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Summary

Cloud Continuum has recently been defined as an extension of traditional Cloud
towards multiple entities (e.g., Edge, Fog, IoT) providing processing, storage,
and data generation capabilities. Such fluid ecosystem represents a continuum of
aggregated resources, distributed from the network edge to the cloud/datacenter,
making all the nodes capable of hosting on-demand services.

In the context of Cloud computational resources, a typical application involves a
first part running at the edge (e.g., to acquire sensor data), while other components
run in the cloud (e.g., to carry out heavy processing faster). The goal is thus to
understand “where happens what”, that is addressing the problem of where the
computation must be performed at each moment in order to ensure that the overall
application can always run in a seamless way. When offloading a critical task this
way, network outages cause the components to be no longer able to exchange data.
This severely needs a prediction algorithm, which must make the application able
to temporarily switch to a “backup service” in the shortest possible time.

The thesis aims at investigating this problem by comparing Robot Operating
System (ROS) application-specific solutions based on the LifecycleNodes abstraction
and more general cloud-native solutions. The main technology addressed here to
implement a computing continuum is the Liqo.io project, started at Politecnico di
Torino. Liqo enables a straightforward way to manage Kubernetes multi-cluster
topologies and allows to design a switching algorithm in terms of network traffic
control among nodes (i.e., through NetworkPolicies resources). This has led to a
prototype of a seamless-switching working mode for a general application, including
ROS tasks in this specific use case.

By exploring these different technologies, it was important to realize how latency
represents the main challenge when it comes to inter-cluster communications, which
obviously worsen with the more critical the tasks to be offloaded become. This
study might later involve robot fleets possibly in their design phase, making it
possible to build them lighter, more energy-efficient and able to perform complex
tasks. The contribute to this distributed Liqo-based cloud model can finally lead
to the use of external resources and computing power either from a private cloud
or from nearby stand-by robots, even from servers of a partner provider.
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Chapter 1

Introduction

1.1 What is the Cloud Continuum
The concept of Cloud Continuum has gained significant traction among researchers
and industries. This growing interest underscores the need for a clear and unified
definition of this new concept to figure out the full extent of the Cloud and its
actual capabilities.

For many years, managing computer infrastructures revolved around physical
hardware servers. The primary focus was on "how to do" things, that is configuring,
maintaining and troubleshooting individual machines often still deployed on premise.
This hardware-centric approach limited scalability and flexibility.

A turning point came with the emergence of computing virtualization. This
technology revolutionized the IT world by allowing multiple virtual machines to
consolidate on a single physical server, significantly improving resource utilization
and efficiency. Virtualization fundamentally changed the way to think about
infrastructure, moving the focus from "how to do" to "what to do": instead of
managing individual servers, IT professionals could now focus on the specific
services and applications running on top of the virtualized infrastructure.

However, virtualization also introduced a new challenge: managing a growing
number of geographically dispersed physical servers. Cloud computing thus
emerged as the next-level solution for accessing generic resources over the inter-
net, absolutely on-demand and at scale, thanks to datacenters. This brought to
the brand-new concepts of “serverless” and software-as-a-Service (SaaS) which
definitively abstracts the underlying physical hardware, allowing users to access
computing resources and any kind of application by eliminating the need to manage
physical infrastructure entirely, something that looks like, precisely, as a service.

Today the Cloud is often viewed as an endless pool of resources on which to
build and scale applications for various purposes. With that been said, if the Cloud
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is the resource pool, Cloud Continuum can be seen as an extension of such resources
and of computational capabilities, widely spanning from a datacenter to the very
edge of the network, promising scalability and reliability.

The concepts of Cloud, Fog and Edge computing thus complete the picture
of a seamless continuum of computing resources and services, forging terms like
“Cloud-to-anything” opposed to independent application resource pools. This new
way of conceiving computing has emerged from the need of applications which
continuously produce large amounts of data (e.g., IoT, robots, mobile devices, sensor
nodes) to achieve lower latencies and better processing and storage capabilities.
These requirements, together with resilience, self-healing and security, certainly
represent the main challenges to face, in order to make all related deploying and
orchestration operations actually seamless.

Over the years, there has been a shift in autonomous robots from operating
independently to relying on connection with external systems. Traditionally, limited
network capabilities restricted robots reliance on external processing. Now, with
better connections, robots can "offload" complex tasks, freeing up their own
computing power. This improves efficiency but introduces latency as data travels.
Minimizing latency is especially crucial in situations where robots and people are
used to working together. One specific solution is using edge computing to bring
processing power closer to the robots, enabling faster communication and real-time
decision-making, thus reducing latency.

Considering a distributed application spanned across such fluid infrastructure,
this thesis presents a possible Cloud continuum architecture. This has been
implemented using a combination of containerization technologies and a distributed
multi-cloud resource-management framework such as Liqo and Kubernetes,
focusing in particular on a ROS (Robot Operating System) application. Liqo
makes this process much easier by creating a unified view of both the local and
remote resources, resulting in a single "virtual cluster" which aggregates processing
power and services. This innovative approach allows to explore how the offloading
of critical tasks can be realized, focusing on real-time complex application that
in particular involve autonomous navigation systems in robotics, with the aim of
improving efficiency and scalability of such applications. The methodology chapters
will delve into the possible implementations using a stateless Cloud prototype
environment, developed in collaboration with LINKS Foundation research institute.

Similar service-oriented technologies might represent a new base for the imple-
mentation of a transparent switching algorithm, not only towards the Cloud
but, if necessary and possible, on something that remains close to the edge device,
which could be a nearby robot temporarily on stand-by or some edge server of
a provider RAN network, according to the approach called Multi-access Edge
Computing (MEC). Future implementations could thus provide the robots with
discover abilities to find partner servers, upgrading the switching algorithm and
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making it a choice of the best solution among the suitable servers where to offload
tasks to, effectively reducing delays by shortening the distances.

Figure 1.1: Architecture of Cloud Continuum [1]

1.2 Thesis structure
This thesis is organized as follows:

• Chapter 1 – Introduction

• Chapter 2 - Related Works: a brief overview of some previous works
related to this thesis same research field

• Chapter 3 - Background: a presentation of tools and technologies used for
this work such as ROS, Kubernetes, Zenoh and Liqo

• Chapter 4 - Cloud Offloading Architecture: examination of the overall
architecture of a possible Cloud offloading system and its expected behavior

• Chapter 5 - Implementation: deep immersion into the dynamics of some
possible implementations for the switching algorithm, each one with their
components, practical implications and challenges

• Chapter 6 - Experimental Evaluation: explanation of the results of some
tests executed on the most promising of the implementations, presented with
charts and guided by a state machine for benchmarking each of the algorithm
critical operations

• Chapter 7 - Conclusions: reflections on the research process, the outcomes
and some suggestions for possible future works and improvements

3



Chapter 2

Related Works

This chapter will give a brief overview of the research landscape surrounding the
task offloading concept, describing the results of some previous works developed in
Politecnico di Torino which paved the way for the development of a new Cloud
continuum architecture presented later in this thesis.

2.1 ROS2 Dynamic Switching
The previous work aimed at demonstrating that it is possible to efficiently perform
Cloud Offloading of certain tasks, taking as use case the autonomous navigation
in the robotics field. It specifically analyzed the Robot Operating System (ROS)
navigation module and its obstacle avoidance critical process for a physical moving
robot [2][3]. To do this, it was studied the possibility of creating a distributed
system by performing dynamic switching from some local ROS nodes at the edge
(i.e., on the robot itself) towards certain nodes deployed on the Cloud. The nodes
on the remote data center must carry out the most CPU-intensive job associated
with the internal controller server. This node is responsible for processing all
the data received from a set of sensors (e.g. lidar), periodically analyzing a map
generated through this data, then finally decide which command (i.e., speed and
direction) to give instantly to the waiting robot.

Relying on technologies such as Kubernetes, Zenoh and ROS Lifecycle
nodes, which will be described in detail in the next Background section, the earlier
work outlines its architecture composed by several components distributed across
the robot and the remote Cloud server.

ROS and Kubernetes (K8s) were the obvious choices since they have become
the de facto standards in their respective fields: robotics and orchestration. In
this robotics dynamic system in fact, there is the necessity of an orchestrator to
manage the lifecycle of the various micro-services, so Kubernetes has proved to
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Figure 2.1: Overview of a simple distributed DDS network

be the smartest choice even for embedded devices which are usually non-Cloud
systems but can adapt to such Cloud environments, thanks to the availability of
versions with low resource demand like K3s.

Zenoh is a very promising protocol for distributed robotic systems. It leverages
the publish/subscribe communication model, enabling robots to collaborate effec-
tively in real-time with minimal resource usage [7]. It has recently been announced
as the official next ROS2 middleware surpassing DDS in terms of performance
and reduced bandwidth consumption, making it one the best option for future
internet-based robotic applications.

The dynamic switching for the previous theses consists in a process of acti-
vating/deactivating target nodes on the robot or on the Cloud respectively. The
solution is based on the use of a certain class of nodes (and related interfaces)
provided by the ROS environment and called Lifecycle Nodes: they can be config-
ured and activated via simple commands which essentially allow the get/set of the
status of a node. According to this architecture, there exist a local and a remote
copy of each target node, but only one at a time will be kept active, depending on
whether the network conditions in that moment are good enough to make (and
maintain) the task offloaded on the Cloud. Finally, the switching operation proves
to be convenient when the computational resources on the Cloud server allow the
navigation task to run at a higher frequency than the maximum possible locally.

This thesis considers the results of such work as its starting point depicting the
context for a further investigation. In the next chapters the research for the best
computing continuum architecture will be addressed from a higher-level point of
view, providing a Kubernetes cluster also for the robot, in order to take advantage of
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the potential of some existing tools, such as Liqo, that facilitate the orchestration of
multi-cluster architectures, aiming for a solution which is more generic, automated
and reliable.
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Chapter 3

Background

This chapter provides a comprehensive overview of the tools and technologies that
play a central role in this research, such as ROS, Kubernetes, Zenoh and Liqo. The
main concepts and functionalities will be covered, in order to better understand how
these tools can work together as the base for developing an efficient Cloud-offloading
algorithm.

3.1 ROS2: Robot Operating System
The increasing complexity of robotic applications, from self-driving cars to in-
telligent home robots, made evident the need for a robust software development
framework. In response, the Robot Operating System (ROS) emerged as a popular
choice, offering a collection of tools and libraries to foster development. ROS2 rep-
resents a significant evolution of the ROS framework, built upon the core concepts
of its predecessor but offering enhanced performance, scalability, and real-time
capabilities [13]. These core concepts, such as distributed systems and message-
passing communication, represent the foundation for building robotic applications
within ROS 2, referred generally as ROS systems, making it the de-facto standard
framework for developing software for robots. This section delves deep into the
core functionalities of ROS 2, exploring nodes, messages, topics, services, actions,
and the powerful concept of Lifecycle Nodes.
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Figure 3.1: ROS2 infrastructure layers

3.1.1 Core building blocks: nodes, messages, services and
actions

Nodes

Nodes are the fundamental building blocks of ROS 2 applications. Each node
represents an independent process with a specific functionality or task. Nodes
communicate with each other to exchange data and collaborate for achieving system
goals. Here are some key features of ROS 2 nodes:

• Independent Processes: Nodes run as separate processes within the oper-
ating system, allowing for modularity and parallel execution.

• Process Communication: ROS 2 provides mechanisms (topics and services)
for nodes to communicate and exchange data.

• Language Agnostic: Nodes can be written in various programming lan-
guages, promoting flexibility and leveraging existing developer expertise.

• Unique Names: Each node within a ROS 2 system has a unique name for
identification and interaction with other nodes.
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• Functionality Encapsulation: Nodes encapsulate specific functionalities,
promoting code organization and reusability.

