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Abstract

Software companies that develop and distribute any application need to constantly face the
challenge of an adversary manipulating it to alter its behavior, stealing intellectual property
such as proprietary algorithms and distributing illegal copies. To limit the economic losses
caused by such malicious activities, various protection techniques were invented to increase
the time and cost required by the attackers to succeed. The first line of defense is given
by obfuscation techniques, which aim to make reverse engineering the code difficult at
the expense of execution performance. Given the high amount of existing techniques
and the challenge of evaluating protection strength and performance overhead, finding
the best tradeoff between these two objectives is a complex process. Currently, this is
done by manually applying and testing different techniques, resulting in long development
times or suboptimal choices. The main goal of this project is to investigate whether
machine learning can simplify this process by accurately predicting the performance
overhead of an obfuscation technique. This would allow developers to make informed
decisions more quickly, reducing development costs and resulting in faster and more
secure applications. The first phase consisted of finding precise ways to measure low-level
application performance metrics while minimizing sources of indeterminism. In the second
phase, the focus was on collecting static metrics at the code level. A framework was created
to collect these static and dynamic metrics before and after applying various obfuscation
techniques to functions. The resulting dataset was then used to train machine learning
models to predict the performance degradation of applying an obfuscation technique to a
given function.
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Chapter 1

Introduction

Ever since proprietary software existed, individuals have always tried to understand its
inner workings, motivated by curiosity, personal challenge and recognition. As years passed
and economic interests increased, companies looked for ways to implement Digital Rights
Management (DRM) systems that would allow them to control the use, modification and
distribution of their copyrighted works. Various categories of techniques were developed
with this goal in mind: obfuscation to protect the intellectual property in the code, tamper-
proofing to detect and respond to unauthorized code modifications by disrupting execution,
watermarking to be able to track the original owner of unauthorized copies, birthmarking
to detect illegal reuse of code fragments. Even with all these counter-measures in place,
man-at-the-end (MATE) attacks, in which the attacker has unrestricted access to the
software executable, environment and hardware on which it is being run, are so powerful
that they will eventually succeed [1].

The widespread availability of unlawfully obtained software worldwide demonstrates
the software’s susceptibility to these attacks. According to the Business Software Alliance’s
latest reports, the commercial value of unlicensed software use in Europe alone between
2015 and 2017 exceeded 12 billion dollars. Depending on the country, unlicensed software
installations ranged from 17% (Luxembourg) to 85% (Armenia) [2]. Additionally, data from
the latest UK Online Copyright Infringement tracker surveys have confirmed a substantial
increase in people downloading software from illegal sources, rising from 18% in 2019 to
38% in 2022 [3].

Given the inevitability of MATE attacks, the goal of obfuscation shifts to impeding
attackers as effectively as possible. This would reduce the economic repercussions caused
by pirated software, especially during the crucial post-launch window where revenue
generation is most vulnerable. Increasing the effort the attackers require to understand
the program, obfuscation delays the release of unauthorized cracked versions, providing a
window for legitimate sales.

To achieve this, obfuscation techniques specifically target the reverse engineering process,
altering the program’s data, logic, or control flow. Estimating reliably the effort required
to break all different protection techniques and their combinations is a very hard problem
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Introduction

because it is very difficult to model the behavior of every creative, motivated and skilled
MATE attacker.

The modifications introduced by obfuscation have the side effect of impacting the
application performance, as the final program will be more complex and will need to
execute more operations.

While employing numerous complex and intrusive obfuscation techniques across the
entire codebase would certainly slow down the attacker, this approach is not optimal.
The significant performance degradation it causes would severely impact legitimate users,
worsening the user experience and potentially harming software sales and public reputation.
Therefore, developers that need to obfuscate their application need to find a better tradeoff
between the strength of the protection and the performance impact on the application.

The current way of evaluating the performance overhead introduced by the various
obfuscation techniques is to measure the performance of the normal and obfuscated code,
and see how performance changed. This trial-and-error process can be time-consuming,
slowing down software development and potentially resulting in suboptimal choices that
offer less protection or slow down performance more than necessary.

This project aims to improve this process by providing the developers with a pre-
trained machine-learning model that can accurately predict the performance overhead
introduced by the obfuscation techniques. This would only require one extraction of the
base application metrics to use as input, eliminating the need to obfuscate and measure
performance for each technique repeatedly. This approach would allow developers to make
informed decisions more quickly, reducing development costs and ultimately resulting in
faster and more secure applications.

To achieve this, it was necessary to explore potential enhancements to the framework
developed by Stefano Alberto and Antonio Licursi in their works “Towards the prediction of
performance degradation of obfuscated code”[4], and “Data set generation for performance
overhead prediction of obfuscated code” [5].

Several enhancements were made across the whole framework to create a higher quality
and more representative dataset, as well as more accurate machine learning models.
First, the application pool selection and input generation process were changed to increase
representativeness and diversification in the dataset. Additionally, several new metrics, both
static and dynamic, were selected to describe the program behaviour. New measurement
strategies were implemented to ensure these dynamic features’ accuracy. Subsequently,
various strategies were explored to enhance the overall quality of the dataset. Finally,
new machine learning models and new training strategies were tested to achieve the best
possible performance prediction accuracy.

1.1 Chapters organization
The structure of the thesis is the following:

• Chapter 2, “Background and Related works”: presents an overview of the technical
aspects necessary to understand this thesis’ topics. It also presents relevant works
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used as foundations for this work.

• Chapter 3, “Problem statement and Design”: describes the thesis goal more formally
and articulates the high-level design decisions made during the research process.

• Chapter 4, “Implementation”: describes in detail how each of the theoretical aspects
described in the previous chapter were translated into a functional framework.

• Chapter 5, “Results”: presents and analyzes the results obtained from the implemen-
tation phase.

• Chapter 6, “Future works”: evaluates possible future improvements and extensions
of the framework.

• Appendix A, “User manual”: explains how to use the framework.

• Appendix B, “Developer manual”: explains how to modify and expand the framework.

• Appendix C, “Events table”: list of events measured.

3



Chapter 2

Background and Related Works

This chapter presents relevant information to understand better the topics addressed within
this thesis.

2.1 Obfuscation

Reverse engineering a program is the process of understanding its behavior, starting with
little information about it. This can be used for unauthorized modifications, vulnerability
exploitation or intellectual property theft in a man-at-the-end (MATE) scenario, where the
attacker has unlimited access to the software executable and all the environment and the
hardware it is being run on. In this situation, the attacker does not have the application’s
source code. Still, he can use various tools and techniques to obtain useful information
from the binary file itself. Two of the most common tools are the disassembler, which
translates binary code into assembly code and the decompiler, which tries to reconstruct
the source code from the assembly code.

The primary goal of obfuscation techniques is to impede the reverse engineering process
by modifying the code so that it remains difficult for an attacker to understand the
application logic and underlying algorithms, even when utilizing tools such as disassemblers
and decompilers. Crucially, these transformations are achieved without altering the
program’s intended functionality.

Obfuscation techniques can be applied at both the binary and source code levels. Binary
obfuscation involves modifying the compiled executable, while source code obfuscation alters
the original source code before compilation. In both cases, building an obfuscator from
scratch is an incredibly complex task since it must be able to perform many sophisticated
transformations to the application without altering its functionality.

For this reason, we decided to rely on one of the few publicly available obfuscators,
Tigress [6]. It is a powerful and flexible source-to-source transformer that takes C source
code as input and generates an obfuscated version of that code as output. It supports a
wide range of transformation techniques that can be tailored using different parameters
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and chained to build the desired level of protection. It can be further customized by
specifying which functions must be obfuscated.

