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Abstract

The design of functional artificial biomolecules has been one of the main in-
terests of biotechnology in recent years. The aim is to design sequences that
have the same functionality of the natural ones and comparable features.
Data-driven approaches are one of the more successful strategies.
In Machine Learning generative statistical models are tools to generate arti-
ficial biomolecular sequences. They are trained on Multiple Sequence Align-
ments of homologous families which consist of positive unlabelled sequences.
In literature there are several examples where generative models have been
built successfully to generate functional RNA and Proteins.
Relying on maximum entropy principle, Direct Coupling Analysis (DCA)
models are based on the Boltzmann Distribution in physics. They are built
learning a Potts model from data via Maximum Likelihood and they can be
used to sample artificial sequences.
Now thanks to the advent of new quantitative high-throughput experiments,
more and more quantitatively annotated sequences emerge. This abundance
of information presents unprecedented opportunities to improve generative
models, significantly enhancing their accuracy and efficacy in synthetic biol-
ogy.
Using the framework of energy-based models, in this thesis a new statistical-
physics inspired algorithm was developed to integrate these labelled data
into the construction of a better generative model. A new objective function
was designed to include the information from both the unlabelled and la-
belled data. Its maximisation is equivalent to adjust the target frequencies
for the training and no back-propagation is needed: it can be thought as a
refinement of the original generative model.
The goal of this feedback system is twofold: to minimise the production of
non-functional sequences and to engineer new artificial sequences that ex-
hibit specific desired characteristics, such as structural compatibility. Our
algorithm was applied to train models both on synthetic and real data and
it provided exceedingly good results in directing the generation towards the
desired features. To validate our techniques, a series of biological experi-
ments is scheduled in the near future.





vii

Contents

Acknowledgements iii

Abstract v

1 Introduction and Biology Concepts 1
1.1 A Brief Introduction to RNA . . . . . . . . . . . . . . . . . . . . 1
1.2 Azoarcus Setting . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Methods 7
2.1 Generative Models Of Biological Sequences . . . . . . . . . . . 7
2.2 Direct Coupling Analysis . . . . . . . . . . . . . . . . . . . . . 10
2.3 Phylogenetic Bias and Regularization . . . . . . . . . . . . . . 11
2.4 Maximum Entropy Principle and Boltzmann Machine DCA . 13
2.5 Edge Activation DCA . . . . . . . . . . . . . . . . . . . . . . . . 17
2.6 Gibbs Sampling and Importance Sampling . . . . . . . . . . . 21
2.7 ViennaRNA Package . . . . . . . . . . . . . . . . . . . . . . . . 24

3 Reintegration Methods 27
3.1 Reintegration of Heterogeneous Sequences . . . . . . . . . . . 27
3.2 Reintegration of Negative Sequences . . . . . . . . . . . . . . . 29
3.3 Objective Function Design . . . . . . . . . . . . . . . . . . . . . 32
3.4 Example : Negative Sequences . . . . . . . . . . . . . . . . . . 34
3.5 Example : Reintegration with Potts Energy . . . . . . . . . . . 35
3.6 Edge Activation DCA with new Objective Function . . . . . . 36

4 Reintegration: Fitness proxies and synthetic data 37
4.1 Using Potts Energy as Fitness Proxy . . . . . . . . . . . . . . . 37
4.2 Reintegration with ViennaRNA thermo-score . . . . . . . . . . 40
4.3 Diversity and Entropy loss . . . . . . . . . . . . . . . . . . . . . 42

5 Reintegration: Real Data 45
5.1 eaDCA for the Azoarcus Setting . . . . . . . . . . . . . . . . . . 45
5.2 Global Reintegration and Local Reintegration . . . . . . . . . . 49
5.3 Solutions to the Bias Problems . . . . . . . . . . . . . . . . . . . 50
5.4 Reintegration Methods on Azoarcus: Results . . . . . . . . . . 52

6 Conclusions 55

Bibliography 57





ix

List of Abbreviations

DCA Direct Coupling Analysis
bmDCA Boltzmann Machine Direct Coupling Analysis
eaDCA Edge Activation Direct Coupling Analysis
MCMC Markov Chain Monte Carlo
NAT NATural sequences
ART ARTificial sequences
MEP Maximum EntropyPrinciple
LLM Large Language Model
IID Identically Independently Distributed





1

Chapter 1

Introduction and Biology Concepts

The aim of generative models is to design sequences that have the same func-
tionality of the natural ones and comparable features.
They have been used for protein design [1] and artificially generated se-
quences were used to effectively substitute natural ones in microorganisms
[2].
Generative models of sequences are typically trained in an unsupervised way
on non-annotated sequence data, as presented by MSA of protein or RNA
families.
In recent years there is an increasing possibility of performing new quanti-
tative high-throughput experiments and more and more quantitatively an-
notated sequences are available. This abundant experimental information
presents unprecedented opportunities to improve generative models[3].
The goal of this thesis is to present methods for integrating annotated data
into existent generative models of biomolecules.
This chapter aims at presenting the biology concepts and settings that will be
used in the following of the thesis.
The focus will be then restricted on methods to build relatable generative
models of biomolecular sequences: Direct Coupling Analysis models and
the ViennaRNA package (Ch. 2).
Afterward, starting from a previous take on the reintegration of experimental
data into generative models, the aim is to show how to actively go further in
this direction (Ch. 3) and how the new reintegration methods can be applied
to both synthetic data (Ch. 4) and real data (Ch. 5) with promising results.

1.1 A Brief Introduction to RNA

Ribonucleic acid (RNA) is a polymeric biomolecule which plays a fundamen-
tal role in many biological processes.
Each RNA is composed of nucleotide units linked by phosphodiester bonds
and it can fold into hairpins, pseudo-knots, riboswitches and a lot more
shapes.
A correct folding is crucial for the molecule to function and the nucleotide
sequence is often not enough.
The three-dimensional structure of RNA is deeply connected with the func-
tionality of the sequence [4]. The building blocks of RNA molecules are the
nucleotides: Adenine, Guanine, Cytosine and Uracil (instead of Thymine).
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As in DNA, they can form Watson-Creek pairings (Cytosine-Guanine and

FIGURE 1.1: Representation of the hierarchical level of struc-
tural organisation in RNA

Adenine-Uracil). Alongside the canonical base-pairing there is also the pos-
sibility that a wobble base-pair between Adenine and Guanine is formed.
These types of bonds are less stable.
There are three different levels of RNA structure. The primary structure is
identified by the sequence of nucleotides.
The secondary structure is determined by the intra-chain base-pairing. It di-
vides the sequence in domains and it is two-dimensional. The key structural
elements are helices and loops. Helices are regions where bases are paired
through hydrogen bonds, forming stable double-stranded structures. Loops
instead are unpaired regions in RNA that connect helical domains.
The secondary structure of RNA is very important for functionality as it de-
termines how RNA interacts with other biomolecules and how it performs
specific tasks within the cell.
The tertiary structure is instead driven by the interaction of the various do-
mains and it is three-dimensional.
A pictorial view of RNA hierarchical strucure is given in Figure 1.1.
In this thesis we will talk about the secondary structure but mostly a RNA
molecule will be seen as a sequence made of nucleotides, a word in a 4 letter
alphabet.
It is important to underline the fact that the sequence space is very huge : this
also justifies the need of statistical generative models.
For a RNA molecule which is 200 nucleotides long, since each nucleotide has
four possible options, the sequence space is made of 4200 ∼ 2.6 × 10120 pos-
sible sequences. This number is astronomically large : the estimated number
of atoms in the known universe is 1078. A computer-assisted statistical ap-
proach is needed to explore this huge space: Machine Learning techniques
are designed exactly to do this.
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Those techniques are very data-hungry but, recently, the sequencing technol-
ogy has improved a lot and a huge number of sequences is accumulating at
exponential speed.
RNA sequence data is collected in families [5]. An RNA homologous fam-
ily groups together molecules which have similar structure, similar function
and come from the same evolutionary branch (homologous sequences). They
are unlabelled collections and they can be considered as variants of the same
sequence.
These families are available in the Rfam database and there are approxima-
tively 4000 families. Each family is made of order of thousands sequences.
The effect of evolution is not only to modify the type of nucleotide (muta-
tions) but also the length of sequences can change with a variability of more
than ±20 nucleotides. This variable length is a huge problem. Thankfully
there are lot of pre-existent tools based on Infernal covariance models [6]
which account quite thoroughly for this problem and so in the following we
will not deal with the "sequence alignment" problem [7] also because in Rfam
dataset all the families are already aligned.

1.2 Azoarcus Setting

Abiogenesis refers to the process through which the simplest forms of life
originated from non-living matter. The "replication first" is one of the most
successful approach : it highlights the role of replicase ribozymes, polymers
that can self-replicate. Self-reproduction is the ability to generate copies of
oneself. Naturally occurring self-reproducing RNAs have not been discov-
ered but the method of in vitro evolution made the development of RNA
replicases possible. The Azoarcus bacterium’s group I intron ribozyme, in
the followong shortly named “Azoarcus” as done in the community, consists
of 197 nucleotides and it has been modified for self-reproduction. Its struc-
ture is divided in 4 segments, as shown in Figure 1.3
Azoarcus can be fairly considered the only known self-replicator. Further-
more it belongs to the family of Group I introns which are capable of self-
splicing : they excise themselves from messenger RNAs. A schematic repre-
sentation of this phenomenon is provided in Figure 1.2.
Is RNA reproduction widespread in the sequence space? If so, the plausibil-

ity of the origins of life in the RNA world context (RNA is considered as the
predecessor of DNA and proteins) would increase greatly.
RNA world hypothesis [8][9] requires self-replicators to emerge spontaneously.
If it were a widespread phenomenon instead of restricted to a single se-
quence, this would support the hypothesis.
To find potential self-replicator candidates, a sequence alignment was pro-
duced based on Azoarcus and other Group one intron RNAs : it is an align-
ment of poor quality, very gapped. Despite this, it is possible to learn models
on it and generate artificial mutations that can be tested. However, due to the
bad alignment quality, the models are not expected to be very accurate, and
therefore fail to produce functional mutant sequences after few mutations.
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FIGURE 1.2: Steps of the phenomenon of self-splicing

The work proposed in this thesis is linked to this research framework and
Chapter 5 is an extension of this.
These mutations can be produced artificially: RNA design is possible thanks
to sophisticated biological procedures such as rational design, directed evo-
lution, and in silico design.
Artificial sequences can then be mass-tested for self-splicing in high-troughput
experiments. This is a good proxy for self-replication. On top of this there
are also low-throughput experiments for self-replication.
The aim is not only to find new self-replicants but also to try to bound how
many functioning self-replicators are present in the huge sequence space.
One of the goals of this thesis is to start from the statistical models (DCA
models) that have been applied until now and, thanks to the experimentally
tested sequences in the Azoarcus setting, build new refined models that out-
performs them.
This not only helps the cause of RNA world theory but also underlines the
importance of the experiments in this field.
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FIGURE 1.3: Structure of the Azoarcus bacterium’s group I in-
tron ribozyme: Segments are colored differently : if they are
provided separately, the RNA molecule is able to catalyze the

assembly oif full length RNAs
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Chapter 2

