
POLITECNICO DI TORINO
Master’s Degree in Data Science and Engineering

Master’s Degree Thesis

Evaluation of the impact of the
Multi-Head Attention algorithm in Music

Source Separation

Supervisors

Prof. Eliana PASTOR

Dr. Moreno LA QUATRA

Dr. Alkis KOUDOUNAS

Candidate

Enrico PORCELLI

April 2024





Abstract

This work focuses on the evaluation of the impact of the Multi-Head Attention
algorithm in the field of Music Source Separation. In particular, our objective is to
determine its potential to outperform the U-Net architecture often employed in
state-of-the-art (SOTA) models. Additional primary goals include examining the
repercussions of integrating Self-Supervised features into the pipeline and assessing
the efficacy of the Multi-Head Attention mechanism for phase estimation. Notably,
when utilizing the magnitude spectrogram as input, our model demonstrated
promising outcomes, especially with an increased volume of training data. The
incorporation of Self-Supervised features into the model’s architecture proved to
be effective only when all layer representations are combined into a weighted sum.
Blindly concatenating the last layer appeared to be less beneficial to the model’s
performance. Other findings in this thesis include confirming the utility of the
SAD step in the preprocessing pipeline and analyzing the depth of the model,
emphasizing once again that Music Source Separation (MSS) models encounter
difficulties when the depth is too high. Lastly, it is observed that the Attention
mechanism alone is insufficient for accurate phase estimation, a complex task not
well suited for the chosen algorithm.







Table of Contents

List of Tables vi

List of Figures viii

Acronyms xi

1 Introduction 1
1.1 The impact of Source Separation . . . . . . . . . . . . . . . . . . . 1
1.2 Music Source Separation . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.5 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.6 Additional information for the reader . . . . . . . . . . . . . . . . . 4

1.6.1 How to read the models’ architectures . . . . . . . . . . . . 4
1.6.2 Stem notation . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.6.3 Reproducibility . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Background 6
2.1 Audio processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 Audio collection process . . . . . . . . . . . . . . . . . . . . 6
2.1.2 The Analog to Digital Conversion (ADC) . . . . . . . . . . . 7
2.1.3 The Fourier Transform . . . . . . . . . . . . . . . . . . . . . 8
2.1.4 DFT, FFT and The Short-Time-Fourier-Transform . . . . . 13
2.1.5 Limitations of the STFT . . . . . . . . . . . . . . . . . . . . 15

2.2 Audio features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.1 Root Mean Square Error (RMSE) . . . . . . . . . . . . . . . 16
2.2.2 Zero Crossing Rate (ZCR) . . . . . . . . . . . . . . . . . . . 17

2.3 Deep-learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.1 Multi Layer Perceptrons . . . . . . . . . . . . . . . . . . . . 18
2.3.2 Convolutional Neural Networks . . . . . . . . . . . . . . . . 19
2.3.3 LSTMs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

iii



2.3.4 Transformers . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.5 Self-Supervised Learning . . . . . . . . . . . . . . . . . . . . 22

3 Related Works 24
3.1 Traditional Approaches to Source Separation . . . . . . . . . . . . . 24

3.1.1 Independent Component Analysis (ICA) . . . . . . . . . . . 25
3.1.2 Non-Negative Matrix Factorization (NMF) . . . . . . . . . . 25
3.1.3 Spectral Clustering . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Usage of RMSE and ZCR in literature . . . . . . . . . . . . . . . . 26
3.3 Relevant Deep Learning Algorithms . . . . . . . . . . . . . . . . . . 26

3.3.1 Deep Learning in the frequency domain . . . . . . . . . . . . 26
3.3.2 Deep Learning in the waveform domain . . . . . . . . . . . . 28
3.3.3 Deep learning in mixed domain . . . . . . . . . . . . . . . . 29
3.3.4 Useful deep learning algorithms from related research fields . 30
3.3.5 Self-Supervised Features . . . . . . . . . . . . . . . . . . . . 30

3.4 Common evaluation metrics . . . . . . . . . . . . . . . . . . . . . . 31
3.4.1 Error decomposition . . . . . . . . . . . . . . . . . . . . . . 31
3.4.2 Signal-to-Artifacts Ratio (SAR) . . . . . . . . . . . . . . . . 31
3.4.3 Signal-to-Inference Ratio (SIR) . . . . . . . . . . . . . . . . 32
3.4.4 Signal-to-Distortion Ratio (SDR) and SI-SDR . . . . . . . . 32
3.4.5 Subjective evaluation . . . . . . . . . . . . . . . . . . . . . . 33

4 Experiments 35
4.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.1.1 MUSDB18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.1.2 MedleyDB-2.0 . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.1.3 Private Dataset . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2 Data Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.3 Experimental settings . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.4 Model’s Limits Estimation . . . . . . . . . . . . . . . . . . . . . . . 40
4.5 Frame-Wise Attention Mechanism . . . . . . . . . . . . . . . . . . . 40

4.5.1 Baseline Experiment . . . . . . . . . . . . . . . . . . . . . . 40
4.5.2 Depth Reduction . . . . . . . . . . . . . . . . . . . . . . . . 45
4.5.3 Dataset Expansion . . . . . . . . . . . . . . . . . . . . . . . 45
4.5.4 SAD Impact Evaluation . . . . . . . . . . . . . . . . . . . . 46
4.5.5 SISDR Base Loss Function . . . . . . . . . . . . . . . . . . . 46
4.5.6 True Performance Estimation . . . . . . . . . . . . . . . . . 47

4.6 Frame-Wise and Frequency-Wise Attention Mechanisms . . . . . . . 49
4.6.1 Parallel TW-FW attention architecture . . . . . . . . . . . . 49
4.6.2 Consecutive TW-FW attention architecture . . . . . . . . . 51

4.7 Self Supervised features . . . . . . . . . . . . . . . . . . . . . . . . 52

iv



4.7.1 WavLM Base+ . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.7.2 HuBERT and Wav2Vec2 trained on Audioset . . . . . . . . 53

4.8 Classic audio features . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.9 Imaginary part management . . . . . . . . . . . . . . . . . . . . . . 56

4.9.1 Phase estimation with self-attention . . . . . . . . . . . . . . 57

5 Conclusions 59
5.1 Base experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.2 Impact of FW Attention . . . . . . . . . . . . . . . . . . . . . . . . 61
5.3 SSL features introduction . . . . . . . . . . . . . . . . . . . . . . . 61
5.4 RMSE and ZCR introduction . . . . . . . . . . . . . . . . . . . . . 62
5.5 Phase estimation attempts . . . . . . . . . . . . . . . . . . . . . . . 63

A Proof of equation 2.3 64

B Proof of conjugate symmetricity of Fourier Coefficients 65

C Training Times 66

D SDR distribution for bass, drums and other 68

E Inference speed 70

Bibliography 72

v



List of Tables

4.1 Percentage of audio chunks labelled as salient during the SAD phase.
The results are presented for the MUSDB18 dataset and for the
MUSDB18 dataset expanded using the entirety of the private dataset,
which we refer to as Private v2. . . . . . . . . . . . . . . . . . . . . 39

4.2 Lower Limit (LL) and Upper Limit (UL) estimation for the model’s
performances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.3 Median SDR across the test set for every stem with different numbers
of encoding layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.4 Median SDR response to the training set expansion. Private v1
refers to the dataset composed of MUSDB18 and 160 additional
songs from the private dataset. Private v2 is composed by Private
v1 and 100 more songs. . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.5 Median SDR one the test set for the model trained on processed vs.
unprocessed training data . . . . . . . . . . . . . . . . . . . . . . . 47

4.6 Median SDR on the test set for the model trained with standard
loss and with the modified loss featuring a SI-SDR component . . . 47

4.7 Median SDR obtained with a greater batch size and an expanded
validation datase . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.8 Median SDR on the test set for the parallel TW-FW attention and
consecutive TW-FW attention architectures. The Baseline model is
the one from table 4.4 . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.9 Median SDR on the test set for the models using the architecture
in figure 4.6. A column named average has been added to make
comparison between models easier. It contains an average of the 4
medians presented in the remaining columns. . . . . . . . . . . . . . 52

4.10 Median SDR on the test set for the models using the ZCR and
RMSE features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.11 Median SDR on the test set for the phase estimation architecture
against the baseline . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

vi



C.1 Training times in hh:mm:ss format for architectures trained on nVidia
GeForce GTX 1650 . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

C.2 Training times in hh:mm:ss format for architectures trained on the
HPC cluster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

E.1 Average Inference time tested on GPU and CPU over 10 iterations.
Results are expressed in seconds. . . . . . . . . . . . . . . . . . . . 71

vii



List of Figures

2.1 Waveform representation of a violin. Top: whole waveform. Bottom:
zoomed version representing 25 ms of audio. . . . . . . . . . . . . . 7

2.2 Analog to Digital Conversion representation. Top left: waveform
representation of a sample wave. Top right: sampling phase. Bottom
left: rescaling step of the quantization phase. Bottom right: encoding
step of the quantization phase. . . . . . . . . . . . . . . . . . . . . . 9

2.3 Fourier Transform example. Top: three sine waves of different
frequency and amplitude. Middle: sum of the three sine waves,
representing a simplified real world audio signal. Bottom: resulting
magnitude spectrogram obtained through the FT. . . . . . . . . . . 12

2.4 Example of periodic extension. On the left: a signal representing a
possible recording. On the right: the periodic extension of the signal 13

2.5 Spectrogram example. On the left: spectrogram of a singing voice.
In the center: spectrogram of repeated drum kicks sound. On the
right: spectrogram of a sound from an electrical bass. . . . . . . . . 15

2.6 Application of the Hann window to a frame. In this example the
window size and the frame size coincide and are equal to 400 . . . . 15

2.7 Average frame-level ZCR value computed for every song in the
MUSDB18 dataset[3] for vocals, drums and bass sources. The frames
are selected with frame size equal to 4096 and hop length equal to
2048. The average frame-level ZCRs of across the whole dataset
for the different sources are ZCRdrums = 0.181, ZCRvocals = 0.129 ,
ZCRbass = 0.036 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1 U-Net architecture applied to the magnitude spectrogram. Image
from the original paper [49] . . . . . . . . . . . . . . . . . . . . . . 27

viii



3.2 Two dimensional representation of SDR and SI-SDR. In the picture,
the SDR is obtained by rescaling the estimate in order to minimize
the SDR. On the other hand, in the SI-SDR framework we can
see that the same rescaling implies a rescaling of the target source
too, thus maintaining the same proportions. This metric offers a
framework where the evaluation is solely based on the direction of
the estimate, as it should be. Image from [64] . . . . . . . . . . . . 34

4.1 On the left: pitch distribution of the tracks in MUSDB18. On the
right: length distribution of the tracks in MUSDB18 . . . . . . . . . 36

4.2 Architecture of the base experiment. The Time-Wise Encoder has
been implemented following the the description found in [74] . . . . 41

4.3 On the left: SDR distribution across the test set. On the right:
SDR plotted against the ratio between the target wave SDR and
the mixtue wave SDR. . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.4 SDR distribution for the test set audio chunks. Predictions generated
with the modified training loss described in equation 4.1 . . . . . . 48

4.5 On the left: parallel TW-FW attention architecture. On the right:
consecutive TW-FW attention architecture . . . . . . . . . . . . . . 50

4.6 On the left: architecture of the model with SSL features which
utilizes the last layer .On the right: architecture of the model with
SSL features which utilizes the last layer . . . . . . . . . . . . . . . 54

4.7 Heatmap representing the weight given to each layer in the weighted
sum performed over the SSL features. The weights are presented
for every stem and are computed as the softmax of the 13 trainable
parameters assigned to the features . . . . . . . . . . . . . . . . . . 55

4.8 Model architecture for the phase experiment . . . . . . . . . . . . . 58

D.1 SDR distribution for the source not presented in figure 4.3 . . . . . 69

ix





Acronyms

AAC
Advanced Audio Coding

ADC
Analog to Digital Conversion

AI
Artificial Intelligence

BLSTM
Bidirectional Long Short-Term Memory

CNN
Convolutional Neural Network

DFT
Discrete Fourier Transform

FFT
Fast Fourier Transform

FT
Fourier Transform

FW
Frequency-Wise

GLU
Gated Linear Unit

xi



HT
Hybrid Transformer

ICA
Indipendente Component Analysis

iSTFT
Inverse Short Time Fourier Transform

LL
Lower Limit

LSTM
Long Short-Term Memory

MAE
Mean Absolute Error

MLP
Multi Layer Perceptron

MOS
Mean Opinion Score

MSS
Music Source Separation

NMF
Non-Negative Matrix Factorization

ReLU
Rectified Linear Unit

RMSE
Root Mean Squared Error

RNN
Recurrent Neural Network

xii



SAD
Source Activity Detection

SAR
Signal-to-Artifacts Ratio

SIR
Signal-to-Inference Ratio

SOTA
State Of The Art

SR
Sampling Rate

SSL
Self Supervised Learning

SS
Source Separation

STFT
Short Time Fourier Transform

TW
Time-Wise

UL
Upper Limit

ZCR
Zero Crossing Rate

SDR
Signal to Distortion Ratio

SISDR
Scale Invariant Signal to Distortion Ratio

xiii



Chapter 1

Introduction

1.1 The impact of Source Separation

The rapidly evolving landscape of audio and music processing has brought Source
Separation to the forefront, proving its significance in technological development
and societal impact. SS refers to the task of separating audio sources from a mixed
audio signal. Audio sources can be of various nature depending on the application
field, for example they can be instruments if we are dealing with Music Source
Separation or they could be different human voices and background noises if we are
dealing with hearing aids enhancement. Source Separation holds immense potential
across a multitude of applications. In the realm of audio and music processing, SS
can be used to isolate individual instruments, vocals, or sound elements within
a mixed audio track, paving the way for creative remixing and music production.
Its utility extends to enhancing speech clarity in noisy environments, enabling
better voice communication in hearing aids and telecommunications. Beyond
entertainment and communication, SS finds applications in audio analysis, from
classifying environmental sounds for ecological monitoring to extracting meaningful
features for machine learning-based speech and music recognition systems. It plays
a crucial role in audio forensics, aiding in criminal investigations and surveillance. In
the medical field, SS assists in isolating and analyzing critical physiological signals,
while in industrial settings, it contributes to machinery diagnostics and monitoring.
Whether in education, automotive technology, or gaming, Source Separation proves
its versatility as an indispensable tool for improving audio quality, enhancing
analysis, and enabling innovative solutions across diverse domains.

1



Introduction

1.2 Music Source Separation
The task at hand is one of the trickiest ones in the audio processing field and
this is mostly due to the simultaneous presence of the different sources, which
contribute to the mixed signal with their own timbre, rhythm, loudness and melody.
Traditional audio engineering approaches struggle to tackle such a complicated and
diversified problem. Trying to untangle these complex sound mixes has often ended
up with a leaky or misleading source estimate, where crucial details are missing
and information from other sound sources is still polluting the estimate. Source
Separation algorithms aim at separating this messy mix of sounds and provide source
estimates with greater precision and fidelity to the original source. Music Source
Separation (MSS) is a critical enabler for advanced audio manipulation and creative
expression. Artists, producers and composers can leverage source-separated tracks
to remix and reinterpret existing music. Moreover, the ability to isolate individual
sources facilitates the identification and analysis of musical elements, contributing
to musicological research and education. From a technological standpoint, Music
Source Separation is situated at the intersection of signal processing, machine
learning, and audio engineering. As machine learning algorithms and computational
power limits continue to advance, MSS techniques are becoming increasingly
sophisticated and effective. This evolution presents exciting prospects for real-time
applications, enabling interactive music production tools.
In this thesis, we delve into the realm of Music Source Separation, exploring
its theoretical underpinnings, algorithmic approaches, and practical applications.
By investigating the state-of-the-art (SOTA) methodologies and addressing the
challenges inherent to the field, we aim to contribute to the advancement of source
separation techniques and their broader implications for music and audio industries.
Through empirical evaluations and case studies, we intend to demonstrate the
potential of Music Source Separation and highlight the avenues for further research
and innovation.

1.3 Problem statement
This thesis addresses the challenge of separating the sources vocals, drums, bass, and
the set of remaining sounds, named other, from mixed music tracks. The primary
objective is to overcome the limitations associated with traditional Music Source
Separation architectures, such as Long Short-Term Memory networks (LSTMs) or
Recurrent Neural Networks (RNN), which struggle with the vanishing gradient
problem and therefore are not optimal for sequential data modelling. Moreover,
due to the lack of parallelization capabilities, the aforementioned models are slow
during inference and can not be applied to a live stream of data, which is essential

2



Introduction

in some applications of Source Separation such as hearing aids development.
In this work we employ various datasets containing tracks from a wide range of
musical genres. The thesis revolves around the application of Transformer-based
architectures, specifically harnessing the power of Transformer Encoders. The
core architecture will output a mask, which will then be applied to the mixture’s
spectrogram to generate the source estimate.
The aim of this thesis is to contribute to the advancement of the current state of
the art in music source separation. By demonstrating the efficacy of Transformer-
based models in effectively modeling sequential audio data, the research aims to
elevate the accuracy and reliability of source separation outcomes and overcome
the traditional U-Net architecture which can be found in several SOTA models.
This study targets researchers as its primary audience, with the potential for
broader application in the form of a user-friendly website and with the open-source
release of the model weights and architecture. This goal holds the promise of
democratizing music source separation and facilitating its integration into music
education and production.

1.4 Research Questions
This section contains a list of the questions that we aim to answer with this thesis
work. Some of the terms reported below have not been explained yet in order to
keep the introduction short. These concepts will be clarified in the background
section.