Figure 3.2: ROS2 core building blocks

Messages

Messages are the data structures used by ROS 2 nodes to exchange information.
These data types define the format and content of the information being communi-
cated. Messages consist of named fields, each with a specific data type (e.g., string,
integer, sensor data). Here are some aspects of ROS2 messages:

• Structured Data Format: Messages ensure type safety and clarity in
communication, enhancing code maintainability and reducing errors.

• Customizable Message Types: Developers can create custom message
types tailored to their specific application needs.

• Standard Message Library: ROS 2 provides a library of pre-defined message
types for common data like sensor readings, robot commands, and navigation
information.
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Pub-Sub model overview

The publisher-subscriber (pub-sub) model is a widely used architectural pattern.
It can be used in software development to enable communication between different
components in a system.

In particular, it is very common in distributed systems, where different parts of
the system need to interact with each other but don’t want to be tightly coupled.
This model involves publishers and subscribers, making it a messaging pattern.
Specifically, the publishers are responsible for sending messages to the system, while
subscribers are responsible for receiving those messages. Mainly, the pub-sub model
is based on decoupling components in a system, which means that components can
interact without being coupled directly [14].

Figure 3.3: pub-sub model architecture

The pub-sub model has several benefits. The following table summarizes its
main advantages:

10
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However, the pub-sub model also has some drawbacks. The following table
shows its main drawbacks:

ROS2 nodes leverage three primary communication patterns: topics, services
and actions.

Topics (Publish-Subscribe)

Topics facilitate asynchronous data exchange between nodes. A node can
publish messages to a specific topic and any other node can subscribe to that topic
to receive those messages. This many-to-many communication allows for loose
coupling between nodes, as publishers and subscribers don’t need to be aware of
each other’s specific details.

11
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Figure 3.4: pub-sub model applied to a ROS2 system

Services (Request-Response)

Services provide a synchronous request-response communication pattern. A node
(client) can send a service request message to another node (server) specifying a
desired action or information. The server node processes the request, performs the
action, and sends a response message back to the client. This pattern is useful for
scenarios requiring guaranteed data association between requests and results. These
communication pattern, applied to ROS2 system of nodes, enable efficient data
exchange and collaboration between them, allowing developers to build complex
robotic functionalities.

Figure 3.5: ROS2 services
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Actions

Actions provide a more structured approach for handling complex tasks that require
progress updates and feedback during execution. Actions follow a request-feedback-
response pattern:

• Request: The client node sends a request message specifying the desired
action and potentially initial parameters.

• Feedback: The server node can send feedback messages during execution,
providing progress updates or intermediate results to the client.

• Response: Upon completion, the server sends a final response message
indicating success or failure, along with any relevant results.

This pattern is beneficial for long-running tasks where the client needs to monitor
progress and potentially react to intermediate results.

Figure 3.6: ROS2 actions

3.1.2 Lifecyle Nodes
ROS2 Lifecycle Nodes offer a powerful abstraction for managing the lifecycle of
individual nodes within a ROS2 system. This concept goes beyond simple startup
and shutdown, allowing developers to define and control the various stages a node
can transition through during its operation. Here’s a comprehensive breakdown of
Lifecycle Nodes:

13
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• Improved System Control: Lifecycle Nodes provide a structured approach
to managing node startup, shutdown, configuration changes, and error handling.
This leads to more predictable and robust behavior in ROS 2 systems, especially
for complex applications with multiple interacting nodes.

• Dependency Management: Lifecycle Nodes allow developers to specify
dependencies between nodes. A node can wait for other required nodes to
transition to an "active" state before activating itself. This ensures a well-
defined startup sequence for complex systems, preventing errors due to missing
dependencies.

• Graceful Error Handling: Lifecycle Nodes facilitate graceful handling of
node failures. If a node encounters an error, it can transition to an appropriate
state (e.g., "inactive") to allow for investigation and recovery. This promotes
system resilience and easier troubleshooting.

• Dynamic Reconfiguration: Lifecycle Nodes enable developers to perform
dynamic configuration changes while a node is running. This allows the
behavior of a node to be adjusted without requiring a complete restart,
improving system flexibility and adaptability to changing conditions.

• Centralized Control: External entities can trigger state transitions for
Lifecycle Nodes by sending specific ROS2 service requests. This enables
centralized control and management of robotic systems, particularly for large-
scale deployments with many nodes.

Lifecycle States

ROS 2 defines a set of standard lifecycle states for nodes:

• Unconfigured: The initial state after node creation. No configuration has
been loaded.

• Inactive: The node is not actively processing data or participating in com-
munication.

• Active: The node is operational and performing its intended functionality.

• Shutting Down: The node is gracefully terminating its execution and cleaning
up resources.

• Errored: The node has encountered an error and is no longer functioning
properly.
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Figure 3.7: ROS2 Lifecycle state machine

Lifecycle Transitions

Lifecycle Nodes can transition between these states based on specific events or
conditions triggered from within the node itself, external service requests, or system
events. Developers define these transitions and the corresponding logic within their
node code using the Lifecycle Node API.

• Structured Lifecycle Management: Lifecycle Nodes provide a structured
framework for managing the lifecycle of each node, promoting cleaner and
more maintainable code.
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• Improved System Reliability: By handling dependencies, errors, and
configuration changes effectively, Lifecycle Nodes contribute to more robust
and reliable robotic systems.

• Flexibility and Adaptability: The ability to perform dynamic reconfigura-
tion and centralized control through state transitions enhances the adaptability
of robotic systems to changing requirements.

In conclusion, ROS2 Lifecycle Nodes are a valuable tool for developers building
complex and reliable robotic systems. By leveraging this abstraction, developers
can define a well-controlled lifecycle for each node, leading to more predictable,
robust, and adaptable robotic applications.

3.1.3 Turtlesim package
Turtlesim is a popular and fundamental tool used for learning the basics of ROS2
systems. It is a simple, 2D graphical simulator featuring turtles that you can
control and manipulate. Turtlesim serves as a great introduction to ROS2 because
it is simple and easy to understand and avoids complexities of real robots, allowing
you to focus on core ROS2 concepts like nodes, topics, and messages. The graphical
interface provides immediate feedback on your actions, making it easier to grasp
how ROS2 works. You can experiment with controlling the turtles, spawning new
ones, and even drawing shapes through ROS2 commands. The Turtlesim package
consists of two main nodes:

• turtlesim_node: This node launches the Turtlesim simulator window, which
displays the turtles and their environment.

• turtle_teleop_key: This node allows you to control the turtles using your
keyboard. By publishing commands on a specific topic, it directs the turtles
to move forward, backward, turn left, or right.

Using ROS2 Turtlesim typically involves two steps: installation by using your
ROS distribution’s package manager, and launching to open the simulator window.
In order to control the turtle, you have to execute the turtle_teleop_key node and
gain control your keyboard. Exploring further, you can spawn additional turtles,
create more complex motion patterns, and even visualize sensor data.
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Figure 3.8: ROS2 Turtlesim package example and its ros_graph

3.2 Zenoh
Zenoh emerges as a new contender in the realm of distributed system commu-
nication, offering a comprehensive approach that goes beyond the traditional
publish-subscribe (pub/sub) paradigm. It aims to unify how to handle data in
motion (real-time streams), data at rest (stored data), and computations across
geographically dispersed systems. Here’s a closer look at Zenoh core functionalities
and its potential benefits for various applications.
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Figure 3.9: Zenoh typical interactions

A unified vision for data

Zenoh builds upon the familiar pub/sub concept, enabling efficient data exchange
between applications. However, it takes this concept a step further by offering
greater flexibility. Publishers can disseminate data with various granularities,
allowing them to share entire datasets or specific subsets as needed. Subscribers,
on the other hand, can express interest in specific data patterns or filters, ensuring
they only receive the information truly relevant to their tasks.

This pub/sub foundation is further enhanced by Zenoh seamless integration
with storage mechanisms. Data can now persist across geographically dispersed
locations, making it readily accessible from diverse edge devices and cloud resources
within a distributed system. Zenoh empowers applications to not only exchange
data in real-time but also query it efficiently, both in active streams and within the
persistent storage layer. This allows for targeted retrieval of relevant information
based on specific criteria, regardless of the data’s location within the system.

Efficiency and scalability

Zenoh is designed with efficiency in mind, allowing it to operate effectively on
resource-constrained devices at the network edge as well as on powerful server-grade
hardware. This makes it a suitable choice for a wide range of real-time application
requiring fast response times. Furthermore, Zenoh offers a flexible data model that
supports various data types, promoting interoperability by working seamlessly and
transparently with existing communication protocols and middleware solutions on
already existing infrastructures. A key strength of Zenoh lies in its decentralized
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approach. Data and computations are distributed across the network, enhancing
system resilience and fault tolerance. There’s no single point of failure, as the
system can continue to operate even if individual components experience issues.

Figure 3.10: pub-sub pattern with the mediation of Zenoh

Potential applications for Zenoh

Zenoh capabilities make it a perfect choice for various applications, including:

• Industrial Automation: Real-time data exchange, edge computing, and
seamless integration with diverse industrial sensors and devices

• Internet of Things (IoT): Efficient data collection, processing, and analysis
from a large number of geographically dispersed IoT devices

• Autonomous Systems: Real-time communication, sensor data fusion, and
on-board computation for autonomous robots and vehicles. Low-latency data
exchange for high-frequency applications
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Figure 3.11: a wide range of applications can work at internet-scale through
Zenoh

Zenoh vs DDS

Zenoh extends beyond the core strengths of DDS by offering a unified approach that
encompasses data in motion, data at rest, and computations. This broader vision
allows developers to manage not just real-time data streams but also persistent
storage and embedded computations directly within the data flow. While the
Data Distribution Service (DDS) with its DCPS (Data-Centric Publish-Subscribe)
protocol remains a dominant force in real-time data exchange for distributed
systems like ROS 2, Zenoh reveals as a potential challenger offering a broader set of
functionalities. Both Zenoh and DDS are designed for scalability, allowing them to
handle complex distributed systems effectively. However, Zenoh lightweight design
makes it potentially well-suited for resource-constrained edge devices, a growing
consideration in modern robotic deployments.

Optimizing Data Transmission

“Discovery overhead” refers to the network traffic and processing resources consumed
by ROS2 nodes to find available topics and services. Here are some strategies to
minimize it:

• Logical Namespaces: Organizing nodes and topics within logical namespaces
reduces the overall search space for discovery requests.

• Content-based Filtering: Subscribers can specify filters in their subscription
requests, allowing them to receive only relevant data, reducing unnecessary
data transmissions.
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• Leveraging DDS Features: Exploring features like "lazy discovery" can
further optimize discovery by deferring it until a node attempt to publish or
subscribe

ROS 2 leverages a concept called "content-based publish-subscribe." When a node
declares a publication, it specifies the data type and any associated metadata. With
Zenoh, declaring a publication allows to not send data on the wire when there are
no matching subscribers, thus saving bandwidth from unnecessary transmissions.
If no subscribers exist, the node can optimize its behavior and avoid sending
unnecessary data packets over the network, conserving bandwidth and improving
network efficiency.

Figure 3.12: minimizing discovery overehead

3.2.1 Zenoh plugin for DDS: bridges and routers
Zenoh offers a plugin that acts as a gateway or bridge between Zenoh and DDS
systems. This functionality can facilitate communication between ROS 2 nodes and
applications using other DDS implementations that are not natively compatible
with ROS 2, by transforming or filtering data streams before they are passed
between two different systems. ROS 2 utilizes bridges, routers to facilitate data
flow across a distributed network:

• Bridges: Connect separate ROS 2 networks, allowing data exchange between
nodes in each network. They operate at Layer 2 of the OSI model, forwarding
all data packets received from one network to the other

• Routers: Operate at Layer 3 and make intelligent routing decisions based on
destination addresses, improving efficiency and potentially isolating network
segments for security
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Figure 3.13: two Zenoh configurations for working with DDS

While both bridge-router communication and router-router communication serve
the purpose of data routing within Zenoh, they operate at different levels and
handle data movement in distinct ways (see figure 3.13).

