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Abstract 

Portfolio management involves asset selection, allocation, and monitoring and aims to maximize returns 

while mitigating risks, considering the specific financial goals, risk appetite, and investing time horizon 

preferences of each individual or institution. Indeed, the risk-return trade-off, central to portfolio 

optimization, hinges on investor's preferences. Risk includes systematic and unsystematic risks, with 

diversification mitigating the latter. In imperfect markets, investors hope to exploit inefficiencies such as 

information asymmetries, frictions and their own psychological biases. Therefore, crafting custom and 

dynamic portfolio management strategies based on future prices predictions is a major challenge. 

This thesis focuses on automating portfolio management using Deep Reinforcement Learning (DRL) 

which is based on an agent’s interaction with the environment and optimizes decisions through feedback. 

DRL's suitability lies in its ability to directly output investment actions without having the unrealistic 

presumption of predicting future prices thus partly overcoming the complexity associated with modelling 

the market underlying functioning. The base DRL algorithm used is Proximal Policy Optimization (PPO) 

which improves previous constrained policy gradient optimization algorithms, retaining stability with a 

simpler implementation and better sample efficiency. 

The additional contributions of this project are three implementation variants exploiting sequence models 

architectures and imitation learning to address the limitations of DRL applied to portfolio optimization. 

The Gated Transformer-XL (GTrXL) model is a transformer-based architecture designed to process long 

horizons of sequential information in RL and it was used in the first variant to improve the embedding 

of past prices and indicators. In the second variant, by predicting in hindsight the optimal actions, an 

expert actions dataset was created, and this allowed to pre-train PPO with the expert actions to improve 

data efficiency of limited financial data. Moreover, the expert actions were used in a third variant, which 

employs TD3+BC, an offline reinforcement learning model introducing Behavioural Cloning into Twin 

Delayed deep deterministic policy gradient. Furthermore, to diversify more and reduce bias and 

overfitting, this last variant also enlarges the training set using more stocks than the ones used for trading. 

Overall, plain and volatility-adjusted returns results were positive with the third variant always 

overperforming the baseline in backtesting. However, stability was still not satisfying leading to the 

conclusion that, despite the model making effective decisions that persistently beat the market, technical 

indicators are not informative enough for the model to show stable and consistent decision-making. 
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1 Introduction 

In the financial domain, managing assets against uncertainty while trying to exploit market inefficiencies 

is a task of crucial importance and with big implications for both individual and institutional investors. 

Portfolio management consists of selecting, allocating, and monitoring a set of assets to maximize return 

while mitigating risks. It is a complete strategy that extends beyond mere investment choices by 

constantly redistributing wealth among different assets. Moreover, this process must be aligned with the 

individual's or institution's financial goals, risk tolerance, and investment time horizon. 

The risk-return trade-off is one of the pillar concepts behind portfolio optimization and it is one of the 

most determinant factors when shaping a portfolio. As a matter of fact, more risk implies more return, 

and the balance between the two must be decided based on the investor’s own preferences and goals. 

Risk in the investment domain can be quantitatively identified as volatility that indicates how much and 

how quickly the asset value fluctuates over time. Indeed, the more the assets value is unstable, the more 

uncertainty there is about the future value, the more insurance is needed, and therefore the more risk is 

involved in the investment. 

Total risk is usually considered as incorporating two different risks: the systematic risk and the firm-

specific or unsystematic risk. Where the first one is common to the whole market and depends on macro 

events and the second is the risk related to events affecting only a single firm. The unsystematic risk can 

be reduced or even eliminated by using diversification. As a matter of fact, by spreading the investment 

across different firms, sectors, industries and geographical regions, the specific risks are eliminated and 

only the common risk remains. Losses due to risks specific to a sector are in this way offset by gains in 

another one. 

In a perfect market, where all investors take decisions rationally based on the same set of information, 

arbitrage, and therefore gaining an advantage with respect to other investors, would become almost 

impossible. However, information asymmetries and frictions such as transaction costs together with other 

factors allow some investors to exploit market inefficiencies and to make a profit out of it. 

Concerning this, it is relevant to mention behavioural finance and the huge impact that psychology has 

on financial decision-making. Investors’ behaviour is highly influenced by emotions and cognitive 

biases, determining to a big extent the sentiment and the flows of the market and consequently its 

inefficiencies that are the source of profit as explained in the paragraph before.  



6 
 

Moreover, the dream of every investor would be to take decisions based on predictions on the future 

price of an asset. The market price of an asset is determined by supply and demand, more specifically, it 

is the price at which quantity supplied equals quantity demanded. Predicting the price would therefore 

mean predicting how many investors would buy and sell at a specific price and this is a very challenging 

task. 

In other words, a successful portfolio management strategy needs to be customized and to stem from a 

profound understanding of the dynamic nature of market forces. Automating this process is not an easy 

task, due to the variety of the forces driving the market and therefore the diversity and amount of 

information that needs to be abstracted and efficiently put together to shape an effective strategy.  

Also from a mathematical perspective, modeling the behaviour of financial markets is very difficult 

because of challenges like nonstationarity, poor prediction ability, and weak historical coupling, and this 

has recently caught the attention of the research community. In the past, this problem has been analyzed 

using a more static approach, leading to the Modern Portfolio Theory developed by H. Markowitz in 

1952 (1) or mathematical formulations in the context of Signal Processing that have shaped today’s 

quantitative finance.  However, recent developments in the field of optimization of dynamical systems 

have created a growing interest in applying new techniques to the portfolio optimization task. 

The focus of the thesis will be to automatically create portfolio management actions with an algorithm 

based on Deep Reinforcement Learning (DRL). In Reinforcement Learning (RL), (2) an agent interacts 

with the environment at each time-step by executing an action and receiving a reward consequent to the 

action as well as the new state of the environment after the action. The reward is a feedback relative to 

the action and to the effect the action had on the environment. The goal is to use this reward signal to 

optimize the policy used by this agent to make decisions. The term “Deep” refers to the fact that neural 

networks are employed to build and progressively optimize the decision-making policy used by the 

algorithm to take decisions. Indeed, the ascent of Deep Learning (3) led to the rediscovery of RL in 2014, 

since the the power of neural networks enabled RL to obtain impressive results in some domains.  

The main reasons why RL has been chosen are the similarity between its paradigm definition and the 

way the stock market works as well as the fact that this technique bypasses the pretentious step of 

predicting the future price of the assets and directly outputs investment actions. In other words, using 

Deep Reinforcement Learning, we don’t have to get a full understanding of how the stock market works 

which would be an almost impossible task as described before, while in order to predict the exact future 
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price that would be necessary. Moreover, DRL is created for decision-making and this makes it suitable 

for this task. In addition to that, currently, there are very few analytical techniques for the portfolio 

optimization problem and they tend to be very basic and simple. 

The thesis is divided in four chapters after the introduction. Chapter 2 and 3 are dedicated to presenting 

the necessary background and reviewing the most relevant papers respectively in the portfolio 

management domain and in DRL, sequence modelling and imitation learning. Chapter 4 discusses the 

algorithm implementation, the libraries used and the contributions made to obtain the resulting final 

models. A DRL algorithm was first implemented and then enhanced with the use of the GTrXL 

architecture and then two different forms of imitation learning in order to address its main inherent 

limitations. Eventually, in Chapter 5, the results and the conclusions are presented. 

 

1.1 Portfolio optimization problem definition in the Deep Reinforcement 

Learning Paradigm  

As shown in Figure 1, the agent interacts with the environment at each timestep by executing an action 

At and receiving an observation and a reward consequent to the action. The observation Ot describes 

the next conditions of the environment after the action has been taken and the reward Rt is a feedback 

signal relative to the action At in the environment. The goal is to maximise the total cumulative reward 

over all timesteps.  The agent decides which action to take based on the state and the rewards he has 

received in the past. The agent state is the agent’s internal representation of the history of all 

environment observations so it refers to all previous timesteps. This can be contextualized for the 

portfolio optimization case considering the observations as the stock prices, the indicators and the 

balance or investable amount; the reward as the investment return at a specific timestep and the action 

as the portfolio weights decided by the agent given the state. The trading environment is a simulation of 

a discrete-time stochastic dynamical system. The deep reinforcement learning agent learns a decision-

policy and therefore a trading strategy that optimizes the reward through experience. 
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Figure 1: Reinforcement Learning schema for the Portfolio Management Problem 

 

For this thesis work, the algorithm has been tested on a portfolio composed of the Dow Jones Industrial 

Average index stocks. For most of the work, excluded the different time granularities section 5.3, the 

considered timesteps are days, therefore the agent code receives input observations and rewards every 

day and outputs a continuous action between -1 (sell as much as possible) and 1 (buy as much as 

possible) for each stock. Transaction costs are considered and amount to 0.1% for both buying and 

selling. The environment code receives actions from the agent, performs the buy and sell operations 

and returns the next timestep observations (updated balance, stock prices and indicators values, 

portfolio weights) as well as the reward (portfolio return calculated from the previous timestep) 

 

1.2 Research Question 

As already briefly mentioned, the main reason for using Deep Reinforcement Learning (DRL) for 

Portfolio Optimization is that, with respect to other techniques, its formulation allows to directly output 

a decision without trying to predict the future stock price’s trend that is a much more difficult task. And, 

in addition to that, there are very limited mathematical models for Portfolio Optimization and they are 

usually derived from very basic rule-based inference due to the inherent complexity of the problem. 

Consequently, the contributions of this master thesis consist in exploring this type of Deep Learning 

approach to Portfolio Optimization and in trying to address the main limitations that have been identified 

in using RL for this specific task: 
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Firstly, for the algorithm to be effective, the representation the model has of the state of the environment 

at a specific timestep must contain all useful information from the history. The challenge, in this case, is 

to create a tensor as a state where we include as much useful information from the past as possible with 

limited noise. Moreover, Reinforcement Learning algorithms are prone to be unstable, especially when 

trained with not enough data. Therefore, the state representations have been built by using sequence 

models so as to efficiently capture more information about the past and in particular the GTrXL (4) model 

has been chosen. This because transformer-based models are state-of-the-art in sequence modeling and 

because this model has been designed specifically to give more stability to RL algorithms. 

Secondly, RL has given great results in the game-playing domain, where data can be collected with no 

limits by just playing the game, but it has been less effective in other domains with less input data 

available. The stock market offers public easy-accessible data, but the amount is limited and often not 

enough for DRL requirements. Therefore, expert actions obtained using future returns have been used to 

pre-train the model in a supervised manner before using RL. In this way, the limited data have been used 

twice, the first time using imitation learning pre-training so that the second time Reinforcement Learning 

doesn’t have to start from scratch. In addition, the model has been tested with different time granularities 

so as to find the best trade-off between data volume and noise. 

Finally, a third variant has been studied starting from the results and limitations of the first two variants 

explained above. Again exploiting imitation learning and the expert actions, an offline Reinforcement 

Learning algorithm was trained over a set of randomly sampled (from S&P500) portfolios to have a 

bigger and more diverse dataset. 
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2 Financial Background and literature review 

The aim of this Chapter is to introduce all the theoretical concepts that are necessary to grasp a 

thorough and complete understanding of the portfolio management problem from a financial point of 

view contextualized to our research question and goal. 

 

2.1 Stocks  

The term “asset” is a broad definition referring to any item with an economical value. For the purpose 

of this work, we will focus on stocks to avoid having an excessively wide research scope. Stocks are 

equities, other asset classes include fixed income such as bonds, cash and cash equivalents, real estate, 

commodities, currencies, cryptocurrencies and structured products. The most relevant features that 

distinguish stocks from other asset classes are the following: 

• High volatility and consequently higher return with respect to most mentioned asset classes. Only 

cryptocurrencies, some commodities and some structured products can be more risky. 

• Ownership rights in a company: in this work a simplistic view of stocks is considered and therefore 

ownership rights are excluded from the picture. Consequently, stocks are merely considered as an 

investment asset implying a financial position in which an investor seeks to profit from changes in 

the price without acquiring the traditional privileges associated with holding the underlying asset. 

This would be possible in the real market with a derivative contract known as a Contract for 

Difference (CFD) 

• High liquidity: this allows us to avoid making liquidity considerations that would be necessary 

otherwise. 

• Public market asset: this affects stocks behaviour in multiples ways such as regulations, general 

market influence including financial statements publications, economic indicators, geopolitical 

events and so on. 
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2.1.1    Common Measures of Stock Prices Risk and Return 

2.1.1.1   Return 

The concept of expected return refers to the weighted average of the possible returns, weighted on their 

probabilities. Expected return can also be approximated with the average over a period of time of the 

historical realized return that is instead the return that occurred over a particular time period in the past. 

The error of this approximation can also be estimated as the standard deviation divided by the square of 

the number of observations (5) 

Gross Return: 𝑅𝑡 = 
𝑆𝑡

𝑆𝑡−1
 

Simple Return:  𝑅𝑡 =  
𝑆𝑡

𝑆𝑡−1
 − 1 

Expected return: 𝐸[𝑅] = ∑  𝑅 𝑃𝑅 × 𝑅 

Average historical realized return: 𝑅‾ =
1

𝑇
∑  𝑇

𝑡=1 𝑅𝑡  

Standard error =
SD (Individual Risk )

√ Number of Observations 
 

 

2.1.1.2   Variance, Standard Deviation and Volatility 

Variance is the expected squared deviation from the mean and Standard Deviation is the square root of 

the variance. Both are measures of the risk of a probability distribution. In finance, the standard 

deviation of a return is also referred to as its volatility. The standard deviation is easier to interpret 

because it is in the same units as the returns themselves. (5) 

𝑉𝑎𝑟 (𝑅) = 𝐸[(𝑅 − 𝐸[𝑅])2] = ∑  𝑅 𝑃𝑅 × (𝑅 − 𝐸[𝑅])2= 
1

𝑇−1
∑  𝑇

𝑡=1 (𝑅𝑡 − 𝑅‾)2 

SD(R) = √𝑉𝑎𝑟(𝑅) = √
1

𝑇−1
∑  𝑇

𝑡=1 (𝑅𝑡 − 𝑅‾)2 
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2.1.1.3   Risk 

The total risk is usually considered as incorporating two different risks: the systematic or common risk 

and the independent or unsystematic risk. Common risk shows perfect correlation, impacting the entire 

market while independent risk is uncorrelated and affects a specific security. As multiple stocks are 

combined in a big portfolio, the independent risk component for each stock tends to average out and be 

diversified, however, the systematic risk will impact all firms and will not be diversified.  

Real-world firms deal with both market-wide risks and firm-specific risks therefore only the unsystematic 

risk will be diversified when many stocks are put together into a portfolio. Thus volatility will decline 

until only common risk remains. Uncorrelated risk can be diversified, hence investors are not 

compensated for holding firm-specific risk and the risk premium is zero. If the diversifiable risk was 

rewarded with a supplementary premium, then investors could exploit this by buying the stocks, earning 

an extra premium, and, at the same time, eliminating the risk by diversifying.  

The risk premium depends on systematic risk and does not depend on diversifiable risk. This implies that 

a stock’s volatility or standard deviation, representing total risk, is not particularly informative when 

determining the risk premium investors will receive. Therefore, there should be no direct relationship 

between volatility and average returns for individual securities. Consequently, in order to estimate a 

security’s expected return, we need to find a measure of its systematic risk. Measuring the systematic 

risk of a stock involves determining the extent to which the variability of its return is due to systematic 

risk versus unsystematic risk. (5) 

 

2.1.1.3   Beta 

To understand how responsive a stock is to systematic risk, it is necessary to look at the average change 

in the return for every 1% change in the return of a portfolio that is only affected by systematic risk. 

This sensitivity to systematic risk is called Beta (β). Beta is exclusively a measure of systematic risk. A 

security’s beta is determined by how much its underlying revenues and cash flows are influenced by 

general economic conditions. Stocks within cyclical industries are likely to display greater sensitivity to 

systematic risk and have higher betas with respect to stocks in less sensitive industries. (5) 
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2.1.2    Stock Prices Distribution 

2.1.2.1   Markov Process 

It is relevant to introduce the concept of Markov Process since Stock prices are commonly assumed to 

follow this kind of process. A Markov process is a specific form of stochastic process in which a future 

forecast is only based on the current value of a variable. The history of the variable and the way that the 

present evolved from the past are not considered relevant.  

Future predictions involve uncertainty and have to be modelled as probability distributions. The 

Markov property implies that the probability distribution of a future price value is independent of the 

specific trajectory the price has taken in the past. This property aligns with the weak form of market 

efficiency, meaning that the current value of the stock price incorporates all the information from 

historical prices. If this was not true, technical analysts could make greater profits than the average just 

by using charts of historical stock prices, however, there is very limited evidence that this is the case.  

Actually, weak-form market efficiency and the Markov property hold because of market competition. 

Investors follow the stock market closely and also base their decisions on past trends resulting in 

current stock prices reflecting past prices. For instance, if multiple investors foresee a price hike due to 

the observation of a particular condition, they will immediately buy the stock, making demand and 

therefore prices rise before the effect can be observed and therefore eliminating it. (6) 

 

2.1.2.2   Wiener process 

A Wiener process is a particular case of a stochastic Markov process with a mean change of 0 and with 

a variance rate of 1 per year. It was born in physics, where it is used to study Brownian motion, the 

diffusion of minute particles suspended in fluid, as well as other types of diffusion. More formally, for 

𝑧(𝑡) to be defined as a Wiener process, it has to respect the following properties: 

• 𝑧(𝑡) is a continuous random variable for t >= 0. 

• Initial condition: 𝑧(0) = 0. 

• Increments: 𝑧(𝑡) − 𝑧(𝑠) follows a normal distribution 𝑁(0, √(𝑡 − 𝑠)) for 0 <= 𝑠 <= 𝑡. 

• Independence: 𝑧(𝑡) − 𝑧(𝑠) is independent of 𝑧(𝑢) for 0 <= 𝑢 <= 𝑠 if 0 <= 𝑠 <= 𝑡. 
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From this, those other properties can be implied: 

• 𝐸[𝑧(𝑇) − 𝑧(0)] = 0. This means that the drift rate (mean change per unit time) is equal 

to zero 

• Standard deviation of [𝑧(𝑇) − 𝑧(0)] is √𝑇 

• Variance of [𝑧(𝑇) − 𝑧(0)] is 𝑇.This means that the variance rate (variance per unit time) 

is equal to one. 

• 𝑧(𝑡) − 𝑧(𝑠) = √(𝑡 −  𝑠 ) 𝜀 where 𝜀 ~ 𝑁(0,1) 

By generalizing the above defined Wiener process, we can extend the definition to the case where the 

drift rate is not necessarily equal to zero and the variance rate is not necessarily equal to one. This 

generalized Wiener process (𝑑𝑧) for a variable 𝑥 can be defined with two constants 𝑎 and 𝑏 as: 

𝑑𝑥 = 𝑎 ∗ 𝑑𝑡 + 𝑏 ∗ 𝑑𝑧 

It can be shown that such a process has an expected drift rate of 𝑎 and a variance rate of b2 (6) 

 

2.1.2.3   The process of a stock price 

Markov and Wiener processes formulation allow us to define the stochastic process usually assumed 

for the price of a non-dividend-paying stock. With respect to a generalized Wiener process, a key 

difference can be outlined: while a Wiener process has a constant expected drift rate and a constant 

variance rate, investors’ required return does not depend on the value of the stock’s price, and the 

percentage required return expectation is what remains constant. In other words, the constant drift rate 

assumption is inappropriate and it has to be replaced by the assumption that the percentage expected 

return is constant. This can be achieved by dividing the change in the stock price by its initial value. 

