
POLITECNICO DI TORINO

Master’s degree in Engineering and Management

Master’s Degree Thesis

Evaluating Large Language Models in

Software Design: A Comparative Analysis

of UML Class Diagram Generation

Supervisors Candidate

Prof. Riccardo COPPOLA Daniele D E BARI

Doct. Giacomo GARACCIONE

Academic Year 2023-2024

This work is subject to the Creative Commons Licence

Summary

This master’s thesis aims to assess the feasibility of utilizing Large Lan-
guage Models (LLMs) to generate Unified Modeling Language (UML) Class
Diagrams. UML is a standardized visual language widely used in software
engineering to depict the structure and design of a software system, enabling
clear communication and documentation of system components and their re-
lationships. By comparing the LLM-generated diagrams with those produced
by humans, particularly during the crucial initial phase of requirement gath-
ering, the research assesses whether AI can support or enhance traditional
software modeling practices. The study utilizes a two-part methodology com-
plemented by a statistical analysis. In the first part, the diagrams are exam-
ined for syntactic (adherence to UML rules), semantic (accuracy of meaning
and concepts), and pragmatic (usefulness and applicability) quality errors, in
the second part the semantic distance between the generated diagrams and
the given solutions is calculated by using a specific algorithm.

The findings suggest that LLMs are capable of generating UML class dia-
grams with a level of syntactic and pragmatic quality comparable to that of
human-produced diagrams, due to no statistically significant differences in
these areas. However, the analysis also uncovers a noticeable gap in seman-
tic quality, where human-generated diagrams outperform those generated
by LLMs, highlighting the current limitation of LLMs in understanding the
semantic nuances required to generate an accurate diagram.

Moreover, the study finds that LLM-produced diagrams are typically more
distant from the reference solution, emphasizing the challenges that LLMs
face in domain-specific knowledge that human experts are able to bring in
the creation of the diagram.

With those findings the thesis contributes to the ongoing discussion on the
role of AI in software engineering, showing that, while LLMs show promise in
certain aspects of UML class diagram generation, there is a gap in semantic
accuracy, underlining the necessity of further advancements in AI capabilities
to reach the same quality level of human-generated diagrams.

3

Contents

List of Tables 7

List of Figures 9

1 Introduction 11

2 Background 13
2.1 Introduction to Modelling . 13

2.1.1 Introduction to the importance of modeling 13
2.1.2 Software Modeling Phases 13
2.1.3 Requirements Gathering 14
2.1.4 Relationship between modeling and requirements gath-

ering . 16
2.2 UML Class Diagram . 17

2.2.1 Introduction . 17
2.2.2 Benefits for developers and stakeholder 18
2.2.3 Core components of UML class diagrams 18
2.2.4 Creating UML Class Diagrams 20
2.2.5 Evolution of UML Modelling Tools 21
2.2.6 Challenges and Limitation of UML class diagrams . . . 22

2.3 Large Language Models . 23
2.3.1 Introduction . 23
2.3.2 Definition and Core Concepts 23
2.3.3 Evolution of Language Models 25
2.3.4 Architecture and Mechanics 26
2.3.5 Applications . 27
2.3.6 Challenges and Ethical Considerations 27

2.4 Application of Large Language Models for Requirement Gath-
ering: Literature Review . 29

4

2.4.1 Introduction . 29
2.4.2 AutoScrum: Automating Project Planning Using Large

Language Models (2023) 30
2.4.3 An Analysis on Large Language Models in Healthcare:

A Case Study of BioBERT (2023) 30
2.4.4 From User Stories to UML Diagrams Driven by Onto-

logical and Production Model (2021) 32

3 Methodology 33
3.1 Possible evaluation Criteria 33

3.1.1 Introduction . 33
3.1.2 Overview of Articles and Methods 33
3.1.3 Analysis of Proposed Methods 37

3.2 Approach to Evaluate Diagrams 38
3.2.1 First Part . 39
3.2.2 Second part . 39

3.3 Collection of Exercises . 44
3.3.1 Different Levels of Difficulty 45
3.3.2 Given Solutions . 46
3.3.3 Example of Exercise 46

3.4 Diagrams made by Human . 46
3.4.1 Tool Used . 46
3.4.2 Established Rules . 48
3.4.3 Limitation . 49

3.5 Diagrams made by LLM . 49
3.5.1 Chosen LLM . 49
3.5.2 Prompt . 50
3.5.3 PlantUML . 51

3.6 Statistical Analysis . 51
3.6.1 T-Test . 53
3.6.2 Linear Regression . 54

4 Results 57
4.1 First Part . 57

4.1.1 Example . 57
4.1.2 Results first part . 58

4.2 Second Part . 62
4.2.1 Example . 62
4.2.2 Results second part . 65

5

4.3 Statistical Analysis . 68
4.3.1 T-Test . 68
4.3.2 Linear Regression . 70
4.3.3 Conclusion . 77

5 Conclusions and future developments 79

A Collection of Exercises and Calculation 81

B Exercise 10 83

C T-Test 87
C.1 First Method . 87

C.1.1 Syntactic Quality . 87
C.1.2 Semantic Quality . 88
C.1.3 Pragmatic Quality . 89

C.2 Second Method . 91

D Linear Regression 93
D.1 First Part . 93
D.2 Second Part . 101

Bibliography 105

6

List of Tables

3.1 Errors in various quality categories [1] 40
3.2 Example of Distribution of various type of errors [1] 40
3.3 Class and Interface Distances[2] 41
3.4 Elements of Comparison Vector for Class Attributes[2] 42
3.5 Elements of Comparison Vector for Class Methods[2] 43
3.6 Relation Comparison Vector Elements[2] 44
4.1 Each row represents a different exercise and for each of them

are reported the number of errors both for Human and LLM
for all the three types of quality. 59

4.2 Sums of errors for each Quality 60
4.3 Distances for each element in Exercise 10 63
4.4 Total Distances Exercise 10 65
4.5 Distances from the given solutions, and differences 66
4.6 Average of the distances and of the differences 66
4.7 Results Paired Samples T-Test. 68
4.8 Data from the given solutions. 70
4.9 Estimated Difficulties. 71
4.10 P-values Human Syntactic Errors 73
4.11 P-values LLM Syntactic Errors 73
4.12 P-values Human Semantic Errors 74
4.13 P-values LLM Semantic Errors 75
4.14 P-values Human Pragmatic Errors 75
4.15 P-Values LLM Pragmatic Errors 76
4.16 P-Values Human Distances . 77
4.17 P-Value LLM Distances . 77
C.1 Descriptives . 87
C.2 Paired Samples T-Test . 87
C.3 Descriptives . 88
C.4 Paired Samples T-Test . 89
C.5 Descriptives . 90

7

C.6 Paired Samples T-Test . 90
C.7 Descriptives . 91
C.8 Paired Samples T-Test . 92
D.1 Model Summary - Human Syntactic Errors 93
D.2 Coefficients . 93
D.3 Model Summary - LLM Syntactic Errors 94
D.4 Coefficients . 95
D.5 Model Summary - Human Semantic Errors 96
D.6 Coefficients . 96
D.7 Model Summary - LLM Semantic Errors 97
D.8 Coefficients . 97
D.9 Model Summary - Human Pragmatic Errors 98
D.10 Coefficients . 99
D.11 Model Summary - LLM Pragmatic Errors 100
D.12 Coefficients . 100
D.13 Model Summary - Distance Human 101
D.14 Coefficients . 101
D.15 Model Summary - Distance LLM 102
D.16 Coefficients . 103

8

List of Figures

2.1 Example of a Class Diagram for a production work[3] 19
2.2 Overview of potential applications for LLMs in medicine [4] . . 24
2.3 Autoscrum process. The green icons represent parts of the

process that can be augmented by the use of language models
[5] . 31

2.4 The shortcut planning approach [5] 31
2.5 Architecture of the Proposed Approach[6] 32
3.1 Example of a Graph Matching[7] 34
3.2 Text of the Exercise [8] . 47
3.3 Given Solution [8] . 48
3.4 Solution made by human using Microsoft Visio 50
3.5 Solution made by ChatGPT-4 in PlantUML 52
4.1 Number of errors divided in the three Qualities 61
4.2 Number of errors divided between Human and LLM 61
4.3 Bar chart of the distances. 67
4.4 Bar chart reporting the difference. 68
B.1 Text Exercise 10 . 83
B.2 Given-solution of exercise 10 84
B.3 Human solution of exercise 10 84
B.4 LLM solution of exercise 10 85
C.1 Bar-plot Syntactic Quality . 88
C.2 Barplot Semantic Quality . 89
C.3 Barplot Pragmatic Quality . 91
C.4 Barplot for the distance to a reference solution 92
D.1 Residuals Vs. Human Syntactic Errors 94
D.2 Residuals Vs. LLM Syntactic Errors 95
D.3 Residuals Vs. Human Semantic Errors 96
D.4 Residuals Vs. LLM Semantic Errors 98
D.5 Residuals Vs. Human Pragmatic Errors 99

9

D.6 Residuals Vs. LLM Pragmatic Errors 100
D.7 Residuals Vs. Distance Human 102
D.8 Residuals Vs. Distance LLM 103

10

Chapter 1

Introduction

The software engineering landscape is constantly evolving, and the design
phase is one of the most crucial in the lifecycle of software development
because inside it the foundation of the software system is conceptualized,
designed, and documented, setting the basis for the subsequent development
process. At the center of this phase is the utilization of Unified Modeling Lan-
guage (UML), a standardized visual language that has been largely adopted
to make clear and concise documentation of software designs. In particular,
UML class diagrams are an essential tool in defining the structure of the
software system, offering a visual representation of classes, their attributes,
methods, and the relationship between them. However, the realization of ac-
curate and comprehensive class diagrams is challenging, especially during the
requirement-gathering stages, due to the complexity of translating abstract
requirements into detailed visual models demanding a deep understanding of
the system’s domain and a good knowledge of UML’s syntax and semantics.

The rapid diffusion in the past years of Large Language Models (LLMs)
into several domains hints at a possible solution to this challenge. LLMs,
thanks to their deep learning algorithms and big training datasets, have
shown proficiency in understanding and generating human-like text, open-
ing the possibilities for automation in tasks that traditionally needed human
expertise. In software engineering, the potential of LLMs to automate the
generation of UML class diagrams is particularly intriguing, because it could
enhance efficiency, and reduce errors in the design process, freeing human
designers that, in this way, can focus on more strategic aspects of system de-
velopment. But, for now, the application of LLMs in generating UML class
diagrams has not been thoroughly explored, leaving a gap in the understand-
ing of their effectiveness, especially if compared to traditionally human-driven

11

1 – Introduction

methods.
The scope of this thesis is to bridge this gap by assessing the feasibility

and effectiveness of using LLMs to generate UML class diagrams, aiming to
evaluate whether LLMs can support or potentially enhance the traditional
practices of UML diagram generation. The investigation is structured around
seeking to compare the syntactic, semantic, and pragmatic qualities of LLM-
generated diagrams with those produced by humans, and to assess LLM’s
ability to replicate domain-specific knowledge within these diagrams.

The methodology adopted in this study employs a two-part approach de-
signed to provide a comprehensive evaluation of the diagrams generated by
LLMs. The first part involves an examination of the diagrams’ quality, focus-
ing on their adherence to UML standards (syntactic quality), the accuracy
and appropriateness of the depicted concepts and relationships (semantic
quality), and their practical applicability and understandability (pragmatic
quality). The second part of the methodology, by the use of a specific algo-
rithm, calculates the semantic distance of diagrams generated by LLMs from
a set of reference diagrams and it confronts it with the distance of Human-
generated diagrams from the same set, offering an objective measure of the
LLMs’ ability to accurately reflect domain-specific knowledge.

This research, by showing the capabilities and limitations of LLMs in this
context, contributes valuable insights into the potential integration of AI in
software engineering practices. The findings could pave the way for more
efficient, accurate, and automated design processes, potentially transforming
the role of human designers and the overall efficiency of software development.
Furthermore, by identifying areas where LLMs still lag behind, particularly
in the understanding and replicating domain-specific knowledge, it highlights
critical avenues for future advancements in AI, aiming to reduce the gap
between AI-generated and human-generated diagrams.

This thesis is structured across different key sections: an extensive Back-
ground chapter lays the theoretical foundation and locates the study within
the existing body of research. The Methodology chapter illustrated the
comprehensive approach taken to evaluate the diagrams. The Results chap-
ter presents the findings of this evaluation and a statistical analysis to find
the elements that most impact the quality of the generated diagrams. The
work culminates in a Conclusion that synthesizes the insight gained from
the research and proposes directions for the future.

12

Chapter 2

Background

2.1 Introduction to Modelling

2.1.1 Introduction to the importance of modeling
In the software development field, modeling refers to the process where ab-
stract representations of a system are created. It helps with understanding,
visualizing, and communicating the system structure and behavior. It can
be considered as a blueprint utilized to guide developers and stakeholders
throughout the software development lifecycle.

Modeling plays a crucial role in the lifecycle of software development.
Starting from the design phase, until the phases of deployment and manage-
ment, it provides a structured approach that helps in the visualization and
understanding of the complexities of a system. For example, in Cloud Ser-
vice Brokerage (CSB), a new technology whose notoriety has increased thanks
to cloud computing (this technology acts as an intermediary between cloud
service consumers and providers, facilitating the selection, procurement, and
management of services from multiple vendors), modeling is important across
all the stages of software development. Recent research in CSB makes it ev-
ident that there is an imbalance in the software development stages, due to
a major focus of the research on the design stage. This example shows the
importance of modeling not only in the design but throughout the entire
software development cycle.[9]

2.1.2 Software Modeling Phases
There are three different phases in Software Modeling:

13

2 – Background

The first phase is Conceptual modeling, which is defined as the process of
developing high-level representations of a system to focus on the main con-
cepts and relationships, not entering into the details of the implementation.
It is the base for the successive modeling phases. Its primary objective is
to capture the essence of the system and to ensure that all the stakeholders
understand in the same way the scope and the functionalities of the system.
As an example, in the database field, the design of traditional relational
databases begins with conceptual modeling, utilizing the Unified Modeling
Language (UML) or the Entity-Relationship Diagram (ERD) for visualizing
the representation of data and relationships.