Methods

2.1 Generative Models Of Biological Sequences

As discussed in the introduction, in recent years complete genomes have
been sequenced [10] and it is now possible to consider entire families of ho-
mologous sequences. All of these sequences have been observed in nature
and therefore we refer to them as "natural".
Homologous families are organised in MSAs, multiple sequence alignments
[11]. They can be regarded as matrices A = {aµ

i , i = 1, ..., L, µ = 1, ..., M}
which contain M sequences aligned over L positions. Each entry aµ

i of the
matrix belongs to some alphabet: nucleotides for RNA, amino acids for pro-
teins.
To these alphabets is also added the alignment gap ” − ” which accounts for
amino-acid insertions or deletions in some sequences.
In the RNA case an alphabet with 5 letters is needed while in the case of Pro-
teins the alphabet has 21 letters.
Each row of A corresponds to a single sequence and each column to a specific
site in the sequences as shown in Figure 2.1.
The aim of generative models is to generate artificial sequences that replicate

FIGURE 2.1: example of an RNA homologous family: a row
corresponds to a sequence and a column represents a site across

all the family. Figure courtesy of F. Calvanese
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the important features of the natural ones assuming that biological informa-
tion is hidden in the statistical proprieties of the data.
The underlying assumption is that, for each homologous family, there exists
a probability distribution P0(a1, a2, . . . aL) from which all the sequences are
drawn independently.
A probabilistic generative model is built from the natural data trying to in-
fer an approximation of the probability distribution P0(a1, a2, . . . , aL) that did
generate them. So an approximated probability distribution P1(a1, a2, . . . , aL)
is obtained and it is possible to sample artificial sequences from it. This is
shown in Figure 2.2
The sampled sequences should replicate the features of the natural ones;

FIGURE 2.2: Functioning of a generative model. Figure repro-
duced from [12]

among the statistical features that one can hope to replicate there are the one-
point and two-points frequencies:

• One-point frequencies fi(ai) are the frequencies of nucleotide ai appear-
ing in site i

• Two-points frequencies fij(ai, aj) are the frequencies of the pair (ai, aj)
appearing in site i and j respectively

One point frequencies fi(ai) account for the evolutionary phenomenon of
site conservation. It is very common that in a specific site almost only one
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nucleotide is observed: this can be a specific site which is directly involved
in the functionality of the molecule.
For example, a specific nucleotide needs to be present in the active site of a
RNA molecule or in an exposed position at the RNA surface. Then a mu-
tation changing the nucleotide on this site will be deleterious and the site is
said to be conserved.
When a nucleotide is conserved the value of fi(ai) is informative because it
will be near to the unity for a nucleotide type and very small for all the oth-
ers.
Two points frequencies fij(ai, aj) instead account for the evolutionary phe-

FIGURE 2.3: Visual representation of the meaning of one and
two points frequencies. Figure reproduced from [3]

nomenon of co-evolution: nucleotides at different positions do not evolve in-
dependently. If a pair of sites is in contact in the folded state of the molecule
and the nucleotide in one site changes due to a mutation, also the other nu-
cleotide will likely change to maintain the ability to form the bond. In fact
it is known that the preservation of the structure/function is fundamental in
the process of evolution.
Looking across the family the nucleotides corresponding to these two sites
will appear often as a complementary pair and this impacts on the two point
frequencies fij(ai, aj).
These concepts are represented in Figure 2.3. For sure these two quantities do
not correspond to all the statistical information contained in the RNA family
because there are also all the higher order frequencies.
For example one could want to replicate the three points frequency fijk(ai, aj, ak).
These quantities consist of 5 × 5 × 5 = 125 entries in the RNA case and
21 × 21 × 21 = 9261 in the Proteins case. A database of homologous fam-
ilies is of the order of thousands of sequences and one could think it is not
big enough to offer a fair representation of three sites interactions. In general
the reproducing pair frequencies actually, in applications to real MSA, also
reproduces the three-point frequencies to a large amount .
Models that try to fit higher order frequencies will most likely be fitting the
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noise in the training data since there would be too many parameters to infer:
this is referred as overfitting in Machine Learning jargon.
In literature there are several examples suggesting that one and two point fre-
quencies are sufficient to obtain functional artificial sequences [13][14][15].
Then it will be enough to just concentrate on the first two orders of the fre-
quencies.

2.2 Direct Coupling Analysis

Inverse statistical physics is based on the assumption that our MSA of natu-
ral sequences can be considered as a sample of a Boltzmann distribution.
Remembering that the MSA is a matrix A = {aµ

i , i = 1, ..., L, µ = 1, ..., M}
which contains M sequences aligned over L positions, the Boltzmann distri-
bution assigns a probability to each sequence of length L according to:

P(a1, . . . , aL) =
1
Z

e−H(a1,...,aL) (2.1)

where H represents the Hamiltonian and no temperature is needed in this
setting.
Inverse statistical physics [16][3] aims at inferring the Boltzmann distribution
from which sample A was generated.
Of course the correct form of the Hamiltonian H is unknown and with no
prior knowledge qL − 1 a priori independent probabilities need to be in-
ferred.
This is not feasible and Maximum-Entropy Principle can be used to get mod-
els with less parameters. Starting from the dataset A, it is possible to com-
pute the one and two point frequencies and impose that their data-derived
empirical values coincide with the thermodynamic averages computed with
respect to the sought distribution.
It can be shown that the maximum entropy distribution PMEP(x) that matches
empirical frequencies is a Boltzmann distribution with a Potts Hamiltonian
with form :

H(a1, a2, . . . , aL) = − ∑
i∈V

hi(ai) − ∑
(1≤i≤j≤L

Jij(ai, aj) (2.2)

The proof of this will be provided later. For now let us give an interpretation
of the parameters.
hi(ai) are the local fields. An high field hi(ai) (of base ai in site i) means that,
if we generate sequences from our inferred model, fi(ai) will be big. These
fields model site conservation.
Jij(ai, aj) are the pairwise couplings and they model co-evolution. An high
coupling Jij(ai, aj) (of bases ai,aj in sites i,j) means that the pair (ai, aj) appears
very often in site i and j respectively. However, the direct relation between
the fi j and the Ji j is not evident, due to the collective effects present in the
interacting systems given by Eq. 2.2.
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So in our generated sequences fi,j(ai, aj) will be high.
For an homologous family of length L there are qL parameters for the local
fields hi(ai): there is a vector of fields. On the other hand there are q2|E|
parameters for the interactions Jij(ai, aj) since each one of them is a q × q
matrix.
Direct Coupling Analysis [17][18] models are built learning a Potts model
(fields and couplings) from the data : MEL imposes that hi(ai) and Jij(ai, aj)
are chosen such that the marginals of eq. 2.1 match the empirical values
given by the frequencies. In this case the problem is equivalent to find the
Potts model with highest likelihood :

L(h, J|A) =
1
N ∑

a⃗∈A
log P(⃗a|h, J) (2.3)

It is possible to infer the numerical values the parameters (local fields and
pairwise couplings) by maximum likelihood.
Starting from this expression for L(h, J|A) we can compute [h∗, J∗] maximiz-
ing it for example via Gradient Ascent : while the likelihood 2.3 is convex
in the parameters, calculating it or its gradient is complicated (the partition
function Z needs to be calculated for arbitrary parameter values).
After optimisation we get the parameters:

[h∗, J∗] = argmaxh,J{L(h, J|DN)} (2.4)

A lot of different DCA methods were developed in the literature with the aim
of maximising efficiently the likelihood: depending on the setting and on the
specific aim there are a lot of tools to approach this optimisation problem.

2.3 Phylogenetic Bias and Regularization

Generative models are built with the underlying assumption that all the se-
quences in an homologous family are drawn independently from a probabil-
ity distribution P0(a1, a2, . . . aL).
Actually often the sequences in a family do not respect this assumption : they
are related phylogenetically.
The collected data do not explore homogeneously the sequence space and
they are collected in a biased way[19]. In an homologous family there are
sequences performing the same function and they come from different or-
ganisms; however it is assumed that there is a common ancestor and they
can be very similar. For example the hemoglobin of the mice is only a few
amino acids different from the human one.
On top of this sequenced species are unevenly selected based on the interest
they have in the field. So some species are more represented with respect to
others. The similarity between sequences of a given family was actually used
to construct the phylogenetic tree of these sequences [20] but in our case the
P(a1, a2, . . . aL) inferred from the family will show sharp peak in the region
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of those sequences : this is a Phylogenetic bias.
To overcome this problem the proposed strategy is to compute the frequen-
cies fi(ai) and fij(ai, aj) in a different way: a weight is assigned to all the
sequences in the dataset.
The weight wk associated to the kth sequence of the family is equal to wk =

1
nk

where nk is the number of sequences that share more than 80% common nu-
cleotides with sequence k. By doing this reweighting, we avoid “double-
counting” very similar sequences, and obtain a more even sampling.
For example if there are 4 other sequences with more than 80% nucleotides
in common, a weight 1

5 will be assigned to all 5 of them.
The frequencies are then computed as:

fi(a) =
1

Ne f f

N

∑
k=1

ωk · δak
i ,a (2.5)

fij(a, b) =
1

Ne f f

N

∑
k=1

ωk · δak
i ,aδak

j ,b (2.6)

with Ne f f = ∑N
k=1 ωk.

The fact that not all sequences have the same importance changes the effec-
tive size of the homologous family dataset. If all the weights are equal to one
the usual definition of the frequencies is retrieved.
On top of this there is another problem. Typical natural sequences have
a length of hundreds of sites. This means that a huge amount if param-
eters still need to be inferred. Furthermore available samples are limited
(M = 102 − 105 for a typical homologous family). These reasons make regu-
larization necessary to avoid overfitting.
To get a better understanding of the problem let us propose an example. Sup-
pose that nucleotides x and y are rarely encountered on sites i and j respec-
tively ( fi(x) = f j(y) = 0.01). If they evolve independently the probability of
finding both nucleotides in sites i and j respectively of a sequence is equal to
0.01 · 0.01 = 10−4.
At best our effective datasets are composed of few thousands sequences and
such x,y occurrence maybe is not present at all.
Not only this shows an apparent anti-correlation but also an infinitely nega-
tive coupling between the two sites and nucleotides will be present.
An often used procedure to limit under-sampling effects is pseudo-count.
Starting from empirical one and two point frequencies fi(a), fij(a, b) we im-
pose:

fi(a)′ = (1 − α) fi(a) +
α

q

fij(a, b)′ = (1 − α) fij(a, b) +
α

q2

The introduction of a pseudo-count is equivalent, on average, to extend the
MSA with a fraction α(1 − α) of sequences sampled uniformly in every site.
In this way all the occurrences are represented and there are no undesired,
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infinitely negative parameters.
More sophisticated regularization schemes can be applied. Depending on
the problem one can be better than others.