From the expected return formula, using the drift rate 𝜇, we can say that the change in price is equal to 

the value of the price multiplied by the drift rate and the time delta. By making the time delta go to zero 

and moving the value of the price to the left side of the equation, we can obtain the following: 

𝑑𝑆 = 𝜇 ∗ 𝑆 ∗ 𝑑𝑡 that becomes 𝑑𝑆/𝑆 =  𝜇 ∗  𝑑𝑡 

In this formula, since the coefficient of 𝑑𝑧 is zero, the assumption is that there is no uncertainty, that is 

certainly not the case. Taking into account uncertainty, it becomes: 

𝑑𝑆 = 𝜇 ∗ 𝑆 ∗ 𝑑𝑡 + 𝜎 ∗ 𝑆 ∗ 𝑑𝑧 or  𝑑𝑆/𝑆 = 𝜇 ∗ 𝑑𝑡 + 𝜎 ∗ 𝑑𝑧 
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The final equation shows the most commonly employed model for describing stock price dynamics. 

Where: 

• μ denotes the expected return of the stock 

• σ represents the volatility of the stock price 

• σ² is considered as its variance rate.  

In a risk-neutral environment, μ would be equivalent to the risk-free rate, denoted as r. (6) 

 

2.1.2.4   Lognormal distributions considerations 

Ito’s lemma provides a method to calculate the stochastic process of a function based on the process of 

its underlying variable. A fundamental point is that the Wiener process 𝑑𝑧 underlying the process for 

the variable is identical to the Wiener process underlying the process for the variable’s function. Both 

are influenced by the same source of uncertainty. When Ito’s lemma is used on the stock price equation,  

we can derive the stochastic process of 𝑙𝑛(𝑆). The outcome demonstrates that 𝐺 = 𝑙𝑛(𝑆) follows a 

generalized Wiener process with a constant drift rate of (𝜇 –
𝜎2

2
) and constant variance rate of 𝜎2.  

The change in 𝑙𝑛 (𝑆) over a period going from time 0 to a future time T is normally distributed, with 

mean (𝜇 –
𝜎2

2
) ∗ 𝑇 and variance 𝜎2*T. Consequently, it can be proved that ln (ST) is normally 

distributed with the same variance and mean ln(𝑆0) +  (𝜇 –
𝜎2

2
) ∗ 𝑇. A variable is lognormally 

distributed if its natural logarithm follows a normal distribution. Therefore, the stock’s price at time T, 

given its price today, is lognormally distributed and the standard deviation of the logarithm of the stock 

price is equal to 𝜎 ∗ √𝑇 that is proportional to the square root of the time horizon. (6) 

 

2.1.2.5   Log Returns 

Rt = ln(St)-ln(St-1) 

As we saw in the last paragraph, we assume the asset price S to be lognormally distributed, then log-

returns show a normal distribution and are additive, while simple returns are shifted log-normally 

distributed which is less practical. The arithmetic mean of the daily log-returns serves as an unbiased 

estimator for the drift term, offering practical advantages over the geometric mean needed with simple 
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returns, which tends to introduce bias. The arithmetic mean of the simple returns does not have the 

same practical meaning.  

Consequently, log-returns contribute to data stationary by stabilizing the variance and linearizing the 

relationships over time. Stationarity is desirable when dealing with time series because it simplifies 

modeling and makes it easier to identify patterns over time. Moreover, they show statistical properties 

such as additivity for consecutive periods and a more symmetric distribution.  

In other words, multiplicative simple returns can be transformed into additive with the log operation 

and this makes it easier to analyze over multiple periods. For instance, when stock prices jump and then 

return to their original value, simple returns have an average different from zero, while log-returns 

sums up to 0. Therefore, log-returns offer an advantage as they cancel out during price fluctuations, 

unlike percentage changes and this is especially true for buy-and-hold strategies. 

On the other side, it must be taken into account that the average log-return over a period of time 

provides limited information on price’s past dynamics, since it is equal to the log of the final price 

minus the log of the initial price and therefore it just depends on those two prices. In addition, it is 

relevant to point out that log-returns are not additive across trades. In summary, when aggregating 

returns across trades keeping time fixed, simple returns linearly aggregate, while log-returns don’t. 

Conversely, when aggregating across time keeping the trade fixed, simple returns don’t 

aggregate linearly, and log-returns do. (6) 

 

2.2 Portfolio Optimization 

A portfolio refers to a collection of financial assets and, it can be represented as a vector of weights. 

Each component of this vector shows the amount invested in a specific asset at a particular time. In 

other words, portfolio weights represent the fraction of the total portfolio value of a stock. 

2.2.1    Portfolio Risk and Return 

2.2.1.1  Portfolio Expected Return 

The expected return of a portfolio is the weighted average of the expected returns of the investments 
within it. (5) 

𝐸[𝑅] = ∑  

𝑛

𝑖=1

𝑤𝑖 × 𝐸[𝑅𝑖] 
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2.2.1.2  Portfolio Risk, Covariance and Correlation 

When creating a portfolio with a set of stocks, the total risk of the Portfolio is reduced with respect to 

the sum of the single stock's risk due to diversification. Risk is diversified according to how the stock 

prices move together. To calculate it, it is necessary to understand the degree to which the stocks’ 

returns move together. 

Covariance represents the expected product of the deviations of two returns from their means. A 

positive covariance implies that the two returns tend to move in the same direction, while a negative 

covariance indicates that the two returns move in opposite directions. 

Correlation measures the common risk among stocks, independent of their individual volatility. The 

correlation between two stocks always falls within the range –1 to +1. The risk of a Portfolio is 

calculating using variances and standard deviations of individual assets, but also taking into account 

how the different assets’ movements influence each other. The variance of a portfolio is the weighted 

average covariance of each stock with the portfolio. The Portfolio’s risk will be lower than the 

weighted average volatility of the individual stocks apart from the case in which all the stocks show a 

perfect positive correlation of +1 with one another. (5) 

Covariance of two stocks i and j:  

𝐶𝑜𝑣(𝑅𝑖 , 𝑅𝑗) = 𝐸[(𝑅𝑖 − 𝐸[𝑅𝑖])(𝑅𝑗 − 𝐸[𝑅𝑗])] =
1

𝑇−1
∑  𝑡 (𝑅𝑖,𝑡 − 𝑅‾𝑖)(𝑅𝑗,𝑡 − 𝑅‾𝑗)   

 

Correlation of two stocks i and j:   

𝐶𝑜𝑟𝑟(𝑅𝑖, 𝑅𝑗) =
𝐶𝑜𝑣(𝑅𝑖, 𝑅𝑗)

𝑆𝐷(𝑅𝑖)𝑆𝐷(𝑅𝑗)
 

Portfolio Variance:                                

 

      𝑉𝑎𝑟(𝑅𝑃) = 𝐶𝑜𝑣(𝑅𝑃, 𝑅𝑃) = 𝐶𝑜𝑣 (∑  

𝑖

 𝑥𝑖𝑅𝑖 , 𝑅𝑃) = 

= ∑  

𝑖

𝑥𝑖 𝐶𝑜𝑣(𝑅𝑖, 𝑅𝑃) = ∑  

𝑖

 𝑥𝑖𝐶𝑜𝑣 (𝑅𝑖, 𝛴𝑗𝑥𝑗𝑅𝑗) = ∑  

𝑖

 ∑  

𝑗

 𝑥𝑖𝑥𝑗𝐶𝑜𝑣 (𝑅𝑖 , 𝑅𝑗)
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2.2.1.3  Sharpe Ratio  

Sharpe ratio is a measure of a portfolio risk-adjusted performance that is to say the ratio of reward-to-

volatility provided by a portfolio. The calculation may and is usually based on historical returns. A 

higher Sharpe ratio is better when comparing similar portfolios because it means that the ratio 

between return and volatility is higher and therefore that the return for a determined level of volatility 

is higher. The Sharpe ratio may still be a simplistic measure of a portfolio performance since it just 

keeps into account return and volatility. (7) (5) 

 Sharpe Ratio =
 Portfolio Excess Return 

 Portfolio Volatility 
=

𝐸[𝑅𝑃] − 𝑟𝑓

𝑆𝐷(𝑅𝑃)
 

 

2.2.2    Markovitz Portfolio Theory 

The concept of Efficient Portfolio has been introduced by Markovitz with its Portfolio theory in 1952 

and it describes a Portfolio where there is no way to reduce the volatility of the portfolio without 

lowering its expected return or no way to increase its expected return without increasing its volatility. 

As you can see in Figure 2 shown below all the efficient portfolios can be shown as a curve in the 

return-volatility graph created by changing the weights of a portfolio with two stocks (AAPL and 

BRK.B). All the blue points are efficient portfolios and the difference between them can be considered 

the risk-appetite of the portfolio. While by lowering the weight of APPL to less than 15.48% we go to 

the set of inefficient portfolios. 

 

Figure 2: Efficient Frontier Portfolio of APPL and BRK.B obtained on portfoliovisualizer website with calculation period 2005-2022 

 

https://www.portfoliovisualizer.com/efficient-frontier#analysisResults
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Correlation does not affect the expected return of a portfolio. However, it will influence the volatility of 

the portfolio. As a matter of fact, with a lower correlation, we will have a lower volatility. The 

following pictures obtained by varying the weights of a portfolio composed of stocks (E(R)=10%, 

vol=13%) and bonds (E(R)=3,5%, vol=6%) show that the curve will bend to the left when correlation 

decreases. 

 

Figure 3: Effect on Returns of reducing correlation 

 

Moreover, it is also possible to notice that the more stocks we add to the portfolio, the more the 

efficient frontier moves more and more to the left, implying that with more stocks we can obtain the 

same return with less volatility because we are diversifying more and more and therefore we are 

eliminating more and more firm-specific risk. 

 

Figure 4: Effect of adding more stocks (3 and 10) to Efficient Frontier Portfolio calculation 
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Moreover, by adding to the picture an investment in the risk-free rate, it is possible to identify the 

tangent portfolio. This is the portfolio where the line with the risk-free investment is tangent to the 

efficient frontier of risky investments. It can be obtained on the graph by tracing a tangent line to the 

efficient frontier curve line starting from the risk-free investment. This portfolio will also be the one 

with the greatest Sharpe ratio. Therefore, mixing the risk-free asset with the tangent portfolio will give 

the best possible compromise in terms of risk and return. From this, it can be inferred that the tangent 

portfolio is efficient and that all the efficient portfolios can be obtained with a mixture the tangent 

portfolio and the risk-free. All investors should invest in the tangent portfolio without considering their 

risk appetite. Their preference will only influence how much funds to allocate to the tangent portfolio 

with respect to the risk-free investment. Prudent investors will invest a limited amount in the tangent 

portfolio while aggressive investors will allocate more to the tangent portfolio. (1) (5) 

 

2.2.3    CAPM, Alpha, biases and market inefficiencies 

 

2.2.3.1   Capital Asset Pricing Model  

𝐸[𝑅] =  Risk-Free Interest Rate +  Risk Premium = 𝑟𝑓 + 𝛽 × (𝐸[𝑅𝑀𝑘𝑡] − 𝑟𝑓) 
 

The equation reported above is often called the Capital Asset Pricing Model (CAPM) where the market 

risk premium or expected return of the market is the investors expected reward when holding a 

portfolio with a beta equal to one. The CAPM is a fundamental method for the estimation of the cost of 

capital utilized concretely. Using it, it is possible to find the efficient portfolio of risky assets without 

having any knowledge on each security’s expected return. (5) (8) 

Three assumptions are necessary for the model to be effective: 

• Investors are able to buy and sell assets at fair market prices assuming therefore no taxes or 

transactions costs and can borrow and lend at the risk-free interest rate. 

• Investors only hold efficient portfolios meaning that they only own portfolios giving the 

maximum expected return for a particular level of volatility. 

• Investors envisage the same volatilities, correlations, and expected returns of assets and 

therefore they will look forward to the same portfolio of risky assets. 
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2.2.3.2   Security Market Line and Capital Market Line 

When the previously mentioned assumptions are true, the optimal portfolio is constituted by a blend of 

risk-free assets and the market portfolio. If the tangent line intersects the market portfolio, it takes the 

name capital market line (CML). Moreover, a direct correlation exists between a stock’s beta and its 

expected return. Concerning this, the security market line (SML) is depicted as a line connecting the 

risk-free investment with the market. In addition to that, the CAPM implies that if the expected return 

and beta for individual assets are depicted on a graph, they should align along the SML. The CML 

instead illustrates portfolios merging the risk-free asset and the efficient portfolio thus showing the 

highest expected return achievable for a specific volatility level. Therefore, the market portfolio lies on 

the CML and all other assets contain risk that can be diversified and are on the right side of the CML. 

The SML plots the expected return for each assets with respect to its beta with the market. Eventually 

the CAPM states that the market portfolio is efficient, so all single securities and portfolios should be 

on the SML. In Figure 5, the CML and of the SML are shown. (5) 

 

Figure 5: Capital Market Line and Security Market Line from (5) 

2.2.3.3   Alpha 

Keeping in mind those definitions, it can be assumed that investors will look forward to achieving 

better portfolios performances by evaluating the expected return of an asset with respect to its required 

return from the Security Market Line. The disparity between a stock’s expected return and its SML 

required return is referred to as stock’s alpha. In an efficient market portfolio, all stocks lie on the SML 

and present an alpha value equal to zero. Investors can optimize the performance of their portfolios by 

owning more stocks with alphas greater than zero and less stocks with alphas lower than zero. (5) 
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2.2.3.4   Market inefficiencies and investor biases 

Within the CAPM, investors are expected to own the market portfolio and risk-free investments, 

however, taking this for granted overestimates the quality of an investor’s knowledge or trading 

abilities. Moreover, all investors would have to accurately exploit the information they have, as well as 

all the information that can be inferred from market prices or other trades. Even if an investor can 

access extensive information, owning the market portfolio ensures an alpha of zero. Since the average 

portfolio of all investors constitutes the market portfolio, the average alpha equals zero. Only if some 

investors obtain negative alphas, some other investors will be able to earn positive alphas, assuming the 

market portfolio is efficient. The market portfolio is not efficient when either multiple investors give a 

wrong interpretation to information and think they are gaining a positive alpha when their alpha is 

instead negative or when they prioritize aspects of their portfolios other than expected return and 

volatility, and therefore accept to own inefficient portfolios of assets. (5) 

Historical data suggests that investors do not properly diversify their portfolios or are making biased 

decisions, some examples are the following: 

• Familiarity bias: preferring to own familiar assets. It has been observed that investors appear to 

give a lot of importance to their own experience with respect to historical data. For instance, 

growing up in a bullish period results in higher tendency to invest with respect to someone who 

was born in a bearish period. 

• Overconfidence bias: when investors are too confident on their guess and end up with excessive 

trading. 

• Disposition effect: selling winner stocks and buying looser stocks. 

• Informational cascade effects: when investors use information of other traders that has some 

inaccuracies rather than basing decisions solely on their own information. This is related to 

trading based on recommendation and it has been proved that investors are more likely to 

invest in stocks that have recently gained more mediatic attention. 

• Being more interested in performance with respect to other investors rather than absolute 

performance. 

• Curiosity to invest in new or different assets. 

• Even the weather may influence investors mood and decisions. 
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2.2.4    Performance indicators 

The simplest and most used portfolio performance indicators such as expected return, volatility and 

Sharpe ratio have already been introduced in section 2.2.1, however, there are some other ratios that is 

useful to introduce: 

 

Sortino Ratio 

𝐸[𝑅𝑃] − 𝑟𝑓

𝜎𝑑
 

Where 𝜎𝑑 is the standard devation of the downside. Indeed the Sortino ratio is different from Sharpe 

because it uses the standard deviation of the downside risk instead of the normal standard deviation 

that includes both upside and downside risk. This since by focusing only on the negative oscillations 

from the mean, we exclude positive volatility that is beneficial and therefore it is thought to give a 

better view of a portfolio's risk-adjusted. To sum up, the Sortino ratio measures the return weighted on 

the amount of bad risk incurred. (9) 

 

Max Drawdown Ratio 

The maximum drawdown represents the most substantial observed decline in a portfolio from its 

highest point to the subsequent lowest point before a new peak is reached. It serves as an indicator of 

the downside risk incurred over a particular timeframe. In other words, Maximum drawdown is a 

measure of an asset's largest price drop from a peak to a trough. 

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝐷𝑟𝑎𝑤𝑑𝑜𝑤𝑛 (𝑀𝐷𝐷) = ((𝑃𝑒𝑎𝑘 𝑉𝑎𝑙𝑢𝑒 −  𝑇𝑟𝑜𝑢𝑔ℎ 𝑉𝑎𝑙𝑢𝑒))/(𝑃𝑒𝑎𝑘 𝑉𝑎𝑙𝑢𝑒)   

Where Peak Value is the highest point of value before a drop and Trough value represents the lowest 

point reached after the peak. It is important to note that while MDD gauges the extent of the most 

substantial loss, it does not take into account the frequency of losses or the magnitude of any gains. 

(10) 
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Value at Risk (VaR) 

Portfolio Value at Risk (VaR) serves as a risk metric assessing the potential loss in a portfolio's value 

over a specific timeframe for a certain confidence level. It gives an approximation of the maximum loss 

a portfolio could experience within a defined probability. This metric estimation can be carried out with 

three different modalities: the historical, variance-covariance, and Monte Carlo methods. The formula 

showed below is with the variance-covariance method and a normal distribution for the return of the 

stocks. It's worth pointing out that VaR gives an estimation of possible losses, but it does not inform 

about exceptional events that go over the confidence level. Furthermore, the accuracy of the estimate is 

influenced by the assumptions made during calculation. When managing risk, usually VaR is used 

together other measures so as to get a full understanding of portfolio risk. 

𝑉𝑎𝑅 =  𝑃𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜 𝑉𝑎𝑙𝑢𝑒 ×  (𝜇 −  𝑍 ×  𝜎) 

Where Portfolio Value indicates the current value of the portfolio, μ is the expected portfolio return, Z 

is the critical value corresponding to the desired confidence level and σ is the standard deviation of the 

portfolio return. (11) 

 

2.3 Technical Analysis  

Technical analysis is a methodology providing investors with valuable tools to predict and study 

demand and supply and its effect on prices, volume and implied volatility. This is achieved by 

interpreting market trends, price patterns, and trading signals often with charts and tools to visually 

analyze historical price movements. Trends are identified using indicators and trendlines; supports and 

resistance levels are researched to identify points where securities commonly change direction. Unlike 

fundamental analysis, which focuses on a company’s financial statements, technical analysis is based 

solely on historical prices and volume data.  

Technical analysis comes with a lot of objections and critics, and its efficacy is debated due mainly to 

the fact that theoretically, in the financial market, the past is not informative and neither a proxy for the 

future and future prices do not depend on past prices as also better explained in the previous chapters. 

However, in practice, the assumption that past trading activity and price changes of a security can be 

useful indicators of the security's future price movements has some credibility.  
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As a matter of fact, history still tends to repeat itself and this repetitive nature of price trends is often 

attributed to market psychology, which is usually predictable based on emotions like fear or 

enthusiasm. Patterns identified in graphs and charts are used to study market emotions and their 

influence on market movements and trends. Moreover, analysts assume that all sorts of information 

from accounting to psychology is already embedded in the stock price and this would be consistent 

with the efficient market hypothesis described in the previous chapters. Eventually, another assumption 

many techniques are based on,  is that prices will show trends independently of the range of time 

considered. That is to say, a stock price tends to keep the trend rather than moving randomly. 