2.2 Dynamic features extraction
To measure and understand the performance overhead introduced by obfuscation, it is
essential to understand what approaches we can use to analyze performance. Depending
on the application and the analysis goals, we can measure performance at different levels
of granularity. We can measure the performance of the whole application, the performance
of a single function, or the performance of even smaller portions of the code. Since
obfuscations are typically applied at the function level, focusing on performance analysis
at this level makes sense. When we are only interested in the time taken by a function to
execute, modern platforms let us access two different timers:

• The System clock: This is a system-wide monotonic timer with nanoseconds reso-
lutions, which can be accessed using the clock_gettime Linux system call or from
timing libraries in various programming languages.

• The Time Stamp Counter: This monotonic hardware timer counts the number of
cycles elapsed. This can be accessed using the __rdtsc() compiler built-in function or
the corresponding RDTSC assembly instruction. This is typically enough for developers
who want a general idea of their code’s performance. By instrumenting their code,
timers can be queried to find how much time a function takes to execute.

In our case, we want to be able to predict a function’s performance, so a deeper
understanding of its performance behavior is needed. Hardware support is required to
access these metrics. Performance Monitoring Counters (PMC) are hardware registers that
can be configured to monitor a large set of performance metrics accurately and introduce
low overhead. These metrics refer to architecture-specific events that can reveal deeper
insights into the interaction of the application code with the hardware.

The Linux kernel includes the perf tool that can be used to access PMCs in different
ways, using different commands:

• perf stat implements the Events Counting technique, reporting the total count of
the specified events that occurred during the entire application execution. Another
open-source tool based on perf is used to count events with function granularity:
perforator.

• perf record implements the Events Sampling technique, which allows accessing event
counters at regular intervals. This is commonly used by developers who want to
explore the performance behavior of long repetitive workloads quickly. While this
allows retrieving event counts with function granularity, its accuracy is inferior to
the Event Counting technique.
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2.3 Machine Learning
Machine learning is a subfield of artificial intelligence that focuses on developing statistical
algorithms that can learn from data and generalize to unseen data, trying to optimize some
performance criterion iteratively. In our case, we would like to obtain a model that leans
from performance data collected from our functions and can generalize this information to
predict performance overhead values for all other possible functions.

There are various ML algorithms categorized based on their learning approach. This
thesis focuses on supervised learning, a specific category where the training data includes
input features and output labels to predict. In this case, this label is represented by the
performance overhead associated with the function and is available in the training data
since we measured it in the previous steps. The model aims to learn the mapping between
the features and the corresponding output.

Since the output we are trying to predict is not a categorical value, but a continuous
value, we will use Regression algorithms instead of Classification algorithms.

Some of the most commonly used models in this category are:

• Decision Trees: This algorithm uses a tree structure to make predictions. The tree
is built by splitting the data considering specific features at each node, ultimately
resulting in leaf nodes representing the predicted output. Each node will represent
part of the decision rule that will be used to predict the target variable for the new
data. This technique guarantees high interpretability, but can be prone to overfitting.

• Random Forests: This algorithm builds multiple decision trees and uses the average
of their predictions as the output. This slightly reduces interpretability in favor of
less overfitting, higher accuracy and more stable results [7].

• Neural Networks: This technique uses interconnected layers of nodes (neurons) to
process input data, each layer performing specific transformations. Learning is done
by adjusting the weights of these connections based on the training data. They can
learn complex patterns and relationships between features and outputs, making them
highly flexible. The disadvantages of this technique are the requirement for extensive
training and the fact that the results are challenging to interpret. [8]

2.4 Related works
“Towards the prediction of performance degradation of obfuscated code” by Stefano Alberto
[4] and “Data set generation for performance overhead prediction of obfuscated code”
by Antonio Licursi [5] are the theses upon which this project was built. They laid the
foundations for the steps required and the difficulties that must be faced to obtain a
working machine-learning model.

The specific problem addressed by this thesis is not found anywhere else in the literature.
Some works can be found that partially overlap with specific the topics involved:
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Denis Bakhvalov’s book “Performance Analysis and Tuning on Modern CPUs” [9] covers
numerous aspects of noise reduction and dynamic feature extraction techniques. This re-
source also provides a detailed overview of modern hardware architectures, and performance
analysis approaches that can be used to achieve accurate performance measurements.

“Surreptitious software: obfuscation, watermarking, and tamper-proofing for software
protection” is a book written by Christian Collberg’s [10], one of the developers of the
Tigress tool. It contains deep technical knowledge about everything related to software
protection techniques, including obfuscation techniques, from both the attacker’s and the
defender’s points of view.

7



Chapter 3

Problem Statement and Design

3.1 Problem Statement
This thesis aims to improve the framework created in the previous dissertations to predict
obfuscation overhead more accurately. After a single initial feature extraction phase, the
framework will allow application developers to choose

• which functions they want to obfuscate

• using which of the supported obfuscation techniques

and immediately obtain a prediction of the resulting performance overhead without needing
to manually test each function and obfuscation technique. This would allow developers to
make informed decisions more quickly, reducing development costs and resulting in faster
and more secure applications.

3.2 Design workflow
To create this framework, multiple aspects must be taken into consideration. Figure 3.1
shows a graphical representation of the required workflow.

3.2.1 Application selection
Predicting the performance for different kinds of functions necessitates training machine
learning models with various realistic data. Ideally, utilizing many different functions from
real applications would be the preferred way to obtain this. There are, however, some
limitations that must be taken into account:

• Code access: the source code of the application must be accessible since the Tigress
obfuscator works at the source level;

8
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Figure 3.1: Design workflow
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• Compatibility: the Tigress obfuscator only works on the C99 version of the C language,
limiting the application pool to applications of this type;

• Consistent results: since measuring performance metrics is a very complex task,
limiting indeterminism as much as possible can help obtain more consistent results.
For this reason, multi-threaded applications and applications where the execution
path depends on external factors different from the input (random values, time, ...)
are avoided;

• Complexity: applications with too simple functions are avoided. This is related to the
fact that simple obfuscation techniques won’t alter their execution too much. This
will result in almost indistinguishable data between the original and the obfuscated
version, making both the obfuscation and measurement processes useless.

3.2.2 Obfuscation

Many different obfuscation techniques exist, and they can be layered on top of each other
in different orders, creating a significant number of combinations [10]. Since the obfuscator
used, Tigress, works at the source level, only modifications applied to the source code
are considered, but binary techniques also exist. The final framework would need to
include many more techniques so that developers have more options to choose from. As a
starting point, two simple techniques are used to verify the goodness of the results: opaque
predicates and code flattening.

• Opaque predicates
This technique consists of adding to the code expressions with known evaluated
values, which still need to be computed at runtime to make the reverse engineering
of the application’s control flow harder. A simplified representation of this technique
can be seen in Figure 3.2.

• Code flattening
This technique restructures the control flow of an application by aligning each basic
block at the same level as the others, as seen in figure 3.3. In this way, if an attacker
obtains the application’s control flow, it will not be obvious to understand the actual
flow of the program.

The selected techniques are applied to the source code of each program. This will produce
an obfuscated source code for each technique used.

3.2.3 Build

At this point, three source code versions are generated for each application: the original
(vanilla) and the obfuscated versions (opaque and flattened). These are then compiled into
their corresponding executable binary code.

10
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Figure 3.2: Opaque predicates transformation, from www.tigress.wtf

Figure 3.3: Code flattening transformation, from www.tigress.wtf

3.2.4 Features extraction

Choosing the best features to characterize applications in the dataset remains an open
question. It is still not known which features correlate most effectively with performance.
The previous strategy used the frequency of opcodes bigrams: all opcodes, the basic building
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blocks of assembly instructions, were recorded for each function executed. The resulting
dataset’s rows represented a single function execution, and each column represented a
pair of consequent opcodes. The value of a cell represented how many times that pair
of opcodes was present in executing the selected function. We decided to use a different
approach, extracting metrics correlated with the application source code and hardware
interactions.