Bridge-Router communication

Bridge-router communication acts like a network bridge, functioning at Layer 2
essentially connects separate Zenoh networks, forwarding data packets it receives
from one network to all connected nodes on the other network. Unlike routers,
bridge-routers don’t make intelligent routing decisions. They simply relay all
data they encounter. These bridges are able to connect ROS nodes belonging
to different ROS_DOMAIN_IDs: this approach is suitable for straightforward
network extensions where all nodes on the receiving network require access to all
data from the sending network. However, bridge-router communication can become
inefficient, especially in large and complex Zenoh deployments. Since it blindly
forwards all data, it can lead to unnecessary network traffic if not all nodes on the
receiving network actually need the data.

Router-Router communication

Router-router communication, on the other hand, operates at Layer 3 and focuses on
connecting and facilitating communication between multiple Zenoh networks on the
Internet. Unlike bridge, routers act as intelligent traffic directors. They maintain
routing tables that specify the most efficient path to reach specific network segments.
When a data packet arrives at a router, its destination address is examined. By
consulting its routing table, the router determines the optimal route for the packet
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to reach its intended recipient. This intelligent routing approach is essential for
large and complex Zenoh deployments. It ensures that data reaches only the
nodes that require it, reducing network congestion and improving overall system
performance.

Choosing the right approach:

The decision between bridge-router and router-router communication depends on
the specific needs of your Zenoh network. If you have a simple network extension
where all nodes require access to all data, bridge-router communication might be
enough. However, for larger and more complex deployments possible spanning
across geographically distributed servers, efficient data routing becomes crucial,
and router-router communication is the preferred approach, thanks to its ability to
optimize data flow and minimize unnecessary network traffic.

In conclusion, while DDS remains a robust tool for real-time communication in
ROS 2, Zenoh offers a broader set of functionalities that developers can explore for
optimizing data management within robotics systems. Understanding discovery
overhead, Zenoh plugins, bridge/router concepts, and data transmission optimiza-
tion techniques empowers developers to build more efficient and scalable robotic
applications, deciding on the most suitable communication approach based on the
specific needs of the project.

3.3 Kubernetes
Kubernetes, often shortened to K8s, has become the de facto standard for containers
orchestration in the modern application development world. This open-source
platform automates the deployment, scaling, and management of containerized
applications across clusters of machines. It excels at managing the lifecycle of
containerized applications, automating tasks like deploying containers across a
cluster, scaling deployments up or down based on demand, and restarting failed
containers to ensure high availability. This translates to robust and resilient
applications that can adapt to changing demands. Kubernetes also comes with
K3s, a lightweight K8s distribution designed for resource-constrained environments,
perfect for bringing container orchestration to places where traditional Kubernetes
might be too heavy.

Before Kubernetes, applications used to be deployed as monoliths, requiring
entire servers (bare metal) just for them. Virtualization came along, letting multiple
applications share a single server, like splitting the machine resources into smaller
sections. This was far better, but applications still carried the weight of a full
operating system. Now, with containerization, applications are broken down into
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tiny, focused microservices, each in its own lightweight container, each needing only
its specific function. This allows for, faster deployments, better scaling and easier
development, all helping to focus on building the service, not on the single server
(see figure 3.14).

Figure 3.14: applications developing evolution

Kubernetes creates a service abstraction that hides the underlying server de-
tails and automatically directs incoming traffic to healthy instances within the
deployment. Additionally, Kubernetes offers built-in load balancing, ensuring traffic
is distributed evenly across multiple containers, preventing any single container
from becoming overwhelmed. Kubernetes also boasts self-healing capabilities. It
constantly monitors the health of containers (in their pods) and machines (worker
nodes) within the cluster. If a container malfunctions, rescheduling the containers
running on that machine to other healthy nodes, ensuring minimal downtime for
applications.

Declarative Management

As far as the creation of resources for deploying the applications, Kubernetes
utilizes a declarative approach. Developers specify the desired state of their
application deployments using YAML files or custom objects. Kubernetes then
acts as the orchestrator, working to maintain that desired state, automating
the deployment and management processes. Additionally, Kubernetes employs a
sophisticated scheduling algorithm to place containers on appropriate machines
within the cluster, considering factors like resource availability, machine health,
and any affinity/anti-affinity rules defined by developers to optimize performance
and resource utilization [5].

24



Background

Figure 3.15: Kubernetes Architecure Overview

The Need for Container Network Interfaces (CNI)

While Docker provides basic container networking functionalities, Kubernetes
relies on CNI plugins for advanced network configuration within a cluster. Here is
where CNI plays a crucial role:

• Flexibility and Customization: CNI plugins offer a diverse range of net-
working options, allowing developers to choose the most suitable solution for
their specific needs. Think of them as different musical styles – each CNI
plugin offers a unique way to connect containers within the cluster.

• Multi-Host Networking: CNI plugins enable seamless communication be-
tween containers running on different machines within the cluster. This is
critical for distributed applications where microservices need to interact with
each other

• Policy Enforcement: CNI plugins can be used to implement network security
policies within the cluster
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3.3.1 Cilium and NetworkPolicies
Cilium is one the available CNI plugins for Kubernetes which goes beyond tradi-
tional networking solutions. It operates at the granular level of individual containers,
providing a comprehensive approach to both security and connectivity. It enforces
security policies to safeguard the cluster environment, while simultaneously facili-
tating efficient communication between containers. This ensures seamless data flow
and robust protection, all without the need for complex configurations or unwanted
network overlays. Cilium’s lightweight design and deep integration with container
technologies make it a valuable asset for modern application development [15].

Figure 3.16: Cilium architecture overview

Ensuring secure communication between these containers remains a critical
challenge. K8s Network Policies emerge as a powerful solution, offering the
possibility to control network traffic within a Kubernetes cluster, allowing to achieve
several key objectives:

• Enhanced Security: By restricting unnecessary network access for containers,
K8s Network Policies significantly reduce the attack surface within a cluster.
This approach minimizes potential security vulnerabilities
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• Enforced Application Logic: Network policies can be configured to enforce
the intended communication patterns within an application. This ensures
containers interact only with specific resources and services they require for
proper functionality. This prevents unintended data leaks or disruptions in
communication flow

• Simplified Network Management: K8s Network Policies offer a central-
ized approach for managing network security across the entire cluster. This
eliminates the need for manual configuration of firewalls for individual pods,
streamlining network management tasks

While K8s Network Policies offer a powerful security tool, their effectiveness
strongly depends on careful planning and configuration. Overly restrictive policies
can interfere with application functionality by limiting necessary communication
channels. Striking a balance between security and functionality is crucial for
successful implementation.

Figure 3.17: how a network policy works

Cilium, as well as other cni, comes with its own network policies, and is able to
enforcing control over network traffic with the finest granularity (see figure 3.18).
These CiliumNetworkPolicies come in different flavors, each offering a specific
level of detail:

• Endpoint-based: These policies are like bouncers at the container door,
controlling communication between individual containers.

• Label-based: Imagine assigning security tags to your containers. Label-based
policies act like group permissions, restricting traffic flow based on these shared
labels.

• Network-based: These policies work like traditional firewalls, controlling
access based on IP addresses or CIDR ranges.

• Service-based: Think of services as departments within your application.
Service-based policies manage secure communication channels between these
departments.
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• Entity-Based: Cilium network policies can be configured to target specific
entities, such as the kube-apiserver. This allows you to define fine-grained
access controls, specifying which pods or namespaces are authorized to com-
municate with the kube-apiserver. By restricting access to the kube-apiserver
only to authorized entities, you significantly reduce the attack surface and
potential security vulnerabilities within your cluster.

Moreover, Cilium also offers policies that may have control at the cluster level called
CiliumClusterwideNetworkPolicies and act as “global” security rules, applying to
all containers across the entire cluster, ensuring consistent security across your
entire application landscape.

With this range of policy options, Cilium empowers you to tailor network
security to your specific needs, creating a safe and efficient environment for your
containerized deployments.

Figure 3.18: Cilium Network Policies enforcing example

3.3.2 ServiceAccounts and ClusterRoles
Kubernetes implements a robust access control system using Role-Based Access
Control (RBAC). This system, consisting in a well-defined set of regulations,
governs how entities within the cluster interact with resources and ensures only
authorized actions are performed. Kubernetes RBAC, with its roles, service
accounts, and role bindings, provides a comprehensive framework for access control
within containerized environments. This system ensures only authorized services
can interact with resources, fostering a secure and controlled environment for
running containerized applications at scale. The RBAC framework operates on
three core components:

• Roles: These represent predefined sets of permissions within a specific names-
pace (a logical grouping of resources). Roles define the allowable actions
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(e.g., read, write, delete) on specific resources within the namespace (e.g.,
deployments, pods, secrets)

• Service Accounts: Unlike human users who can directly interact with the
Kubernetes API server, applications in Kubernetes run as services. Service
accounts function as unique identities for these services, enabling them to
authenticate and request access to resources from the Kubernetes API server

• Role Bindings: These establish the connection between roles and service
accounts. Administrators can bind specific roles to relevant service accounts,
effectively granting them the necessary permissions to perform their designated
tasks within the cluster. This binding process acts as an authorization step,
ensuring services only have access to the resources required for their specific
functionalities

3.3.3 K8’s Client Libraries
The Kubernetes API server acts as the central nervous system of the container
orchestration platform. It receives commands, manages resources, and orchestrates
the activities of containerized applications. There are two primary methods for
accessing the Kubernetes API:

• Direct Access: This method involves using tools like curl or custom code to
interact with the API server directly. However, for direct access, RBAC plays
a crucial role. You’ll need the necessary API credentials (token or certificate)
associated with a service account that has been granted the appropriate RBAC
role for the desired action. This approach offers granular control but requires
a deeper understanding of the Kubernetes roles, bindings and service accounts

• Kubernetes Client Libraries: These libraries, available in various program-
ming languages, provide a more user-friendly and secure way to interact with
the Kubernetes API. The libraries handle authentication and authorization
behind the scenes, without the need of directly managing service accounts and
RBAC configurations. Developers simply need to specify the desired actions
on resources, and the library takes care of the secure communication with
the API server. While less granular, client libraries simplify development and
ensure applications adhere to established RBAC policies

In conclusion, Kubernetes serves as a powerful platform for managing containerized
applications at scale. Its functionalities for deployment, scaling, service discovery,
resource management, and self-healing automation make it a crucial tool for modern
application development. The ability to leverage CNI plugins allows for flexible and
customizable network configurations within the cluster. For resource-constrained
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environments, K3s offers a lightweight alternative, delivering the core functionalities
of Kubernetes with a reduced footprint and simplified management, making it a
valuable option for edge computing and IoT deployments.

3.4 Liqo
The world of container orchestration is a dynamic landscape, constantly evolving to
meet the demands of modern applications. Managing workloads across multiple Ku-
bernetes clusters, however, presents a significant challenge. Traditional approaches
often rely on complex network configurations or cumbersome VPN solutions, creat-
ing bottlenecks and decreasing agility. Liqo emerges as a brand-new open-source
project, offering a game-changing solution for multi-cluster deployments.

Inspired by the concept of “liquid computing”, Liqo establishes connections
between disparate Kubernetes clusters, enabling them to share resources and
services. This creates a dynamic pool of resources which adheres perfectly to the
concept of Cloud Continuum. With Liqo, clusters can in fact contribute their
unused resources at any given time, reducing infrastructure costs for others and
creating new possibilities for the edge-to-anything computing.

One of Liqo key strengths lies in its ability to seamlessly extend the standard
Kubernetes APIs. This transparency ensures minimal modifications are required
for existing applications to operate within a Liqo environment. Resources familiar
from single-cluster deployments are not only applicable but often enhanced for
Liqo specific objectives.