 

2.3.1    Main indicators 

Below the technical indicators used in this work and their derivations will be explained. All technical 

indicators values are calculated using the Stockstats library (12) therefore the formulas reported below 

are directly derived from the library’s code. 

 

2.3.1.1   Simple Moving Average: 

Simple moving average calculates the rolling arithmetic average of prices over a specified range. This 

is a very simple technical indicator that can help to estimate whether an asset price will keep or 

reverse a bull or bear trend. 

𝑆𝑀𝐴 =
(𝑆𝑢𝑚 𝑜𝑓 𝑣𝑎𝑙𝑢𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑟𝑜𝑙𝑙𝑖𝑛𝑔 𝑤𝑖𝑛𝑑𝑜𝑤)

(𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑎𝑙𝑢𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑟𝑜𝑙𝑙𝑖𝑛𝑔 𝑤𝑖𝑛𝑑𝑜𝑤)
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2.3.1.2   Exponential Moving Average: 

The Exponential Moving Average (EMA) is a rolling average that weights more and gives more 

importance to most recent data points. EMA can be used to create signals when the current average 

diverges or intersects the historical average. The length of EMA is an informative parameter that is 

often fine-tuned or changed since different lengths provide different signals and information. (13) 

Stockstats library calculation: 

𝐸𝑀𝐴_𝑡 =  𝛼 ∗  𝑣𝑎𝑙𝑢𝑒_𝑡 +  (1 −  𝛼) ∗  𝐸𝑀𝐴_{𝑡 − 1}  

• EMA_t is the EMA at time t, 

• value_t is the value of the time series at time t, 

• α is the smoothing factor, which can be calculated as 𝛼 =   2/((𝑠𝑝𝑎𝑛 +  1) )  or provided 

directly using the alpha parameter. Where span is equal to the window. 

 

2.3.1.3   Moving Average Convergence Divergence: 

Moving average convergence divergence is a momentum indicator used to identify the 

interrelationships between two moving averages of a stock’s price. It is obtained by subtracting the 26-

day and 12-day exponential moving average of the closing price. Moreover, also a nine-period EMA of 

the MACD itself called signal line is used. This signal line is considered the slower line because the 

points plotted move less and it is the line determining buy and sell decisions. The MACD gives 

indications on whether the current momentum is bullish or bearish and helps to find entry and exit 

points for trades. Multiple strategies based on EMA can be used by traders, some are the histogram, the 

crossover, the zero-cross, the money flow index, and the relative vigor index. MACD can be risky in 

some situations where a reversal signal can give misleading indications. (14) 

Stockstats library calculation: 

• Calculate 12-day Exponential Moving Average and 26-day Exponential Moving Average 

(EMA): 

𝑒𝑚𝑎_𝑠ℎ𝑜𝑟𝑡 =  𝑒𝑚𝑎(𝑐𝑙𝑜𝑠𝑒, 𝑠ℎ𝑜𝑟𝑡_𝑤 ) 

𝑒𝑚𝑎_𝑙𝑜𝑛𝑔 =  𝑒𝑚𝑎(𝑐𝑙𝑜𝑠𝑒, 𝑙𝑜𝑛𝑔_𝑤 ) 
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• Calculate MACD Line and 9-day Exponential Moving Average (EMA) of MACD Line 

(Signal Line): 

𝑚𝑎𝑐𝑑 =  𝑒𝑚𝑎_𝑠ℎ𝑜𝑟𝑡 −  𝑒𝑚𝑎_𝑙𝑜𝑛𝑔 

𝑚𝑎𝑐𝑑𝑠 =  𝑒𝑚𝑎(𝑚𝑎𝑐𝑑, 𝑠𝑖𝑔𝑛𝑎𝑙𝑤) 

 

2.3.1.4   Bollinger Bands: 

Bollinger Bands are used to create oversold or overbought signals. They are made of three lines 

including a simple moving average, plus an upper and lower band. Those last two bands are typically 

two standard deviations away in negative and positive from the simple moving average that is 20 days 

in our case, but it can also be of different length. If the price repeatedly crosses the upper Bollinger 

Band, it indicates an overbought signal. While when the price touches the lower band it suggests an 

oversold signal. (15) 

Stockstats library calculation: 

• The input parameters are the period for the moving average (M) and the multiplier for the 

standard deviation (K) 

• The moving average (MA) is calculated using the close prices over the M period. 

• boll: The middle band, representing the moving average (MA) of the closing prices. 

• boll_ub: The upper band, calculated as the moving average plus K times the standard 

deviation (σ). 

• boll_lb: The lower band, calculated as the moving average minus K times the standard 

deviation (σ). 

𝑏𝑜𝑙𝑙 =  𝑀𝐴 

𝑏𝑜𝑙𝑙_𝑢𝑏 =  𝑀𝐴 +  𝐾 ∗  𝑠𝑖𝑔𝑚𝑎 

𝑏𝑜𝑙𝑙_𝑙𝑏 =  𝑀𝐴 −  𝐾 ∗  𝑠𝑖𝑔𝑚𝑎 

 



28 
 

2.3.1.5   Relative Strength index: 

The relative strength index (RSI) is a widely used momentum oscillator. It allows to identify signals 

about bullish and bearish price momentum, and it is usually plotted below the chart of the stock’s price. 

When the RSI is higher than 70 it indicates an overbought condition, while, when below 30, it suggest 

and oversold condition. The RSI intersecting the overbought line from below or the oversold line from 

above is usually interpreted as a buy or sell signal. The RSI can assume values in between the range 

zero and 100. (16) 

 

Stockstats library calculation: 

• Price changes: calculated as the difference between consecutive closing prices. 

• close_pm: Average gain, considering only positive changes. 

• close_nm: Average loss, considering only negative changes. 

• p_ema: Smoothed moving average of positive changes. Calculated as simple moving average of 

close_pm 

• n_ema: Smoothed moving average of negative changes. Calculated as simple moving average 

of close_nm 

• RS: Relative strength, calculated as the ratio of p_ema to n_ema. 

𝑅𝑆 = 𝑝_𝑒𝑚𝑎/ 𝑛_𝑒𝑚𝑎 

𝑅𝑆𝐼 =  100 −  (100 / (1 +  𝑅𝑆)) 
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2.3.1.6   Commodity Channel Index: 

The Commodity Channel Index (CCI) indicator calculates the difference between the current price and 

the historical average price. If the CCI is positive, it means that the price is higher than the historic 

average. On the other hand, when the CCI is negative, the price is lower than the average. The CCI is 

unbounded, so it can oscillate higher or lower indefinitely. As a matter of fact, overbought and oversold 

signals are usually identified for every stock by using historical extreme CCI levels where the price 

reversed. (17) 

 

Stockstats library calculation: 

• Typical Price (TP): 

𝑇𝑃 = ((𝐻𝑖𝑔ℎ +  𝐿𝑜𝑤 +  𝐶𝑙𝑜𝑠𝑒))/3 

• 20-period Simple Moving Average of TP (tp_sma): 

𝑡𝑝_𝑠𝑚𝑎 =  𝑠𝑚𝑎(𝑇𝑃, 20) 

• Mean Absolute Deviation of TP (mad): 

𝑚𝑎𝑑 =  𝑚𝑎𝑑(𝑇𝑃, 20) 

Where mad value is calculated by applying the function 𝑓(𝑥) =  |𝑥 –  𝑥 ̄ | for each specified 

rolling window 

• Commodity Channel Index (CCI): 

𝐶𝐶𝐼 = ((𝑇𝑃 −  𝑡𝑝_𝑠𝑚𝑎 ))/((0.015 ∗  𝑚𝑎𝑑) ) 
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2.3.1.7   Directional Movement Index:  

The directional movement index (DMI) indicates both the strength and direction of a price movement 

aiming to minimize false signals. It employs two standard indicators, one negative (-DM) and one 

positive (+DN), along with a third, the average directional index (ADX), which, despite being non-

directional, represents momentum. A wider spread between the two primary lines, indicates a more 

robust price trend. When +DI significantly goes above -DI, the price trend is upward. If -DI is higher 

than +DI, then the price trend is downward. (18) 

Stockstats library calculates it with the following steps: 

• Calculate High and Low Price Differences: 

ℎ𝑑 =  𝑐𝑜𝑙_𝑑𝑖𝑓𝑓(′ℎ𝑖𝑔ℎ^′ )  

𝑙𝑑 =  −𝑐𝑜𝑙_𝑑𝑖𝑓𝑓(′𝑙𝑜𝑤^′ )  

• Calculate Plus Directional Movement (PDM) and Minus Directional Movement (NDM): 

   𝑝 =  ℎ𝑑 𝑖𝑓 (ℎ𝑑 >  0)𝑎𝑛𝑑 (ℎ𝑑 >  𝑙𝑑)𝑒𝑙𝑠𝑒 0 

   𝑛 =  𝑙𝑑 𝑖𝑓 (𝑙𝑑 >  0)𝑎𝑛𝑑 (𝑙𝑑 >  ℎ𝑑)𝑒𝑙𝑠𝑒 0 

• Smooth PDM and NDM (if window > 1): 

      𝑝𝑑𝑚 =  𝑠𝑚𝑚𝑎(𝑝, 𝑤𝑖𝑛𝑑𝑜𝑤) 

    𝑛𝑑𝑚 =  𝑠𝑚𝑚𝑎(𝑛, 𝑤𝑖𝑛𝑑𝑜𝑤) 

• Calculate Plus Directional Index (PDI) and Minus Directional Index (MDI) 

𝑝𝑑𝑖 =   𝑝𝑑𝑚/𝑎𝑡𝑟  ∗  100 

𝑛𝑑𝑖 =   𝑛𝑑𝑚/𝑎𝑡𝑟  ∗  100 

Where atr is Average True Range: a 14-day smoothed moving average of the true range values. 

Where True Range is a measure of volatility of a High-Low-Close series calculated as: 

        𝑡𝑟 = max [(ℎ𝑖𝑔ℎ −  𝑙𝑜𝑤), 𝑎𝑏𝑠(ℎ𝑖𝑔ℎ −  𝑐𝑙𝑜𝑠𝑒_𝑝𝑟𝑒𝑣 ), 𝑎𝑏𝑠(𝑙𝑜𝑤 −  𝑐𝑙𝑜𝑠𝑒_𝑝𝑟𝑒𝑣 )] 

• Calculated Directional Movement Index 

𝑑𝑥 = 𝑎𝑏𝑠(𝑝𝑑𝑖 −  𝑚𝑑𝑖)/((𝑝𝑑𝑖 +  𝑚𝑑𝑖) ) ∗  100 
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3 Deep learning Background and Literature Review  

The aim of this Chapter is to introduce Deep Reinforcement Learning and its fundamentals as well as 

presenting the main research works that are the basis of this thesis contributions such as state-of the-art 

Deep RL algorithms, advanced time series embedding and imitation learning. 

 

3.1 Reinforcement Learning 

Reinforcement Learning was initially introduced by Sutton and Barto in (2) and lies at the intersection 

of many different fields such as mathematics, computer science, engineering, economics and even 

psychology spanning over optimal control, machine learning, reward systems and so on. Machine 

Learning can be considered as divided in three main branches that are supervised, unsupervised and 

reinforcement learning. While supervised receives input data with labels and unsupervised aims at 

discovering patterns in raw data without labels, the Reinforcement Learning paradigm is instead quite 

different, it is indeed designed to optimize decision making. It does so through trial-and-error learning. 

It takes an action and receives a reward or punishment when transitioning to the next state. In 

Reinforcement Learning there is no supervision, but only a reward signal that is the enabler for the 

learning process. This feedback is received with a delay, therefore a lot importance is given to time 

consistently with any decision-making process that is sequential and where the data received in the 

future also depends on the agent’s past decisions.  

The addition of Deep Learning (3) to Reinforcement Learning started from an experiment in 2014 

when,  given the recent success of deep learning, a group of RL researchers at Google Deepmind 

decided to try merge this two branches of machine learning to design an algorithm to play Atari (19) 

and surprisingly for them as well it gave great results. The added value of deep learning becomes clear 

when we think of it as a very powerful tool that can learn and approximate any kind of function. In our 

case, it can be both the value function or the policy. So this means that instead of calculating for every 

new possible state-action pair the value of the value function or of the policy, we approximate those 

functions with neural networks exploiting the data by progressively adding them to the algorithm. This 

will be explained in section 3.1.6. (20) 

The ideas behind reinforcement learning are derived from behavioural psychology and this makes RL 

really catchy and interesting, but, concerning the current applications of Reinforcement Learning, it has 
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been less effective in business with respect to the other machine learning branches and this is due to 

massive data requirements as well as its even greater technical complexity. Although its paradigm can 

theoretically adapt well to any decision-making field, the main practical achievements are recent and 

have been achieved mostly in the game-playing domain. Atari was already mentioned as the main first 

success. Regarding it, it’s worth to notice that the model takes as input the frames of the videogame and 

just from that using first Convolutional Neural Networks and then Reinforcement learning, it takes 

decision for the game. Later in 2016, again google Deepmind was able to win four games to one 

against the Go world champion and the game was watched by 200M people. (21) Go is a very popular 

game in Asia and this was a big achievement because it’s a game where a sense and intuition is 

fundamental and it’s not possible to just calculate all combinations as it is possible in chess for 

example. Finally, another notable achievement is Alphafold whose paper was published in 2021. (22) 

This application is is not anymore in the gameplaying domain since the model is able to predict with 

way higher accuracy than before the way aminoacids spontaneously fold to form 3D proteins structure. 

The 3d structures of proteins is fundamental to their biological functioning and this is why the protein 

folding problem is important. 

 

3.1.1    Main concepts in Reinforcement Learning 

Please refer to section 1.1 in the introduction for a basic definition of the Reinforcement Learning 

paradigm. It was in fact deemed important for the reader to have an idea of the mechanics of 

Reinforcement Learning from the beginning in order effectively grasp the research question of this 

work. In this section, before digging deeper into more details, we add to that initial introduction by 

explaining the pillar concepts of RL:  

• Agent: It represents the entity that interacts with the environment to learn and improve a policy 

based on observations and rewards. 

• Environment: The external context in which the agent operates. It receives actions and outputs 

observations and rewards based on the effect of those action on the external environment.  

• Reward: the reward feedback signal is scalar, and gives an indication of the agents current 

performance at that time step. The agent’s aim is to maximize its total future cumulative value. The 

reward function is part of the environment and its design is fundamental since it has to efficiently 

include and represent all the objectives all the algorithms eliminating noise as much as possible. 
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• Observations: It differentiates from the reward because it is not a specific feedback on the previous 

action, but it represents the environment at the current timestep. 

• State: The concept of state is crucial, it indicates the whole set of information used to determine the 

next action and it is a function of the history. Where the term history means the sequence of 

observations, actions and rewards. 

• Value Function: It evaluates how good a certain state-action pair is that is to say it predicts the 

total future expected reward starting from state s and performing a specific action a. For instance, if 

the current state is characterized by the weights of a portfolio (containing for instance 60% of Apple 

and 40% of Microsoft stocks) and the current and past prices of Microsoft and Apple, the value 

function tells us the total expected future return of that portfolio when taking a specific action 

among the possible ones, for instance selling 10% Microsoft to buy 10% of Apple. Value-based 

agents use the value function to determine the next action to take. 

• Policy: It corresponds to the agent’s behaviour function. It doesn’t output the expected return 

associated with a state-action pair, but directly the best action to take given a state, so in our 

example it would output directly whether we should invest more in Apple or Microsoft. Policy-

based agents used the policy to determine the next action to take. 

So in value-based agents the policy is implicit since we use the value of the value function to determine 

the best action to take while in policy-based ones there is no value function and the policy directly tells 

us how to act. (20) (2) 

 

3.1.2    Exploration-Exploitation dilemma 

A fundamental aspect of RL is the Exploration vs Exploitation dilemma. When an algorithm is trained, 

it has to get maximize reward based on the current policy it built, but it is also important to try some 

random actions because this may lead to the discovery of some even better options since the 

environment is not fully known. Exploration refers to gaining new experience and finding more 

information about the environment, while exploitation refers to making the best decision to maximize 

reward given the current information. Finding the right balance between the two is very complex also 

because the best long-term strategy may have short-term side-effects. Among the simplest exploration 

techniques, there are ε-greedy strategies, where the agent chooses a random action (exploration) with 

probability ε or selects the action with the highest estimated value (exploitation) with probability 1-ε. 
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Other more advanced algorithms that will be further described later introduce instead entropy 

regularization to the policy loss function encouraging more stochasticity. (20) 

 

3.1.3    Markov Decision Process, Value Function, Policy, Bellman Equation 

Markov processes and the Markov property have already been introduced in section 2.1.2.1. 

Contextualizing it in RL, we can say that, for the algorithm to be effective and the RL formulation to be 

valid, the state must be an information state or Markov state that implies it has to embed all useful 

information from the history. Once we obtained the state, we don’t need the history anymore. In other 

words, the current state has to fully characterise the current situation, and then the future is independent 

on the past given the present. 

Markov property: ℙ[𝑆𝑡+1 ∣ 𝑆𝑡] = ℙ[𝑆𝑡+1 ∣ 𝑆1, … , 𝑆𝑡] 

A Markov process or chain can be then defined as a random process without memory that is composed 

by a sequence of random states with the Markov property. It is relevant to also introduce the concept of 

transition matrix that is a matrix defining transition probabilities from one state to another, each row of 

such a matrix has the sum equal to one. 

A Markov reward process is a Markov chain with reward values. Therefore, a new concept of return 

needs to be introduced as the total discounted reward from the current timestep to the end. The discount 

is the present value of future rewards and it is an important concept because it represents uncertainty 

about the future and avoids infinite returns when processes are cyclic. From the concept of return, we 

can better understand the state value function. The state value function of a Markov Process indeed 

calculates the expected return starting from a specific state s. 

Return: 𝐺𝑡 = ∑  ∞
𝑘=0 𝛾𝑘𝑅𝑡+𝑘+1 

State value function: 𝑣(𝑠) = 𝔼[𝐺𝑡 ∣ 𝑆𝑡 = 𝑠] 

Where γ is the discount factor and R is the reward. 

The state value function can be divided into two terms that are the immediate reward and the 

discounted future rewards and this leads to the Bellman Equation that is probably the pillar equation of 

Reinforcement Learning. With this separation, it is easier to assess the impact of the present reward and 



35 
 

the future separately since higher present reward may not necessarily lead to the best expected return. 

The equation can be thought of as a one-step look ahead. That is, the value of state s is obtained by 

averaging over all possible states transitions one step ahead. Basically, 𝑣(𝑠′) is the value function of all 

possible transitions from s to s’. 

Bellman Equation: 𝑣(𝑠) = 𝔼[𝑅𝑡+1 + 𝛾𝑣(𝑆𝑡+1) ∣ 𝑆𝑡 = 𝑠] = ℛ𝑠 + 𝛾 ∑  𝑠′∈𝒮 𝒫𝑠𝑠′𝑣(𝑠′) 

Where 𝒫 is the state transition probability matrix of 𝑆𝑡+1 being equal to s’ conditioned to the fact that 

𝑆𝑡 is equal to s. 

A Markov decision process is a Markov reward process with decisions (actions). Hence, a Markov 

Decision Process will include actions in its tuple (𝑆, 𝐴, 𝒫, ℛ, 𝛾). So, with this addition, the transition 

probability matrix will also be dependent on the action taken. 

It is now useful to better define a policy. A policy π is a probability distribution over actions given 

states. 