Static features extraction

After the build phase, information can be extracted from the different versions of the
application, in both source and binary format, to find differences. Some of these features
will impact the machine learning process more, leading to more accurate predictions. In
this phase, metrics that can be computed by analyzing the source and binary code statically
are extracted without the need to execute the application.

Noise reduction

Modern operating systems and CPUs use many advanced techniques to achieve better
performances and lower power consumption. While these features significantly improve
the end-user experience, this comes at the expense of the reproducibility of results. Some
of these techniques, such as the ones related to CPU frequency scaling, are also non-
deterministic, since they depend on the temperature reached by the cores. External factors
must be minimized to obtain performance results that closely reflect the application code.
Multiple precautions are taken to create a controlled measurement environment to execute
our application.

Dynamic features extraction

There are multiple ways to define and measure the performance of an application and its
functions. Some common metrics that can be used are the time elapsed, the CPU cycles
elapsed and the number of instructions executed.

In the previous thesis, the strategy to measure the performance was to use code
instrumentation to query the Time Stamp Counter to get the cycles elapsed during the
execution of each function. The process was responsible for calling the instruction to query
the counter during execution. This means the measurement is performed in user space
since the process does not have kernel privileges.

This approach was evolved to be able to extract more metrics related to performance.
To do this, Performance Monitoring Counters (PMCs) are leveraged to extract additional
information. They can provide both the common metrics and additional low-level counters
that can help understand the application performance behavior better. These features
are typically used in workload characterization and include metrics only known at the
Operating System level or the CPU level, such as the number of context switches that
occurred during execution or the number of branch mispredictions. Hundreds of different
events exist for each CPU architecture, but emphasis was placed only on the most commonly
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utilized events of the Intel architecture. Metrics from 36 events related to different aspects
of the execution pipeline were collected from the PMCs: CPU cycles, branch predictions,
context switching, cache hits and misses and others.

perf [11] is one of the most commonly used performance analysis tools for accessing
PMCs. It has been included in the Linux kernel since 2009 and can be used via the
command line. It offers two strategies to access PMCs values: counting and sampling
modes. In counting mode, the total number of events of each type that occurred during
execution can be read. This is done by resetting the counters’ values at the start of
execution and checking their values when it ends. In sampling mode, the interrupts are
placed at regular intervals every N clock cycles, during the entire program execution. When
the interrupt is called, the Instruction Pointer, the call stack and potentially other program
state information are saved. This way, when the program ends, it is easy to see which
functions were executed more often. This measurement can be faster but less precise since
we don’t have any information about what happens between two consequent interrupts.
Both methods were explored, but since getting accurate data was the priority, only the
results from the counting mode were used to create the dataset.

The final dataset will contain all features related to the three versions of the application.

3.2.5 Machine Learning

The ultimate goal is to obtain a statistical model that predicts what performance the
obfuscated version of an application would have, only given its vanilla metrics. Machine
Learning offers many methods to build a regressor, which is a predictor that takes the
features from our dataset as input, and outputs an estimation of the value of one target
variable. This target variable can be any variables closely related to performance, such as
CPU clocks, time elapses, or the number of instructions.

Two of the most common machine learning techniques considered are:

• Random forest regressor
A decision tree is a tree in which each node contains a splitting choice based on one
of the features. The splitting continues until the leaves contain the estimated value
of the target variable. The Random Forest regressor is an evolution of this technique
that generates multiple decision trees on subsets of the dataset, and outputs the
average of their predictions. This leads to higher accuracy and resistance to outliers.
Another advantage is that it does not require extensive hyperparameters tuning,
which simplifies the training process. Their output is also explainable, which is an
added benefit that can lead to a better understanding of both the model, and the
reasons behind different predictions for different techniques. A graphical visualization
of this technique can be seen in Figure 3.4. This technique was also used in the
previous framework, generating different datasets.

• Neural network regressor
Neural Networks operate by linking weighted nodes, called neurons, through weighted
edges and sending real numbers called signals throughout the network. These weights
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Figure 3.4: Random forest regressor [12]

change as learning progresses, influencing the signal’s strength along each edge. The
output of each neuron is determined by an activation function, which is a non-linear
function of the sum of its inputs. This approach was chosen since the problem of
predicting performance is not well studied in the literature and trying a completely
different approach may have led to better results. A simplified neural network
representation can be seen in Figure 3.5.

Figure 3.5: Neural network regressor [13]

3.2.6 Model Evaluation

Several metrics [14] were selected to evaluate the performance of both Random Forest
Regressors and Neural Network Regressors. These are computed by comparing the actual
values of the validation set target metric, with the values predicted by the model.
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Mean Squared Error (MSE)

Measures the average squared difference between the predicted values (ŷi) and the actual
values (yi)

MSE =
qn

i=1(yi − ŷi)2

n

• n: number of samples

• yi: actual value for sample i

• ŷi: predicted value for sample i

Root Mean Squared Error (RMSE)

Represents the standard deviation of the errors (difference between predicted and actual
values). It’s calculated by taking the square root of the MSE.

RMSE =

óqn
i=1(yi − ŷi)2

n

Standard Deviation

Standard deviation measures the samples spread out from their mean value in the actual
values array. A lower standard deviation indicates that the samples tend to be very close
to the mean. A higher standard deviation indicates that the samples are spread out over a
larger range of values.

This value can be used as a benchmark as it corresponds to the RMSE of a regressor
that always returns the average value of the samples metric. A model that achieves a
RMSE inferior to this, is capturing some meaningful patterns in the data and making
predictions closer to the actual values than just using the average.

Standard Deviation =

óqn
i=1(yi − y)2

n

• n: number of samples

• yi: actual value for sample i

• y: mean of the actual values

Mean Absolute Error (MAE)

Measures the average of the absolute differences between the predicted values (ŷi) and the
actual values (yi) for all n samples.

15



Problem Statement and Design

MAE =
qn

i=1 |yi − ŷi|
n

Mean Absolute Percentage Error (MAPE)

Measures the average of the absolute percentage errors. For each sample, it calculates the
absolute difference between the predicted and actual values, divides it by the exact value
(yi), averages this percentage error over all n samples and multiplies by 100 (to express as
a percentage).

MAPE =

qn
i=1

----yi − ŷi

yi

----
n

× 100

R-squared (R2)

R-squared is a statistical metric used to assess how well a regression model explains the
variance in the dependent variable (yi) based on the independent variables included in the
model. It essentially tells how much of the variability in the actual data can be explained
by the model’s predictions.

A low R-squared value (<= 0) suggests that the model fails to capture any of the
variance in the dependent variable around its mean. A higher R-squared value indicates a
better fit of the regression model to the data. An R-squared value of 1 indicates that the
model perfectly accounts for all the variability in the dependent variable around its mean.

R2 = 1 −
qn

i=1(yi − ŷi)2qn
i=1(yi − y)2

• n: number of samples

• yi: actual value for sample i

• ŷi: predicted value for sample i

• y: mean of the expected values

Percentile Metrics

Values at specific percentiles of the actual data distribution. The percentile is computed
by determining the proportion of values that fall below a particular value, relative to the
total number of values, then multiplying by 100 to express it as a percentage.

Prediction Error Rate

The absolute error between predicted and actual values was calculated for each validation
sample to understand the implications of the model performance better. Samples were
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then grouped according to their error magnitude. This analysis reveals the distribution of
errors, allowing evaluation of how many predictions fall within a certain percentage of the
actual values.

17



Chapter 4

Implementation

The following chapter explains how each step of the project described in the Design was
implemented.

4.1 Application Selection
In comparison with the previous thesis, we only kept csv2latex and dadadodo, while adding
13 new applications: apl, benchmark-io, bzip2, fastdnaml, huffman, lua, mbw, nrg2iso,
sha256_rfc6234, smaz, stegx, wav2c, wavheader.