1. Can the limitations associated with vanishing gradient problems and lack of
parallelization in traditional Music Source Separation architectures, such as
LSTMs and RNNs, be effectively overcome using multi-headed self-attention
based models?

2. What are the specific challenges and opportunities in separating vocals, bass,
drums and others from mixed music tracks, and how can a Transformer-based
approach contribute to more accurate source separation?

3. How does the model react to the introduction of additional training data?

4. Can automatically labelled training data be effectively leveraged for expanding
the training set and improve performance?

5. How does the proposed architecture perform across a diverse range of musical
genres and tracks, and what are plausible underlying factors that contribute
to the possibly different performance?

3



Introduction

6. What is the impact of selecting the training instances between the active ones
using a Source Activity Detector?

7. What is the impact on model’s accuracy of the inclusion, during the training
phase, of traditional audio features computed for each time frame?

8. What is the impact on model’s accuracy of the inclusion of Self-Supervised
features computed on the input waveform? And what is the best way to
introduce these features into the architecture?

9. Can self-attention effectively deal with the phase estimation task?

1.5 Structure
1. Background presents a summary of audio theory fundamentals and a de-

scription of the deep learning elements exploited in our architectures.

2. Related works contains a brief explanation of the history of MSS algorithms
with a focus on the most important research in the field of deep learning-based
MSS.

3. Experiments contains all the experimental details. These include the descrip-
tion of the experimental settings, the hyperparameter details, a description
of the datasets and the explanation of the architectures together with the
reasoning behind the choices made. Moreover, in the same chapter we will
present the results of the experiments using relevant tables and plots.

4. Conclusions is the chapter where we explain and interpret our results. We
also propose some ideas for future work on the subject.

5. Appendix contains additional material such as mathematical proofs and
additional plots and tables that would have impacted the readability of this
report if they were introduced in the Experiments section.

1.6 Additional information for the reader
1.6.1 How to read the models’ architectures
Following the work in [1] we represent the models designed by us through a Directed
Acyclic Graph where edges represent data and nodes represent functions. Black and
white nodes identify operations that do not require trainable parameters. A non
exhaustive list of this kind of operations includes: softmax, permutations, Short-
Time Fourier Transforms, application of pre-trained models for feature extraction

4



Introduction

and loss computations. Coloured nodes, on the other hand, represent functions
that operate with trainable parameters and these include: weighted sums, linear
layers, multi-head self-attention and feed forward neural networks.

1.6.2 Stem notation
In the following chapters we will indicate the target stems with the italic words,
e.g. vocals. When the term is not italicized, it pertains to the context of the vocals
within the song as a whole, without referring to the isolated stem files we are trying
to predict.

1.6.3 Reproducibility
To encourage reproducibility of our results, we present the code used for the ex-
periments in https://github.com/enricoporcelli/Music-Source-Separation, together
with instructions on how to run it.

5

https://github.com/enricoporcelli/Music-Source-Separation


Chapter 2

Background

2.1 Audio processing

2.1.1 Audio collection process
Sound is defined as the oscillation in pressure generated by a sound source and
propagated through a medium with internal forces (e.g., elastic or viscous), or the
superposition of such propagated oscillations [2]. Sound is generated through the
vibrational energy produced by vibrating objects. It begins with a disturbance
that sets particles, typically air molecules (though they could also be liquid or solid
molecules), into motion. When an object vibrates, it causes nearby molecules to
compress and rarefy in a repeating pattern, forming sound waves. These waves
propagate outward in all directions from the source, carrying the kinetic energy of
the vibrations. It’s important to note that when a sound is produced, it’s not the
air molecules that travel; rather, it’s the energy originating from the sound source
that passes through the air. The air molecules serve as a vibrating medium that
transmits the energy.
As the sound waves reach our ears, they cause our eardrums to vibrate in a similar
fashion, transmitting these vibrations as electrical signals to our brain. The brain
then interprets these signals as distinct auditory sensations, allowing us to perceive
and understand the world of sound that surrounds us. Whether it’s the strumming
of a guitar string, the voice a person nearby or the roar of a car passing next to us,
the process of sound transmission and perception is exactly the same.
Recording instruments play a pivotal role in capturing the sounds we emit, enabling
us to preserve and analyse them in more details. These instruments, equipped
with sensitive transducers such as microphones, function as acoustic sensors that
convert variations in air pressure caused by sound waves into electrical signals.
When sound waves emanate from sources such as musical instruments, voices,
or environmental sounds, they propagate through the air and interact with the

6



Background

Figure 2.1: Waveform representation of a violin. Top: whole waveform. Bottom:
zoomed version representing 25 ms of audio.

diaphragm of a microphone. This interaction induces minute mechanical movements
in the diaphragm, which are then translated into corresponding voltage fluctuations.
These are generated by the oscillation of the diaphragm, which is often attached
to wires positioned near a magnet. These wires follow the oscillations of the
diaphragm and generate the voltage fluctuations accordingly. The amplitude of
these fluctuations can be represented against time, thus giving us the so called
waveform representation of a sound. An example of this representation can be
found in figure 2.1.

2.1.2 The Analog to Digital Conversion (ADC)
Voltage fluctuations, referred to as analog signals, undergo a transformative process
into digital representations through analog-to-digital converters (ADCs). The
ADC operates in two distinct phases: sampling and quantization. In the sampling
phase, equally spaced samples are derived from the continuous-in-time original

7



Background

signal. The quality of the analog-to-digital conversion is hugely influenced by the
number of samples per second (Hz) selected during the sampling phase. Commonly,
consumer audio adheres to a standard value of 44.1kHz, whereas archive audio
files typically show a significantly higher sampling rate, ranging between 90 and
190kHz. While the higher sampling rate contributes to enhanced sound quality, it
poses challenges for mass consumption, primarily because of the larger file sizes
generated by this technique. Additionally, the discernible difference in sound
quality may not be appreciated by a majority of users. The second phase of the
ADC is called quantization and it tackles the problem of continuity in the voltage
domain. The quantization phase is where the continuous amplitude values obtained
from sampling are mapped to discrete digital values. This transformation involves
dividing the range of potential analog values into a finite number of discrete bins,
where each bin corresponds to a specific digital value. The crucial factor in this
phase is the bit-depth, which defines the number of bits utilized for binary encoding
and therefore the number of bins in which the range is divided. Common values
include 16, 24 and 32-bit quantizations which yield, respectively, 65.5k, 16.7M and
4.3B levels. The samples obtained before are mapped to the closest bin delimiter
through rounding and then encoded in binary form in order to become machine-
readable data. If bit-depth and sampling rate are high enough, the resulting digital
audio data can capture all the details of the original sound and be indistinguishable
from its analog counterpart.
By effectively capturing and preserving these sound waves, recording instruments
provide a mean to revisit, study, manipulate and share sound, forming the founda-
tion for various disciplines such as music production, scientific audio research and
entertainment. Once the sound is transformed, we can represent the displacement
of air molecules over time through a waveform plot. In this visualization, the ampli-
tude of the waveform corresponds to the displacement experienced by the medium’s
molecules from their equilibrium position. At the same time, the period of the
waveform delineates the temporal interval required for an air molecule to complete
one oscillatory movement. A fundamental metric in this context, frequency emerges
as the reciprocal of the period and is quantified in hertz (Hz), indicating the rate
at which these oscillations appear.

2.1.3 The Fourier Transform
Although the waveform representation carries a lot of information such as the
amplitude, the loudness, the timbre and other features which are crucial in order
to estimate the sound sources, complex waves go beyond the capabilities of the
waveform representation alone. An alternative representation is offered by spec-
trograms, which are a particular type of heat map well suited for audio analysis.
To understand how the spectrogram works, we must understand what is a Fourier

8



Background

Figure 2.2: Analog to Digital Conversion representation. Top left: waveform
representation of a sample wave. Top right: sampling phase. Bottom left: rescaling
step of the quantization phase. Bottom right: encoding step of the quantization
phase.

Transform and what is a spectrum. The Fourier Transform (FT) is a limiting
case of Fourier series techniques that deals with the analysis of periodic signals.
The Fourier series itself is based on the Fourier’s theorem, which states that every
periodic function can be expressed as an infinite sum of sine and cosine functions
of different frequency and magnitude. Given that each sinusoidal function can
be uniquely characterized by its amplitude, phase, and frequency, the process of
breaking down the original signal involves determining the phase and amplitude
for each potential frequency contributing to the signal. This decomposition allows
us to move from the time domain to the frequency domain, where a a sound is
measured by its intensity at a given frequency and not by its intensity at a given
moment. In the following paragraph I will explain in more details what are the
parameters that the FT computes and how it computes them.

The Fourier Series is defined for periodic functions as:

9



Background

f(x) =
∞Ø

n=0
ancos(nx) +

∞Ø
n=1

bnsin(nx) (2.1)

Where n is the frequency of the sine and cosine and an and bn are the coefficients
associated with that specific frequency. By using the sine and cosine complex
representations, equation 2.1 can be rewritten as follows:

f(x) = a0 +
∞Ø

n=1
an(einx + e−inx

2 ) +
∞Ø

n=1
bn(einx − e−inx

2i
)

Then, by collecting similar terms one obtains:

f(x) = a0 +
∞Ø

n=1

(ian + ibn)
2i

einx +
∞Ø

n=1
(ian − ibn

2i
)e−inx

In the second summation we can now substitute n with -n and change the range of
the summation from -1 to −∞ to match the change.

f(x) = a0 +
∞Ø

n=1

(ian + ibn)
2i

einx +
−1Ø

n=−∞
(ia−n − ib−n

2i
)einx

By doing this, the exponential term is now the same in both summations and we
can group the two summations together.

f(x) =
∞Ø

n=−∞
cneinx (2.2)

Where cn represents the complex coefficients of the series and is defined so that
c0 = a0. To get a formula for cn when n is different from 0, we multiply both sides
by e−imx:

f(x)e−imx =
∞Ø

n=−∞
cneinxe−imx

We can simplify this by integrating both sides from −π to π:
Ú π

−π
f(x)e−imxdx =

∞Ø
n=−∞

cn

Ú π

−π
einxe−imxdx

and since the result of the integral
s π

π einxe−imxdx follows this equation:

Ú π

−π
einxe−imxdx =

0, if n /= m

2π, ifn = m
(2.3)

we obtain:

10



Background

Ú π

π
f(x)e−imxdx = 2πcm

And from this relation we can obtain a closed formula for the complex Fourier
coefficient cn:

cn = 1
2π

Ú π

−π
f(x)e−inxdx

The complex coefficient obtained through the FT can then be elaborated to
extrapolate more information from the audio file such as amplitude and phase of
the various frequency components outputted by the algorithm. By writing the
FT coefficient as cn = a + bi, where i is the imaginary unit, we can extract the
amplitude of the signal of frequency n as a2 + b2 and the phase as tan−1( b

a
). Since

the series cn
∞
0 is conjugate symmetric then opposite index coefficients will have

the same amplitude. A proof of the conjugate symmetric property of the series is
reported in the appendix together with a proof of equation 2.3.

The amplitude can be plotted against the corresponding frequency to compose the
spectrum, which is a representation of the sound in the frequency domain and can
function as an alternative to the waveform representation. Due to the conjugate
symmetric property of the series, the spectrogram is symmetrical with respect to
the y-axis and for this reason it is often referred to as a double sided spectrum. In
figure 2.3 we can see a simplified example of sound composition and the resulting
spectrum obtained thanks to the FT.

11



Background

Figure 2.3: Fourier Transform example. Top: three sine waves of different
frequency and amplitude. Middle: sum of the three sine waves, representing a
simplified real world audio signal. Bottom: resulting magnitude spectrogram
obtained through the FT.

12



Background

Figure 2.4: Example of periodic extension. On the left: a signal representing a
possible recording. On the right: the periodic extension of the signal

There exists a variation of the Fourier Transform (FT) which is adapted to real
life signals, which are often aperiodic. In this version, the algorithm periodically
extends the signal and then it uses a Fourier series to approximate the periodically
extended series. Given an aperiodic signal x(t) and its length T , the periodically
extended signal xT (t) is defined as:

xT (t) =
∞Ø

k=−∞
x(t + kT )

The original aperiodic signal x(t) can now be expressed as a limit of the periodic
extension where T goes to infinity.

x(t) = lim
T →∞

XT (t)

A graphical example of how this process works is offered in figure 2.4

2.1.4 DFT, FFT and The Short-Time-Fourier-Transform
In Computer Science applications, the FT algorithm is approximated with a finite
Fourier series through the Discrete Fourier Transform (DFT). This version of the
FT can be applied to audio data, which are discrete in time due to the sampling
phase of the ADC that we discussed in section 2.2. The issue with DFT is that
its computational complexity is O(N2) for a signal of size N, which is concerning
considering the fact that N is often very large in real world applications. The more
computationally efficient version of the algorithm is the Fast Fourier Transform
(FFT). Developed in 1965, the FFT offers the same results with a complexity of
O(NlogN), a reduction in complexity that comes from the so called "divide and
conquer" approach. The signal is divided in two, the DFT is computed on both

13



Background

sub signals and then the result is joined to get the DFT of the original signal. The
downside of both the DFT and the FFT is that they are meant to be applied to
the whole signal and therefore the resulting spectrum does not contain information
on the value of the Fourier coefficients at a given time in the audio, an information
that could be useful in many audio processing applications. For example, in the
analysis of a song, the FFT would not be able to locate key shifts. With smaller
time granularity, one could appreciate a change in the spectrum before and after
the key shift, with the amplitude mass moving from frequencies corresponding to
the initial key to frequencies corresponding to the new key.
To solve this, one could use an alternative version of the FFT called Short-Time
Fourier Transform (STFT) which splits the audio segment in overlapping frames
and applies the FFT algorithm to each of them, thus obtaining a different spectrum
for every frame. To every frame, a windowing function is multiplied to the digital
signal in order to smoothen the bordering samples and avoid discontinuities in the
overlapping parts of consecutive frames. The STFT requires the specification of
parameters such as the number of samples inside each frame, the overlap between
frames and the window size. Although it is usually chosen to be as big as the frame,
in certain applications users can choose a bigger window size. Another important
factor in determining the output of the STFT is the choice of the windowing
function. The most popular choice is by far the Hann function, which is defined as
follows:

w(k) = 0.5(1 − cos( 2πk

K − 1))

with k ranging from 1 to K, where K is the window size. This type of window is
sometimes also referred to as the raised cosine window or the Hann filter. In figure
2.6 we can see an example of the application of the Hann window to an audio
frame.
The outcome of the application of STFT can be beautifully visualized through a
spectrogram. This graphical representation offers a three-dimensional depiction
of sound, where time is represented along the horizontal axis, frequency along the
vertical axis, and the intensity of each frequency component is reported through a
spectrum of colors or grayscale shading. As illustrated in Figure 2.5, spectrograms
provide a visual representation that greatly simplifies certain tasks, such as instru-
ment recognition, in comparison to waveform representations. For instance, you
can easily spot drum kicks in spectrograms, as they manifest as distinct vertical
lines with high intensity across the entire frequency spectrum. Furthermore, spec-
trograms allow us to discern variations in the intensity of harmonics between bass
and vocal sounds. In general, each instrument exhibits a unique distribution of
amplitude across its harmonics, and these harmonic patterns can be appreciated
through the use of spectrograms.

14



Background

Figure 2.5: Spectrogram example. On the left: spectrogram of a singing voice. In
the center: spectrogram of repeated drum kicks sound. On the right: spectrogram
of a sound from an electrical bass.

Figure 2.6: Application of the Hann window to a frame. In this example the
window size and the frame size coincide and are equal to 400

2.1.5 Limitations of the STFT
Although being the most popular algorithm in signal processing, the STFT comes
with a known downside. Due to the Nyquist sampling theorem, the maximum
frequency that can be represented without aliasing is equal to:

fN = SR

2 (2.4)

where SR indicates the sampling rate used in the ADC. Therefore, to avoid aliasing,
the STFT is implemented with an upper limit on the frequencies given by the
Nyquist frequency expressed in 2.4. During the STFT, the range [0, fN ] is divided

15



Background

in a number of equally spaced frequency bins which is given by the frame size
parameter. In particular, the number of frequency bins will be equal to frame size

2
and for this reason the frame size parameter of the STFT determines both the
time and frequency granularity of the output. Due to this dependency, the main
downside of the STFT is having to find the right trade off between frequency
and time granularity. Having a higher frame size gives more detailed information
about the frequency spectrum but sacrifices details along the time dimension since
more samples will be aggregated together in each frame. Conversely, having a
small frame size enhances temporal accuracy since less points are aggregated in
each frame but this happens at the expense of frequency resolution, because the
spectrum information is expressed across fewer frequency bins.

2.2 Audio features

Feature Extraction in Audio Processing involves the extraction of valuable char-
acteristics from an audio file or a spectrogram. Within the wide array of audio
features our attention will be directed towards two distinctive waveform domain
features. These features can be calculated across the entire waveform or over smaller
time frames, providing a different perspective of the audio content. Specifically,
we will analyze the Root Mean Square Error and the Zero Crossing Rate, two
crucial and commonly used features in the audio processing field. By analyzing
these waveform attributes, we can obtain valuable insights into the underlying
patterns embedded in the audio signal, thus making audio analysis easier and more
complete.