Policy: 𝜋(𝑎 ∣ 𝑠) = ℙ[𝐴𝑡 = 𝑎 ∣ 𝑆𝑡 = 𝑠] 

The action-value function qπ(s, a) is the expected return starting from state s, taking action a, and then 

following policy π 

Action-Value Function: 𝑞𝜋(𝑠, 𝑎) = 𝔼𝜋[𝐺𝑡 ∣ 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎] 

And this allows us to define the Bellman Optimality equation where the optimal action-value function 

𝑞∗ is the maximum action-value function over all policies and the superscript 𝑎 refers to taking action 

a. This equation is non-linear and it has no closed from solution so it is used iteratively to update the 

values of the state-action pairs, ultimately converging to the optimal values that maximize the expected 

cumulative reward for each state-action pair. It forms the basis for several reinforcement learning 

algorithms, including value iteration, policy iteration and Q-learning. (23) (2) 

Bellman Optimality Equation: 𝑞∗(𝑠, 𝑎) = ℛ𝑠
𝑎 + 𝛾 ∑  𝑠′∈𝒮 𝒫𝑠𝑠′

𝑎 𝑚𝑎𝑥
𝑎′

 𝑞∗(𝑠′, 𝑎′) 
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3.1.4    Dynamic Programming, Policy iteration and Value iteration 

Dynamic Programming (24) can be defined as a technique to solve complex problems by dividing them 

into simpler subproblems. For a problem to be a dynamic programming problem, it needs to have an 

optimal substructure and overlapping subproblems; two conditions that a Markov decision process has. 

Dynamic programming can be used both to predict or control, but it is needed to have full knowledge 

of the Markov Decision Process. In this case, predicting means obtaining the value function and control 

obtaining the optimal policy.  

A policy can be improved using dynamic programming by policy or value iteration. The main idea of 

policy iteration is to iteratively improve the policy based on the learned value function until an optimal 

policy is obtained. This process combines both policy estimation and policy improvement (updating the 

policy based on value estimates) in a cyclic manner. The convergence of this iterative process is 

guaranteed. Value iteration is another method to find the optimal policy, but here the policy is implicit. 

It consists in progressively updating the value function using the bellman equation for all states at each 

iteration. (25) (2) 

 

3.1.5    Model-Free prediction and control, Monte-Carlo and Temporal Difference Learning  

Model free is when instead the Markov Decision Process is not known. In other words, it is learning 

without building a model of the world or fully knowing the dynamics of the environment. So the 

learner has no explicit knowledge of state transitions, and only learns from its own experience. While, 

if there is enough knowledge of the environment’s dynamics, first a model of the environment can be 

built and then planning can be used as described before in value iteration and policy iteration. 

Monte Carlo methods learn directly from complete episodes of experience and it uses the very simple 

idea that the expected value is equal to the mean return. To evaluate the policy, we first find the value 

function by using the empirical mean instead of the expected return and then we estimate the value as 

the mean return. The convergence is ensured by the law of large numbers. 

Temporal Difference learning is different because it learns from incomplete episodes instead. It 

basically estimates the value based on estimated returns, therefore updates are a guess towards a guess. 

This methods learns progressively online while the episode is still one step after another step. 
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To sum up, the main differences in results between those two methods are that Monte Carlo has high 

variance, no bias, very good convergence and it is very simple while Temporal Difference tends to be 

more efficient, has low variance and some bias. 

Regarding model-free control, it can be on-policy if the policy is learned while the algorithm is 

sampling experience from the policy itself or off-line if experience is experience from another policy. 

Concerning online Monte Carlo Control, there is again a policy iteration cyclically followed by a policy 

improvement that is done with a e-greedy method maximizing the q value. Indeed, while policy 

improvement over the value function requires knowledge of the model of the Markov decision process, 

the improvement over Q(s,a) is model-free. The idea in epsilon greedy exploration is to choose greedily 

with a high probability but to still explore (pick a random action) with a low probability. Q-learning  is 

instead when learning is done off-policy with action-values Q. Moreover, there are two policies, one, 

the behavior policy, is used to pick the first action that leads to state s’ and it is e-greedy, while, the 

second one is called target policy and is greedy and it is used to take the second action from state s’. 

The Q(s,a) is updated towards the value of the second action. Basically, Q-Learning uses an 

exploratory policy to find the optimal policy. (26) (2) 

 

3.1.6    Value function Approximation, Experience Replay, policy gradient  

In the previous parts, we considered the value function as a lookup table having one entry for each state 

or for each action-pair. However, for many problems, Markov decision processes have many states and 

this is not possible. A possible solution that turned out to be very powerful is the use of function 

approximation. In particular, neural networks trained with stochastic gradient descent showed great 

performance at this task, and, as explained before, this enables to exploit the power of deep neural 

network and create Deep Reinforcement Learning. One of the first example of this was the DQN (19) 

algorithm that exploits this function approximation using the Q-learning logic described before together 

with other improvements such as experience replay. (29) 

Experience replay refers to the way experience is fed to the algorithms, in fact with the experience 

replay buffer, experience is not collected sequentially anymore, but it is first collected and then 

sampled stochastically from the buffer and used by the algorithm in a second moment. Rather than 

executing Q-learning on state/action pairs as they happen in simulation or real-world experience, the 

discovered data are conserved in the replay memory independently of the episode in the form of    
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(state, action, reward, next_state). It's essential to note that it contains raw data intended for action-

value calculations and not associated values. The learning phase is then logically distinct from the 

phase of gaining experience, relying on randomly sampling from this table. It is crucial to separate the 

two processes of acting and learning as enhancing the policy will result in different behavior that 

should explore actions closer to optimal ones, and those are the ones learning should be derived from. 

Random minibatches of experience are sampled for learning, and the learning process is conducted off-

policy. The advantages can be summed up as: 

• Reduction of autocorrelation, which can result in unstable training, by transforming the problem 

into one that resembles a supervised learning scenario. 

• Better converge properties since the data will be more independently and identically distributed 

• Higher data efficiency since we can reuse the sample stored in the replay buffer multiple times 

extracting it with a different order 

Coming back to DQN, its high level logic is to gather a random batch training sample from the 

experience replay buffer, that then flows both in the Q network used to predict Q values and in the 

target network that predicts the target Q values that are then optimized with a Loss function and 

backpropagation. However, here there is a fundamental detail, indeed, the training Q network is 

optimized at each iteration while the Target Network remains fixed and is optimized only once every T 

steps by copying the train Q networks weights. This process ensures a balance between stability and 

adaptability during training. As a matter of fact, this process helps to stabilize the learning process and 

to improve the training efficiency also reducing correlation between consecutive samples consequently 

reducing overfitting. (29) The DQN pseudocode taken from (19) is reported in the annex. 

The fact that the buffer is sampled randomly is important, indeed, learning from consecutive samples is 

inefficient due to the correlations between them, while by retrieving randomly, variance is reduced. 

Moreover, a sample can be reused improving data efficiency. (27) 

As we approximated the value function, also the policy can be obtained using function approximation 

with neural networks for model-free reinforcement learning. Policy gradient algorithms ensure better 

converge since, if the action space has a lot of dimensions, updates of the value function can be slow. 

The policy is updated using gradient descent on the policy objective function.  
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The policy gradient theorem reported below asserts it is possible to obtain optimal updates to the policy 

gradient, utilizing the long-term Q value rather than relying solely on the one-step instantaneous 

reward. 

𝛻𝜃𝐽(𝜃) = 𝔼𝜋𝜃
[𝛻𝜃𝑙𝑜𝑔 𝜋𝜃(𝑠, 𝑎)𝑄𝜋𝜃(𝑠, 𝑎)] 

Where 𝜋𝜃(𝑠, 𝑎) is any differentiable policy and 𝐽 is the policy objective function 

This allows us to introduce one of the most famous policy gradient algorithms Reinforce, below the 

pseudocode is reported: 

 

Figure 6: REINFORCE pseudocode taken from slide 21 of (28) 

Where v is used as an unbiased sample of the long-term Q value. The policy parameter is updated 

through Monte Carlo method or, in other words, by using random samples. 

In a policy gradient approach, the batch is composed of trajectories where actions are randomly 

sampled at each time step. Trajectories are rolled out until the desired number of time-steps is reached, 

and value functions are computed to estimate the gradient using the log-probability score function. The 

policy gradient is then determined as the average of these gradients. This differs from the previously 

described experience replay methods, where transitions are stored and randomly sampled from a buffer. 

In this case, there is no empirical estimate for the value of the policy since it only samples transitions. 

Therefore, learning involves bootstrapping to estimate the value function and using a derivative with 

the chain rule to maximize the value estimate. (28) (2) 
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3.1.7    Actor-Critics Algorithms 

As already mentioned before, we can categorize Reinforcement Learning algorithms into two main 

types: value-based (learn a value function and the policy is only implicit such as e-greedy) and policy-

based (there is no value function and the policy is learnt directly). However, the current state-of-the-art 

algorithms employs a third technique that is based on both methods: actor-critics algorithms. (2)  

Indeed, the fact that updates in Reinforce are done through random samples, as explained before, adds 

high variability in log probabilities and cumulative reward values thus introducing more noise in 

gradients leading to unstable learning and potential skewing of the policy distribution in a suboptimal 

direction. Alongside the issue of high gradient variance, another challenge with policy gradients arises 

when the total reward is zero. The core concept of policy gradients involves increasing the probabilities 

of positive actions and decreasing those for negative actions in the policy distribution. However, when 

trajectories result in a null cumulative reward, both positive and negative actions are not efficiently 

exploited. (30) 

In order to address this issues, Actor-Critics methods add a critic components that has the task of 

estimating the action-value function. Therefore, two different sets of parameters are used for the actor 

and the critic, where the actor updates the policy parameters in the direction indicated by the crititc. In 

other words, the critic address the problem of policy evaluation for the current parameters. The 

pseudocode of Actor-Critics methods in general taken from  (28) is available in the annex 

Moreover, another improvement introduced that also reduced variance is the addition of a baseline 

function. This function is subtracted from the policy gradient without changing expectation. A suitable 

baseline could be the state value function. Then the concept of advantage function is introduced with 

the following formulation:  

𝐴𝜋𝜃(𝑠, 𝑎) = 𝑄𝜋𝜃(𝑠, 𝑎) − 𝑉𝜋𝜃(𝑠) 

This allows us to reformulate the policy gradient theorem as: 

 
𝛻𝜃𝐽(𝜃) = 𝔼𝜋𝜃

[𝛻𝜃𝑙𝑜𝑔 𝜋𝜃(𝑠, 𝑎)𝐴𝜋𝜃(𝑠, 𝑎)] 
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To estimate the advantage we can have the critic estimate both V𝑉𝜋𝜃(𝑠) and 𝑄𝜋𝜃(𝑠, 𝑎). Otherwise, The 

advantage function can also be represented using the TD error and in this case only one set of critic 

parameters would be required. The two formulas above would respectively become: 

𝛿𝑣 = 𝑟 + 𝛾𝑉𝑣(𝑠′) − 𝑉𝑣(𝑠) 

and: 

𝛻𝜃𝐽(𝜃) = 𝔼𝜋𝜃
[𝛻𝜃𝑙𝑜𝑔 𝜋𝜃(𝑠, 𝑎)𝛿𝜋𝜃] 

(28) 

A visual schema of the Actor-critics algorithm is proposed below: 

 

Figure 7: Actor-Critic schema taken from (2) 

 

3.1.8    State-of-the-Art RL Algorithms 

In this section, the most successful and still used Deep Reinforcement Learning algorithms are listed 

and explained. 

• Advantage Actor Critic (A2C) and Asynchronous Advantage Actor Critic (A3C) were both 

released in 2016 by Google DeepMind in the paper (31). Those are the first Deep Learning 

successful algorithms implementing the Actor-Critic method described in the previous section 

3.1.7. This with the addition of a Critic component that has the task of estimating the Advantage 
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values instead of the Q values or action-value function. This is possible by introducing a 

baseline function and by and estimating the advantage with respect to it reducing the high 

variance typical of policy networks. When A3C became public, it had a significant effect on the 

research community because of it simplicity, stability and performance. The “Asynchronous” in 

A3C refers to the fact that it consists in many agents with their own network interacting in 

parallel with copies of the environment all updating a global network at regular intervals, but 

not at the same time. After experimenting with A3C, the authors understood that also by just 

having different versions of the environment running in parallel synchronously they could get 

the same results with a much simpler model and this led to A2C. (31) (32) 

 

• Deep Deterministic Policy Gradient (DDPG) (33) was developed by Google in 2016, it is also 

an Actor-critic algorithm, but focused on operating in continuous action spaces domains based 

on deterministic policy gradient method. When dealing with continuous action spaces, it is 

more difficult to exhaustively evaluate the space and the optimization is therefore more 

complex than with discrete actions. The networks are similar to the already described 

Advantage Actor-Critic method (section 3.1.7), however, the actor maps states to actions 

straight skipping the first usual policy output that is a probability distribution over a discrete 

action space. This algorithm exploits a replay buffer and experience replay. (refer to section 

3.1.6). Therefore, the policy is updated in an off-policy manner with batches of samples. 

Exploration is also different in the context of continuous action spaces, indeed, instead of 

selecting a random action from time to time, some noise is added to the action output. In 

DDPG, the authors use Ornstein-Uhlenbeck Process (34) to add noise. For more details on the 

DDPG functioning, the pseudocode is provided in the annex. (33) (35) 

 

• Proximal Policy Optimization (PPO) (36) was published by OpenAI in 2017 and builds on a 

previous algorithm called Trust Region Policy Optimization (37) keeping its main benefits with 

a much simpler implementation while showing better sample complexity and data efficiency. It 

belongs to the policy gradient methods that, as explained in section 3.1.6, cyclically interacts 

with the environment to sample data and optimizes a surrogate objective function through 

stochastic gradient ascent. The goal of this two algorithms is to take the biggest possible 

improvement step on a policy by using the available data, without stepping too far causing 

convergence issues and performance instability. To achieve this, TRPO adds a KL divergence 
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constraint to enable a trust-region for the optimization process thus making sure the 

optimization is not too unstable and successive updates are not too far from the previous ones. 

Consequently, the new updated policy doesn’t deviate too much from the previous one. PPO 

achieves the same results with a much simpler technique by basically adding a penalty to the 

objective function. This is obtained calculating a clipped value by truncating the policy ratio in 

a range and then making the objective function select the minimum between the actual value 

and the clipped value. Moreover, also the objective function is different since it performs 

multiple epochs of minibatch updates while standard policy gradient updates the policy once 

per sample. As already mentioned, those two enhancements lead to better stability and data 

efficiency. (36) (38) Below, the pseudocode is reported: 

 

Figure 8: Proximal policy Optimization pseudocode taken from (36) 

 

• Twin Delayed Deterministic Policy Gradient (TD3) (39) paper was published in 2018. TD3 is 

an Actor-Critic algorithm that addresses the main issues of DDPG such as unpredictable 

behavior and difficult hyperparameters tuning. This model utilizes two critic networks instead 

of only one (twin) and it performs delayed updates of the actor (delayed) and lastly it adds 

action noise regularization. The two critics are used by making the algorithm pick the lower of 

the two Q values produced by the critics creating an underestimation bias resulting in a more 

stable approximation and therefore in a more stable algorithm. Similarly to the considerations 

made for delayed target network weights updates in sections 3.1.5 and 3.1.6, in this case, the 

delayed update is applied to the actor network again for a more stable and efficient training. 

Noise regularization refers instead to the addition of clipped noise to actions when calculating 

the targets giving more importance to more robust actions. For more datils the pseudocode is 

reported in the annex. (39) (40) 
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• Soft Actor critic (SAC) (41) was published in 2018 by researchers at Berkeley University. It 

lays in between stochastic policy optimization (on-policy) and DDPG-based approaches (off-

policy) and aims at improving sample efficiency and convergence. Indeed, SAC is off-policy 

and Actor-Critic, but it shows much better stability compared to the other previously-mentioned 

off-policy algorithms. The main feature of SAC is entropy regularization where the policy is 

trained to maximize a trade-off between expected return and entropy, that is closely related with 

the exploration-exploitation trade-off that was previously explained in section 3.1.2. In other 

words, the aim is not only to maximize the reward, but also to increase as much as possible the 

entropy of the policy. The agent has to succeed at the task while acting as randomly as possible. 

For more details, the pseudocode is provided in the annex. (41) (42) 

 

3.2 Time Series data modelling 

In order to model sequences effectively, we require a dedicated learning framework that can: 

• Handle variable-length sequences. 

• Preserve sequence order. 

• Capture long-term dependencies instead of truncating input data prematurely. 

• Enable comprehension of each word based on the context of previous words. 

• Provide the network with the capability to search for a specific feature throughout the entire 

sequence, not limiting it to a particular region. 

• Share parameters across the sequence to avoid redundance when learning. 

The most suitable and extensively studied domain for introducing sequence modeling is natural 

language processing and this is the reason why some references to this domain may be found. 

However, to give a straightforward general definition of a sequence modelling network, such a network 

aims at predicting an output sequence from an input sequence, using an appropriate loss function. 

 

3.2.1    Main sequence modelling architectures  

In this first section, the main sequence modelling architectures that anticipated and therefore led to the 

creation of the transformer are introduced and briefly explained. 
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3.2.1.1   Recurrent Neural Networks 

 

Figure 9: RNN schema taken from (43) 

Unlike traditional neural networks, Recurrent Neural Networks present link forming directed cycles, 

enabling them to create and maintain a hidden state that embeds information about previous inputs of 

the sequence. The hidden state makes it possible to model temporal dynamics and process sequential 

data, that explains their suitability for tasks like Natural Language Processing (NLP), speech-to-text, 

and time series analysis. 

The fundamental concept of RNN is its recursive structure, which entails several key aspects: 

• The size of inputs and outputs are variable. 

• There exists a hidden state that represents past knowledge. The previous hidden state, along 

with the current step's input, is utilized to calculate the current hidden state, which is then used 

to determine the output for the current step. 

• The same activation function is repeated all over the architecture with the same configuration.  

It's worth pointing out that the fact that all the parameters are shared, especially the ones of the hidden 

state, can become an issue as the network length increases. As a matter of fact, having just one memory 

element across the entire network can lead to information overload and difficulty to remember distant 

past events. Consequently, RNNs show reduced effectiveness when the distance between relevant 

information and the point where it is needed becomes substantial. This inefficiency arises because 

information is transmitted at each step, and, as the chain lengthens, there is a higher chance of 

information loss along the sequence. This is known as the vanishing gradient problem of RNNs. (44) 

(43) 
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3.2.1.2   Long Short Term Memory 

 

Figure 10: LSTM schema taken from (45) 

Long Short Term Memory networks (46) improved the performance of RNNs by addressing their main 

problems, and still keeps its popularity twenty years after its invention. The main issue with RNN, as 

already mentioned, is that they struggles to effectively retain past information due to a limited set of 

parameters. This issue causes information overload. 

With sequential data, such as chats or conversations, multiple dimensions need to be considered, 

including what to emphasize, output, and forget. LSTM addresses these challenges by incorporating 

Input, Output, and Forget Gates. These gates combined effect, along with the Sigmoid function, filter 

and memorize relevant incoming information. The different gates’ function can be summarized as 

following: 

• Input Gate: Determines what information to remember, excluding less useful elements like 

common words. 

• Output Gate: Specifies what information should be stored in the hidden state but omitted from 

the output. 

• Forget Gate: Manages what information to forget, especially when the context changes. 