Adding these files resulted in a pool of 74990 lines of code distributed across 528 unique
functions. Table 4.1 shows all the applications used with their codebase size.

Choosing the configurations and inputs for each application is not easy.
To guarantee a wide range of input data, the previous strategy was to select some

applications and then use a specialized program designed to generate different application
inputs to discover as many different execution paths as possible. This approach, called
fuzzing, was found to be very time-consuming. This also limited the potential applications
pool to applications with short execution time, since many executions were required to
find new paths.

In theory, this approach could provide many different workloads for the same application,
increasing the diversity of the dataset without requiring new applications. In practice,
without an additional effort on the fuzzer configuration, the generated paths are at risk of
being very short and similar between them. This would result in wasted time for the fuzzer
activity and a resulting dataset with many repetitions of similar data, which would not
help the machine learning model generalize the result to different conditions. Moreover,
having a larger dataset size would require more training time, without necessarily leading
to the significant improvements one might expect from such an effort.

We noticed this was the case for some of those paths generated and decided to take a
different approach. We relied on the example inputs given by the authors of each program
and only used them, since they would represent meaningful execution paths. We also
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Name Description LOC
apl A programming language known for its unique array-

oriented syntax and mathematical functions.
17719

benchmark-io A tool used to measure and compare the performance of
different I/O operations.

548

bzip2 A file archiver that uses the Burrows-Wheeler transform
and Huffman coding for data compression.

8099

csv2latex A tool that converts comma-separated values (CSV) files
into LaTeX tables, a format commonly used for typesetting
tables in scientific documents.

689

dadadodo: A tool that analyses texts for Markov chains of word proba-
bilities

6601

fastdnaml A software library for performing fast DNA sequence analy-
sis.

4685

huffman A program that implements Huffman coding, a technique
for lossless data compression.

333

lua A lightweight scripting language often used for extending
applications or adding functionality to websites.

17077

mbw A software package designed for manipulating and analyzing
biological sequences.

304

nrg2iso A tool used to convert NRG (Nero Burning ROM) image
files to the ISO disc image format.

148

sha256_rfc6234 A program that calculates the SHA-256 hash of a file, fol-
lowing the specifications of RFC 6234.

932

smaz A file compressor utilizing a dictionary-based approach for
data compression.

278

stegx A steganography tool used to hide data within image files. 16670
wav2c A program that converts WAV audio files to a compressed

format, potentially referring to various formats like MP3 or
AAC.

378

wavheader A tool used to manipulate or analyze the header information
of WAV audio files.

529

Table 4.1: List of applications used

selected some standalone benchmark-like applications, like apl and benchmark-io, where
no input was required. This guarantees that, even if each application only follows a few
execution paths, each of them brings diversity instead of redundancy in the dataset.

4.2 Obfuscation
Each application was obfuscated using the Control Flow Flattening and Opaque Predicates
obfuscation techniques. Since the priority was improving the framework rather than
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expanding the range of obfuscation techniques tested, the same compilation and obfuscation
phases were maintained.

The obfuscation process is the same as the previous thesis, and it is composed of
different steps:

4.2.1 Prerequisites

Merge source files

If an application is composed of multiple .c and .h files, the tigress-merge utility is used to
merge all the files into a single one because Tigress only works with a single file.

Add source code modifications

The source code of the applications must be modified by including the header file tigress.h
and by calling the init_tigress function. Tigress authors suggest adding this auxiliary
function where Init-transformations can put initialization code. Tigress works by applying
different transformations to the functions that are passed as parameters. The Init-
transformations are preparatory steps required by specific obfuscation techniques to function
properly. A value known by the programmer but still computed at runtime is needed to
create opaque predicates. This is called an invariant. Using the InitOpaque transformation,
Tigress adds data structures with predetermined invariants to the init_tigress function.
We rely on linked lists and arrays, but different data structures can also be used. In this
case, the invariant will be a condition or a property that always holds true in that data
structure.

Extract functions names

Tigress expects the names of all the functions to be obfuscated, so we automatically extract
them from the merged source file using the ctags tool. This common tool can be used to
scan files looking for various language objects and generate a “tag” file. This file serves as
an index that associates each symbol name with its corresponding information:

• type of symbol (functions, variables, macros, classes,...)

• file name containing the symbol

• line number where the symbol appears

• source line where the symbol appears

By parsing the tool output, function names for each application are retrieved.
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4.2.2 Obfuscation Transformations

To understand the inner logic of an application, it is often helpful to have a graphical
representation of the code that helps highlight the connections between the different
sections. A Control Flow Graph represents in a graph all the possible execution paths of
the application, simplifying the reverse engineering process. The compiler also uses this to
perform multiple types of optimizations, like eliminating unreachable code, rescheduling
instructions order or improving register allocation to variables.

The gcc compiler provides the -fdump-tree-cfg-graph option [15] that generates a .dot
file describing the Control Flow Graph generated during compilation. We can generate an
image of this file using the graphviz tool. We will use the sha256_rfc6234 application to
show this:

1 gcc -fdump -tree -cfg -graph vanilla . source .c -o vanilla_cfg .exe
2 dot -T png vanilla . source .c.012t.cfg.dot -o vanilla_cfg .png

The image generated in this way is huge, since it includes the control flow graph for all
the functions in the application.

Luckily, the dot file includes one subgraph for each function, so it is easy to modify it to
include only the desired functions.

We will use as an example the SHA224_256PadMessage function, which is a non-trivial
function of reasonable length, used in a real implementation of the SHA256 algorithm.

From Figure 4.1, it is possible to see that it includes two loops and 12 basic blocks.
A Basic Block is a sequence of instructions with a single entry and exit points. This

means that among its instructions, only the first one will be reachable from other program
instructions, and only the last one will jump to a different basic block. Dividing groups of
instructions into basic blocks simplifies the compiler’s analysis of the execution flow.

Opaque

After the InitOpaque transformation prepares the necessary data structures, the AddOpaque
transformation is executed. It splits up the control flow of the application and adds opaque
predicates. This can be customizable using different parameters:

• Count: How many opaques to add to each function. We decided to use 10.

• Kinds: the branch where the statement should be executed. Which types of bogus
computation should be inserted in the newly created fake branches? The following
options were selected:

– true: executes the Real Statement in the correct branch
– call: in the fake branch calls a random existing function
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Figure 4.1: Control Flow Graph of SHA224_256PadMessage vanilla function
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– bug: in the fake branch executes a mutated version of the Real Statement, with
bugs inserted

– junk: in the fake branch executes fake assembly code like asm(".byte random
bytes")

From Figure 4.2, it is possible to see that the opaque function still includes two loops,
but it now has 29 basic blocks and ten new if-statements that use opaque predicates.
Those can be easily identified from the variable names like 1_init_tigresss_1_opaque_ptr
. This graph is computed starting from the obfuscated source. At the same time, an
attacker would probably deal with the graph generated from the decompiled version of the
obfuscated executable, which would not have the variable name information. It is clear
to see that the effort needed to reverse engineer this function is higher than the vanilla
version.

Flatten

This transformation does not require additional init-Transformations so that it can be
directly applied to the merged source code. The goal of this transformation is to hide the
normal control flow of the application by putting all the basic blocks on the same level
and using a new variable to keep track of the next block that has to be executed.

• Dispatch: Method used for the dispatch block. We use as dispatch block a switch
statement wrapped inside an infinite loop. Each basic block becomes one of the
switch cases and the value of the switch variable controls which block to execute
next.

• ObfuscateNext: Decides if the dispatch variable has to be obfuscated with opaque
expressions or not. We do not obfuscate it.

• ConditionalKinds: How to transform conditional branches. We use normal branches
with goto and the corresponding label.