The second phase is Logical modeling, which is about the way in which
the system will be realized, highlighting data flow, functionality, and the
relationships between all the different components. It can be considered as a
bridge between the conceptual model (that is more abstract) and the physical
model. Application requirements and access patterns are often taken into
account in this phase, to ensure the alignment of the system with the intended
use. For example, in NoSQL databases like MongoDB, logical modeling is
used to determine the structure of the data and how they are going to be
accessed, by also considering performance, scalability, and flexibility.

The last phase is the physical modeling, which regards the actual imple-
mentation details of the system. In this phase, decisions are taken about
the database design, infrastructure, storage mechanisms, and other technical
aspects. Retaking databases as an example, this phase is about decisions on
indexing, partitioning, and data distribution strategies. In NoSQL databases,
physical modeling becomes complicated because those databases are too flex-
ible. All the decisions taken will have an impact on the performance and
scalability of the system.[10]

2.1.3 Requirements Gathering
Requirements gathering is defined as the process of identifying, collecting,
and documenting the needs and requests of stakeholders for a project. It is
utilized as the basis on which the software development process is built. By
assuring that the requirements are properly defined, the alignment with the
business needs of the software product is respected and the product will meet
the expectations of the user. Requirements gathering is also important for its
role in the risk mitigation for the development of the software. Requirements
engineering should ensure that potential ambiguities are addressed at the
beginning, in order to lead to the creation of a final software product that is

14

2.1 – Introduction to Modelling

secure and successful.[11]
There are different techniques adopted in the requirements-gathering pro-

cess, for different contexts and types of projects. The most common are:

• Interviews: direct conversations with the stakeholders to understand
their needs.

• Questionnaires: surveys that are distributed to the stakeholders to gain
information about specific topics.

• Prototyping: Creating a preliminary version of the software to gather
feedback and refine requirements.

• Observation: by watching the users in their natural environment, it is
possible to gain knowledge about their tasks and challenges.

• Workshops: stakeholders and development teams meet in collaborative
sessions to brainstorm and define the requirements.

• Use Cases: detailed description of the way in which the users are going
to interact with the software.

A technique is chosen based on the nature of the project, the stakehold-
ers involved, and the challenges encountered in the requirements-gathering
process.

During the requirements gathering several challenges can emerge:

• Vague or Ambiguous Requirements: often stakeholders don’t have a clear
idea of what they want.

• Changing Requirements: during the progression of the project, stake-
holders might change their minds leading to the emergence of new re-
quirements.

• Conflicting Requirements: there may be conflicting needs or priorities
between different stakeholders.

• Sometimes stakeholders might not even be aware of certain requirements
until later stages.

Possible solutions to those challenges are:

15

2 – Background

• Regular Communication: regular communication with all the stakehold-
ers must be assured to ensure that everything is going in the right way
and to reduce ambiguities.

• Prioritization: it is necessary to ensure to address first the most critical
requirements since not all of them can be implemented together.

• Documentation: it is necessary to document in a proper way all the
requirements and any changes to them ensuring clarity, obtaining in
this way a reference to utilize in the development process.

• "Stakeholder Engagement" or "Regular Stakeholder Reviews" to ensure
that the development team and stakeholders are aligned throughout the
process.[12]

2.1.4 Relationship between modeling and requirements
gathering

In software development, modeling provides an abstract representation of the
system, showing its main concepts and relationships. This is beneficial for
the requirements gathering. The visual representation of the system allows
designers, stakeholders, and development teams to explore the system even
before it is fully designed. The objective is to ensure the alignment of the
software product with the business needs to meet the expectations of its users.
Modeling can also serve as a communication tool: the visual nature of models
can help bridge the gap between technical and non-technical stakeholders,
facilitating clearer understanding and discussions around requirements.

What follows is that there is a strong interaction between the process of
modeling and requirements gathering. While the system is being modeled,
new requirements might emerge, or the refinement of existing ones might be
needed. It can also happen that, while requirements are collected and under-
stood, the model has to be updated in order to reflect them in a more correct
way, opening the possibility, for the software, to be continually improved in
order to meet the users’ needs. The iterative nature of the relationship
between modeling and requirements gathering fits well with modern agile
software development methodologies.

16

2.2 – UML Class Diagram

2.2 UML Class Diagram
2.2.1 Introduction
The Unified Modelling Language (UML) is a standardized visual language
designed to model and document software systems. It was developed in the
mid-1990s, and since then it has become one of the most used tools for soft-
ware engineers, by offering a logical and understandable means to visualize,
specify, construct, and document the components of software systems. UML
is not only used for object-oriented design but also for the modeling and the
functional aspects of systems. [13]

In the UML framework, class diagrams are really important. They are
one of the most used UML diagrams, and they give a visual representation of
the structure of a system, by showing the system’s classes, their attributes,
methods, and the relationship between them. They are used for:

• System visualization: they simplify, for developers and stakeholders, the
understanding of the architecture of a system by showing a clear picture
of its structure.

• Documentation: they are a documentation tool, providing a reference
for the developer during the coding phase, ensuring consistency and
alignment with the system’s design.

• Design blueprint: used during the design phase, they highlight the sys-
tem’s architecture before the beginning of the coding, in order to ensure
the alignment of the system’s design with its intended functionality.

• Optimization: modern CASE (Computer-Aided Software Engineering)
tools, which are advanced software solutions designed to assist in various
stages of the software development lifecycle, utilize class diagrams for
optimization. By employing design patterns (best practice templates for
solving recurring design issues) and anti-patterns (commonly recurring
solutions that are ineffective and detrimental to the overall design), class
diagrams can be verified, optimized, and even transformed automatically
in some instances.

Therefore, class diagrams not only help in the visualization of the system
but also act as a bridge, ensuring that the system design aligns with its
intended functionality. Class diagrams, while crucial, are just one of many
UML diagrams that collectively ensure this alignment.[13]

17

2 – Background

2.2.2 Benefits for developers and stakeholder
Class Diagrams have several benefits for the developers and the stakeholders.
Two main benefits are:

• Clear communication: Class diagrams act as a universal language, re-
ducing the gap between technical and non-technical stakeholders. By
providing a clear and concise visual representation they ensure that ev-
eryone is on the same page. Class diagrams can also help in identifying
potential design issues or areas of improvement early in the development
process, as visualizing the system can make these issues more apparent

• Quality assurance: the incorporation of security and other requirements
into class diagrams ensures that these aspects are considered from the
beginning, leading to a more secure and robust software product. For
instance, class diagrams can also help ensure that the system respects
certain design principles or patterns, which can further improve the qual-
ity and maintainability of the software.[14]

2.2.3 Core components of UML class diagrams
UML Class Diagrams are composed of the following elements:

• Classes: a class represents an object or a set of objects with a com-
mon structure and behavior. They are the building blocks of object-
oriented software systems. They contain data and behavior, serving as
the “blueprints” from which objects are created. They define the nature
of the objects and determine how they will interact within the system.

• Attributes: attributes are the properties or variables of a class, They de-
fine the characteristics or state of an object. For example, if we consider
a “Machine” class, attributes could include “machine ID” and “Destina-
tion”. They capture fundamental data about an object, in this way, the
system can store, retrieve, and manipulate this data when it is needed.

• Methods (or Operations): methods define the functions that a class
can perform, dictating the behavior of an object. For example, if we
consider again a “Machine” class, it might have methods like “start()”
and “stop()”. They enclose the behavior of objects, in order to ensure
that they act in a consistent manner with their design and purpose.

18

2.2 – UML Class Diagram

• Relationships: relationships represent the connections between classes.
By providing a structure to the system, they ensure that objects interact
in a coherent and meaningful manner. Common relationships include:

– Association: a bi-directional relationship between two classes.

– Aggregation: represents a “whole-part” relationship, where one class
is a component of another.

– Composition: a stronger form of aggregation where the parts cannot
exist without the whole. When the whole is destroyed or deleted, its
parts are as well.

– Inheritance (Generalization): represents an “is-a” relationship be-
tween a base class (parent) and a derived class (child).[3]

• Multiplicity: it denotes a possible range of instances that can participate
in an association between two classes, by defining the minimum and
maximum number of instances of one class that may be associated with
a single instance of another class. For example, "0..1" indicates none or
one, "1" means exactly one, and "*" or "0..*" means many or an unlimited
number.

In Figure 2.1 it is shown an example of a class diagram.

Figure 2.1: Example of a Class Diagram for a production work[3]

19

2 – Background

2.2.4 Creating UML Class Diagrams
The following steps are involved in the design of a class diagram:

• Requirement Analysis: it is necessary to understand the system’s re-
quirements before starting with the design, it is possible to do it by
identifying the main entities or classes that will be part of the system.

• Identifying Relationships: determine how the classes will interact with
each other by understanding the type of relationships.

• Determining the "Multiplicity" of relationships.

• Defining attribute and methods: for each class, it is necessary to list
down the attributes (properties) and methods (functions) it will have.

• Drawing the diagram: start with classes, then add attributes and meth-
ods, and finally, represent the relationships.

• Review and Refine: once the initial diagram is ready, review it for accu-
racy and completeness. Make necessary refinements.

Some of the most popular tools and software used in the realization of class
diagrams are IBM Rational Rose, Microsoft Visio, StarUML, and Lucidchart.
These tools offer features like drag-and-drop elements, templates, and col-
laboration capabilities. There are also open-source options like "ArgoUML"
or web-based tools like "draw.io".

In order to realize a comprehensive and effective class diagram it is sug-
gested to comply with the following Best practices:

• Maintain clearness and conformity by using standard UML notations for
the illustration of classes, relationships, etc.

• Aim for simplicity in the class diagram, and if it becomes too compli-
cated, consider breaking it into smaller, more manageable segments.

• Choose descriptive and meaningful names for classes, attributes, and
methods, to clearly describe their functionalities.

• Maintain a constant style in the diagram, including naming conventions,
symbols, and layout, to improve readability and understanding.

• Add explanatory notes in order to explain complex sections or to provide
additional information where necessary.

20

2.2 – UML Class Diagram

• Avoid Redundancy to ensure that the same information isn’t represented
in multiple places, which can lead to inconsistencies.[15]

2.2.5 Evolution of UML Modelling Tools
UML modeling tools evolution started from standalone tools and then they
passed to repository-based model sharing, and web-based model sharing until
they reached real-time model sharing. This evolution was caused by the
increasing need for UML editors to support collaborations.

Repository-based model sharing is able to provide robust control of the
versions, support concurrent model access with conflict resolution, ensure se-
cure access control, and centralize model management. It is useful to main-
tain the historical integrity and security of UML models.

Web-Based Model sharing offers access to UML models that are platform-
independent, through a browser. In this way it facilitates the use of a great
number of stakeholders, improving collaboration by the use of discussion
features. It is ideal for large teams distributed in different locations.

Real-time model sharing makes instantaneous collaboration possible. Users
are able to see and interact with changes in the model in real-time. This re-
duces miscommunication and increases productivity. It is a collaborative
environment that mimics an interactive whiteboard experience.

Tools that incorporate collaboration features for UML can be divided into
different categories:

1. UML Modeling with Enhanced Collaboration Features like Enterprise
Architect, and EclipseUML.They include real-time collaboration, allow-
ing multiple users to work on the same model simultaneously.

2. UML Tools with Version Control Integration like Rational Rose, and
Microsoft Visio. This feature allows for tracking changes over time and
coordinating work among different team members.

3. Tools with Central Repositories such as Enterprise Architect, and Eclip-
seUML. They enable teams to store and manage all UML models and
related documents in a single, accessible location.

There are also cloud-based UML tools that are designed for collaboration
from the ground up (Ex. LucidChart, Draw.Io). These tools meet the de-
mand of modern software development, in which the members of the team
require real-time collaboration capabilities.[16]

21

2 – Background

The advent of advanced techniques in deep learning generated a great
interest in the exploration of methods to automatize the classification of
UML class diagrams. Those advancements can improve the efficiency of
software development processes and the utility of UML diagrams.

2.2.6 Challenges and Limitation of UML class diagrams

There are several challenges and limitations in using a class diagram:

• Complexity: if the complexity of a software system is too high, the
diagrams can become difficult to read and understand, especially for
people not familiar with UML notation.

• Ambiguity: UML provides a standardized notation but there can be
ambiguities in how certain aspects are represented, leading to misinter-
pretations (especially when diagrams are shared among different teams
or stakeholders). Another source of ambiguity is the level of detail. For
example, the decision between a high-level overview versus a detailed
representation depends on the diagram’s audience and purpose.

• Evolution challenges: it can be a challenge to keep the diagrams up-to-
date with the evolution of the software, especially in environments that
change fast.

• Integration with other tools: even if there are a lot of tools to create
and view UML diagrams, it is challenging to integrate them with other
software development tools.

• Limitations in Reverse Engineering: there exist tools that can reverse
engineer code into UML diagrams, but they are not always able to un-
derstand the design decisions related to the code.

• Overhead: the creation of detailed UML diagrams can add overhead
to the software development process because even if they are useful for
design and documentation, they require time and effort to create and
maintain.

22

2.3 – Large Language Models

2.3 Large Language Models

2.3.1 Introduction
Large Language Models (LLMs) are a subset of artificial intelligence (AI)
tools designed to process and generate text. They gained great attention
after the public release of OpenAI’s ChatGPT in November 2022. These
models are able to perform tasks such as answering questions, summariz-
ing, paraphrasing, and translating text at a level that often rivals human
capabilities.

The fact that nowadays it is possible to actively interact with models
like ChatGPT has made LLMs diffused tools in various domains, including
engineering and medicine (some of the applications are reported in Figure
2.2). Even if they have the ability to democratize knowledge and improve
access to information, there are several concerns. For example, they might
accidentally spread misinformation or contribute to scientific misconduct due
to a lack of accountability and transparency. While LLMs can be powerful
tools, they are only as good as the data they are trained on. The presence of
biases in the training data can lead to biases in the output of the model.[4]

LLMs’ growth has been very fast. LLMs make use of neural network com-
putational models that take inspiration from the human brain, and they are
composed of interconnected nodes and process data through layers in order
to execute tasks such as classification, pattern recognition, and decision-
making) and have evolved since natural language processing (NLP) models
(ex. BERT). OpenAI released GPT-1 in 2018, followed by other important
models from companies such as Google and Meta. The release of Chat-
GPt was relevant due to its public accessibility, user-friendly nature, and
human-like output. This was possible thanks to a unique approach known as
reinforcement learning from human feedback (RLHF), which produces more
reliable outputs compared to earlier models.