The Sigmoid function, with its output ranging between 0 and 1, efficiently represents the percentage of 

information for input, output, and forget.  

LSTMs present issues similar to RNNs. Indeed, keeping the context for the words positioned far from 

the current word being processed is problematic also for this kind of network. We can therefore point 

out again that, when dealing with long sequences, distant information is not well kept and exploited. 

Moreover, it would be more effective to have separate modelling mechanisms for short and long 

dependencies that in this case are not present. Eventually,  parallel processing is not possible due to the 

inherent dependent nature of sequential data. (45) (46) 



47 
 

3.2.1.3   Convolutional neural networks 

Although Convlution Neural Networks have been mainly studied for computer vision, they are relevant 

since some of their features are in between RNN’s and LTSM’s weaknesses and the self-attention 

mechanism that addressed those weaknesses explained later. As a matter of fact, they are more easily 

parallelizable since each entry of the input can be processed at simultaneously and does not depend on 

the previous entries. Moreover convolution allows to detect local dependencies, but this is not enough 

for many of the dependencies that we can find in sequential data. (47) 

A quite successful model was built by exploiting the positive aspects of both CNNs and LSTMs called 

ConvLSTM. (48) The architecture of a ConvLSTM typically involves convolutional layers applied to 

the input data, followed by the integration of LSTM cells. This allows the model to capture both spatial 

features through convolutions and long-term dependencies through the LSTM memory cells. 

Therefore, ConvLSTM is a powerful architecture for tasks that involve sequences of data with spatial 

dependencies, offering the benefits of both convolutional and LSTM networks. However, the time 

dependencies are still handled by LSTM in this case so the same limitations remains on the time 

dependencies, indeed, in many fields the transformer substituted the previously unbeaten convLSTM.  

 

3.2.2    Transformer-based architectures 

In this section, the transformer architecture and its main components will be first explained to then 

introduce the transformerXL and the GTrXL architectures. 

3.2.2.1   The transformer architecture 

The Transformer architecture, (49) initially proposed in the natural language processing domain, has 

proven to be highly versatile and has become the foundation for various state-of-the-art models initially 

in NLP, but then also in other domains such as computer vision. The transformer addresses multiple 

limitations of previous models: 

• Transformers allow for parallel processing of sequence elements, making them more efficient. The 

self-attention mechanism enables capturing relationships between all positions in a sequence 

simultaneously. There is a direct flow of information for each input and this is probably the key 

strength compared to CNNs, LSTMs and RNNs. 
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• Again thanks to self-attention, long-term dependencies are captured more efficiently than previous 

models. 

• It is more parameter-efficient. 

• Attention presents better explainability with respect to RNN and LSTMs. 

• It has an explicit way to model hierarchy and therefore it is very scalable. 

The Transformer architecture consists of an encoder, a decoder, and connections linking them. The 

encoder is a stack of identical encoders, and the decoder is a stack of an equal number of decoders. The 

decoding component is a stack of decoders of the same number. Each encoder comprises two sub-

layers. The encoder’s inputs initially passes through a self-attention layer, enabling it to consider other 

words in the input sentence while encoding a specific word. The outputs of this layer are then fed to a 

feed-forward neural network. The decoder includes both those layers, with an attention layer in 

between that helps the decoder focus on important parts of the input sentence. (50) (49) 

In the next subchapters, some of the main concepts behind the transformer architecture will be 

explained. 

3.2.2.2   Self-attention and Multi-head attention 

To grasp the meaning of attention, it is useful to do a parallelism with retrieval systems and human 

attention. We will see that the attention mechanism is based on three vector or matrices K,Q,V. If we 

think of the attention operation as a retrieval process, we will have a query that we have to associate to 

some existing keys. Therefore, we will compute the matches and associate K and Q with the best 

matching ones to get a final value (result of the retrieval process). To make a parallelism with human 

attention, if the query corresponds to our will or voluntary signals, the key to sensory inputs of the 

environment and the value to the actual content or effect of what we are looking for. Indeed, queries 

and keys are multiplied to get an attention score that tells us if there is a good match and then this is 

combined with the value to get the final attention output. In the same way, the attention mechanism 

matches our voluntary signals with the sensory inputs of the environment to make a selection and get a 

final outcome. (that depends on the selected value) 

For instance, consider an input sentence we need to translate: "The professor didn't receive the student 

because he was too busy." What is "he" referring to? The professor or the student? This might seem 

straightforward, but it is challenging for an algorithm. While the model encounters the word "he," self-

attention comes into play, enabling it to correlate "he" with "professor". Throughout the processing of 
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each word, self-attention empowers the model to focus on different positions in the input sequence, 

seeking contextual clues to improve and refine the encoding of a specific word. 

Self-attention is calculated with the following steps: 

• First of all, for each input element of the sequence, a Query vector, a Key vector, and a Value vector 

are created of the same dimension 𝑑𝑘. They’re useful representation s that are also in line with the 

attention logic described before. These vectors are obtained multiplying the initial embedding by 

three matrices that are trained during the training process. 

• The next step is to calculate a score for each entry of the input sequence against each other entry. 

The score represents the connection with or the focus on the other entries of the sequence with 

respect to that entry. This is obtained with the dot product of the query and key vectors.  

• Then a division and softmax operation are done to the score for more stability and normalization. 

The score obtained at this point indicates how much each word will be expressed at this position. 

• Finally each value vector is multiplied by this softmax score and then this weighted value vectors 

are summed and this is the output of the self-attention layer. This calculation is in practice done 

with matrices as showed in the formula below 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 (𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑𝑘

)
 

The transformer paper enhances the self-attention by creating a mechanism called “multi-headed” 

attention. Basically, it consists in doing the same procedure for the self-attention, but eight different 

times with different weight matrices with random initialization. Then to condense it back to one matrix 

at the end before the feed-forward layer, they are concatenated and multiplied by a fourth matrix Wo.  

This improves the performance of the attention layer by helping the model to focus on different entries 

of the input vector and by allowing the attention layer to create different representations. Indeed, due to 

the random initialization, each set of vectors may focus on a different feature or representation. (50) 

(49) 

𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(𝑄, 𝐾, 𝑉) = 𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑𝑖, … , ℎ𝑒𝑎𝑑ℎ) ∗ 𝑊𝑂  
 

where ℎ𝑒𝑎𝑑𝑖 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 (𝑄𝑊𝑖
𝑄 , 𝐾𝑊𝑖

𝐾 , 𝑉𝑊𝑖
𝑉) 



50 
 

3.2.2.3   Positional encoding 

The model as analyzed until now doesn’t take into account the order of the words in the sequence. As 

explained before, this is very important in sequence modelling. Therefore, the authors of the 

transformer paper decided to add a vector to each input embedding to embed position information. 

These vectors adhere to a distinct pattern that the model learns, aiding it in identifying the position of 

each vector’s entry, or the distance between distinct entries in the sequence. The underlying concept is 

that by adding these values into the embeddings incorporates relevant information on distances 

between the embedding vectors, both in their projected Q,K,V vectors and during dot-product attention. 

The formula for positional encoding is described in the paper and uses sine and cosine functions at 

different frequencies. 

𝑃𝐸(𝑝𝑜𝑠,2𝑖) = 𝑠𝑖𝑛 (𝑝𝑜𝑠 /100002𝑖/𝑑model )

𝑃𝐸(pos ,2𝑖+1) = 𝑐𝑜𝑠 ( pos /100002𝑖/𝑑model )
 

Were p pos is the position and 𝑖 is the dimension of the embedding.  

There are alternative approaches for positional encoding. However, this method offers the advantage of 

adaptability when handling sequences of unknown lengths, such as when our trained model has to 

translate a sentence longer than any in the training set. (50) (49) 

3.2.2.4   Encoder-decoder architecture 

As already mentioned, the transformer is based on a encoder-decoder architecture. To recap, the 

encoder layers are composed of two sublayers: self-attention and position feed-forward layer. The 

decoder layers are instead composed of three sublayers: self-attention, encoder-decoder attention, and a 

position feed-forward layer. The parts described so far are used as they are in the encoder. As a matter 

of fact, the encoder first processes the input sequence and then its first output is transformed into the 

attention vectors K and V. These vectors are then fed to the decoder in the encoder-decoder attention 

layer which allows the decoder to focus on the right part of the input sequence. This step is repeated 

multiple times. When the output is completed, the output of every step is fed to the bottom decoder of 

the next time step. Also in this phase, position encoding is added to the decoder input to indicate the 

position of each entry of the sequence. The decoder’s self-attention layers are slightly different with 

respect to the encoder. Indeed, they are restricted to attending only to preceding positions in the output 

sequence through a masking operation of future positions before the softmax step. The Encoder-
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Decoder Attention layer is similar to multiheaded self-attention, however,  it creates its Queries matrix 

from the layer below it and retrieves the Keys and Values matrix from the output of the encoder stack. 

(50) (49) 

 

3.2.2.5   TransformerXL 

The authors aim with the Transformer-XL (51) paper is to overcome the limitations of fixed-length 

contexts. The idea is to integrate the concept of recurrence into the deep self-attention network. Indeed, 

the hidden states obtained in previous segments are exploited instead of recalculating them from 

scratch for each new segment. Those hidden segments act as memory for the current segment thus 

establishing a recurrent connection among different segments. This allows to model longer-term 

dependencies since information can propagate through the connections. At the same time, it addresses 

the challenge of context fragmentation by transferring information from the previous segment 

Moreover, the authors define a new form of positional encoding that is relative, that, with respect to 

absolute ones,  facilitate to reuse the state without creating temporal confusion. Therefore, this 

formulation is straightforward yet more effective, extending its applicability to attention lengths 

beyond those encountered during training. These two techniques collectively provide a comprehensive 

solution, as either in isolation fails to address the constraints associated with fixed-length contexts. (51) 

 

3.2.2.6   GTrXL 

Gated Transformer XL (GTrXL) (4) is an innovative model designed for processing extensive time 

horizons of sequential information in reinforcement learning, starting from the advancements of the 

Transformer-XL architecture. Thus demonstrating that the standard transformer architecture is difficult 

to optimize as already noted in the supervised learning setting and becoming an even more pronounced 

issue when dealing with Reinforcement Learning. This architecture outperforms LSTMs in challenging 

memory environments, achieving state-of-the-art results. 

The two main contributions are identity map reordering and gating layers. Identity map reordering 

involves relocating the layer normalization to the input stream of the submodules. Notably, this 

reordering enables an identity map from the input of the transformer at the first layer to the output of 

the transformer after the last layer. This is a substantial difference with respect to the canonical 
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transformer where a series of layer normalization operations nonlinearly transform the state encoding. 

This modification facilitates faster and more effective convergence of the network to the final outcome 

The intuition behind it is that, in many environments, it is crucial to learn reactive behaviours before 

effectively utilizing memory-based ones. For instance, an agent needs to learn how to read before it can 

remember what it has read.  

To improve performance and optimize stability, the authors also replace the additions operations of 

residual connections with a gating layer. The paper proposes various implementations of this layer, with 

the most successful one based on a GRU-type mechanism. Gated Identity Initialization is a concept 

where the authors argue that Identity Map Reordering aids policy optimization by initializing the agent 

close to a Markovian policy or value function. (4) 

 

Figure11: GTrXL schema taken from (4) 

 

3.3 Imitation Learning 

Imitation Learning is a variant of Reinforcement Learning where the learning agent seeks to replicate 

human behavior. In contrast to conventional reinforcement learning methods, where an agent learns 

through trial and error within an environment (typically a Markov Decision Process) guided by a 

reward function, imitation learning involves the agent learning from a dataset of demonstrations 

performed by an expert. The objective is to mirror the expert's behavior in similar or identical 

situations. Imitation learning proves beneficial when it is more feasible for an expert to demonstrate the 

desired behavior than to specify a reward function that would produce the same behavior or to directly 

learn the policy. In some instances, direct access to the expert during training allows for additional 
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demonstrations or evaluation queries. In order to provide a comprehensive understanding of Imitation 

Learning, we categorize it into two primary branches:  

• Behavioral Cloning and its successive improvements, such as reward-weighted regression and 

advantage-weighted regression, where the agent learns a mapping from states to actions. 

• Inverse Reinforcement Learning, where the agent deduces the underlying reward function from 

expert behavior. 

(52) (53) 

3.3.1    Behavioural Cloning  

The most straightforward form of imitation learning is Behavioral Cloning, which allows to find the 

corresponding policy when it is not known by using expert demonstration in the form of state-action 

pairs in a supervised manner. One of the first examples of behavior cloning was ALVINN, (54) a 

vehicle that was able to map sensor inputs to driving decisions. This pioneering project, dates back to 

1989,  and it was probably also the first example of imitation learning in general. 

It is relevant to point out that the resulting policy must be able to generalize to states that have never 

been encountered. Behavioral Cloning gives great results if the set of expert data that we have contains 

optimal high-quality solutions and the amount of data is sufficient to have a good amount of 

generalization and avoid overfitting and its simplicity and efficiency are a great advantage. 

Nonetheless, it is prone to failure in situations where the dataset includes a significant amount of 

random or task-irrelevant behavior, or when the acquired policy results in a trajectory distribution that 

diverges considerably from the dataset under examination. Moreover, another obstacle arises from the 

independent and identically distributed assumption, as supervised learning assumes for state-action 

pairs. Indeed, in a Markov Decision Process, an action in a given state triggers the next state, deviating 

from the distribution assumption. Consequently, errors in different states may accumulate, and a 

mistake by the agent can lead to an undefined behavior. (52) (53) 

For simple behavioral cloning, we would be minimizing a Loss function like this one: 

𝐿𝑜𝑠𝑠 (𝜽) = −
1

𝑚
∑  

𝑚

𝑖=1

∑  

𝐻

𝑡=1

𝑙𝑜𝑔 𝜋𝜽(𝒂𝑡
(𝑖)

∣ 𝒔𝑡
(𝑖)

) 

Where 𝑡 is time, and 𝑖 identifies the demonstration sample. 
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3.3.2    Offline or Batch Reinforcement Learning (Reward Weighted Regression) 

With Behavioural cloning, the obtained policy does not perform better than observed demonstrations 

and for cases in which expert data samples led to different results, some better and some worst, we can 

have some improvements. As a matter of fact, an option is to weight samples based on the return or 

reward (by adding an environment) that each demonstration obtained. Then, the resulting policy should 

perform better than the observations. The updated loss function has just an additional demonstration 

reward term: 

𝐿𝑜𝑠𝑠 (𝜽) = −
1

𝑚
∑  

𝑚

𝑖=1

∑  

𝐻

𝑡=1

𝑙𝑜𝑔 𝜋𝜽(𝒂𝑡
(𝑖)

∣ 𝒔𝑡
(𝑖)

)𝑅(𝜏(𝑖)) 

This formulation, since we introduced an environment and a reward, may seem similar to off-policy 

Reinforcement Learning. As explained in the image below, taken from (55), the distinction lies in the 

fact that, in the traditional off-policy setting, the agent's experiences are added to a data buffer or replay 

buffer. Each new policy accumulates additional data, so this buffer comprises samples from all the 

different policies gradually constructed and improved over time. All this data is then utilized to train an 

updated new policy. In contrast, offline reinforcement learning relies on a dataset collected by some 

(potentially unknown) behavior policy. This dataset is collected once and remains unchanged during 

training, allowing the use of large previously collected datasets. The training process has no interaction 

with the Markov Decision Process (MDP), and the policy is only deployed after being fully trained. 

 

Figure 12: Comparison of online, off-policy and offline RL taken from (55) 

 

The potential of a fully offline reinforcement learning framework is very interesting. Similarly to how 

supervised machine learning has led to the transformation of data into robust and generalizable pattern 

recognizers such as for image classification for instance; offline reinforcement learning, together with 

function approximation, has the potential to convert data into versatile decision-making engines. This 
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implies that, with a sufficiently large datasets, this approach could be leveraged to develop successful 

decision-making policies. (52) (55) 

 

3.3.3    Advantage Weighted Regression 

In Marwil (Monotonic Advantage Re-Weighted Imitation Learning) (56) the advantage a specific 

action has is estimated from the cumulated discounted future reward and the value of the current state 

given by a value function estimated with a neural network. Then higher sample weight is given to the 

actions with a higher advantage value.  

The pseudocode provided by the authors it’s the following: 

 

Figure 13: MARWIL pseudocode taken from (56) 

where β is a hyper-parameter specifying how much we want to differentiate actions with different 

advantage (how much influent is the advantage). And the advantage function   

is estimated with a neural network. 

Performing multiple iterations of a procedure similar to MARWIL, but introducing exploration at each 

iteration, we obtain Advantage Weighted Regression. In other words, after weighted regression is 

performed, then the obtained policy is used to generate new data with exploration and a new policy is 

obtained from this new data at each iteration. This allows to find better and better policies exploiting 

exploration. 

This technique was introduced by (57), where the authors explain their aim is to develop a scalable 

reinforcement learning algorithm by exploiting standard supervised learning techniques as subroutines. 

The algorithm relies solely on uncomplicated and convergent maximum likelihood loss functions while 

also capitalizing on off-policy data. The algorithm performs two main steps similar to MARWIL at 

each iteration: 

• regression onto target values for a value function.  

• regression onto weighted target actions for the policy 
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The pseudocode provided by the paper is the following: 

 

Figure 14: Advantage Weighted Regression pseudocode taken from (57) 

Where the reward is estimated using temporal Difference learning with the target value of the previous 

iteration as bootstrap. (52) (57) 

 

3.3.4    Inverse Reinforcement Learning  

Instead of directly learning actions, Inverse Reinforcement Learning (IRL) seeks to understand the 

underlying reward function that the expert is optimizing. This is based on the assumption that the 

reward function, and not the policy, provides a synthetic, solid, and transferable definition of the task. 

Once the reward function is modeled starting from optimal expert demonstrations, RL can be employed 

to learn the behavior policy. After identifying a suitable reward function, the issue mutates to finding a 

policy that can be solved with common RL methods. This procedure involves iteratively refining it by 

comparing the value of the currently optimal expert policy with some generated policies. While this 

approach offers better generalization to unseen states, it is usually more complex and computationally 

intensive. 

The first formulation of Inverse Reinforcement Learning in the Markov decision process setting dates 

back to 2000 in the paper. (58) A challenge arises when simplifying a complex task into a reward 

function as a given policy may be optimal for various reward functions. Despite having actions from an 

expert, multiple reward functions may be candidates for what the expert aims to maximize. However, 

the objective of Inverse Reinforcement Learning is to discover a reward function that encapsulates 

meaningful task information and effectively distinguishes between desired and undesired policies. To 

address this, Ng and Russell frame Inverse Reinforcement Learning as an optimization problem, 
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aiming to select a reward function for which the provided expert policy is optimal while maximizing 

certain essential properties under this constraint. (58) (59) 

 

3.3.5   A Minimalist Approach to Offline Reinforcement Learning  

The model proposed by this paper (62) has been used for the third variant implementation. (see 

paragraph 4.8) The paper tackles the common approach of constraining or regularizing the policy with 

actions from the dataset to create an offline reinforcement learning algorithm. Typically, making an RL 

algorithm function offline introduces additional complexity. The objective here is to enable a deep RL 

algorithm to operate offline with minimal adjustments and therefore avoiding as much as possible 

additional complexity. This is achieved by incorporating behavioral cloning into TD3 (see section 3.1.8 

for more details on TD3), simply by introducing a regularization term to the policy of deterministic 

policy gradient. The amount of regularization is controlled by the hyperparameter alpha. The formulas 

below describe this regularization term addition. 