Figure 3.19: typical multi-cluster scenario achieved thanks to Liqo
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Key components and operations

Liqo architecture relies on several critical components to enable its functionalities:

• liqoctl: it is the CLI tool for the installation and management of Liqo.
Specifically, it abstracts the creation and modification of Liqo defined custom
resources by wrapping the corresponding Helm commands and automatically
retrieving the appropriate parameters based on the target cluster configuration.
It also establishes and revokes peering relationships towards remote clusters,
configures workload offloading and retrieves the status of Liqo

• Peering: unidirectional resource and service consumption relationship be-
tween two Kubernetes clusters, with one cluster (i.e., the consumer) granted
the capability to offload tasks to a remote cluster (i.e., the provider), but not
vice versa. In this case, the consumer establishes an “outgoing peering” to-
wards the provider, which in turn is subjected to an “incoming peering” from
the consumer

• Virtual Kubelet: the “kubelet” is a critical program running on each Kuber-
netes worker node. It manages pods, monitors their health, and interacts with
the container runtime to ensure your containerized applications run smoothly.
The “virtual kubelet” therefore similarly interacts with the Kubernetes API
server as if it were a physical node. This allows Liqo to manage resources in a
granular and efficient manner within the federated clusters

• Foreign Cluster: this component represents a remote cluster within the local
cluster’s context, holding essential information for establishing and maintaining
connections.

• Virtual Node: it is the result of the peering process within the local cluster’s
context, corresponding to the representation of a remote cluster resource. This
allows the local cluster scheduler to deploy pods on the remote cluster as if it
were a local node

• Namespace Offloading: this process enables the transparent execution of
pods in remote clusters, facilitating resource optimization across the Liqo
environment

• Reflection: this is the main Liqo feature that enables the mirroring of
essential resources for offloaded workloads. Thanks to reflection, Liqo handles
the complexities of the offloading operation, like remapping information and
makes the pods work seamlessly across clusters
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3.4.1 Peerings and Foreign Clusters
Peering is a fundamental pillar of Liqo. This process establishes secure connections
between clusters, each playing a specific role:

• Consumer Cluster: Requests resources from other clusters

• Provider Cluster: Offers unused resources to consumer clusters

Figure 3.20: Liqo peering between two clusters

The peering process itself involves three key steps:

1. Authentication: Clusters validate each other’s identities to ensure security
and trust.

2. Networking: Clusters discover each other’s IP ranges and configure Network
Address Translation (NAT) rules to establish efficient communication channels.

3. Resource Sharing: Clusters negotiate the quantity and type of resources
they wish to exchange, enabling the core functionality of resource sharing.

Users can manually add clusters by specifying a specific peering command which
can be automatically generated, together with the associated authentication token,
from the command line of the remote cluster. After the peering, each cluster
keeps maintaining complete control over the resources it shares and the entities it
interacts with. It is important to note that the remote cluster can always decide
to limit the percentage of its resources that can be actually granted. The final
result of the peering process is the creation, from the local cluster point of view, of
a “virtual node”, that from now on will act as a normal worker node where to
schedule pods on, except for the fact that these pods will be actually scheduled on
the remote peered cluster. This all is possible thanks to a particular component
called “virtual kubelet”.
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This peering process enables:

• Dynamic Workload Placement: thanks to Liqo “reflection” mechanism,
the peering allows you to offload workloads (pods) to a foreign cluster based on
predefined criteria. This fosters a dynamic and elastic environment where work-
loads can be automatically distributed across available resources in different
clusters.

• Transparent Service Consumption: Services deployed in one cluster (local
cluster) can be seamlessly consumed by applications running in another peered
cluster (foreign cluster). This eliminates the need to redeploy services across
all clusters, simplifying application management and promoting an efficient
and transparent resource utilization

Figure 3.21: Liqo peering is transparent to the local cluster logical point of view

The peering operation also leads to the creation of a "ForeignCluster" resource
within the local cluster. This resource acts as a representation of the remote cluster,
holding vital information for the established connection. As already described,
this process is asymmetric and thus allows for maximum flexibility. Bidirectional
peerings combinations are supported as well. For example, the same cluster can
play the role of provider and consumer in multiple peerings.
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3.4.2 Namespace Offloading
Kubernetes resources created in one cluster become accessible to pods running in
the peered clusters. This is achieved through another fundamental operation called
"namespace offloading."

Liqo namespace offloading functionality takes multi-cluster management a step
further. It allows you to designate specific namespaces within your local cluster
for offloading pods to a foreign cluster, freeing up valuable resources in your local
cluster for more demanding workloads. This capability enables:

• Resource Optimization: by offloading namespaces, Liqo allows you to
optimize resource utilization across your entire Kubernetes infrastructure

• Cost Efficiency: efficient resource utilization translates to cost savings,
especially when leveraging cloud-based Kubernetes environments with pay-as-
you-go models

When a resource is deployed within the namespace designated for offloading, Liqo
creates a "shadow" copy of that resource in the remote cluster. Pods in the remote
cluster transparently interact with this shadow copy, which then forwards com-
munication to the original service in the source cluster. This seamless mechanism
extends service reach across the whole single virtual cluster thus obtained.

Figure 3.22: offloaded resources actually run on the remote foreign cluster

Liqo, with its innovative approach to multi-cluster networking and resource
sharing, offers an excellent alternative to traditional solutions. By fostering a
dynamic and resource-efficient environment, Liqo empowers organizations to unlock
the full potential of their Kubernetes deployments and embrace the possibilities of
multi-cluster data centers.
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Chapter 4

Cloud offloading architecture

This chapter presents a technical examination of the problem previously introduced,
proposing different design ideas. The overall architecture of a possible Cloud
offloading system will be presented in details.

4.1 Overview
As far as the general architecture of this Cloud Continuum system, when deploying a
distributed application it is important to focus on how to achieve the communication
between the local (edge) and the remote (Cloud) components . Considering the
simplest Cloud scenario, these components are divided onto at least two different
Kubernetes clusters: in this use case there is a main listener ROS node on the
“local cluster” (i.e. the robot itself) and a custom publisher ROS node on the
“remote cluster”. The multi-cluster topology will be managed using Liqo to finally
get a seamless-switching working mode for the application. This configuration aims
at relieving the robot from some cpu-intensive tasks, charging some other process
on a data center remote machine, where computational resources are supposed to
be more suitable for this kind of task, so that it will be possible to work at higher
frequencies.

Liqo is an excellent tool to achieve a transparent switch from the main local
cluster to the one where the pod with the remote copy of the publisher node will
be deployed. With Liqo all the nodes are really part of a resource continuum,
perfect integrated with Kubernetes and easy to manage: once the peerings have
been established and the namespace offloading policy set, it is immediately evident
the result of a fluid apparent single-cluster infrastructure. Offloading a service
to a remote node (e.g. another robot, a public Cloud server, or an edge server)
requires a certain number of operations such as "hooking" the remote Cloud and
orchestrating the service transparently between the local Cloud and the remote
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one. Liqo greatly simplifies this operation as it allows to create a full “virtual
cluster” that aggregates both resources and services, creating a single virtual space.
It therefore simplifies the orchestrator logic by delegating the responsibility of
creating and managing the virtual space to this component.

This thesis takes advantage of the turtlesim ROS2 package as software prototype
of a physical robot navigation system. It has been then customized with the help
of LINKS Foundation for this purpose. Turtlesim is a lightweight simulator for
learning ROS, very helpful to understand how to interact with the main ROS tools,
topics and services concepts, as well as for testing purposes.

Figure 4.1: basic configuration for turtlesim<–>teleop remote communication
with zenoh

Considering a basic environment in which the turtlesim and its “teleop” publisher
are directly mutually reachable (i.e. in the same subnet), they would normally
communicate by means of UDP multicast, since by default ROS2 uses DDS as
its middleware. However, when those nodes are part of a distributed system (like
in figure 4.1) of course internet routers do not let multicast traffic pass through.
Moreover, assuming this ROS nodes are deployed as containers in as many pods of a
Kubernetes cluster, another problem has to be faced: K8s CNIs don’t usually come
with multicast support, so the only basic configuration which can allow containers
to talk to each other directly is the one where they are coupled as “sidecars” of a
main container in a single pod. There exists some specific technology that may be
capable of enabling multicast traffic within the cluster or a at least at the namespace
level (e.g., Weavenet, DiscoveryServer), but they won’t be further explored in this
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thesis because of a set of limitations due to this particular use case, as it will be
explained in the implementation section.

As in the figure above, the communication is possible thanks to Zenoh: this
technology allows a much better performance comparing to basic DDS, drastically
decreasing discovery traffic among nodes, and this is a strongly required feature for
real-time applications [7]; it also automatically manages connection losses and it
is totally transparent to ROS nodes. Finally, in order to overcome the multicast
limitation, each distributed node has to be coupled with a zenoh-bridge, on its
turn connected to a Zenoh router realizing the overall inter-cluster communication.
Multiple configurations are possible through zenoh [6]: the one selected for this
work presents a single zenoh-router on the remote cluster, because for a real
scalable application it should be only a client (robot) responsibility to contact the
server (zenoh-router) anytime its necessary (e.g., after a disconnection); besides a
potentially moving robot could not have a static IP address.

4.2 Real-Time Seamless switching
The goal now is to try to figure out the complete scenario and find the best way to
enable the switch from the local cluster to the remote cluster when the network
connection is stable: this operation must be efficient and absolutely transparent
to the robot, whenever the Cloud offloading of a certain task is requested and
possible. In particular, anytime the robot wants to offload the “navigation” task,
there must be a way to exclude the local publisher in favor of the remote one
while, when the network link drops or the set of network parameters are overall
not to be considered good enough, the system has to switch again to the local
configuration as a backup service. This all brings to define a LOCAL_MODE
and an OFFLOADING_MODE as the two operation modalities for the system.

What it has to be explored is how to switch seamlessly from one mode to the
other:

• one possibility is to imagine an architecture providing a way to power off the
local publisher component when in offloading mode (and vice-versa)

• a reasonable alternative seems to be the isolation of the local cluster when in
local mode from a network point of view

Before discussing the chosen solution, it is important now to have a look at the
different configurations both on the edge and in the Cloud. Crownlabs has been
used as a working environment for the virtual machines. It is a remote desktop
technology hosted in Politecnico di Torino providing immediate access to personal
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computing labs, allowing to select the most suitable virtual machine for one’s work
with some already-installed software and an easy-to-manage VMs lifecycle.

Figure 4.2: Cloud offloading interactions

4.2.1 Local cluster

Figure 4.3: local cluster configuration

The local VM has to host a single-node K3s cluster with four main components,
as described in the table below:
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Component Function
Turtlesim It represents the “robot” itself,

simulating a turtle waiting for navigation
commands inside a window

Turtlesim_lifecycle_publisher (TLP) It acts as the local version of a remote
control for the turtlesim, implemented as
a ROS custom publisher associated with
the turtle specific movements topic

NetworkController (NC) It is the most important node and it
carries the main switching logic

Zenoh-Bridge The Zenoh local component acting as a
bridge for every message captured in its
ROS domain

The local cluster reflects the normal functioning scheme of a robotic navigation
system: a turtle robot waits for some commands to move around inside its play-
ground. When running in local_mode the turtle must always be able to survive in
its independent system, that’s why there is also a local version of the publisher.
On the contrary, when in offloading_mode it will be the Zenoh-bridge to enable a
communication channel with the outside.

The Network Controller (NC) is the brain of the switching operation and
incorporates the glue logic of the two worlds: Kubernetes and ROS. This is a ROS
node which, regardless of its implementation, must present 3 specific modules which
respectively concern:

• interaction with a Kubernetes cluster

• network conditions monitoring

• switching logic

Interacting with Kubernetes is necessary to order the cluster API-server a sort
of isolation of the local cluster and this means having some K8s or Liqo resource
created or modified on-demand. To this purpose Kubernetes documentation already
provides a way for API direct access or a set of client libraries for some programming
languages which appropriately manage kubeconfig (i.e., K8s configuration files
enabling the communication with api server) and permissions issues for the user,
incorporating the corresponding REST APIs, as it was described in the Background
section.