2.3.2 Definition and Core Concepts
Language models are defined as computational structures used to process
and generate text. The rise of large language models influenced recent im-
provements in the NLP field. By training these models on a great amount of
unlabeled text, they can do a great number of tasks without requiring much-
specialized training. The ability of LLMs to execute several tasks without
specialized training is often called "few-shot" or "zero-shot" learning. [17]

23

2 – Background

Figure 2.2: Overview of potential applications for LLMs in medicine [4]

In the beginning, traditional language models relied on statistical methods
for which task-specific training was needed. In contrast, the newest genera-
tion of large language models (especially those that are based on the Trans-
former architecture) can be used for a lot of tasks with almost no specialized
training. The range of these models has been continuously expanding, and
some of them now brag about a number of parameters that are hundreds of
billions.

Some of the core concepts of LLMs are:

• Training Data: a model’s effectiveness is influenced by the quality and
quantity of the training data. LLMs are usually pre-trained on massive
datasets with different textual content.

• Tokenization: the process of converting input text into smaller units
(tokens). It is considered one of the most important steps in the prepa-
ration of data for training language models and allows them to process
and generate text effectively.

• Embeddings: they are vector representations of words, or tokens, that

24

2.3 – Large Language Models

catch the semantic meaning of words. They are essential for the ability
of the model to understand and generate text that is relevant to the
context, allowing models to understand relationships between words,
such as synonyms, antonyms, and other semantic relationships.

• Attention mechanism: it allows the model to focus on specific parts
of the input text when generating output. It is essential in order to
understand the context and relationships within the text.

2.3.3 Evolution of Language Models
Over the years, Language Models have undergone great changes:

1. Statistical Models: The first language models were mostly statistical.
By using the frequency of words and phrases in a text they were able
to predict the next word in a sequence. Some of the techniques utilized
were the Bag-of-Words and N-Grams.

2. Machine Learning Algorithms: they were integrated in order to capture
characteristics of the language that purely statistical methods, due to
their limitations, were unable to catch. Examples of ML algorithms are
Naive Bayes and decision trees.

3. Recurrent Neural Networks (RNNs): due to the increase in the uti-
lization of neural networks, RNNs started to be a diffused choice for
language modeling. Their design includes the ability to remember past
information, making them the ideal tool for sequential data (ex. text).

4. Long Short-term Memory (LSTM): a special type of RNN that resolved
the vanishing gradient problem of traditional RNNs. It became a foun-
dation in the performance of several NLP tasks (ex. text classification
and machine translation).

5. Transformers and Attention Mechanism: the transformer architecture,
introduced for the first time in [18], caused a relevant shift in NLP. By
relying a lot on attention mechanisms, it allows the model to focus on
different parts of the input text, leading to a better understanding of
the context.

6. BERT, GPT, and Beyond: BERT (Bidirectional Encoder Representa-
tions from Transformers) and GPT (Generative Pre-trained transformer)

25

2 – Background

are two of the most important models which are based on the Trans-
former architecture. BERT is designed to understand the context of the
words in a sentence by looking at its surroundings in both directions.
Instead, GPT is focused on the generation of coherent and contextually
relevant text. While BERT is more focused on understanding context
(making it great for tasks like question-answering), GPT’s design is more
generative, making it adept at tasks like text completion or generation.

7. Transfer Learning in NLP: it became prominent thanks to models like
BERT, GPT, ELMo, and ULMFit. These models are pre-trained on a
very large amount of data and can be fine-tuned for specific tasks, leading
to what many refer to as the “ImageNet moment” for NLP (it refers to
the transformative impact on the field, similar to how pre-trained models
on ImageNet revolutionized computer vision). [19]

2.3.4 Architecture and Mechanics

Transformer-based language models usually go under a two-phase training
process (Pre-training and Fine-Tuning). The first phase is about pre-training
the model on a very large amount of text or code with no supervision. In
models that have over a hundred million parameters, this phase is followed
by a short, task-specific training phase (“fine-tuning”). Pre-training allows
the model to learn general language patterns, while fine-tuning adapts this
general knowledge to specific tasks, making the model more effective.

Over the years the size of language models has continuously increased. The
last generation of models (such as GPT-3) can be utilized without further
specification (a technique referred to as “prompting”). While larger models
like GPT-3 can be used with simple prompts, their size also brings chal-
lenges in terms of computational requirements and potential environmental
concerns.

LLMs generate text based on the probabilities assigned to each word in
their vocabulary. By considering the context and using their internal knowl-
edge derived from training data they produce coherent and contextually rel-
evant sentences. The model’s generation can be controlled to some extent
using techniques like temperature adjustment, which can make the output
more deterministic or more random.[17]

26

2.3 – Large Language Models

2.3.5 Applications
LLMs have seen a fast adoption and have been acclaimed globally. In only
five days after its release, ChatGPT gained one million users, indicating
significant anticipation and a high demand for this technology.

ChatGPT was designed to perform several tasks. It can explain, ana-
lyze, and generate knowledge from the internet, replacing traditional keyword
searches. The model is able to produce both creative texts and fact-based
scientific essays. Moreover, it can program other algorithms, becoming a use-
ful tool for both average consumers and specialized researchers. But while
ChatGPT can generate knowledge, it is based on the data it was trained
on, and it does not "know" in the traditional sense or actively browse the
internet.

ChatGPT was also integrated into Microsoft’s Bing search engine, com-
bining traditional keyword search with the model’s advanced syntax and
interactive conversation capabilities.

ChatGPT’s potential also extends to medicine and research. Due to the
fact that it is able to generate fact-based texts in real-time, it is useful for
medical professionals seeking evidence or case reports. It is important to
verify any information generated by ChatGPT, especially in critical fields
like medicine, to ensure accuracy and reliability.

There are also potential applications in other fields, such as education
(e.g., tutoring, answering student queries) or entertainment (e.g., generating
stories or dialogues).[20]

2.3.6 Challenges and Ethical Considerations
Simulating Moral Agency

New advancements in LLMs have enabled applications to simulate the pos-
session of full moral agency. They can report context-sensitive moral as-
sessments in open-domain conversations, suggesting a semblance of moral
reasoning. While LLMs can simulate moral reasoning, they don’t possess
genuine understanding or consciousness, which can lead to potential pitfalls.

Automating Moral Decision Making

The idea of automating moral decision-making presents both methodological
and ethical challenges that arise in areas such as:

27

2 – Background

• Bias Mitigation: it is necessary to ensure that the models do not per-
petuate or amplify existing biases.

• Missing ground truth for moral “correctness”: the determination of what
is morally correct is a subjective matter and it can vary across different
cultures and individuals.

• Effects of Bounded ethicality in machines: it is necessary to understand
that machines have limitations in making ethical decisions.

• Changes in moral norms over time: moral standards evolve over time,
and models need to adapt accordingly.

• Risks of using morally informed AI systems as Advice: there are poten-
tially negative consequences to relying on AI for moral guidance.

The potential for AI to make moral decisions raises concerns about account-
ability. Who is responsible when an AI makes a morally questionable deci-
sion?

Values Embedded in Technical Artifacts

AI models are technical artifacts and thus have values embedded within
them. Some values like performance and efficiency are prioritized instead
of moral values such as for example justice and diversity; even if the latter
can be integrated by the utilization of algorithmic decision-making, their
operationalization into clear success criteria is a challenge. These embedded
values can also be unintentional and are the result of biases in the training
data or from a mistake of the developer.

Training Morally Informed AI Systems

For the development of morally informed AI systems, one solution is to train
them to answer human questions about moral decision-making in an au-
tonomous way. The models are also trained to apply social norms, usually
derived from large language corpora, to complex real-world situations. Train-
ing on social norms can be beneficial, but there is the risk of boosting existing
societal biases if the procedure is not done carefully.[21]

28

2.4 – Application of Large Language Models for Requirement Gathering: Literature Review

Looking at the future, there is a really high potential for the integration
of large language models with other software tools. For example, by the
combination of these models with UML diagrams it might be possible to
improve software development processes with the assistance of the models in
requirements gathering, software design, and code generation.

2.4 Application of Large Language Models
for Requirement Gathering: Literature
Review

2.4.1 Introduction

Utilizing large language models for requirement gathering in software engi-
neering is an innovative area full of potential. Requirement gathering aims to
identify the user’s needs in order to translate them into a set of specifications
that can be methodically transformed into a working software system.

One of the main benefits is the possibility to automate the generation of
UML diagrams from natural language descriptions. This process, which usu-
ally needs great manual effort and expertise, can be automated by using NLP
techniques. An example is the approach of Jaiwai and Sammapun [22], who
show the ability of NLP to realize requirements in languages also different
from English, such as Thai, and automatically extract UML class diagrams.
This accelerates the development process and improves the accessibility of
UML modeling tools to non-English speakers.

There are also several challenges. The accuracy of the generated UML di-
agrams depends on the quality of the input requirements. Ambiguities in the
language and the complexity of software requirements can create problems
for automated systems. It is necessary to ensure that the generated models
reflect the intended functionality. There is a necessary need for a balance be-
tween automation and human expertise. Large language models can manage
a great portion of the modeling process, but they are not capable of replacing
the decision-making capabilities of software engineers. The challenge is to
develop systems that can complement human expertise.

In the next sections, three case studies of applications of Large Language
Models in Requirements Gathering (or in similar fields) are analyzed.

29

2 – Background

2.4.2 AutoScrum: Automating Project Planning Us-
ing Large Language Models (2023)

This paper discusses an example of how to use LLMs to automate the agile
project planning process.

Agile methodologies, with their focus on iterative development and flexibil-
ity, provide a robust framework for managing complex projects, and within
this spectrum, Scrum stands out as a highly structured yet adaptable ap-
proach, emphasizing team collaboration and frequent reassessment of project
goals to ensure efficient and effective outcomes.

Nowadays, LLMs are so advanced that they are able to perform advanced
reasoning tasks. It is possible to make use of these capabilities to design high-
level project plans by understanding both the actual state of the project and
its desired state.

A scrum-based approach is proposed to automate the requirements-gathering
process, the mapping of user stories, the identification of features, the de-
composition of tasks, and the generation of question and search terms for
domain-specific information. This approach is shown in Figure 2.3.

Alongside it, the paper also presented a shortcut plan approach able to
generate more adequate tasks that permit to move from the current to the
desired state in the most efficient way. This approach uses a single language
program that suggests the next most urgent task based on tasks completed
so far and the difference between current and desired situations. This lan-
guage program is executed iteratively until the desired state is reached. This
approach is shown in Figure 2.4.

By using those approaches and LLMs it is possible to automate different
Scrum processes such as backlog creation, backlog refinement, task decompo-
sition, and scrum execution. The authors of the paper conclude that LLMs
can be used to support the processes of agile project planning and execution.

It is also important to notice, that the paper introduces the concept of
“Language programs”. They are programs written in natural language and
are designed to process input data through the language model. [5]

2.4.3 An Analysis on Large Language Models in Health-
care: A Case Study of BioBERT (2023)

The paper provides a look into the application of LLMs in healthcare, focus-
ing on BioBERT.

Starting from a discussion on the evolution of natural language processing

30

2.4 – Application of Large Language Models for Requirement Gathering: Literature Review

Figure 2.3: Autoscrum process. The green icons represent parts of the process
that can be augmented by the use of language models [5]

Figure 2.4: The shortcut planning approach [5]

(NLP), starting from early rule-based systems and up to the introduction
of the Transformer Architecture that led to the development of LLMs, the
paper shows the transformative impact of LLMs on healthcare and biomedi-
cal applications, highlighting inefficiencies in the current healthcare system,
such as the limited access to information and unmanageable documentation
processes. It is suggested that LLMs are able to surpass these challenges
by providing rapid, context-aware responses to medical questions, extracting
information from unstructured data, and automating clinical documentation.

The paper carefully examines BioBERT, a language model realized for
biomedical text mining. By using a systematic methodology, BioBERT is
fine-tuned to meet the particular needs of the healthcare domain, including
data gathering from diverse healthcare sources, data annotation, and spe-
cialized preprocessing techniques.

Other than the benefits of using BioBERT in healthcare, it is also neces-
sary to recognize the challenges related to data privacy, integrity, bias miti-
gation, and transparency. Ethical aspects such as patient privacy and data
security are also considered.

31

2 – Background

It can thus be said that LLMs can be tailored to specific domains, such
as healthcare, and this can open the door to applications in requirement
gathering for software engineering, especially in UML class diagrams. [23]

2.4.4 From User Stories to UML Diagrams Driven by
Ontological and Production Model (2021)

This paper illustrates an approach to automatically transform user stories
into UML diagrams by addressing the challenges encountered. User stories
are usually used in Agile methodologies to express requirements.

The authors used Stanford Core NLP (a tool for natural language process-
ing) to process user stories written in natural language. It used an approach
that combines rules formulated as predicates and an ontological model to
interpret the user stories.

Prolog rules were used to find relationships between classes and to im-
prove them aiming to reduce errors. An ontology is created to represent the
components of the user stories, which helps to find equivalent relationships
and to include use cases. The approach is shown in Figure 2.5.

The tool developed for this process was implemented in Python and it was
applied in several case studies, demonstrating its validity.

There exist previous approaches to generate conceptual models from user
stories, but they have a lot of limitations, like incomplete models or the lack
of relationship between use cases. [6]

Figure 2.5: Architecture of the Proposed Approach[6]

32

Chapter 3

Methodology

3.1 Possible evaluation Criteria
3.1.1 Introduction
In the fields of software engineering and system design, Unified Modeling
Language (UML) class diagrams play a crucial role. It is essential to assess
their quality and this will be one of the main focus of this research. Evaluat-
ing UML class diagrams goes beyond checking for syntax errors; it involves
determining how well they represent the system, how effectively they commu-
nicate information, and whether they adhere to design practices. The quality
of a class diagram has an impact on the development process affecting how
easily the system can be implemented, maintained, and scaled.

During the literature review, for this research project, evaluation methods
from five academic articles are taken into consideration. These methods
provide an overview of the state of the art regarding the evaluation of UML
class diagrams.

3.1.2 Overview of Articles and Methods
New Method for Summative Evaluation of UML Class Diagrams
Based on Graph Similarities (2021)

This article shows an approach to evaluate UML class diagrams generated
by students. The evaluation system operates semi-automatically, comparing
student-generated diagrams with teacher-provided ones.

