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Summary

Tone mapping is an essential step in the image processing pipeline to map the
content of HDR input images to the reference display. The simplest approach to
perform tone mapping is to apply a certain mathematical function to the luminance
component of an image and then propagate the change to the triplet of R, G and
B values. However, this operation might introduce some color distortion since the
luminance and the chrominance are not always well separated and modifying one
can affect the other. This project comes to life with the aim of identifying an
alternative and more efficient solution to the tone mapping task especially when
the application addressed requires to maintain color fidelity.

The core of this investigation is to test several tone mapping operators (TMOs)
but in a different domain than the usual one. Specifically, instead of applying this
mapping as described above, the objective is to first perform a decomposition of
the image and then carry out the tone mapping operation exploiting the newly
obtained intrinsic components, which offer unique and detailed information about
the image itself.
Upon completing the decomposition phase, the primary aim is to evaluate the
efficacy of this splitting process in mitigating color distortion. Furthermore, we seek
to ascertain if it can play a constructive role in assisting tone mapping algorithms,
ultimately elevating the overall quality of the image.
On the one hand, the decomposition task is mainly tackled by leveraging AI-
based solutions. On the other hand, only traditional TMOs are tested. Starting
to demonstrate the effectiveness of the methodology with simpler models, more
complex ones can be gradually introduced.

The results obtained are evaluated by comparing them with those of other famous
methodologies found in the literature, using quantitative metrics and carrying out
psychophysical experiments.
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Résumé

Tone mapping est une étape essentielle dans le traitement d’images pour mapper le
contenu des images HDR sur l’affichage de référence. L’approche la plus simple pour
effectuer le tone mapping consiste à appliquer une certaine fonction mathématique
au composant de luminance d’une image, puis à propager le changement aux valeurs
des triplets RGB. Cependant, cette opération peut introduire des distorsions de
couleur, car la luminance et la chrominance ne sont pas toujours bien séparées, et
la modification de l’une peut affecter l’autre. Ce projet a pour but d’identifier une
solution alternative et plus efficace pour réaliser la tâche de tone mapping, surtout
lorsque le domaine d’utilisation nécessite de maintenir la fidélité des couleurs.

Le coeur de cette étude consiste à tester plusieurs opérateurs de tone mapping
(TMOs), mais dans un domaine différent de celui habituel. Plus précisément, au
lieu d’appliquer un mapping comme décrit précédemment, l’objectif est d’effectuer
d’abord une décomposition de l’image, puis de réaliser l’opération de tone mapping
en exploitant les composantes intrinsèques nouvellement obtenues, qui offrent des
informations uniques et détaillées sur l’image elle-même.
Une fois la phase de décomposition terminée, l’objectif principal est d’évaluer
l’efficacité de ce processus de séparation sur l’atténuation de la distorsion des
couleurs. De plus, nous cherchons à déterminer s’il peut jouer un rôle constructif en
aidant les algorithmes de tone mapping, élevant ainsi la qualité globale de l’image.
D’une part, la tâche de décomposition est principalement abordée en exploitant
des solutions basées sur l’intelligence artificielle. D’autre part, seuls les TMOs
traditionnels sont testé. Commencer par démontrer l’efficacité de la méthodologie
avec des modèles plus simples permet d’introduire progressivement des modèles
plus complexes.

Les résultats obtenus sont évalués en les comparant à ceux d’autres approches
réputées présentes dans la littérature, en utilisant des mesures quantitatives et en
réalisant des expériences psychophysiques.
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Chapter 1

Introduction

1.1 Huawei Technologies
Huawei Technologies Co. Ltd., established in 1987 in Shenzhen, China, has emerged
as a global leader in Information and Communications Technology (ICT). The
company’s extensive operations span across various sectors including Telecommuni-
cations, Consumer Electronics, Semiconductors, and Cloud Computing. Renowned
for its substantial investment in Research and Development, Huawei plays a pivotal
role in advancing technological innovation. Serving over a third of the world’s
population, its international presence extends to more than 140 countries.

Figure 1.1: Huawei’s localized operations.
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Huawei’s commitment to technological development is paralleled by its dedication
to social responsibility, with initiatives supporting tech startups, environmental
sustainability, and educational projects. These efforts underscore Huawei’s vision
of creating a fully connected, intelligent world, while promoting sustainable devel-
opment and fostering young talent in the tech industry. Huawei’s mission in France
for the past 16 years has centered on fostering a lasting connection between the
French population and cultural, innovative, and design initiatives.

Figure 1.2: Huawei’s mission.

In the domains of Research and Development, Huawei operates five centers in
France with over 100 researchers focusing on 5G, AI, Photography, and Design.
Academic collaboration includes partnerships with institutions like the Master
DAST Paris-Sud and the Talent Numérique program (Seeds For the Future) with
IMT Lille, Telecom Paris Tech, and INSA Lyon. Furthermore, Huawei France
contributes to cultural initiatives by supporting institutions such as the Paris Opera
and the Museum of Fine Arts in Lille. This multifaceted engagement underscores
Huawei’s dedication to forging meaningful connections within the French landscape.

1.2 Nice Research Center
Situated in Mougins, the Huawei Nice Research Center is the second-biggest facility
in France, surpassed only by the renowned Paris site. Established in 2013 under Mr.
Stephen Busch’s leadership, it started with only 9 members whose initial initial
mission was to create a complete Image Signal Processor (ISP). The center’s focus
on ISP technology for smartphone cameras has been pivotal, with constant updates
in image processing algorithms for better features. More recently, they’ve delved
into AI domain, recognizing its potential, although mindful of the challenges like
the hunger for data and energy. Facing these challenges, the center shifted gears
to work on top-notch Computer Vision algorithms for ISPs. Over the years, the
focus of this hub has transitioned from predominantly development to achieving a
blend of development and research. It has evolved into a nexus where business and
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university cultures converge, presenting prospects such as internships for Bachelor’s
or Master’s students and research projects for those pursuing Doctorates.

1.3 Project Plan
In the realm of digital imaging and computer graphics, tone mapping stands as
a pivotal technique, serving as a bridge between the dynamic range of real-world
scenes and the limited capabilities of display devices. A critical aspect under scrutiny
is the issue of color distortion encountered in tone mapping due to the potential
interference between luminosity and chromatic information meaning that altering
one of them may impact the other. This thesis explores the multifaceted landscape
of tone mapping, delving into its theoretical foundations, practical applications
and algorithmic intricacies with the clear aim of identifying an alternative solution
to the aforementioned problem.
An in-depth investigation conducted into methods that can mitigate this type of
color artifact suggested a change of the typical domain of action of a generic tone
mapping operator (TMO) as a possible solution. The domain shift is achieved
by performing a preliminary separation of the image into its two constituent
components: reflectance and shading. This splitting method is known as Intrinsic
Image Decomposition (IID) and it is used in computer vision and image processing in
order to facilitate a deeper understanding of image content by disentangling intrinsic
scene properties from lighting variations. As a matter of fact, the decomposition
should be carried out such that the reflectance component delivers information
about the inherent color and texture of the objects in a scene, while the shading
component accounts for the illumination effects over those objects.
This project can be seen as broken down into two main steps: the first one dedicated
to the study of the IID problem and the search for AI-based solutions and the
second one which involves the use of the results obtained in the previous step to
test mainly traditional TMOs but paving the way for the eventual examination
of more sophisticated approaches that harness the capabilities of Convolutional
Neural Networks (CNNs).

1.4 Resources and Development Tools
The workload has been spread across a local workstation and a remote server to
leverage the computational power of an external Graphics Processing Unit (GPU).
The local device is an HP EliteBook 840 G5 equipped with an Intel(R) Core(TM)
i7 processor, 16.0 GB RAM, and running a 64-bit Windows 10 Pro system with
an x64-based processor. The remote machine, also running a Windows operating
system, boasts an NVIDIA GeForce RTX 2080 Ti with 16GB of memory. Python
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3.11.5 version was chosen as the main programming language since it is very suitable
for dealing with deep learning tasks. The code was written and executed in VS
Code, a source-code editor developed by Microsoft.
Various libraries have been exploited throughout the process:

• argparse [1]: Argparse is a Python module for parsing command-line argu-
ments, options, and sub-commands. It facilitates the creation of user-friendly
command-line interfaces by defining the arguments a script can accept, auto-
matically generating help messages, and handling user input.

• cv2 [2]: OpenCV (Open Source Computer Vision Library) is an open-source
computer vision and machine learning software library. It contains a collection
of tools and algorithms for image and video processing, computer vision tasks,
and machine learning.

• glob [3]: The glob module provides a function that finds all pathnames
matching a specified pattern according to the rules used by the Unix shell.
This is useful for searching, matching, and processing file paths based on
wildcards.

• h5py [4]: The h5py module is a Python interface to the HDF5 (Hierarchical
Data Format version 5) library. It allows to store and manipulate large datasets
efficiently, providing a convenient way to work with structured data.

• imageio [5]: It is a Python library for reading and writing images in a variety
of formats. It provides an easy-to-use interface for working with images and
supports a wide range of image file formats.

• matplotlib [6]: Matplotlib is a 2D plotting library for Python. It produces
high-quality visualizations, including charts, plots, histograms, and more.
Matplotlib is widely used for creating static, animated, and interactive plots.

• numpy [7]: NumPy is a fundamental package for scientific computing in
Python. It provides support for large, multi-dimensional arrays and matrices,
along with mathematical functions to operate on these arrays.

• os [8]: The os module provides a way to interact with the operating system.
It includes functions for working with file systems, accessing environment
variables, and executing system commands.

• pandas [9]: Pandas is a powerful data manipulation and analysis library. It
provides data structures like DataFrames for efficient handling and analysis of
structured data.
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• PIL [10]: Pillow is a modern fork of the Python Imaging Library (PIL). It
adds support for opening, manipulating, and saving many different image file
formats.