2.2.1 Root Mean Square Error (RMSE)

The RMSE is to quantify the energy content of a signal or a portion of it. It
is calculated by taking the square root of the mean of the squared values of a
signal’s samples. RMSE serves as an effective measure for signal power, enabling
the assessment of how much energy is concentrated within a given time frame or
frequency band. In audio applications, RMSE can help characterize the intensity or
loudness of a sound segment, making it valuable for tasks like audio classification,
speech recognition, and quality assessment. High RMSE values generally indicate
higher energy or louder portions within an audio signal, while lower values suggest
quieter or less energetic segments. This metric is particularly useful for identifying
and distinguishing sound events. Here is the formula to compute the RMSE in a
particular time window:

16



Background

RMSE(t) =

öõõõô 1
n

NT (t)Ø
n=N0(t)

x2
n (2.5)

where N0(t) is the vector containing the sample indexes of the starting sample of
every frame. Similarly, NT (t) contains the indexes of the ending samples of every
frame.

2.2.2 Zero Crossing Rate (ZCR)
The Zero-Crossing Rate (ZCR) is a crucial audio feature used in a wide range
of audio and speech processing tasks. It quantifies how rapidly a signal changes
its polarity, effectively counting the number of times the signal crosses the zero
amplitude point within a specified time frame. ZCR serves as a valuable indicator
of the noisiness of an audio segment, providing insights into characteristics like
percussiveness in music, fricatives in speech, or even the presence of discontinuities
in sound. In music analysis, for instance, high ZCR values may indicate a highly
percussive sound or rhythm, while low ZCR values may correspond to more tonal
or sustained components. In speech recognition, ZCR can help identify voiced and
unvoiced segments, aiding in phoneme and feature extraction. This feature plays a
significant role in distinguishing and characterizing different sound types, making
it a key component in audio classification, speech processing, and even music
genre recognition. The reason why the zero crossing rate is so high in percussive
sounds is because percussions generate sounds through the vibration of membranes.
Membrane vibrations can generate sounds with frequencies ranging from 100Hz
up to the limit of human hearing (around 20kHz). These higher frequency sounds
result in more crossings of the zero-amplitude line when compared with melodic
instruments, where higher frequency are only reached by the harmonics, which are
often lower in magnitude with respect to the tonic and therefore have lower impact
on the sound wave shape. In figure 2.7, we showed the results of an exploratory
analysis performed on the MUSDB18 dataset[3] which shows that the average ZCR
across all frames in a song can help distinguish between the bass, voice and drums
sources. Defining N0 and NT as we did before, we can write the formula for the
ZCR of a frame t as:

ZCR(t) = 1
NT (t)

NT (t)Ø
n=N0(t)

1[≤0](xnxn−1)

The ZCR ranges from 0 to 1 and expresses the ratio between the crossings of
the zero line and the number of samples in the frame analysed.

17



Background

Figure 2.7: Average frame-level ZCR value computed for every song in the
MUSDB18 dataset[3] for vocals, drums and bass sources. The frames are selected
with frame size equal to 4096 and hop length equal to 2048. The average frame-level
ZCRs of across the whole dataset for the different sources are ZCRdrums = 0.181,
ZCRvocals = 0.129 , ZCRbass = 0.036

2.3 Deep-learning

2.3.1 Multi Layer Perceptrons
A Multi Layer Perceptron (MLP) [4] is a type of artificial neural network that
consists of multiple layers of interconnected computational nodes. In an MLP,
information moves through the network in a feed forward manner, with each layer
processing the output of the previous layer and transforming it using weighted
connections and activation functions. The network typically comprises an input
layer, one or more hidden layers, and an output layer. In every neuron in the
network, a weighted sum of the inputs is calculated, followed by the application
of an activation function to produce the neuron’s output. This process can be
mathematically represented as follows: let x be the input vector containing n
elements, W (i) be the weight matrix for layer i, b(i) be the bias vector for layer i,
z(i) be the weighted sum at layer i, a(i) be the output of layer i after applying an
activation function f (i).
For a hidden layer i, the weighted sum z(i) is calculated as:

z(i) = W (i)a(i−1) + b(i)

The output a(i) is obtained by applying an activation function f (i) to the weighted
sum:

a(i) = f (i)z(i)

18



Background

With common choices of f (i) being the ReLU, Tanh or Sigmoid functions. This
process continues through the network until the final output layer is reached,
providing the predicted output for the given input.
What sets MLPs apart is their ability to potentially model any complex, nonlinear
relationships within data [5], making them well-suited for a wide array of machine
learning tasks, from regression and classification [6] to, more recently, image
classification [7]. These networks can be trained using various algorithms, most
notably backpropagation, to minimize the difference between predicted and actual
output, iteratively adjusting the weights associated with each connection [8].
The architecture and size of MLPs can be tailored to the specific requirements of a
task, with larger networks capable of capturing more intricate patterns but also
demanding more data and computational resources. MLPs have been instrumental
in the development of deep learning, serving as the foundation for deep neural
networks and they remain a cornerstone of modern machine learning and although
in the past they were mainly used as classifiers with outstanding success, today they
find a purpose in many complex architectures as a tool for extracting features or
reshaping input vectors [9]. For this last case, MLPs without hidden layers are often
the best choice and such MLPs are referred to as Linear Layers or Fully-connected
layers.

2.3.2 Convolutional Neural Networks
Convolutional Neural Networks, often abbreviated as CNNs [10], are a class of
deep learning models that have revolutionized the field of computer vision and,
to a growing extent, other domains. Inspired by the visual processing of the
human brain [11][12], CNNs are designed to automatically and adaptively learn
hierarchical patterns and features from data. They excel at tasks involving grid-
structured data [10], with their distinctive feature being the use of convolutional
layers. These layers apply a set of learnable filters or kernels to input data, typically
two-dimensional arrays like images, which slide over the input, computing element-
wise multiplications and aggregating results to detect local patterns, edges, textures,
and more complex features [10].
Indicating with x the input and with w the filter, the feature map z is computed
as:

z = f(x ∗ w + b)

Where f is an activation function to introduce non linearity. This iterative process
makes CNNs capable of understanding the local context within an image. Moreover,
CNNs often include pooling layers that downsample the feature maps, thus reducing
the computational complexity of the algorithm by aggregating regions of data.
With the extracted features, CNNs can then be concatenated with one or more fully

19



Background

connected layers to perform high-level reasoning and make predictions [13] [1]. CNNs
are employed in a wide array of applications beyond image recognition. Notably,
deep CNN architectures like the VGG, ResNet, and Inception networks have
demonstrated remarkable performance in image classification in object detection
tasks [13][1][14], further emphasizing the versatility of CNNs.

2.3.3 LSTMs
Long Short-Term Memory, or LSTM [15], is a specialized type of recurrent neural
network (RNN) that has made a profound impact on sequential data processing
tasks. LSTMs are designed to address a fundamental issue in traditional RNNs,
namely the vanishing gradient problem, which can hinder their ability to capture
long-range dependencies in sequences [15]. LSTMs achieve this by introducing a
more sophisticated memory cell that can store information over extended time
intervals. This memory cell has three key components: an input gate, a forget gate
[16], and an output gate. The input gate determines what new information to store
in the cell, the forget gate regulates what old information should be discarded, and
the output gate controls what information should be used to make predictions or
be passed on to the next time step. This architecture allows LSTMs to effectively
handle sequences with gaps between important events or with a need to store and
retrieve information from the distant past.
LSTMs have found extensive use in various applications, including natural language
processing [17], speech recognition [18] [19], machine translation [20] and, more
generally, in tasks where capturing context and handling temporal dependencies
are crucial. Furthermore, variations and extensions of LSTMs, such as Gated
Recurrent Units (GRUs) [21] and bidirectional LSTMs [22], have emerged to cater
to specific requirements and further improve the network’s capabilities. While
LSTMs are powerful, their biggest drawback is that due to their recursive nature
they are not parallelizable and therefore the training phase is slower with respect
to a traditional feed forward network. Despite this, they remain one of the most
valuable tools for sequence modelling in the deep learning field.

2.3.4 Transformers
The Transformers architecture is a groundbreaking innovation in deep learning
and natural language processing, which has revolutionized the way we approach
sequence-to-sequence tasks and significantly improved the state of the art in various
AI domains. Developed by Vaswani et al. in the paper "Attention Is All You
Need" [23], Transformers are designed to handle sequential data efficiently through
a mechanism called self-attention. Unlike traditional recurrent or convolutional
networks, Transformers process input data in parallel rather than sequentially,

20



Background

making them highly parallelizable and thus compatible with efficient training on
modern hardware. Central to the Transformers’ success is their implementation
of the attention mechanism [24], which allows each element in a sequence to
consider the entire context when making predictions, thereby capturing long-range
dependencies effectively. Mathematically speaking, the attention mechanism applied
to a single input vector is a weighted sum of all the vectors in the sequence. The
result will be an embedding of the input vector which will be based on the context,
i.e. the other vectors in the input sequence.

ei =
NØ

n=1
αinvn

The key novelty in the paper is the how the weights αin are computed: for every
vector, three different linear transformations of its embedding will constitute its
query, key and value vectors which are all of the same length. The weight αin

is computed starting from the vector multiplication between the query vector of
the input vector i and the key vector for the input vector n. The result is called
attention score and is computed for every element in the input sequence to obtain a
vector of attention scores and they define a relation between elements of the input
sequence. These are set to have sum equal to 1 through a softmax operation. The
resulting weights are then multiplied by the value vectors to obtain the elements
needed to compute the sum which defines the embeddings. We can denote with X
the matrix containing the input sequence and with W Q, W K and W V the linear
transformations needed to compute the queries, keys and values, which will be
collected in the matrices Q, K and V. We can now express the attention mechanism
in a compact way through the following definition:

Attention(Q, K, V ) = softmax(QKT

√
dk

)V

where dk is the dimensionality of the key vectors, which in the original Transformer
implementation is the same as the dimensionality of the query and value vectors.
This process has the big advantage of being parallelizable and of allowing a vector
representation to be aware of the entire context of the input sequence, thus effectively
contrasting the vanishing gradient problem encountered in previous SOTA models
for sequence modelling such as RNNs and LSTMs. A more sophisticated attention
mechanism has been proposed in the original Transformer paper [23] and is called
Multi-Head attention and the output embeddings are given by:

M − HAttention = Concat(head0, ..., headi, ..., headh)W O

where:

21



Background

headi = Attention(QW Q
i , KW K

i , V W V
i )

and W O is a linear transformation which has the role of combining the attention
heads results and reshaping the concatenated vector. The matrices W Q

i , W K
i , W V

i

are the 3 different matrices used to obtain queries, keys and values respectively
for headi. Practically speaking, this is equivalent to the repetition of the attention
mechanism h times, thus encoding the same vector based on the entire input
sequence in h different ways and then combining those h encodings through a linear
transformation W O.
The architecture consists of an encoder and a decoder, each composed of 6 layers.
In the encoder, the previously explained self-attention mechanisms is followed by a
feed forward network which has the role of processing the result of the attention
mechanism in order to make it optimal for the one in the following layer. The
decoder, on the other hand, first generates an embedding of the input sequence
using masked self-attention, which is a self-attention mechanism computed only
on preceding input vectors to avoid predictions based on future elements of the
sequence. After that, the contextualized output embedding is used to compute
the query in the next attention mechanism, which is often referred to as the
encoder-decoder attention. Here the keys and values are computed with the linear
transformations K = W KXE, V = W V XE starting from XE which is the matrix
containing the embeddings obtained after the 6 encoding layers. The query is
computed with the usual linear transformation Q = W QXD but in this case it is
a linear transformation of XD, which is the output of the masked self attention
of the current decoder layer. Transformers have become the foundation of many
state-of-the-art natural language processing models, including BERT [25] and GPT-
3[26], which have achieved remarkable results in tasks like language understanding,
translation, summarization, and question-answering. Although the Transformer
architecture requires bigger training datasets compared to other deep learning
models, it has probably been the most impactful discovery in the field of deep
learning since the invention of CNNs.
In this thesis, we will assess the effect that the attention mechanism and the
transformer encoder have in the field of Audio Source Separation.

2.3.5 Self-Supervised Learning
Self-Supervised Learning (SSL) represents a framework in deep learning where a
model is trained on a dataset that does not contain labeled target information.
Unlike traditional supervised learning, where input-output pairs guide the training
process, SSL exploits structures within the input data to generate supervisory signals
without the need for data labelling. This framework works through the designing
of an auxiliary task that exploits the structure of the training samples. Different

22



Background

research fields require different auxiliary tasks in order to train a model that is
able to generate meaningful representations of the data. SSL has demonstrated to
be successfull in various domains ranging from natural language processing [25][26]
to speech processing[27] and is particularly popular for general purpose pre-trained
models, where a large quantity of data is required. These models are typically used
for generating embeddings for various downstream tasks. Famous examples in the
audio domain are presented in the original papers, where the embeddings have been
used for speech recognition [27][28][29], speaker verification, speaker diarization
and speech separation [28].

23



Chapter 3

Related Works

This section serves as an overview on the current status of Music Source Separation
algorithms and as a tool to have a better understanding of the experiments that will
be performed in this thesis. With the first section titled Traditional Approaches to
Source Separation we will see which are the precursors of modern algorithms in
order to have a better perspective of the path that this research field is following.
It must be noted that, while all the methods discussed are applicable to Music
Source Separation, most of the papers cited in this first section focus on speech
separation, speech enhancement or very simple MSS scenarios since the field of SS
was mainly focused on speech tasks in the early years of its developing. Speech
algorithms can still be useful for MSS, an example in today’s SOTA models is given
in [30], where state of the art speech separation algorithms from Ultimate Vocal
Remover [31] are used to isolate the vocals of a song and then subtracted to obtain
an audio without the vocals, thus making the MSS task easier.
The second section is centered on modern deep learning algorithms, which can be
classified in three categories: time domain, frequency domain and mixed domain
algorithms. The third section focuses on the Conformer algorithm for speech-related
tasks, which will turn out to be useful in our experiments. In the last section the
reader will find an overview of common evaluation metrics used in the literature,
together with a discussion about their strength and limitations.

3.1 Traditional Approaches to Source Separation
Before the advent of deep learning, Source Separation algorithms relied on statistical
models with few parameters and linear algebra techniques to separate the signal
into its components. In the following subsections we will take a look at the most
popular ones, namely Independent Component Analysis, Non-Negative Matrix
Factorization and Spectral Clustering.

24



Related Works

3.1.1 Independent Component Analysis (ICA)
ICA for Source Separation was a popular method that aims to linearly combine data
into components which have the characteristic of being as statistically independent
as possible. These linear combinations of the observed signals should also display
an interesting distribution, where the word interesting indicates a distribution
that displays some structure. Referring to the arguments reported in [32][33], the
authors of the paper consider the Gaussian distribution as the least interesting one.
In ICA, the problem of Source Separation is formulated as a latent variable model
estimation where the components are chosen with the objective of maximizing the
non-Gaussianity of the components while keeping them as statistically independent
as possible[34]. In this setting, both the sources and the mixed signal are considered
as random variables while the recordings of this signals are considered as realizations
of these random variables. ICA has been proposed in [34] where it has been
effectively used in audio processing tasks such as blind source separation and
feature extraction. In the same paper, an efficient algorithm called FastICA has
been proposed for the estimation of the sources.

3.1.2 Non-Negative Matrix Factorization (NMF)
NMF is a matrix factorization technique that decomposes a matrix into a set of
basis vectors and their associated activations, with the constraint that all elements
in the factorized matrices are non-negative[35]. While in the original paper it has
been applied to images, the translation to the audio processing field is trivial if we
use spectrograms. The algorithm is based on the idea, confirmed by psychological
studies[36][37], that the perception of the whole is based on the perception of its
parts. NMF revolves around the approximation of a matrix as the product of two
non-negative matrices with the aim of minimizing the reconstruction of the original
matrix. One matrix will contain the bases of the signal as its columns, while the
other one will contain the weights of the basis as its rows. The different signals
can then be reconstructed by multiplying one basis by the corresponding weights.
In its base form, NMF applied to audio processing dicards the time information of
the spectrogram but of great interest is the work of Smaragdis [38], who developed
an algorithm that is able to take into account the sequentiality of the spectrums in
the spectrogram produced by the STFT. Other successful applications of NMF in
the context of audio source separation can be appreciated in the works [39][40].

3.1.3 Spectral Clustering
Spectral clustering is an unsupervised source separation technique that first decom-
poses the audio signal into its sinusoidal modelling representation and then groups
frames into cluster and separate sources based on their spectral characteristics[41].

25



Related Works

The spectral characteristics considered are the amplitude, phase and frequency
and the technique used for clustering. To perform the clustering, the first step is
to generate a graph for the audio file where every node is a frame and the edge
between frames is given by the similarity between them. Similarity is expressed
by mean of various measures of proximity between the frequencies, amplitude and
harmonicity of the two frames connected by the edge [42][43]. Once the graph
has been computed and the weight matrix has been defined, the Normalized cut
algorithm [43] is applied in order to maximize the similarity among elements of the
same cluster and maximize the average dissimilarity between elements of different
clusters. Recent work on the subject [44] resulted in a faster implementation of the
algorithm to compute the similarity matrix, making it 30x faster.

3.2 Usage of RMSE and ZCR in literature
ZCR and RMSE have been used in Source Separation literature as an additional
source of information to other waveform and cepstrum features [45][46]. Although
they cannot be used as the primary source of information, figure 2.7 suggests that,
for a Music Source Separation algorithm, the ZCR could be helpful in identifying
drums and allow the algorithm to either either isolate them or remove them in case
the objective is the estimation other instruments. ZCR and RMSE have also shown
good potential in the identification of voiced and unvoiced sections of audio [47],
which can turn useful for vocals track estimation and, similarly to the previous
example, for the estimation of the other tracks through removal of the estimated
source from the mixture.