The resulting Control Flow Graph (Figure 4.3) only has one loop, which incorporates
the original loops and most other basic blocks. As a result, the total number of basic
blocks increased from 12 to 24. Also, in this case, compared with the vanilla version,
reconstructing the original control flow is not straightforward and may require executing
the application.

4.3 Build
The vanilla and obfuscated source of each application need to be compiled into the
corresponding executable. Each application can specify its compilation rules in a Makefile
to simplify the building process for the user. With it, the user can simply use the
make command to automatically compile the application. Using make -n it is possible
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Figure 4.2: Control Flow Graph of SHA224_256PadMessage opaque function
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Figure 4.3: Control Flow Graph of SHA224_256PadMessage flatten function

to see the final command generated by the make tool after following the compilation
rules. This command or make will lead to the same result. In order to keep track of the
applications used in the framework, the compiling_dict.json file was created. It includes
various information about the application, like the GitHub link if available, a comment
explaining the application, its build command and its argument. In addition to the compiler
flags indicated by each application developer, some additional flags were added in every
compilation:

• -g: this option instructs the compiler to keep debugging information as line numbers,
symbols names, or other information required to reconstruct the call stack. This
information is useful for the measurement process

• -fno-omit-frame-pointer: with this option the compiler will keep the frame pointer
instead of optimizing it away. This is another crucial information used to reconstruct
the call stack since it is the pointer to the start of the current stack frame.

• -fno-inline-functions: this is another option that avoids a compiler optimization,
which is inlining. This technique consists of copying the code of a function directly
on the call site to avoid the function call overhead. This must be avoided since we
need to compare function executions across the different application versions, so we
need to be sure that function calls are not optimized away.
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4.4 Static features extraction
For the machine learning model to provide accurate predictions, it must have a way to
recognize similar functions, so different types of function metrics are needed. Many static
features can be combined according to various criteria to estimate the functions’ complexity
and categorize them. These metrics are extracted from the vanilla source code and the
assembly code obtained after disassembling the executable code.

4.4.1 Source code metrics

The following metrics are extracted from the C code using the Multimetric [16] Python
tool, customized to work with specific functions instead of the whole file.

• Cyclomatic Complexity: Measures the complexity of the function’s control flow graph
as a function of the number of edges, nodes and connected components in the graph
[17]

• Fanout: Considers function dependencies on other parts of the program (fanout
internal) and on third-party libraries or system calls (fanout external)

• Lines of Code: Provides a basic indication of code size after cleaning and reformatting
it

• Operands: Represent how many variables or constants are being manipulated. Both
the total number and the unique number are extracted

• Operators: Represent how many operations are performed on operands. Also, in this
case, both total and unique numbers are extracted

• Halstead Metrics: Estimate software complexity as functions of the total and unique
number of operands and operators present [18]

– Volume: Indication of the program’s overall size

– Difficulty Level: Indication of the perceived mental workload required by the
developer to understand the code

– Effort: Indication of the effort required to develop and maintain the code

– Time: Indication of the time required to develop and maintain the code

– Bug: Indication of the number of defects that could be present in the code

• Tiobe Quality Score: Combines using different weights various metrics like cyclomatic
complexity, fanout, code duplication, adherence to standards and security practices
into a single score reflecting overall code quality [19]
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4.4.2 Assembly metrics

The following metrics are extracted from the vanilla executable using the Radare2 tool
[20]. Among all the information that it can extract, like function signatures, local variables
and stored strings, there are also two useful performance metrics:

• Cyclomatic Complexity: Computed on the assembly control flow graph, can reveal
how compiler optimizations affected the code complexity

• Cycles cost: Estimated number of cycles that would be taken during the function
execution

By using the objdump tool, each function was disassembled and their instructions were
grouped into different categories (Memory, Stack, Arithmetic, Logic, Jump, Shift, Call,
SysCall) with the help of regexes. Having the frequency of each type of instruction for
each function may provide insights that the machine learning model could use to find
similarities between different functions, which could lead to similar performance behavior
after being obfuscated in the same way.

4.5 Noise reduction
In a perfect world, it would be possible to have a single number that represents the
performance of an application function. In reality, this cannot happen because such a
number does not exist. Different inputs can lead to different execution paths with different
instructions, resulting in a different performance. This can easily be taken into account by
considering the same function with different inputs as different entities.

The main problem resides in the fact that each function run acts in a different envi-
ronment, where hardware features and operating system features can interfere with the
execution, altering its performance. It is unsurprising to expect different performances
from the same function to be executed on different hardware or operating system versions.
What is less obvious is that in modern systems, it is almost impossible to obtain identical
measurement values, even when running it twice on the same machine.

Since our goal would be to obtain as close of a performance value as possible for each
version of our application so that we could find how to generalize these values to other
applications, we need to find ways to minimize the effect of the various interferences.

Note that even if some of these techniques may alter the "value" of the application
performance compared with the performance of the application executed in a "real"
environment, the result will still be significant, since the "value" that we find is more
independent from external factors and can be generalized to "real" environment, while the
contrary is not true. If we did not use these techniques to limit noise and just measured
performance in a "real" environment, it would be much harder to generalize them to different
environments where the noise impact is different, while in this way, the performance result
will be correlated to the application itself.
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The benchmark_system_config.py Python script was created by properly configuring
hardware and operating system features to obtain a stable and low-noise environment
where consistent performance measurements could be achieved.

4.5.1 Support functions

Since many techniques used to reduce noise involve setting system variables by writing
on system files or executing privileged operations, two support functions were created to
simplify development.

1 def set_system_variable (filename , new_content ):
2 previous_content = run_command (f"cat { filename }")
3 run_command (f"echo { new_content } > { filename }", sudo=True)
4 logger .debug(f"{ previous_content } -> { new_content }")
5 return previous_content
6

7 def run_command (command , sudo=False):
8 if sudo:
9 command = f’sudo sh -c "{ command }"’

10 result = subprocess .run(
11 command , shell=True , capture_output =True , text=True , check=True
12 )
13 return result . stdout .strip ()

4.5.2 Hardware and software consistency

The most straightforward way to keep performance measurements consistent is to take all
of them on the same machine without changing Operating System or Software versions
across the measurement. For this goal, a function was created that checked the versions of
the Operating System, Kernel, GLIB, and Compiler used, and stopped execution in case
those were different from the ones initially set.

1 def check_version ( actual_version , expected_version , message ):
2 if actual_version != expected_version :
3 logger .debug(f"Wrong { message } version : { actual_version } != {

expected_version }")
4 exit (-1)
5

6 def check_versions ():
7 OSVersion = run_command (
8 "cat /etc/os - release | grep ’PRETTY_NAME ’| cut -d= -f2 | tr -d

’\"’"
9 )

10 check_version (OSVersion , " Ubuntu 21.04", "OS")
11

12 KernelVersion = run_command ("uname -r")
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13 check_version ( KernelVersion , "5.8.0 -59 - generic ", " kernel ")
14

15 GLIBVersion = run_command ("ldd --version | head -n 1")
16 check_version (
17 GLIBVersion , "ldd ( Ubuntu GLIBC 2.33 -0 ubuntu5 ) 2.33", "GLIBC

library "
18 )
19

20 CompilerVersion = run_command ("gcc --version | head -n 1")
21 check_version (
22 CompilerVersion , "gcc ( Ubuntu 10.3.0 -1 ubuntu1 ) 10.3.0 ", "GCC

compiler "
23 )

4.5.3 Dynamic Frequency Scaling and Scaling Governor

The number of instructions that a processor can execute in a unit of time is affected by a
large number of factors, including its clock frequency. For this reason, a fixed frequency
will lead to more consistent results than a variable frequency. For this to happen, the
default configuration for the Dynamic Frequency Scaling feature needs to be changed,
disabling it.