2.4 Maximum Entropy Principle and Boltzmann Ma-
chine DCA

Starting from an observation data-set X⃗ one goal of information theory is to
gain information on the unknown probability distribution P(x⃗) from which
the observation data-set was sampled.
When this dataset is limited in size i.e. frequencies cannot be inferred simply
as empirical frequencies, it is possible to apply the Maximum Entropy Prin-
ciple (MEP) [21].
After deciding some features of the observation data-set (often mean values
of the empirical distribution) the aim of MEP is to find a probability distri-
bution PMEP(x⃗) that reproduces the selected features while being the most
unconstrained.
Suppose we have N observed data points in our dataset x⃗:

x⃗1, x⃗2, . . . , x⃗N

M observables Oα(x⃗) are selected and their average on the observations are
computed as

Õα =
∑N

k=1 Oα(x⃗k)

N
f or α = 1, 2, . . . , M

The goal is to find the probability distribution PMEP(x⃗) with maximal Shan-
non entropy S(x⃗) = −∑x⃗ P(x⃗) log

(
P(x⃗)

)
that respects:

< Oα(x⃗) >PMEP= Õα f or α = 1, 2, . . . , M

A matching between average on observations and ensemble mean value of
the selected observables is then imposed.
To do so we can use Lagrange multiplier technique to account for the con-
straints :

PMEP(x⃗) ∝ argmaxP(x⃗)

{
S(x⃗)−

M

∑
α=1

λα

(
∑
x⃗

P(x⃗)Oα(x⃗)− Õα

)}

The solution is easily retrieved:

PMEP(x⃗) ∝ exp
{ M

∑
α=1

λαOα(x⃗)
}

(2.7)

The values of the λα have to be tuned keeping into account the constraints.
Once PMEP(x⃗) is obtained, it can be used to sample artificial sequences.
The Boltzmann Machine Learning DCA [13] (bmDCA for short) is one of the
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more successful generative models for homologous protein families and it is
based on [22]. It is a maximum entropy generative model used to generate
artificial biomolecules.
It is able to generate fully functional artificial sequences and it was also ap-
plied to predict the effects of mutations.
MSAs can be seen as matrices A = {aµ

i , i = 1, ..., L, µ = 1, ..., M} which con-
tain M sequences aligned over L positions.
Following the maximum entropy principle, the model should replicate the
single site frequencies fi(a) and the two sites frequencies fij(a, b) of the train-
ing natural data (observation data-set).
Frequencies are given by the reweighted equations since one has to account
for the phylogenetic bias.
Here the selected observables to be matched are δ(ai, a) and δ(ai, a)δ(aj, b)
respectively. δ(ai, a) poses the question if there is nucleotide a in position i.
Writing explicitly the mean values we obtain:

< δ(ai, a) >PMEP= ∑
a1,a2,...,aL

PMEP(a1, . . . , aL)δ(ai, a) = Pi
MEP(a)

< δ(ai, a)δ(aj, b) >PMEP= ∑
a1,a2,...,aL

PMEP(a1, . . . , aL)δ(ai, a)δ(aj, b) = Pij
MEP(a, b)

Implying
Pi

MEP(a) =< δ(ai, a) >PMEP

Pij
MEP(a, b) =< δ(ai, a)δ(aj, b) >PMEP

So the goal here is to infer the probability distribution with maximum en-
tropy and with two point marginals that respect

Pi
MEP(ai) = fi(ai)

Pij
MEP(ai, aj) = fij(ai, aj)

The form of PMEP, according to eq. 2.7, is:

PMEP(a1, a2, . . . , al) ∝ exp
{ L

∑
i

q

∑
a=1

hi(a)δ(ai, a)+∑
i<j

q

∑
a=1

q

∑
b=1

Jij(a, b)δ(ai, a)δ(aj, b)
}

It is enough to exploit the properties of the delta function and the summation
over a and b to rewrite it in a more compact form:

PMEP(a1, . . . , al) =
1
Z

exp
{ L

∑
i=1

hi(ai) + ∑
i<j

Jij(ai, aj)
}

(2.8)

Z = ∑
a1,a2,...,aL

exp
{ L

∑
i=1

hi(ai) + ∑
i<j

Jij(ai, aj)
}

(2.9)

It becomes evident that bmDCA is equivalent to a Potts model. Specifi-
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FIGURE 2.4: Fully connected model with 6 sites

cally a fully connected Potts model with Hamiltonian:

H(a1, . . . , aL) = −
L

∑
i=1

hi(ai)− ∑
i<j

Jij(ai, aj) (2.10)

PMEP(a1, . . . , aL) =
1
Z

e−H(a1,...,aL)

Figure 2.4 represents a fully-connected Potts model with 6 sites.
The computation of PMEP marginals implies a sum over all the sequence
space since the computation of the partition function is needed. This prob-
lem is known to be computationally hard and unfeasible for biomolecules of
realistic length. So in order to find the best set of parameters {hi, Jij} respect-
ing moment matching conditions it is possible to apply a numerical approxi-
mated method.
For starters all the parameters are set to random values J0

ij(ai, aj) h0
i (ai) and

the following iterative procedure is adopted :

Jt+1
ij (ai, aj) = Jt

ij(ai, aj) + η
{

fij(ai, aj)− Pt
ij(ai, aj)

}
ht+1

i (ai) = ht
i(ai) + η

{
fi(ai)− Pt

i (ai)
}

At each step t there is a probability distribution Pt(a1, . . . , aL) with param-
eters {Jt

ij(ai, aj), ht
i(ai)}. Its first two marginals are Pt

ij(ai, aj) Pt
i (ai) and a new

iteration can be started: this procedure is a way to do likelihood maximiza-
tion [13] and on the Maximum likelihood point the empirical averages match
the ensemble ones. Now the higher is a parameter the higher is its associated
marginal, so at each step it is enough to increase the parameters associated
with marginals that are smaller than empirical frequencies and decrease the
one which are higher.
The steady state of the algorithm is reached when fij = pij (this also corre-
sponds to Maximum Likelihood point).
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The computations of the marginals is still an hard problem : the solution is to
use MCMC (Monte Carlo Markov Chain) methods to sample sequences from
Pt(a1, a2, . . . , aL) and compute on them the one and two point frequencies. If
the equilibrium condition is reached, they are a fair approximation of Pt

ij and
Pt

i (ai).
Later MCMC methods will be discussed more thoroughly because they play
a fundamental role in generative models.
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2.5 Edge Activation DCA

bmDCA produces a fully connected model that tries to account for co-evolution
between all possible pairs of residues, even when no actual co-evolution is
occurring. This can lead to highly noisy Jij(a, b) in the coupling network and
these are an artifact of the model.
To avoid this, in literature a parsimonious method called Edge Activation
DCA (eaDCA) has been developed [12].
The goal is to build a sparse model activating couplings only between pairs
which are really co-evolving. All other pairs should not be included to avoid
noise overfitting .
This algorithm can be applied to a MSA A consisting of M sequences and it
starts from an empty coupling network.
The resulting network E , defined via the set of all non-zero couplings Ji j, is
built iteratively by adding edges one by one. At each step a gradually more
complex model is built until a statistical performance comparable to that of
bmDCA is obtained.
In this framework likelihood maximization can be performed analytically
and the entropy can be computed exactly.
Starting from a model where there are no edges (E0 = ∅), a series of edge
sets Et are constructed at each step by activating a new edge or updating an
existent one. A pictorial representation of this is shown in Figure 2.5.
The model at step t will be :

FIGURE 2.5: Edge set iterative construction : the limit is a full
bmDCA. Figure courtesy of F. Calvanese.

Pt (⃗a) =
1
Zt

e−Et (⃗a), Et (⃗a) = −
L

∑
i=1

hi(ai)− ∑
(i,j)∈Et

Jij(ai, aj) (2.11)
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where Et is called "statistical energy". The Likelihood of the model given the
dataset D instead will be:

Lt =
M

∑
p=1

ωp log Pt(ap
1 , . . . , ap

M) (2.12)

where ωk are training weights.
At t = 0 the distribution is given by:

P0(⃗a) =
1
Zt

exp{−
L

∑
i=1

hi(ai)}

while the log-likelihood L0 is maximized by choosing

hi(a) = log( fi(a))

This simple model without couplings is known as profile model and the re-
sulting partition function is Z0 = 1.
At generic step t, there is the modification of a q × q coupling matrix Jkl on a
single position pair (k, l). This results in a change in the statistical energy :

Et+1(⃗a) = Et (⃗a)− ∆J∗kl(ak, al) (2.13)

If (k, l) was not present in Et there is an actual edge activation, otherwise it is
only an edge update. The edge (k, l) and the coupling change ∆J∗kl(ak, al) are
chosen to maximize the log-likelihood Lt+1.
It can be proved that this is realized by choosing the pair

(k∗, l∗) ∈ argmaxk,lDKL( fk,l||Pt
k,l)

This is the the site pair for which the second moment Pt
mn differs the most

from the empirical distribution fmn.
Here DKL denotes the standard Kullback-Leibler divergence :

DKL( f ||P) = ∑
a,b

f (a, b) log
f (a, b)
P(a, b)

(2.14)

for any pair of probability distributions f and P.
To prove this we start defining Me f f = ∑k ωk and substituting eq. 2.11 into
eq. 2.12 the expression for the likelihood becomes :

logLt = −Me f f log Zt +
M

∑
p=1

ωp(
L

∑
i=1

hi(ap
i ) + ∑

i,j∈Et

Jij(ap
i , ap

j ))

Then, to go to step t+1 a modification ∆Jkl(ak, al) is added and logLt+1 reads:

logLt+1 = −Me f f log Zt+1 +
M

∑
p=1

ωp(
L

∑
i=1

hi(ap
i )+ ∑

i,j∈Et

Jij(ap
i , ap

j )+∆Jkl(ap
k , ap

l ))
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The goal is to pick the ∆Jkl(ak, al)) that maximises the likelihood gain

∆ logL = logLt+1 − logLt

∆ logL = −Me f f log
Zt+1

Zt
+

M

∑
p=1

ωp · ∆Jkl(ap
k , ap

l )