• random [11]: The random module provides functions for generating pseudo-
random numbers. It is commonly used for tasks involving randomness and
probability

• re [12]: The re module is Python’s regular expression module. It provides
functions for working with regular expressions, allowing pattern matching and
manipulation of strings based on specific patterns.

• scipy [13]: SciPy is an open-source library for mathematics, science, and engi-
neering. It builds on NumPy and provides additional functionality, including
optimization, signal and image processing, statistical functions, and more.

• shutil [14]: The shutil module provides a higher-level interface for file opera-
tions, including file copying, removal, and archiving. It simplifies common file
and directory manipulation tasks.

• skimage [15]: scikit-image is an image processing library that is part of the
scikit-learn ecosystem. It provides algorithms and tools for various image
processing tasks.

• time [16]: The time module provides functions for working with time, including
measuring and manipulating time, as well as dealing with timestamps.

• torch [17]: PyTorch is an open-source deep learning library. It provides a
flexible and dynamic computational graph, making it suitable for research and
production in machine learning tasks.

• torchvision [18]: torchvision is a package in PyTorch that provides utility
functions and pre-trained models for computer vision tasks. It simplifies
working with image datasets and models in the context of PyTorch.

• tqdm [19]: tqdm is a library for creating progress bars in the command line
interface. It provides a simple way to visualize the progress of iterative tasks,
enhancing the user experience during lengthy computations or loops.

In addition, several image processing algorithms have been implemented in GNU
Octave, mainly exploiting the functions made available by the HDR ToolBox, a
toolbox for processing High Dynamic Range content, from Banterle et al.[20].
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Chapter 2

Foundational Concepts

2.1 HDR Imaging
HDR images encompass pixels that can portray a significantly broader spectrum of
colors and luminosity than what conventional standard dynamic range images can
achieve. These enhanced pixels contribute substantially to elevating the overall
excellence of visual content, resulting in a heightened sense of realism and visual
allure for the audience.
With the following paragraphs the intent is to review the main notions in the
context of HDR imaging, moving from the meaning of dynamic range to revealing
why it is so important and necessary to carry out the tone mapping operation.

2.1.1 Dynamic Range
In engineering, the concept of dynamic range delineates the ratio between the
highest and lowest magnitudes within consideration. When applied to images, the
observed quantities are the luminance levels which represent a photometric amount
that characterizes the perceived intensity of light per surface area. Various dynamic
range measures exist depending on the context.
One such metric is the contrast ratio, specifically employed in display systems.
It characterizes the relationship between the luminance of the brightest color a
display can produce (white) and the darkest (black). Normalization is often applied,
ensuring the second value is consistently one.

CR = Ypeak

Ynoise
: 1 (2.1)

Another prevalent measure in high dynamic range imaging is the log exposure range.
It quantifies the dynamic range of scenes by calculating the base-10 logarithm of
the difference between the brightest and darkest luminance. Logarithmic values
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are favored for their ability to better represent perceived differences in dynamic
range compared to the contrast ratio.

D = log10(Ypeak)− log10(Ynoise) (2.2)

Exposure latitude, expressed in logarithm base 2, accounts for the film’s capturing
capability relative to the photographed scene’s luminance range. This measure,
denoted in stop steps, is relevant in HDR photography, providing insight into the
margin of error photographers can afford in setting exposure parameters while still
achieving a satisfactory image.

L = log2(Ypeak)− log2(Ynoise) (2.3)

On the digital camera front, the signal-to-noise ratio (SNR) is a prevalent metric for
expressing dynamic range. Typically measured as the ratio between the intensity
causing image sensor saturation and the minimum observable intensity above sensor
noise, SNR is presented in decibels using a 20 times base-10 logarithm.

SNR = 20 · log10

3
Ypeak

Ynoise

4
(2.4)

Figure 2.1: Luminance range. From [21].

Figure 2.1 depicts the relationship between color perception, sRGB color gamut, and
luminance capabilities of traditional monitors. The translucent three-dimensional
structure on the left side encapsulates the full spectrum of colors perceptible to
the human eye. As it descends towards the base, it visually communicates the
gradual reduction in color visibility under lower luminance conditions. In stark
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contrast, the enclosed crimson solid represents the well-defined sRGB (Rec. 709)
color gamut, a top-tier display known for its faithfully color reproduction. Shifting
attention to the right side, the graphic juxtaposes actual luminance values against
the luminance range achievable by Cathode Ray Tube (CRT) and Liquid Crystal
Display (LCD) monitors. This visual depiction effectively showcases the real-world
luminance levels and draws a parallel with the limited luminance capabilities of
traditional CRT and LCD monitors. It’s noteworthy that much of today’s digital
content adheres to a format that, at its peak, preserves the dynamic range akin to
that of conventional displays.

2.1.2 Understanding the Differences: LDR and HDR

Low Dynamic Range (LDR) and High Dynamic Range (HDR) images represent
two distinct approaches to capturing and displaying the range of luminance levels
in a scene. LDR images are traditional images that have a limited dynamic range,
meaning they depict a relatively narrow range of brightness levels from dark to
light. Hence, these resulting images can exhibit extremes of brightness, leading to
either excessive illumination (overexposed) or insufficient lighting (underexposed).
In instances of excessive brightness, the camera captures solely the brighter subset
of the infinite luminance range, while conversely, in the case of darker images, only
the lower subset is captured.

Figure 2.2: From left to right: true image, overexposed and underexposed.
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In contrast, HDR images aim to capture a broader spectrum of luminance, including
details in both the darkest shadows and the brightest highlights. Addressing this
challenge involves the amalgamation of images acquired at various exposure levels.
The benefit lies in the synergy between overexposed images, adept at capturing
details in darker regions, and underexposed images, capable of mitigating intensity
in overly bright areas. In this sense, distinct sections of the image are optimally
captured at different exposure values. This process is also known as image bracketing.
The overarching concept is to blend this array of images, enabling the retrieval of
a composite image characterized by a heightened dynamic range.

Figure 2.3: Multi-exposure HDR capture.

In addition to the differences in capturing dynamic range, it’s essential to understand
the nuances in how pixel values are represented in HDR and LDR images. In HDR
images, pixel values maintain a linear relationship with luminance. This linear
relationship allows HDR images to accurately portray the full range of brightness
levels in a scene. Conversely, LDR images exhibit a non-linear relationship between
pixel values and photometric values. As a matter of fact, in LDR images the
brightness values are often adjusted to fit within a specific range. The key factor
of this adjustment refers to how display devices function. In the past, when CRT
displays were common, the technology involved firing electrons onto a phosphor
surface. When the electrons hit the phosphor screen, it emitted photons, creating
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the visible image. However, the brightness of the displayed image didn’t change
proportionally with the strength of the electron beam. To address this issue, the
incoming image or video signals were modified in a non-linear way opposite to the
display’s non-linearity. This adjustment aimed to obtain a more accurate linear
representation of the original scene brightness. Even though display technologies
have evolved, many devices still exhibit non-linear behavior. To counteract this, the
process of adjusting the source image non-linearly is known as gamma correction.

Igamma = I 1/γ (2.5)

Essentially, this encoding helps compensate for the non-linear characteristics of
displays, ensuring that what is seen on the screen better reflects the true brightness
of the captured scene.
Considered an input image denoted as I, a display device with a certain value of γ
shows the image as I γ. To ensure that the displayed image accurately represents
the original, the input image is encoded as I 1/γ.

Figure 2.4: From left to right: image with 1/γ values equal to 1, 1.5 and 0.5.

Gamma correction and tone mapping are related concepts, even if they serve
different purposes in the context of image processing. The former is more concerned
with the perceptual aspects of brightness, whereas the latter deals with adapting
images from a high dynamic range to a lower dynamic range.

2.2 Tone Mapping
In general terms, tone mapping is intended as a technique employed in digital
imaging to manage, somehow, the dynamic range of an image, ensuring that details
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in both bright and dark areas are perceptually balanced. This operation becomes
crucial when dealing with HDR images as it aims to compress the wide range of
luminance levels for display on standard monitors or print media.

2.2.1 Purposes of Tone Mapping
When referring to the term tone mapping, however, there is a multitude of objectives
associated with this type of operation, as well as the methodologies employed and
the applications addressed. This often leads to confusion and misunderstandings,
making it crucial to clearly delineate these goals. In their work, Mantiuk et al.[21]
claim that tone mapping operators can be broadly categorized into three groups:

• Visual system simulators (VSS): They try to emulate human visual limi-
tations, such as introducing glare or adapting for different lighting conditions.

• Scene reproduction operators (SRP): The focus is on preserving the
original scene’s appearance, particularly on devices with limited color gamut,
contrast, and peak luminance.

• Best subjective quality operators (BSQ): They are designed to produce
specific images that match the subjective appreciation or the artistic goal.

Figure 2.5: Tone mapping purposes. Adapted from [21].

Since the objective of this work is to find tone mapping solutions that do not
alter the colors in an image and more generally its appearance, the tone mapping
category of interest is that of SRP operators.
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2.2.2 Traditional Approach

In the theoretical framework illustrated so far, it can therefore be argued that the
tone mapping operation is nothing more than the application of a mathematical
function f that maps the content of HDR images to the reference display. This
function f concentrates on surpassing the constraints of the output medium, striving
to attain the optimal representation within the restricted gamut and dynamic range.
Traditional tone mapping techniques often involve a process of extracting the
luminance information from an RGB image, applying a tone mapping operator to
the luminance, and then spreading the modification back to the color channels. To
better illustrate the process with an example, a very popular TMO proposed by
Reinhard et al.[22], is used below.