The method adopts different graph-matching approaches, such as graph
isomorphism and the search for larger common subgraphs and it is structured

33

3 – Methodology

into three sequential steps: preprocessing the input diagrams into graphs, the
matching process to calculate element similarities, and finally, a formative
evaluation that includes a list of differences, and errors, and a summative
evaluation to classify compared diagrams. An example is shown in figure
3.1.

Figure 3.1: Example of a Graph Matching[7]

The similarity measure is key to this approach, aiming to identify semantic
correspondences between graph elements. This is achieved through a set of
comparison functions that evaluate similarities between two nodes, taking
into account their attributes and neighboring nodes. Weights and thresholds
are assigned to each property to adjust the significance of different similarity
aspects.

The tool uses syntactic, structural, and semantic similarity functions. Syn-
tactic similarity measures lexical similarity (e.g., class and attribute names),
structural similarity assesses the similarity of properties (like attributes and
operations), and semantic similarity evaluates the relations of elements with
their neighbors.

The method proved capable of measuring similarities between various
UML class diagrams, detecting differences, correcting errors, and matching
class diagrams. The results demonstrated that the method is largely effective,
with a significant majority of matches aligning with expected outcomes.[7]

On Evaluating the Layout of UML Class Diagrams for Program
Comprehension (2005)

The authors of this paper present key criteria and guidelines for the effec-
tive layout of UML class diagrams and evaluate two UML tools (Borland
Together and Rational Rose) to show how these criteria can improve read-
ability. Among those criteria, the most important are:

34

3.1 – Possible evaluation Criteria

• Law of Good Figure: Join together inheritance arcs of the same class,
and select carefully which information to show.

• Law of Continuation: Minimize edge crossings and bends to facilitate
comprehension.

• Law of Proximity: Place related elements (like parent and child nodes)
close to each other, and ensure that the length of the edges is neither
too long nor too short.

• Law of Connectedness: Avoid overlapping of nodes and edges to maintain
clear visual distinctions.

• Law of Orientation: Prefer vertical or horizontal orientations for ele-
ments and labels, and draw arcs orthogonally.

• Law of Contour: Prevent overlapping of objects for easier recognition.

It is important to notice that some criteria may conflict with each other,
and so it is necessary to make potential trade-offs. [24]

An Approach to Compare UML Class Diagrams Based on Seman-
tical Features of Their Elements (2015)

In their research, the authors analyzed existing methods for UML class di-
agram comparison, focusing on those that provide numerical metrics to de-
scribe model differences, and then combined two methods: one that uses
several similarity metrics like Shallow Lexical Name Similarity and Attribute
Similarity, and another which focuses on attribute and operation sets to de-
fine differences.

The obtained comparison method involves pairing elements from two dia-
grams based on their semantical meaning, calculating the distance between
them, and then aggregating these distances into a model difference vec-
tor. This vector’s length is used to estimate the final difference between
the diagrams. The approach includes evaluating distances between classes,
attributes, methods, and relationships. The criteria for calculating these
distances vary depending on whether elements are semantically equal, have
different names, or are absent in one of the models. The final output is a
number that defines the distance between the compared diagrams, with a
larger number indicating more differences.

To validate their method, the authors created three simple UML class
diagrams and compared them using their approach, demonstrating in this

35

3 – Methodology

way that the method is effective in differentiating between diagrams based
on both name and structural differences. [2]

Assisting Novice Analysts in Developing Quality Conceptual Mod-
els with UML (2006)

The objective of this scientific article is to help inexperienced analysts in the
creation of UML artifacts, focusing on their quality. Those models can be
useful to represent correctly the system requirements improving the success
of the system development process. Different techniques for modeling using
UML are discussed: entity-relationship diagrams, class diagrams, use case
diagrams, and sequence diagrams.

The authors analyzed UML artifacts realized by undergraduate students
in their final year, who had previously attended a course in object-oriented
analysis/design. They were taken by 15 team-project reports, and the class
diagrams contained in them included an average of 14 classes with up to 50
attributes and 23 operations.

Errors usually made by novice analysts are highlighted in the findings
of this paper, and they can be used to improve the quality of the artifacts
developed, thanks to training programs that focus on them. In this way,
semantic and pragmatic errors can be avoided.

The authors also suggest that those errors can be used to create check-
lists and guidelines useful to quality assurance teams and systems analysis
instructors. [1]

Understanding Quality in Conceptual Modeling (1994)

This paper focuses on the quality of conceptual models, by introducing the
need for a systematic approach for the identification of quality improvement
goals and means to achieve them.

The authors propose a framework that introduces a comprehensive ap-
proach that includes the following components:

• Syntax: focus on whether language rules and their implications on the
construction of the model are respected. It is formed by an alphabet
and a grammar.

• Semantics: consider the relations among statements and their meaning.
It is assessed based on the model’s adherence to the domain’s character-
istics and requirements. Goals for semantic quality include validity and
completeness.

36

3.1 – Possible evaluation Criteria

• Pragmatics: focuses on how the model is understood by various stake-
holders involved in the development process. Its goal is to ensure com-
prehension of the model by all concerned parties, not just select groups.

The authors also discuss the feasibility of achieving these quality goals,
acknowledging the trade-offs between benefits and drawbacks in pursuing
model quality. [25]

3.1.3 Analysis of Proposed Methods
The previous section presented five distinct articles, each offering a different
method to evaluate UML class diagrams. The current objective is to make
a comparative analysis to select the most suited method(s) to adopt in this
study. First, the three methodologies that were discarded, with the motiva-
tions behind such a decision, will be discussed, and then an explanation for
the two selected methodologies will be provided.

Methodologies Not Selected

"New method for summative evaluation of UML class diagrams" [7] was dis-
carded because it employs graph matching techniques to evaluate diagrams.
This is too complex and unsuited for the scenario that is considered, where
simpler or more direct comparison methods are preferred. Moreover, it in-
volves a multi-step process that can be time-consuming and may require
significant computational resources.

"On Evaluating the Layout of UML Class Diagrams for Program Compre-
hension" [24] was not selected because it is more focused on the tool used
to make the diagram than on who made it, with the final example in the
article being a confrontation of the same diagram made by the same user
with different tools, judging perceptual aspects of them.

"Understanding Quality in Conceptual Modeling" [25] was deemed not
suitable because it lacks specificity to UML class diagrams. While offer-
ing broad perspectives on model quality, it does not offer the UML-specific
criteria necessary for an exhaustive evaluation in this study.

Chosen Methodologies

"An Approach to Compare UML Class Diagrams Based on Semantical Fea-
tures of Their Elements" [2] was selected because it is centered on evaluating
the semantical features of UML class diagram elements, ensuring that the

37

3 – Methodology

comparison goes beyond superficial aspects like naming conventions, focus-
ing instead on the underlying meaning and relationships within the diagrams.
The method systematically compares various elements such as classes, at-
tributes, methods, and relationships, in this way all critical aspects of the
diagrams are evaluated. Moreover, it effectively manages different versions
of UML diagrams, is in line with current software development trends, and
has been validated in practical scenarios.

"Assisting Novice Analysts in Developing Quality Conceptual Models with
UML" [1] was chosen due to its effectiveness in identifying and addressing
common modeling errors that can occur in UML diagrams. The methodol-
ogy uses a systematic framework to evaluate UML artifacts from syntactic,
semantic, and pragmatic quality perspectives. This evaluates the overall
quality of the diagrams, considering not only their structural correctness but
also their relevance to the domain and their comprehensibility to various
stakeholders.

The analytical process has resulted in the selection of two methodologies
that align with the goals and context of the research. These chosen ap-
proaches offer a robust framework for evaluating UML class diagrams. The
methodologies not selected, while valuable in their contexts, do not align as
closely with the specific aims and requirements of the research in the evalu-
ation of UML class diagrams.

3.2 Approach to Evaluate Diagrams
The previous section focused on the identification of studies on which to lay
the basis for the analysis that will be done in this thesis. Starting from them,
a two-part approach was elaborated, to compare class diagrams realized by
humans with the ones made by LLMs.

The approach starts with the first part focused on an analysis of the fre-
quency and nature of errors across different quality categories. The objective
is, by quantifying these errors, to measure if the diagrams of the best quality
are produced by humans or LLMs.

Then, the second part shifts to a direct comparison of the diagrams based
on the semantic features of their elements. By using mathematical calcu-
lations, it aims to measure the distance between humans or LLM in the
realization of a more accurate and effective diagram related to the same sys-
tem.

With this dual-faceted approach, the study aims to establish the potential

38

3.2 – Approach to Evaluate Diagrams

of LLMs in the generation of UML class diagrams.

3.2.1 First Part
In the first part, the focus is on evaluating the quality of diagrams across
different aspects:

1. Syntactic Quality: assess if the class diagrams follow the syntactic struc-
ture of UML with minimal errors or deviations;

2. Semantic Quality: evaluate the accuracy and completeness of the di-
agrams in representing the intended domain. It is measured in terms
of:

• Validity: all elements and relationships in the diagrams should ac-
curately represent the domain.

• Completeness: the diagrams should include all necessary elements
and relationships, it is important to identify which are incorrectly
represented or omitted.

3. Pragmatic Quality: focus on the understandability of the diagrams from
the perspective of stakeholders. The comparison revolves around how
each diagram presents information (it can make it easy or challenging
for the users to understand).

In Table 3.1, typical errors under the three quality dimensions (syntactic,
semantic, and pragmatic) are categorized and listed.

A negative correlation will be considered between the number of errors
in class diagrams and their overall quality, meaning that the fewer errors
are present, the higher the quality of the diagram. Such comparison high-
lights the strengths and weaknesses of LLMs compared to human-generated
diagrams.

During the analysis, the number of errors for each distinct quality will be
reported in a specific table (Table 3.2 is an example), which serves as a tool
to understand how the frequency and types of errors vary between humans
and LLM. [1]

3.2.2 Second part
The approach in this second part will be focused on comparing and ana-
lyzing the semantic content of elements and relationships in the diagrams.

39

3 – Methodology

Syntatic Quality Semantic Quality Pragmatic Quality

• Missing cardinality
details for associa-
tions

• Inappropriate nam-
ing of classes and
associations

• Incorrect use of
UML symbols

• Incorrect cardi-
nality/multiplicity
specification

• Used aggregation in
place of association

• Wrong location of
attributes

• Wrong location of
operations

• Operation cannot
be realized using
existing attributes
and relationships

• Redundant at-
tributes and
associations

• Specialization with
little distinction
among subclasses

• Inconsistency in
Styling and Con-
ventions

Table 3.1: Errors in various quality categories [1]

Syntatic Quality Semantic Quality Pragmatic Quality
Human 26 32 33
LLM 28 30 27

Table 3.2: Example of Distribution of various type of errors [1]

This is essential because even if elements have different names they can be
semantically identical.

The elements that will be analyzed are:

• Classes and interfaces.

• Class attributes.

• Methods.

• Relations between elements.

The steps of the comparison algorithm that will be used for each element
are:

40

3.2 – Approach to Evaluate Diagrams

1. Pairing elements from the solution given with the diagrams generated by
a human and those generated by LLM, based on their semantic mean-
ings.

2. Calculate the distance between the elements of each pair. The distance
is a measure of how differently are the elements represented.

3. Aggregate all the calculated distances into a model difference vector, it
will be used to calculate the final difference.

Only after those steps, is obtained a vector whose length will be assessed
to determine the distance between the solutions given and the diagrams made
by humans and LLM. The diagram with a minor distance from the solution
will be considered the best.

Classes and Interfaces

Distances between classes and interfaces are calculated using the guidelines
in Table 3.3

Criteria Distance
Semantically equivalent elements with the same
names are present in both models 0

Semantically equivalent elements are present in
both models but their names differ 0.5

One of the model does not contain a semantically
equivalent class with the other model 1

Table 3.3: Class and Interface Distances[2]

Class Attributes

To calculate the distances between the class attributes, it is necessary to
create a temporary vector:

<a|s|n|t> (3.1)

The vector is composed of different characteristics of the attributes, with
its length being used as a way to measure the distance between corresponding
class attributes in the solution versus the ones in the diagrams made by

41

3 – Methodology

humans and LLM. Table 3.4 explains how to construct and interpret this
vector.

Element Criteria Distance

a
Difference between access
modifiers of appropriate class
attributes

0 for the same, 1 for different

s Static modifier flag
0 if both attributes share the
same static modifier, 1 other-
wise

n Name difference 0 for the same attribute names,
1 for different

t Attribute type difference 0 for the same type, 1 for dif-
ferent

Table 3.4: Elements of Comparison Vector for Class Attributes[2]

All the elements of the vector are assigned a value of 1 if the class attributes
or the class itself exists only in one of the two diagrams compared.

Methods

The following vector has to be created to compare the class methods:

<o|a|s|n|p|r> (3.2)

Its components are explained in Table 3.5.
The importance of the method arguments needs to be highlighted by

adding a factor of 0.2 to the overall difference if there is a mismatch, and 0.5
if an argument is present in one method but not in the other. The following
formula shows this:

p = 0.2 ∗ at + 0.5 ∗ am (3.3)

Inside it, ’at’ is the number of method arguments with mismatching types,
and ’am’ is the number of cases where a method argument is present in one
diagram but absent in the other.

It’s important to note that the order of arguments is not considered in
this analysis.

42

3.2 – Approach to Evaluate Diagrams

Element Criteria Distance

o Owning class difference
If a method is defined in se-
mantically equal classes (inter-
faces) – 0, 1 otherwise

a Difference between access
modifiers 0 for the same, 1 for different

s Static modifier flag
0 if both methods share the
same static modifier, 1 other-
wise

n Name difference 0 for the same method names,
1 for different

p Difference between method ar-
guments

0.2 for each mismatching at-
tribute type, 0.5 for missing ar-
gument

r Difference between return type 0 when the return type is se-
mantically equal, 1 otherwise.