Now it is possible to simplify this expression using delta functions and their
properties:

∆ logL
Me f f

= − log
Zt+1

Zt
+

M

∑
p=1

∑
a,b

ωp · ∆Jkl(ap
k , ap

l )δa,ap
k
δb,ap

l

Now remembering that fkl(a, b) = 1
Me f f

∑M
p=1 ωp · δa,ap

k
δb,ap

l
is the two-point

frequency:
∆ logL

Me f f
= − log

Zt+1

Zt
+ ∑

a,b
fkl(a, b)∆Jkl(a, b)

Now the partition function terms can be computed via an ensemble average
with respect to Pt. In fact

Zt+1

Zt
=

∑a⃗ e−Et (⃗a) · e∆Jkl(a,b)

∑a⃗ e−Et (⃗a)
= ⟨e∆Jkl(ak,al)⟩Pt

So
Zt+1

Zt
= ∑

a,b
e∆Jkl(a,b)Pt

kl(a, b)

Then coming back to the likelihood gain :

∆ logL
Me f f

= − log ∑
a,b

e∆Jkl(a,b)Pt
kl(a, b) + ∑

a,b
fkl(a, b)∆Jkl(a, b)

The final goal now is to maximise this expression with respect to ∆Jkl(a, b).
To do so it is enough to perform a simple derivative and the result is :

−
e∆J∗kl(a,b)Pt

kl(a, b)

∑c,d e∆J∗kl(c,d)Pt
kl(c, d)

+ fkl(c, d) = 0

So that

∆J∗kl(a, b) = log
fkl(a, b)
Pt

kl(a, b)
(2.15)

Substituting this in the likelihood gain, the biggest possible gain is :

∆ logL
Me f f

= ∑
a,b

fkl(a, b) log
fkl(a, b)
Pt

kl(a, b)
= DKL( fkl||Pt

kl)
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In the end
(k∗, l∗) = argmaxk,lDKL( fkl||Pt

kl) (2.16)

As in standard bmDCA, computing the marginal distributions Pt
kl is a hard

problem since it is equivalent to sum over all qL possible sequences of aligned
length L.
Markov Chain Monte Carlo (MCMC) sampling methods are needed to com-
pute approximately the marginals.
fij(a, b) can be zero because a couple of nucleotides (a,b) is never observed in
sites i,j. If the edge (i,j) is targeted by eaDCA, this would lead to J∗ij(a, b) =

−∞ : in paractical applications, a few modifications have to be done.
Furthermore it could be that Pt

ij(a, b) = 0 because, during MCMC sampling,
the couple (a,b) in sites i,j was never sampled. This yields J∗ij(a, b) = +∞.It is
clear that regularization is needed.
Using pseudocounts as before, a regularized update is defined as :

∆J∗kl(a, b) = log
(1 − α) fkl(a, b) + α

q2

(1 − α)Pt
kl(a, b) + α

q2

(2.17)

The eaDCA algorithm needs a termination condition : the steady state is the
same as bmDCA and it is reached when pij = fij , ∀(i, j).
The empirical two-site covariances are :

cij(a, b) = fij(a, b)− fi(a) f j(b)

Instead the correlations of the model are given by :

ct
ij(a, b) = Pt

ij(a, b)− Pt
i (a)Pt

j (b)

When there is a Pearson Correlation of 0.95 between cij(a, b) and ct
ij(a, b) com-

puted over all pairs of positions and nucleotides including the pairs (i, j) /∈ E ,
the algorithm stops. The choice of the ct

ij(a, b) instead of f t
ij(a, b) is dictated

by the fact that generated sequences should replicate the statistics of the nat-
ural data. The one-point frequencies are easily checked. To test the two-point
frequencies it is better to use the ct

ij(a, b) since this quantity isolates the co-
evolutionary information contained in the ct

ij(a, b).
In fact it is possible to write fij(ai, aj) as:

fij(ai, aj) = fi(ai) f j(aj) + ϵij(ai, aj) (2.18)

where :

• ϵ = 0 if the two sites are independent (do not co-evolve)

• ϵ > 0 if the pair (ai,aj) is favoured by co-evolution

• ϵ < 0 if the pair (ai,aj) is disadvantaged by co-evoluton
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All the co-evolutionary information is contained in ϵ and

ϵij(ai, aj) = fij(ai, aj)− fi(ai) f j(aj) (2.19)

i.e. the connected correlation (or covariance) isolates conservation signals
from co-evolution :

ϵij(ai, aj) = Cij(ai, aj) (2.20)

So using the correlation as a test for the correct reproduction of co-evolution
statistics is a correct procedure. eaDCA preserves the partition function Z.
Substituting the coupling update in the expression, we get :

Zt+1

Zt
= ∑

a,b
exp{log

fkl(a, b)
Pt

kl(a, b)
}Pt

kl(a, b)
Zt+1

Zt
= ∑

a,b

fkl(a, b)
Pt

kl(a, b)
Pt

kl(a, b) = 1

This proves that Zt+1 = Zt. Now, since the starting point was a profile
model with Z0 = 1, at each time the model is normalized i.e. we have di-
rectly P(a1, . . . , aL) = exp(−H(1, . . . , aL)) and this can be very practical when
comparing sequences in different models, as done for example in homology
detection in computational biology.

2.6 Gibbs Sampling and Importance Sampling

In the previous parts Monte Carlo Markov Chain methods[23] were often
mentioned. Since they will play a significant role in the following, it is im-
portant to talk a bit about them. MCMC methods are needed: the computa-
tion of marginals of Boltzmann Distributions can be really slow. In fact the
computation of the partition function is required and this means performing
an exponential sum.
The evaluation of marginals is then performed thanks to MCMC methods : a
big equilibrium sample is generated and from there estimating the marginal
is far more efficient. There are many MCMC methods: here an introduction
about the Gibbs Sampling algorithm is provided and then the focus will be
on Importance Sampling.
The functioning of Gibbs Sampling is simple. We define the probability of a
single nucleotide mutation, conditional to all other nucleotides as P(ai |⃗a−i)
where ai is the nucleotide in position i and a⃗−i is the sequence with nucleotide
ai removed:

P(ai |⃗a−i) =
P(⃗a)

P(⃗a−i)

the advantage of this distribution is that it is easy to normalise since it de-
pends only on one random variable, namely ai.
In our specific case the Boltzmann probability distribution P(a1, . . . , aL) =
P(⃗a) is known and in MCMC simulations we initialise random sequences of
proteins.
The nucleotides in each site of each sequence are modified: the new nu-
cleotide in position i is sampled from its conditional probability distribution
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P(ai|A−i).
Once all the positions are sampled one time, a complete Gibbs sweep has
been done.
The Gibbs algorithm satisfies the detailed balance condition, ensuring that
the resulting Markov Chain has the target distribution as its equilibrium dis-
tribution.
Anyway, in these kind of methods reaching equilibrium is a delicate point,
particularly in the sampling parts of training our models.
In the eaDCA case the likelihood is maximised iteratively and at each step a
MCMC method is needed to sample some sequences. They are then used to
compute a score between them and the training data to assess how good is
the currently trained model.
If at each training step we start from random sequences and each time we
wait for reaching equilibrium, the algorithm becomes really slow.
Fortunately the probability distribution changes only slightly from one train-
ing step to another (one edge maximum). Exploiting this, the "persistent con-
trastive divergence" strategy is adopted. It consists in using the previously
sampled sequences as a starting point for the sampling of the next step. In
this way only a few Gibbs sweeps are needed and the algorithm is way faster.
After the training, to assess the quality of our model, we need to sample from
it starting from random sequences and to see if the score of the sequences is
indeed comparable to the one obtained in the training. This process is called
resampling.
In this setting the equilibrium is reached when the chains auto-correlation
match the correlation between two independent chains (always using the
same model).
The sampling method described generates an independent and identically
distributed (iid) sample of sequences from the probability distribution.
As described in the introduction, in the Azoarcus setting we are interested
in mutations from the wild-type that can be generated in laboratory. The
problem of sampling model-informed mutations from a wild-type needs to
be tackled.
First of all a concept of distance needs to be defined. In the following we will
use the Hamming distance.
Given two sequences X and Y of same length N, the Hamming Distance is
defined as

DH(X, Y) = N −
N

∑
i=1

δ(Xi, Yi) (2.21)

where δ(x, y) is the usual Kronecker delta. It measures how many nucleotides
are different between the two sequences.
The Importance Sampling algorithm provides a relatable way to generate
mutations at each distance from a wild-type while keeping into account the
model from which we are sampling. The aim is to generate mutations at dis-
tance K : it is needed to sample from P(a1, . . . , aL|K).
A naive idea would be to sample numerous sequences from the unconstrained
P(aL, . . . , aL) and then filter those at distance k.
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Unfortunately it could be that the probability of sampling a sequence at dis-
tance K is extremely low and an astronomically large equilibrium sample
would be needed.
To overcome this problem a bias term is introduced in order to guide the
probability distribution towards specific values of K.
Starting from a DCA model

P(a1, . . . , aL) =
1
Z

exp{
L

∑
i=1

hi(ai) +
L

∑
i<j

Jij(ai, aj)} (2.22)

The biased one reads:

Pθ(a1, . . . , aL) =
1

Z · Zθ
exp{

L

∑
i=1

hi(ai) +
L

∑
i<j

Jij(ai, aj)− θ · DH (⃗a, x⃗)} (2.23)

where Zθ is the variation in terms of partition function, DH (⃗a, x⃗) is the ham-
ming distance between the sequence a⃗ and the wild-type x⃗ and θ is the bias
strength.
The probability of sampling sequences close to the wild-type is higher when
θ is positive and it is lower when θ is negative, pushing the sampling away
from the wild-type.
By changing the values of θ and by doing different batches of sampling, it is
possible to sample sequences at any desired distance K.
Eq. 2.23 can be written in a Potts way by including the bias term in the field
term. In fact it is possible to define:

h̄i(ai) = hi(ai)− θ · (1 − δai,xi) (2.24)

In this way it can be shown that Pθ(a1, . . . , aL) is again a Potts model :

Pθ(a1, . . . , aL) =
1

Z · Zθ
exp{

L

∑
i=1

h̄i(ai) +
L

∑
i<j

Jij(ai, aj)} (2.25)

The bias term should guide the sampling without changing the original dis-
tribution. To address this, it can be proved that Pθ(a1, . . . , aL|K) = P(a1, . . . , aL|K).
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2.7 ViennaRNA Package

The ViennaRNA Package [24] is an useful tool used in computational biology
to study RNA. Inside there are a lot of different programs for a lot different
applications. Since it will be helpful in the following, let us talk about RNA
Secondary Structure Prediction and RNA Design.