Let I RGB(x, y) be the original RGB image, where x and y are pixel coordinates.
As mentioned before, the first step involves extracting the luminance, L(x, y), from
the RGB image. One common method is to use the following formula1:

L(x, y) = 0.2126 ·R(x, y) + 0.7152 ·G(x, y) + 0.0722 ·B(x, y), (2.6)

where R(x, y), G(x, y), and B(x, y) are the red, green, and blue channels of the
original image, respectively.
Next, the TMO (i.e. the aforementioned function f ) is applied to the luminance.
In the case of the Reinhard operator, the mapping is defined as follows:

Lmapped(x, y) =
L(x, y) · (1 + L(x,y)

L2
white

)
1 + L(x, y) , (2.7)

where Lwhite is a parameter representing the luminance of the brightest white in
the scene.
Finally, the modified luminance is used to adjust each color channel:

1This way of computing the luminance holds when the RGB image is encoded using Rec.709
standard [23]
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Rmapped(x, y) = R(x, y)
L(x, y) · Lmapped(x, y), (2.8)

Gmapped(x, y) = G(x, y)
L(x, y) · Lmapped(x, y), (2.9)

Bmapped(x, y) = B(x, y)
L(x, y) · Lmapped(x, y). (2.10)

The tone-mapped RGB image is therefore given by:

I mapped(x, y) =

Rmapped(x, y)
Gmapped(x, y)
Bmapped(x, y)

 . (2.11)

2.2.3 Limitations
The problem with this way of performing the tone mapping operation is that it
might introduce some color distortion. This phenomenon is due to the fact that
luminance and chrominance are not always well separated. In this sense, when the
luminance values are altered, implicitly color information is changing as well.

Figure 2.6: Color distortion across different shots.

Figure 2.6 shows three images captured by the same smartphone camera but with
different field of view and angle of shot. It can be easily seen how the red color of
the seats changes in each of the three shots, ending up being particularly saturated
in the most right example.
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Having become aware of the problem that arises in this methodology, the following
chapters of this project will focus on the proposal of an alternative method and
the search for an effective possibility of obtaining qualitatively better results.

14



Chapter 3

Intrinsic Decomposition Step

3.1 Definition and Applications
Images are produced through a sophisticated interplay between light and matter,
culminating in a blend of colors, tones, and shadows. The reversed process of
identifying and separating the constructive components of an image, given itself, is
known as Intrinsic Image Decomposition (IID).
IID is a fundamental concept in the field of computer vision and graphics and it
involves the factorization of an image into two primary components: reflectance
(or albedo) and shading (or lighting).

I = R⊙ S (3.1)

Equation 3.1 describes the intrinsic model, which aims to represent the original
image I as a pixel-wise multiplication between R and S, respectively the reflectance
and the shading component. On the one hand, reflectance delivers information
about the shape, the texture and the inherent color of an object, discarding any
kind of lighting effects. On the other hand, shading captures the effects of light
interacting with the object’s geometry, resulting in shadows and highlights.
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Figure 3.1: Decomposition example. On the top row original images, on the
middle and bottom rows, respectively, reflectance and gray-scale shading. From
[24].

This decomposition process provides a simplified yet insightful understanding of
how images are formed, making it a valuable tool in various applications.
Since the intrinsic model should distinguish between properties of a scene that are
unaffected by illumination and those that are dependent on lighting, it becomes
crucial in numerous computational photography processes such as altering lighting
conditions (i.e. relighting), changing colors (i.e. recoloring), and combining visual
elements from various sources (i.e. compositing). Furthermore, this method is
instrumental in tasks like object recognition and scenes understanding as, by
isolating the effects of material properties and lighting conditions, it allows for
more robust and versatile image analysis and manipulation.
However, the effectiveness of this method is often subjected to the satisfaction
of the Lambertian assumption. What happens in reality is much more complex
than what the intrinsic model seen so far tries to describe. As a matter of
fact, even a straightforward environment can reveal numerous optical interactions.
These can include indirect lighting, internal scattering within translucent objects,
caustics, anisotropic and glossy reflections, among others. Taking all these factors
into consideration when formulating an intrinsic model can overly complicate the
problem. Instead, what is generally done is to consider a simplification of it, based
on the Lambertian assumption. This hypothesis puts a constraint on how light
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interacts with a surface. According to this model, the surface appears equally bright
from all viewing directions. In other words, the surface is assumed to be perfectly
diffusing, meaning it scatters incident light uniformly in all directions. The main
limitation is that this assumption is not always valid in real-world images, as many
surfaces are not perfectly diffusing and may exhibit properties such as specularity.

3.2 IID and Tone Mapping
There is convincing evidence in the literature that numerous processes in our visual
system are designed to minimize the impact of light. For example, the human
visual system has the ability to diminish the effect of lighting and approximately
preserve the appearance of an object by making its color stable over a wide range
of possible lighting. If, in this sense, light appears to be of lesser significance, it’s
probable that alterations to the shading component will be less noticeable than
changes to the reflectance one. Limiting modifications only to the light component
could be particularly beneficial in the context of tone mapping, as light is largely
accountable for the extensive dynamic range in real-world settings. Indeed the
maximum dynamic range generated solely by reflectance is less than two orders
of magnitude. Instead, the dynamic range of the shading component can easily
surpass four orders of magnitude, as reported in Mantiuk et al. [21]. This reasoning
legitimizes the idea of carrying out the tone mapping operation only on the shading
component obtained thanks to the decomposition model. The final tone mapped
image is then the result of multiplying the reflectance component, which has
remained unchanged, with the shading component, which has instead undergone
the necessary modifications. Figure 3.2 outlines the process that this work intends
to pursue: building a sort of framework that is able to perform, in chain, first the
decomposition of an image and then the tone mapping operation, by exploiting the
separation of the newly obtained intrinsic components. The objective is therefore
to compare the result obtained by following this method with that which would
be obtained if the same TMO were applied directly to the original image and
without going through the decomposition step. It is important to underline that it
is not wanted to ensure that the two results are almost identical but rather that,
through decomposition, there are noticeable (and good) differences in terms of
color distortion and overall picture quality.
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Figure 3.2: Project flowchart.

3.3 Employed Methods
Although the intrinsic model seems to require satisfying a simple equation like the
one described in 3.1, the problem of image decomposition is an ill-defined problem.
As a matter of fact, three different terms are involved into the equation, of which
only one is known, namely the original image I. The task of identifying the value
of the other two variables is complex because it is highly under-constrained – i.e.
considered a certain value for R and S whose product reconstruct I, also k ·R and
1
k
· S satisfy the equation for all the infinite possible values of k > 0.

Having taken into consideration the innate problem of intrinsic decomposition,
the determination of an image splitting that is as optimal as possible is gener-
ally addressed with two different approaches: traditional methods and AI-based
methods.

3.3.1 Optimization based Algorithms
Traditional methods for intrinsic images rely on optimization-based techniques.
These methods incorporate various assumptions - i.e. priors - about the world,
in the attempt to constrain the problem and reduce the solution space. For
example, possible constraints explored by previous works are piece-wise constancy,
parsimony of reflectance, shading smoothness (etc.). However, these manually
designed assumptions often fall short when applied to real-world images, as they
are challenging to formulate and frequently breached.
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To enhance the quality of decomposition, recent techniques have attempted to
incorporate surface normals or depth information from RGB-D cameras into the
optimization process. Nevertheless, these techniques presuppose the availability of
depth maps during the optimization, which limits their applicability to a broad
spectrum of everyday photographs.

3.3.2 Learning based Algorithms
Recently, learning methods have been investigated as an alternative to traditional
models with manually designed priors for intrinsic images, or as a means to
automatically set the parameters of these models. Since the data taken into
consideration are images, Convolutional Neural Networks (CNNs) become a very
powerful tool and essentially the first choice in addressing the problem. With this
approach, the task is usually considered as a regression one and it is supervised
(i.e., the are labels associated with the images). More precisely, the problem is
defined as a multi output learning task since, given an input image, the objective
is to get two different output images. In these circumstances, the architectures
typically chosen involve one shared encoder and two distinct decoders. The encoder
will be responsible for carrying out feature extraction, providing a more compact
and meaningful version of the input image as an intermediate output, while the
two separate decoders will be responsible for reconstructing two separate images
starting from the latent space generated by the encoder. To retain intricate spatial
details, models are often augmented by incorporating skip connections between
corresponding layers in both the encoder and decoder networks.

Popular IID training datasets

Building a model capable of directly regress to the output decomposition requires
using various training datasets. Within this scope, some popular datasets are MPI
Sintel [25], MIT Intrinsics [26], and ShapeNet [27]. Two other very famous and
particularly used datasets are Intrinsic Images in the Wild (IIW) [28] and Shading
Annotations in the Wild (SAW) [29]. Both of them are based on indoor real-world
scene images but they consist of sparse, crowd-sourced reflectance and shading
annotations. Following this, several papers have trained CNN-based classifiers
on these sparse annotations and used the classifier outputs as priors for guiding
decomposition.
However, all the above described datasets alone are found to be inadequate for
training a direct regression approach due the fact that they either contain only
sparse annotations or just few images with a sophisticated structure and lighting
which allow the model to learn to behave even in more complex examples, such as
real ones.
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Dataset Size Setting Nature Illumination GT type

MPI Sintel 890 Animation non-PB Rendered Spatial-varying Full

MIT Intrinsics 110 Object Real Single Global Full

ShapeNet 2M+ Object PB Rendered Single Global Full

IIW 5200+ Scene Real Spatial-varying Sparse

SAW 6600+ Scene Real Spatial-varying Sparse

CGIntrinsics 20,000+ Scene PB Rendered Spatial-varying Full

OpenRooms 118,000+ Scene PB Rendered Spatial-varying Full

Hypersim 77,400 Scene PB Rendered Spatial-varying Full

Table 3.1: IID datasets comparison. PB stands for physically based. Adapted
from [24]

Since it is very difficult to obtain images with ground truth full data associated, the
most used approach is to exploit synthetically generated data to train CNN-based
models. In this direction, a very important work was conducted by Li et al. [24],
who created CGIntrinsics, the first large-scale scene-level intrinsic images dataset
based on high-quality physically-based rendering with over 20,000 images of indoor
scenes. Another massive work from Li et al. [30] led to the generation of a new
dataset called OpenRooms with broad applicability across computer vision, graphics
and robotics. It contains 118,233 HDR images from 1,287 different scenes with
associated ground truth geometry, material, lighting and semantics. Finally, a
very similar dataset recently released is Hypersim [31], a photorealistic synthetic
collection of images for holistic indoor scene understanding. To create this dataset,
a large repository of synthetic scenes created by professional artists was leveraged
and 77,400 HDR images of 461 indoor scenes with detailed per-pixel labels and
corresponding ground truth geometry were generated.
These last three datasets have significantly fueled the adoption of deep learning
solutions for the IID problem as they provide high-quality images, leading to
substantial enhancements in the generalization of CNNs trained on synthetic data
to real-world scenarios.