3.3 Relevant Deep Learning Algorithms

3.3.1 Deep Learning in the frequency domain
Deep learning algorithms for MSS in the frequency domain started to gain popularity
thanks to the explosion of computer vision. This is because the spectrogram offers
a direct image representation of a song and therefore all the algorithms that have
found success in the image processing field could be easily translated in the audio
processing one using the frequency domain representation of audio. The success
that the U-Net architecture achieved in biomedical image segmentation[48] led
to a growing interest in the architecture and when applying the U-Net algorithm
to audio processing, the simplest idea has been to repeat the same process on
spectrograms. With this similarity in mind, a combined effort from researchers at
the University of London and at Spotify delivered a successful algorithm for singing
voice separation[49]. Similarly to the original U-Net, this version implements 6

26



Related Works

Figure 3.1: U-Net architecture applied to the magnitude spectrogram. Image
from the original paper [49]

encoding layers followed by 6 decoding layers and connects each level of layers with
a skipped connection. In the encoding branch, 5x5 convolutions are applied to
the magnitude spectrograms and the resulting feature is then upsampled through
six deconvolution layers which compose the decoder branch. The result of this
process is a map, which is then multiplied to the original magnitude spectrogram
to obtain an estimate of the singing voice track. The original representation of the
architecture is shown in figure 3.1
While it marked a distinct step ahead in the research field by obtaining top results
on most metrics, the ability to separate only the vocals stem made it more similar
to a Voice Detection algorithm applied to music data rather than an actual Music
Source Separation algorithm. Later in the same year (2017) researchers at Sony
released the first open-source SOTA model, called Open-Unmix[50] and based
on three bidirectional LSTMs applied to the magnitude spectrogram. The same
architecture has been trained four times on the different MUSDB18 sources, namely

27



Related Works

vocals, drums, bass and others, to generate a set of weights for each source. From
then onward algorithms working on the magnitude spectrogram have been at the
basis of most SOTA architectures, an example is D3Net[51] which achieved an
average median SDR of 6.0dB across the 4 stems on the MUSDB18 dataset[3] in
2021 by combining dense skip connectivity with dilated convolutions to broaden
the receptive field of the CNNs and facilitate the flow of information between layers.
All these models work on the magnitude spectrogram, with all the limitations that
neglecting the imaginary part of the spectrogram can present. With more recent
works [52], these limits have been surpassed using the full complex spectrogram as
the input for the models. A way to treat the imaginary part is through the so called
complex-as-channel[53] method, where the real and imaginary parts of a complex
valued spectrogram are concatenated to form the input of the model. A second way
of treating complex valued spectrograms is through MLPs which encode the real
and imaginary parts of a spectrogram into real valued representations. This is the
approach utilized by the inventors of the Band-Split RNN [52], which is currently
the best performing model among the spectrogram based ones with an average
median SDR of 8.23dB on MUSDB18. The model features a novel way of managing
the complex spectrogram in which the frequency bands produced by the STFT are
grouped together and passed through different MLPs to produce a feature for each
group. In lower frequencies, fewer frequency bands are grouped together, whereas in
the higher frequency range more bands are grouped as less information is contained
in those ranges. The features are then passed twice through a a Time-Wise BLSTM,
a Frequency-Wise BLSTM and a fully-connected layer. The resulting features are
then mapped back to spectrogram form, leaving to one different MLP per group the
task of dealing with the Real-to-Complex transformation. There exists a version of
the model which uses an additional dataset for training in addition to the standard
MUSDB18 training set. This version reached an average median SDR of 8.97dB.

3.3.2 Deep Learning in the waveform domain
As highlighted in the introduction of [54], the managing of the phase information
is a divisive topic in the field of Music Source Separation. For many years, most
researchers relied on magnitude or power spectrogram to make computations easier
and faster, thus completely ignoring the phase information. At the end of the
decade going from 2010 to 2020, researchers have started to question this approach,
wandering whether ignoring the phase information would hinder their possibility of
developing a reliable source estimate from the mixed signal. During that decade,
the increase in computational power and the introduction of new deep learning
algorithms led the MSS research field to a newly found interest in waveform domain
solutions, which do not require the distinction between magnitude and phase and
work with the complete information retrievable from the audio file. MSS in the

28



Related Works

waveform domain saw its first breakthrough with the Wave-U-Net model [55] in
2018. As the name suggests, it is inspired by the success of U-Net and it follows the
same encoding-decoding structure but substituting 2-D Convolutions with 1-D ones
in order to adapt it to time domain audio data. After Wave-U-Net, in the same
year came another relevant waveform domain MSS model called Conv-Tas-Net.
Here the input waveform is divided into overlapping frames, transformed in a N-
dimensional vector by means of a 1-D convolution and then passed through several
layers composed of a set of stacked 1-D dilated convolutions, whose output is zero
padded and passed to the following layer of identically stacked convolutions. The
output of each layer is then used to compute a mask for the target source, which is
applied to the N-dimensional representation of the audio. Reportedly inspired by
the success of U-Net architectures in music synthesis [56], researchers at Facebook
developed the model from which the current State Of The Art architecture is
inspired. The model is called Demucs [57] and is composed of six encoding layers,
two BLSTM layers and six decoding layers. Following the Wave-U-Net architecture,
every encoding layer is based on convolutions and its output is sent to the next
layer and to the corresponding decoding layer through a skipped connection to
make the flow of information easier through the network. Key differences with
Wave-U-Net include the choice of the GLU activation functions in the encoder
and decoder layers and the insertion of the two bidirectional LSTMs before the
decoding branch begins. Demucs has been trained with additional training data
and its performance has stayed at the top of the MUSDB18 leaderboard from 2019
to 2021, when hybrid networks set new SOTA standards.

3.3.3 Deep learning in mixed domain
A lot of the latest algorithms for MSS try to use information from both the time
and frequency domains. The first successfull algorithm to exploit this idea was the
KUIELab-MDX-Net [58], which used two different branches for the two domains
and only at the end it merged their results to create a final estimate of the target
source. In the same year, researchers at Meta AI released Hybrid Demucs, a LSTM
based architecture that follows the encoding-processing-decoding structure of the
original Demucs. The difference here is that there are two branches in order to
manage both the waveform and the spectrogram information. It differentiates from
the KUIELab-MDX-Net because before the processing phase, the two branches are
concatenated in order to allow for cross-domain processing. This means that the
waveform branch can capitalise from the information received from the spectro-
gram branch and viceversa. This architecture has been on top of the MUSDB18
leaderboard from 2021 to 2022, when the Band-Split RNN architecture claimed
the fist place. During the development of this thesis, the Demucs architecture has
been upgraded and a new version called Hybrid Transformer Demucs (HT Demucs)

29



Related Works

[59] was released. As the name suggests, this is an evolution of the Hybrid Demucs
architectures that implements self-attention and cross-attention mechanisms during
the processing phase, which makes the flow of information across domains easier
and more successfull. This architecture achieved an average median SDR of 8.80dB
across the 4 stems on MUSDB18 with the help of additional training data and it
claimed the top of the leaderboard with an average median SDR of 9.20dB thanks
to per source fine-tuning and to the addition of sparse attention kernels in order to
amplify the receptive field of the attention mechanism.

3.3.4 Useful deep learning algorithms from related research
fields

In this section we will delve into the Conformer algorithm [60] and, in partic-
ular, into its implementation in [61]. The Conformer uses a structure similar
to the Transformer Encoder but it inserts a convolution module between the
multi-head self-attention and the feed-forward blocks. The convolution module
presents, together with normalizations and activations, 2 pointwise convolutions
at the beginning and at the end and a 1D-depthwise convolution in the middle
of the module. The application of this architecture to the field of Music Audio
Enhancement has been extensively studied in [61]. Of particular interest are the
first two implementations of the Conformers. The first one uses a first time-wise
Conformer on the spectrogram to then pass the output to a second frequency-wise
Conformer block and is referred to as the cascade implementation. A second version
of the algorithm divides the two Conformers into separate branches and is referred
to as the parallel implementation. These two architectures will inspire some of the
architectures used during the experimental phase of this thesis.

3.3.5 Self-Supervised Features
In recent years, the success that Self Supervised Learning (SSL) found in NLP [25]
led to a growing interest in the capabilities of Self-Supervised general pre-trained
audio models and several efforts have been done to train models that were as
versatile as possible. Famous examples of these models include HuBERT [29] and
Wav2Vec[27], which produce quality features but have been trained on a dataset
mainly composed of audiobooks. This thesis will utilize audio features produced
with a general pre-trained audio model named WavLM [28], which uses masked
speech denoising and prediction as the training objective and exploits a modified
Transformer Encoder as the backbone together with several convolutions to better
encode the input of the transformer. WavLM Base+ includes 12 Transformer
Encoder layers which output features of dimension 768. The larger version of the
model is called WavLM Large and includes 24 Transformer Encoder layers with

30



Related Works

feature dimension equal to 1024. Although the use of WavLM Large yields greater
improvements in many downstream tasks[28], to ease the computational effort
this thesis will implement WavLM Base+ for the production of complementary
audio features from the waveform. We predict these features to have a greater
impact in the vocals predictions since the model has been trained on speech data.
In a follow-up experiment we will also test the impact of newly trained versions
of HuBERT Base, HuBERT Large, Wav2Vec2 Base and Wav2Vec2 Large. The
new model versions have been developed by ALM research team and use a much
more diverse training dataset called Audioset, which is composed of multiple music
and speech audio datasets. The features generated by these models achieve SOTA
performances on several audio classification tasks[62] and with this experiment we
aim to verify whether these results translate to MSS too.

3.4 Common evaluation metrics
This section will be dedicated to the description of the three most common evalua-
tion metrics in Music Source Separation, namely the Signal-to-Distortion Ratio,
the Signal-to-Artifacts Ratio and the Signal-to-Inference Ratio. Together with their
description, we will also highlight their strength and weaknesses. The introductory
section focuses on the work related to error decomposition in Source Separation,
which is the foundation for the three metrics described in the following sections.

3.4.1 Error decomposition
Music Source Separation metrics rely on the error decomposition described in [63].
Every metric relies on the assumption that a source estimate is composed as follows:

ŝi = si + enoise + einterference + eartifacts (3.1)

where si is the ground truth and the other terms represent the error terms for noise,
interference and artifacts. More details on how to calculate enoise, einterference and
eartifcats can be found in [63] together with more details regarding their derivation.

3.4.2 Signal-to-Artifacts Ratio (SAR)
The SAR computes the amount of artifacts in the estimate, with an artifact being
a sound that is not present in the target source nor in the other sources.

SAR = 10 log10(
||starget + einterference + enoise||2

||eartifacts||2
)

31



Related Works

3.4.3 Signal-to-Inference Ratio (SIR)
The SIR measures the amount of leaking present in the estimate. In Audio
Processing, leaking refers to the situation in which the source estimate contains
sounds from other sources

SIR = 10 log10(
||starget||2

||einterference||2
)

3.4.4 Signal-to-Distortion Ratio (SDR) and SI-SDR
Also called Signal-to-Noise Ratio (SNR), the SDR is computed as the ratio between
the ground truth and the total amount of distortion in the estimate, i.e. the sum
of the three errors in equation 3.1. For a wave of length N, the formula for the
SDR is defined as:

SDR = 10 log10

qN
n ||s(n)||2 + ϵqN

n ||s(n) − ˆs(n)||2 + ϵ

where ϵ is a small constant which is set to 10−7 with the purpose of avoiding
divisions by 0. The SDR is measured in dB and current state of the art models are
able to achieve an average median SDRs of 9.2 across the four stems in MUSDB18.
If the quantity of the captured signal is equal to the amount of captured noise,
the SDR will have value equal to 0dB, if the noise in the estimate is less than the
signal, then the SDR will increase. The range of the SDR is bounded between −∞
and the following Upper Limit (UL):

ULSDR = 10 log10

qN
n ||s(n)||2 + ϵ

Nϵ

which is achieved when the estimate is an exact replica of the ground truth.
Although being the most complete among the three metrics described in this
section, the SDR still has some drawbacks. In particular, its value can be easily
manipulated by means of a rescaling of the estimate. The SDR can always be
positive if we scale the estimate to be the orthogonal projection of the target onto
the line spanned by the estimate [64]. This is the reason why two estimates of
the same source outputted by two different models can sound very different and
have the same SDR. Although being the reference metric for the MDX challenge
[30] and for almost every paper in the MSS research field, some improvements on
the SDR have been proposed in [64] to overcome its limitations. Of particular
interest is the suggestion of a new metric called Scale-Invariant Signal-to-Noise
Ratio (SI-SDR). The idea is to make the SDR orthogonal to the target by either
linearly rescaling the target or the source in order to get a right triangle where the

32



Related Works

the source estimate is the hypothenuse and the cathetes are the target source and
the difference between the target source and the estimate. To give a better visual
representation of the difference we ask the reader to take a look at figure 3.2 which
is taken from the original paper [64] and offers a two dimensional representation of
this reasoning. An explicit formula for the SI-SDR is:

SI − SDR = |αs|2

|αs − ŝ|2

with α = argmin|αs − ŝ|2. The rescaling parameter α can be explicitely computed
as

α = ŝT s

||s||2

Thus leading to the following closed formula for the SI-SDR:

SI − SDR =
|| ŝT s

||s||2 s||2

|| ŝT s
||s||2 s − ŝ||2

This metric offers a fairer comparison between algorithms by canceling the impact
of estimate rescaling and prioritizing the direction of the estimate.

3.4.5 Subjective evaluation
Subjective evaluation of audio source separation methods involves employing listen-
ing tests to assess the quality of the separated audio. In these tests, participants
listen to both the original audio mixture and the output of the separation algorithm.
They’re asked to rate the quality of the separated sources based on various criteria
such as perceptual quality, intelligibility, artifacts, and similarity to the original
sources. These assessments can be conducted through various methodologies like
Mean Opinion Scores (MOS), where listeners rate the quality on a scale, or pairwise
comparisons where listeners choose which audio sounds better between two versions.
This last method is the one applied in the subjective evaluation part of the MDX
challenge [30], where a set composed of singers, composers, music producers and
sound engineers evaluated the output of the 3 models that achieved the highest
average SDR across the 4 sources. Having a set of trained unbiased listeners
evaluating the output of your algorithm would probably be the optimal evaluation
method but it is not feasible for the majority of researchers due to its cost.

33



Related Works

Figure 3.2: Two dimensional representation of SDR and SI-SDR. In the picture,
the SDR is obtained by rescaling the estimate in order to minimize the SDR. On
the other hand, in the SI-SDR framework we can see that the same rescaling implies
a rescaling of the target source too, thus maintaining the same proportions. This
metric offers a framework where the evaluation is solely based on the direction of
the estimate, as it should be. Image from [64]

34



Chapter 4

Experiments

This section presents all the details regarding the experiments carried out during
this Master’s thesis. The first part consists of a deep dive into the training datasets,
with information regarding their content and some summary statistics for relevant
characteristics such as pitch, genre and others. The following sections focus on
data preprocessing, experimental settings and limit estimation for this particular
task. Finally, the last section is divided in several subsections, one for each of
the experiments. Each subsection contains a description of the architecture used
together with the reasoning behind the architectural choices and it also presents
the results of the experiments.

4.1 Datasets
In this thesis, three different datasets have been exploited for the experiments. These
are MUSDB18, MedleyDB-2.0 and a private dataset which has been automatically
labelled using SOTA models. With the term "automatically labelled" we refer to
the process of utilizing a pretrained MSS model to generate the 4 target stems from
an unlabelled song. The next paragraphs contain a description of the datasets.

4.1.1 MUSDB18
MUSDB18 [65] is the most commonly used dataset for training Music Source
Separation models [52][66][67] and it is composed of 150 songs with length varying
from a minimum of 13 seconds up to a maximum of 10 minutes and 28 seconds,
with a total length of 9 hours, 49 minutes and 19 seconds of music. The most
frequent genre in the dataset is pop rock, while the most underrepresented is jazz.
This imbalance should be carefully taken into consideration when analysing the
performance of the model, since this highly skewed distribution could potentially

35



Experiments

impact the generalization capabilities of the model. The compressed version of
the dataset is composed 5 stereophonic stems compressed and encoded in AAC
@256kbps format with a Nyquist frequency of 8kHz. This means that the samples
have been collected at a sample rate of 16kHz with bit depth equal to 16. There
exists a higher quality version of MUSDB18 called MUSDB18-HQ which contains
uncompressed .wav files sampled at 44.1kHz. This version has not been used in
order to ease the computational effort needed to train the models. Of the 5 different
stems, the first one represents the mixture signal and the remaining ones represent
the tracks vocals, bass, drums and other. Although some stems have been wrongfully
mixed together or present some degree of source bleeding [65], these problems are
limited to only 6 of the 150 songs present in the dataset. The dataset’s usual split
is the following: 86 songs for training, 14 for validation and 50 for testing. Due
to the nature of the data, the sets are predefined in order to avoid imbalance in
the validation and test songs. This should improve generalization capabilities of
the trained models Figure 4.1 presents the summary graphs concerning pitch and
duration of the songs in MUSDB18. The pitch plot highlights a distribution skewed
towards the G pitch, either major or minor. Although this imbalance is not optimal
for generalization reasons, since it is not massive we assume that its impact will
not be major. The pitch has been computed by calculating the chromagram of the
songs and collapsing the time dimension to obtain a 12 dimensional representation
where each pitch is associated with an intensity level. The pitch with the highest
intensity is selected as the pitch estimate for the song

Figure 4.1: On the left: pitch distribution of the tracks in MUSDB18. On the
right: length distribution of the tracks in MUSDB18

36



Experiments

4.1.2 MedleyDB-2.0
MedleyDB-2.0 [68] is an expansion of the first MedleyDB dataset [69], part of
which is included in MUSDB18. The more recent MedleyDB-2.0 is composed of 132
additional songs sampled at 44.1kHz that were not present in the previous version.
Although this dataset is similar to MUSDB18 in terms of quantity of data, their
contents present several characteristics that make them complementary. Indeed, in
medleyDB-2.0 the most represented genre is classical music, followed by jazz, folk
and songwriting [68], a distribution skewed towards the underrepresented genres in
MUSDB18. While this makes the datasets complementary for Genre Classification
tasks, the most part of MedleyDB-2.0 is not suitable for the standard MSS goal of
separating the stems vocals, bass, drums and other. This is due to the fact that
in most songs one of the 4 stems is missing. The number of stems in each song
varies from 3 to 10 and the metadata related to the content of the stems can be
found in the gitHub page of the dataset [70]. By exploiting the metadata we were
able to reduce the number of stems for each song to a maximum of 4 stems. The
vocals stem has been generated by adding together all the stems named either choir,
female singer, male rapper, male singer or vocalists. The bass one was generated
by changing the name of the electrical bass stem in MedlyDB-2.0. The drums track
is the result of the sum of the bass drum, bongo, drum machine, drum set, high
hat, kick drum and snare drum stems. All the remaining ones have been grouped
together and summed to generate the other stem.