 

Figure 15: Deterministic Pollicy Gradient for (62) 

Moreover, in addition to the regularization term, another simple modification has been made by the 

authors by normalizing the states over the dataset, such that they have mean 0 and standard deviation 1. 

This improves the stability of the learned policy. The two changes that have been described above are 

the only two changes made with respect to the original TD3 algorithm. The model will be referred to as 

TD3-BC in the following sections. 

 

3.3.6    Other Related Works 

In this section, other imitation learning papers are briefly explained mentioning for which aspects they 

can be relevant. The last paper is an application to the portfolio optimization problem. 
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3.3.6.1   Conservative Q-learning for Offline Reinforcement Learning 

This paper (60) is again in the field of offline reinforcement learning. The model's objective is to tackle 

the overestimation of values caused by the distributional shift between the dataset and the learned 

policy, particularly evident when training on intricate and multi-modal data distributions. CQL 

establishes a lower limit on the current policy's value and can seamlessly integrate into a policy 

learning process with theoretical improvement assurances. In practical terms, CQL enhances the 

standard Bellman error objective by introducing a straightforward Q-value regularizer. This 

regularization method is easy to implement as an extension to existing deep Q-learning frameworks.  

 

3.3.6.2   Critic Regularized Regression  

The Critic Regularized regression model (61) is a form of offline reinforcement learning. It simplifies 

offline policy optimization to a type of value-filtered regression, requiring minimal modifications to 

standard actor-critic methods. Consequently, it is straightforward to comprehend and implement. The 

model involves comparing the critic's Q-value prediction for an action in the trajectory with the Q-

value of the action from the policy. If the critic's Q-value exceeds the policy's Q-value, the 

corresponding action is employed to train the policy; otherwise, the action is disregarded. This 

algorithm effectively filters out suboptimal actions, facilitating the learning of improved policies from 

data of lower quality. 

 

3.3.6.3   Demonstration-regularized RL 

The paper aims at theoretically quantifying the degree to which the additional information decreases 

the sample complexity of RL. Specifically, by investigating demonstration-regularized reinforcement 

learning, which utilizes expert demonstrations through KL-regularization for a policy acquired via 

behaviour cloning. (63)  

 

3.3.6.4   Adaptive Quantitative Trading: An Imitative Deep Reinforcement Learning Approach 

This paper (64) combines together Reinforcement Learning with Imitation Learning for the Portfolio 

Optimization problem. The base model used is Deep Deterministic Policy Gradient (see section 3.1.9) 

but in its recurrent extension form that is Recurrent Deterministic Policy Gradient. (RDPG) (65) The 

observations are constituted of Technical indicators from the dual thrust trading strategy, the prices and 
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rewards that are probably the same information included in the state together with the account balance. 

The input data granularity is minute and the training set is composed of two years of data from 2016 to 

2018, while the testing period is one year in 2019. The traded assets are futures on the top 300 Chinese 

stocks. Imitation learning is used in two different ways with a demonstration buffer containing dual 

thrust strategy demonstration episodes and behavioral cloning using prophetic expert actions created in 

hindsight. The obtained returns and Sharpe ratio seem very promising. This paper is interesting because 

it merges recurrent sequence modelling with a recurrent Reinforcement Learning model, with imitation 

learning, but there is no code available and some implementation details are not clear. 
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4 Implementation and contributions 

In this Chapter, the implementation of the Deep Reinforcement Learning model and the GTrXL and 

imitation learning variants will be explained, leaving to chapter 6 the backtesting and results 

discussion. 

4.1    Project code structure 

The following schema allows the reader to get a better understanding of the repository structure and 

consequently of how the different sections of code are used together to produce the final result. The 

repository is available at this link. 

 

Figure 16: Repository structure 

• Model: contains the code related to the PPO agent therefore the interface with the Ray RLib 

library (see chapter 4.2.1), the models customizations and the inputs of the PPO model. For the 

TD3-BC variant Ray RLib is not used and this folder contains the full model Pytorch code. 

• Environment: The environment code is separated since it is specific to the portfolio 

optimization application. It handles all the tasks related to calculating states, observations and 

rewards. 

https://github.com/gioele-scaletta/Deep_Reinforcement_Learning_for_Portfolio_Allocation_thesis
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• Utility functions: This folder contains all the functions called by the main or the notebook for 

the tasks of data preprocessing, results manipulation, interface with the API for retrieving stock 

market data (Financial Modeling Prep) and more generic main functions removed from main.py 

for clarity. 

• Notebooks: In this folder all the different notebooks are stored together with the run results data 

stored as notebook saved after a run. 

• VoilaWebApp: This notebook is a simple Voila Web Application. Voila is a library that allows 

to easily turn a jupyter notebook into a WebApp avoiding more complex implementations. 

• The folders references and update_presentations contain respectively the main papers used 

divided by relevance with a brief markdown comment and the power point presentations that 

have been created while working on the project throughout time. 

• Main.py contains a function to make a train and test run from terminal without using the colab 

notebooks  

• Config.py contains the main paramers to set for a run (training and testing periods, technical 

indicators used, API parameters, RL models parameters) 

 

4.2    Programming Libraries used for the implementation 

For the implementation of the model, multiples libraries have been used since, due to the complexity of 

the project and of Deep Reinforcement Learning state-of-the-art models, it was deemed as more 

effective to start from researcher’s competitive implementations and modify it when necessary as it is 

common practice in the field. In particular, two libraries had more impact on this project:  

• Ray RLib (66) algorithms were used for the implementation of the Agent with some 

modifications mostly for the contributions part. 

• FinRL (67) was used as a starting point for the Environment, data preprocessing and results 

manipulation, but most of the code for this parts has been cleaned, restructured and rewritten. 

• Other libraries were used as well for minor parts such as pyfolio for results manipulation and 

plotting, stockstats for technical indicators calculations. 
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4.2.1    Ray RLib 

The ray project, (66) is an open source project carried out on a GitHub repository with 30k starts that 

provides a library with a lot of Artificial intelligence and Machine learning models coded in python. 

The focus of the library is on distributed runtime and scaling of AI workloads. The project was created 

by two students of the RISELab at Berkeley University and it is constantly (daily commits) maintained 

and advanced by a thousand of contributors. It is used by companies such as Uber, Spotify and Netflix 

and obtained publications in famous AI conferences such as NeurIPS. The aim of the project was to 

create a framework that integrates the diverse components required to deploy machine learning or deep 

learning algorithms effectively in practical scenarios. The framework can be divided in three layers as 

indicated by the official documentation where cloud refers to cloud deployment support and 

facilitation: 

 

Figure 17: Ray RLlib high level structure taken from (66) 

 

As shown by the picture above it is composed by five libraries:  

• Data: handling data loading and transformation 

• Train: enabling distributed, multi-core training with support for popular training libraries 

• Tune: handling scalable hyperparameters optimization 

• Serve: handling deployment of models for online inference.   

• RLlib: library specific to Reinforcement Learning 

RLib library is maintained by researchers in the field and used by companies and is really up to date 

implementing very quickly algorithms just after they are published in new papers. This reasons led to 

the choice of this framework for this thesis project. As mentioned above, two of the main goals of the 
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library are to offer a wide variety of algorithms and scalability that is usually very important in 

Reinforcement Learning where a lot of data are needed. However, this adds much more complexity 

because the framework is built with a lot of abstractions to have as much as possible in common 

between different algorithms and to be able to run in complex and powerful environments with a lot of 

resources available. For instance the library also provides a built-in Server/Client setup that makes the 

library very intricated and full of content. The fact that a lot of contributors work on the project also 

ends up increasing code complexity. 

It is worth mentioning that this, together with the fact that the documentation is limited, resulted in 

additional work for this thesis project where computing resources as well as stock market data are 

limited and therefore a simpler framework would have been enough and easier to modify. As a matter 

of fact, it has progressively been observed during this work that, while ray RLlib works very well when 

used as-it-is, it requires a lot of understanding of the underlying functioning with limited 

documentation when contributions and modifications to the models are needed. 

RLlib can be used both with PyTorch and TensorFlow and it is divided into two main parts: Algorithms 

and Environments that respectively provide implementation for a lot of Reinforcement Learning 

models agents and many famous environments supported implementations. The environments features 

have not been used in this thesis project since there is no financial environment available. More details 

on how the algorithms have been used are available in section 4.5.  

Ray Tune library (68) has also been used for hyperparameters tuning, more details are provided in 

section 4.7. 

 

4.2.2    FinRL 

FinRL (67) is an open source framework for financial Reinforcement Learning developed by the 

AI4Finance community that was created by some students and now is also supported by Columbia 

University a shown on their open finance foundation website. The repository gained a lot of popularity 

reaching 8.5k stars and about one hundred contributors. It is relevant to mention that the financial 

community is usually not open source and therefore it is really difficult to find quantitative finance 

publicly available material and this makes this project very atypical. The library managed to public 

papers to important conferences such as NeurIPS and ICAIF confirming the relevance of the work. 
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Another positive note is the fact that this projects merges a lot of different sources from data retrieval 

and APIs to agent’s implementations and applications collecting a very good set of information for 

someone starting of with Deep reinforcement Learning for finance.  

The picture below is reported to show more details on the previously mentioned variety: 

 

Figure 18: FinRL high level structure taken from (67) 

 

However, digging deeper in it in the context of this thesis project, it was possible to notice that the 

material is often repeated in different libraries and publications and sometimes this, together with a  

limited documentation, makes it difficult to understand and use the provided tools. For this reason, the 

code was cleaned, restructured and corrected in many parts before using it for the thesis work and the 

library is not just used importing it as it is the case for Ray RLlib. 

FinRL was used for this thesis as an initial implementation for the environment, the data preprocessing 

and results manipulation parts. 

 

4.2.3    Other libraries 

The other libraries used or that where studied because relevant to the project are the following: 

• Stockstats: This library (12) is a wrapper library built on top of pandas DataFrame, aiming to 

offer instant access to a range of measures and technical indicators associated with stock prices 

just starting from OHLC prices. In section 2.3.1 more details on each single indicator used are 

given. It has 1.2k stars on github.  
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• Pyfolio: It is a Python library (69) with 5.3k stars on github designed for assessing the 

performance and risk of financial portfolios. Developed by Quantopian Inc., it seamlessly 

integrates with the Zipline open-source backtesting library. Quantopian is a platform enabling 

users to create, test, and implement algorithmic trading strategies using Python. Zipline is a 

python library allowing users to automate the execution of their trading strategies thus enabling 

users to define trading algorithms and conduct backtests using historical data. Pyfolio has been 

used for the portfolio positions, monthly and annual returns heatmaps and distributions. 

• PyPortfolioOpt: It is a library (70) that incorporates portfolio optimization methods, 

encompassing classical efficient frontier techniques as well as recent advancements such as 

shrinkage, and experimental features like exponentially-weighted covariance matrices. It was 

used for testing the inclusion of Efficient Frontier (see section 2.2.2) weights in the agent’s 

state. 

• Stable baselines 3: This library (71) is another valid option to Ray RLlib for Deep 

Reinforcement model’s implementations. It has 7.2k starts on the GitHub repository. It has been 

explored and tried before choosing Ray. It is a PyTorch version of OpenAI’s stable baselines 

library. This library is very clean, easy to use and stable both with respect to Ray RLlib and 

stable baselines, but it doesn’t include the most recent algorithms and variants and it is updated 

less often than Ray RLlib.  

 

4.3    Input data and preprocessing 

The stock market data has been initially retrieved with the Yahoo Finance API that is free and has no 

specific limits. However, recently the number of API calls was limited and therefore a differen API 

called Financial Modeling Prep (72) was used instead. Financial Modeling Prep was chosen because 

despite being way cheaper with respect to most APIs, it offers a wide variety of data: from price with 

any time granularity (minute to daily) to financial analysis and fundamental analysis indicators as well 

as stock news starting from 2017 and social sentiment. Moreover, both doing some basics checks on 

data quality and searching online information on its reliability, reviews were really good. Two variants 

of the code have been developed to experiment with different data granularites, indeed when dealing 

with smaller timeframes than daily, it was necessary to also specify time in the dates and adapt 

consequently the rest of the code. 
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Data preprocessing include some basic checks such as that, for each date, all stocks have the same 

number of non-null entries. It is important to mention that only twenty-five out of the thirty stocks (see 

annex for the list of stocks) of the Dow Jones Industrial Average index have been used since only those 

were active from 2004 to 2023 without being delisted. As a matter of fact, this time frame was chosen 

to have enough data for the model without using too old data that are not relevant anymore. Indeed, 

many market mechanisms and patterns change over time due to change in the environment such as, for 

instance, the increase in algorithmic trading and faster and wider spread of news information. 

The technical indicators used in the state are the ones explained in section  2.3.1. The input values have 

been rescaled to a value in between zero and one since this allows the neural network to have better 

convergence properties. However, for the indicators that are not bounded and stationary because their 

maximum and minimum value depends on the price trend or drift (see section 2.1.2) including the 

moving averages and Bollinger Bands, also their stationary version, obtained by using log-returns 

instead of prices, has been used. As a matter of fact, the property of additivity of log-returns ensures 

that the indicator is stationary. This paper (73) investigates more in detail the topic of stationarity 

related to technical indicators. However, it is not a widely discussed topic since, usually, this indicators 

are used in practice and to visually identify trends and momentum on charts and therefore there is not a 

lot of literature on the topic. The state of the agent also contains information on current portfolio 

weights and available balance (cash that can be invested at next timestep without selling other stocks) 

 

4.4    Environment 

As already briefly mentioned the task of the environment code is to simulate the stock market using 

true prices observed in the past and calculating all sorts of external information the agents needs to 

receive as observations including prices, return, rewards, remaining balance and portfolio weights. 

There are two main methods to explain to give more details on the environment functioning: the reset 

and the step methods. 

The reset method handles initialization of the state at the beginning of an episode. This process needs to 

be differentiated between training and testing since, in training, the initial balance has a random 10% 

variation and the initial weights are also assigned randomly to give stochasticity to the training. In other 

words, in this way,  from one training iteration to another one, the agent starts from a different initial 
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condition in terms of portfolio weights and investable amount while, of course,  the stock prices will 

always be the same for the same date. 

The step method receives the actions form the agent and starts performing the sell operation (selling not 

more than the currently owned amount since the model output is raw), calculates the updated investable 

amount after the sales and then performs the buy operations (again checking to buy not more than what 

it is possible to buy with the available cash). This operations need the current stock prices to be carried 

out. Moreover, the reward is calculated and then it is returned to the model for the next timestep along 

with new prices, and updated portfolio weights after sell and buy operation. The picture below gives a 

visual representation of the step method process: 

 

Figure 69: Agent's interaction with the Environment in RL taken from (2) 

Where in this case the state is composed of the t+1 prices (and technical indicators calculated by the 

agent from the prices), the portfolio weights and the account balance. 

 

4.5    Reinforcement Learning Agent 

Among the different state-of-the-art models described in section 3.1.8, Proximal Policy Optimization 

(36) was chosen for this thesis project. This because although it is not the newest model, it is one of the 

most recent and the authors developed it focusing on data efficiency and sample complexity with a  

very simple trick avoiding complexity and even simplifying it with respect to TRPO and some other 

previous models. Moreover, before working on this project, there were opportunities to try and 

experiment with the different state-of-the-art models for the portfolio optimization problem with stable 

baselines 3 library (section 4.2.3) and Proximal Policy Optimization was found to be one of the most 

stable among the ones that were giving good results. Indeed, as will be discussed more in details later, 
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one of the main issues in applying Reinforcement Learning to the Portfolio optimization problem, is the 

instability and low reproducibility of results of this kind of algorithms that is exacerbated by the limited 

amount of data available in the financial domain. In addition to that, being one of the most widely used 

and tested algorithms, many libraries provide additional support for experimenting with it. For instance, 

Ray RLlib provided an implementation of GTrXL (section 3.2.2.6) for Proximal Policy Otimization 

even if the paper is quite specific. 

The main hyperparameters that were provided and tuned (many other parameters are also 

customizable) to the Proximal Policy Optimization implementation imported from Ray RLlib are 

reported below. Only some information is given now since more will be discussed in section 4.9 

dealing with hyeparameters optimization 

• Entropy_coeff determines the degree of exploration. 

• lr that is the learning rate and it is used as usually by the optimizer for gradient descent. 

• The sgd_minibatch_size parameters specifies how many data points are sampled at a time 

from the buffer. 

• Lambda serves as a smoothing parameter, effectively reducing training variance and 

enhancing overall stability. 

• Specifics on the neural network model kind and shape. Here it is possible to select a 

Multilayer Perceptron model that is a classic fully connected neural network and is the default, 

an LSTM (section 3.2.1.2) or even an attention model that is GTrXL. Moreover the specific 

parameters of the model can be specified. For instance, for the Multilayer Perceptron model 

and its shape can be defined as model : {'fcnet_hiddens': [256, 256]}. 

In order to run the Proximal Policy Optimization model and obtain results three main steps need to be 

done: 

1. Define the configuration object to be fed to the model indicating the model config parameters 

explained above plus any optional ones, the environment train and test objects containing the 

stock prices and technical indicators data and finally provide the number of iterations. Ray 

RLlib provides a default config file that needs to be imported and then modified. 

2. Create a trainer object with this configurations and call its training method for the needed 

number of episodes on the training environment. 
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3. Eventually, use the trained algorithm object on the test environment and save return information 

together with any other needed information. To clarify, this is an example code for this third 

part: 

while not done: 

            action = trainer.compute_single_action(state) 

            state, reward, done, _ = environment.step(action) 

             

total_value = (env_instance.amount 

+ (environment.prices[environment.day] * environment.stocks).sum() 

            ) 

 

            episode_total_value.append(total_value) 

            episode_return = total_value / environment.initial_total_value 

      episode_returns.append(episode_return) 

 

The first two steps are different if Ray Tune (section 4.2.1) is used for hyperparameters optimization as 

it was the case for most runs in this thesis project. In that case, all the parameters are provided to Tune 

functions that then it takes care of all the trainings with different sets of hypeparameters and selects and 

outputs the best model. Then the final model obtained with Tune training is used in the same way as 

described in step 3 for testing. 

 

Moreover, it is relevant to emphasize some more specific implementation details related to 

minibatches. PPO takes a train batch, whose dimension is determined by train_batch_size and defaults 

to 4000, divides it into n sgd_minibatch_size chuncks. For istance if train_batch_size is equal to 4000 

and sgd_minibatch_size is equal to 400, then 10 smaller batches are created from the initial train batch. 

Num_sgd_iter parameter instead indicates how many times this minibatches are then used to updated 

the neural network. So in our example if num_sgd_iter was equal to 20, we would perform 20 x 10 

updates at the same time on one single train batch. To avoid confusion, it is relevant to also specify the 

role of the rollout_fragment_size parameter which indicates the number of steps sampled each time. 

This parameter is valid only if the batch_mode is set to “truncated_episodes”, otherwise, in case it is 

”complete_episodes”, this value is overridden by the episode length of the episode. This parameter 

represents the batch size collected from each worker (Ray RLlib distributes tasks across different 

workers to enable parallelism). Its role is to allocate a specific number of samples before verifying 

whether the train_batch_size has been reached. Sgd_minibatch_size is the size sampled from the 
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training buffer with a size of train_batch_size. Therefore, those are the two parameters we are mostly 

interested in from our perspective. 