Related Works

CGIntrinsics
In addition to generating a synthetic image dataset for training deep learning
models, Li et al. [24] have proposed in their work a partially supervised learning
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method for training a CNN to directly predict reflectance and shading, by combining
ground truth from CGIntrinsics and sparse annotations from IIW and SAW. The
skeleton architecture is based on a variant of CycleGAN [32] which is a network
that performs unpaired image-to-image translation by moving from a specific style
or semantic domain to another one. However, in this work, a form of paired image-
to-image translation task is considered, as it suits best the overarching goal. For
each input image, there are specific corresponding reference images to take into
account when performing the intrinsic decomposition of an image in the way that
best approximate those ground truths.

Figure 3.3: CGIntrinsics network architecture. From [24].

PIE-Net
Previous approaches to IID primarily concentrated on the exploration of manually
crafted priors as a means to narrow down the solution space. These methods use
explicit priors to constraint the problem by formulating assumptions, sometimes
hard, about the world. However, this may highly restrict the usefulness of these
techniques. Deep learning methods, instead, have been developed based on implicit
restrictions as defined by the losses. But, these methods are entirely data-driven and
this may still limit the possibility of making them able to generalise well in different
scenarios. In addition, they can be negatively influenced by strong illumination
conditions causing the well-know problem of shading-reflectance leakages. As a
matter of fact, it often happens that, in the presence of strong shadows, the network
might misinterpret shading transitions as reflectance transitions. This occurs when
the gradient assumption, which wants that shading changes correspond to soft
gradients and reflectance transitions to hard ones, is breached. A good way to
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go is to merge these two different approaches using edge-driven hybrid networks.
PIE-Net, from Das et al. [33], represents an intrinsic CNN-based model whose basic
idea is to use illumination invariant gradients which only depend on reflectance
changes. Furthermore, by using a hierarchical CNN approach, with global and local
layers, this work aims at solving the aforementioned problem of shading/reflectance
misclassifications.

Figure 3.4: Shared Image and CCR
Encoder. From [33].

Figure 3.5: Linked and Unrefined Edge
Decoder. From [33].

Figure 3.6: Local Refinement Module. From [33].

The distinctive character of this work lies in the use of gradients based on illu-
mination invariant descriptors, Cross Color Ratios (CCR)(Figure 3.7). For an
RGB image and two adjacent pixels, denoted as p1 and p2, the Cross Color Ratios
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(CCRs) are defined as follows:

[MRG = Rp1Gp2

Rp2Gp1
, MRB = Rp1Bp2

Rp2Bp1
, MGB = Gp1Bp2

Gp2Bp1
, ] (3.2)

where MRG, MRB, and MGB represent the CCRs for the (R,G), (R,B), and
(G,B) channel pairs, respectively.
As shown in Figure 3.4, the original input image and its corresponding CCR image
undergo encoding via distinct encoders.

Figure 3.7: CCR as illumination invariant descriptors. They change only when
reflectance changes. From [33].

This enables the CCR Encoder to grasp features related to invariant reflectance tran-
sition irrespective of shading variations. Simultaneously, the image encoder acquires
a fused feature encompassing both shading and reflectance cues, autonomously.
These encoded representations are subsequently employed in the later stages of the
architecture, facilitating separate utilization of features for both global and local
layers. Consequently, the Linked Edge Decoder (LED) can learn both reflectance
and shading edges jointly and the output from each block of the LED is then fed
through an attention layer before being convolved through the respective block
in the unrefined decoder (Figure 3.5). As intrinsic components exhibit spatial
dependence, spatial attention layers have been incorporated allowing the network
to focus on specific image areas, where it is challenging performing a correct decom-
position. Finally, Figure 3.6 shows that the edge maps of reflectance and shading,
along with the unrefined reflectance and shading pairs, are combined and subjected
to convolution through a feature calibration layer for then undergoing processing
through an encoder-decoder to yield the ultimate outputs.
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IID via Ordinal Shading In
In the continuous study of the IID problem, a very recent work from Careaga et al.
[34] seems to have outlined an AI-based architecture that achieves good results in
a wide range of possible images (e.g. indoor, outdoor, with human faces etc..). In
the official paper, the authors claim that they successfully accomplish the task of
high-resolution intrinsic decomposition by dividing the problem into two segments.
Initially, they introduce a dense ordinal shading method that utilizes a shift-and
scale-invariant loss to predict ordinal shading cues, without confining the predictions
to adhere precisely to the intrinsic model equation (3.1). Subsequently, they merge
the low- and high-resolution ordinal predictions using another network to produce a
shading estimate that maintains both global consistency and local nuances. In the
first of the two steps, the idea is to create two ordinal shading estimates: one at the
receptive field resolution of the network, and another at a significantly higher reso-
lution. The low-resolution estimate offers globally coherent ordinal constraints, but
it lacks high-resolution details. Conversely, the high-resolution estimate includes
detailed shading discontinuities, providing dependable local constraints. These two
ordinal estimates are then used as input to the second network, along with the
original input image. With both global and local constraints readily available to the
network, it is possible to generate a globally consistent shading with high-resolution
details and sharp shading discontinuities. Finally, the corresponding reflectance is
calculated using the input image and the estimated shading, based on the intrinsic
equation.

Figure 3.8: IID via Ordinal Shading overview. From [34].
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Figure 3.8 summarizes what has been said so far. The proposed architecture
is made up of two separate parts which, when put together, produce the final
decomposition.

3.4 Testing Available IID Models
Of the models described above, particular attention has been paid to the last two in
the course of this work. In fact, in addition to being quite recent models, PIE-Net
[33] and IID via Ordinal Shading [34] promise to obtain good decomposition results
in terms of general perceived quality. Furthermore, for both architectures, the
authors have respectively released an already pre-trained version of their models,
making it possible to test their capabilities with any type of custom image. As the
study revolves around HDR images, the goal is to test the aforementioned models
using these kind of images as the primary dataset. However, to evaluate the quality
of the results, it would be very convenient to initially have images that act as a
reference for the decomposition. In other words, for a given image that is sent as
input to the IID model, the ground truth shading and reflectance associated with
that image must be possessed. In this way, the evaluation of the predictive power
of each model and of the images produced becomes quite immediate since a simple
visual comparison can be made.

3.4.1 Dataset: Hypersim
As already mentioned in the previous paragraphs, Hypersim [31] represents a
photorealistic synthetic dataset of HDR images, for which the entire ground truth
decomposition is available. This therefore implies that it is a dataset that lends
itself very well to the type of experiment that it was decided to conduct. These
images are part of a collection featuring various indoor scenes, each possessing
a resolution of 768 x 1024 and encoded across three color channels. However, in
addition to the now well-known intrinsic components reflectance and shading, there
is also a new term associated with each image, called residual, that captures view-
dependent lighting effects. All these three variables adhere, exhibiting negligible
error, to the following equation:

I = R⊙ S + C (3.3)

I, R, S, and C denote the input image, the reflectance component, the shading
component, and the non-diffuse residual term, respectively. In summary, the
decomposition proposed in this dataset is therefore formulated in a slightly different
way from that seen so far.
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Figure 3.9: Hypersim full ground truth decomposition. At the top, the original
image. At the bottom, from left to right, the reflectance, the shading and the
residual ground truth components.

Figure 3.9 depicts the complete ground truth decomposition of a given color image.
It can be observed how crucial information is embedded in the residual term: in
addition to completely capturing the content of certain regions of the image (e.g.,
windows), it also illustrates how objects interact with light.

3.5 PIE-Net Predictions
Input Normalization

IID architectures generally require the input to be a LDR image, as its content
is more easily manageable. In this sense, a typical operation that is performed
before testing the model is to apply a sort of encoding to the HDR image that
remaps its content to the point of making it an LDR image. In the specific case
of the Hypersim images, the same authors of the dataset have released an image
encoding algorithm, which they found out to be suitable for reproducing more
natural-looking images.
Given a linear HDR radiance image IHDR, the procedure involves first identifying
the 90th percentile intensity value, denoted as p90, which represents the pixel value
of the image such that the 90% of the remaining pixel values are less than or
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equal to that value. Following this, the image ILDR is then derived through the
transformation:

ILDR = α · (IHDR) γ (3.4)

where γ is the standard gamma correction factor of 1/2.2, and the parameter α is
computed to ensure that the value corresponding to p90 maps to 0.8. The resultant
image is finally constrained within the range [0, 1]. This mapping approach ensures
that, at most, 10% of the image pixels become saturated afterwards, producing
LDR images with a visually natural quality.

Figure 3.10: Hypersim preliminary normalization. Images at the top row represent
the HDR images without normalization (clipped for visualization). Images at the
bottom are the results after normalization.
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What is done to the images is exactly a tone mapping operation: a sort of gamma
correction is applied in order to map the linear (HDR) values in the [0, 1] interval,
as described in Figure 3.10. Each image undergoes modification by means of a
specific curve for each of it as it depends on the α parameter, which in turn is
recovered from the image itself via the percentile method.