4.1.3 Private Dataset
The first version of this private dataset is composed starting from 160 songs in .mp3
format at various bit rates. These songs have been selected with a limit of 5 songs
per artist in order to avoid overfitting on a single voice or musical style. Although
these songs do not come with genre metadata, the goal when composing the dataset
was to keep it as heterogeneous as possible. This meant trying to balance the
addition of rock, pop and blues songs while also taking into consideration whether
the singer was a male or a female. This can have a profound impact on vocals
separation since male singers usually have a lower frequency range that overlaps
with instruments, while female singers usually sing in the higher frequency range.
Due to this intrinsic characteristic of the stem, both groups require adequate
representation in the dataset in order to train a model that is able to generalize well.
The stem targets for these .mp3 mixture files have been created using the output
of the state of the art model Hybrid Transformer Demucs [59]. Although these
targets are just an estimate of the optimal ones, the goal of the dataset expansion
is to properly evaluate the implementation of a self-attention based model, which is
notoriously a data-hungry mechanism [71] and thus requires more training samples
to reach its potential. In the second version of the dataset, 100 additional songs

37



Experiments

have been added following the same procedure. The only difference is the use of
the fine-tuned version of HT Demucs for the target stem generation. This should
result in higher quality of the training data since the fine-tuned version achieves a
0.2dB improvement on the median SDR metric [59].

4.2 Data Processing
The first step of the data processing phase is the downsampling of all the training,
validation and test songs to a 16kHz sampling rate using the resampling function
of the librosa library [72]. The choice of librosa’s resampling function comes after
an auditory test of the performance of both librosa’s and torchaudio’s resamplings.
The latter resulted in a less balanced result for the mixture, with some of the
background instruments almost disappearing from the audio file. Keeping the same
bit depth of 16 bits, the resampling resulted in a 2.76x reduction of the memory
required to store the data which then translated into a faster training procedure.
After the training data have been downsampled, the subsequent data processing
steps vary between the training set and the validation and test sets. Following
instructions from [52] I performed one of the most recent Source Activity Detection
(SAD) procedures on the training data. Each song has been divided into 6 seconds
long audio chunks with a 50% overlap. Each chunk has been subsequently divided
into 10 segments of length 0.6 seconds with no overlap, which correspond to 9600
samples for an audio file sampled at 16kHz. After that, the RMSE is computed for
every segment following equation 2.5. Segments with RMSE values equal to zero
(i.e. completely silent segments) have their energy set to the arbitrary low number
of 1−5. The threshold for deciding whether a chunk is silent or not is defined as
the value of the 15th quantile of the energy of all segments in the processed song.
An audio chunk is then defined as salient if 50% of its 10 segments have an energy
higher than the computed threshold. While this could seem like a tedious task and
a waste of training data, the effects of SAD will be evaluated as part of an ablation
study during the first experiment. The SAD has been performed on both the
MUSDB18 dataset and the MUSDB18 dataset with the added 260 songs from the
private dataset. Results are presented in table 4.1 where we can see that the SAD
marked as salient an average of 83.52% of the audio chunks in MUSDB18, while for
the extended dataset this percentage is 86.62%. It should be noted that although
the stem other has the highest percentage of salient chunks, this is not necessarily
an advantage because of the intrinsic diversity of instruments that populates this
particular stem. If the instruments for this stem are not consistent throughout the
dataset, having more salient chunks could actually turn out to be a disadvantage
for the models.
The validation and test sets have been divided in non overlapping 6 seconds audio

38



Experiments

Stem
Dataset vocals bass drums other overall
MUSDB18 68.44% 83.84% 86.17% 95.64% 83.52%
Private v2 79.61% 82.92% 86.30% 97.64% 86.62%

Table 4.1: Percentage of audio chunks labelled as salient during the SAD phase.
The results are presented for the MUSDB18 dataset and for the MUSDB18 dataset
expanded using the entirety of the private dataset, which we refer to as Private v2.

chunks and no SAD has been applied in order to give a fair representation of the
generalization capabilities of the model.

4.3 Experimental settings
The tests have been carried out on two different hardware settings in order to
speed up the procedures. The experiments involving RMSE, ZCR or the use of
self supervised features have have been carried out on a nVidia Tesla V100 SXM2
with 32 GB of memory. These computational resources have been kindly provided
by hpc@polito, which is a project of Academic Computing within the Department
of Control and Computer Engineering at the Politecnico di Torino [73]. All the
experiments that use of the magnitude spectrogram as the only input, have been
carried out on a nVidia GeForce GTX 1650 GPU with 4GB of memory. Trainings
have been performed for 20 epochs with a batch size of 8 and a simple stopping
criteria based on the validation loss: if the validation loss increases with respect
to the previous epoch, training is stopped. The loss function varies from one
experiment to the other and will therefore be made explicit in the appropriate
sections. The optimizer chosen for all the experiments is the AdamW optimizer
with weight decay equal to 0.0001, ϵ = 1−6, β1 = 0.9 and β2 = 0.99. Following
the instructions in [74], the learning rate starts from 0 and is updated following a
learning rate scheduler defined as follows:

LR = d−0.5
model · min(step_num−0.5, step_num · warmup_steps−1.5)

where warmup_steps is set to 4000 and d_model is the dimension of the encoder’s
input features. The scheduler step happens at every iteration. When using a batch
size of 8 and MUSDB18 as the training dataset, the linear warmup phase lasts
until the 8th epoch. When using the expanded version of the dataset, the warmup
ends in the middle of the 2nd epoch. Although this setup covers the majority of
the experiments, some slight modifications have been applied to further improve
performance. In this case, all the details regarding the modified configuration will
be noted in the corresponding experiment’s section. For validation and testing

39



Experiments

we used the validation and test sets of MUSDB18. The results are presented in
the form of a metric that we will refer to as the median SDR in order to ease the
notation. To compute this metric we first compute the stem estimate for each song
in the test set, we then split this estimate into non overlapping 1 second segments
and we compute the SDR for each of them. We take the median of these SDRs, thus
obtaining a median SDR for each song in the test dataset. Finally, to compute the
median SDR metric we take the median of these 50 values. The choice of this metric
follows instructions reported in SiSEC18, i.e. the Signal Separation Evaluation
Campaign of 2018[75], and makes comparison with other SOTA algorithms easier
and more meaningful. The training times for each configuration tested in this
section are presented in appendix C.

4.4 Model’s Limits Estimation
To contextualize the model’s performances, we defined an Upper Limit (UL) and a
Lower Limit (LL) for the median SDR metric in this experimental setting. To define
the LL we generated a random mask for every non overlapping 6 seconds audio
chunk in the test set and we multiplied it by the mixture’s magnitude spectrogram,
resulting in a random prediction of the target stem’s magnitude spectrogram.
Using this prediction and the phase of the mixture, we then generated a complex
spectrogram and performed an iSTFT on it to obtain a wave prediction. We then
computed the median SDR metric following instructions in section 4.3 and set the
it as the LL.
For the UL estimation, we generated the complex spectrogram using the target
stem’s magnitude spectrogram and the mixture’s phase. Using the target stem’s
magnitude spectrogram will result in the best prediction that our model could
possibly achieve. The rest of the procedure for the UL estimation is the same as
the one for the LL. We repeated the UL and LL computations for each of the four
stems. The performance limits are presented in table 4.2, where we can notice that
the bass source is expected to be the one with the lowest values of the median SDR,
followed by other, drums and vocals. This is in line with the literature, where the
median SDR on vocals is often the highest between the 4 stems[52][51][76].

4.5 Frame-Wise Attention Mechanism

4.5.1 Baseline Experiment
For the first experiment, to the 6 seconds audio chunks of the mixture and of the
target we applied a STFT with parameter nFFT equal to 2048 and hop length
equal to 1024. The window used is a Hann Window of size 2048 obtained by

40



Experiments

Figure 4.2: Architecture of the base experiment. The Time-Wise Encoder has
been implemented following the the description found in [74]

41



Experiments

Limit estimate
Stem LL UL
Vocals -6.620 9.843
Bass -6.344 5.981
Drums -3.979 8.751
Other -5.273 6.859

Table 4.2: Lower Limit (LL) and Upper Limit (UL) estimation for the model’s
performances

creating a Hann Window of size 2058 using the corresponding torch function and
discarding the first and last 5 elements. This additional step has been done because
with a typical Hann Window formulation, torch’s inverse STFT function which is
used during testing would result in a RunTime Error triggered by the fact the the
boundary values are too low. Due to the nature of the Hann Window function,
the number of samples to discard at the edges of the window is lower with lower
values of the nFFT parameter. For example, with nFFT=400 the number of edge
samples to discard to avoid the error is 1. The STFT has been performed with
centered time frames and constant padding with padding value equal to 0. The
result of the STFT operation is a complex spectrogram with 1025 frequency bins
which spans across 94 frames. Given that the sample rate of the audio files is
16kHz, the Nyquist frequency is 8kHz and therefore each spectrogram bin describes
a frequency range of 7.8kHz. While this thesis tests a new approach for phase
estimation in the last section, in this experiment target phase estimation is not
among the goals and the focus is instead on magnitude spectrogram estimation. For
this reason, to the complex spectrogram we apply the absolute value and extract
the magnitude spectrogram of the mixture, which will be the input of the model.
The phase information needed to perform iSTFT during testing will come from the
mixture’s phase which, although suboptimal, is nevertheless an acceptable estimate
of the target’s phase and allows evaluation of the model’s performance in real case
scenarios where optimal phase information is not available.

The proposed model’s architecture is based on the Transformer Encoder [74] with
some minor adjustments, as figure 4.2 shows. The input is of shape (B, T, F),
where B is the batch size, T is the number of time frames and F is the number of
frequency bins. In this first experimental setting B=8, T=94 and F=1025. The
embedding phase typically used in Transformer architectures is skipped since it is
not suitable for audio data. Therefore, the raw mixture’s magnitude spectrogram
is positionally encoded frame-wise using sine and cosine functions of different
frequencies [74]:

42



Experiments

PE(pos,2i) = sin(pos/100002i/F )

PE(pos,2i + 1) = cos(pos/100002i/F )

where i is the time frame index ranging from 1 to T. The encoded spectrogram
is then passed through L Time-Wise (TW) Transformer Encoder Layers, where L
is the number of layers and is initially set to 6. The Encoder layer is composed
as the one in the original paper: first, multi-head self-attention with 5 heads is
applied to the input, the resulting projection is then normalized and added to the
input using a skipped connection. This intermediate representation passes through
a feed forward with a single hidden layer of dimension 2048 that uses ReLU as
the activation function. Layer normalization is then applied to the result, which
is added to the previously computed intermediate representation using a second
skipped connection. The output of the encoder layer will function as the input of
the next layer. After passing through the L Encoder layers, a sigmoid function is
applied to the output of the last layer in order to bring its range between 0 and 1
and allow us to use the result as a multiplicative mask for the input magnitude
spectrogram.
This architecture aims at evaluating the impact of a Transformer Encoder (and,
in particular, its Multi-Head Attention block) in Music Source Separation, with
the goal of understanding whether its capabilities in modelling sequential data can
help overcome the computationally expensive U-Net architectures which are at the
base of many SOTA models [66][59][77]. The model is trained 4 times, once for
each target source, using Mean Absolute Error (MAE) loss defined on the target
stem’s magnitude spectrogram. Defining as Ŝ the spectrogram estimate obtained
with our model, the loss is defined as

Loss = 1
N

|Ŝ − S|

where N is B × T × F . Following the Transformer paper’s guidelines, the first
experiment was performed using L=6 and is used as the baseline. The results are
presented in table 4.3 in the form of median SDR for each stem. While the model
seems to obtain below average results on vocals and drums, it struggles even more
in the estimation of the bass and other stems. This last point is in line with the
literature, where the bass and other often appear to be the most difficult stems to
predict [78][52].
To understand the cause of the low performance compared to SOTA models, we
delved into an analysis of the SDR distribution to find out which audio characteris-
tics correlate with lower performances of the model. As figure 4.3 shows, the SDR
distribution of vocals predictions shows two peaks: one centered at around -25dB

43



Experiments

Stem
Architecture Vocals Bass Drums Other
Baseline (L=6) 2.881 -1.903 2.454 -0.919
Layers = 3 2.453 1.384 2.826 -1.542
Layers = 2 4.257 1.691 3.835 0.366
Layers = 1 3.564 1.260 2.971 0.687

Table 4.3: Median SDR across the test set for every stem with different numbers
of encoding layers

and one centered at around 5dB. This suggests that some characteristic or set of
characteristics of the mixture data might split the test set in two groups, one of
which is more difficult for the model to separate.

Figure 4.3: On the left: SDR distribution across the test set. On the right: SDR
plotted against the ratio between the target wave SDR and the mixtue wave SDR.

By performing an auditory test on the audio chunks that generate SDR values lower
than 0, we found out that most of these audio chunks are either silent or partially
silent for the target stem. To better investigate this correlation, for each chunk in
the test set we plotted the SDR values against the ratio between the target and
mixture waves’ RMSEs. Low values of this ratio indicate an audio chunk where the
model needs to predict a silent or partially silent stem starting from a non silent
mixture. When the values of this ratio are close to 1, the corresponding audio
chunk contains a mixture and a target stem that tend to overlap, thus making
the separation task trivial. The results of this analysis are presented in figure 4.3,
where we can appreciate a positive correlation between the performance of the
model and the RMSE ratio we just described. This confirms the hypothesis that

44



Experiments

the model struggles to predict silent chunks. It must also be noted that the outlier
seen in the plot (ratio value close 1, SDR value close to -75dB) represents a silent
audio chunk, i.e. both the mixture and target are silent. The auditory analysis of
SDR values in the higher end of the SDR distribution also showed that high SDR
values correspond to audio chunks that are more likely to feature a female singing
voice. This probably originates from the fact that female voices have a higher vocal
range and are thus easier to separate from the rest of the mixture since there is less
overlap in the frequency of the different stems. Other problems noticed during the
auditory test are the muffled sounds for the both the bass and drums predictions
and the source bleeding which is a strong component of this model’s predictions.
As a final remark, we would like to point out that while the plots in figure 4.3 are
related to the vocals stem, similar graphs have been obtained for bass, drums and
other but have not been presented to avoid redundancy in the report. The reader
can find these plots in appendix D.

4.5.2 Depth Reduction
Knowing that the self attention mechanism from the transformer architecture is
considered "data-hungry" [71], the first attempt at improving the model’s perfor-
mance focused on tweaking the ratio between the number of training data and
the number of trainable parameters in the model, which amounted to 58.9M for
the baseline. To increase this proportion we tried lowering the number of Encoder
layers.
We tested 4 different configurations: the first one is the baseline with L=6 the
other three are the ones with L=3, L=2 and L=1. As table 4.3 shows, the model
does indeed benefit from a reduction in the number of attention layers, since the
highest performance across all configurations was obtained with L=2, i.e. 25.2M
parameters. The source that benefits more from the reduction is bass, with an
increase of 3.59dB in the median SDR of its predictions. An auditory test confirms
the improvements and highlights a lower amount of muffled sounds for the drums
and bass sources. It should be noted that a model with L=1, although preferable
to a L=6 configuration, is apparently too simple to model this kind of data since
the performance does not seem to improve as much.

4.5.3 Dataset Expansion
The second attempt at improving the training samples to parameters ratio focused
on the expansion of the training set. To achieve that, the first 160 songs of the
private dataset have been used as additional training data to the model, while
keeping the same validation set. The results are presented in table 4.4, where we can
appreciate an improvement of 0.16dB for vocals, 0.54dB for bass, 0.61dB for drums

45



Experiments

and 0.95dB for others. Encouraged by the results, we further expanded the training
set by adding 100 additional training songs separated using Hybrid Transformer
Demucs [59], which should yield slightly greater quality of the automatically created
target stems. As table 4.4 shows, further increasing the training set resulted in a
leap in performance, with reported increments compared to the baseline of 0.66dB
for vocals, 1.60dB for bass, 0.83dB for drums and 0.62dB for other. No further
dataset expansion has been performed for the training set since we decided that
the collected results were enough to evaluate the impact of data quantity for this
field of research. All experiments from now on will use the expanded dataset for
training in order to properly evaluate the proposed modifications.

Stem
Training DB Vocals Bass Drums Other
MUSDB18 4.257 1.691 3.835 0.366
Private v1 4.415 2.237 4.441 1.318
Private v2 4.914 3.299 4.660 0.984

Table 4.4: Median SDR response to the training set expansion. Private v1 refers
to the dataset composed of MUSDB18 and 160 additional songs from the private
dataset. Private v2 is composed by Private v1 and 100 more songs.