This feature, called Intel Turbo Boost for Intel processors, is typically enabled because
it allows the processor to adapt its frequency depending on the computation needs of the
moment. This lets the processor keep a lower frequency when idle or during low-load
operations, resulting in lower power usage and heat generation. At the same time, when
the operating system requests the highest performance state of the processor, with this
technology, the frequency of the processor can increase to meet the new demand. While
this process results in a better overall user experience, with lower consumption or higher
performance depending on the need, this increases variability and indeterminism when
evaluating application performance. This is because the operating system decides which
power state to request after evaluating multiple metrics, like CPU load and temperature,
that cannot be controlled.

By disabling this feature, the processor’s frequency remains constant regardless of the
requested load.

The processor’s frequency should be kept constant; it is necessary to set the behaviour
of the Linux Kernel Scaling Governor to one of the static options. We decided to use the
performance option, which sets it to the maximum frequency supported by the processor.
[21]

1

2 logger .debug(" Disabling CPU Dynamic Frequency Scaling (Turbo mode
functionalities )")

3 previous_no_turbo = set_system_variable (
4 "/sys/ devices / system /CPU/ intel_pstate / no_turbo ", "1"
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5 )
6

7 logger .debug(" Disabling all Power Optimizations (Linux Scaling Governor )
")

8 previous_scaling_governor_statuses = {}
9 for cpu_num in [0, 1, 2, 3, 4, 5, 6, 7]:

10 previous_scaling_governor = set_system_variable (
11 f"/sys/ devices / system /CPU/cpu{ cpu_num }/ cpufreq / scaling_governor "

,
12 " performance ",
13 )
14 previous_scaling_governor_statuses [ cpu_num ] =

previous_scaling_governor
15 logger .debug(f"Cpu { cpu_num } in performance mode")

4.5.4 Simultaneous Multithreading

Modern superscalar CPUs use the Simultaneous Multithreading technique to improve
the overall efficiency of each physical core. This allows multiple (typically 2) completely
different tasks to be executed on the same physical core simultaneously. This means they
share access to the execution pipeline, the ALUs, the caches and other physical resources.
Since the various resources will have less idle time, this allows for higher overall throughput
and power efficiency of the core. On the other end, each single task may run slower and
will have less predictable performance since it will depend on the other task that was
scheduled to run on that core and on the resource competition.

This is implemented on Intel processors to show double the number of physical cores
available as CPUs. For example, in the Intel i7-4910MQ machine used, this behavior can
be seen using the lscpu tool:

1 > lscpu
2 ...
3 CPU(s): 8
4 On -line CPU(s) list: 0-7
5 Thread (s) per core: 2
6 ...

This means that even if only four physical cores are actually present, eight possible
threads can be executed simultaneously, since Simultaneous Multithreading is active. To
disable this behavior we need to find which of those CPUs are the physical ones, and which
are the “virtual siblings” CPUs, and disable the “virtual” ones.

1 > cat /sys/ devices / system /cpu/cpu0/ topology / thread_siblings_list
2 0-1
3 > cat /sys/ devices / system /CPU/cpu2/ topology / thread_siblings_list
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4 2-3
5 > cat /sys/ devices / system /CPU/cpu4/ topology / thread_siblings_list
6 4-5
7 > cat /sys/ devices / system /CPU/cpu6/ topology / thread_siblings_list
8 6-7

This shows that the physical CPUs are indicated by the numbers 0,2,4 and 6, while
the siblings we should disable are 1,3,5,7. Now, we can disable them by writing on the
corresponding system file

1

2 logger .debug(
3 " Disabling Simultaneous Multithreading (Intel Hyper - Threading

technology )"
4 )
5 previous_online_statuses = {}
6 for sibling_thread in [1, 3, 5, 7]:
7 previous_status = set_system_variable (
8 f"/sys/ devices / system /CPU/cpu{ sibling_thread }/ online ", "0"
9 )

10 previous_online_statuses [ sibling_thread ] = previous_status
11 logger .debug(f" Thread { sibling_thread } disabled ")

We can see that the effect was achieved by repeating the lscpu command:

1 >lscpu
2 ...
3 CPU(s): 8
4 On -line CPU(s) list: 0,2,4,6
5 Off -line CPU(s) list: 1,3,5,7
6 Thread (s) per core: 1
7 ...

4.5.5 CPU affinity
Modern superscalar CPUs leverage the multiple cores present on the chip to handle multiple
tasks and applications at the same time. At any given time, many system processes are
running to handle various aspects of the PC functionalities. On top of those, the user can
run multiple applications simultaneously. All these tasks need to share the same processor
resources, and the operating system is in charge of scheduling the various tasks to the
various cores at any given moment.

This can become a problem when measuring a single application’s performance because
it may be affected by the other processes running on the machine at that moment. The
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problem arises mainly when the Scheduler performs a context switch or a CPU migration.
In both cases, the application execution is stopped, and its state is saved so that it can
later be resumed, either on the same core or on a different core. Both of these events slow
down the application performance because some system resources, like the pipeline and
the caches, will not be saved and restored.

By minimizing the number of context switches and CPU migrations, the performance
measurements will be more consistent and will not depend on the overall state of the
system as much.

A context switch can be triggered when a different task must be executed or when an
interrupt occurs, maybe because of an event caused by the user.

A CPU migration may also be the result of the scheduler trying to load balance tasks
from overloaded cores to underutilized ones to increase the overall system performance
or trying to concentrate tasks in a single core in order to reduce power consumption by
putting other cores in a low-power state.

If we want to minimize both of these events, we can reduce interrupts or reduce the
times when a new task could be scheduled on the same core that is running our application.

Disabling interrupts is possible [22]. However, it requires running each application in a
custom kernel module where we disable preemption before executing the code we want
to measure and reenable it afterwards. This is a big change that would heavily alter the
applications and may produce unexpected results due to the missing interrupt feature.

There is another easier solution that leverages the cpuset mechanism to obtain higher
control on the execution environment: CPU shielding. Cpusets are groups of cores that can
be used to constrain where different tasks will be executed. The root cpuset always exists
and includes all the cores on the machine. The cset-shield tool allows the creation of the
system cpuset, which will be reserved for the common background system tasks, and the
user cpuset, where only user tasks are allowed to run. Using the command in Code 4.5.5,
all tasks that are currently running in the root cpuset will be moved to the system cpuset
(cores 0,1,4), including kernel threads (-k on). The application and the measurement tool
will run in the user cpuset (cores 2 and 3). [23]

1 result = run_command ("sudo cset shield -c 2,3 -k on")
2 logger .debug( result )

Since context switches and CPU migrations are not entirely avoidable, we still record
how many of these happen during measurement so that it is possible to have an idea of the
accuracy of the measurement or the degradation of the performance given by the event.

CPU migrations measurements show that the CPU shielding technique is particularly
effective since, in the final dataset, over 99,9% of the 3 million function executions recorded
have 0 CPU migrations.
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4.5.6 Address Space Layout Randomization

Unlike the previous techniques, this is a security technique created to prevent the exploita-
tion of memory corruption vulnerabilities. It involves randomly rearranging the position of
key address space areas, like the stack, heap, libraries and base of the executable, in order
to make the redirection of code execution more difficult. While it has been seen that this
memory layout rearrangement does not have a significant impact on performance, it can
still make measurements less consistent or generate outliers, so we decided to disable it.

1 logger .debug(" Disabling ASLR")
2 previous_randomize_va_space = set_system_variable (
3 "/proc/sys/ kernel / randomize_va_space ", "0"
4 )

4.6 Dynamic features extraction

4.6.1 Events

Among the various hardware features that can be used to obtain performance metrics,
Performance Monitoring Counters are the most flexible and accurate. They are special-
purpose registers present on modern processors in a limited number. For example, our
machine’s Intel Haswell Architecture processor contains eight such registers. These can
be configured to act as counters for any of the hundreds of architecture-specific events
available. Each event can provide very specific insights regarding the low-level interactions
between software and hardware. The 36 events that were considered are shown in Table
C.1. [24]

The table includes the event name used by Perforator (the tool used for Events
Sampling), the corresponding event name used by perf record (the command used for
Events Sampling), the overall event type, a description, and the number of the event group
that includes it.