Figure 3.11: Pre-trained model predictions.
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Results of the Pre-Trained Model

With the normalized images, the decomposition results can be finally obtained and
shown in Figure 3.11. It can be argued that the model does not perform very well as
the predictions it makes look distant from the available ground truths. Reflectance
components should show the object’s colors as they are, without any effects from
lighting. However, many reflections and specular highlights are not removed from
them. Furthermore, the shading components appear to be flat and sometimes fail
to faithfully recreate the original content of the images. The ineffectiveness of the
results can be generously justified by the fact that a simple pre-trained model was
used and it has been tested on images belonging to a domain perhaps different from
the one on which it was trained. As a matter of fact, this model has been trained
on Natural Environment Dataset (NED) [35], a collection of real outdoor images
representing gardens, whereas Hypersim contains only synthetic indoor scenes.
Taking into account what has been said, we believed that, by downstreaming a
new learning process using part of Hypersim, the model could refine its ability to
generate more accurate predictions.

3.5.1 Fine-tuning on Hypersim
All the reasoning just made boils down to performing the fine-tuning of the pre-
trained network on Hypersim. This technique allows to build upon the patterns and
structures already learnt from other datasets, reducing the time and computational
resources required for training. This is also particularly beneficial when dealing
with smaller datasets, as it mitigates the risk of overfitting. In fact, the idea is to
consider only a small part of the totality of images present in Hypersim in order to
fine-tune the model. To be able to arrange a dataset of images from Hypersim with
the aim of starting a learning process, for each input image entry there should be
associated two images, representing its decomposition ground truths.

Input Image Ground Truth Reflectance Ground Truth Shading

Table 3.2: Ideal dataset entry example.

Residual Term Handling

Recalling the Hypersim structure, each image is accompanied by a ground truth
reflectance, a ground truth shading and a ground truth residual. However, in
configuring the dataset on which to fine-tune the pretrained model, as described
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in Table 3.2, the residual term is voluntarily neglected. This choice is made to
simplify the process and also by virtue of the fact that PIE-Net, in its original
architecture, is able to generate only two output images and not three. Apart from
this, a problem still emerges with this setting. In fact, the model is trained to split
an image into two components such that their product exactly returns the original
input. However, considering the product between the ground truth reflectance and
the ground truth shading, it never reconstructs the original image since crucial
information is missing because contained in the additive residual term. When the
model performs inference over an image, the predictions it makes contain within
them the residual term, somehow embedded. In this sense, when comparing each
of them with the respective ground truths, there will always be a gap. Looking
at Figure 3.11, it is possible to notice that in the ground truth decomposition
components there is less information than there is in the predicted ones. Some
regions are totally masked because their contents are supposed to be owned by
the residual term. The problem lies in the fact that the model does not know this,
so it will always produce results that are never close to the ground truths that
are available. In this sense, neglecting the residual term can lead to significant
losses, therefore its management must be more intelligent. One possibility is to
incorporate its content into the reflectance and shading ground truths. Specifically,
the idea is to move from the original expression of the input image, as described in
3.1, to the following one:

I = R′ ⊙ S ′ (3.5)

where R′ = f(R, C) and S ′ = g(S, C). The obstacle, however, lies precisely
in identifying these two functions f and g that can satisfy the equation. The
transformation to be applied is not simple because the residual term is additive
and not multiplicative.
The other option suggests simply modifying the original image by subtracting its
residual content. In mathematical formulation:

I ′ = R⊙ S (3.6)

where I ′ = I − C. In this way, it is directly the content of the original image that
is changed. Since finding a solution to the embedding of the residual term in both
intrinsic components turns out to be an under-constrained problem, we decided
to opt for the more immediate solution of changing the content of the image by
subtracting the residual term (3.6).
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Dataset Pre-Processing

Before starting a learning task, images need to be pre-processed to make them
cleaner and more suitable for this purpose. First of all, we selected only a specific
subset of HDR images with complete ground truth labels associated. The dimensions
of these images are then altered from their original size of 768 x 1024 pixels to a
more manageable squared size of 124 x 124 or 256 x 256 pixels. Furthermore, we
identified and removed all completely black images. The dataset is further refined
by addressing infinite values, which we treated as fireflies and handled using a
more elegant version of a median filter that remove these pixels and replace them
with pixels in the neighborhood rather than the maximum, which might not be
in that area. Lastly, any value in the images that are not a number (NaN) are
replaced with the mean value of the images, ensuring a more uniform and clean
dataset. In addition to the previous steps, we further reduced the dimension of the
dataset to 600 images. In fact, since the objective is to only perform fine-tuning,
there is no need of a large amount of data to train the model. These images were
then split into two distinct sets: 500 images were allocated for the training process.
The remaining 100 images were set aside for validation. This process of dividing
the dataset enhances the model’s ability to generalize its learning to new, unseen
data. In addition, the division was carried out by establishing a fixed random seed,
which guarantees that all experiments could be reproduced consistently. Finally,
we normalized both the original (input) images and the associated ground truth
shading according to the mapping described in 3.4. In Hypersim, those two image
have a dynamic range that exceeds the range [0, 1]. Instead, reflectance images
are into this range. It is therefore the shading component that carries out the
HDR information. Applying a preliminary normalization is particularly useful in
scenarios where the HDR images are used for further processing or analysis, as
it helps to ensure that the algorithms are not unduly influenced by the extreme
brightness values that can be present this kind of images.

Dataset Statistics

In order to ensure that the model is built on a solid understanding of the data,
improving its performance and reliability, it is very important to compute some
statistics about the dataset we want to train it on. In this direction, it becomes
crucial, for example, to ensure that the training and validation sets are representative
of the same underlying distribution. This principle of maintaining a representative
distribution of relevant features or characteristics within different subsets of the
data is known as stratification. Deep learning models learn to make predictions
based on the patterns they identify in the training data. If the test data comes
from a significantly different distribution, the model’s performance may degrade,
as it has not learned the patterns relevant to the test data. In this specific case,
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it was deemed appropriate to focus on the computation of the distributions of
mean luminance and the histograms of colors for both the training and test sets.
By analyzing the luminance distributions, we can understand if images in the
training set are generally darker than those in the test set (or vice versa); instead,
the histograms help us understand which color components predominate in the
images and whether there is an analogy between the two sets or not. In this way,
we can identify some potential issues and take steps to address them to ensure a
more balanced distribution so that the model does not perform poorly on one set
compared to the other.

Figure 3.12: Dataset statistics. Luminance distributions and colorsEhistograms
of training and validation set.

By inspecting the aforementioned distributions (Figure 3.12), it is easy to notice
that, as regards the colors, these are distributed in the exact same way between the
two sets meaning that no intervention is required. As regards luminance, it seems
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that the validation set has a deficiency in the lower luminance values compared to
the training set. Despite that, we decided against performing stratification as there
doesn’t seem to be a significant issue that could impact the predictive capabilities
of the model.

First Training

At this point we finally started a learning process, which was performed for 25
epochs, each of which took on average 45 minutes. Different configurations for
fine-tuning were tested, exploring several techniques and hyperparameters values.
Specifically, regarding the optimizer, we experimented SGD and Adam. Instead, as
criterion for minimizing the error the model makes in outputting the predictions,
we considered the L1 loss and the MSE.
On the one hand, the L1 metric calculates the absolute differences between corre-
sponding pixel intensities in the predicted image (Pi) and the ground truth image
(Gi).

L1 = 1
N

NØ
i=1
|Pi −Gi| (3.7)

This metric provides a measure of the average magnitude of these differences,
emphasizing their absolute values.
On the other hand, the MSE metric, is expressed as:

MSE = 1
N

NØ
i=1

(Pi −Gi)2 (3.8)

It computes the mean of the squared differences between pixel intensities and
it places greater emphasis on larger deviations, penalizing larger errors more
significantly than L1.
Both metrics generate a single numerical value for the dissimilarity between the
predicted and ground truth images, with lower values indicating a closer match.
However, it is important to note that these metrics may not always align with
human perceptual judgments as they can end up attributing an excellent loss value
to a result that is not so good or vice versa. The challenges lie in the complexity of
human visual perception, where factors such as texture and structure play crucial
roles. Regardless of the chosen criterion, the loss function for a given image, denoted
as y, comprises two terms, each of which is dedicated to evaluating the disparity
between the predicted reflectance component (R̂y) and the corresponding ground
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truth (Ry), as well as the predicted shading component (Ŝy) and its corresponding
ground truth (Sy).

L(y) = criterion(Ry, R̂y) + criterion(Sy, Ŝy) (3.9)

Table 3.3 shows the values of the hyperparameters involved in fine-tuning, high-
lighting in yellow the combination that lead to better outcomes.

Batch size Image size Loss Optimizer Learning rate

2 124 L1 SGD 0.005

4 256 MSE Adam 0.01

Table 3.3: Fine-tuning setting for the first major attempt.
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Results of the First Training

Figure 3.13: Results of the first fine-tuning.

In Figure 3.13, we can see how even after a fine-tuning process, the model produces
images that are still distant from the target ones. The predicted images present
distortions in the color information and the disentangling between the shading and
the reflectance is in most cases defective.
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Model Inference Modification

The results obtained so far by both the pre-trained model and the fine-tuned one
(according to the specifications just reported) are to be considered insufficient and
far from what should be expected. Beyond the values that various metrics can
give when comparing the predictions of the decomposition model with the ground
truths, the judgment that matters most for now is the visual one and clearly the
images generated are not accurate.
A plausible reason why the fine-tuning process does not work as hoped and does
not lead to any real improvements is the fact that the network used is too complex
for such simple fine-tuning. As a possible solution, it is considered to be worth
trying to lighten the network by ensuring that, given the input image, it exclusively
predicts the reflectance. Furthermore, the shading can be recovered simply dividing
the input image by the predicted reflectance. In many intrinsic decomposition
methods, the estimation of shading and reflcetance involves treating them as
separate variables. However, this approach often leads to the inability of the
estimated shading and reflectance to accurately reconstruct the original image. In
contrast, the idea now is to compute the shading based on the estimated reflectance,
ensuring adherence to the intrinsic model (3.1).

Figure 3.14: Changing the way the model makes inference. Only the reflectance
is predicted. Original input is used to recover the shading.