The program for RNA Secondary Structure Prediction is called RNAFold

FIGURE 2.6: ViennaRNA package picture of a RNA hairpin
with given dot-bracket structure.

and it predicts the minimum free energy (MFE) secondary structure for a
given RNA sequence; it is the structure that, according to thermodynamic
principles, has the lowest thermodynamic free energy. To predict it, Zuker
dynamic-programming algorithm [25] is used.
The output of a MFE prediction is commonly represented in dot-bracket rep-
resentation. In this notation, the RNA sequence is pictured with dots for
unpaired bases and parentheses for paired bases.
On top of the secondary structure prediction, base pairing probabilities and
the MFE value are provided thanks to the function RNAEval and these infor-
mation will be very useful later.
ViennaRNA Package can also do the inverse: thanks to the function RNAIn-
verse, taking as input a secondary structure in dot-bracket representation, it
can generate sequences that fold in the desired structure using again thermo-
dynamic principles.
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Furthermore, by giving as inputs a sequence and a structure, it can compute
the probability of the sequence folding into the structure and also the corre-
sponding thermodynamic free energy can be computed.
We can define the thermoscore of a sequence as minus the thermodynamic
free energy. In this way a low free energy will correspond to an high ther-
moscore : this is expected since good sequences have, by definition, low free
energy.
Finally also graphical tools are present, capable of generating representations
as the ones showed in Figure 2.6.
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Chapter 3

Reintegration Methods

3.1 Reintegration of Heterogeneous Sequences

Generative statistical models have been presented as tools to generate artifi-
cial bio-molecular sequences : starting form an alignment of an homologous
family of RNA or Proteins, Direct Coupling Analysis (DCA) models are built
learning a Potts model via Likelihood maximisation.
High-throughput experiments became available and made possible to mass
test biological sequences : three-dimensional structures, activities or thermo-
dynamic stability can be measured in experiments and this allows to label
sequences as functioning or not, making them "annotated".
An approach to reintegration of experimental data has been proposed before
[26].
The goal was to integrate heterogeneous data in the Inverse Ising Problem.
Although the setting is a little different, an Ising model can be seen as a Potts
model with q=2.
Two different datasets were considered. The first dataset Deq is a sample of
spin configurations generated from an unknown "true" model H0. In the bio-
logical setting these spin configurations correspond to the natural sequences
on which DCA models are learnt on: it is enough to consider these as pro-
teins with only two amino acids.
In general it is possible to suppose that natural sequences are generated from
a "ground truth" model to which we do not have access; indeed the goal of
statistical inference is to get closer to it.
The second dataset DE is a collection of heterogeneous spin configurations,
each one with a noisy measurement of its energy computed with respect to
model H0.
Then the energy measurement here is related to the quantity measured through
the biological experiment in our setting: more on this will be discussed later.
Deq = {s1, ..., sM} dataset is composed of M configurations drawn at equilib-
rium from "true" model H0 and it has empirical frequencies :

f ∗i (a) =
1
M

M

∑
µ=1

sµ
i , f ∗ij(a, b) =

1
M

M

∑
µ=1

sµ
i sµ

j (3.1)

DE = {σ1, ..., σP} dataset, instead, is composed by P arbitrary configuration
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FIGURE 3.1: Representation of the inference setting datasets Deq
and DE. The dashed black lines represent the actual unknown
landscape while the red line the inferred landscape.Figure re-

produced from [26]

and with each one there is also a noisy measurement of the energy.

Ea = H0(σa) + ξa (3.2)

Experimentally it is not possible to compute directly the energy of the se-
quences : to obtain it there must be some kind of mapping between the quan-
tity experimentally measured and the Ising energy. This mapping surely is
not perfect and ξa is a noise modelling uncertainties in the mapping and ex-
perimental noise. It is considered to be a white Gaussian noise with zero
mean and variance the ∆2.
A concrete example of mapping between experimental measures and energy
will be provided later.
Using these dataset a new form of the Likelihood was devised to infer a
model H hopefully closer to the true model H0 :

L(h, J|Deq, DE) = log P(Deq|h, J) + log P(DE|h, J) (3.3)

The expression of P(Deq|h, J) is given by a Boltzmann Distribution :

P(Deq|h, J) = exp
{
−

M

∑
µ=1

H(sµ)− M · log Z(h, J)
}

(3.4)

Instead The expression P(DE|h, J) was obtained thanks to an integral over
the Gaussian distribution of the noise ξa.

P(DE|h, J) =
P

∏
a=1

∫
dξaP(ξa)δ(Ea − Ha − ξa) (3.5)
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P(DE|h, J) =
1

(2π∆2)
P
2

exp
{
−

p

∑
a=1

[Ea − H(σa)]2

2∆2

}
(3.6)

Now maximising the Likelihood a set of self consistent equations is found :

pi(a) = f ∗i (a) +
λ

1 − λ

1
M

P

∑
a=1

σa
i [E

a − H(σa)] (3.7)

pij(a, b) = f ∗ij(a, b) +
λ

1 − λ

1
M

P

∑
a=1

σa
i σa

j [E
a − H(σa)] (3.8)

They are indeed self consistent because pi(a) = ⟨σi⟩H and pij(a, b) = ⟨σiσj⟩H
depend on H itself. This is not optimal and it can be a huge problem when
trying to solve for pi(a), pij(a, b).
λ = 1

1+∆2 is an hyperparameter accounting for the strength of the interac-
tion : if our measure is very noisy (big ∆2) the sequence has a small effect
in changing the moments. So the case λ = 0 (large noise) corresponds to
the case in which no reintegration is done and the standard Inverse Ising is
recollected. On the contrary the case λ = 1 corresponds to noiseless energy
measurements.
The idea is that if our model assigns already the correct energy to a sequence
in DE then no correction to the empirical frequencies is needed. On the con-
trary if our model is wrong in the prediction of the energy then the moments
are corrected proportionally to the difference in energy.
The take-home message is that it is possible to reintegrate data into our model.
The new probability distribution is obtained by maximising another objective
function and its first two moments are functions of the original empirical fre-
quencies, adjusted with an experimental feedback.

3.2 Reintegration of Negative Sequences

To go forward in the direction of reintegrating annotated sequences let us
start from a Potts model H1 learnt via DCA on some dataset D1 of sequences
belonging to some homologous family.
Dataset D1 has empirical frequencies fi, fij and it can be thought as a small
dataset sampled from a ground truth model H0 which is unknown and it is
actually the final goal of statistical inference.
In general dataset D1 is not enough to infer H0 but surely it is possible to
learn a DCA model H1 from it.
From this model we can generate via Gibbs Sampling a new dataset D2 which
will be strongly related to the sequences of D1 and it will be regarded as test
dataset. This setting is represented in Figure 3.2.
We now suppose to do a to an experiment on the sequences so that ∀⃗a ∈ D2

a positive or negative label is assigned to it depending on its energy E0 mea-
sured with respect to ground truth model H0. This is shown in Figure 3.3.
Labelling sequences is equivalent to grasp how the ground truth model clas-
sifies the generated sequences: since H0 is our (unknown) ground truth from
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FIGURE 3.2: Representation of the setting : D1 is the dataset on
which H1 is learnt on, D2 is the dataset sampled from H1

which dataset D1 was generated (all are functioning in D1), there would be
some threshold E∗ value saying which sequence is labeled negative or posi-
tive.
In the following the non functioning sequences (energy E0 above the thresh-
old E∗) will be called "negatives" while the functioning sequences (energy E0
below the threshold E∗) will be referred as "positives". Computing the energy
with respect to H0 is like measuring a sort fitness of the generated sequences
without any real experiment: it is a fitness proxy. The usage of fitness proxy
will be crucial in the following.
To exploit this information to improve our model H1 we can isolate the nega-
tive dataset made only of sequences with a negative label and compute their
frequencies f−i , f−ij .
The sequences belonging to the negative dataset are the most informative
ones: they are not random and our model H1 deems them as good. Despite
this they do not pass the experimental test because in reality our model was
not able to grasp some fundamental details.
To use this information our dataset D1 (in which each sequence has a training
weight w ≤ 1) can be extended with the sequences belonging to the negative
dataset.

Similarly to what was done to get rid of the phylogenetic bias during the

FIGURE 3.3: Representation of test dataset D2 after labelling
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FIGURE 3.4: Full Setting : H1 is our inferred model, H0 is un-
known.

training of DCA models, it is possible to do so by assigning training weight
w = −1 to all of them. Actually it is wise to introduce an hyper-parameter λ
representing the integration strength and set w = −λ.
In this way the augmented dataset will be more informative and it will have
different frequencies from fi, fij.
Keeping in mind the formulae for the re-weighted frequencies, it is trivial to
see that the new frequencies for the augmented dataset are given by :

f ∗i (a) =
fi(a)− λ f−i (a)

1 − λ
(3.9)

f ∗ij(a, b) =
fij(a, b)− λ f−ij (a, b)

1 − λ
(3.10)

The interpretation of these formula is the following : they are function of the
original frequencies but they are adjusted according to experimental results :
more precisely frequencies fi(a) and fij(a, b) (leading to many non-functional
sequences) get reduced into the adjusted frequencies 3.9 and 3.10.
At this point a new model can be trained using f ∗i , f ∗ij as target. Actually this
case can be seen as a particular case of a more general setting so the training
phase will be addressed later.
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3.3 Objective Function Design

A bmDCA model P1(⃗a) is trained maximising the Natural Data DN log-
likelihood L(DN )

L(h, J|DN) =
1
N ∑

a⃗∈DN

log P1(⃗a|h, J) (3.11)

The set of parameters {h, J} that maximizes L(h, J|DN) is found analyti-
cally or numerically. The corresponding Boltzmann distribution P1(⃗a) is then
known. Remembering the Maximum Entropy Principle we know that the
first and second moment of P1(⃗a) must match the empirical frequencies fi, fij
of the Natural Data DN.
This set of parameters can be seen as a generative model from which we can
sample a dataset of artificial sequences DT that can be tested experimentally:
a fraction of them will be biologically functional while the others will not.
The question is how to use this information to improve the DCA model P1(⃗a).
To do so the strategy is to learn a new model P2(⃗a|h, J) using the following
objective function to be maximised:

Q(DN,DT, λ) =
1
N ∑

a⃗∈DN

log P2(⃗a|h, J) +
λ

M ∑
b⃗∈DT

log P2(⃗b|h, J) · w(⃗b) (3.12)

The first term is exactly the log-likelihood maximization on the Natural Data
of eq. 3.11 : if there is no access to experimental data, meaning that DT = ∅,
the objective function reverts back to the standard log-likelihood.
Instead the second term is the key to reintegration and it is acting on the
probabilities of the tested sequences relying on the value of the adjustment
function w : a value of w is assigned to every sequence b⃗ ∈ DT. The intensity
of the tuning is controlled by the hyperparameter λ so that if λ = 0 the classic
inverse problem is recovered.
In general w(⃗b) is arbitrary but it has to follow the following rules:

• w(⃗b) should be negative for the sequences that our original model P1(⃗a)
deems as good but fail the experimental functionality test. In this way
the maximization of the second term of the eq. 3.12 will try to reduce
the probabilities P2(⃗b) that the model assigns to them. Once again these
are the more informative ones.
In principle w(⃗b) should be negative also for sequences that our model
deems as bad and that do not pass the experimental functionality test
but it is safe to assume that the sequences generated from P1(⃗a) are
considered as good for the model itself.