Table 3.5: Elements of Comparison Vector for Class Methods[2]

Relations Between Elements

The following vector is realized to compare the relations between elements:

<s|t|y|m> (3.4)
Its components are explained in Table 3.6

Length and Distance

For every n-dimensional vector, its length is calculated by using an Euclidian
distance formula:

l =
öõõô nØ

i=1
e2

i (3.5)

The final output of the comparison is a numerical value calculated as
the length of the model difference vector created by the aggregation of the
distances of all the elements analyzed. It indicates the distance between the
diagram in the solution and the ones made by humans and LLM. A larger
number indicates a greater disparity, while a smaller one indicates that they
are similar.[2]

43

3 – Methodology

Element Criteria Distance

s

Relation source difference: de-
notes if the relation is outgo-
ing from the semantically equal
class in both models

0 for the same class, 1 for dif-
ferent

t

Relation target difference: de-
notes if the relation is incom-
ing into the semantically equal
class in both models

0 for the same class, 1 for dif-
ferent

y Relation type difference 0 if both relations are of the
same type, 1 otherwise

m Multiplicity difference 0 if relations have the same
multiplicity, 1 otherwise.

Table 3.6: Relation Comparison Vector Elements[2]

3.3 Collection of Exercises
For the analysis conducted in this thesis, a collection of exercises, selected
from several internet sources, has been gathered. These exercises range in
different sectors to give different representations of the challenges that can
be encountered in the realization of UML class diagrams.

This collection comprises 20 distinct exercises each of them composed of
three crucial elements:

• A detailed text description of the system for which the class diagrams
will be constructed.

• A direct link to its internet sources, to allow for further exploration of
the context of each exercise and acknowledge the original creator.

• A solution, that has been provided alongside the original content. It
will be used as the basis for the comparison between diagrams made by
humans with the ones made by LLMs.

The link for the digital appendix containing this collection can be found
in appendix A.

44

3.3 – Collection of Exercises

3.3.1 Different Levels of Difficulty
Exercises of different difficulty levels were included in the collection, this
diversity is essential to test and compare the capabilities of both human
intellect and language model algorithms in generating UML class diagrams.

The difficulty of each exercise is determined by a numerical scale ranging
from 1 to 5. The definitions for each point on the scale are as follows:

• 1 [Very Easy]: exercises that involve basic concepts and a small num-
ber of classes and relationships. They are straightforward, with clear
requirements.

• 2 [Easy]: exercises slightly more complex than the previous ones. They
might include a few more classes or relationships but they remain simple
in terms of interactions and concepts.

• 3 [Moderate]: exercises that present a balanced difficulty level, with a
moderate number of classes and relationships. They introduce some
complexities in the interactions between classes. A good understanding
of UML principles is required to solve them.

• 4 [Hard]: complex exercises that require a deep understanding of UML
methodologies. They have a large number of classes and intricate rela-
tionships.

• 5 [Very Hard]: the most difficult exercises, they mimic real-world appli-
cations and involve extensive systems with numerous classes, complex
relationships, and advanced concepts, requiring expert knowledge and
experience to model effectively.

The evaluation process is made by a sample of three individuals, each with
experience or familiarity with UML class diagrams. These evaluators inde-
pendently review the exercise descriptions and assign a difficulty rating based
on their initial assessment, before any attempts at generating corresponding
UML class diagrams. This precaution is taken to avoid potential biases that
might arise from the diagram generation process itself, thereby aiming for a
more objective initial evaluation.

The final Estimated Difficulty, for each of the twenty exercises, is calcu-
lated as the average of the three scores provided by the evaluators. This
value serves as a standardized measure of the exercise’s difficulty, offering a
point of reference that includes the collective judgment of the evaluators.

45

3 – Methodology

3.3.2 Given Solutions
It is crucial to note that in this analysis, the provided solutions are regarded
as the primary benchmark for correctness. Despite their potential limitations,
such as being incomplete or overly simplistic, these solutions are essential as
they offer a standardized approach to UML modeling of the described system.
Their role as a comparative framework is central, and they are used as the
sole point of reference against which all generated diagrams are evaluated.

3.3.3 Example of Exercise
This section shows one of the twenty exercises in the collection. The exercise
is on a real-life application in the medical field, called MyDoctor, and it has
an estimated difficulty of "4" (Hard). The text is shown in figure 3.2, and
the solution given is in figure 3.3.

3.4 Diagrams made by Human

3.4.1 Tool Used
In this research, the tool selected to represent the human-made UML class
diagrams was the Microsoft Visio tool, which presents both pros and cons:

Pros

• No additional cost: Visio is included in the Microsoft Office suite pro-
vided by the university for which this research is done, meaning that no
extra expenses are needed.

• Offline functionality: it is possible to use Visio offline once installed on
the laptop. This is essential to ensure that the diagrams can be realized
without any kind of interruption.

• User-Friendly: Visio is easy to use for people familiar with the Microsoft
Office Suite, with an interface similar to other tools like Excel or Word.

• Variety: a large number of templates for UML diagrams are included
in the application, facilitating the creation of professional-looking class
diagrams.

46

3.4 – Diagrams made by Human

Figure 3.2: Text of the Exercise [8]

47

3 – Methodology

Figure 3.3: Given Solution [8]

Cons

• Learning Curve: the basic features of Visio are straightforward, while
more complex ones require a deeper understanding of the tool.

• System compatibility: Visio is a tool designed for Windows, and there
might be limitations when used on different operating systems.

Therefore, Microsoft Visio is a cost-effective and capable tool for creating
UML class Diagrams, especially thanks to the university-provided access and
its offline capabilities.[26]

3.4.2 Established Rules
In the realization of the Class Diagrams, it was pivotal to establish rules to
follow, that work as a constraint to simulate a controlled real-world environ-
ment like the one of professionals working with time constraints and limited
resources.

The rules are the following:

48

3.5 – Diagrams made by LLM

1. Time limitation: the time given to complete a UML class diagram is 30
minutes, in order to evaluate the ability to work under time pressure
and to avoid prolonged deliberation.

2. No access to external sources: to ensure that the diagram is made only
with personal knowledge, access to the internet, notes, textbooks, or any
other external sources during the execution of the exercise was forbidden.

3. No interaction with others: the exercises were completed individually,
without help from other people. This was necessary to evaluate the
competence of a single human against the LLM.

The constraints for the UML class diagram exercises were carefully chosen
to create a challenging yet fair environment that mimics real-world condi-
tions.

3.4.3 Limitation
The greatest limitation in this part of the research is the use of a single
subject.

The risk of this choice is that the findings from a single individual may
not be generalizable to a large population, because individual differences can
influence the outcomes of the exercises.

In single-subject research, the individual serves as their own control and
treatment group, and it can be both an advantage and a disadvantage, as
while this allows for a precise examination of individual performance, it
means that the findings are dependent on the specific characteristics of the
individual.

Results may not replicate when applied to different individuals or even to
the same individual in a different time frame.[27]

Retaking the example of the MyDoctor application, the solution realized
by the human is shown in figure 3.4.

3.5 Diagrams made by LLM
3.5.1 Chosen LLM
The Large Language Model chosen to realize the UML class diagrams was
ChatGPT-4, which is the latest version of OpenaAI’s generative pre-trained
transformer series.

49

3 – Methodology

Figure 3.4: Solution made by human using Microsoft Visio

Even if it aims to be accurate, ChatGPT-4 is not infallible and can produce
plausible but incorrect responses. The choice of a correct prompt is pivotal
to improving the correctness of his responses.

3.5.2 Prompt
In the context of AI, a prompt is an instruction given to the AI model, that
serves as the initial input to guide the AI’s response, influencing its quality.

Prompt engineering is the field that crafts these inputs aiming to receive
the most effective and accurate responses from an AI system.

A well-designed prompt is essential to:

• Provide context and direction by including specific details so that the
model can produce output more aligned with the user’s intention.

• Enhance AI efficiency by reducing ambiguity, leading to quicker and
more precise results

• Facilitate complex task execution by conveying all the necessary infor-
mation.

For this research, the prompt used is the same for all the exercises and it is
Create a UML Class Diagram of the given exercise and give me the
PlantUML code, coupled with the attached exercise text. This prompt was
selected because it ensures in a simple way that ChatGPT understands the

50

3.6 – Statistical Analysis

specific task (creating a UML diagram), the context (the provided exercise),
and the expected output format (PlantUML code).

3.5.3 PlantUML
PlantUML is an open-source tool that enables the creation of diagrams using
text-based language and it is especially useful in the developing of UML class
diagrams.

In this research ChatGPT will generate, starting from the text of an ex-
ercise, a PlantUML code that is inserted in a specific tool to generate the
corresponding class diagram. The selected tool for this purpose is Plant-
Text.com, an online free tool that quickly generates UML diagrams starting
from a PlantUML text. It was chosen for the following reasons:

• It is easy to use thanks to its user-friendly interface

• Allows real-time visualization as the PlantUML code is entered

• Diagrams can be easily exported in various formats like PNG, SVG, and
TXT

• Being a web-based tool doesn’t need a software installation

The simplicity of PlantUML’s text-based syntax, combined with the ac-
cessibility of PlantText.com, provides the ideal tool to realize Class Diagrams
by using LLM.

Retaking the example of the MyDoctor application, the solution realized by
ChatGPT-4 is shown in 3.5.

3.6 Statistical Analysis
JASP

All the statistical analysis will be conducted using JASP (Just Another Sta-
tistical Program), which is an open-source statistical software designed for
statistical analyses. It offers an intuitive interface that simplifies the analyses
making them accessible for both novices and experienced users, facilitating

51

3 – Methodology

Figure 3.5: Solution made by ChatGPT-4 in PlantUML

the understanding and interpretation of statistical results without the need
for extensive programming knowledge.

Jasp was selected for the statistical analysis of this study due to the fol-
lowing reasons:

• User-Friendly Interface: JASP offers a graphical user interface (GUI)
with a point-and-click approach that allows for easy model specification
so it is more approachable for users who may not be familiar with R’s
command-line interface.

• Real-Time Analysis: JASP provides real-time results, meaning that as
data or analysis parameters are changed, the results update immediately,
allowing for a dynamic exploration of data.

• Integrated Output: The output in JASP is presented in a format that is

52

3.6 – Statistical Analysis

ready for reports or publications saving time on formatting and reducing
the chance of transcription errors.

3.6.1 T-Test
To confront human-made diagrams with the LLM ones, a paired-sample t-
test will be used.

A paired-sample t-test is a statistical procedure used to compare the means
of two related groups. It is commonly used when the same subjects are
involved in both groups or when a pair of subjects is matched in terms of a
control variable. In this study, the test is applicable because the two sets of
diagrams can be considered in a paired design (each human-created diagram
has a direct counterpart created by the LLM).

Output

In the Output of JASP for a paired samples t-test, several components pro-
vide information about the relationship between the two groups.

First, there is a Descriptive Statistics Table that provides:

• N: The number of paired observations included in the analysis.

• Mean: The average value of the observations for each of the paired
groups.

• SD (Standard Deviation): A measure of the variation or dispersion of
the observations in each group.

• SE (Standard Error): An estimate of the standard deviation of the sam-
pling distribution of the sample mean, indicating the precision of the
calculated mean.

• Coefficient of Variation: This statistic provides a standardized measure
of the dispersion of the dataset relative to its mean.

The second output component provided is a Paired Samples T-Test Table
whose elements are:

• t: This value represents the calculated t-statistic, which is used to deter-
mine if there is a statistically significant difference between the paired
groups.

53

3 – Methodology

• df: Stands for degrees of freedom, which in a paired samples t-test is
related to the number of pairs in the data. It is calculated as N - 1.

• p: The p-value indicates the probability that the results could have
occurred under the null hypothesis. A low p-value (typically less than
0.05) suggests that the null hypothesis can be rejected, meaning there is
a significant difference between the groups.

Lastly, a Bar Plot that visually displays the means of the two groups with
their respective confidence intervals of 95% is provided.

3.6.2 Linear Regression
Linear regression is a statistical method that is used to model the relation-
ship between a dependent variable and one or more independent variables.
Its primary purpose is to understand and model the relationship between a
dependent variable and one or more independent variables. In this research,
it will be used to predict outcomes based on the characteristics of UML class
diagrams.

Output

The outputs from JASP for a linear regression analysis include several compo-
nents. The first is the so-called Model Summary, which provides a snapshot
of the overall model’s performance. It includes:

• R: The correlation coefficient, which measures the strength and direc-
tion of the linear relationship between the dependent variable and the
independent variable(s).

• R2 (R-squared): This represents the proportion of variance in the de-
pendent variable that can be explained by the independent variable(s)
in the model.

• Adjusted R2: Adjusted for the number of predictors in the model, this
value compensates for the addition of variables that do not improve the
model.

• RMSE (Root Mean Square Error): This is the standard deviation of the
prediction errors (residuals). It measures how spread out these residuals
are around the best-fitting line. Lower values of RMSE indicate a better
fit.

54

3.6 – Statistical Analysis

The second component is a table that contains the estimated coefficients
of the model, describing the magnitude and direction of the relationship
between each predictor and the dependent variable. The table includes:

• Unstandardized Coefficients: These represent the actual units of the
dependent variable expected to change as the independent variable(s)
change.

• Standard Error: This measures the average amount that the coefficient
estimates vary from the actual average value of our response variable.
The smaller the standard error, the more precise the estimate.

• Standardized Coefficients (Beta): These coefficients are the estimated
coefficients obtained by standardizing the variables involved. They are
used to compare the relative strength of the different predictors within
the model.

• t: The t-statistic is the coefficient divided by its standard error. It is
used to determine the significance of the predictors.

• p: The p-value tells the likelihood or probability that the coefficient for
a variable is due to chance. A p-value of less than 0.05 is typically used
as the threshold for significance.

Lastly, JASP outputs a plot that visualizes the residuals (the differences
between observed and predicted values) against the predicted values (depen-
dent variable).

• Residuals: These are the vertical distances between the data points and
the regression line. Ideally, they should be randomly distributed, with
no discernible pattern.

• Standardized Residuals: These are the residuals that have been stan-
dardized to have a mean of zero and a standard deviation of one. The
plot allows checking for homoscedasticity — whether the variance of the
errors is consistent across all levels of the independent variables.

55

56

Chapter 4

Results

4.1 First Part

4.1.1 Example
To better understand the methodology of the first part, an example will be
made using exercise number 10 of the collection, which describes a restaurant
information system (the whole exercise with the diagrams can be found in
the appendix B).

By confronting the diagram made by the human and the diagram made
by ChatGpt with the solution given, the following results were found:

Human-Created Diagram Errors

• Syntactic errors. No syntax errors were found.

• Semantic errors. One semantic error was found: Incorrect Multiplicity
in the Association Between the Classes "Dish" and "Meal". The dia-
gram inaccurately represents the relationship between the two Classes,
by considering a multiplicity of 1 to * instead of 0 to * on the class "Dish"
indicating a potential misunderstanding of the domain or the exercise
requirements.