Figure 3.14 schematizes the pipeline we wanted to follow with this new setting
for fine-tuning the model. Specifically, we proposed a new method which, given a
previously normalized image belonging in the [0, 1] range, is able to predict the
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reflectance component (also in [0, 1]) and to recover the entire dynamic range of
the shading component. To do this, the original image, that is not normalized and
therefore exceeds the range [0, 1], has to be also taken into account. In this way,
when the pixel-wise division is computed between the aforementioned image and
the predicted reflectance, the result will be an image with a wide dynamic range.
To avoid possible divisions by 0, an ϵ with a very low value (i.e., 10−7) is added to
the denominator.

Second Training

With this new setting, we tried a new fine-tuning attempt. The configuration of
the learning process remains similar but with some important differences.
In the first place, we fixed the choice of the loss, the batch size and the image crop
size to L1, 4 and 256 x 256 respectively, without trying any other options.
Furthermore, we decided to test whether adding a regularization technique could
improve the performance of the model. Through the imposition of penalties on
substantial weights, L2 regularization assists in managing the model’s complexity.
This can become crucial when adapting a pre-trained model to a different task, as
the pre-trained model may have acquired intricate features unrelated to the new
dataset.
We also made some interventions on the learning rate by experimenting with
different possible values and by employing a scheduler. Specifically, we made use
of the PyTorch function ReduceLROnPlateau [36], which dynamically adjusts the
learning rate during training by reducing it when a specified metric (e.g., validation
loss) stops improving, helping the model converge faster and potentially escape
local minima. There is a specified patience parameter to send as input to the
function, which determines the number of epochs to wait for improvement before
actually reducing the learning rate.
Another significant change we decided to implement is that now only the input
images undergo tone mapping using the usual curve (3.4) in such a way as to
normalize them to [0,1]. Instead, the ground truth shading components remain
in their wide dynamic range because the predicted shadings are also in the full
range. As a direct consequence, however, the L1 loss measures very high distance
values between the ground truth and predicted shading if compared with those
obtained in the case of the reflectance. In order to make the shading loss going
down, the model deeply changes the predicted reflectance ending up with really
poor results. In this sense, we deemed to be necessary to add a scaling factor over
the shading loss formulation in order to tackle the range mismatch with respect to
the reflectance loss and bring both of them in the same scale. This scaling factor is
an hyperparamter and its value has been found empirically. Taking all this into
account, the loss function to be optimized is now defined as:
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L(y) = L1(Ry, R̂y) + ws · L1(Sy, Ŝy) (3.10)

As an alternative countermeasure to address the mismatch between reflectance loss
and shading loss, we also thought about reformulating the latter, considering its
logarithmic version. Specifically, we modified the shading images (predicted and
ground truths) , before computing the L1 loss, as follows:

S log
y = log(1 + Sy) (3.11)

Ŝ log
y = log(1 + Ŝy) (3.12)

In this way, there is no longer a need to place a scaling factor in the shading
loss term because the logarithm reduces the range discrepancy. A new possible
formulation of the loss function therefore becomes the following:

L(y) = L1(Ry, R̂y) + L1(S log
y , Ŝ log

y ) (3.13)

The last and most significant change to the fine-tuning setting concerns the addition
of a formulation of a new metric in the calculation of the total loss on which the
back-propagation phase is then called.
A problem that has emerged in all the results obtained so far is that the predicted
reflectance lose fundamental information on the colors, which instead end up in
the predicted shading. To put a constraint on this gap between the predicted
reflectance and the ground truth in terms of colors, we decided to use a color
difference metric often employed in image processing, called Delta E 76, that
quantifies the perceptual colors difference in the CIE 1976 (L*, a*, b*) color space,
where L* is lightness, and a* and b* are color components:

∆E 76(Ry, R̂y) =
ò

(LR̂y
− LRy)2 + (aR̂y

− aRy)2 + (bR̂y
− bRy)2 (3.14)

LR̂y
, aR̂y

, bR̂y
represent the L*a*b* triplet of the predicted reflectance while LRy ,

aRy , bRy the L*a*b* triplet of the ground truth reflectance. A ∆E 76 of 0 means
identical colors, while higher values indicate increasing perceptual differences.
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Upon the inclusion of this metric, the formulation of the loss function is consequently
revised in two other alternative ways:

L(y) = L1(Ry, R̂y) + ws · L1(Sy, Ŝy) + w∆ ·∆E 76(Ry, R̂y), (3.15)

L(y) = L1(Ry, R̂y) + L1(S log
y , Ŝ log

y ) + w∆ ·∆E 76(Ry, R̂y) (3.16)

The ∆E 76 value is weighted by another hyperparameter, w∆, which is chosen to
ensure that the model pays equal attention to all the terms that appear in the loss
formulation.

Epochs Optimizer Learning Rate Loss Formulation Regularization

25 Adam 0.0001
3.10

ws = 0.0001
None

50 SGD ReduceLROnPlateau

patience = 10

λinit = 0.001

Kscale = 0.1

3.15

ws = 0.0001

w∆ = 0.0001

L2

αdecay = 0.1

100 / ReduceLROnPlateau

patience = 7

λinit = 0.0001

Kscale = 0.1

3.16

w∆ = 0.0001

L2

αdecay = 0.01

Table 3.4: Fine-tuning setting for the second major attempt.

The combination of yellow cells shown in Table 3.4 is the one that led to obtaining
the best predictions. An increase in the number of epochs compared to the first
attempt was found to be beneficial but, at the same time, by increasing it further
no improvement was made. As regards the addition of the regularizer, it seems
that this has accompanied the model to obtain more satisfactory results in some
cases while in others the change made is almost imperceptible. We believed that
the real discriminants of the improvement of the predicted images are the choice
of a lower initial learning rate associated with an intelligent scheduling and the
introduction of the ∆E 76 metric, as it has helped alleviating the problem of color
information placed in the shading rather than the reflectance.
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Results of the Second Training

Figure 3.15: Results of the second fine-tuning.

Figure 3.15 shows how the predictions finally get much closer to the ground truths.
The images are visually similar and in general the model has refined the way of
disentangling the two intrinsic components. However, the results are not yet optimal
since some artefacts are still present or in certain regions the model incorrectly
classifies the reflectance and shading features.
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3.6 IID via Ordinal Shading Predictions
The work of Careaga et al. is really recent (October 2023) and we discovered
it only after having already undertaken the entire process of improving PIE-Net.
The strong point of this model is that it has already been trained on a portion
of Hypersim, along with other synthetic datasets that share similarities (e.g.,
OpenRooms, CGIntrinsics). Even more crucial is the model’s ability to deliver very
good results with real-world images, which are indeed the primary focus of our
project. The strategy of training a model on synthetic images is only dictated by
the fact that with this kind of dataset the ground truth decomposition is available,
but the goal we want to achieve is to exploit these images to build a model whose
capabilities are then tested on real-world images.
In this context, we had the opportunity to assess the quality of the results by
testing the available pre-trained model on images sourced from both Hypersim and
the HDR Photographic Survey [37], a collection of real-world HDR images provided
by Professor Mark D. Fairchild.

Models Comparison

As with PIE-Net, IID via Ordinal Shading also requires that the dynamic range of
the input image to the model is normalized and limited in [0, 1] before determining
the intrinsic components.
In this regard, the images coming from Hypersim are normalized with the usual
gamma encoding described in 3.4. For what concerns the images from the HDR
Photographic Survey, however, we tested two different normalization algorithms (1
and 2).

Algorithm 1 Input Normalization
1: p 99 = percentile(image,99)

2: image = image
p 99

3: image = image 1
2.2

4: image = clip(image, 0, 1)

Algorithm 2 Input Normalization
1: p 99 = percentile(image,99)

2: image = image 1
2.2

3: image = image
p 99

4: image = clip(image, 0, 1)

The two algorithms differ only in the order of operations 2 and 3. In the former,
the image is first divided by the 99th percentile (p 99) and then raised to the power
of 1

2.2 . In the latter, gamma encoding is first performed and the result is then
divided with p 99. We noticed that the choice of algorithm dictates the quality
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of the decomposition and, on the basis of the two types of results obtained, we
preferred Algorithm 2.

Figure 3.16: Decomposition comparison between IID via Ordinal Shading and
PIE-Net (after fine-tuning). Image at the top is from Hypersim. Image at the
bottom is from the HDR Photographic Survey.

The IID via Ordinal Shading predictions are notably satisfactory and if juxtaposed
with the PIE-Net ones seem to be qualitatively better. In Figure 3.16, we can notice
how Careaga’s model exhibits good performance on Hypersim images, benefiting
from its training on this dataset, but most of all how it reaches really good results
for real-world images from the HDR Photographic Survey. In this specific case, it
can be seen that, in correspondence with the panel in the background, the text
is almost completely removed by the shading component predicted by the IID
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via Ordinal Shading model, while in that predicted by PIE-Net the disentangling
is less effective. At the same time, the blue color of the car on the left is also
much more uniform along its entire shape in the IID via Ordinal Shading predicted
reflectance, while it takes on different shades of blue in the PIE-Net one. In general,
as demonstrated in Careaga et al. [34], the PIE-Net model often fails to disentangle
the shadows in the estimated reflectance and sometimes it is either not able to
reconstruct bright colors or it introduces some artifacts.
Furthermore, for an intrinsic decomposition algorithm to be practical for image
editing tasks, it must be both time-efficient and memory-efficient. If the algorithm
takes too long to run or requires high-end GPU resources, it can significantly
restrict the applicability of the intrinsic decomposition method. The work we
conducted aims to exploit a decomposition model to solve image distortion issues
that happens when an HDR image is displayed (i.e., tone mapped) on smartphones.
Implementing an highly complex neural network on these devices is unfeasible due
to the stringent hardware constraints. In Careaga et al. [34], the authors claim
that, for processing a 768 x 768 image, their model takes almost 26 times less than
PIE-Net, with the same computational power. When it comes to memory efficiency,
instead, IID via Ordinal Shading uses 7 gigabytes less compared to PIE-Net.
Having noted that IID via Ordinal Shading outperforms any other decomposition
model we have seen so far in terms of efficiency and quality of the results, we
therefore decided to exploit its decomposition power in order to move to the
next step and finally carry out the tone mapping operation, following the scheme
described in 3.2.
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Tone Mapping Step