• w(⃗b) should be positive for the sequences that our original model P1(⃗a)
deems as good and pass the experimental functionality test. In this way
the maximization of the second term of the eq. 3.12 will try to increase
the probabilities P2(⃗b) that the model assigns to them.



3.3. Objective Function Design 33

Again w(⃗b) should be positive also for sequences that our model deems
as bad but pass experimental functionality test.

This derivation is general and it does not depend on the specific form of w(⃗b).
Anyway in the following numerous examples will be provided.
Going back to eq. 3.12 for the Objective Function and substituting the expres-
sion of the Boltzmann Equation 2.1:

Q = − 1
N ∑

a⃗∈DN

H2(⃗a)− log Z2 −
λ

M ∑
b⃗∈DT

H2(⃗b) · w(⃗b)− λ

M
log Z2 ∑

b⃗∈DT

w(⃗b)

The aim is to maximise the Objective Function so the partial derivatives with
respect to the parameters have to be computed.
Similarly to eq. (cap2) the terms involving the derivatives of the Potts Hamil-
tonian lead to :

− 1
N ∑

a⃗∈DN

∂H2(⃗a)
∂hi(a)

= fi(a)

− 1
N ∑

a⃗∈DN

∂H2(⃗a)
∂Jij(a, b)

= fij(a, b)

The derivatives of the partition function instead :

−∂ log Z2

∂hi(a)
= P2

i (a)

− ∂ log Z2

∂Jij(a, b)
= P2

ij(a, b)

Finally the terms involving the derivatives with the adjustment function w(⃗b):

− ∑
b⃗∈DT

∂H2(⃗b) · w(⃗b)
∂hi(a)

= ∑
b⃗∈DT

δbi,a · w(⃗b)

− ∑
b⃗∈DT

∂H2(⃗b) · w(⃗b)
∂Jij(a,b)

= ∑
b⃗∈DT

δbi,a · δbj,b · w(⃗b)

Rearranging terms the following equations for the first and second moment
of P2(⃗a|h, J) are found:

P2
i (a) =

fi(a) + λ
M ∑⃗b∈DT

δbi,a · w(⃗b)

1 + λ
M ∑⃗b∈DT

w(⃗b)
(3.13)

P2
ij(a, b) =

fij(a, b) + λ
M ∑⃗b∈DT

δbi,a · δbj,b · w(⃗b)

1 + λ
M ∑⃗b∈DT

w(⃗b)
(3.14)
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The new moments of P2(⃗a|h, J) are function of the moments of P1(⃗a|h, J) but
they are adjusted depending on the experimental data.
To grasp what is happening it is useful to remember that the sequences gen-
erated from P1(⃗a|h, J) are not random but they are actually generated from a
DCA model that includes site conservation and site co-evolution. The neg-
ative sequences are almost functional but there must be some details that
our model P1(⃗a|h, J) failed to grasp. This is mostly due to the quality and
the quantity of the data on which P1(⃗a|h, J) was trained on. Indeed homolo-
gous families are composed of relatively few data (order of thousands) and a
strong phylogenetic bias is present.
This also justifies the need of these reintegration methods.
Here all sequences are reintegrated : the good ones with a positive adjust-
ment and the negative ones with a negative adjustment.
In the parts where the model P1(⃗a|h, J) was correct there will not be many
changes because the model was already grasping them with the empirical
frequencies and both the negative and positive ones are showing the right
bases. In the parts where the model P1(⃗a|h, J) was wrong the frequencies
will change more because the good sequences will enforce the pre-existent
signal while the negative ones will actively adjust the frequencies.
P2

i (a) and P2
ij(a, b) can be interpreted as new target frequencies and a new

DCA model can be trained using the same training strategies used before i.e.
bmDCA or eaDCA.
It is important to notice that this may be dangerous since P2

i (a) and P2
ij(a, b)

may become negative or larger than 1 in some cases. This is mostly relevant
in case of very strong reintegration, i.e. rather large λ. This is the strength
of the proposed procedure since here, differently from the reintegration tech-
niques present in the Deep-Learning framework, no back-propagation is needed
and this helps both interpretability and algorithm efficiency; in fact it is pos-
sible to use the same training strategy used in standard DCA.
Then from P2

i (a) and P2
ij(a, b) a new DCA model H2 can be trained and from

this a new set of artificial sequences can be generated and hopefully it per-
forms better experimentally.
This procedure is powerful and well-founded : before showing its applica-
tion to both synthetic and real data, two example of adjustment function w(⃗b)
can be provided and it is possible to recover both the settings described be-
fore : the reintegration of hetereogeneous and negative data.

3.4 Example : Negative Sequences

If DT is composed only by sequences that did not pass the experimental test,
it will have empirical frequencies f−i , f−ij .
It is possible to assign w = −1 ∀⃗a ∈ DT. and in this case eqs 3.13 and 3.14
simplify a lot :

P2
i (a) =

fi(a)− λ f−i (a)
1 − λ
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P2
ij(a, b) =

fij(a, b)− λ f−ij (a, b)

1 − λ

These equations are equivalent to eqs. 3.9 and 3.10 and reintegrating negative
sequences is then a particular case of eqs 3.13 and 3.14.

3.5 Example : Reintegration with Potts Energy

Starting again from a Potts model H1 learnt via DCA on some dataset D1 as
we did in the reintegration of negative sequences, it is possible to provide
another relevant example of adjustment function w.
Dataset D1 has empirical frequencies fi, fij, computed via eqs. 2.5 and 2.6.
From this model we can generate via Gibbs Sampling a new dataset D2 which
will be somehow related to the sequences of D1 and will be regarded as test
dataset.
Now thanks to biological experiments each tested sequence is provided with
a measure of fitness or activity and also its energy E1 with respect to model
H1 can be computed. A mapping from the fitness measures can be done to
find the energies E0 of these sequences computed with respect to a "ground
truth" model H0. In this way we can compare the energies from the model
H1 with those computed from H0 and design the adjustment consequently.
A good sequence will have high fitness/low energy. Sorting the fitness mea-
sures in decreasing order and the energies E1 in increasing order, it is possible
to assign the lowest energy to the sequence with highest fitness, substitut-
ing each fitness value with the value of the energy assigned to it. Then the
same is done assigning the second lowest energy E1 to the sequence with
the second higher fitness and so on. In this way the energies E0 will be an
experimentally-informed shuffle of the energies E1.
Based on this mapping an adjustment function can be designed : after as-
signing a new energy E0 to each of the tested sequences with this mapping
we can take w = E1 − E0 so that if a sequence had a low energy E1 but also
low fitness (i.e. high energy E0) it will be largely penalized in the training
and viceversa if a sequence had a high energy E1 but also high fitness it will
be promoted in the training. Substituting this in eqs. 3.13 and 3.14 the result
is :

P2
i (a) =

fi(a) + λ
M ∑⃗b∈DT

δbi,a ·
(
E1(⃗b)− E0(⃗b)

)
1 + λ

M ∑⃗b∈DT

(
E1(⃗b)− E0(⃗b))

(3.15)

P2
ij(a, b) =

fij(a, b) + λ
M ∑⃗b∈DT

δbi,a · δbj,b ·
(
E1(⃗b)− E0(⃗b)

)
1 + λ

M ∑⃗b∈DT

(
E1(⃗b)− E0(⃗b)

) (3.16)

These equations are strikingly similar to eqs. 3.7 and 3.8. So the reintegration
of heterogeneous sequences can be seen as a particular case of our setting.
Furthermore these new equations are not self consistent and the moments of
the distribution can be easily computed.
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3.6 Edge Activation DCA with new Objective Func-
tion

Similar to what was done in the eaDCA setting, it should be possible to find
out what edge to activate in order to maximize the new objective function in
eq. 3.12. By starting from the new expression for the two-point frequency

P2
ij(a, b) =

fij(a, b) + λ
M ∑⃗b∈DT

δbi,a · δbj,b · w(⃗b)

1 + λ
M ∑⃗b∈DT

w(⃗b)

it is possible to perform the same computations with the Objective Function
gain performed in Ch.2.
The results are, intuitively:

(k∗, l∗) ∈ argmaxk,lDKL(P2
kl||Pt

kl) (3.17)

∆J∗kl(a, b) = log

(
P2

kl(a, b)
Pt

kl(a, b)

)
(3.18)



37

Chapter 4

Reintegration: Fitness proxies and
synthetic data

Since biological experiments can take a lot of time and they can be very ex-
pensive, in the development of our method it is very important to have a
good proxy for the experimentally measured quantities like fitness or activ-
ity measures. In the following two examples of fitness proxies are used :
Potts energy and ViennaRNA thermo-score.
Thanks to these fitness proxies it is possible to apply and test the reintegra-
tion methods that were presented in Chapter 3.
The aim of this chapter is to see some results of reintegration of synthetic data
tested with a fitness proxy: this not only proves the validity of our methods
but it also encourages their application to real data with real experimental
measures.
The utilization of synthetic data is very frequent in biology. Synthetic data
are very useful when obtaining authentic data is challenging due to limited
availability and they are a good starting point when approaching a new prob-
lem.