• Pragmatic errors. One pragmatic error was found: Omission of ’Person’
as a Parent Class for the Classes "Client" and "Waiter". The lack of a
unifying ’Person’ class suggests a missed opportunity to abstract com-
mon attributes for different person-related entities, which could impede
the stakeholders’ comprehension and the system’s scalability.

57

4 – Results

LLM-Created Diagram Errors

• Syntactic errors. Two syntax errors were found:

1. Attributes Ordered Incorrectly in Every Class. This reflects a devi-
ation from UML standards, which could affect the readability and
standardization of the diagram.

2. Missing one Multiplicity in the Association Between the classes "Dish"
and "Meal". A syntactic omission that affects the clarity of the re-
lationship between the two classes, potentially leading to confusion
in interpreting the diagram.

• Semantic errors. One semantic error was found: Incorrect Multiplicity
in the Association Between the Classes "Ingredient" and "Dish". This
error misrepresents the relationship between ingredients and dishes (by
considering a multiplicity of 1 to * instead of 0 to * on the class "In-
gredient") which is crucial for understanding the makeup of dishes as
specified by the exercise.

• Pragmatic errors. Two pragmatic errors were found:

1. Combination of Date and Time into a Single Attribute. This design
choice may reduce the diagram’s usability for stakeholders who re-
quire distinct interactions with date and time data, as the exercise
suggests the importance of a meal’s specific timing.

2. Omission of ’Person’ as a Parent Class for Classes Referring to
Person. The same error was also present in the Human-Created
diagram.

4.1.2 Results first part
All the human-generated and LLM-generated diagrams were confronted with
the given solutions to evaluate their quality. The results are reported in table
4.1.

Syntactic Quality

Throughout 20 exercises, in the human-generated diagrams, a total of 10
syntactic errors were made, while the LLM-generated diagram exhibited a
slightly higher number, totalizing 18 errors. This may indicate a better

58

4.1 – First Part

Table 4.1: Each row represents a different exercise and for each of them are
reported the number of errors both for Human and LLM for all the three
types of quality.

adherence to UML standards by the human designer, a hypothesis that needs
to be verified by further statistical analyses.

Semantic Quality

The evaluation of the semantic quality shows more evidently the difference
between human actors and LLMs: human-generated diagrams accumulated
35 semantic errors across all exercises, whereas LLMs accounted for 97. This

59

4 – Results

difference underscores the challenges faced by the LLM in accurately rep-
resenting domain-specific knowledge and relationships within the diagrams,
suggesting that LLMs may require deeper domain-specific knowledge and
a better understanding of the semantics of information systems to match
human performance.

Pragmatic Quality

In terms of pragmatic quality, which assesses the understandability of the
diagrams, the human-generated diagrams contained 22 errors in total, com-
pared to 32 for LLMs.

Further statistical analyses are necessary to understand if LLMs are behind
human-generated diagrams in this area.

The aggregated data from 20 exercises, which are summarized in table
4.2 and in the figures 4.1 and 4.2, offers a robust comparison of human and
LLM capabilities in UML class diagram creation. While humans generally
produce higher-quality diagrams, the LLM’s ability to generate diagrams that
are syntactically and pragmatically correct to a certain extent is noteworthy.

Syntactic Quality Semantic Quality Pragmatic Quality
Human 10 35 22
LLM 18 97 32

Table 4.2: Sums of errors for each Quality

The comparative analysis of the diagrams reveals that the human-generated
diagrams, despite having errors, generally performed better than the LLM
in all three quality dimensions.

The LLM’s notably poorer performance in semantic quality, which had
more than twice the number of errors compared to the human, suggests that
while it can identify and use elements of UML, it struggles with the correct
interpretation and application of these elements within specific domains.

60

4.1 – First Part

Figure 4.1: Number of errors divided in the three Qualities

Figure 4.2: Number of errors divided between Human and LLM

61

4 – Results

Overall Evaluation

The first method’s results illustrate the current capabilities and limitations
of both human actors and LLMs in producing UML class diagrams: human-
made diagrams were found to be more reliable, but not without faults; LLM-
made diagrams, while showcasing the potential for automated diagram gen-
eration, revealed areas requiring significant enhancement, particularly in se-
mantic representation.

4.2 Second Part

4.2.1 Example
An application of the second part of the analysis will be shown by using
the aforementioned exercise, where the comparison algorithm was applied to
evaluate the closeness of the diagrams generated by a human and the LLM
to the provided solution. The analysis focused on the semantic content of
elements and their relationships, crucial for ensuring accurate representation
regardless of the naming conventions used. The results are shown in table
4.3.

The results of the analysis of the human-made and the LLM-generated
diagram for the example exercise are both presented below.

Human-Created Diagram Analysis

• Distance in Classes. The "Person" class is missing in the human solution,
making the distance equal to 1.

• Distance in Attributes.

1. The attribute nofpeople is not present in the class Table but there is
a semantically equivalent attribute named capacity; the temporary
vector is <0|0|1|0> resulting in a distance of 1.

2. The attribute MeasuringUnits of the class Ingredient is called Mea-
suringUnit by the human actor; the distance is thus 1.

3. The attribute Quantity of the class Ingredient is called Stock, result-
ing in another distance equal to 1.

• Distance in Associations.

62

4.2 – Second Part

Table 4.3: Distances for each element in Exercise 10

1. Generalization (Person - Client). This generalization is missing,
due to the absence of the "Person" class, meaning that the distance
vector is <1|1|1|1>, leading to a distance of 2.

2. Generalization (Person - Waiter). Similarly to the error above, the
distance is equal to 2.

3. Association (Meal - Dish). There is a difference in the multiplicity on
the side of the "Dish" class (the solution expects a value of 0...*, while
the human-generated diagram has a value of 1..*). The temporary
vector equals <0|0|0|1> and the distance is 1.

• Distance in Operations. There were no differences in the operations
between the human-made diagram and the reference solution.

The human diagram showed a total semantic distance of 3.61 from the

63

4 – Results

given solution, indicating a relatively close semantic alignment.

LLM-Created Diagram Analysis

• Distance in Classes. The "Person" class is missing in the human solution,
making the distance equal to 1.

• Distance in Attributes.

1. The attribute Date is not present in the class Meal, meaning that the
temporary vector is equal to <1|1|1|1> and the resulting distance is
2.

2. The attribute StartDate of the class Meal has both a different name
(Start Date) and a different attribute type; the resulting vector is
<0|0|1|1> and the distance is approximately 1.41.

3. The attribute EndDate of the class Meal presents the same errors as
above, leading to a distance equal to approximately 1.41.

4. The attribute MeasuringUnits of the class Ingredient is called Mea-
suringUnit; the distance is thus 1.

5. The attribute Quantity of the class Ingredient is called Stock, result-
ing in another distance equal to 1.

• Distance in Associations.

1. Generalization (Person - Client). This generalization is missing,
due to the absence of the "Person" class, meaning that the distance
vector is <1|1|1|1>, leading to a distance of 2.

2. Generalization (Person - Waiter). Similarly to the error above, the
distance is equal to 2.

3. Association (Dish - Ingredient). There is a difference in the multi-
plicity on the side of the "Ingredient" class (the solution expects a
value of 1...*, while the LLM-generated diagram has a value of *..*).
The temporary vector equals <0|0|0|1> and the distance is 1.

4. Association (Meal - Dish). The multiplicity is missing in the LLM-
made diagram, making the temporary vector <0|0|0|1> and the dis-
tance equal to 1.

• Distance in Operations. There were no differences in the operations
between the LLM-generated diagram and the reference solution.

64

4.2 – Second Part

The LLM diagram resulted in a higher total semantic distance of 4.58,
suggesting a less accurate semantic representation compared to the human.
The total distances for both Human and LLM are reported in table 4.4.

Human LLM
Total Distance 3,61 4,58

Table 4.4: Total Distances Exercise 10

Comparative Insight

Both diagrams managed to represent most classes, attributes, and methods
with no semantic distance, implying a strong understanding of these ele-
ments. The human-created diagram generally had lower semantic distances
across most elements, indicating a better grasp of the domain semantics com-
pared to the LLM. The higher total distance of the LLM diagram reflects
a need for improvement in its ability to semantically pair and accurately
represent elements and their relationships.

4.2.2 Results second part
The semantic distances from the reference solution have been calculated for
all 20 exercises: Table 4.5 shows these distances, as well as the difference
between the LLM distance and the human distance for each exercise; the
average distances, derived as a general assessment of performance for each
actor, are reported in Table 4.6.

General Observations:

Across the 20 exercises, human-generated diagrams had an average semantic
distance of 5.01, while LLM-generated diagrams had a higher average dis-
tance of 7.25. This indicates that, on average, human-created diagrams were
semantically closer to the given solution than those created by the LLM.

In several exercises, there is a great difference in semantic distance be-
tween human and LLM diagrams, with the human consistently closer to the
solution. Notably, in Exercise 5 the difference between LLM and Human
is the greatest (8.12) and in Exercise 2, the human diagram’s distance is
significantly lower (0.87) compared to the LLM’s (4.69), indicating a more
accurate semantic representation by the human.

65

4 – Results

Table 4.5: Distances from the given solutions, and differences

Human LLM Difference
Average Distance 5,01 7,25 2,24

Table 4.6: Average of the distances and of the differences

There are, however, instances where the LLM performs comparably to the
human and even outperforms him, as seen in Exercises 11 and 17, where the
LLM’s diagram has a slightly lower distance from the solution, or in Exercise
7, where there is no difference between the two diagrams.

66

4.2 – Second Part

Comparative Analysis:

The bar charts in figure 4.3 visually represent the variance between human
and LLM diagrams in terms of semantic accuracy. In general, human dia-
grams show lower semantic distances across most exercises.

Figure 4.3: Bar chart of the distances.

The difference chart in figure 4.4 highlights exercises where the LLM par-
ticularly struggled in comparison to the human diagrams, with notable dis-
parities in Exercises 1, 4, 5, and 19. These exercises might involve more
complex semantic relationships that are challenging for the LLM to capture
accurately.

Conclusion

The data indicates that, while the human-created diagrams are not without
semantic inaccuracies, they tend to provide a more faithful representation of
the intended domain semantics as defined by the given solutions.

The LLM shows potential in understanding and generating UML class
diagrams but requires further improvements, particularly in its semantic in-
terpretation capabilities.

67

4 – Results

Figure 4.4: Bar chart reporting the difference.

4.3 Statistical Analysis

4.3.1 T-Test
In this section, the results of the paired samples t-test analysis will be ana-
lyzed. The analysis was made on the data gained from the two methodologies
that have been applied. The most important results of this analysis are re-
ported in table 4.7, while all the complete output from JASP can be found
in the appendix C.

t p
Syntactic Quality -1.506 0.148
Semantic Quality -3.9806 < 0.001
Pragmatic Quality -1.949 0.066
Distance -4.277 < 0.001

Table 4.7: Results Paired Samples T-Test.

The most critical statistic is the p-value: a low p-value suggests that
the observed difference is unlikely to have occurred by random chance, thus

68

4.3 – Statistical Analysis

allowing the rejection of the null hypothesis. A p-value threshold of 0.05 is
used to determine statistical significance, with a p-value below this threshold
indicating that the difference between the groups is statistically significant.

Syntactic Quality

The p-value is 0.148 is above the threshold of 0.05, implying that there is
no statistically significant difference between the diagrams produced by a
human actor and the ones produced by the LLM regarding syntactic quality.
It can be assumed that a Large Language Model is able to produce UML class
diagrams that follow syntax conventions in a way similar to how a human
would.

Semantic Quality

The p-value is lower than 0.001: such a low value denotes that there is a
statistically significant difference between the diagrams produced by a human
actor and the ones produced by the LLM regarding semantic quality. It
can be assumed that a Large Language Model is not yet comparable to a
human actor when it comes to semantic correctness as the model produces,
on average, more errors.

Pragmatic Quality

The p-value is 0.066 and, since it is greater than the threshold of 0.05, there
is no statistically significant difference between the diagrams produced by a
human actor and the ones produced by the LLM regarding syntactic quality.
It can be assumed that a Large Language Model is able to produce UML
class diagrams that are comparable to those produced by a human actor, in
terms of pragmatic quality.

Distances

The p-value is < 0.001 indicating that there is a statistically significant differ-
ence between the diagrams produced by a human actor and the ones produced
by the LLM regarding distance to a reference solution. It can be assumed
that a Large Language Model is not able to produce UML diagrams that can
be compared to those produced by a human actor according to the second
method, as the LLM produces, on average, diagrams that are more distant
from the reference solution and have, as a consequence, more errors.

69

4 – Results

4.3.2 Linear Regression
Data

To generate the linear regression it is necessary to calculate and report in
the tables the necessary data.

The first step consists of gathering the total amount of Classes, Attributes,
and Associations from the reference solutions: Operations were considered
as Attributes to facilitate the calculation, and also because not all of the
exercises had Operations in their solution. Table 4.8 contains the total sum
of these entities for each exercise and, in the last row, the average values of
each column, giving an insight into the average complexity of the exercises.

Classes Attributes Associations
1 6 17 7
2 6 35 5
3 7 12 8
4 6 31 7
5 8 18 11
6 9 12 12
7 6 5 7
8 7 11 8
9 9 13 10
10 7 15 7
11 6 11 9
12 6 11 5
13 8 19 8
14 5 12 5
15 8 6 8
16 11 13 13
17 8 5 8
18 6 10 6
19 9 20 9
20 10 28 10
Average 7.4 15.2 8.15

Table 4.8: Data from the given solutions.

The second step consists of calculating, using a sample of three people,
the Estimated Difficulties (EDs). The Estimated Difficulty is an increasing

70

4.3 – Statistical Analysis

scale that goes from 1 to 5, where 1 indicates that the exercise is perceived
as very easy by the person and 5 is perceived as very hard. The EDs were
decided before carrying out the exercise (so they were based only on a first
impact with the text).

Average values have been calculated for each person (indicating how each
evaluator perceived the complexity of the set of exercises) and for each exer-
cise; the average values per exercise are those that have been used to perform
the linear regression, to mitigate the potential impact of the text misinter-
pretation of a single individual. All the EDs are reported in table 4.9.

