

ration.

The results obtained from the GWP-based emissions calculation of the best designs in PE and

ABS have led to significant considerations.

These results, in terms of performance (specific impulse) and environmental impact (CO2eq emis-

sions), favor design PE3.1 in PE over all the other designs presented. Moreover, it has become

evident that PE has a lower environmental impact compared to ABS.

In conclusion, regarding the performance maximization, no well-defined geometric pattern emerged,

contrasting with the compliance minimization which involved topological optimization. This indicates a

weak correlation between Isp and the geometric shape of the grain, warranting further investigation into

the underlying factors that contribute to Isp.

Overall, these findings highlight the complexity and multifaceted nature of the multidisciplinary opti-

mization process, emphasizing the need for thorough analysis and exploration to achieve optimal per-

formance in hybrid rocket fuel design.

Finally, the use of PE has highlighted the potential for improvement in terms of sustainability and

environmental impact through the use of materials that promote the recycling process and reduce emis-

sions.
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5.2 Recommendations for Future Research

The findings presented in this master thesis could be considered as an initial phase of a broader

study that requires further exploration. Additional analyses should be conducted to obtain more robust

results, and the implementation of further investigations or research avenues is also being considered

to expand the horizons of this research.

These possibilities include:

• Multidisciplinary Design Optimization Analyses

Leveraging advanced MDO strategies can further enhance the efficiency and effectiveness of the

optimization process. This will lead to the discovery of optimal designs that maximize performance

while considering multiple disciplines simultaneously.

• Experimental Validation

Future studies should prioritize the execution of comprehensive experimental campaigns to vali-

date the performance of hybrid rocket engines under real-world conditions, by conducting side-by-

side comparisons of: different fuel combinations, propellant formulations, and combustion strate-

gies.

• Exploration of Novel Fuel Combinations

Analyzing and evaluating different fuel combinations is crucial to expanding the performance capa-

bilities of hybrid rocket engines. Future research should focus on investigating alternative propel-

lants, exploring high-energy additives, and considering sustainable and eco-friendly fuel options.

By studying the impact of these fuel combinations on performance and optimization, it is possible

to unlock new possibilities and advance the work towards greener and more efficient propulsion

systems.

• Emissions calculation and comparison

Emissions calculations are essential for exploring different geometries and propellant combina-

tions that can lead to greater sustainability. By studying and comparing these alternatives with

more traditional and widely used propulsion solutions, it is possible to quantify and analyze the po-

tential improvements achieved and identify areas for further development. All of these efforts are

directed toward achieving solutions with reduced environmental impact, encompassing not only

material-related production processes but also chemical pollution. In this regard, it is imperative

to expand the analyses to consider various manufacturing and recycling processes that contribute

to the global pollution associated with each material. These endeavors are in line with a market

where sustainability is gaining increasing importance and interest.
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• Advancement towards 3D Geometries

Transitioning from 2D to 3D geometries will provide greater freedom and flexibility for optimization,

enabling the exploration of more complex designs. Future research should focus on developing

advanced computational models capable of capturing the intricate flow and combustion phenom-

ena in three-dimensional space.

• Integration of Computational Fluid Dynamics Analyses

Implementing CFD analyses into the design and optimization process will significantly contribute to

improved thermal and propulsion results. By studying the evolution of the flow field, heat transfer,

and combustion processes, CFD simulations can provide valuable insights into the performance

characteristics of hybrid rocket engines.
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