Event Types

• Hardware: This indicates one of the kernel’s “generalized” hardware events.

• Software: This indicates one of the software-defined events provided by the kernel.

• Cache: This indicates a hardware cache event

Cache events hierarchy

The various cache events can be categorized according to different factors:
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• The physical component considered

– Branch Prediction Unit: Component that attempts to predict the outcome of
conditional branches to improve instruction fetch efficiency.

– Data Translation Lookaside Buffer: Caches recently used translations between
virtual memory addresses and physical memory addresses to speed up data
access.

– Instruction Translation Lookaside Buffer: Caches translations for instruction
memory addresses, accelerating instruction fetching.

– Data Level 1 Cache: High-speed memory that stores frequently accessed data,
reducing the need for slower main memory access.

– Instruction Level 1 Cache: High-speed memory that stores frequently used
instructions for faster execution.

– Last Level Cache: The largest and slowest cache in the CPU hierarchy, acting
as a buffer between the main memory and the smaller, faster caches.

– Local Memory: Main memory (RAM), which stores all programs and data the
CPU needs to access.

– Disk: Non-volatile storage device used for permanent data storage.

• The operation initiated by the CPU when the event was triggered:

– Read
– Write

• The outcome of the operation considered:

– Accesses: considers all attempts to access the component, regardless of the
outcome

– Misses: only considers failed attempts when the requested data/instruction was
not present on the component

A simplified representation of the various components can be seen in Figure 4.4

4.6.2 Multiplexing

Since only up to 8 events can be measured at the same time using the available registers,
perf implements a time multiplexing technique to allow for more events to be considered
in the same execution. This consists in granting the use of the same register to different
events in consecutive time intervals. At the end of the execution, the final count for an
event will be:

final count = raw count · (total application time/recording time)
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Figure 4.4: Simplified Cache Hierarchy structure
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This final count is only an approximation of the actual value, which can be accurate
in case of workloads that repeat the same operations over a long period. When measur-
ing applications that run in less time or have variable workloads, the blind spots may
significantly reduce accuracy.

Some of the functions in real applications are naturally very short, so the multiplexing
technique will not produce meaningful results that could be used effectively by the machine
learning model. At the same time, ignoring these functions altogether will decrease the
size of the final dataset, making it less promising.

The solution that allows measuring also small functions accurately is to avoid multi-
plexing, considering only up to 8 events simultaneously. This will produce more accurate
results at the expense of needing to run each application one time for each event group.

Events groups

To increase the amount of information about the functions’ performance, a large number
of events needed to be considered. In order to do so while avoiding multiplexing, events
needed to be divided into groups of 8 or fewer events that could be measured simultaneously.
The goal was to measure the largest number of events in the fewer executions to obtain
more information without spending too much time in the measuring process. This was not
an easy task since not all events can be combined to be measured at the same time. Some
events have restrictions on which counter they can schedule and may not support multiple
instances in a single group. For this reason, a try-and-error phase was performed until a
satisfactory grouping was found.

4.6.3 Prerequisite setup

The perf tool can be installed through the linux-tools-generic and linux-tools-$(uname -r)
package, which contain the version corresponding to the current kernel. The only requisite
is that the Linux Kernel version of the machine must be greater than or equal to 2.6.31.

The primary function that is going to be used is the perf_event_open system call. This
is a complex function with multiple possible parameters and can be utilized to perform
different kinds of analysis. It is possible to verify that the kernel supports it by checking
the existence of the /proc/sys/kernel/perf_event_paranoid file.

This file also restricts access to the performance counters for security reasons. Depending
on its value, the user will be allowed to measure only some or all performance events:

• 2: allows only user-space measurements (default since Linux 4.6)

• 1: allows both kernel and user measurements (default before Linux 4.6)

• 0: allows access to CPU-specific data but not raw tracepoint sample

• -1: no restrictions
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Figure 4.5: Events Counting Mechanism [9]

Setting this to -1 is required for both counting and sampling the types of events that we
need.

We simply add this instruction to the benchmark_system_config.py script used for noise
reduction.

1 logger .debug(
2 " Setting perf_event_paranoid to allow use of ( almost ) all events by

all users"
3 )
4 previous_perf_event_paranoid = set_system_variable (
5 "/proc/sys/ kernel / perf_event_paranoid ", " -1"
6 )

4.6.4 Events counting
The easiest way to utilize the counting mechanism would be to use the perf-stat command,
specifying the selected application and the events to measure, one group at a time. This
works but only provides aggregated values on the whole application execution. Obtaining
counter values at the function granularity level is more complex and can be achieved
using the perf_event_open syscall. This is the underlying function that allows setting up
performance monitoring by passing the parameters that will achieve the desired result,
like the selected events. It returns a file descriptor that can later be passed to a different
system call: using ioctl, events can be enabled and disabled; using read, the resulting
values can be obtained.

The Figure 4.5 summarizes the process.

Perforator

The only missing piece remains how to place the necessary syscalls at each start and end
of every function of the program. Luckily, a program called Perforator [25] had already
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been developed with this exact goal in mind. It puts together different tools to achieve the
desired effect. It takes the function that we want to measure and the events of interest as
input, and it can produce a CSV file with the result. In order to do so, different steps are
required:

1. To find the starting address of the requested function, it uses the bininfo Go package,
which parses the application information from its ELF binary format

2. It uses the ptrace system call to attach itself to the target program and places the
0xCC "interrupt" instruction at the beginning of the function to be measured. This
allows it to regain control when the function is about to be executed

3. At that point, Perforator restores the original code that was temporarily replaced
with the interrupt byte, retrieves the return address by reading the top of the stack,
and places another interrupt byte at that address

4. Then it will enable the events counting and resume the target process

5. When the function reaches its return address, the next interrupt happens, Perforator
disable the events, removes the interrupt, and re-inserts the interrupt instruction
back at the start of the function.

The program supports measurements of multiple functions at the same time, but it relies
on the same multiplexing mechanism that perf uses. For this reason, the only way to
guarantee precise results is to measure one function at a time.

collect_dynamic_metrics

1. Extract functions names

2. Iterate over each application input, each function and each event group

3. Use Perforator to obtain the desired result:

1 sudo cset shield --exec -- sudo <perforator - application > -V --
summary --csv --kernel -e <events -in -current -event -group > -r <
function -to -be -measured > -o <csv -results -file -for -that -
application -input -function - event_group > -- <application -
executable > <application -input >

The meaning of this command can be explained like this:

• sudo cset shield --exec -- : Execute the following command in the user cpuset
created previously in the benchmark_system_config.py script.

• sudo <perforator-application>: Execute the Perforator program with the follow-
ing arguments

38



Implementation

– -V: output verbose debug information
– --kernel: include kernel code in measurements
– -e <events-in-current-event-group>: list events in the current event group

to measure
– -r <function-to-be-measured>: specify the name of the function that needs

to be measured
– --csv -o <csv-results-file-for-that-application-input-function-event_group

>: write output in the provided output file in CSV format
– -- <application-executable> <application-input>: the actual application to

be measured and its arguments

An example of a real call of this command counting the events of the first group (bus-
cycles,cpu-cycles,ref-cycles,instructions,context-switches,cpu-migrations,cpu-clock
,page-faults) obtained during the execution of the SHA224_256PadMessage function of
the vanilla version of sha256_rfc6234 with the input10MB.bin file as input.