4.1 Using Potts Energy as Fitness Proxy

Given a Potts model H = {h, J} it is possible to evaluate, with respect to the
model itself, the energy of every sequence belonging to the huge sequence
space.
Sequences with a low energy will be deemed as good by the model while
sequences with an high energy will be regarded as bad .
With this principle in mind let us go back to the setting described in the rein-
tegration methods.
The best datasets accessible nowadays are the MSAs of homologous families
and it is possible to learn DCA models from them. A Potts model H1 is learnt
via DCA on some dataset D1 of sequences belonging to some homologous
family (natural data).
Dataset D1 can be thought as a small dataset sampled from a ground truth
model H0 which is unknown and it is actually the final goal of statistical in-
ference.
The general goal of our reintegration methods is to improve model H1 learnt
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FIGURE 4.1: Setting : H0 is the ground truth model from which
the natural data D1 are sampled, H1 is the Potts model learnt
on the natural data and D2 are the artificial sequences sampled

from H1.

on natural sequences D1 by reintegrating experimental tests based on some
fitness measure. In this paragraph instead the aim is mostly testing our meth-
ods : since doing biological experiments is expensive and long we need a fit-
ness proxy.
For sure the model H1 is less informative than ground truth unknown model
H0 since it is only a Potts model matching the frequencies of D1. Anyway, in
the right setting, H1 may take the role of ground truth model and it can be a
good first proxy to test artificial sequences.
Let us describe a setting in which H1 can assume the role of ground truth
model. From model H1 we can generate via Gibbs Sampling a new dataset
D2 which will be strongly related to the sequences of D1. This is shown in
figure 4.1.
Now the training of H1 stopped when a 95 percent correlation was present
between the correlation matrix C2

ij of the sampled sequences D2 and the C1
ij

of the D1 natural dataset. Then, if a second Potts model H2 is learnt on the
whole D2 dataset, it will be very similar to model H1 and at that point H1
would lose the role of ground truth model.
We can take a small fraction of D2 dataset and learn a second Potts model
H2 from it. The size of the fraction of D2 is problem-dependent but, during
the analysis, it was observed that taking a tenth of the sequences of D2 leads
to good results and H2 and H1 are appreciably different: model H2 will be
worse than model H1.
Now we want to apply our methods to improve H2 so a dataset D3 is sam-
pled from it. In this scenario energies computed with respect to the model
H1 can be regarded as a fitness proxy to test sequences sampled from H2.
Now it is possible to compute the energies E of sequences belonging to D3

with respect to the assumed ground truth model H1. Starting from H2, our
reintegration methods can be applied with the hope to get a better model H∗

capable to generate sequences D∗ with smaller average energy with respect
to H1 than those generated from H2. This is shown in figure 4.2.
To get the new target frequencies on which H∗ will be learnt it is enough to
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FIGURE 4.2: H1 is now thought as the ground truth model and
D2 is sampled from it. H2 is learnt on a fraction of D2 and D3 is

the test dataset sampled from H2.

apply eqs.3.13 and 3.14 using as Adjustment Function w(⃗b) = −E ∀⃗b in D3.
Intuitively an high energy means that the sequence is bad so w(⃗b) needs to
be negative to penalize the sequence during the training.

Using these new adjusted frequencies as target it is possible to train the

FIGURE 4.3: Histogram of the energies computed with respect
to H0 of the three artificial dataset related to the family of

glycine riboswitches (RF00504).

sought model H∗. An optimization using different values of hyperparame-
ter λ is needed but after doing this H∗ is learnt via eaDCA and a dataset D∗

is sampled from it.
This was done for several RNA families and with different sizes of the arti-
ficial datasets: the histogram shown in Figure 4.3 was done for the family of
glycine riboswitches (RF00504) which consists of 4556 sequences.
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The average energy with respect to model H1 of sequences in D∗ is far lower
than the average energy of sequences in D3 and it is comparable (depending
on the specific setting) to that of the sequences in D2 on which the original
model H2 was learnt on.
Then the new model H∗ does perform better than H2: the reintegration of
data labelled thanks to model H1 was successful.
After this more sophisticated fitness proxies needed to be investigated.

4.2 Reintegration with ViennaRNA thermo-score

ViennaRNA package [24] is very useful in our setting. Given a dot-bracket
secondary structure, it can generate thousands of sequences that supposedly
fold in that specific structure using RNAInverse function.
Not only this, ViennaRNA package is also able to take as input a sequence
and a structure and output the probability of that sequence folding in that
specific structure with RNAEval function.
Actually RNAEval can do more: given a structure, it can compute the ther-
modynamic free energy of a sequence. This, with a change of sign, is a very
good fitness proxy since a lot of details are taken into account when comput-
ing this thermodynamic free energy. Minus the thermodynamic free energy
is called the thermo-score so that the lower the free energy, the higher the
thermo-score.

Starting from a dot-bracket structure, it is possible to generate a dataset

FIGURE 4.4: ViennaRNA package picture of an hammerhead
ribozyme
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DV from ViennaRNA package with RNAInverse. From this we can learn an
eaDCA model HV as usual.
Now, from HV , it is possible to generate artificial sequences DA via Gibbs
Sampling.
Now the procedure is simple : for each sequence in DA we can evaluate its
thermo-score and use this as adjustment function for our reintegration meth-
ods. In this way we can compute the new target frequencies and learn a
second model HR, product of the reintegration.
From HR, a new dataset DR can be sampled and tested : the sequences be-
longing to DR are expected to have an higher thermo-score with respect to
those of DA.
This pipeline was applied to a 40 base pairs long molecule, the hammerhead
ribozyme (Figure 4.4), and the results are shown in figure 4.5 : not only the
sequences from DR perform better than the sequences in DA but, in terms of
thermo-score, they outperform even those generated by ViennaRNA pack-
age.
Again, we conclude that the reintegration was successful and our model even
outperforms RNAInverse. With this second test, which uses a ground truth
not represented by a Potts model, we gained sufficient confidence to apply
the reintegration method to real data and to generate new sequences for ex-
perimental testing, cf. Section 5.

FIGURE 4.5: Histogram of the ViennaRNA thermo scores com-
puted for three dataset: the sequences generated from Vien-
naRNA package, the sequences generated from DCA and the

sequences generated after integration.
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4.3 Diversity and Entropy loss

One of the strengths of eaDCA[12] is the possibility of computing the entropy
of a model P(a1, . . . , aL) .
Thanks to the entropy it is possible to know how many functional RNA se-
quences model can generate. In fact, it is enough to evaluate the effective
support size Ω, the number of different sequences that P can generate.

Ω can be computed as the exponential of the entropy S of the associated
probability distribution P(a1, . . . , aL):

Ω = exp(S) (4.1)

S = − ∑
a1,...,aL

P(a1, . . . , aL) log P(a1, . . . , aL) (4.2)

In a DCA model P(a1, . . . , aL) a very hard problem is to compute the value

FIGURE 4.6: Histogram of the intra-group pairwise distances
computed between the sequences before reintegration and after

reintegration

of the partition function Z. Once the value of Z is known, it becomes straight-
forward to compute the model entropy S :

S = −< log P(a1, . . . , aL)>P (4.3)

With eaDCA it is possible to monitor the partition function Z during the
training. Remembering eq. 2.11, the entropy of the model can be computed
as :

S = <Et>Pt (4.4)
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Even though this relation is not really exact due to regularization and MCMC
sampling, this way of computing the entropy is enough to estimate the diver-
sity of our model.
Another estimate of diversity is computing the intra-group pairwise dis-
tances between the sampled artificial sequences. This is an estimate of how
different are sequences in a sample: for each couple of sequence in the sam-
ple, the hamming distance between them is computed and collected. After
this an histogram is plotted and the broader is the histogram, the more di-
verse is the sample.
Both the entropy test and the distances test were performed for the hammer-
head ribozyme and the histogram of the intra-group pairwise distances is
plotted in figure 4.5 both for the sample from the model before reintegration
and for the sample from the model after reintegration. The plot shows that
there is no appreciable change in terms of diversity.
Furthermore the entropy of the two models was computed and the reduc-
tion is very small, going from S = 21.26 for the model before reintegration
to S = 18.86 for the model after reintegration. Remembering eq. 4.1, the
size of Ω is reduced of a factor ∼ 11 which is really a small reduction when
looking at the thermo scores in Figure 4.4: our models do not have diversity
problems in this scenario.
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Chapter 5

Reintegration: Real Data

5.1 eaDCA for the Azoarcus Setting

After the success with the tests on synthetic data, our reintegration meth-
ods were applied to real data belonging to the Azoarcus setting, described in
Chapter 1.
Let us start again from the question: Is RNA reproduction widespread in the
sequence space?
Azoarcus bacterium’s group I intron ribozyme is one of the few known self-
replicant RNA. It is fundamental to find other self-replicant RNAs in order
to enhance the plausibility of the RNA world theory [8].
eaDCA is well suited for the job, since it is capable of estimating the order
of magnitude number of potential functional sequences within a given RNA
family [12].
In recent years Azoarcus setting was studied in depth [27] and in the fol-
lowing there will be a review of currently unpublished data and methods
developed at ESPCI Paris that will be very helpful for the application of our
reintegration methods to real data.
As the name suggests, Azoarcus RNA belongs to the family of "group I in-
tron ribozymes". In its studying process, the alignment of such family was
based on Azoarcus RNA and it is of poor quality since it is very gapped and
also it is trimmed to Azoarcus length. Anyway, from this alignment it was
possible to learn a DCA model HA via edge activation.
This model is expected to be of low quality due to the alignment based
on Azoarcus. So sampling sequences independently would lead to non-
functional sequences. However, it is possible bias the sampling to an en-
vironment of the Azoarcus sequence, hoping to find mutated but functional
sequences, i.e. self-replicator candidates.
These model-informed mutations from Azoarcus RNA can be generated thanks
to Importance Sampling (Ch.2).
Usual Gibbs Sampling is not the solution here: to generate mutations close
to the wild-type one could think of generating a big sample and filter the
mutations at desired distance. This method is very inefficient since it was
observed that the sequences generated via Gibbs sampling have a distance
from the wild-type which is distributed as a rapidly decaying distribution
peaked from Azoarcus RNA.
This is shown in Figure 5.1.
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FIGURE 5.1: Histogram of the distances from Azoarcus RNA
of the sequences generated via usual Gibbs Sampling from the

original eaDCA model HA.

For this reason one would need an astronomically large sample in order to
get a good amount of mutations closer to Azoarcus RNA.
Importance Sampling is used to generate efficiently mutations from the wild-
type. It is enough to change the fields of our Potts model HA by introducing
a sampling strength θ, according to eq. 2.24.
In this way the model assigns more probability to the nucleotides present in
Azoarcus (wild-type) but sometimes mutations based on the model can oc-
cur during Gibbs Sampling.
By opportunely tuning the value of θ, it is possible to sample mutations at
every distance from the wild-type.
Then these artificial sequences are tested in bulk for self-splicing with high-
throughput experiments and, simplifying, a catalytic activity is measured for
each sequence.
Since this activity is a good proxy for self-replication, artificial sequences
with an activity higher than some threshold are good candidates and they
can be tested for self-replication in a low-throughput experiment.
So the process in short is : start from the alignment of the "group I intron
ribozymes" and learn an eaDCA model. Then generate, via Importance Sam-
pling, mutations at every distance from the wildtype and mass-test them.
A representation of this process is drawn in Figure 5.2.