At the same time the switching can be requested only when all the relative
network parameters are suitable for the operation, that requires monitoring the
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network state or even some prediction/correction logic that would perfectly suit
this use case (e.g., by using a Kalman filter).

4.2.2 Remote cluster

Figure 4.4: remote cluster configuration

The remote VM has to host a K8s cluster with three components, as described
in the table below:

Component Function
Remote-publisher It acts as the remote version of a remote

control for the turtlesim, implemented as
ROS custom publisher associated with
the turtle specific movements topic.

Zenoh-Bridge The zenoh remote component acting as a
bridge for every message captured in its
ROS domain

Zenoh-Router Zenoh component that enables the
inter-cluster communication by means of
the zenoh-bridges

40



Cloud offloading architecture

A generic remote cluster is “enabled” when chosen as Liqo remote-peer and
when it is possible to make the switch, according to the decision logic of the NC
which monitors the network condition. It is the Zenoh-router the one component
which a zenoh-bridge can “attach to” and send every message that the turtlesim
and the remote-publisher need to exchange.

In figure 4.5 it is shown the remote configuration from the Kubernetes point of
view. The main deployment (on the right) with the offloaded application task has
the zenoh-bridge as its sidecar and talks with it by means of multicast. On the
other hand, there is the zenoh-router deployment (on the left) exposed internally
by a ClusterIP service in order to make it reachable from the zenoh-bridge, and
externally by a LoadBalancer service to get a public IP reachable from the outside.
This IP will be used by Liqo only in the peering phase, then intra-cluster traffic
will take advantage of the internal VPN.

Figure 4.5: Cloud side Kubernetes configuration
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The most generic scenario in figure 4.6 finally suggests how the main cluster
may potentially have more than one Liqo peer where to offload its heavy tasks.
However, this particularly complex configuration is not treated here as this work
focuses on deeply exploring a single-peer scenario with one remote cluster only. In
this case the local (robot) K3s cluster is the one that acts as main cluster exploiting
the remote peer resources.

Figure 4.6: potential scenario with multiple Liqo-peers
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Implementation

In order to put into practice such a distributed offloading system this chapter will go
deep into the actual dynamics of some possible solutions, providing a comprehensive
understanding of all the roads travelled, each one with its own practical implications
and challenges, component description and the overall system behavior.

5.1 Affinity, migration and switching
What this thesis aimed at from the very beginning was to prove it is possible using
Liqo as a tool to achieve a transparent switch from local to remote clusters, in
order to efficiently perform Cloud offloading of specific tasks.

As described in the background section, once the peering with an external
cluster is done, one of the main features of Liqo is that of migrating workloads,
which is possible to combine with different namespace offloading policies. There
are three kinds of policies for the offloading: Local, Remote and LocalAndRemote.
Considering such Liqo potential to manage where pods have to be scheduled across
the peers’ cluster nodes, it is easy to figure out the possibility of migrating any
pods of a generic application just playing with nodes label selectors.

Labels are key/value pairs that are attached to objects such as Pods and Nodes.
They are intended to be used for identifying attributes of objects that are meaningful
and relevant to users, but do not directly imply semantics to the core system. Labels
can be used to organize and select subsets of objects, attaching to them at creation
time and then subsequently added or modified at any time. Each object can have
a set of key/value labels defined and each key must be unique for a given object.

The concept of affinity comes now in handy: through the labels attributes
Kubernetes provides a flexible and functional way that is seems to be exactly the
one feature to exploit for the offloading purpose. Node affinity is a set of rules the
Kubernetes scheduler uses to determine where a pod can be placed: pods with a
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certain label can be scheduled on a node to which is assigned the same label (see
figure 5.1); but there are many other possible combinations of labels and operators
which correspond to different configurations. This all means that, while a pod is
running on node, if that node affinity rule is changed, that pod could be moved
away on another node if available, or stay in a “pending” state if it is not. Note:
when talking about pod and node affinity, since the naming may be misleading, it
is important to realize that both features are meant from the pod’s perspective.
Node affinity attracts pods to nodes, and pod affinity attracts pods to pods.

Figure 5.1: how node affinity works [4]

As a consequence of a generic affinity set of rules, it is clear now that turning on and
off a service, previously described as a possible implementation for the switching
algorithm, can be implemented as an operation of service “displacement”. Therefore,
it is important now to discuss the differences between service “migration” and
task “switching”.

The idea with Liqo is to exploit the possible node/pod affinity Kubernetes
configurations in order to force the scheduler towards a specific virtual node, of
course reacting to the NetworkController decisions based on the network conditions,
in real-time. That would be more a form of migration.
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However, migration is not a simple concept and some problems have to be
discussed:

1. Lack of support for live-update of affinity labels: the main type of node affinity
provides the value “requiredDuringSchedulingIgnoredDuringExecution” in its
configuration file, which forces the scheduler to apply this rule at scheduling
time (i.e., when the pod is not running yet) but ignores every changing in pod
labels once it is running (see figure 5.2). The opposite affinity value should
have instead a value ending with “RequiredDuringExecution”. The problem is
that, at the time of writing, this emerges as a feature announced but not yet
implemented in Kubernetes. A possible workaround for this problem could be
not to rely on node affinity but rather to use “taints and tolerations”. While
node affinity is a property of pods that attracts them to a set of nodes (either
as a preference or a hard requirement), taints are applied to nodes and are the
opposite of node affinity: a taint repel pods from being scheduled to a specific
node. Tolerations are applied to pods and allow the scheduler to schedule pods
with matching taints. Taints and tolerations work together to ensure that
pods are not scheduled onto inappropriate nodes. This way all constraints can
now be expressed as a sort of node anti-affinity rule. Moreover, taints come
with some parameters to configure such as: “key”, “operator” and “effect”. If
the effect is set to “NoExecute” value the taint will finally affect pods that
are already running on the relative node, solving the affinity labels "rolling
update" problem.

Figure 5.2: example of node affinity specification in a pod yaml file

2. Rescheduling latency: given that this is how affinity works, real-time
offloading reactions to network conditions changes actually translates into a
periodic rescheduling operation which would absolutely be a problem if too
frequent, since it takes a lot of time. This high amount of time would prove to
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be too much in most application cases, and generally it is not even a parameter
under the developer control, especially on the remote cluster side when part
of a public Cloud. The duration of a deployment rolling update depends on
several factors:

(a) Number of pods: the scheduler needs to find suitable nodes for each new
pod during the update. With a larger number of pods, scheduling can
take longer.

(b) Pod startup time: the scheduler waits for new pods to be running healthy
before terminating old ones. If pods have a long startup time, the update
takes longer.

(c) Available resources: the scheduler searches for nodes with enough re-
sources to accommodate new pods. Limited resources can lead to slower
scheduling.

Finally, it is clearly important to focus on the conditions of the “repatriation”
of the microservices. Indeed, the first thing to monitor is the network condition,
the state of the link and the wireless signal quality, but there is a big problem to
cope with, and that is about how critical the task to offload actually is. Real-time
applications severely need stable low latencies, first of all as a primary safety
requirement, but also as the minimum functional service conditions that must be
satisfied. In particular a ROS navigation task requires a lot of computational power
because of the high frequency at which sensor data are emitted (e.g., to detect
obstacles) and then processed: the overall system reaction time is a crucial
parameter so it directly affects implementation choices.

At this point it was evident that this affinity-based solution it is not the one that
best suits this thesis use case: it is necessary to design another one providing a
transition towards a temporary "local backup" configuration (i.e., the one
previously proposed as “local cluster”) before the next switch to the remote copy
of that service laying on a Liqo virtual node, otherwise the time required for
rescheduling all pods onto another cluster would make such switching algorithm
anything but seamless. In conclusion, migration is not the purpose of this work
although it is definitely supported by Liqo. Such "displacing" operation has certainly
the advantage of being able to rely on a single copy and configuration of the service,
making the offloading algorithm behave as a choice of the best machine onto move a
service as-is at each moment, but it is probably not the right choice for guaranteeing
no downtimes for an overall real-time critical application.
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Regarding the architectural point of view, from now on there will be a set of
manual operations to be performed a priori at the same orchestration level, in
addition to the creation of the local cluster deployment:

• creation of the two Kubernetes cluster

• Liqo installation, peering and namespace offloading

• creation of the remote deployment on Liqo offloaded namespace, as a conse-
quence of the switching concept just described, avoiding additional scheduling
delays (this would not be needed in case of migration)

5.2 Three different switching strategies
Once established it is not necessary to move any node and assumed the simplest
scenario with only two Liqo-peers (one local and one remote), the objective is to
develop a method for managing the lifecycle of both the instances of the service to
offload, corresponding to the two publisher nodes for the turtlesim ROS application.
This method should guarantee a seamless switch between the local and the remote
version of the publisher and no downtimes for the turtlesim (i.e., the turtle never
stopping), at the same time reducing resource consumption on the robot and
achieving better performances on the Cloud.

Reviewing the previous concepts of OFFLOADING_MODE and LOCAL_MODE:
• in local mode, the robot performs all the tasks locally listening to the local
publisher until network conditions will be good for switching
• in offloading mode, the turtlesim will instead listen to the remote publisher
node running on the remote cluster, as long as conditions remain good enough

The main possible strategies to implement this mechanism are three and will be
further explored in the next sections.

5.2.1 ROS2 Lifecycle solution
The transition from the local node to the remote one can be seen as an alternation
of switching off and on operations performed respectively on the local and on the
remote publisher.

ROS2 introduced the concept of managed nodes, also called Lifecycle Nodes.
Managed nodes contain a state machine with a set of predefined states. These
states can be changed by invoking a transition id which indicates the succeeding
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consecutive state (see figure 5.3). Actually, lifecycle nodes abstraction is imple-
mented via a ROS2 service, so the invocation of a transition corresponds to a
service call which sends the service-server a message with the appropriate format.
For a more verbose explanation on the applied state machine, please refer to the
ROS2 background section which provides an in-detail discussion about each state
and transition.

Figure 5.3: primary states of a lifecycle node

The most important primary states and transitions are therefore the ones that
allow to go from the “inactive” state to the “active” one. No messages are getting
published while a publisher node is still not active and vice versa.

The Network Controller is supposed to use such lifecycle abstraction in order to
activate and deactivate the right nodes in their respective clusters, according to the
system operating mode at each moment. Local and remote publishers are lifecycle
nodes acting as servers waiting for the notifications that the NC, which behaves as
a client for both services, sends them at every state change (see figure 5.4).
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Figure 5.4: lifecycle-only solution

As far as the technical implementations choices, the main language used for
ROS2 nodes is typically C++. However, for this work it would be convenient to
write the NetworkController node in Python, because of its need for an internal
interaction module with a Kubernetes cluster which, as it will be further described,
is far convenient to implement by means of the existent Python client libraries for
K8s. Actually, this specifc module is not required for this pure ROS2 Lifecycle
version of NC for the switching algorithm but, since part of the NC code can be
reused and extended for the two other versions, the final language choice has been
Python. Further details about coding with Kubernetes will be given in the next
sections.

Regarding the organization of software classes, the ROS2 packages are
so called: network_controller (NC), turtlesim and turtlesim_lifecycle_publisher
(TLP). For the remote publisher the same node of the local publisher has been used,
taking advantage of the “remapping” ROS feature: all ROS nodes take a set of
arguments that allow various properties to be reconfigured, like topics, parameters,
and services, each identified by Names [13]. Names are hard coded in ROS nodes,
but they can be changed at runtime through remapping. Without remapping, every
instance of a node would require changes in code. All ROS-specific arguments have
to be specified after a "–ros-args" flag, e.g.:

ros2 run <my_package> <node_executable> –ros-args -r <old name>:=<new
name>

Note that these remappings are “static”, in that they apply for the lifetime of
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the node. “Dynamic” remapping of names after nodes have been started is not yet
supported.