As partly explained in 3.1.6, in the experience replay part and also briefly mentioned in 3.3.1 and 3.3.2, 

although the reinforcement learning paradigm is based on continuous interactions with the environment 

and on feeding this experience on-policy and maybe also online therefore optimizing the algorithm 

while it is being used, neural networks work based on stochasticity. They are inefficient when 

optimized with a single sample at a time and need random sampling for better learning and 

convergence. If data are fed sequentially, the optimization risks to get suck in local extremas and is way 

less stable. The state-observation pair in experience at timeframe 0 tends to be very similar to the one 

in experience at timeframe one. Using an entire randomly sampled batch would be more effective since 

the update would have the gradients for all the different states that would be diversified and not similar. 

This possibility of multiple updates with the same minibatch is instead a peculiar feature of the 

Proximal Policy algorithm whose clipped objective (section 3.1.8) allows multiple gradient descent 

passes over the same minibatch of experiences. However, experiences are not reused between mini-

batches, only between epochs. The size of minibatch is an important parameter, indeed reducing 

minibatches can improve the model's final performance by ensuring convergence to a better local 

minimum. However, on the other side, if too small, it can cause instability in training. 

Another needed clarification is related to seed and reproducibility of results. As a matter of fact, quite a 

lot of effort was put in obtaining reproducible results since there are many different seeds involved in 

the final algorithm implementation. In the end, reproducible results can be obtained by specifying four 

different seeds: one for PPO, one for the environment, one for Ray Tune library if it is used for 

hypeparameters tuning and one for the imitation learning algorithm if it is used. 

 

4.6    Variant 1: GTrXL for sequence embedding 

As already mentioned in the previous section, Ray RLlib allows to use GTrXL (section 3.2.2.6) as the 

neural network for the Proximal Policy Algorithm. Using it doesn’t involve more specific steps in the 

training and testing of the algorithm apart from the initial GTrXL parameters definition: 

• Num_transformer_units: The number of repeated Transformer units to use indicated as L by 

the authors of the GTrXL paper. 
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• attention_dim: The input and output dimensions of a single Transformer unit. 

• num_heads: The number of attention heads to use in parallel, indicated with “H” in the 

transformer-XL paper (see section 3.2.2.5) 

• head_dim: The dimension of a single attention head within a multi-head attention unit, denoted 

as “d” in the transformer-XL paper (section 3.2.2.5) 

• memory_inference: The number of timesteps to concatenate over time and feed into the next 

transformer unit as inference input. The first transformer unit will receive this number of past 

observations plus the current one. 

• memory_training: It is the same parameter as memory_inference, but for training. 

• position_wise_mlp_dim: The dimension of the hidden layer in the position-wise MLP after the 

multi-head attention block inside a Transformer unit. 

• init_gru_gate_bias: Initial bias values for the GRU gates. There are two GRUs per 

Transformer unit, one after the MHA, and one after the position-wise MLP. 

As it will be later discussed in the future works, more tuning of those parameters could lead to results 

improvement if more effort is dedicated to it. It was not possible to do it in this project due to limited 

hardware resources as well as time limitations and many other possible improvements that were 

deemed more worthy and promising. 

 

4.7    Variant 2: Pretraining with imitation learning 

Imitation learning has been used mainly in the form of behavioural cloning with only some 

experiments using MARWIL (for more details section 3.3.3) as a form of pretraining. Meaning that a 

set of experts actions have been created in hindsight based on past data and have been used to train the 

MARWIL algorithm and then the so-obtained neural network weights of MARWIL have been copied to 

the PPO model to avoid starting the training from scratch using random initialization. The aim of this 

procedure was to use the available data twice thus increasing data efficiency and trying to reduce issues 

due to limited data that is one of the main problems of applying Reinforcement Learning to the 

Portfolio Optimization problem as already mentioned. Moreover, this process should give more 

stochasticity and diversity to the training process that usually enriches training in deep learning like it 

happens in self-supervised or multitask learning for instance. 
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MARWIL is also implemented by Ray RLib, however, the pretraining procedure is not. Therefore, the 

two algorithms networks’ configurations needed to be the same. Then the final weights of MARWIL 

have been saved and moved to PPO. In order to copy the weights into PPO, the trainable function had 

to be modified. As a matter of fact, in Ray RLib, it is possible to customize the training loop by 

providing during initialization a custom trainable function overriding the common training procedure. 

Therefore, MARWIL weights have been added to the initial configuration parameters together with a 

callback to a modified trainable function that included, in the lines preceding the training loop, a PPO 

weight initialization using the function set_weigths. To make this possible, the entire training loop 

including various initializations and checkpoints saving needed to be reimplemented. Moreover, some 

Ray RLlib concurrency settings were causing the weight initialization to be cancelled so it is important 

to keep the same local_workers settings to obtain the desired pretraining effect. 

Marwil parameters include classical neural network parameters such as learning rate, but also a specific 

parameter called beta. If this parameter equals zero, then MARWIL degenerates to plain behavioural 

cloning. For most experiments, beta has been kept equal to zero. 

In this paragraph, more details on how the expert actions have been obtained are provided. As stated 

previously, prophetic expert actions have been calculating in hindsight meaning that information on 

future returns have been exploited to get the best action at each specific timeframe. For instance, to 

calculate the optimal action for the current state we can proceed as it follows:  

• Assuming our training period is from January to June 2023 and we want to use those 

information to trade from July to December 2023 

• We are trading daily so our goal is to train the model so that it can output the best action using 

the information available on that specific day (our state) 

• Therefore, we will create a dataset of states and relative optimal actions for the whole training 

period in order to have some labeled data to train our model in a supervised manner. 

• To make an example of how those optimal actions can be calculated, let’s assume we need to 

calculate the optimal action for the ten of January 2023 for the AAPL stock. We know that the 

average price of AAPL in the previous ten days was 185 and we also know all its technical 

indicators values at that day and this set of information corresponds to our initial state.  

• We also know in hindsight that the average price of AAPL from the first to the tenth of March 

was 195. Therefore, we can use this information to create the optimal action for the tenth of 
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January as a buy action since the stock price increased. Moreover, we can quantify by how 

much the stock rose using its return (195/185) and consequently how much we are willing to 

buy. This is useful since we want some indicative action values and not just some buy or sell 

signals. 

• The model would be trained on the dataset obtained in this way from the training period 

automatically inferring relationships between input information of the state such as technical 

indicators values and future returns. Then this model could be used in the trading period or, as 

for this project, to pre-train and initialize the Deep Reinforcement Learning algorithm. 

This procedure is based on some parameters that have been defined as the following: 

• Window: number of days over which the average is computed. In the example above, that 

would correspond to ten days in between the first and tenth of January and the first and tenth of 

March. 

• Distance: number of days between start and end window. In the example above, this would be 

equal to sixty. 

As you can imagine, changing this parameters could influence a lot our training dataset, for example a 

higher distance value would give a longer term outlook to the model.  

In order to improve this procedure, some other optimizations experiments have been made by 

introducing the following parameters: 

• Cutoff: To avoid very small positive or negative returns that can introduce unnecessary noise 

and losses due to transactions fees when buying and selling. By specifying this value, it is 

possible to set to zero actions with value lower than cutoff value. However, in practice, 

surprisingly it has been noticed that this parameter doesn’t improve results.  

• Buy_factor and sell_factor: This is a multiplication factor applied equally to all output actions 

to rescale them. This parameter has been found to have a relevant effect. 

Also in this case, there is plenty of unexplored possibilities concerning hyperparameters tuning both for 

MARWIL original parameters as well as expert actions creations parameters. As for GTrXL, the 

available time has been dedicated more to other experiment and only a limited hyperparameters 

optimization was made. 
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4.8    Variant 3: TD3-BC trained on multiple environments sampled from S&P 500 

This variant was implemented to address the limitations observed from the results of the other two 

variants. The main issues were the limited amount of input data and the consequent instability of the 

results as well as the tendency to not diversify enough and the consequent overinvesting in a single 

stock. The use of TD3-BC (see paragraph 3.3.5) improves stability by allowing to regularize the policy 

training using the expert actions dataset obtained as explained for the second variant. (section 4.7) 

Moreover, since it is offline, it allows us to create a dataset containing training data from different 

portfolios. It is necessary for the algorithm to be an offline one since, for every different portfolio, a 

different environment has to be created due to different prices and indicators for different portfolios of 

stocks. This can be therefore considered a sort of multi-environment training setting. 

To create multiple portfolios with different combinations of stocks, a number of stocks that matches the 

DJI30 are randomly selected from the S&P 500. As a matter of fact, both DJI30 and S&P500 can be 

considered as an approximation of the market since both track performances of respectively top 30 and 

top 500 largest-cap American companies. This justifies our choice of training the model on samples of  

the S&P500 stocks to then use it on the DJI30. 

With this method, we can sample enough portfolios to obtain a training dataset with a size in line with 

the common sizes usually used by Deep Reinforcement Learning algorithms. Something that we were 

not able to achieve before due to the limited historical data available and since we observed that with 

increasing granularity also noise increases. In addition to that, training on different portfolios allows us 

to reduce bias (avoid behavior such as overinvesting in one stock because in the past it always 

performed well basing the decision-making entirely on the input indicators) and overfitting. (since, as 

already said, we have much more data available and a higher diversity of stocks creates more 

stochasticity in the dataset) 

Moreover, another modification was to reduce the number of features in the state to avoid redundancy 

of information and since a high state dimension needs a lot of data for a successful training. Therefore, 

the state features were reduced to only Moving Average Convergence Divergence, Relative Strength 

Index, Commodity Channel Index, Log returns, Directional Movement Index, Efficient Frontier 

Weights with respect to the original set of indicators described in section 2.3.1. Moreover, the efficient 

frontier weights are a new indicator that was not present before. They consist of the plain efficient 

frontier weights (see section 2.2.2) with a maximum cutoff of 0.3. It was introduced mainly to also 
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include information about correlation in the state for the model to be able to learn to diversify reducing 

unsystematic risk and therefore to reduce the observed tendency to overinvest in one stock (better 

explained in paragraph 5.1.3)   

Moreover, the previous two variants were using FinRL library rescaling that just divides all indicators 

for the same factor of 2^7. Since we deemed this rescaling as imprecise since different indicators 

oscillate between different values, the indicators have been min-max rescaled between 0 and 1 for this 

third variant. 

 

4.9    Results Manipulation and Visualization 

This section of code takes care of transforming account values into returns and calculating portfolio 

performance measures and charts using pyfolio library (section 4.2.3). 

The plot shown in sections 5.1.3 and 5.3.3 includes the following plot that are obtained with the 

functions below: 

• The first main chart at the top compares the DJI30 index cumulative return with respect to the 

model’s return and is plotted using plotly with the current granularity (daily for section 5.1.3 

and 5.3.3 and hourly for section 5.2) with time on the x axis and cumulative return on the y 

axis. 

• On the middle-left of the plot, the performance measures shown are obtained using pyfolio 

backtest_stats function since it includes all important performance metrics introduced in section 

2.2.4. 

• Show_and_plot_top_positions: On the middle-right position of the plot, the exposures and 

evolution of the top ten held positions throughout the entire trading history are plotted. 

• Plot_annual_returns: On the bottom-left position, a bar graph comparing the different annual 

returns obtained each year is reported. 

• Plot_monthly_returns_dist and plot_monthly_returns_heatmap: Respectively on the bottom-

center and bottom-right position an histogram with a bar graph distribution of monthly returns 

counting number of occurrences of monthly returns values and a heatmap of returns by month 

relative to the whole testing period are plotted. 
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4.10  Hyperparameters tuning with Ray Tune 

Ray tune library (section 4.2.1) was used for hyperparameters optimization only in variant 1 and 2, 

since, as already mentioned, variant 3 was not using ray Rlib and therefore it was performed manually 

changing hyperparameters. Ray Tune was used in conjunction with an hyperparameter optimization 

tool called Optuna. (74) In particular, the framework PyTorch+Optuna was exploited. To optimize a 

PyTorch model using Optuna, it is necessary to encapsulate the model in an objective function to be 

then able to access its config file to pick hyperparameters. The Optuna search space needs to be 

initialized as an object and passed to the run method. Moreover, the metric that has to be optimized 

needs to be specified and also the hyperparameters search optimization algorithms can be specified. 

A snippet of the PPO parameters search space used for PPO is the following: 

• "entropy_coeff": tune.loguniform(0.00000001, 0.1), 

• "lr": tune.loguniform(5e-5, 0.001), 

• "sgd_minibatch_size": tune.choice([ 32, 64, 128, 256, 512]), 

• "lambda": tune.choice([0.1,0.3,0.5,0.7,0.9,1.0]) 

 

Where the search algorithm is defined as: 

search_alg = OptunaSearch( 

               metric="episode_reward_mean", 

          mode="max",  

seed=seed_search 

) 

 

And then used in Tune: 

tuner = tune.Tuner( 

                trainable=self.trainable, 

                param_space=self.params, 

                tune_config=TuneConfig( 

                    search_alg=self.search_alg, 

          … 

 ) 

      … 

    ) 

 

Tune also allows to define a scheduler such as the ASHA scheduler (75) that performs early-stopping 

for bad trials. 
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4.11  Portfolio Manager WebApp demo 

To show one of the possible applications of the work done in this thesis project other than the obvious 

one of using the algorithm directly for algorithmic trading, a simple demo of a Portfolio Manager 

Assistant WebApp has been created. Such a platform could be used by banks or asset management 

funds to advise clients on the action the algorithm would take in a particular situation. As a matter of 

fact, Deep Reinforcement Learning would allow to specify any kind of information characterizing the 

current conditions and the needs of the investor. For instance, the investor could insert the current date 

that would allow the algorithm to retrieve prices and technical indicators, it could select only the stocks 

he wants the algorithm to consider among the available ones and it could insert the amount he already 

owns in each stock as well as the cash he has available to invest. In this way, the output actions selected 

by the algorithm (indicated in Figure 20 as the height of the bar chart) would be a very customized 

automatic advice based on the specific needs and situation of the client. 

The WebApp from which the screenshot below was taken has been developed in a very simple and 

automatic manner not focusing on the interface, design and optimization of the application itself since 

the goal was not to invest much time and just give a good intuition and visual representation of this 

possible application. The tool used is called Voila (76) and it allows to easily build web applications 

starting from Jupyter notebooks. The tick boxes allow the user to specify if he wants to include the 

stock or not and the text box near the stock ticker allows to specify the already invested amount. At the 

top, it is possible to indicate the initial balance or cash investable amount and the date for the action 

prediction since the application allows to backtest the model. In a real application, the date would be 

the current date by default since past investments wouldn’t be interesting. When changing any of the 

input variables, the bar chart output indicating the Portfolio Manager suggested actions variates 

accordingly. 

Moreover, it was not possible to implement it in the context of this thesis project, but, as also 

mentioned in the future works, there are some techniques for explainability of Deep Reinforcement 

Learning algorithms. Among the researched ones, one of the simplest but yet most effective is SHapley 

Additive exPlanations or SHAP values. (77) SHAP works by assigning an importance value to each 

feature for a specific prediction without digging deeper into the substance of the algorithm but just by 

using states and actions. In the Deep reinforcement Learning context, this would mean knowing the 

importance of each state feature in calculating a specific action.  
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Figure 70: Portfolio Manager WebApp demo screenshot 

For instance, we would know that the RSI value of APPL was particularly informative for the model 

when predicting the output action for AAPL. Therefore, the investor could check that RSI value to see 

if the model is taking decisions based on a consistent logic. Even if it must be taken into account that, 

in some cases, the model may detect connections between features that the investor is not fully able to 

understand even checking the values. For example, the algorithm could use a technical indicator 

calculated on the AAPL stock to infer the action for MSFT, this could seem off at first sight, but could 

have an implicit undetectable meaningful reason justifying it. However, this technique would give at 

least a decent glimpse of understanding of how the model is taking decisions, knowing how much it 

uses each piece of information in each situation. 
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5   Backtesting, Results and Conclusion 

This section shows the results of the different variants implemented as well as the general final 

considerations on this project based on the results, other than on the entire research process that led to 

it. 

 

5.1    Results of variants 1 and 2: GTrXL and pretraining with Behavioural Cloning 
As already briefly mentioned, the first two variants have been developed at first, and the third variant 

was implemented only after, based on the observations obtained from the previous results. Therefore, 

results will be proposed following this order. This section focuses on the first two variants. 

 

5.1.1    Overview of first two variants results 

In the table below, the comparison between the Return and Sharpe of plain Proximal Policy 

Optimization versus the first two variants are reported. GTrXL variant uses the so called model instead 

of standard Multi-Layer-Perceptron for the PPO neural network structure and the pretraining variant 

uses behavioural cloning for setting initial weights of PPO. 

Model 

Best 

Return 

Average Return 

improvement 

 

Best Sharpe 

Average Sharpe 

improvement 

GTrXL 21.38% -1.58% 0.85 -0.122 

PPO with BC 

pre-training 24.12% 2.57% 0.95 0.065 

PPO 23.29% - 0.99 - 

Table 1: Results comparison of variant 1 and 2 versus PPO. All the values are annual 

Training: 2000-01-03 - 2016-07-30 

Test: 2016-08-01 - 2023-01-02 

 

Concerning pretraining with Behavioral Cloning, although an average improvement of 2.57 % in the 

average annual cumulative return may not seem significant, we should consider that the return with 

pre-training is higher than the other one by about 14.57%. Indeed, although it seems counterintuitive to 

calculate the percentage of a percentage return, it is relevant to look at this figure since it is the relative 
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increase of the return obtained by adding Behavioral Cloning pre-training. As a matter of fact, an 

improvement of 2.57% on a 17% return is different than the same improvement on a higher return. 

Therefore, despite instability not being solved by pretraining, its influence on performance was 

noticeable. However, looking at the reward evolution during training, the algorithm seems to lose part 

of the pre-training effect quite soon. The reason for this behaviour has been identified in the actor-critic 

network. As a matter of fact, passing the Behavioral Cloning network weights becomes less effective 

since there is not only one network in PPO because the actor network is optimized towards the critic 

and then is iteratively used to update the critic only after a certain number of iterations. (for more 

details see section 3.1.7) 

Conversely, GTrXL variant did not improve performances by achieving on average even worst results. 

Although the model’s hyperparameters should be finetuned more to give a final opinion on its efficacy 

for this use case, it seems like it does not help the model to better embed the information in the state. 

This could be due to the fact that since the inputs of GTrXL were mainly indicators, they were already 

values obtained from a sequence of past timesteps. Following this line of reasoning, it is possible that 

by applying it on raw single-timestep prices to create a new indicator it could be more effective, 

however, in this way it wouldn’t be possible to pass the gradient from the output to the initial input of 

GTrXL. This idea of making the sequence-modelling step also trainable with the gradient obtained 

from the PPO model and therefore from the output was the initial goal of introducing GTrXL in this 

project. 

 

5.1.2    Considerations on results instability 

When testing the algorithm and performing runs, the already mentioned high instability of Deep 

Reinforcement Learning algorithms trained on limited data was confirmed in practice. In particular, it 

has been quantified observing by how much the choice of the seed influences the results that was found 

to be almost as much as the chosen set of hyperparameters. The results in the table below demonstrates 

this by trying all combinations of four seeds with four different set of hyperparameters. In fact, 

changing seed influences the average cumulative return of 20.62%. In other words, this means that by 

keeping one set of hyperparameters fixed and changing five different seeds, the return changes on 

average 20.62% from the average return of the five runs. While changing the hyperparameters set and 

keeping the seed fixed has an influence of 27.06% on average on the average return. This is not a 
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desired behaviour since the seed should not influence the results that much. This high instability makes 

it very difficult to choose hyperparameters and find a good set of hyperparameters and this inherent 

instability was not solved with our contributions. 