An important insight on the artificial sequences is the active fraction. It is
defined as the percentage of generated sequences, at fixed distance from the
wild-type, that have activity higher than a threshold.
In figure 5.3 there is an example of "active fraction vs distance" plot. In this
case, starting from the eaDCA model, bins of 400 sequences were generated
via Importance Sampling at each distance multiple of 5 (from 5 to 75). Then
their activity was measured experimentally and a threshold was set: setting
the threshold is a problem itself.
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FIGURE 5.2: Schematics of the setting of eaDCA applied to the
Azoarcus setting.

Then the active fraction was computed for each bin. For example, if in the

FIGURE 5.3: Active fraction of the mutations generated via Im-
portance Sampling from eaDCA model HA compared to the ac-

tive fraction of randomly generated mutations.

20-distance bin there are 280 sequences with activity above the threshold and
120 below, the active fraction would be of 0.7.
In parallel, the active fraction was also computed for sequences generated

with random mutations. Here we can see the importance of the model : al-
ready at distance 20 the active fraction is 0 for the random sequences. Instead,
with the eaDCA model HA it is possible to find a non-zero active fraction
even at distance 60.
Actually a lot more can be done via eaDCA. Thanks to the possibility of com-
puting the entropy of the model (and consequently the size of the model
support) and thanks to the possibility of computing a rate of functionality,
the number of potential self-replicants can be estimated. It is very huge, with
this estimate order 1040 sequences are deemed as potential self-replicants, as
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FIGURE 5.4: Estimation of the DCA support compared to that
of all possible mutations.

shown in Figure 5.4.
This is what was done by others : here the review finishes and the goal of this
chapter is to start from these results and apply our reintegration methods to
learn a new refined model.
More precisely we started from an eaDCA model HA learnt on "group I in-
tron ribozymes" and from a dataset DA composed of about 26000 artificial
mutations whose activity was measured experimentally.
In figure 5.5 it is represented the scatter plot between distance and activity of
sequences in dataset DA. Looking at it, a good threshold value could be set
at activity -2.5 since after distance 70 almost no sequence is functional : those
which seem functional are actually a product of experimental noise.

These sequences came from different models: DCA, Variational Autoen-

FIGURE 5.5: Scatter plot between distance and activity of se-
quences in dataset DA : the threshold value is pictured in red

coders [28] and Thermodynamic Models [29].
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To apply our methods though, some issues need to be addressed.

5.2 Global Reintegration and Local Reintegration

Let us start with a brief summary about the reintegration methods developed
in Chapter 3, showing parallelisms and differences with respect to our setting
here.
The reintegration methods started from a classical DCA model and its likeli-
hood 2.3. Here the scenario is the same since the eaDCA model HA learnt on
the "group I intron ribozymes" is given.
From the DCA likelihood a new objective function 3.12. is designed to in-
clude the information coming from the annotated sequences. The key role
is played by the adjustment function. Based on the score of a sequence its
effect is to decrease the probability assigned to bad sequences and viceversa
increase the probability assigned to good sequences.
In this way new target frequencies are computed, a new model can be learnt
and artificial sequences can be sampled from it.
Until now the reintegration we did can be defined as "global". The tested
sequences were always an iid sample obtained via Gibbs Sampling from the
model that we wanted to improve.
In the Azoarcus setting instead the data that we want to reintegrate are all
mutations of the wild-type generated via Importance Sampling. Again, this
is due to the fact that the alignment based on Azoarcus is very gapped.
Then the experimentally tested dataset is not anymore an iid sample and the
reintegration can be defined as "local".
While the global reintegration has proven to be successful as it is, the local
reintegration is more complicate and it requires some attention.
One could be tempted of reintegrating the sequences in the dataset DA all at
once, giving adjustment function +1 to all the sequences with activity above
the threshold and -1 to the ones with activity below the threshold.
Unfortunately this naive type of reintegration brings a strong bias towards
the wild-type. All the reintegrated sequences are mutations of the Azoarcus
RNA so we are not reintegrating an iid sample. Furthermore mutations at
bigger distance have smaller activity so, when adjusting the frequencies, all
the useful signal is cancelled by this bias. The only thing that our reintegrated
model learns is that sequences near to the wild-type are good and, vice versa,
sequences far away from the wild-type are bad.

As shown qualitatively in Figure 5.6, our reintegrated model is far more
concentrated around the wild-type. In the next paragraph we will see how
to get rid of this problem.
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FIGURE 5.6: A qualitative representation of the bias introduced
when reintegrating naively : on the left we have a measure of
how spread is the original model, on the right we have the rein-

tegrated model, very concentrated on the wild-type.

5.3 Solutions to the Bias Problems

There are probably many ways to get rid of the bias previously described.
We would want to cancel out the strong signal towards the bias so that we
can catch the useful information embedded in the tested sequences.
Before proposing a solution, let us recap the setting. The starting point is an
eaDCA model and a big dataset of tested mutations.
These mutations are labelled as good or bad depending on how their activ-
ity compares with the threshold. So in the following we will refer to "good"
sequences if their activity is bigger than -2.5 and to "bad" sequences if their
activity is lower that -2.5.
The crucial point to get rid of the bias is that the sequences in DA can be
grouped in bins. The binning size is actually an hyper-parameter of the prob-
lem and it will be addressed in a moment. For each bin there is a number of
good sequences N+ (activity greater than threshold) and a number of bad
sequences N−.
This is shown in Figure 5.8 for a 4 binning size.
For each bin is also reported the correlation by mutation bin: it is the corre-

lation between distance and activity of sequences in a given bin. The binning
size should be designed so that there is no appreciable correlation by muta-
tion bin.
Our strategy is the following : the adjustment function w is designed so that

∑
b⃗∈bin

w(⃗b) = 0

At each distance the signal towards the wild-type is cancelled out when ad-
justing the frequencies.
A way to do this is to take w(⃗b) = 1

N+
for every b⃗ ∈ bin that is a good se-

quences and w(⃗b) = − 1
N−

for every b⃗ ∈ bin that is a bad sequence. This is
shown in Figure 5.9. Now there could be an issue: if in a bin there are very
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FIGURE 5.7: Representation of the Population of bins (good and
bad sequences) with also the in-bin Correlation between activ-

ity and distance of sequences in a given bin.

FIGURE 5.8: Example of how the adjustment function is de-
signed for a single bin

few bad sequences they could receive a very big negative adjustment func-
tion: this is a big problem since it could bring some convergence problems.
At the same time, if in a bin there are few good sequences and many bad
sequences, the positive ones would get a very big reintegration weight. This
is not a big problem but it could direct too much the frequencies and maybe
this few sequences are product of experimental noise.
For this reason only bins in which there are a good amount of both good and
bad sequences are taken into account.
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Since we still want to reintegrate as many sequences as possible here the bin-
ning size can be engineered in order to include a bigger number of sequences.

5.4 Reintegration Methods on Azoarcus: Results

Starting from the experimental dataset divided in bins, it is possible to apply
our reintegration methods to the original eaDCA model H1.
After some analysis we decided to divide the tested sequences in bins of
width 4 and reintegrate mutations from distance 4 to 60. For each bin the ad-
justment for each sequence is assigned with the rule described before based
on the activity value of the specific sequence.
In this way the new target frequencies are computed thanks to eqs. 3.13 and
3.14. Some more analysis was done to find the optimal reintegration strength
λ.
If the average adjustment w(⃗b) is of order 0.001, we found that a good value
for the reintegration strength is λ = 100− 150 so that the reintegration affects
not too much the training and convergence is guaranteed.
Then a new model HR is trained via eaDCA using these new target frequen-
cies. Once the model is trained we can use importance sampling to generate
bins of 150 artificial mutations at distance ranging from 5 to 75. This was
done for both the original model H1 and the reintegrated model HR for a to-
tal of 2 · 150 · 15 = 4500 sequences.

How can we access if these sequences are better than those sampled from

FIGURE 5.9: Scatter plot between distance and ViennaRNA
package thermo score of most sequences in dataset DA : the

threshold value is pictured in red

the first DCA model ? The best way are obviously new experiments. To pre-
validate our results we have used the ViennaRNA Thermo score as a compu-
tational fitness proxy. The secondary structure of Azoarcus RNA is known
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and it can be written in a dot-bracket representation. Then all the artificial
mutations can be tested by computing, via RNAEval, their Thermo Scores
(− thermodynamic Free Energy) of folding into that structure.
To compute the thermo-stable fraction at a given distance, it is enough to set
a Thermo Score threshold. This is done again looking at the reintegration
dataset: since some of these mutations came from a model based on sec-
ondary structure, they are omitted for this purpose.
Looking at the scatter plot in Figure 5.9, we see that the thermo score be-
haves similarly to the experimental active fraction, decaying with distance.
A threshold close to TS = 50 seems reasonable when comparing to Fig. 5.5.
Now the thermo-stable fraction is easily computed and it is possible to vali-
date the mutations generated from our models. The result for both model is
drawn in Figure 5.10.
At given distance, the thermo-stable fraction of mutations sampled from the
reintegrated model is far higher than the active fraction of mutations sam-
pled from the original model.
The reintegration was done based on activity so we expect that testing the
experimental activity of mutations will lead to even better results in terms of
active function.
With these results, we have convinced our experimental colleagues at ESPCI
Paris to test sequences generated from the reintegrated model. While the
tests will be possible only after the end of this master project, they will be the
definite “real life” check of the proposed method.

FIGURE 5.10: Active fraction based on ViennaRNA thermo
score of artificially generated mutations from both the original

and the reintegrated model
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Chapter 6

Conclusions

The goal of this thesis was to develop methods to integrate annotated data
into existent generative models of biomolecules.
Starting with an analytical derivation we succeeded in finding a relatable
strategy to do so. Then tests on both synthetic and real data were done with
promising results.
In the near future new experiments are scheduled at ESPCI Paris. They will
create the mutations generated from our reintegrated model and they will
test their activity as well. Our hope is that those mutations perform better
in terms of active fraction at fixed distance. On top of that we hope that
we are able to find some active mutations even at greater distance with re-
spect to existent models. If the first result would be already great, the second
would be of maximal importance for the work that they are doing at ESPCI:
it would increase the order of magnitude of the entropy-estimated number
of self-replicators candidates, giving further strength to RNA world theory.
When learning a statistical model there can be at least two limits : the model
and the data.
Even though lately the main direction is to use more and more complicated
models (as Large Language Models), in this thesis we kept an already exist-
ing model and we instead focused on the data since lately there is an increas-
ing possibility to do experiments.
This yielded good results and restricting the focus on experimental informa-
tion should be something more adopted. High-throughput experiments can
be done more easily and therefore reintegration methods using “a la carte”
data seem a relevant direction: the hope is that doing cycles of experiments
after the training of statistical models can improve them greatly.
This a good modus operandi in the sequence design problem and it is not
restricted to DCA models.
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