The remapping feature also allows to solve a problem that occurs with such
configuration with two identical publisher lifecycle nodes (and their identical
service names): the two zenoh-bridges automatically advertise the same redundant
information. In a ROS environment it is in fact very important to maintain distinct
names: not doing this may have a zenoh-bridge occasionally forwarding captured
messages, in particular service calls like the ones sent by the NewtorkController,
causing spurious misbehaviors. Having the possibility to set different names through
the remapping function has helped to solve this problem without any code changing.

In addition to all the nodes described so far, another package has been created
with the name of turtlesim_msgs. Its function is that to provide a custom topic
through which the turtlesim and the publisher can communicate. Normally they
would use the traditional cmd_vel topic for movement directives, but with
the help of LINKS Foundation this has been adapted to what best suited the
visualization of a final demo. On Kubernetes containers in fact, it is not very easy
achieving the same visual result of the usual turtlesim movements on its graphic
interface, so for test the turtlesim is running in headless mode. Headless mode
means the container is running in the background without any foreground elements
visible as there is no screen or console. Therefore, the typical way to check the
application is running is by attaching that container a shell (i.e., by the kubectl
"exec" command). Another possible choice is to watch the pod containers logs from
the outside and follow the node updates. In particular, the turtlesim is by default
not particularly verbose when simply “walking” around the playground, instead it
is used to send constant information of its position when it hits the window walls:
this data corresponds to the kind of print on screen which can been modified in
the code and extended with the information of the current publisher which in fact,
depending on the operating mode, will be now either “from Local-Publisher” or
“from Remote-Publisher” (figure 5.5).

Figure 5.5: turtlesim example of clamping log messages

50



Implementation

ROS2 Service interaction
The typical interaction with a ROS2 lifecycle service when using the command

line interface has this format: ros2 service call <node_name/service_name >
<service_msg_structure> <msg>

This command actually hides a set of operations that should be always done
when dealing with services from the code of a ROS node service client. In order
they are:

1. creating a lifecycle service client
2. waiting until the service is up
3. preparing a callback for the asynchronous service-call
4. sending activation/deactivation request

Understanding in depth how ROS services actually work proved to be a key
point in designing the local Kubernetes cluster. Services in fact differ from the
usual publish-subscribe communication paradigm among ROS nodes, implementing
a call-and-response model: while topics allow nodes to subscribe to data streams
and get continual updates, services only provide data when they are specifically
called by a client. The point now was to verify how service-client and service-server
actually behave when they cannot talk directly in multicast, i.e., they are deployed
on different pods. ROS discovery traffic is the one sent on the “ros_discovery_info”
topic, including topics, nodes and services list, normally needful for those service
interaction. By default, the zenoh-bridge does not route DDS discovery traffic to
the other remote bridges, but the advertisement can be enabled by adding the
"–fwd-discovery flag". However, though in order to contact a service a node must
know its name, all the tests done in this direction proved that it is not enough
in such Kubernetes environment: with the service name it is possible to send the
request but then this fails or even doesn’t receive any answer. The reason behind
this behavior needs to be further investigated. It is easy to believe that service
servers must also be reachable through multicast, and that depends on the internal
management by “rclpy” library used undereneath. Those requests in fact are likely
to be made in unicast or multicast depending on various factors including the
initial configuration of the underlying ROS-middleware (multicast by default): the
former would likely provide the use of the same source IP address of the multicast
message (the one through which the server advertises its own service name the
first time), the latter uses multicast for the services too. In order to explore this
specific internal feature, it is possible to dig deep into the python rclpy library and
discover first where in the client request (something like a rmw_transport_info
structure) the eventual unicast IP of the server is specified, second replacing it
with the ClusterIP associated with the target node to be activated (TLP in this
case). It is certainly good for this thesis purpose to avoid further modifying the
NC code by getting your hands on rclpy library, as that code isn’t simple and
likely not managed in the same language of the node. On the other hand, solutions
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for indirectly enabling multicast in the cluster or for managing it in a centralized
manner (e.g., DiscoveryServer) won’t be further explored in this thesis.

Nodes positioning
By analyzing the relationship between each pair of nodes based on their connec-
tivity requirement:

• turtlesim and zenoh-bridge must use multicast for direct communication

• NC and turtlesim_lifecycle_publisher must be close to use multicast for ROS
service call-and-response model

• turtlesim and its local publisher (TLP) need to talk to each other directly
when switching to LOCAL_MODE

The conclusion is therefore to place all the nodes of the local cluster in such
a way that they are "close" enough for communicating through multicast: from
now on NetworkController, turtlesim_lifecycle_publisher, and zenoh-bridge will
be considered as containers, all part of the same global pod, working as sidecars
of the turtlesim main container.

The last module of the Network Controller concerns network conditions moni-
toring. The switching operation must only be enabled under a certain condition
and when a set of appropriate network parameters are considered suitable for such
operation (see figure 5.6). A custom logic may be implemented for the purpose
and in thesis a simple network check is done: every 30s the NC tries to trigger the
switching, simulating the moment of the offloading conditions is verified. Then it
executes a ping to the remote cluster address (received as an additional parameter
for the node) in order to check internet connection is actually up and, if it is true,
it allows the transition from LOCAL_MODE to OFFLOADING_MODE, and
vice versa. This choice has been done for testing reasons in order to focus on the
switching logic rather than on network examination. Further implementations may
be certainly be provided, even basing on a Kalman filter fed with an appropriate
model for performing some prediction&correction logic, according to what better
suits the user’s specific use case.
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Figure 5.6: Network Controller pseudo-code

5.2.2 NetworkPolicies solution
The opposite alternative to the pure lifecycle-activation for a switching algorithm
is trying to isolate the turtlesim and the whole local cluster from a network point
of view, anytime the LOCAL_MODE it is toggled, and vice versa. This could
be done appealing to a typical Kubernetes resource called Network Policy. Such
solution will completely exclude the intervention of ROS services, providing a more
generic method for the switching algorithm which this way becomes independent
from the specific application and makes the NC come with just two of the modules:
network monitoring and Kubernetes cluster interaction.

Network Policies are a mechanism for controlling network traffic flow in
Kubernetes clusters. They let you to define which of your pods are allowed to
exchange network traffic and can be used to prevent apps from reaching each
other over the network: this can help limiting the damage if one of the apps is
compromised, but more generally they allow to ensure a specific traffic matrix
among all pods, even across different namespaces, in order to implement the
complex network logic of an application composed by several microservices. Each
Network Policy targets a group of pods and can set both the ingress (incoming)
and egress (outgoing) network endpoints those pods can communicate with. It is
definitely possible to target specific pods but also namespaces or IP address blocks.
Once again, the set of rules thus defined will apply to the specific targets through
the Kubernetes labels mechanism e.g., pods matching a certain label are allowed
to send/receive traffic from other pods matching their own different label. Further
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details are given in the relative background section.

The point in the choice of the Network Policies (a.k.a. netpol) in this use case is to
exploit some firewall rules deciding when the turtlesim should listen only to the
local publisher or to the remote one. The selected targets of this new set of rules
are therefore the turtlesim pod on the local cluster on one side and the virtual
node on the other side (see figure 5.7):

• when in local_mode, a network policy is applied denying all external traffic

• when in offloading_mode, a different network policy allows external traffic
but disables the internal communication between the turtlesim and its local
publisher

Figure 5.7: network policies solution

Applying the policy to the Liqo node is possible because the environment in
which the remote nodes run is represented by the correspondent Liqo namespace
previously offloaded: enabling traffic from the virtual node consists in applying
a netpol targeting that whole Liqo namespace, and vice versa. The same result
would be obtained by reasoning from the local cluster point of view and targeting
instead the local cluster namespace, in fact: if A must not communicate with B
the result is the same as if B must not communicate with A, because no one can
talk and listen to the other when the netpol is applied. This second perspective is
actually the only one that would work because of the lack of the Liqo “reflection”
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for this kind of resource. Dealing with network policies in fact is not very intuitive
due to their “whitelisting” structure: you can only specify what traffic you want to
allow and, once a single netpol is applied, the rest of the traffic will be forbidden.
Moreover, referring to default K8s netpols, they are a namespaced resource: this
means they must always be specified relating to the namespace in which selected
pods are running. The fact Liqo lacks netpol reflection has thus the consequence
of preventing the developer to “drop” that resource on the offloaded namespace,
forcing to focus on the local cluster perspective. The possible motivations for
Liqo not to support reflection of network policy could be potential introduction of
unintended security implications, especially when remote clusters are created on
public data centers not under the developer’s control. At the same time, reflecting
network policies directly could lead to conflicts or unexpected behavior if not
carefully managed. Liqo, whose development is ongoing, might therefore be aiming
for a more flexible approach where network policies are defined and enforced
independently on each cluster, primary focusing on enabling core resource sharing
in the safest way.

There are two main possible approaches when dealing with periodical updates of
a Kubernetes resource, and they are described here.

• Create-then-patch: the resource creation happens only the first time, then
it is possible to apply a patch (partial of total) of the existent resource to
reconfigure it. This approach is probably the one with the best performance
in terms of time spent for contacting the API-server, asking it to update the
resource without recreating it. It is although necessary to pay attention to
the type of merging of the configuration fields that occurs during the patch

• Create-and-delete: after the first creation of the resource, this will be deleted
when necessary, then recreated at the right moment as it was a different new
resource. This could take more time, but sometimes it is the only choice,
depending of the type of the resource and its purpose

In this use case the approach chosen is create-and-delete. Conceptually there
are two different netpols, they are mutually-exclusive so the straightaway solution
is that of deleting the first netpol before applying the second one. An attempt was
made anyway to find an appropriate transformation patch, but the way Kubernetes
normally executes that merging did not lead to the desired result. On the other
hand, searching for two appropriate patches respectively to achieve faster operations
for both the transitions was not possible as well, since these patches would have
been “empty patches” trying to mock the absence of the netpol, and it turned out
the Kubernetes client libraries do not accept the creation of such an empty netpol.
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Figure 5.8: K8s API server works as frontend for internal and external request

When accessing a cluster, you need to know the location of the API server and
have credentials to access it (see figure 5.8). Kubernetes comes with a good support
for accessing clusters through its REST APIs, besides the usual one through the
kubectl command-line tool. The other two possible methods are:

• direct access: uses kubectl in proxy-mode to locate and verify the API server

• client libraries: it is based on provided libraries for a subset of programming
languages which hide the implementation of the REST APIs and automatically
handles authentication

The most important question about accessing a cluster is how to do it from
inside a pod. When you authenticate to the API server, you identify yourself as
a particular user. The methods just described in fact work perfectly if used by
the same user that installed Kubernetes, since kubectl automatically looks for the
kubeconfig file in the $HOME/.kube directory that was set during the installation.
However, this operation needs more technical considerations when a user starts a
request from a deployed container. All the processes that run in a Pod in fact have
an identity related to the specific service account they are associated to at creation
time, which maps to a ServiceAccount object and identifies the user who will be
finally available to authenticate. The complete authorization picture includes the
concepts of Roles and RoleBindings deeply described in the respective background
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section. Considering the NC Python script, two main attempts have been done
to achieve the interaction between the application and the API server, in particular:

1) by means of the python "subprocess" module, it is possible to run a command
on a parallel process. In this case the kubectl "apply" command has been used
for direct accessing the cluster and Network Policy resource periodic creation
and deletion, according to the algorithm previously described. Roles and binding
concerns have been appropriately addressed to guarantee this operation success

2) by means of the Python Client Libraries for Kubernetes: in this case
the NetworkPolicies configuration can be directly incorporated in the NC script and
there is no need for first creating new roles bound to the pod service account. It is
very important to detect the correct set of library methods which suits the purpose:
different resources require different methods, changing if they are namespaced/not-
namespaced, custom/default, and basing on the specific operation to be done.