4.5.4 SAD Impact Evaluation
The last two attempts at improving the model’s predictive abilities are motivated
by the analysis of the SDR distribution presented in figure 4.3. The model seems
to struggle in the prediction of silent or partially silent audio chunks and one of
the possible root causes is the SAD applied to the training data, which causes a
lack of silent training samples and may therefore be the reason behind the model’s
struggles. To verify this assumption we repeated the experiments with batch size
equal to 8 without applying SAD to the training set. The results are presented in
table 4.5 where we can appreciate a drop in performance, confirming that training
data for Music Source Separation need filtering in order to avoid confusing the
model with lower quality samples.

4.5.5 SISDR Base Loss Function
The last attempt at improving the model’s abilities in silent chunks separation is a
modification of the loss function. Compared to the original MAE loss, the new loss
features an additional SISDR component, which is applied to the iSTFT of the
complex spectrogram generated using the predicted magnitude spectrogram and
the mixture’s phase. The new loss is therefore defined as follows:

46



Experiments

Stem
Architecture Vocals Bass Drums Other
With SAD 4.914 3.299 4.660 0.984
Without SAD 4.787 2.990 3.495 0.846

Table 4.5: Median SDR one the test set for the model trained on processed vs.
unprocessed training data

Loss = MAE(Ŝ − S) − SISDR(iSTFT (Ŝ, P ), W ) (4.1)
Where W is the target wave and P is the phase of the mixture. The minus sign has
been added because good predictions are characterized by high values of the SISDR
and the model has been trained to minimize the loss function. Since the SISDR
is differentiable, it can be safely used in the loss function and it should help the
model to focus more on silent chunks, which are characterized by very low values
of the SISDR. The results are presented in table 4.6 and we can see that the new
loss function actually causes a drop in performance compared to the baseline. The
SDR distribution presented in figure 4.4 also highlights the missed shift in the SDR
distribution, a distribution that we expected to converge to a more normal-like one.
It still shows two distinct peaks in similar positions, meaning that the loss change
did not serve its intended purpose. Although the overall performance suffered from
the implementation of the modified loss function, we should also notice that the
SDR distribution seems to have less extreme negative values compared to the one
in figure 4.3

Stem
Loss function Vocals Bass Drums Other
Standard Loss 4.914 3.299 4.660 0.984
NewLoss 4.017 2.741 3.614 -1.665

Table 4.6: Median SDR on the test set for the model trained with standard loss
and with the modified loss featuring a SI-SDR component

4.5.6 True Performance Estimation
Using the expanded dataset, in order to find the true performance ceiling of the
model we repeated the training with a much higher batch size of 128 and an
expanded validation set. The validation set has been expanded using the following
8 tracks collected from MedleyDB-2.0: ’Hunting Season’ by Midnight Blue, ’Perfect
Day’ by Cassandra Jenkins, ’Prisoners Cinema’ by Dead Milkmen, ’Stars Are

47



Experiments

Figure 4.4: SDR distribution for the test set audio chunks. Predictions generated
with the modified training loss described in equation 4.1

Screaming’ by Midnight Blue, ’Lush’ by The TonTons, ’New Skin’ by Torres,
’Alone And Sad’ by Trevor And The Soundwaves and ’I’d Like To Know’ by Filthy
Bird. These songs have been selected following two simple criteria: the songs must
possess all 4 target stems and no more than two songs per artist can be selected.
The aim of this expansion is to improve the generalization capabilities of the model
with an indirect modification of the stopping criteria, which will now be computed
on a more representative and diverse validation set.

We can observe the impact of increased batch size and extended validation set in
table 4.7. As we can see, the baseline performance for bass and drums appears to be
already close to optimal since the two tested factors either resulted in a marginal gain
or in a loss in performance. On the other hand, vocals saw a 0.39dB improvement
in the median SDR metric when using the expanded validation set. The biggest
improvements come in other separation, where both factors seem to be highly
useful for the estimation and even more so when applied simultaneously . Although
some researches work with larger batch sizes for more training epochs[59], a batch
size of 128 should be big enough to leave very small margins of improvements over
the current performance. Moreover, a SOTA model such as Band-Split RNN[52]
achieved great results with much smaller batch size, meaning that architectural
choices have far greater impact on performance with respect to the batch size.

48



Experiments

Stem
Architecture Vocals Bass Drums Other
Baseline 4.914 3.299 4.660 0.984
BatchSize=128 5.076 3.372 4.553 2.073
Expanded Val 5.306 3.192 4.335 1.620
Both 5.152 3.266 4.404 3.058

Table 4.7: Median SDR obtained with a greater batch size and an expanded
validation datase

4.6 Frame-Wise and Frequency-Wise Attention
Mechanisms

The architectures for this experiment are presented in figure 4.5.

4.6.1 Parallel TW-FW attention architecture
Inspired by the work performed in [52], we decided to implement both a Time-Wise
(TW) and Frequency-Wise (FW) Multi-Head Attention mechanism to evaluate the
impact of the FW component on the separation abilities of the model. The first
model implementation features an architecture with two branches: a TW branch
and a FW branch. The first one is an exact replica of the architecture in figure
4.2 and outputs a mask that we will refer to as the TW mask. The second branch
features a permutation of the spectrogram and skips the positional encoding of the
frequency vectors because they are not sequential elements. As for the TW branch,
the FW one features 2 Encoder layers with a Multi-Head Attention mechanism
with 2 heads and processes a batch of shape (B, F, T), where F is 1025 and T is
equal to 94 which is the number of frames obtained with a centered STFT applied
with nFFT=2048 and hop length equal to 1024. The Multi-Head Attention is part
of the Transformer Encoder unit and for this reason it is followed by layer norm, a
feed forward with a hidden layer of dimension 2048 and another layer norm. The
Transformer Encoder is followed by a sigmoid function to generate a mask, that
will be referred to as the FW mask. The TW and FW masks are summed together
with a weighted sum, where the weights are defined as the softmax of two learnable
parameters that are initialized to 1 at the beginning of the training phase. The
final mask is then multiplied by the input magnitude spectrogram of the mixture
to obtain a prediction.
The model has been trained with batch size equal to 8 on the MUSDB18 training set
with the private dataset expansion. The validation set is the standard MUSDB18
one. For these reasons, the most suitable baseline results for this architecture are

49



Experiments

Figure 4.5: On the left: parallel TW-FW attention architecture. On the right:
consecutive TW-FW attention architecture

50



Experiments

the one presented in the last row of table 4.4.
The performance of the model is summarized in table 4.8. The addition of the FW
encoder resulted in a loss of performance in 3 out of 4 stems, with other being the
only one that benefited from the architectural modifications. The degradation in
performance may be due to confusion generated in the model by the second branch,
since the model should be able to at least replicate the baseline results by setting
the weighted sum’s weights for the TW and FW masks to 1 and 0, respectively.

Stem
Architecture Vocals Bass Drums Other
Baseline 4.914 3.299 4.660 0.984
Parallel TW-FW 3.924 1.712 3.497 1.728
Consec. TW-FW 4.085 2.226 3.645 2.171

Table 4.8: Median SDR on the test set for the parallel TW-FW attention and
consecutive TW-FW attention architectures. The Baseline model is the one from
table 4.4

4.6.2 Consecutive TW-FW attention architecture
The second architecture mimics more closely the one in [52], substituting the
BLSTM components with Transformer Encoders. The result is a model structure
similar to the one referred to as Time-Frequency Conformer in [61], with the
substitution of the conformer block with a Transformer Encoder one. As shown
in figure 4.5, the model’s pipeline starts with the positionally encoded magnitude
spectrogram of the mixture which is passed through a TW Transformer Encoder.
The resulting intermediate representation is summed to the input magnitude
spectrogram using a skipped layer, yielding a second intermediate representation.
This is subsequently rearranged for input into an FW Transformer Encoder, and
then permuted back to align with the original spectrogram shape. The outcome
of this Encoder is summed with the second intermediate representation using a
skipped layer. The result is then fed through a sigmoid function to generate a mask,
which, when multiplied with the magnitude spectrogram of the mixture, produces
an estimation of the target stem. The TW-Encoder has been set to have 2 layers
with a number of attention heads equal to 5, while the FW-Encoder has 2 layers
and 2 attention heads. Both use a feed-forward with hidden dimension equal to
2048 and apply layer norm after both the multi-headed attention the feed forward.
Results are presented in table 4.8 and are similar to the ones obtained with the
first architecture. The performance is far worse than the one obtained with the
baseline but we can notice a substantial increase in other and bass performance of

51



Experiments

0.44dB and 0.51dB, respectively. Predictions for the other stems show marginal
improvements, with a 0.16dB increase for vocals and a 0.15dB increase for drums.

4.7 Self Supervised features

4.7.1 WavLM Base+
In this experiment we will investigate a method for integrating features generated by
the Self-Supervised general pre-trained model WavLM Base+ [28]. The architecture
for this experiment is represented in figure 4.6.

Stem
Architecture Vocals Bass Drums Other Average
Baseline 2.072 0.078 1.807 0.149 1.026
WavLM last layer 2.068 -0.164 2.588 0.087 1.145
WavLM weighted sum 2.247 1.118 3.769 0.375 1.877
Hubert Base Audioset 2.477 1.084 4.028 0.463 2.013
Hubert Large Audioset 2.330 1.550 3.242 0.930 2.013
Wav2Vec2 Base Audioset 2.607 1.492 3.046 1.030 2.044
Wav2Vec2 Large Audioset 1.882 0.747 3.003 0.401 1.508

Table 4.9: Median SDR on the test set for the models using the architecture in
figure 4.6. A column named average has been added to make comparison between
models easier. It contains an average of the 4 medians presented in the remaining
columns.

The mixture waveform is processed in two different branches to extract different
types of information from it. The first branch is the one seen in the previous
experiments, where the waveform is passed through a STFT with hop length equal
to 160 and number of FFTs equal to 400 to match the output of the SSL model. An
absolute value is applied to the complex spectrogram to obtain the corresponding
magnitude spectrogram. In the second branch, the waveform is processed using the
WavLM Base+ model, which receives an input of shape (B, SR*6) and generates
an output of shape (B, T/2, 768), where B represents the batch size, SR the sample
rate of the wave and T represents the number of time frames generated in the
STFT. To make the number of features match we could have selected a hop length
of 320 for the STFT but we chose not to because of he very low number of FFTs,
which could hinder the performance of a MSS model. We therefore chose to avoid
doubling the hop length to 320 to prevent further deterioration of the features
collected in the spectrogram branch. In order to make the number of features
match we decided to follow the strategy described in [79] and halve the stride of the

52



Experiments

last convolution layer, thus doubling the number of features generated. The two
features obtained from the two branches are concatenated together into a tensor of
shape (B, T, 201 + 768). This is then fed into a linear layer which brings the data
into a mask-like shape of (B, T, 201). The usual positional encoding is applied to
the data, which is then passed through a TW encoder. The rest of the algorithm
is the same, with a sigmoid function applied to generate the mask, which is then
multiplied to the input magnitude spectrogram to obtain the prediction for the
target stem. The second version of the algorithm is the same except for the SSL
branch. Instead of using the output of the last encoder layer, this version utilizes
the outputs of all the 13 layers (12 Encoder layers and the intial convolutional
encoder) to generate a representation of the waveform. The 13 representations of
shape (B,T,768) are summed using a weighted sum with weights defined as the
softmax of a set of 13 learnable parameters that have been initialized to 1 at the
beginning of the training phase. From the concatenation onward, the remaining
operations are the same as the ones we just described. To obtain a fair evaluation
of the impact of the introduction of the SSL features on the model’s performances,
we trained a baseline architecture with the same STFT parameters without the SSL
branch. The linear layer is still present but is now a 201 × 201 linear layer. Results
are presented in table 4.9. We can appreciate an increase in model performance
for vocals and bass when using the representations from all 13 layers. On the
other hand, the predictions for drums and other are significantly damaged by the
SSL branch. Results for these last two stems are more similar to the baseline for
the model using only the last layer of the SSL model. On the other hand, the
predictions for vocals and bass reported a decrease in median SDR of 0.45dB and
0.29dB, respectively.
We also present an analysis of the weights assigned to the 13 layers. Their values at
the end of the training can be observed in the heatmap in figure 4.7. As evidenced
by the plot, the last layer is associated with the highest weight on all 4 stems.
Starting from the last layer, the associated weight follows a decreasing pattern as we
approach the fourth to last layer. Layers before that show little to no importance in
the computation of the aggregated feature. The only exception is the vocals stem,
where layers from 1 to 9 are associated with small but not negligible weights. The
stem other is the one where the first layer is associated with the highest weight,
which is equal to 0.288.

4.7.2 HuBERT and Wav2Vec2 trained on Audioset
This experiment will use the same architecture observed in figure 4.6 but instead
of WavLM Base+ we will use new versions of HuBERT and Wav2Vec2 which have
been trained on Audioset, a collection of several audio related datasets. We will
test the Base and Large versions of these two models, thus effectively testing four

53



Experiments

Figure 4.6: On the left: architecture of the model with SSL features which utilizes
the last layer .On the right: architecture of the model with SSL features which
utilizes the last layer

different configurations. The feature generated by the SSL branch for these four
experiments will be the weighted sum of all the features generated by the models.
We chose to follow this strategy since it is the one that gave the best results on
WavLM Base+. The results are presented in table 4.9 to offer a direct comparison
to the results obtained with WavLM Base+. We can see that both the Base models
outperform WavLM Base+, with Wav2Vec2 Base yielding the best results on vocals
and other. Regarding their Large counterparts, the HuBERT model performs on
average as its corresponding Base model but with significantly better performance
on bass and, on the other hand, significantly worse on drums. The Wav2Vec2
Large model appears to bring improvements over the baseline but struggles when
compared with the other 3 models and with WavLM Base+.

54



Experiments

Figure 4.7: Heatmap representing the weight given to each layer in the weighted
sum performed over the SSL features. The weights are presented for every stem
and are computed as the softmax of the 13 trainable parameters assigned to the
features

4.8 Classic audio features

This experiment is very similar to the previous one and for this reason we will refer
to image 4.6 for the architecture representation. The only difference to keep in mind
is that this experiment does not use SSL features, so instead of using the WavLM
Base+ model, the waveform is processed using ZCR and RMSE for every frame.
The branch that we referred to as the SSL branch will now be called the secondary
branch and will output either one or two (B,T,1) shaped tensors representing the
ZCR and RMSE of the input waveform. The concatenation with the magnitude
spectrogram will bring the shape of the data to either (B,T,F+1) or (B,T,F+2)
and a linear layer brings the dimension back to (B,T,F) so that it could be fed into
the rest of the model, which remains the same. The first configuration tested uses
ZCR, the second one uses RMSE and the last one uses both of them simultaneously.
The baseline model for this experiment does not include the secondary branch but
features a F × F linear layer anyway to make the comparison fairer.
We can appreciate the results in table 4.10. The introduction of RMSE seems to
offer the most stable results, with an increase in performance across all the 4 stems.

55



Experiments

The other is the one that benefitted the most from the concatenation of the RMSE,
showing an increase of 0.31dB in its median SDR value. ZCR, on the other hand,
achieves greater improvements on vocals and bass stems, which increased by 0.40dB
and 0.30dB, respectively. On the other hand, the introduction of ZCR appears to
give less consistent results on the 4 stems since it generated a drop in performance
of 0.43dB for drums and 0.49dB for other. A similar behaviour is followed when
concatenating both features to the spectrogram. In this case, performance on vocals
and bass increased with respect to the baseline, while drums and other suffered
from a loss in performance, although not as severe as the one observed when using
only the ZCR.

Stem
Architecture Vocals Bass Drums Other
Baseline 4.138 2.316 4.230 1.579
ZCR 4.535 2.610 3.802 1.086
RMSE 4.344 2.598 4.301 1.889
Both 4.481 2.719 3.883 1.211

Table 4.10: Median SDR on the test set for the models using the ZCR and RMSE
features.

4.9 Imaginary part management

This section of the chapter will focus on the attempts that we made to deal with
the imaginary part of the complex spectrogram. In our first unsuccessfull attempt
we concatenated the real and imaginary parts to obtain spectral features of shape
(B, T, 2F). We then implemented a Transformer Encoder configured to work with
vectors of length 2F and instead of predicting a mask we tried to predict the exact
spectrogram. The model’s performance fluctuated around -4dB for the median
SDR of the various stems. We tried changing several parameters in the training,
including experiencing with different optimizers like Lion[80] and a Sharpness Aware
Minimizer[81] applied to AdamW but we found no success at all. We therefore
decided to shift our focus to the mask estimation approach that we used in the
previous experiments and decided to work with magnitude spectrograms for the
majority of the experiments in this thesis. This last section includes an attempt
that aims at generating an estimate of the target phase which is more precise than
using the mixture’s phase as an estimate.

56



Experiments

4.9.1 Phase estimation with self-attention
A representation of the architecture used in the experiment is presented in figure
4.8. In this experiment we try to exploit the Transformer Encoder to generate a
better estimate of the phase information. The model is divided into two branches,
namely the magnitude and phase branch. As the names suggest, one acts on the
magnitude spectrogram and one on the phase spectrogram. The first one is an
exact replica of the model in figure 4.2 and outputs an estimate using masking
applied on the magnitude spectrogram. The phase branch, on the other hand,
starts from the mixture’s phase, applies positional encoding to it and then passes
the phase spectrogram through a 2 layers deep Transformer Encoder with 5 heads a
feed forward with hidden dimension equal to 2048. As opposed to the spectrogram
branch, here the output of the Encoder is not a mask but rather a direct estimate
of the target’s phase. Both the magnitude and phase estimates are used to compute
the loss, which is defined as a combination of their MAE losses, namely:

Loss = MAE(Ŝ − S) − MAE(P̂ − P ) (4.2)

where S and P represent the target’s magnitude and phase spectrograms and Ŝ
and P̂ their estimates generate with our model. Results are not great, as shown in
table 4.11.