4.1 Final Objective
Considering the intrinsic components of reflectance R and shading S, predicted
from an input image I, and denoting any TMO as t, the outcome of the tone
mapping process through the IID step can be expressed as follows:

t IID(I) = R⊙ t (S) (4.1)

where t IID(I) indicates the tone mapped image obtained by first carrying out
the tone mapping operation only on the shading component (t (S)) and then
multiplying the result with the reflectance component in an element-wise manner.
Once the decomposition model has been chosen and the final images have been
produced as described above, the objective becomes that of evaluating these results
by comparing them with those that would be obtained from the application of
some very well known post processing color reproduction methods.
As already explained, tone mapping serves a dual purpose, requiring the manipu-
lation of images to compress their absolute luminance range while also adjusting
pixel relationships to enhance visible detail and alter overall contrast. Nevertheless,
modifications to contrast and luminance frequently result in shifts in color appear-
ance, impacting saturation and hue. If the overarching purpose is to accurately
depict a scene on a display, maintaining its authenticity and without altering its
appearance, what is done very often in the literature is to develop color correction
algorithms that mostly act on colors by reducing the distortion introduced into the
tone mapped image, if compared with the original one. These algorithms perform
therefore a processing of the tone mapped images that occurs a posteriori and
which tries to compensate for the alterations produced by a specific TMO.
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In the context of our work, we selected three very famous methodologies, that aim
at solving the same issue, as baseline against which we can compare our results:

• Quantization techniques for the visualization of high dynamic range
pictures from Schlick [38].

• Color Correction for Tone Mapping from Mantiuk et al. [39]
• Automatic saturation correction for dynamic range management

algorithms from Artusi et al. [40]

4.2 Color Correction Algorithms

4.2.1 Schlick and Mantiuk Methods
Schlick’s approach [38] to color treatment in tone mapping involves introducing a
saturation control parameter s in the equation. This method focuses on preserving
color ratios by adjusting the output color (Cout) based on the input color (Cin)
and the ratio between the luminance of the tone mapped image (Lout) and the
luminance of the original input (Lin).

Cout =
3

Cin

Lin

4s

· Lout (4.2)

However, this formulation has its drawbacks, as it can significantly impact the
luminance, deviating from the desired outcome, especially for highly saturated
pixels.
In the realm of Mantiuk’s method [39], instead, the color correction is performed
as follows:

Cout = (
3

Cin

Lin

− 1
4

s + 1) · Lout (4.3)

This formula retains luminance while exclusively incorporating linear interpolation
between chromatic and corresponding achromatic colors. The adjustment in the
color correction factor in Equation 4.2 not only alters chroma but also impacts the
lightness of colors. In Equation 4.3, instead, such shifts in lightness are mitigated.
However, it introduces a more pronounced hue shift, particularly noticeable in red
and blue colors.
For both these two algorithms, manual parameter s adjustment is often necessary,
since it allows to produce more accurate results although, at the same time, it can
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be very time consuming. Automation can be carried out by exploiting the slope
of the tone curve at each luminance level. Specifically, the parameter s can be
deduced by computing the following formula:

s = (1 + k1)c k2

1 + k1c k2 (4.4)

where k1 and k2 are constants whose value varies depending on the correction
method used. Specifically, in Schlick’s case, k1 = 1.6774 and k2 = 0.9925. Instead,
for Mantiuk’s method, k1 = 2.3892 and k2 = 0.8552. The factor c signifies the
degree of compression or expansion implemented and it can be estimated using the
gradient of the tone curve when plotted on a logarithmic scale.
Considering L̂ = log (L), c is computed as follows:

L̂out = t(L̂in) (4.5)

c(Lin) = d

dL̂
t(L̂in) (4.6)

This way of estimating s yields satisfactory outcomes provided that certain prereq-
uisites are fulfilled. The most crucial of these is that the TMO must be global.

4.2.2 Artusi Method
In Artusi et al. [40], an entirely automated method for saturation correction is
introduced. The algorithm aims to adjust the tone mapped image so that its
color presentation aligns with the hue and saturation of the HDR image, while
maintaining the same luminance levels. The inputs consist of the original HDR
image and the distorted (i.e., tone mapped) one, both given in linear RGB space.
After a normalization with the maximum, the two images are first converted into
IPT space and then moved into the cylindrical color space ICh.
As regards this last color space transformation, the I (i.e., lightness) channel of
the image is left unchanged while the h (i.e., hue) and C (i.e., chroma) ones are
defined as follows:

h = tan−1
3

P

T

4
(4.7)

C =
√

P 2 + T 2 (4.8)
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At this point the chroma channel of the tone mapped image, Ct, is first scaled in
such a way that it approximate the result if the tone mapping of the original HDR
image is performed in the ICh space:

C ′
t = Ct

I0

It

(4.9)

where I0 and It respectively denote the lightness of the unprocessed HDR image
and of the tone mapped one. Afterwards, the corrected chroma channel Cc is finally
computed by performing:

Cc = rC ′
t (4.10)

where r represents the ratio between the saturation of the original and the (scaled)
tone mapped image which are computed following Equation 4.12

r = s(C0, I0)
s(Ct, It)

(4.11)

s(C, I) = C√
C2 + I2

(4.12)

As a last step, the hue ht of the tone mapped image is restored by replicating the
value h0 from the HDR image. The combination of the new hue, in conjunction with
the adjusted chroma Cc and the preserved lightness It, yields the final corrected
output, which can subsequently be transformed back into the RGB color space.
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4.3 Visual Comparison
The algorithm illustrated below exactly describes the process followed to produce
the final results of the tone mapped images passing through the intermediate
decomposition step.

Algorithm 3 Tone Mapping through IID
1: function IID-TMO(image, shading)
2: ▷ image is the unprocessed HDR image
3: ▷ shading is the intrinsic component predicted by the IID model when the

encoded version (Algorithm 2) of image is given as input
4: ▷ TMO indicates a certain global tone mapping operator
5: ▷ Normalize both images

6: image← image

max(image)

7: shading ← shading

max(shading)
8: ▷ Retrieve the reflectance
9: reflectance = image⊙ 1

shading
▷ Pixel-wise division

10: ▷ Tone map the shading

11: shadingtm = TMO(shading)
12: ▷ Multiply with the reflectance
13: imageiid−tm = reflectance⊙ shadingtm ▷ Pixel-wise multiplication
14: ▷ Adjust the brightness
15: p99.5 = percentile(imageiid−tm, 99.5) ▷ Compute 99.5th percentile

16: imageiid−tm ←
imageiid−tm

p99.5
17: imageiid−tm(imageiid−tm > 1)← 1 ▷ Clipping
18: return imageiid−tm

19: end function
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It can be easily seen that, to obtain the final result (imageiid−tm), the algorithm
does not only consist of taking the tone mapped shading and multiplying it with
the reflectance. In fact, further interventions are carried out on each of the images
involved in the total process. Each of these interventions is aimed at solving a low
brightness problem that imageiid−tm shows. We have in fact noticed that, generally,
the images produced through the IID method are darker than those that would be
obtained following the traditional approach.
As a first approach to the problem, we thought of scaling the pixel values of
imageiid−tm through a multiplicative factor α computed as follows:

α = µ(Ltm)
µ(Liid−tm) (4.13)

imageiid−tm = α · imageiid−tm (4.14)

where Liid−tm and Ltm represent respectively the luminance component of the
directly tone mapped image and that of the tone mapped image by passing
through the decomposition step, whereas µ(∗) returns the mean value. While
this workaround helps to fix the brightness mismatch issue, it also causes strong
clipping in some regions of most tested images.
The approach proposed in Algorithm 3 instead involves a normalization with the
percentile, which guarantees the obtaining of brighter images while simultaneously
avoiding producing too many unwanted clipping effects.

In order to evaluate the effectiveness of the results we obtain following our algorithm,
we made use of two different TMOs:

• Reinhard ’02 (Photographic Operator) [41]

• Reinhard-Devlin ’05 [42]

Therefore, we juxtaposed our outcomes with the ones from the Artusi’s method
and the implementations of Schlick’s and Mantiuk’s algorithms with the saturation
parameter automatically estimated from the tone curve, following the procedure
described in Equation 4.4. For both TMOs, we exploited the implementation present
in the HDR Toolbox [40] and we evaluated them using the default parameters
values.
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Figure 4.1: Tone mapping results for Reinhard ’02 TMO. Each column represents
the method employed. From left to right: Traditional Reinhard ’02, Schlick,
Mantiuk, Artusi and Ours.

Figure 4.2: Tone mapping results for Reinhard-Devlin ’05 TMO. Each column
represents the method employed. From left to right: Traditional Reinhard-Devlin
’05, Schlick, Mantiuk, Artusi and Ours.

50



Tone Mapping Step

4.4 Evaluation through Objective Metrics
What we want to demonstrate with this work is that preferring a preliminary
decomposition of the image can bring advantages in terms of color distortion and
overall picture quality when performing tone mapping. The most immediate and
intuitive approach to prove this is to make use of specific and accurate metrics
which, in a certain way, can provide an indication of the level of goodness of the
results obtained. Nevertheless, quantifying this hypothetical advantage with an
objective metric that gives a precise score can be rather challenging. In Image
Processing, there are many metrics that try to judge an image according to some
specific criteria. However, very often it is difficult to understand on what basis they
are founded and how close the returned result is to the perceived image quality. In
addition, while a large number of image metrics are designed for the assessment of
LDR content, far fewer metrics are available for HDR content.
Taking into account what has been said, we decided to make use of 3 different
metrics, each of which contributes to the evaluation of specific and different aspects
of the results obtained.