ED 1 ED 2 ED 3 AVG ED
1 3 2 2 2.33
2 2 1 1 1.33
3 5 5 4 4.67
4 4 3 3 3.33
5 2 2 3 2.33
6 4 4 3 3.67
7 1 1 1 1
8 2 2 2 2
9 3 3 2 2.67
10 2 3 3 2.67
11 3 4 3 3.33
12 2 3 2 2.33
13 2 1 2 1.67
14 3 2 3 2.67
15 4 5 4 4.33
16 4 3 2 3
17 3 2 2 2.33
18 2 2 1 1.67
19 4 4 4 4
20 5 5 4 4.67
AVG 3 2.85 2.55 2.8

Table 4.9: Estimated Difficulties.

The complete JASP output of the linear regression can be found in ap-
pendix D.

In this section, the equations of the linear regression for each dependent
variable will be analyzed, together with a table containing the p-value for

71

4 – Results

each independent variable.
The dependent variables that have been analyzed are:

• Y1 = number of Syntactic Errors in Human-Generated diagrams.

• Y2 = number of Syntactic Errors in LLM-Generated diagrams.

• Y3 = number of Semantic Errors in Human-Generated diagrams.

• Y4 = number of Semantic Errors in LLM-Generated diagrams.

• Y5 = number of Pragmatic Errors in Human-Generated diagrams.

• Y6 = number of Pragmatic Errors in LLM-Generated diagrams.

• Y7 = Distance of the Human-Generated diagrams from the given solu-
tion.

• Y8 = Distance of the LLM-Generated diagrams from the given solution.

The independent variables are:

• X1 = number of classes in the given solution.

• X2 = number of Attributes (and operations) in the given solution.

• X3 = number of associations in the given solution.

• X4 = average estimated difficulty of the exercise.

ϵ is the error term, which captures the variation in Y not explained by the
model.

Human Syntactic Errors

The equation of the Linear Regression is the following:

Y1 = −0.664 + 0.311X1 + 0.011X2 − 0.161X3 + 0.005X4 + ϵ (4.1)

The p-values for each independent variable are reported in table 4.10.
None of the independent variables show a statistically significant relation-

ship with the dependent variable, as their p-values are all well above the 0.05
threshold.

72

4.3 – Statistical Analysis

Model p
H1 (Intercept) 0.652

X1 0.391
X2 0.765
X3 0.530
X4 0.988

Table 4.10: P-values Human Syntactic Errors

Given the lack of statistically significant predictors in this model, it is
possible to conclude that these particular independent variables do not have
a significant predictive power on the number of human syntactic errors.

This regression output suggests that further investigation may be neces-
sary to find a model that better fits the data. It may also imply that other
variables not included in the model could be influencing the number of errors,
or that the relationship between the variables is not linear.

LLM Syntactic Errors

The equation of the Linear Regression is the following:

Y2 = −0.057 + 0.337X1 + 0.023X2 − 0.198X3 − 0.099X4 + ϵ (4.2)

The p-values for each independent variable are reported in table 4.11.

Model p
H1 (Intercept) 0.951

X1 0.149
X2 0.324
X3 0.230
X4 0.608

Table 4.11: P-values LLM Syntactic Errors

None of the p-values is below the threshold of 0.05, suggesting that there is
no statistically significant evidence that they individually affect the number
of LLM syntactic errors.

According to this model, these predictors may not be sufficient to explain
the variation in LLM syntactic errors, or the relationships may not be linear.

73

4 – Results

Other variables not included in the model might be influencing the syntactic
errors.

Human Semantic Errors

The equation of the Linear Regression is the following:

Y3 = −0.269 − 0.029X1 − 0.079X2 + 0.161X3 + 0.757X4 + ϵ (4.3)

The p-values for each independent variable are reported in table 4.12.

Model p
H1 (Intercept) 0.884

X1 0.948
X2 0.101
X3 0.615
X4 0.062

Table 4.12: P-values Human Semantic Errors

None of the predictors are statistically significant at the conventional 0.05
level, but X4 is close to this threshold, having a p-value of 0.062. This
means that, while the association between the average estimated difficulties
and the human semantic errors is not statistically significant by conventional
standards, there could be a potential relationship with a larger sample size
or a different sample.

LLM Semantic Errors

The equation of the Linear Regression is the following:

Y4 = 1.241 − 1.085X1 + 0.032X2 + 0.743X3 + 1.817X4 + ϵ (4.4)

The p-values for each independent variable are reported in table 4.13.
The independent variable X4 shows significance in this model having a p-

value of 0.018 which is less than 0.05. So, it is possible to conclude that the
average estimated difficulty (AVG ED) is a significant predictor of the number
of LLM semantic errors, while the other variables are not. The significance
of the AVG ED suggests that it should be a point of focus for understanding
or improving the LLM’s performance regarding semantic errors.

74

4.3 – Statistical Analysis

Model p
H1 (Intercept) 0.712

X1 0.197
X2 0.698
X3 0.214
X4 0.018

Table 4.13: P-values LLM Semantic Errors

Human Pragmatic Errors

The equation of the Linear Regression is the following:

Y5 = 0.500 − 0.330X1 − 0.019X2 + 0.399X3 + 0.027X4 + ϵ (4.5)

The p-values for each independent variable are reported in table 4.14.

Model p
H1 (Intercept) 0.696

X1 0.296
X2 0.554
X3 0.086
X4 0.920

Table 4.14: P-values Human Pragmatic Errors

None of the predictors have p-values below the significance threshold of
0.05, indicating no significant association.

The model does not find any of the predictors to be statistically significant
in determining the number of human pragmatic errors. This suggests that
either these specific independent variables do not have a strong influence on
human pragmatic errors, or the relationship may not be linear.

LLM Pragmatic Errors

The equation of the Linear Regression is the following:

Y6 = −0.792 + 0.485X1 − 0.045X2 − 0.091X3 + 0.079X4 + ϵ (4.6)

75

4 – Results

Model p
H1 (Intercept) 0.326

X1 0.022
X2 0.035
X3 0.513
X4 0.633

Table 4.15: P-Values LLM Pragmatic Errors

The p-values for each independent variable are reported in table 4.15.
The positive coefficient for X1 (0.485) is significant (p = 0.022), implying

that an increase in the number of classes is associated with an increase in
LLM pragmatic errors.

The negative coefficient for X2 (-0.045) is significant (p = 0.035), indicating
that an increase in the number of attributes is associated with a decrease in
LLM pragmatic errors. While statistically significant, the small value of
the coefficient suggests that the practical impact of this variable on LLM
pragmatic errors may be limited.

The number of classes has a significant impact on the number of LLM
pragmatic errors. Associations and estimated difficulty, however, do not
appear to significantly affect them.

Distance Human

The equation of the Linear Regression is the following:

Y7 = 0.915 − 0.120X1 − 0.038X2 + 0.105X3 + 1.675X4 + ϵ (4.7)

The p-values for each independent variable are reported in table 4.16.
The coefficient for X4 is positive (1.675) and is statistically significant

(p < 0.001), indicating a strong association between the average estimated
difficulty and the distance of the human-generated diagram from the given so-
lution. As the average estimated difficulty increases, there is a corresponding
significant increase in the distance. The significant p-value for the difficulty
implies that it is an influential factor in the model and it is necessary to focus
on it to understand or reduce the distance from the given solution.

76

4.3 – Statistical Analysis

Model p
H1 (Intercept) 0.648

X1 0.805
X2 0.453
X3 0.761
X4 < 0.001

Table 4.16: P-Values Human Distances

Distance LLM

The equation of the Linear Regression is the following:

Y8 = −0.005 − 0.548X1 + 0.139X2 + 0.567X3 + 1.635X4 + ϵ (4.8)

The p-values for each independent variable are reported in table 4.17.

Model p
H1 (Intercept) 0.998

X1 0.324
X2 0.024
X3 0.160
X4 0.003

Table 4.17: P-Value LLM Distances

The coefficient for X2 is positive (0.139) and significant (p = 0.024), in-
dicating that an increase in the number of attributes is associated with an
increase in the distance of LLM from the given solution. Moreover, the co-
efficient for X4 is positive (1.635) and significant (p = 0.003), showing a
strong association with the LLM syntactic error distance. This implies that
as the average estimated difficulty of the UML diagrams increases, so does
the distance from the given solution.

4.3.3 Conclusion
The statistical analysis described in this section explored the capabilities
of LLMs to generate diagrams that adhere to the standards and how they
performed when compared to those produced by human actors.

77

4 – Results

The paired samples t-test analysis found that when it comes to syntactic
and pragmatic qualities, the LLM is very similar to a human. This suggests
that LLMs have achieved a level of proficiency in following syntactic rules and
producing understandable diagrams from a pragmatic point of view. How-
ever, the analysis showed a different picture of the semantic quality and the
distance metric, with a statistically significant discrepancy between human
and LLM-generated diagrams. This implies that LLMs lag in capturing the
nuances and contextual accuracy required for semantically correct diagrams.

The linear regression model offered an additional layer of understanding.
It is important to notice that the average estimated difficulty emerged as
a significant predictor for the distance of diagrams from the given solution,
suggesting that, as the complexity of the task increases, so does the difficulty
for LLMs to produce error-free diagrams. This relationship was consistently
observed across both human and LLM-generated diagrams, indicating that
complexity remains a barrier to the accuracy and reliability of automated
UML diagram generation.

In conclusion, while LLMs excel in understanding the structural rules (syn-
tax) and practical usage (pragmatics), they have difficulties when it comes to
the deeper understanding necessary for semantic accuracy and adherence to
complex specifications. These insights not only affirm the potential of LLMs
in assisting with software design tasks but also delineate the boundaries of
their current abilities.

78

Chapter 5

Conclusions and future
developments

In this thesis, the efficiency of Large Language Models (LLMs) in the cre-
ation of Unified Modeling Language (UML) was examined in contrast to
manually created diagrams. The comparative analysis used a methodology
that included both qualitative and quantitative analyses, also allowing for the
analysis of the syntactic, semantic, and pragmatic qualities of the diagrams.

The study revealed that LLMs can generate UML class diagrams with
pragmatic and syntactic accuracy comparable to humans, although with a
difference in semantic precision, emphasizing the difficulties for LLMs to
represent the complex semantic link necessary to accurately realize class di-
agrams. These results suggest that are necessary more developments in AI
technology to fully automate diagram creation.

Both implications in theory and practice can be made from this research.
From a practical point of view, the study shows that LLMs can support itera-
tive design processes and quick prototyping of UML class diagrams. Instead,
from a theoretical view, it prepares the ground for further advancements in
AI-driven design techniques, emphasizing the need for more sophisticated
models with a deeper comprehension of semantic links.

Future Developments

Although the focus of this study is limited to class diagrams, similar tech-
niques might be used for other types of UML diagrams, including sequence,

79

5 – Conclusions and future developments

activity, and state diagrams, providing insight into the flexibility and appli-
cation of LLMs at various stages of the software development lifecycle. Addi-
tionally, as AI technology improves, assessing more sophisticated and recent
language models may show gains in semantic comprehension and UML dia-
gram production accuracy, solving the issues brought to light by the findings
of this study. Additional research is needed to determine how to incorpo-
rate LLM-generated UML diagrams into software development processes and
tools in order to improve automation, effectiveness, and cooperation amongst
development teams.

Developments in AI and machine learning will influence software design
and the creation of UML class diagrams. Also, the improvements in natural
language comprehension will close the semantic gap now in existence, pro-
ducing diagrams of greater quality. AI technologies have the potential to be
perfectly incorporated into software development in the future. They could
provide real-time UML diagram creation, updates, and suggestions based on
ongoing project progress and code development, making the software devel-
opment’s design process more effective and error-free. To understand the
potential advantages of integrating artificial intelligence (AI) into software
engineering methodologies, more studies are needed. [28]

The use of iterative LLMs to improve the creation and improvement of
UML class diagrams is one of the most important areas for future study.
Iterative LLMs can participate in a feedback loop, where the output of an
initial model prompt is refined through successive iterations to improve accu-
racy and relevance. Examples of these LLMs are those covered in the study
"GPT-4 Doesn’t Know It’s Wrong: An Analysis of Iterative Prompting for
Reasoning Problems" (2023)[29]. The semantic gap found in this thesis may
be resolved with the help of this iterative method. Future LLMs might be
trained to create UML diagrams and then iteratively modify them based on
semantic input by employing iterative prompting approaches.

Final Thoughts

Large Language Model integration has great potential long-term effects on
software design processes. The software development lifecycle may be stream-
lined by LLMs as they grow further because of their capacity to comprehend,
model, and produce complex software design objects. Along with increas-
ing efficiency, this integration will make software design more accessible to
anyone, making complex design jobs more approachable for those with less
technical know-how.

80

Appendix A

Collection of Exercises
and Calculation

The collection with the twenty exercises (for each exercise is given the text,
given solution, human solution, LLM solution, PlantUML, source-link) and
the Excel with all the calculations can be found in the following link: https:
//figshare.com/articles/dataset/Thesis_Database/25316440.

81

https://figshare.com/articles/dataset/Thesis_Database/25316440
https://figshare.com/articles/dataset/Thesis_Database/25316440

82

Appendix B

Exercise 10

Figure B.1: Text Exercise 10

83

B – Exercise 10

Figure B.2: Given-solution of exercise 10

Figure B.3: Human solution of exercise 10

84

B – Exercise 10

Figure B.4: LLM solution of exercise 10

85

86

Appendix C

T-Test

C.1 First Method
C.1.1 Syntactic Quality
Summary statistics for the syntactic quality, depending on the actor who
performed the exercise (Human or LLM), are in table C.1.

N Mean SD SE Coefficient of variation
Human Syntactic Errors 20 0.500 1.147 0.256 2.294
LLM Syntactic Errors 20 0.900 0.788 0.176 0.876

Table C.1: Descriptives

T-Test Results for the syntactic quality are in table C.2.

Measure 1 Measure 2 t df p
Human Syntactic Errors - LLM Syntactic Errors −1.506 19 0.148

Table C.2: Paired Samples T-Test

The Barplot for the syntactic quality is in figure C.1.

87

C – T-Test

Figure C.1: Bar-plot Syntactic Quality

C.1.2 Semantic Quality
Summary statistics for the semantic quality, depending on the actor who
performed the exercise (Human or LLM), are in table C.3.