Stem
Architecture Vocals Bass Drums Other
Baseline 4.914 3.299 4.660 0.984
PhaseEstimation 1.302 0.772 0.656 0.402

Table 4.11: Median SDR on the test set for the phase estimation architecture
against the baseline

We can notice that there is a drop in performance for all 4 stems with a minimum
decrease of 0.58dB in median SDR for other and a maximum drop of 4.01dB in the
same metric for drums. Given the poor results obtained in this experiments and
the struggles encountered in the preliminary ones, we decided to stop the research
in the phase estimation field since the task seems too difficult for our models.

57



Experiments

Figure 4.8: Model architecture for the phase experiment

58



Chapter 5

Conclusions

In this section we will analyze the results presented in the Experiments chapter of
this thesis and draw conclusions on the effect of Multi-Head Attention in MSS.

5.1 Base experiment
The incorporation of self-attention algorithms into the framework of Music Source
Separation demonstrates promising results. While the achieved outcomes fall short
of state-of-the-art performances, the performance gap seems to become smaller and
smaller as the number of training samples increases. It should also be noted that
the additional data used for training have been automatically labelled using HT
Demucs and the fine-tuned version of HT Demucs, both of which offer suboptimal
estimates for the target. SOTA models like the ones just mentioned have been
trained on a dataset that is 2.5 times bigger than the one used in this work.
Combining this quantitative advantage with the qualitative one we just mentioned
puts our model at a disadvantage. While the results obtained with a bigger dataset
may be promising, we can also notice that the model exploiting FW Attention
can not compete with other architectures when trained on MUSDB18 only and
this is probably due to the nature of the Multi-Head Attention algorithm, which is
notoriously a data hungry one. The experiments highlighted a preference of MSS
models for shallower architectures, preference that finds confirmation in the fact
that most SOTA models implement either one or two sequential modelling units
[59][52][66]. In our experiment, 2 Transformer Encoder layers resulted in the most
accurate separations. The comprehensive ablation study conducted on the primary
architecture has yielded meaningful insights into Source Activity Detection (SAD)
and the incorporation of Scale-Invariant Signal-to-Distortion Ratio (SI-SDR) based
loss functions. The integration of SAD in the data processing pipeline results in
noteworthy improvements and the SAD implemented in [52] offers a good balance

59



Conclusions

between salient and silent audio chunks during training, contributing to a more
robust framework. On the SI-SDR losses, our findings suggest a potential drawback
linked to the redundancy of information provided by SI-SDR, which apparently
does not complement well the MAE computed on the magnitude spectrogram.
Moreover, due to how the SI-SDR is formulated, it is easier to achieve very low
SDR values for the samples corresponding to silent audio chunk, thus weighting
them more than their salient counterparts. This imbalance in the weights contrasts
the positive effects of SAD. The conclusion we draw is that for our experiments the
MAE loss computed on the magnitude spectrogram is the optimal one as it does not
modify the balance between salient and silent chunks obtained through to the SAD
procedure. As expected, the exploration of larger batch sizes and the expansion
of the validation set have demonstrated noteworthy improvements in the median
SDR of our MSS model. Increasing the batch size has facilitated more efficient
parameter updates during training and the expansion of the validation set has
provided a more comprehensive evaluation of the model’s generalization capabilities,
ensuring that it performs robustly across a broader spectrum of data. While the
observed enhancements align with established principles in machine learning, the
predictability of these outcomes underscores the reliability and consistency of
the implemented strategies. On a more general note, in the course of our MSS
experiment, it became evident that predicting the stem vocals posed a relatively
more straightforward challenge compared to the drums and bass components.
The distinct vocal range inherent in the stem vocals facilitated a clearer pattern
recognition, allowing the model to capture and segregate vocal elements more
accurately. On the other hand, drums and bass presented intermediate levels of
complexity, with drums usually obtaining the best performance between the two.
However, the most noteworthy observation lays in the unpredictable nature of the
stem labeled as ’other.’ This stem is inherently diverse, incorporating a wide array
of sound sources that defy easy categorization. The complexity arises from the
merging of various instruments and ambient elements within this stem, making it
challenging for the model to accurately predict and separate these diverse sonic
components. Our experiments show that this intrinsic diversity can be partially
tackled by the use of a larger batch size and an expansion of the validation set.
We think that an interesting direction for future work on the subject could include
training on a higher quality and higher quantity dataset with more architectural
fine-tuning, e.g. trying different positionings of the layer norm blocks, introducing
convolutions to make the Encoder more similar to a Conformer and testing with
different dimensions of the feed-forward layer. Moreover, using a MLP for mask
estimation could be beneficial[52] and should be kept into consideration. The
current SOTA model trained on magnitude spectrograms is D3Net and we believe
that with these adjustments in the model’s architecture and in the training data
its performance could be matched.

60



Conclusions

5.2 Impact of FW Attention
While the introduction of a FW Attention block seemed to help in the separation
of other, the presence of this block seems to confuse the model in the separation of
the other three stems since it is not able to replicate the results obtained with the
baseline. Between the parallel and consecutive architectures, the consecutive one
appears to be the best performing one. Future work on the subject should focus on
architectural modifications with a focus on the implementation of more complex
architectures such as the ones presented in Figure 3 in [61].

5.3 SSL features introduction
Despite optimistic expectations powered by the work in [28], the incorporation
of self-supervised features from the last encoder layer of WavLM Base+ into our
Music Source Separation model did not yield the anticipated improvements in
performance. The intention behind leveraging features from the final encoder layer
was to capture high-level representations that encapsulate complex dependencies
within the audio signals. However, the observed outcomes indicate that extracting
features solely from the last encoder layer did not effectively enhance the model’s
ability to separate sources. This suggests a potential mismatch between the
extracted self-supervised features and the structure present in music data, leading
to limited improvements in source separation accuracy and, for some stems, even
a decrease in performance. We think that this result comes from the mismatch
between MUSDB18 and the dataset used for training WavLM, which is a mixture
of Libri-Light[82], GigaSpeech[83] and VoxPopuli[84], i.e. speech oriented datasets.
A notable shift in outcomes was observed when self-supervised features were in-
tegrated in our Music Source Separation model as a combination of all layer
representations. This more versatile approach demonstrated a discernible improve-
ment for vocals and bass performance. By aggregating information from multiple
layers, the model exhibited a greater capacity to capture diverse patterns within
the audio signals, encouraging a deeper understanding of the underlying structure
of the stem. The success of this integrated approach suggests that a comprehensive
utilization of self-supervised features that exploits information from all hierarchical
levels can contribute to the model’s ability to perform Music Source Separation
effectively.
Upon scrutinizing the learned weights associated with each layer in our Music Source
Separation model, an interesting pattern emerged, revealing that the last four layers
consistently held more importance for all four stems—vocals, drums, bass, and other.
These final layers played an important role in capturing waveform dependencies and
improving the model’s understanding of the audio signal. Intriguingly, in the case of

61



Conclusions

the vocals stem, a departure from this trend was observed, as the initial layers were
associated with non-negligible weights. This suggests that the earliest layers played
a more significant role in encoding relevant features for vocal source separation. In
stark contrast, for the drums, bass, and other stems, the weights associated with
the first nine layers were found to be almost 0, indicating that the deeper layers
were predominantly responsible for capturing the essential characteristics of the
input waveforms.
Substituting WavLM Base+ with HuBERT and Wav2Vec2 trained on Audioset
yielded encouraging results. Both HuBERT models helped improving the perfor-
mance. They achieved the same average median SDR across the 4 metrics, which
is 0.14dB higher than the one obtained with WavLM Base+. The best performing
model has been Wav2Vec2 Base, while the worst one has been Wav2Vec2 Large.
Using general purpose models which have been trained on a more diverse dataset
yields encouraging results on the MSS downstream task, reinforcing the results
obtained for audio classification tasks in [62].
The findings from our Music Source Separation research underscore the potential
for future work to pivot towards the development of a general pre-trained model
tailored for music processing tasks. A critical aspect of this work would involve
refining the model’s architecture and training parameters to accommodate a more
suitable nFFT (number of samples in each frame) parameter, such as 2048. This
adjustment should help in dealing with the peculiar characteristics of music signals,
allowing the model to capture finer spectral features within the audio data.
Establishing a pre-trained model for music with optimized parameters would
promote transfer learning across a variety of music-related tasks, including source
separation, genre classification, and music generation. This approach would lay
the foundation for a more comprehensive understanding and utilization of deep
learning features in the MSS domain.

5.4 RMSE and ZCR introduction

Concatenating the ZCR to the model seems to boost the performance for vocals and
bass, while lowering the one for drums and other. The introduction of the RMSE
features seems to output more consistent results, increasing the performance of the
reference baseline on all 4 stem predictions. The concatenation of both features
seems to be effective only for bass estimation, while for the other three stems either
ZCR or RMSE should be preferred.

62



Conclusions

5.5 Phase estimation attempts
Despite the advancements made in our Music Source Separation model, it is crucial
to acknowledge the challenges encountered in the phase estimation task. Our
attempts to estimate robust phase information into the separation process proved
to be harmful to the model’s performance, suggesting that this task remains too
difficult even for a Multi-Head Attention mechanism. The complex nature of phase
estimation, crucial for reconstructing the temporal alignment and coherence of audio
signals, makes it a challenge that extends beyond the capabilities of the Multi-Head
Attention. Future work in this domain should focus on refining methodologies or
exploring alternative techniques specifically designed to tackle the task of accurate
phase estimation in the context of music source separation.

63



Appendix A

Proof of equation 2.3

This appendix contains the proof of the following equation:

Ú π

−π
einxe−imxdx =

0, if n /= m

2π, ifn = m

Starting from the integral, we can group together the two termsÚ π

−π
einxe−imxdx =

Ú π

−π
ei(n−m)xdx

When n = m: Ú π

−π
ei0xdx =

Ú π

−π
1dx = 2π

When n /= m, by setting t = (n − m) we obtain:Ú π

−π
eitxdx = 1

it
(eitπ − e−itπ)

And we can further simplify the equation by exploiting Euler’s formula:Ú π

−π
eitxdx = 1

it
[cos(tπ) + isin(tπ) − cos(−tπ) − isin(−tπ)]

Since cos(tπ) = cos(−tπ) and sin(tπ) = −sin(tπ) = 0, when n /= m the integral is
equal to 0 and equation 2.3 holds.

64



Appendix B

Proof of conjugate
symmetricity of Fourier
Coefficients

This appendix offers a proof that the series of complex coefficients cn is conjugate
symmetric, meaning that cn = c−n. Starting from the formula for the complex
coefficients:

cn = 1
2π

Ú π

−π
f(x)e−inxdx

The formula for the opposite index coefficients will be:

c−n = 1
2π

Ú π

−π
f(x)einxdx

And by applying the conjugate operation on both sides:

c−n = 1
2π

Ú π

−π
f(x)einxdx = 1

2π

Ú π

−π
f(x)einxdx

But since x, f and d are real valued, the conjugate of a real valued function evaluted
at x is equal to the function evaluated at x. Adding the fact that einx = e−inx, this
means that the following equation holds:

c−n = 1
2π

Ú π

−π
f(x)e−inxdx = cn

Since the amplitude of a complex coefficient is equal to its squared real and
imaginary parts, it follows that conjugate symmetric coefficients must also have
the same amplitude.

65



Appendix C

Training Times

In this appendix we report the training times for every configuration tested. It
should be noted that the architectures including SSL features and ZCR and RMSE
features have been trained on a the HPC cluster[73], whhile all the other experiments
have been carried out on a nVidia GeForce GTX 1650 GPU with 4GB of memory.
On this GPU we also carried out preliminary tests for the SSL configuration and
training proceded at roughly 35 seconds per iteration. On the HPC cluster, the
training speed was 2.5 iterations per seconds or 0.4 seconds per iteration, which
is a 87.5x faster. This means that training the SSL architectures on the same
computational setting as all the other experiments would have taken roughly 29
days. This is due to the computationally expensive operation of extracting the self
supervised features with WavLM Base+.

Stems
Architecture Vocals Bass Drums Other Total
Baseline L=6 00:12:42 00:15:19 00:15:28 00:17:22 01:00:51
Baseline L=2 00:08:06 00:08:14 00:07:38 00:03:23 00:27:21
Baseline L = 1 00:03:46 00:06:27 00:03:44 00:03:15 00:17:12
L=2 + 260 songs 00:22:22 00:22:58 00:30:32 00:11:55 01:27:47
BS=128 01:17:14 01:45:18 01:18:16 00:41:30 05:02:18
Modified Loss 00:12:37 00:17:17 00:09:11 00:10:28 00:49:33
Without SAD 00:32:18 00:24:25 00:20:57 00:11:50 01:29:30
Parallel TW-FW 00:28:59 00:26:15 00:57:51 00:43:18 02:36:23
Consec. TW-FW 00:34:47 00:28:51 00:41:21 01:07:39 02:52:38
Phase estimation 00:09:41 00:33:49 00:10:02 00:12:27 01:05:59

Table C.1: Training times in hh:mm:ss format for architectures trained on nVidia
GeForce GTX 1650

66



Training Times

Stems
Architecture Vocals Bass Drums Other Total
RMSE 00:19:10 00:09:34 00:23:00 00:22:22 01:14:06
ZCR 00:25:00 00:23:47 00:07:06 00:11:55 01:07:48
RMSE and ZCR 00:35:27 00:27:16 00:37:51 00:10:49 01:51:23
WavLM Base+ (last layer) 01:37:53 01:03:52 03:18:33 02:04:34 08:04:52
WavLM Base+ (hid. layers) 01:23:38 01:48:32 02:15:26 02:33:22 08:00:58
HuBERT Base - Audioset 02:13:42 01:39:14 03:06:12 01:56:03 08:55:11
HuBERT Large - Audioset 02:16:56 02:46:58 04:19:33 04:10:28 13:33:55
Wav2Vec2 Base - Audioset 01:49:10 00:42:37 01:43:26 01:56:41 06:11:54
Wav2Vec2 Large - Audioset 03:10:33 03:18:22 05:30:46 04:40:03 16:39:44

Table C.2: Training times in hh:mm:ss format for architectures trained on the
HPC cluster

67



Appendix D

SDR distribution for bass,
drums and other

In this appendix we present the SDR distribution for bass, drums and other. We can
observe that bass and drums follow distribution which is very similar distribution
to the one in figure 4.3, with a higher values of the SDR associated with higher
values of the ration between the RMSEs of the target and mixture chunks. The
model outputs unsuccessfull predictions when the target chunk is silent and the
mixture is not. The stem other features a more normal-like distribution. This
is probably caused by the fact that this stem is rarely silent as table 4.1 shows.
For this reason we do not have two noticeable peaks in the distribution plot for
this stem, although if we look at the values of the SDR where the ratio is equal
to 0 we can notice that they show similar behaviour to the ones observed in the
other stems. As a last remark we explain the fact that the drums stem presents
values of the ratio that are higher than 1. This is due to an error in MUSDB18
which is reported in their website [65]. The track ’Oh No’ by PR reportedly has
the following issue "sum of sources does not add up to the mix for the left channel"
[65]. Since we averaged the two channels to generate a mono channel audio, the
same holds for our modified dataset and in this very track there is a section when
only the drums are present and for this reason the ratio becomes bigger than 1.

68



SDR distribution for bass, drums and other

Figure D.1: SDR distribution for the source not presented in figure 4.3

69



Appendix E

Inference speed

In this appendix, we present the inference times for the tested models, showcasing
their performance on a randomly generated dataset. The dataset is composed
of 100 waves, each consisting of 2.88 million samples, simulating songs with a
duration of 3 minutes and sampled at 16kHz. This dataset results in a database
containing 5 hours of simulated music and the inference speeds of the models have
been measured using this database. The recorded inference times are reported in
table E.1, illustrating the duration required for completing the whole MSS pipeline.
This includes the time taken to perform Short-Time Fourier Transform (STFT) on
the initial waveform, generate a magnitude spectrogram estimate using our model,
and execute inverse STFT (iSTFT) on the prediction. The reported results are
the average across 10 repetitions of the test and specifically pertain to the time
required to process a single stem. The GPU used is a nVidia GeForce GTX 1650
while the CPU is a AMD Ryzen 5 5600H. All experiments are reported except the
ones for which no architectural change was required. For example, the experiment
using the SISDR loss only modifies the training loss and should therefore have the
same inference speed as the model in the second row of table E.1.

70



Inference speed

Architecture GPU Time CPU Time
Baseline L = 6 32.210 356.140
Baseline L = 2 12.116 121.902
Baseline L = 1 7.332 61.934
Parallel TW-FW 21.929 290.924
Consec. TW-FW 23.381 348.220
Phase estimation 22.711 305.119
RMSE 11.879 109.802
ZCR 11.874 110.691
RMSE and ZCR 12.962 123.997
WavLM Base+ (last layer) 339.362 4170.005
WavLM Base+ (hid. layers) 337.143 3550.011
HuBERT Base - Audioset 314.761 3485.348
HuBERT Large - Audioset 885.268 11694.390
Wav2Vec2 Base - Audioset 319.652 3550.011
Wav2Vec2 Large - Audioset 872.592 10742.480

Table E.1: Average Inference time tested on GPU and CPU over 10 iterations.
Results are expressed in seconds.

71



Bibliography

[1] Kaiming He et al. Deep Residual Learning for Image Recognition. 2015 (cit. on
pp. 4, 20).

[2] Meinard Muller. «Fundamentals of Music Processing». In: Springer Cham,
2015. Chap. 1 (cit. on p. 6).