Hue Distance

The Hue Distance metric is able to exclusively focus on the hue component (h)
and quantify the difference between two images: the original, unprocessed HDR
image and the distorted version after tone mapping. The metric is presented and
described in [40] and its implementation can be found in the HDR Toolbox [20].
Going into more detail, the algorithm first converts the images from the RGB
color space into the IPT color space for then transitioning to the cylindrical ICh
color space, where the distance is actually computed, providing a more accurate
measure of color differences. Usually, color differences are not calculated by
independently considering the luminance and the hue components. Furthermore,
these measurements are often obtained in the CIE L* a* b* color space, but it
has been proven that this space does not maintain a consistent hue across all hues.
This metric overcomes both these two issues and outputs a score that the lower
the better. Figures 4.3 and 4.4 show, in logarithmic scale, the average hue distance
values computed for each proposed method. From the bar graphs, it is clear that
Artusi’s method and ours obtain better results than those of Schlick and Mantiuk.
Specifically, Artusi’s method leads to a lower distortion in the case of Reinhard ’02
while our algorithm shows remarkable behavior with Reinhard-Devlin ’05, with a
distortion score 4-5 orders of magnitude lower than that of the other methods.
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Figure 4.3: Hue distance values for Reinhard ’02 (Photographic) TMO. Results
are computed for all the color correction methods and our proposed approach,
considering all the images present in the HDR Photographic Survey.

Figure 4.4: Hue distance values for Reinhard-Devlin ’05 TMO. Results are com-
puted for all the color correction methods and our proposed approach, considering
all the images present in the HDR Photographic Survey.

TMQI

The implementation of this metric is described in Yeganeh et al. [43]. The authors
developed an objective Image Quality Assessment (IQA) model for tone mapped
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LDR images, using their corresponding HDR images as references. This work draws
inspiration from two successful design principles in IQA literature. The first one is
the structural fidelity, which posits that the primary function of vision is to extract
structural information from the visual scene. Therefore, it is a reliable predictor
of perceptual quality. The second principle is the statistical naturalness which
suggests that the visual system is highly adapted to the natural visual environment
and uses deviations from natural image statistics as a measure of perceptual quality.
A high-quality tone-mapped image should strike a balance between preserving
structural fidelity and maintaining statistical naturalness, which can sometimes be
competing factors. This metric combines the two measures, culminating in one
unique score, the Tone Mapped image Quality Index (TMQI). Here, the aim is to
maximize the score.

Method TMQI Fidelity Naturalness

Schlick 0.7950 0.7837 0.1859

Mantiuk 0.7947 0.7825 0.1865

Artusi 0.7939 0.7818 0.1837

Ours 0.7925 0.7907 0.1812

Table 4.1: TMQI scores for Reinhard ’02 (Photographic Operator) TMO. Results
are computed for all the color correction methods and our proposed approach,
considering all the images present in the HDR Photographic Survey.

Method TMQI Fidelity Naturalness

Schlick 0.7621 0.7399 0.1107

Mantiuk 0.7605 0.7374 0.1076

Artusi 0.7625 0.7387 0.1145

Ours 0.7849 0.7666 0.1807

Table 4.2: TMQI scores for Reinhard-Devlin ’05 TMO. Results are computed for
all the color correction methods and our proposed approach, considering all the
images present in the HDR Photographic Survey.

Table 4.1 shows the scores that each method under analysis obtains when the
images are tone mapped using the photographic version of the Reinhard ’02 TMO.
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The TMQI values are very close to each other. Our proposed approach obtains
a better result in terms of structural fidelity but seems to be penalized by the
criterion that measures the naturalness of the image.
In Table 4.2, instead, we can see how once again when the TMO under analysis is
Reinhard-Devlin ’05, our algorithm achieves the best result.

HDR-VDP3

The HDR-VDP3 metric, presented in Aydin et al. [44], is designed for assessing
perceived quality in HDR images. As with TMQI, the notable feature of this
metric is that it is dynamic range independence, meaning that it is able to handle
and produce a comparison taking simultaneously into account HDR and LDR
images. By incorporating human perceptual models, the metric aims to align with
observer sensitivity, providing a comprehensive evaluation of HDR image quality
in a perceptually relevant manner. In order to represent regions of the LDR image
where distortions occur, two distortion maps are generated:

• Loss of visible contrast, which occurs occurs when a contrast that was percep-
tible in the original image becomes imperceptible in the distorted one.

• Amplification of invisible contrast, which happens when a contrast that was
not discernible in the original image becomes noticeable in the distorted one.

Because of time constraints and the less good metric results we obtained with our
method using the Reinhard ’02 TMO to test the images, we decided to evaluate
with this new metric only for this TMO.
Figure 4.5 shows for three different images from the HDR Photographic Survey,
the distortion maps associated with each of the four methods under analysis. The
regions in green highlight distortions in the image attributable to the loss of visible
contrast; those in blue instead refer to the amplification of the invisible contrast. It
is immediate to notice how, in the two top images, both distortions are minimized
following our proposed approach. In the image at the bottom, although the blue
distortion is essentially the same for each method, the green distortion is present
in less quantity when following the IID pipeline.
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Figure 4.5: Examples of distortion maps produced by the HDR-VDP3 metric for
three different images from HDR Photographic Survey. Each column represents the
method employed. From left to right: Reinhard ’02, Schlick, Mantiuk, Artusi and
Ours. Green regions indicate distortion referable to loss of visible contrast. Blue
regions represent distortion referable to amplification of invisible contrast.

The reported results are to be linked to the following information:
HDR-VDP v3.0.7, 52.72 [pix/deg], (cpu).
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While these high-quality maps demonstrate strong correlations with subjective
assessments of image degradation, they fall short in offering a singular quality
score for an entire image. Although it’s not exactly recommended, we thought
about performing a pooling and get a numerical estimate of the general distortion
that occurs on the images from HDR Photographic Survey. Specifically, the metric
produces for each sample image two additional 1-channel images, respectively
containing information on the specific type of distortion. We therefore computed
the average of each of these two images (for all the dataset) and obtained two
unique scores that quantify the two distortions.

Method Loss Amplification

Schlick 0.0031 0.2022

Mantiuk 0.0032 0.2002

Artusi 0.0029 0.2010

Ours 0.0003 0.1855

Table 4.3: HDR-VDP3 scores for Reinhard ’02 (Photographic Operator) TMO.
Results are computed for all the color correction methods and our proposed
approach, considering all the images present in the HDR Photographic Survey
dataset

As already suggested by the examples shown in the Figure 4.5, the metric detects
the least amount of distortion in images tone mapped following our method.

4.5 Psychophysical Experiment
To corroborate the idea of getting better objective results following the approach we
proposed, the next step that is conventionally done is to conduct a psychophysical
experiment.
This experiment aims to have participants express their preferences between images
processed using our algorithm and those generated by the three previously described
methods. The established choice criterion is that of the perceptual proximity of the
tone mapped image to the original HDR one, which therefore acts as a reference.
Since the experiment requires the reproduction of the unprocessed content of the
HDR image, there is the need of using a display which is actually capable of
handling HDR images producing a wider range of brightness levels and colors.
Specifically, the display used is an EIZO CG3145 with a peak luminance equal to
1000 cd/m2.
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Figure 4.6: Experiment setup. The subject looks at the HDR image first. Then
a gray scale image is projected for an adaptation time for the eyes. Finally, the
subject is asked to express a preference between 2 options and for 6 times for each
test image.

The experiment requires the expression of a preference for 20/25 images randomly
selected from the HDR Photographic Survey. The type of experiment is 2AFC
(2-Alternative-Forced-Choice), meaning that each time the subject will be asked
to choose between two options. Since we have 4 methods to compare in total, the
pair comparison will be done 6 times for each HDR image analyzed.
All images (i.e., HDR and tone mapped) are encoded with a PQ curve that the
display removes when it projects them. Perceptual Quantization (PQ) encoding is
often preferred over simple gamma encoding for HDR images due to its ability to
handle a wider brightness range and its basis on human visual perception.
It is important to highlight that when the tone mapped images are shown for the
pair comparison, the display simulates the properties of an SDR display, emitting
a limited range of brightness, with a peak up to 100 cd/m2.
Both for reasons of time and the fact that objective data suggests that our proposed
approach does not achieve the best result when Reinhard ’02 TMO is used, it was
decided to limit the experiment by using images tone mapped with this operator.
The experiment has not yet been finished, but we are confident that we can collect
the final results in the shortest time possible. From the first analyses, the results
that emerged support the quantitative findings, revealing a consistent preference
among participants for images processed through our proposed method.
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Chapter 5

Conclusions

5.1 Closing Remarks and Future Works
In conclusion, this thesis addressed the challenges associated with traditional tone
mapping approach, highlighting its inherent limitations.
Driven by the scientific evidence that the human visual system seems to be less
sensitive to the effects of light and tends to discard them, the innovation introduced
by this work is the use of AI-based models for intrinsic decomposition as a means
through which to perform the tone mapping operation. Through a comprehensive
review of state-of-the-art IID works, we first fine-tuned one model and then leveraged
the capabilities of another one, ultimately generating the final tone mapped images.
The benchmarking process against three widely recognized alternative methods
revealed that our proposed approach outperformed them in terms of objective
metrics in most cases, affirming its efficacy in achieving superior results. Building
on this promising success, the next crucial step in our research involves finishing
the psychophysical experiment, with the setup described above.
The real discriminating part of this project is the IID task. The more refined and
optimal the separation between reflectance and shading, the more effective the
tone mapping operation will be. Future research with the aim of improving the
results must therefore mainly focus on improving the decomposition step. At the
same time, the work was carried out only analyzing traditional TMOs. It therefore
becomes interesting to try to include more complex tone mapping solutions, perhaps
also based on artificial intelligence algorithms.
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