N Mean SD SE Coefficient of variation
Human Semantic Errors 20 1.750 1.803 0.403 1.030
LLM Semantic Errors 20 4.850 3.281 0.734 0.677

Table C.3: Descriptives

T-test Results for the semantic quality are in table C.4.

88

C.1 – First Method

Measure 1 Measure 2 t df p
Human Semantic Errors - LLM Semantic Errors −3.986 19 < .001

Table C.4: Paired Samples T-Test

The Barplot for the Semantic quality is in figure C.2.

Figure C.2: Barplot Semantic Quality

C.1.3 Pragmatic Quality
Summary statistics for the pragmatic quality, depending on the actor who
performed the exercise (Human or LLM), are in table C.5.

89

C – T-Test

N Mean SD SE Coefficient of variation
Human Pragmatic Errors 20 1.100 1.119 0.250 1.017
LLM Pragmatic Errors 20 1.600 0.940 0.210 0.588

Table C.5: Descriptives

T-Test Results for the pragmatic quality are in table C.6.

Measure 1 Measure 2 t df p
Human Pragmatic Errors - LLM Pragmatic Errors −1.949 19 0.066

Table C.6: Paired Samples T-Test

The Barplot for the pragmatic quality is in figure C.3.

90

C.2 – Second Method

Figure C.3: Barplot Pragmatic Quality

C.2 Second Method
Summary statistics for the distance to a reference solution, depending on the
actor who performed the exercise (Human or LLM), are in table C.7.

N Mean SD SE Coefficient of variation
Distance Human 20 5.008 2.356 0.527 0.470
Distance LLM 20 7.245 2.855 0.638 0.394

Table C.7: Descriptives

T-Test Results for the pragmatic quality are in table C.8.

91

C – T-Test

Measure 1 Measure 2 t df p
Distance Human - Distance LLM −4.277 19 < .001

Table C.8: Paired Samples T-Test

The Barplot for the distance to a reference solution is in figure C.4.

Figure C.4: Barplot for the distance to a reference solution

92

Appendix D

Linear Regression

D.1 First Part
Human Syntactic Errors

Model R R2 Adjusted R2 RMSE

H0 0.000 0.000 0.000 1.147
H1 0.261 0.068 −0.181 1.246

Table D.1: Model Summary - Human Syntactic Errors

Model Unstandardized Standard Error Standardized t p

H0 (Intercept) 0.500 0.256 1.949 0.066
H1 (Intercept) −0.664 1.445 −0.460 0.652

Classes 0.311 0.351 0.434 0.884 0.391
Attributes 0.011 0.036 0.078 0.305 0.765

Associations −0.161 0.251 −0.313 −0.643 0.530
AVG ED 0.005 0.300 0.004 0.015 0.988

Table D.2: Coefficients

93

D – Linear Regression

Figure D.1: Residuals Vs. Human Syntactic Errors

LLM Syntactic Errors

Model R R2 Adjusted R2 RMSE

H0 0.000 0.000 0.000 0.788
H1 0.463 0.215 0.005 0.786

Table D.3: Model Summary - LLM Syntactic Errors

94

D.1 – First Part

Model Unstandardized Standard Error Standardized t p

H0 (Intercept) 0.900 0.176 5.107 < .001
H1 (Intercept) −0.057 0.911 −0.062 0.951

Classes 0.337 0.221 0.686 1.523 0.149
Attributes 0.023 0.023 0.240 1.021 0.324

Associations −0.198 0.158 −0.560 −1.253 0.230
AVG ED −0.099 0.189 −0.134 −0.523 0.608

Table D.4: Coefficients

Figure D.2: Residuals Vs. LLM Syntactic Errors

Human Semantic Errors

95

D – Linear Regression

Model R R2 Adjusted R2 RMSE

H0 0.000 0.000 0.000 1.803
H1 0.641 0.410 0.253 1.558

Table D.5: Model Summary - Human Semantic Errors

Model Unstandardized Standard Error Standardized t p

H0 (Intercept) 1.750 0.403 4.341 < .001
H1 (Intercept) −0.269 1.806 −0.149 0.884

Classes −0.029 0.439 −0.026 −0.067 0.948
Attributes −0.079 0.045 −0.356 −1.748 0.101

Associations 0.161 0.313 0.199 0.513 0.615
AVG ED 0.757 0.375 0.448 2.017 0.062

Table D.6: Coefficients

Figure D.3: Residuals Vs. Human Semantic Errors

96

D.1 – First Part

LLM Semantic Errors

Model R R2 Adjusted R2 RMSE

H0 0.000 0.000 0.000 3.281
H1 0.636 0.405 0.246 2.850

Table D.7: Model Summary - LLM Semantic Errors

Model Unstandardized Standard Error Standardized t p

H0 (Intercept) 4.850 0.734 6.610 < .001
H1 (Intercept) 1.241 3.304 0.376 0.712

Classes −1.085 0.803 −0.530 −1.351 0.197
Attributes 0.032 0.082 0.081 0.396 0.698

Associations 0.743 0.573 0.505 1.297 0.214
AVG ED 1.817 0.686 0.591 2.648 0.018

Table D.8: Coefficients

97

D – Linear Regression

Figure D.4: Residuals Vs. LLM Semantic Errors

Human Pragmatic Errors

Model R R2 Adjusted R2 RMSE

H0 0.000 0.000 0.000 1.119
H1 0.514 0.264 0.067 1.081

Table D.9: Model Summary - Human Pragmatic Errors

98

D.1 – First Part

Model Unstandardized Standard Error Standardized t p

H0 (Intercept) 1.100 0.250 4.395 < .001
H1 (Intercept) 0.500 1.253 0.399 0.696

Classes −0.330 0.305 −0.472 −1.083 0.296
Attributes −0.019 0.031 −0.138 −0.606 0.554

Associations 0.399 0.217 0.796 1.838 0.086
AVG ED 0.027 0.260 0.025 0.102 0.920

Table D.10: Coefficients

Figure D.5: Residuals Vs. Human Pragmatic Errors

LLM Pragmatic Errors

99

D – Linear Regression

Model R R2 Adjusted R2 RMSE

H0 0.000 0.000 0.000 0.940
H1 0.773 0.597 0.490 0.672

Table D.11: Model Summary - LLM Pragmatic Errors

Model Unstandardized Standard Error Standardized t p

H0 (Intercept) 1.600 0.210 7.610 < .001
H1 (Intercept) −0.792 0.779 −1.016 0.326

Classes 0.485 0.189 0.827 2.565 0.022
Attributes −0.045 0.019 −0.390 −2.320 0.035

Associations −0.091 0.135 −0.215 −0.671 0.513
AVG ED 0.079 0.162 0.089 0.487 0.633

Table D.12: Coefficients

Figure D.6: Residuals Vs. LLM Pragmatic Errors

100

D.2 – Second Part

D.2 Second Part
Human Distances

Model R R2 Adjusted R2 RMSE

H0 0.000 0.000 0.000 2.356
H1 0.770 0.592 0.483 1.693

Table D.13: Model Summary - Distance Human

Model Unstandardized Standard Error Standardized t p

H0 (Intercept) 5.008 0.527 9.508 < .001
H1 (Intercept) 0.915 1.963 0.466 0.648

Classes −0.120 0.477 −0.081 −0.251 0.805
Attributes −0.038 0.049 −0.130 −0.771 0.453

Associations 0.105 0.340 0.100 0.310 0.761
AVG ED 1.675 0.408 0.759 4.108 < .001

Table D.14: Coefficients

101

D – Linear Regression

Figure D.7: Residuals Vs. Distance Human

LLM Distances

Model R R2 Adjusted R2 RMSE

H0 0.000 0.000 0.000 2.855
H1 0.804 0.647 0.553 1.909

Table D.15: Model Summary - Distance LLM

102

D.2 – Second Part

Model Unstandardized Standard Error Standardized t p

H0 (Intercept) 7.245 0.638 11.350 < .001
H1 (Intercept) −0.005 2.213 −0.002 0.998

Classes −0.548 0.538 −0.308 −1.019 0.324
Attributes 0.139 0.055 0.397 2.519 0.024

Associations 0.567 0.384 0.443 1.477 0.160
AVG ED 1.635 0.460 0.611 3.557 0.003

Table D.16: Coefficients

Figure D.8: Residuals Vs. Distance LLM

103

104

Bibliography

[1] Narasimha Bolloju and Felix SK Leung. Assisting novice analysts in
developing quality conceptual models with uml. Communications of the
ACM, 49(7):108–112, 2006.

[2] Oksana Nikiforova, Konstantins Gusarovs, Ludmila Kozacenko, Dace
Ahilcenoka, and Dainis Ungurs. An approach to compare uml class
diagrams based on semantical features of their elements. In The Tenth
International Conference on Software Engineering Advances, pages 147–
152, 2015.

[3] Dusanka Dakic, Darko Stefanovic, Teodora Lolic, Srdjan Sladojevic, and
Andras Anderla. Production planning business process modelling using
uml class diagram. In 2018 17th International Symposium INFOTEH-
JAHORINA (INFOTEH), pages 1–6, 2018.

[4] Jan Clusmann, Fiona R Kolbinger, Hannah Sophie Muti, Zu-
namys I Carrero, Jan-Niklas Eckardt, Narmin Ghaffari Laleh, Chiara
Maria Lavinia Löffler, Sophie-Caroline Schwarzkopf, Michaela Unger,
Gregory P Veldhuizen, et al. The future landscape of large language
models in medicine. Communications Medicine, 3(1):141, 2023.

[5] Martin Schroder. Autoscrum: Automating project planning using large
language models. arXiv preprint arXiv:2306.03197, 2023.

[6] Samia Nasiri, Yassine Rhazali, Mohammed Lahmer, and Amina Adadi.
From user stories to uml diagrams driven by ontological and produc-
tion model. International Journal of Advanced Computer Science and
Applications, 12(6), 2021.

[7] Outair Anas, Tanana Mariam, and Lyhyaoui Abdelouahid. New method
for summative evaluation of uml class diagrams based on graph similar-
ities. International Journal of Electrical and Computer Engineering,
11(2):1578–1590, 2021.

[8] Alice Folvaiter. Mydoctor, 2022.
[9] Victoria Paulsson, Vincent C. Emeakaroha, John P. Morrison, and Theo

105

Bibliography

Lynn. Cloud service brokerage: A systematic literature review using a
software development lifecycle. In 22nd Americas Conference on In-
formation Systems, AMCIS 2016, San Diego, CA, USA, August 11-14,
2016. Association for Information Systems, 2016.

[10] Pieter Willem Jordaan and Johann Erich Wolfgang Holm. Reflection
on mongodb database logical and physical modeling. In 2019 IEEE
AFRICON, pages 1–8, 2019.

[11] Valentin Burkin. Mitigating risks in software development through ef-
fective requirements engineering, 2023.

[12] Ramya Sri Simhadri and Mohammad Shameem. Challenges in require-
ments gathering for agile software development. In Proceedings of the
27th International Conference on Evaluation and Assessment in Soft-
ware Engineering, EASE ’23, page 406–413, New York, NY, USA, 2023.
Association for Computing Machinery.

[13] Maxim Sergievskiy and Ksenia Kirpichnikova. Optimizing uml class
diagrams. In ITM Web of Conferences, volume 18, page 03003. EDP
Sciences, 2018.

[14] Matias Zapata-Barra, Alfonso Rodriguez, Angelica Caro, and Eduardo B
Fernandez. Towards obtaining uml class diagrams from secure busi-
ness processes using security patterns. J. Univers. Comput. Sci.,
24(10):1472–1492, 2018.

[15] Dian Sa’adillah Maylawati, Muhammad Ali Ramdhani, and Ab-
dusy Syakur Amin. Tracing the linkage of several unified modelling
language diagrams in software modelling based on best practices. Inter-
national Journal of Engineering & Technology (UEA), 7(2.19):776–780,
2018.

[16] Victor MR Penichet, Jose A Gallud, Ricardo Tesoriero, and Maria
Lozano. Design and evaluation of a service oriented architecture-based
application to support the collaborative edition of uml class diagrams.
In Computational Science–ICCS 2008: 8th International Conference,
Kraków, Poland, June 23-25, 2008, Proceedings, Part III 8, pages 389–
398. Springer, 2008.

[17] Immanuel Trummer. From bert to gpt-3 codex: harnessing the potential
of very large language models for data management. arXiv preprint
arXiv:2306.09339, 2023.

[18] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention
is all you need. Advances in neural information processing systems, 30,
2017.

106

Bibliography

[19] Aditya Malte and Pratik Ratadiya. Evolution of transfer learning in
natural language processing, 2019.

[20] Thomas Hügle. The wide range of opportunities for large language mod-
els such as chatgpt in rheumatology. RMD open, 9(2):e003105, 2023.

[21] Thilo Hagendorff and David Danks. Ethical and methodological chal-
lenges in building morally informed ai systems. AI and Ethics, 3(2):553–
566, 2023.

[22] Mathawan Jaiwai and Usa Sammapun. Extracting uml class diagrams
from software requirements in thai using nlp. In 2017 14th Interna-
tional Joint Conference on Computer Science and Software Engineering
(JCSSE), pages 1–5, 2017.

[23] Shyni Sharaf and VS Anoop. An analysis on large language models in
healthcare: A case study of biobert. arXiv preprint arXiv:2310.07282,
2023.

[24] Dabo Sun and Kenny Wong. On evaluating the layout of uml class
diagrams for program comprehension. In 13th International Workshop
on Program Comprehension (IWPC’05), pages 317–326. IEEE, 2005.

[25] Odd Ivar Lindland, Guttorm Sindre, and Arne Solvberg. Understanding
quality in conceptual modeling. IEEE software, 11(2):42–49, 1994.

[26] Chris Roth. Using Microsoft Visio 2010. Pearson Education, 2011.
[27] Thomas E Scruggs and Margo A Mastropieri. Summarizing single-

subject research: Issues and applications. Behavior modification,
22(3):221–242, 1998.

[28] Bethany Gosala, Sripriya Roy Chowdhuri, Jyoti Singh, Manjari Gupta,
and Alok Mishra. Automatic classification of uml class diagrams using
deep learning technique: convolutional neural network. Applied Sci-
ences, 11(9):4267, 2021.

[29] Kaya Stechly, Matthew Marquez, and Subbarao Kambhampati. Gpt-4
doesn’t know it’s wrong: An analysis of iterative prompting for reasoning
problems. arXiv preprint arXiv:2310.12397, 2023.

107