[3] Zafar Rafii et al. MUSDB18-HQ - an uncompressed version of MUSDB18.
Aug. 2019 (cit. on pp. 17, 18, 28).

[4] Frank Rosenblatt. «The perceptron: a probabilistic model for information
storage and organization in the brain.» In: Psychological review 65 6 (1958),
pp. 386–408. url: https://api.semanticscholar.org/CorpusID:127812
25 (cit. on p. 18).

[5] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. «Multilayer feedfor-
ward networks are universal approximators». In: Neural Networks 2.5 (1989),
pp. 359–366 (cit. on p. 19).

[6] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT
Press, 2016 (cit. on p. 19).

[7] Hugo Touvron et al. ResMLP: Feedforward networks for image classification
with data-efficient training. 2021 (cit. on p. 19).

[8] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. «Learning Internal
Representations by Error Propagation». In: Parallel Distributed Processing:
Explorations in the Microstructure of Cognition, Vol. 1: Foundations. MIT
Press, 1986, pp. 318–362 (cit. on p. 19).

[9] Yi Luo and Jianwei Yu. Music Source Separation with Band-split RNN. 2022
(cit. on p. 19).

[10] LeCun et al. «Backpropagation Applied to Handwritten Zip Code Recogni-
tion». In: Neural Computation 1.4 (1989), pp. 541–551 (cit. on p. 19).

[11] David H. Hubel and Torsten N. Wiesel. Brain and Visual Perception: The
Story of a 25-year Collaboration. Oxford University Press, 2004 (cit. on p. 19).

72

https://api.semanticscholar.org/CorpusID:12781225
https://api.semanticscholar.org/CorpusID:12781225


BIBLIOGRAPHY

[12] Kunihiko Fukushima. «Neocognitron: A self-organizing neural network model
for a mechanism of pattern recognition unaffected by shift in position». In:
Biological Cybernetics 36 (1980), pp. 193–202 (cit. on p. 19).

[13] Shuying Liu and Weihong Deng. «Very deep convolutional neural network
based image classification using small training sample size». In: 2015 3rd
IAPR Asian Conference on Pattern Recognition (ACPR) (2015), pp. 730–734
(cit. on p. 20).

[14] R. Tamilarasi and S. Gopinathan. «Inception Architecture for Brain Image
Classification». In: Journal of Physics: Conference Series 1964.7 (2021),
p. 072022 (cit. on p. 20).

[15] Sepp Hochreiter and Jürgen Schmidhuber. «Long Short-Term Memory». In:
Neural Computation 9.8 (1997), pp. 1735–1780 (cit. on p. 20).

[16] Felix Gers, Jürgen Schmidhuber, and Fred Cummins. «Learning to Forget:
Continual Prediction with LSTM». In: Neural computation 12 (Oct. 2000),
pp. 2451–71 (cit. on p. 20).

[17] Matthew E. Peters et al. Deep contextualized word representations. 2018
(cit. on p. 20).

[18] Alex Graves et al. «Biologically Plausible Speech Recognition with LSTM
Neural Nets». In: Biologically Inspired Approaches to Advanced Information
Technology. Springer Berlin Heidelberg, 2004 (cit. on p. 20).

[19] Alex Graves, Abdel-rahman Mohamed, and Geoffrey E. Hinton. «Speech
recognition with deep recurrent neural networks». In: 2013 IEEE International
Conference on Acoustics, Speech and Signal Processing (2013), pp. 6645–6649
(cit. on p. 20).

[20] Yonghui Wu et al. Google’s Neural Machine Translation System: Bridging the
Gap between Human and Machine Translation. 2016 (cit. on p. 20).

[21] Kyunghyun Cho et al. Learning Phrase Representations using RNN Encoder-
Decoder for Statistical Machine Translation. 2014 (cit. on p. 20).

[22] Alex Graves and Jürgen Schmidhuber. «Framewise phoneme classification
with bidirectional LSTM and other neural network architectures». In: Neural
Networks 18.5 (2005), pp. 602–610 (cit. on p. 20).

[23] Ashish Vaswani et al. Attention Is All You Need. 2023 (cit. on pp. 20, 21).
[24] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural Machine

Translation by Jointly Learning to Align and Translate. 2016 (cit. on p. 21).
[25] Jacob Devlin et al. BERT: Pre-training of Deep Bidirectional Transformers

for Language Understanding. 2019 (cit. on pp. 22, 23, 30).

73



BIBLIOGRAPHY

[26] Tom B. Brown et al. Language Models are Few-Shot Learners. 2020 (cit. on
pp. 22, 23).

[27] Steffen Schneider et al. wav2vec: Unsupervised Pre-training for Speech Recog-
nition. 2019 (cit. on pp. 23, 30).

[28] Sanyuan et al. Chen. «WavLM: Large-Scale Self-Supervised Pre-Training for
Full Stack Speech Processing». In: IEEE Journal of Selected Topics in Signal
Processing 16.6 (2022), pp. 1505–1518 (cit. on pp. 23, 30, 31, 52, 61).

[29] Wei-Ning Hsu et al. HuBERT: Self-Supervised Speech Representation Learning
by Masked Prediction of Hidden Units. 2021 (cit. on pp. 23, 30).

[30] Giorgio et al. Fabbro. The Sound Demixing Challenge 2023 - Music Demixing
Track. 2024 (cit. on pp. 24, 32, 33).

[31] Ultimate Vocal Remover, gitHub. https://github.com/Anjok07/ultimatevocalremovergui
(cit. on p. 24).

[32] Peter J. Huber. «Projection Pursuit». In: The Annals of Statistics 13.2 (1985),
pp. 435–475 (cit. on p. 25).

[33] M. C. Jones and Robin Sibson. «What is Projection Pursuit?» In: Journal
of the Royal Statistical Society. Series A (General) 150.1 (1987), pp. 1–37
(cit. on p. 25).

[34] A. Hyvärinen and E. Oja. «Independent component analysis: algorithms and
applications». In: Neural Networks 13.4 (2000), pp. 411–430 (cit. on p. 25).

[35] Daniel D. Lee and H. Sebastian Seung. «Learning the parts of objects by
nonnegative matrix factorization». In: Nature 401 (1999), pp. 788–791 (cit. on
p. 25).

[36] E. Wachsmuth, M. W. Oram, and D. I. Perrett. «Recognition of Objects and
Their Component Parts: Responses of Single Units in the Temporal Cortex
of the Macaque». In: Cerebral Cortex 4.5 (Sept. 1994), pp. 509–522 (cit. on
p. 25).

[37] N. K. Logothetis and D. L. Sheinberg. «Visual object recognition». In: Annual
review of neuroscience 19 (1996), pp. 577–621 (cit. on p. 25).

[38] Paris Smaragdis. «Non-negative matrix factor deconvolution; extraction of
multiple sound sources from monophonic inputs». In: Lecture Notes in Com-
puter Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics). Springer, 2004, pp. 494–499 (cit. on p. 25).

[39] Paris Smaragdis and Judith C. Brown. «Non-negative matrix factorization for
polyphonic music transcription». In: 2003 IEEE Workshop on Applications of
Signal Processing to Audio and Acoustics (2003), pp. 177–180 (cit. on p. 25).

74



BIBLIOGRAPHY

[40] Shankar Vembu and Stephan Baumann. «Separation of Vocals from Poly-
phonic Audio Recordings .» In: Jan. 2005, pp. 337–344 (cit. on p. 25).

[41] Luis Gustavo Martins et al. «Polyphonic Instrument Recognition Using
Spectral Clustering». In: Proceedings of the 8th International Conference on
Music Information Retrieval. Austrian Computer Society, 2007, pp. 213–218
(cit. on p. 25).

[42] Mathieu Lagrange et al. «Normalized Cuts for Predominant Melodic Source
Separation». In: Audio, Speech, and Language Processing, IEEE Transactions
on 16 (2008), pp. 278–290 (cit. on p. 26).

[43] Mathieu Lagrange and George Tzanetakis. «Sound Source Tracking and
Formation using Normalized Cuts». In: 2007 IEEE International Conference
on Acoustics, Speech and Signal Processing. Vol. 1. 2007, pp. I-61-I–64 (cit. on
p. 26).

[44] Yiming Lin et al. «Unsupervised Harmonic Sound Source Separation with
Spectral Clustering». 2021 (cit. on p. 26).

[45] Frederick Yen, Mao-Chang Huang, and Tai-Shih Chi. «A two-stage singing
voice separation algorithm using spectro-temporal modulation features». In:
2015, pp. 3321–3324 (cit. on p. 26).

[46] A.M. Ahmad et al. «An isolated speech endpoint detector using multiple
speech features». In: 2004 IEEE Region 10 Conference. Vol. B. 2004, 403–406
Vol. 2 (cit. on p. 26).

[47] Y. Qi and B.R. Hunt. «Voiced-unvoiced-silence classifications of speech using
hybrid features and a network classifier». In: IEEE Transactions on Speech
and Audio Processing 1.2 (1993), pp. 250–255 (cit. on p. 26).

[48] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional
Networks for Biomedical Image Segmentation. 2015 (cit. on p. 26).

[49] A. Jansson et al. «Singing voice separation with deep U-Net convolutional
networks». Unpublished. 2017 (cit. on pp. 26, 27).

[50] Fabian-Robert Stöter et al. «Open-Unmix - A Reference Implementation for
Music Source Separation». In: Journal of Open Source Software 4.41 (2019),
p. 1667 (cit. on p. 27).

[51] Naoya Takahashi and Yuki Mitsufuji. D3Net: Densely connected multidilated
DenseNet for music source separation. 2021 (cit. on pp. 28, 40).

[52] Yi Luo and Jianwei Yu. Music Source Separation with Band-split RNN. 2022
(cit. on pp. 28, 35, 38, 40, 43, 48, 49, 51, 59, 60).

[53] Woosung Choi et al. Investigating U-Nets with various Intermediate Blocks
for Spectrogram-based Singing Voice Separation. 2020 (cit. on p. 28).

75



BIBLIOGRAPHY

[54] Francesc Lluís, Jordi Pons, and Xavier Serra. End-to-end music source sepa-
ration: is it possible in the waveform domain? 2019 (cit. on p. 28).

[55] Daniel Stoller, Sebastian Ewert, and Simon Dixon. Wave-U-Net: A Multi-Scale
Neural Network for End-to-End Audio Source Separation. 2018 (cit. on p. 29).

[56] Alexandre Défossez et al. SING: Symbol-to-Instrument Neural Generator.
2018 (cit. on p. 29).

[57] Alexandre Défossez et al. Music Source Separation in the Waveform Domain.
2021 (cit. on p. 29).

[58] Minseok Kim et al. KUIELab-MDX-Net: A Two-Stream Neural Network for
Music Demixing. 2021 (cit. on p. 29).

[59] Simon Rouard, Francisco Massa, and Alexandre Défossez. Hybrid Transform-
ers for Music Source Separation. 2022 (cit. on pp. 30, 37, 38, 43, 46, 48,
59).

[60] Anmol Gulati et al. Conformer: Convolution-augmented Transformer for
Speech Recognition. 2020 (cit. on p. 30).

[61] Yunkee Chae et al. Exploiting Time-Frequency Conformers for Music Audio
Enhancement. 2023 (cit. on pp. 30, 51, 61).

[62] Moreno La Quatra et al. «Benchmarking Representations for Speech, Music,
and Acoustic Events». In: 2024 IEEE International Conference on Acoustics,
Speech, and Signal Processing Workshops. 2024 (cit. on pp. 31, 62).

[63] Emmanuel Vincent, Rémi Gribonval, and Cédric Févotte. «Performance
measurement in blind audio source separation». In: IEEE Transactions on
Audio, Speech and Language Processing 14.4 (2006), pp. 1462–1469 (cit. on
p. 31).

[64] Jonathan Le Roux et al. SDR - half-baked or well done? 2018 (cit. on pp. 32–
34).

[65] Zafar Rafii et al. The MUSDB18 corpus for music separation. Dec. 2017
(cit. on pp. 35, 36, 68).

[66] Alexandre Défossez. Hybrid Spectrogram and Waveform Source Separation.
2022 (cit. on pp. 35, 43, 59).

[67] Minseok Kim, Jun Hyung Lee, and Soonyoung Jung. Sound Demixing Chal-
lenge 2023 Music Demixing Track Technical Report: TFC-TDF-UNet v3. 2023
(cit. on p. 35).

[68] Rachel M. Bittner et al. «MedleyDB 2.0: New Data and a System for Sus-
tainable Data Collection». In: 2016 (cit. on p. 37).

[69] Rachel Bittner et al. «MedleyDB: A Multitrack Dataset for Annotation-
Intensive MIR Research». In: 2014 (cit. on p. 37).

76



BIBLIOGRAPHY

[70] MedlyDB’s gitHub page. https://github.com/marl/medleydb (cit. on p. 37).
[71] Alexey Dosovitskiy et al. An Image is Worth 16x16 Words: Transformers for

Image Recognition at Scale. 2021 (cit. on pp. 37, 45).
[72] Brian et al. McFee. librosa/librosa: 0.10.0.post2. Zenodo, 2023. url: https:

//zenodo.org/record/7746972 (cit. on p. 38).
[73] Cluster HPC, Politecnico di Torino. http://hpc.polito.it (cit. on pp. 39, 66).
[74] Ashish Vaswani et al. Attention Is All You Need. 2023 (cit. on pp. 39, 41, 42).
[75] Fabian-Robert Stöter, Antoine Liutkus, and Nobutaka Ito. The 2018 Signal

Separation Evaluation Campaign. 2018 (cit. on p. 40).
[76] Romain Hennequin et al. «Spleeter: a fast and efficient music source separation

tool with pre-trained models». In: Journal of Open Source Software 5 (2020),
p. 2154 (cit. on p. 40).

[77] Thomas Sgouros, Angelos Bousis, and Nikolaos Mitianoudis. «An Efficient
Short-Time Discrete Cosine Transform and Attentive MultiResUNet Frame-
work for Music Source Separation». In: IEEE Access 10 (2022), pp. 119448–
119459 (cit. on p. 43).

[78] Ryosuke Sawata et al. The Whole Is Greater than the Sum of Its Parts:
Improving DNN-based Music Source Separation. 2023 (cit. on p. 43).

[79] Zili Huang et al. Investigating self-supervised learning for speech enhancement
and separation. 2022 (cit. on p. 52).

[80] Xiangning Chen et al. Symbolic Discovery of Optimization Algorithms. 2023
(cit. on p. 56).

[81] Pierre Foret et al. Sharpness-Aware Minimization for Efficiently Improving
Generalization. 2021 (cit. on p. 56).

[82] J. Kahn et al. «Libri-Light: A Benchmark for ASR with Limited or No
Supervision». In: 2020 IEEE International Conference on Acoustics, Speech
and Signal Processing. IEEE, 2020 (cit. on p. 61).

[83] Guoguo Chen et al. GigaSpeech: An Evolving, Multi-domain ASR Corpus
with 10,000 Hours of Transcribed Audio. 2021 (cit. on p. 61).

[84] Changhan Wang et al. VoxPopuli: A Large-Scale Multilingual Speech Corpus
for Representation Learning, Semi-Supervised Learning and Interpretation.
2021 (cit. on p. 61).

77

https://zenodo.org/record/7746972
https://zenodo.org/record/7746972

	List of Tables
	List of Figures
	Acronyms
	Introduction
	The impact of Source Separation
	Music Source Separation
	Problem statement
	Research Questions
	Structure
	Additional information for the reader
	How to read the models' architectures
	Stem notation
	Reproducibility


	Background
	Audio processing
	Audio collection process
	The Analog to Digital Conversion (ADC)
	The Fourier Transform
	DFT, FFT and The Short-Time-Fourier-Transform
	Limitations of the STFT

	Audio features
	Root Mean Square Error (RMSE)
	Zero Crossing Rate (ZCR)

	Deep-learning
	Multi Layer Perceptrons
	Convolutional Neural Networks
	LSTMs
	Transformers
	Self-Supervised Learning


	Related Works
	Traditional Approaches to Source Separation
	Independent Component Analysis (ICA)
	Non-Negative Matrix Factorization (NMF)
	Spectral Clustering

	Usage of RMSE and ZCR in literature
	Relevant Deep Learning Algorithms
	Deep Learning in the frequency domain
	Deep Learning in the waveform domain
	Deep learning in mixed domain
	Useful deep learning algorithms from related research fields
	Self-Supervised Features

	Common evaluation metrics
	Error decomposition
	Signal-to-Artifacts Ratio (SAR)
	Signal-to-Inference Ratio (SIR)
	Signal-to-Distortion Ratio (SDR) and SI-SDR
	Subjective evaluation


	Experiments
	Datasets
	MUSDB18
	MedleyDB-2.0
	Private Dataset

	Data Processing
	Experimental settings
	Model's Limits Estimation
	Frame-Wise Attention Mechanism
	Baseline Experiment
	Depth Reduction
	Dataset Expansion
	SAD Impact Evaluation
	SISDR Base Loss Function
	True Performance Estimation

	Frame-Wise and Frequency-Wise Attention Mechanisms
	Parallel TW-FW attention architecture
	Consecutive TW-FW attention architecture

	Self Supervised features
	WavLM Base+
	HuBERT and Wav2Vec2 trained on Audioset

	Classic audio features
	Imaginary part management
	Phase estimation with self-attention


	Conclusions
	Base experiment
	Impact of FW Attention
	SSL features introduction
	RMSE and ZCR introduction
	Phase estimation attempts

	Proof of equation 2.3
	Proof of conjugate symmetricity of Fourier Coefficients
	Training Times
	SDR distribution for bass, drums and other
	Inference speed
	Bibliography