 

Params 1 Params 2  Params 3 Params 4 

Average 

Return 

Average 

change 

Seed 1 11.07% 18.80% 17.72% 8.22% 13.95% 30.87% 

Seed 2 4.85% 19.58% 17.28% 11.88% 13.40% 37.56% 

Seed 3 9.90% 16.34% 12.96% 24.12% 15.83% 27.80% 

Seed 4 10.14% 12.30% 14.28% 14.28% 12.75% 12.00% 

Average 

Return 8.99% 16.76% 15.56% 14.63% 

 

27.06% 

Average 

change 23.03% 14.53% 12.47% 32.46% 20.62% 

 
Table 2: Seed vs Hyperparameters influence on results variant 2. 

Training: 2000-01-03 - 2016-07-30 

Test: 2016-08-01 - 2023-01-02 

 

5.1.3    Focus on single runs behaviour 

Below in plot 1 and plot 2 more detailed backtesting statistics and charts are showed for the best and 

worst runs of the the PPO with behavioural cloning pre-training variant which are the best and worst 

reported in Table 2. For each run, the first figure will represent the cumulative return over the testing 

period, the second will represent the portfolio performance indicators (refer to section 2.2.4 for details 

on the indicators) and the evolution of the top ten portfolio weights over time; and the third one will 

show distributions and heatmaps of annual and monthly returns. For more details on the single charts, 

refer to section 4.9. 

Training: 2000-01-03 - 2016-07-30 

Test: 2016-08-01 - 2023-01-02 
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• Plot 1: Best run PPO with pre-training 
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• Plot 2: Worst run PPO with pre-training 
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In plot 1, the top chart shows a constant detachment of the model’s cumulative return with respect to 

the index’s cumulative return which indicates a constant improvement of the model with respect to the 

baseline. The cumulative return of 3.07 implies that the model would have tripled the invested amount 

in about 5 years and a half time. Average annual return is equal to 24.2% and Sharpe ratio is 0.95 

almost reaching1 which is usually considered as a performant investment strategy. In the bottom-right 

bar chart, it can be observed that 2022 was the only year with a negative return and the monthly returns 

distribution is quite stable apart for few values over 10% in 2020 and 2022. 

In plot 2, the top chart shows that the model alternates overperformance and underperformance with 

respect to the baseline. Especially in 2022, it considerably underperforms the Dow Jones index. Sharpe 

ratio is also very low at 0.33. In the bottom-right chart, it can be observed that other than 2022, also 

2018 had a negative return and the monthly returns distribution shows many more months with a return 

higher than 10% in absolute value. 

Another behavior of the models that is worth pointing out and was evident in most of the runs as well 

as in both the plots above in the middle-right portfolio positions evolution chart is the tendency to 

overinvest in one stock. In plot 1, the share of AAPL constantly increases until it reaches 100%. This is 

an undesired behavior that goes against the portfolio management principle of diversification explained 

in section 2.2.2. Also in plot 2, even if the maximum share of one stock never goes above 40%, the 

tendency of CSCO and DIS is to always increase, therefore, on a longer time period, they would 

probably reach 100% as it happened in most of the other observed runs. 

On the other side, it was also pointed out in the introductory sections that higher return requires higher 

risk so, although the model doesn’t diversify enough and therefore keeps some diversifiable volatility, 

the logic of higher risk for higher return is somehow embraced since the model tends to invest in stocks 

with higher risks and higher return. As better pointed out previously, we are not currently introducing 

variance and correlation information in the model’s input, therefore, not giving to the model enough 

information to learn diversification. 
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5.2    Results using higher time granularities 

Following the assumption that the instability is due to a limited amount of input data, another 

experiment was to try to increase time granularity to have more available data points. Increasing 

granularity, also the training and testing period had to be reduced due to RAM and computation 

constraints. Therefore, daily results in the following table are not comparable with the other results 

because the training spanned over a smaller time window. The risk of high time granularity is that data 

could become more noisy. In the following table the results obtained with Ray Tune runs over different 

time granularities are reported. The runs have been performed over two different time periods where 

the first one is more bearish and the second more bullish. 

Time 

granularity Training Period Test  Period 

Return of 

PPO with 

pre-training 

Sharpe of 

PPO with 

pre-training 

Return of BC 

without PPO  

5 min 01/01/2019 – 2021/12/31 01/01/2022 – 2022/12/31 -2.50 % -0.01 -4.72 % 

30 min * * -30.80 % -0.25 -40.90 % 

1 hour * * 9.00 % 0.18 -3.59 % 

daily * * -9.31 % -0.45 -5.37 % 

1 min 01/06/2020 – 2021/12/31 01/01/2022 – 2022/05/31 -0.41 % -0.14 -0.41 % 

      

5 min 01/01/2016 – 2018/12/31 2019/01/01 – 2019/12/31 -1.26% 0.01 0.12% 

30 min * * 16.50% 0.30 11.30% 

1 hour * * 6.69% 0.16 10.08% 

daily * * 1.81% 0.19 15.41% 

Table 3: Different time granularities comparison 

In both cases, the only granularity that seems to compete and maybe even do better than daily is the 

hourly one. All the other granularities seem to perform poorly and show even greater instability with 
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respect to the daily granularity. For instance, the 30 minutes granularity performs very well in the 

second time period, but badly in the first one. Therefore, some additional experiments have been 

conducted with the hourly granularity and it seems that it can lead to better results, but even to worst 

ones, depending on the run. Therefore, it appears to be even more instable than the daily. As a matter of 

fact, even if way less runs were performed with this granularity, in one run the algorithm was able to 

obtain much better return as showed in the following plot number 3. However, in the few runs 

performed, also very bad performances were observed confirming the initial hypothesis that higher 

granularities lead to more instability. Since this granularity is similar to daily, it was possible to try it on 

the same training and test period as the one in the initial results sections. 

• Plot 3: Run with minute data PPO with pre-training Training: 2004-01-03 - 2016-07-31, Test: 

2016-08-01 – 2023-01-02 (for more details on the chart specifics see section 4.9) 
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5.3    Results of variant 3: TD3-BC model with multiple environments sampled 

from S&P500 training 

Another result that wasn’t mentioned before is that behavioral cloning alone underperforms by about 

2.45% in absolute cumulative final return the Proximal Policy Optimization algorithm results. 

Behavioural cloning is a much simpler algorithm based on supervised learning and it wasn’t optimized 

as much as PPO. Therefore, for the third variant, all the complexity of Deep Reinforcement Learning 

algorithms was considered as not necessary and it was partly avoided by using a better finetuned 

Offline Reinforcement Learning method: the TD3-BC model. Moreover, we remark that the main 

drawbacks evinced from the previous two variants were the instability due to the limited amount of 

data and the overinvesting behaviour. 

As explained more in details in section 4.8, the third variant addresses all those issues by training TD3-

BC on a series of portfolios sampled rom S&P 500, reducing the input dimensionality to just 5 

indicators with a different rescaling. 

 

5.3.1    Main results and comparison with PPO pre-training 

In table 4 below you can see a comparison between the results obtained with the second pre-training 

variant and the third one that is the TD3-BC variant over the 16 runs used to study seed and 

hyperparameters influence (shown in sections 5.1.2 and 5.3.2 table 2 and 5 for variant 2 and 3 

respectively). The TD3-BC third variant seems to overperform the other one in best, worst and average 

Return and Sharpe over multiple runs. 

Model Best Return Worst Return  Average Return Best Sharpe Average Sharpe 

TD3-BC 28.30% 10.50% 16.6% 1.14 0.73 

PPO with BC 

pre-training 24.12% 4.85% 13.98% 0.95 0.63 

Table 4: Results comparison variants 2 and 3. All the values are annual. 

Training: 2000-01-03 - 2016-07-30 

Test: 2016-08-01 - 2023-01-02 
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As explained in section 3.3.5, one of the main modifications of the TD3-BC paper with respect to the 

original TD3 model is to normalize input states. Initial experiments were made to compare 

performances of preprocessing only using rescaling of the data frame with respect to also adding state 

normalization afterwards. Although using only rescaling showed a better diversification with a 30% 

average maximum share of a single stock in the portfolio, Normalization has been found to increase 

performance by on average 2.6% in Return while still keeping a 60% average share for the stock with 

the maximum share in the portfolio which was way better diversification than the previous variant 

which most of the times tended to reach 100%. 

 

5.3.2    Considerations on results instability and hyperparameters optimization 

Regarding instability, the situation did not improve much showing again a similar influence of 

changing seed and changing hyperparameters with the first one influencing by about 19.11% and the 

second one by 17.57%. Thus making the choice of the hyperparameters set quite meaningless in 

general apart from one set of hyperparameters. As a matter of fact, as you can see in the table 5 

reported below, for hyperparameters set number one, the average change in Return is 1.47% which is 

much lower than the other ones. This could be due to the fact that, as you can see in the appendix, in 

this set of hyperparameters, alpha has a high value of 10. Alpha should determine how much the policy 

optimization is regularized with the expert actions, therefore it is reasonable to hypothesize that such a 

value results in a more stable training. However, also the set number three has the same alpha value 

and instability is high, this could be due to the different combination with the other hyperparameters 

such as the batch size that is lower. Moreover, with this third variant, on average, results oscillates less, 

the minimum, average and maximum return are higher as shown and pointed out in the previous 

paragraph. 
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Params 1 Params 2  Params 3 Params 4 

Average 

Return 

Average 

change 

Seed 1 18.20% 17.21% 14.00% 14.57% 15.59% 10.69% 

Seed 2 18.90% 15.90% 18.20% 25.20% 19.55% 33% 

Seed 3 18.90% 11.74% 24.70% 10.50% 16.46% 19% 

Seed 4 19.01% 16.89% 24.28% 28.30% 22.12% 16% 

Average 

Return 18.75% 15.43% 20.25% 19.64% 

 

19.11% 

Average 

change 1.47% 11.97% 20.67% 36.18% 17.57% 

 
Table 5:  Seed vs Hyperparameters influence on results variant 3 

Concerning the other hyperparameters, the default hyperparameters proposed by the TD3-BC paper 

were changed one at a time to create the set of fifteen runs reported in the annex. 256 seems to be the 

most effective batch size since also diversification tends to be higher when using this value. Also 

increasing a bit the exploration noise from 0.1 to 0.3 or 0.5 improved the performance. 

 

5.3.3    Focus on single runs behaviour 

In this section, performances of the best and worst run of the 16 considered above in table 5 are 

reported in more details in plot 4 and 5. For each run, the first figure will represent the cumulative 

return over the testing period, the second will represent the portfolio performance indicators (refer to 

section 2.2.4 for details on the indicators) and the evolution of the top ten portfolio weights over time; 

and the third one will show distributions and heatmaps of annual and monthly returns. For more details 

on the single charts, refer to section 4.9. 

Training: 2000-01-03 - 2016-07-30 

Test: 2016-08-01 - 2023-01-02 
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• Plot 4: Run with best return for TD3-BC 
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• Plot 5: Run with worst return for TD3-BC  
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As you can notice in both plot 4 and plot 5 the overinvesting behaviour is reduced with respect to plot 1 

and plot 2, diversification increases and also by observing all the single runs, more diverse and less 

asymptotical behaviours with respect to the previous variants were noticed. 

In plot 4, the top chart shows again a constant detachment of the model’s cumulative return with 

respect to the index’s cumulative return which indicates a constant improvement of the model with 

respect to the baseline. Average annual return is 28.3% and as the total cumulative return of 4.04 shows 

that the model would have quadrupled the invested amount in about 5 years and a half time. Sharpe 

ratio is higher than one indicating a very good investment performance. In the bottom-right bar chart, it 

can be observed that all years showed positive return including 2020 and 2022. The monthly returns 

distribution is quite stable apart for five or six values over 10% in 2020 and 2022. Similarly to plot 1, 

AAPL was the stock with the highest share, but, as you can see in this plot, the amount invested doesn’t 

always increase: it also diminishes in some periods and never goes above 70%. The fact that the model 

often choses AAPL is a good sign since it is one of the most performant stocks of the Dow Jones index. 

In plot 5, the top chart shows that the model alternates overperformance and underperformance with 

respect to the baseline. Even if this was the worst performant model for the third variant TD3+BC, 

overall, in the considered testing period, it beats the index. Annual average Return is 10.6% and Sharpe 

ratio is 0.55. In the bottom-right chart, it can be observed that, differently than plot 2, years 2020 and 

2023 are the ones that show a negative return. The monthly returns distribution shows only few months 

with a return higher than 10% in absolute value, it is worth notice a -20% in march 2020 due to covid 

that was better handled by the model in other runs. 

 

5.3.4    Results of bull and bear periods tests 

One last experiment was to check how the model performed in bearish and bullish periods. The same 

considerations made in section 5.2 regarding the fact that performances are not comparable with most 

other runs because of the shorter training period can be made in this section as well. However, this 

variant seems to beat the index more consistently over different periods. It almost always beats the 

index apart from Bullish period 2 where it slightly underperforms it. It was not possible to identify a 

determinant preference for Bear or Bull, however the model overperformed the index more in bearish 

periods. It is worth noting that Bearish period 2 showed a particularly good performance. Finally, it 

must be pointed out that it is difficult to find a long consecutive Bear or Bull period, therefore also the 
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considered ones tend to be mixed. An interesting experiment could be to try to merged non-consecutive 

periods that have bearish or bullish to have more training data of a kind. 

• Plot 6: Bullish period 1 

 

• Plot 7: Bullish period 2 

 

• Plot 8: Bearish period 1 
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• Plot 9: Bearish period 2 

 

 

5.4    Conclusions 

As explained extensively in sections 5.1-5.3, GTrXL variant was not successful and underperformed 

the plain PPO while Behavioral Cloning pre-training of PPO considerably improved performance. Both 

variants showed lack of diversification in their investment strategies and high instability that was 

quantified by evaluating the effect of changing the seed. 

The experiments with higher granularity data did not lead to improvements. Indeed, while higher 

granularity seem to have more information allowing the algorithm to learn even more in some 

instances, it leads to even grater instability.  

TD3-BC variant managed to increase diversification thus addressing the unwanted overinvesting 

behaviour, reduced corner cases and showed a more consistent behavior while improving 

performances. This by exploiting the greater amount of data obtained by sampling random portfolios 

from S&P 500 as well as the expert actions regularization. 

In almost all (all for the TD3-BC variant) the experiments performed with daily granularity, the 

algorithms overperformed the index, that is an approximation of the market. In trading, this is not 

considered as a straightforward task since most investors fail to do so. This shows that the potential of 

this technique is high also due to the impact of its practical applications as pointed out in section 4.11. 

And this stems from the natural parallelism between the Reinforcement Learning paradigm formulation 

and the stock market functioning. 
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However, as already mentioned before, the main issue of using Deep Reinforcement Learning is the 

instability of this kind of algorithms. And this problem, that is even more evident for our use case 

where data are limited and cannot be produced effectively, was not successfully solved even with the 

last variant.  

Therefore, the most logic conclusion is that the data embedded in the state are not informative enough 

for the model to take effective decisions in a consistent manner. This does not totally come as a surprise 

considering technical indicators were used and that their effectiveness is debated. To briefly mention 

their the main limitations that are dealt with in section 2.3, other than technical indicators being 

designed to be used in practice by human traders often together with visual charts, the assumptions of 

the past being informative for the future and that all the information are embedded in the stock price are 

not always true in practice. 

 

5.5    Future Works 

As stated in the previous section, the main and essential modification needed would be to find more 

informative data and better model the state. This is a very challenging task since the Reinforcement 

Learning state should include all the relevant information from the history without noise and, in the 

stock market, relevant information and its cause-effect relationships are endless. The most effective 

information to add would probably be financial statements and fundamental indicators as well as news 

data and the sentiment that can be extracted from it since ultimately the price is determined by 

investors willingness to buy and sell a certain stock at a specific time. However, financial statements 

are published quarterly, therefore data granularity is too low to use this kind of data unless a way to 

increase granularity can be found. On the other hand, news data labeled by ticker are difficult to find 

and quite expensive and usually, they cannot be found for more than five years in the past and some 

stocks receive more mediatic attention than other ones. 

Regarding diversification and the tendency to overinvest in single stocks, another important change 

could be to better shape the reward function so as to also reward diversification by negatively weighing 

volatility. The easiest way would be to have as reward the Sharpe ratio, but also more complex 

possibilities could be considered such as differential Sharpe ratio. Adding on to the client-centricity and 

customization discussion made in section 4.11, different reward functions could be designed to have 

algorithms with different risk appetites. For example simple return would imply higher risk, Sharpe 
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ratio would be a trade off and a ratio such as return divided by volatility squared or Sharpe ratio 

divided by volatility would lead to a more risk averse algorithm. Conversely, limiting the algorithm to a 

maximum investment threshold in each stock should be avoided since this would limit also the learning 

capabilities of the model, diversification should be something learned by the model and not imposed 

externally by the environment. 

In order to increase the algorithms stability, some ensemble model could be studied so as to reduce the 

instability of single models. However, it is difficult to create an ensemble for a RL algorithm due to its 

formulation. One simple option would be to select for trading only the algorithm with the best training 

reward among a set of algorithms. The production of synthetic data could also be considered to reduce 

instability, but it is a very pretentious experiment since we don’t have a close enough model of how the 

stock market works. There are some interesting related works in this field such as (78). 

As already mentioned in section 4.10 the SHAP values technique should be tried in this context since it 

could give a lot of insights on how the model takes decisions indicating which input feature determine 

a specific output action. 

Regarding Deep Learning, it would be interesting to experiment other decision-making models options 

different from RL: 

For instance, some transformers-based models focused on decision-making have been created and 

those would be interesting because of their capability to model time-series information as stock prices 

trends are. Just to mention two options, it could be worth to investigate (79) and (80) 

Due to the recent success of Graph Neural Networks and their possible applications to multivariate 

time-series, also this field could be worth of exploration. Some interesting papers use Graph Neural 

Networks to leverage known or latent relationships between time variables, a possible strategy involves 

detecting interactions among variables using a graph learning framework. And subsequently, Graph 

Neural Networks are applied on top of the inferred graph. For instance, (81) and (82) link variables 

with attention-like mechanisms. 

Moreover, neuroevolution ( (83) and (84)) could be explored as well since some of their feature may 

indicate that they are able to better exploit data and have better data efficiency due to their logic of 

optimizing weights from data by trying multiple random weights. 
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Annex 

 

• 3.1.6 Value function Approximation, Experience Replay, policy gradient 

DQN pseudocode (19) 

 

 

• 3.1.7 Actor-Critics Algorithms (28) 

 

 

• 3.1.8 State-of-the-Art Deep RL algorithms pseudocode 

Deep Deterministic Policy Gradient (DDPG) (33) 
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Twin Delayed Deterministic Policy Gradient (TD3) (39) 

 

 

Soft Actor critic (SAC) (41) 

 

 

• 4.3 List of DJI30 tickers used 

"WMT","DIS","INTC","JNJ","KO","JPM","MCD","MMM","MRK","MSFT","NKE","PG","AXP","AMGN","
AAPL","BA","CAT","CSCO","CVX","GS","HD","HON","IBM","UNH","VZ"  
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• 5.1 Seeds and Hyperparameters sets used for stability considerations of BC-PPO 

 

 

+ 

• 5.3.2 Seeds and Hyperparameters sets used for stability considerations of TD3-BC 

 

 

 

• 5.3.2 Hyperparameters optimization 
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