Since these are external libraries, it is necessary to include them within the script.
One of the ways to do this is by updating the PYTHONPATH, a special environ-
ment variable that provides guidance to the Python interpreter about where to
find various libraries and applications. Another way to solve such dependencies
is by appending the path of the library using the "sys" module specific method
sys.path.append(<k8s_library_path>). However, in this case there was no need to
specify the path as the python pip package installer already put them in the right
place for the script. The one thing to actually worry about was the kubeconfig
file: as was said before some information are needed to access a cluster from a
pod (i.e., from the NC script running in the pod) and that information is uniquely
associated with the cluster. In order to obtain the proper credentials, the Dockerfile
of the NC must be modified. It was necessary to: first install client libraries, copy
the cluster kubeconfig from its location to the docker image workdir and assign it
read/write permissions, then locate the specific file and line of code of the libraries
where the attempt of retrieving a kubeconfig file is done, finally modify that path
with the one selected on the docker image file system. The main drawback of this
method is that you must provide a new appropriate kubeconfig file every time you
change the machine you use, since the old cluster configurations, credentials, and
API server locations won’t work for the new one.

Choice of the CNI
Kubernetes doesn’t come with a default networking support: a Container Net-
work Interface (CNI) plugin must be specified at installation time to manage
the cluster network and security capabilities. Many different CNI plugins exist
from many different vendors. You must use a CNI plugin that is compatible with
your cluster and that suits your needs, as some of them provide more sophisticated
solutions. By default, K3s uses Flannel CNI, but unfortunately that plugin doesn’t
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support network policies. For this work Cilium has been chosen because of its
versatility and in particular for its wide support to networks policies at layers 3-7
for both ingress and egress (see figure 5.9).

Figure 5.9: cilium network policies hierarchy

All Kubernetes objects including NetworkPolicy and CiliumNetworkPolicy can
belong to a particular namespace or not. CiliumNetworkPolicy only allows to bind
a policy restricted to a particular namespace. There can be situations where one
wants to have a cluster-scoped effect of the policy, which can be done using a
CiliumClusterwideNetworkPolicy custom resource.

Note: if you are installing Liqo on a cluster using the Cilium CNI, you must pay
attention to the dedicated configuration section to avoid unwanted misconfigurations.
In particular Cilium adds a taint to each node where no daemonset is scheduled, like
the ones labelled as virtual nodes by Liqo. This taint therefore must be tolerated
in order to have Liqo pods to be scheduled on the remote nodes[8].

At the end of the previous chapter, the way in which ROS services work and the
connectivity requirements among the nodes brought to the conclusion that the
simplest way to guarantee multicast traffic between each pair of nodes is to place
all the nodes containers of the local cluster as sidecars for the turtlesim main
container, composing a single “fat” pod. Now, with regards to this netpol-only
solution, the design constraints for the cluster are of course the same and, despite
how much powerful proved to be Cilium netpol resources, unfortunately this finally
led to understand that this second solution cannot be implemented either, again
considering not to search for any other possible workaround for the intra-cluster
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multicast problem. The point in fact is that NetworkPolicies rely on Kubernetes
labels, but labels are actually assigned to pod, not to sidecars or single containers:
it is not possible to define a network policy which targets a single container, since
it will instead target the whole pod it is deployed into. To achieve such generic
solution, more research and attempts will be needed in future to find a more
suitable architecture and try to realize this implementation.

This thesis will now explore a third hybrid approach, combining the best of the
first two approaches and testing the related performance.

5.2.3 The hybrid approach
The last implementation proposed for the switching algorithm completes the
framework of the Network Controller as the heart of the task-offloading operation:
now it incorporates all the modules, including again the one for the Lifecycle
activation. The local cluster internal networking will be managed via ROS services,
while the periodic creation of a Network Policy will handle traffic towards the
remote cluster (see figure 5.10).

Figure 5.10: hybrid solution

Local mode:
In this solution it is used only one CiliumNetworkPolicy and it targets the local

namespace (called “local-demo”). It is applied in LOCAL_MODE to deny all
external traffic. Differently from the netpol-only version, this behavior can now
actually work, because the containers within a pod, though sharing a single label,
can still communicate even when the applied netpol excludes the rest of the egress
traffic. At the same time the Network Controller asks the local publisher to activate
via a ROS2 lifecycle service call. The combination of the two operations results in
the turtlesim receiving clamping messages ending with “from LocalPublisher”.
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Offloading mode:

The configuration has to be reversed for offloading the task, so: NC sends the
deactivation request to the local publisher and, at the same time orders the deletion
(from the local-demo namespace) of that CiliumNetworkPolicy previosuly created,
with the aim of making the traffic entering again from Liqo namespace. The
turtlesim now receives messages ending with “from RemotePublisher”.

The final, comprehensive test of this new scenario revealed a critical issue:
once achieving the access to the cluster and after the NetworkController startup,
the first netpol creation succeeded, but something consistently interrupted the
process each time, from the second attempt onwards. This problem became
the driver for effectively adopting a Cilium specific network policy resource, the
CiliumNetworkPolicy. It turned out in fact that the default K8s type of Network
Policy was actually limiting the connection with the Kubernetes API server
itself: if a netpol trying to exclude some ingress/egress traffic accidentally involves
that server too, there is no way to send any other request or get any response. The
one thing missing was thus a particular configuration of the netpol which is able to
treat special entities differently, like of course the API server. Such granularity of
the firewall rules is not provided from the basic Kubernetes network policies, so it
was essential at this point to rely on that particular type of netpol, specific to the
Cilium CNI (see figure 5.11).

Figure 5.11: example netpol allowing all endpoints with the label app=demo to
access the API server
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The “fromEntities” field is used to describe the entities that can access the
selected endpoints; similarly, “toEntities” is used to describe the ones that can be
accessed by the selected endpoints. It is the “kube-apiserver” field that represents of
course the Kubernetes API server from the Cilium point of view. This configuration
has to be added to the default deny-all rule.

Here follows a chronological recap of the results obtained while deeply under-
standing how to make a policy as the ones needed for this use case, with multiple
targets work simultaneously. A continuous connection to the API server has in fact
to be guaranteed concurrently with the application pods excluding connectivity
logic. Sometimes it can be confusing to understand the complete set of allowed
traffic across multiple policy types. If close attention is not applied this may lead
to unintended policy allow behavior. Network policies issues are mainly due to
these reasons:

• reasoning at namespace level (e.g., by namespaced netpols like a CiliumNet-
workPolicy) would be the simplest thing and could work, but it cannot be
done directly in this use case because Liqo does not allow reflection of any
netpol, so "dropping" any policies directly into the Liqo namespace is not
supported

• at this point it is necessary to think about controlling the local namespace
traffic inverting the point of view, but there are other empirical issues to take
into account

• netpols in general can only work in terms of whitelisting

• the fact that no netpol can be managed in blacklisting brought to some
attempts consisting in using "dummy" labels: if you want someone with
label:myapp not to talk to someone else with label:other you can set a policy
having label:myapp talking with some label:dummy; then, if no endpoint with
“dummy” label actually exist, it will result in your app being isolated as you
wanted

• Kubernetes native netpols are not powerful enough

• Cilium netpols (namespaced and not) presented a set of problems found in
common with all the tested types of netpols, namely:

– at the time of writing, all "self-defined" rules, i.e. those referring to your
own namespace or labels, have no effect e.g. "a pod can talk only with
itself" doesn’t work, and this is due in particular to a misbehavior of the
“egress” rules; anytime an egress rule is specified it actually behaves as a
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deny-all rule, preventing any possible logical workaround and forcing to
rely mostly only on ingress rules

– on the other hand, the alternative is to stop thinking about the namespace
level and think instead at the cluster level (via a CiliumClusterWideNet-
workPolicy) by playing on individual pods labels with “global” meaning;
but despite making all possible attempts it is clear that they present the
same problems previously described (in particular it is limiting not to be
able to intervene at the egress level)

– finally, the only netpol able to achieve a similar result of enforcing names-
pace boundaries while still allowing internal pod traffic among containers
is the CiliumNetworkPolicy, as long as remembering to ensure traffic
to/from the API server entity either. This particular feature is specifically
reported in the Cilium documentation [15]

All these tests have been done with a simple local nginx server at first, then
with the whole turtlesim deployments and Liqo at a later time. In the two
cases the impact of the network policies on connectivity was different and needed
different netpol configurations to obtain the desired result, since they have different
communication paradigm (client-server vs publish-subscribe), but above all because
of the presence of the Liqo virtual node specific network configuration.

The one thing in common is the time factor. It was possible to observe and
understand that network policies require an arbitrary time for them to become
effective in the cluster. This may depend on several factors: virtual machine
computational resources and instant load, effective time for the system to translate
a high-level network policy into a set of Linux iptables (or eBPF filtering logic
in the Cilium case), time required for a new network rule to apply to an active
connection, zenoh-bridge and router delays in adapting to the switch, ROS services
request/response and node activation slowdowns or even all these factors at the
same time. What actually happens at low-level of this architecture must be further
explored as a future work. The evaluation section will show now explicit data
about these tests.
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Experimental evaluation

In this chapter, the hybrid model implementation will be taken into examination
through a series of tests. These tests were performed in the Crownlabs environment,
where the local-cluster and the remote one were both implemented as single node
clusters using respectively K3s and K8s, running on two different virtual machines.
Such setup may not reflect real-world latencies as the VMs can reach each other
directly (i.e., not through wireless and/or Internet), but certainly helps, through
the collection of meaningful data, to come up with some final considerations about
Network Policies and ROS Lifecycle activation. Finally, the chapter analyzes some
state-of-the-art benchmarks with regards to the main tools exploited for this thesis,
that are of course Liqo and Zenoh.

6.1 Measurements
The tests were performed at a high ROS level, in particular they aimed to observe if
and when the messages from the different publishers were received by the turtlesim.
It was therefore necessary to modify the NetworkController node where the main
logic resides, by adding a Benchmarker class that acted as a listener for the
same topic of the exchanged "turtlesim_msgs". At this point, to have an idea of
what happened in each of the switching phases, a state machine was defined for
such benchmarks (see Figure 6.1). It defines the moments in which to obtain
timestamps that are significant for the purpose, i.e. at the beginning and at the end
of the critical points of the algorithm, each associated with the proper operational
mode.
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LOCAL_MODE:
a) time it takes to activate a ROS node
b) time it takes for LocalPublisher messages to start after a lifecycle activation
c) time it takes to set a netpol
d) time it takes for RemotePublisher messages to stop after a new netpol
OFFLOADING_MODE:
e) time it takes to deactivate a ROS node
f) time it takes for LocalPublisher messages to stop after a lifecycle deactivation
g) time it takes to remove a netpol
h) time it takes for RemotePublisher messages to restart after the netpol removal

Figure 6.1: benchmark state machine

TLP publication frequency is set by default at 10.0 Hz (a message every 100ms).
The “test_controller” (i.e. the NC modified) completes one lap at the frequency

of 1Hz (1 cycle per second). However, it is important to understand how the time()
functions used to get a single timestamp are independent on how fast the NC runs
because, in this test case, they are not triggered according to the original network
monitoring logic, rather they trigger anytime a message is written on the topic,
finally allowing to compute the difference between each pair of time values, placed
before and after a single operation.

The following histogram in figure 6.2 (local_mode) shows the amounts of time
necessary for the point a) and c), that is comparing the Lifecyle Activation time
of a node to the Network Policy time required for it to become effective and thus
actually stopping the remote publisher to talk.

The local lifecycle activation, i.e., the time between the service call and the
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server related response, is very fast; instead, the time needed for the Network Policy
to apply can be sometimes be larger.

The diagram reflects how the value remains around 20ms on average for both
the operations.

Figure 6.2: comparison of operations a) and c) for local_mode

As far as the next diagram in figure 6.3, it compares operations b) and h): once
the ROS service request for activation arrives and the netpol is applied, it takes a
certain amount of time for the respective effects to be visible.

[In the left chart]: the reaction time of the LocalPublisher is quite good.
[In the right chart]: this data actually has the most crucial meaning: the

RemotePublisher sometimes cause the state machine to hang in this algorithm step,
giving the impression that the remote publisher has stopped publishing. On the x
axis in fact, this is the only case in which the scale has been set to seconds rather
than milliseconds because of the higher average time needed. Actually, the TLP
on the remote cluster never stops sending messages: once it has been activated
in the first orchestration and setup phase there is no one asking it to turn off.
Therefore, the reason of the problem must be sought deeper in the nature of the
operation and among the actors involved. At the time of writing, the reason of this
spurious behaviors is not yet clear. An attempt has been done forcing the Network
Policy “grace period” to 0 i.e., the time between the moment that you issue a K8s
resource request for termination and the effective deletion, but it had no different
results. At the end of chapter 5, the time factor was already mentioned trying
to figure out the responsible for such arbitrary delay. The first hypothesis of the
machine overload (perhaps even worsen by the ongoing huge amount of collected
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test logs at those frequencies) no longer seems plausible after an additional try
on a more powerful VM. It may be related to how the active connection, once
being established by Zenoh, possibly cannot always immediately react to a new
network rule: this could be Cilium specific or a more general problem, as it looks
like it is independent from the moment in which the NetworkPolicy is applied and
observable (its effect may come later). Further and stricter tests need to be done
in order to collect other results and evidences.

Figure 6.3: restart time required for nodes activity

These tests, as mentioned in the previous chapters, concern the create-and-delete
approach for the Network Policies resource lifecycle. It is unknown how much
the opposite create-then-patch approach might change the obtained results. This
could be further explored, although a significant change is not expected, nor it has
been possible, at the time of writing, to find a suitable and working patch for the
specific netpol used here, capable of re-enabling the remote publisher by patching
the first policy and not by deleting it. Actually, one patch was found, but only
in a preliminary test phase when still working directly with the resources yaml
files. Unfortunately, the transition ratio from what can be applied manually or
by means of the K8s client libraries is not 1:1: the point is in the modifications
that have to be applied to the CiliumNetworkPolicy syntax in order to work from
inside a Python script, since they must be written differently from the original
file (even just the indentation) to be successfully interpreted, and this may lead
to an overall distinct behavior. Despite the large number of attempts made, it
cannot be excluded the existence of the right combination of a netpol and its patch,
especially considering how many different kinds of resource exist (the default K8s
NetworkPolicies, the ones provided by Cilium or other CNIs), nor it is certain it
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would lead to better performances in terms of actual application time.

The third chart in figure 6.4 shows a result similar to the first one: deactivating a
node or deleting a netpol does not take much time.

Figure 6.4: comparison of operations e) and g) for offloading_mode

It is interesting to observe how the fourth histogram for the last two operations
actually misses. The time taken for a local/remote node to stop talking in fact is
null in both cases: when it comes to stopping, the traffic disappears immediately.
It was observed many times that the system is more inclined to stop than to restart.
This result is actually not bad news, because if it is the transition from local to
offloading that requires a greater amount of time, the algorithm should in theory
be able to "absorb" this time. The system is in fact intentionally designed to keep
working locally in the meantime and then, at some point, switching again, but only
when "everything is ready", i.e. when the next netpol is by then applied and remote
messages are coming. Thinking of a future different implementation, this kind of
“ready-notice” might therefore be carry out by some Kubernetes lifecycle hook
for the resources, or even by providing some kind of signal from the Zenoh-bridge
informing that messages are finally coming.
In conclusion the final practice demonstration for this hybrid implementation led to
satisfactory results and revealed key considerations for future development. More
extensive testing and evaluations on physical robots in a real-world environment
will provide further data, with the aim of putting this prototype into practice.
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6.2 Zenoh and Liqo performances

The tests performed in previous projects and discussed as “related works” in Chap-
ter 2, allowed to make a significant choice by taking Zenoh and the ROS Lifecycle
abstraction as two of the main tools for this final implementation. The architecture
analyzed in this thesis is certainly different, as from the beginning it aimed to
be a more generic solution. However, the current results can finally confirm the
expected good performance of such technologies, even with different architectures
and implementations.

Regarding the publish-subscribe technology chosen to solve the DDS limitations,
Zenoh has proven to be a very good choice, especially for being perfectly trans-
parent towards ROS nodes that rely on the bridge/router to advertise their topics
and services. It is well integrated with such robotic environment and is able to
handle the compression and optimization aspects of the exchanged data strictly
necessary for internet-scale applications. For all these reasons, Zenoh has been
announced as the official future ROS2 middleware (RMW), meaning that future
architectures for this use case will probably not need additional cluster deployments
for its components. Official performance comparisons have been done among Zenoh,
and other brokers like MQTT, Kafka, and DDS [7]. The available results show
that Zenoh consistently outperforms MQTT and Kafka as far as throughput and
latency evaluation, thanks to the low overhead design and multiple optimization
techniques embedded in its implementation. Besides the performance, Zenoh also
come with the simplest API and the shortest learning curve, surely presenting itself
as one of the best choices for industrial, IoT, automotive applications, and robots
that can seamlessly support the Cloud continuum.

When thinking about the most general multi-cluster architecture for a task-
offloading scenario, it is certainly important to analyze also Liqo performances.
The official documentation shows extensive results about it, focusing on the time
required for the peering and namespace offloading main operations [9]. It is reported
how the association of a ForeignCluster might require no more than a few seconds,
while the Liqo reflection logic performance overhead is very limited, accounting for
only a few milliseconds even in the most demanding scenario. In terms of CPU and
RAM needed to work in a cluster, it is capable of satisfying also the requirements
of resource-constrained devices. Finally, it is clear how Liqo simplifies multi-cluster
Kubernetes management, allowing applications to seamlessly leverage resources
across remote infrastructures. Despite these promising benchmarks, the particular
use case and architecture discussed in this thesis does not actually directly benefit
from extremely good Liqo performances. In fact, as explained before, a small
set of operations, including peering and namespace offloading, are performed in
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a preventive phase aiming at preparing the clusters configuration. This means
that, although these operations visually prove to take very little time, they cannot
influence either the testing phase or the final behavior of this kind of application,
since they occur before it is started. The overall system of this prototype is therefore
independent from the time needed to put into practice the desired scenario and
from the nature of the resources to create, thus not suffering any additional delays
even if a single pod has to spawn multiple side containers.
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Conclusion

This thesis has investigated Cloud offloading, a technique that leverages remote
Cloud servers to augment the capabilities of mobile robots and, more generally, of
Cloud-native services. By offloading some computations, the robots are no longer
restricted by their onboard processing power and storage. This clearly helps saving
the robots battery and computing power, enabling them to perform more complex
tasks. However, some key challenges have to be addressed: sending data back and
forth creates delays (latency) which can be a problem for real-time tasks like the
ones related to autonomous-driving vehicles. Also, sending potentially sensitive
data to the Cloud may expose to security risks. The solution has been about trying
to increasingly shorten the distances, exploring new technologies for Edge/Fog
computing. By combining nearby datacenters power with local processing on the
robot, it is finally possible to get advantages from both the approaches, while
minimizing latency and security risks, thus effectively exploiting the benefits of
this Cloud Continuum.

While the prototype developed in this work has utilized a simulated environment,
the results suggest its applicability to real-world scenarios on a much larger scale.
This opens the door to further investigation of the potential of such an approach
based on tools like Liqo, leading towards a future of “Cloud-to-anything” computing,
where resources can be seamlessly accessed from any device or location.

7.1 Future works
The most challenging and complete scenario to actualize would be the one with
multiple Liqo-peers of different nature (see figure 7.1). The key technology is
Multi-access Edge Computing (MEC) which consists in near real-time processing
of large amounts of data produced by edge devices and applications closer to the
location of acquisition. In other words, an edge extension of the edge network
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infrastructure, obtained by placing micro-datacenters near the robot. A radio
access network (RAN) is the part of a mobile network that connects end-user
devices, like smartphones, to the Cloud. For telecommunications network operators,
RANs are crucial connection points that perform intensive and complex processing,
today facing the rapid increasing demand of edge and 5G devices emerging as
telco customers [10]. MEC implementations make RAN accessible to authorized
application developers and content providers, allowing them to use edge computing
either at the application level or at the lower level of network functions and
information processing [11].

Future implementations could provide the robots with discover abilities to find
partner servers within the edge of the network, like RAN servers or other nearby
robots found via wireless protocols. This can be done by upgrading the switching
algorithm and making it become a choice of the best solution among all these
available servers where to offload tasks to, effectively reducing delays and reducing
the distances. These new functionalities imply equipping the Network Controller
node with some more sophisticated logic for identifying the most promising node
from time to time, according to its instantaneous free processing power and the
correspondent network link quality. A pseudo-code for the complete version has
already been designed for this thesis.

Figure 7.1: “Cloud-to-anything” scenario
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It is definitely complicated to understand the extent to which a standby robot
can be exploited as a pool of free computational resources, for a moment stopping
itself to be the one that exploits it. Usually, the offloading to a different server
is executed only after checking it is possible to work on it at higher frequencies.
Conversely, it would be necessary to prove how much could a nearby robot actually
become the host of an offloaded task, assuming the best scenario in which that
robot is totally idle. Furthermore, in this robot-to-robot architecture, wireless
coverage, signal quality and bandwidth aspects weigh even more, as well as the
question of security (although Liqo internally takes advantages of an ad-hoc VPN
actually mitigating that problem by design, at least partially). This study might
also positively affect the design phase of robot fleets, helping to create lighter
prototypes which are energy-efficient and able to perform more complex tasks. In
short, this particular use case has to be deeply explored, highlighting what it means
to move from "every robot is a cluster" to a "cluster of all nearby robots".

As far as the NC network monitoring internal module, it can surely be as
sophisticated as desired. Different applications, depending on how critical they are,
may need different tuning of all the related parameters, such as packet-drop rate,
SNR, latency and jitter. Recent works proposed an AI-Augmented Kalman filter
which, instead of assuming explicit model knowledge for both its state prediction
and correction phases, is able to learn such model from direct measurements of the
network conditions and construct the filter in a data-driven way [12].

Other useful extra features could be the support to multiple tasks simul-
taneous offloading as well as for a dynamic peer-list. At the moment, the
remote cluster of the single peer is in fact coupled manually in the configuration
phase, hence a dynamic Liqo-based peering mechanism would be smarter and more
automated. This could make the most of some Wi-Fi heatmap-software to find idle
robots nearby.

Differently from the turtlesim used for testing, real-world devices come with
stateful applications. One example may be of course autonomous-driving vehicles:
they continuously need comprehensive information about the cost map of the
surrounding environment they are travelling through. A sort of distributed storage
is therefore needed and one of the possible solutions, already implemented in some
previous works, is exploiting ROS2 services and specific topics adapted for the
storage function. The aim is making those nodes that are deployed across the
peers’ clusters to quickly synchronize, by obtaining all the information stored up to
that moment, or at least a minimum set of configuration data useful for continuing
navigation.

In conclusion, several promising technologies need further investigation to achieve
the most efficient task offloading strategy, finally leading to significant performance
improvements for real-world applications. This study makes significant contri-
butions to a topic actively explored by researchers and industries alike, offering
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insights from diverse perspectives and application types. Notably, this research has
made substantial progress in defining the overall project direction, paving the way
for real-world implementations of edge-to-anything architectures that can benefit a
vast array of devices.
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