1 sudo cset shield --exec -- sudo ./2023 _Obfuscation_Thesis /utils/
perforator -0.4.1/ perforator -V --summary --csv --kernel -e bus -
cycles ,CPU -cycles ,ref -cycles , instructions ,context -switches ,CPU -
migrations ,CPU -clock ,page - faults -r ’SHA224_256PadMessage ’ -o
./2023 _Obfuscation_Thesis / workdir / results / sha256_rfc6234 / vanilla
.debug/’SHA224_256PadMessage ’. event_group_0 . measure_1 .csv --
./2023 _Obfuscation_Thesis / workdir /app/ sha256_rfc6234 / vanilla /
vanilla_debug .exe ./2023 _Obfuscation_Thesis /app/seeds/
sha256_rfc6234 / input10MB .bin

Note that there is no way to know for sure the return value of the application since it
is executed inside the "shield". From the python subprocess.run() function, it is only
possible to retrieve the return value of the shielding program. Correctness can be
verified from the output of the application, reported in the appropriately generated
log files.

4. If the result file from that function takes too much space, it means that the function
was executed too many times, so it is probably a very short function. Verifying using
the static metrics extracted in the previous phase is possible, but this was not done
since only a few functions were affected. Such function is removed from the pool, and
it is ignored for the subsequent measurements in order to limit measurement time.
The reason is that many measurements of very small functions clutter the dataset,
taking much memory without adding new meaningful insights. For all functions,
it is useful to have multiple measurements since it can make the measured value
more consistent and outlier-resistant, but measuring the same function millions of
times becomes redundant and wastes both measurement time and training time later.
Moreover, it can be proved that very short functions are impossible to obfuscate, so
it is not reasonable to consider them as an actual use case scenario for developers
who want to obfuscate their applications.
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5. It is possible that the example input provided by the application author leads to an
execution path that only covers some application functions. The uncovered function
names are saved in a file and excluded from other measurements with the same
input. This avoids wasting time executing the application again, trying to measure
functions that will not be executed. With new inputs, the function is reinserted into
the functions pool. The file containing uncovered functions could also be used to
increase function coverage with new inputs.

6. After the application run, the cleanup_cmd command specified in the application entry
in the compiling_dict.json file is executed. This command is used to remove all
leftover files from the execution of the application, like the output files generated.
This keeps the directory structure clean and avoids potential overwriting errors that
could happen when executing the same application again.

7. The CSV files obtained from each function measurement must be concatenated into a
single CSV file for each event, like sha256_rfc6234/vanilla/event_group_0.results.csv.

4.6.5 Events sampling
Event sampling is one of the most frequently used approaches for performance analysis
because it can give enough information in a short time to understand which code region
contributes the most to the various performance events. Due to its more straightforward
implementation and faster measurement time, this technique was implemented as an
alternative to event counting in our framework. As expected, the accuracy of the results
was lower than that of the other technique, so they were not included in the final dataset.

Prerequisite setup

Since we can control the frequency of sampling, which means how many samples per second
will be collected, we need to ensure that the perf_event_max_sample_rate configuration
file is consistent with the selected frequency. If we do not, the actual used frequency
will be lower, or the command will fail, if the --strict-freq was used. Increasing the
perf_cpu_time_max_percent will instruct the kernel to allow using up to 99% of the CPU
time to handle perf event. This could slow down operations, but will guarantee that no
samples will be dropped by the kernel in the attempt to reduce CPU usage.

1 logger .debug(
2 " Setting perf_cpu_time_max_percent to allow high CPU usage to have

more frequent perf events "
3 )
4 previous_perf_cpu_time_max_percent = set_system_variable (
5 "/proc/sys/ kernel / perf_cpu_time_max_percent ", "99"
6 )
7 logger .debug(
8 " Setting perf_event_max_sample_rate to allow more frequent perf

events (not required if perf_cpu_time_max_percent =0)"
9 )
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10 previous_perf_event_max_sample_rate = set_system_variable (
11 "/proc/sys/ kernel / perf_event_max_sample_rate ", "50000"
12 )

sample_dynamic_metrics

1. Extract functions names

2. Iterate over each application input and each event group

3. Use the perf record command:

1 sudo perf record -e <events -in -current -event -group > -F 50000 --
strict -freq -- <application -executable > <application -input >

The meaning of this command can be explained like this:

• sudo cset shield --exec -- : Execute the following command in the user cpuset
created previously in the benchmark_system_config.py script.

• sudo perf record: Execute the perf record with the following arguments
– -e <events-in-current-event-group>: list events in the current event group

to measure
– -F 50000: sample events 50000 times every second
– --strict-freq: if the specified frequency cannot be used abort the operation

with an error instead of throttling the sampling frequency
– -- <application-executable> <application-input>: the actual application to

be measured and its arguments

This command will trigger a Performance Monitoring Interrupt 50000 times every
second. When it happens, a dedicated Interrupt Service Routine will:

• Disable the counter used to trigger the interrupt to avoid ulterior interrupts
during the handling of the current one

• Record the current Instruction Pointer of the monitored application to understand
what was being executed when the interrupt happened

• Reset and re-enable the counter for the next interrupt
• Resume application execution

A graphical visualization of this technique can be seen in Figure 4.6
At the end of the execution, a perf.data file is created, containing information
extracted during all previous interrupts.
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Figure 4.6: Events Sampling Mechanism [9]

An example of a real call of this command sampling the events of the first group (bus-
cycles,cpu-cycles,ref-cycles,instructions,context-switches,cpu-migrations,cpu-clock
,page-faults) 50000 times per second, during the execution of the the vanilla version
of sha256_rfc6234 with the input10MB.bin file as input is reported below.

1 sudo cset shield --exec -- sudo perf record -e bus -cycles ,CPU -cycles
,ref -cycles , instructions ,context -switches ,CPU -migrations ,CPU -
clock ,page - faults -F 50000 --strict -freq -- ./2023
_Obfuscation_Thesis / workdir /app/ sha256_rfc6234 / vanilla /
vanilla_debug .exe ./2023 _Obfuscation_Thesis /app/seeds/
sha256_rfc6234 / input10MB .bin

4. Use the perf report command:

1 sudo perf report --show -total - period --show -nr - samples --fields =
overhead ,sample ,period ,sym > <report -file >

Since the perf.data file is in a particular binary format, the perf report command is
used to visualize the information it contains as needed. In order to obtain a consistent
format with the CSV file previously generated by the event counting, data were
extracted using these flags:

• --show-total-period: Show a column with the sum of periods
• --show-nr-samples: Show the number of samples for each of the functions recorded
• --fields=: Which fields to display

– overhead: Overhead percentage of sample
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– sample: Number of sample
– period: Raw number of event count of sample
– sym: Name of function executed at the time of sample

An example of an actual call of this command generating the report from the perf.data
previously created.

1 sudo perf report --show -total - period --show -nr - samples --fields =
overhead ,sample ,period ,sym > ./2023 _Obfuscation_Thesis / workdir /
results / sha256_rfc6234 / vanilla .debug/ sampling /seed0.
event_group_0 . sample_1 .txt

5. After the application run, the cleanup_cmd command specified in the application entry
in the compiling_dict.json file is executed. This command is used to remove all
leftover files from the execution of the application, like the output files generated.
This keeps the directory structure clean and avoids potential overwriting errors that
could happen when executing the same application again.

6. process_reports_into_csv: create a CSV file for each event group, associating each
function to the estimated count and the number of samples of each event

4.7 Machine Learning

4.7.1 Merging results into dataset

All measurement results are contained in CSV files divided per event group measured,
like sha256_rfc6234/vanilla/event_group_0.results.csv, with one column for each event
measured and one row for each function execution recorded. Each value in the table is the
value of the counter for that event and that function. Machine learning algorithms use a
single dataset as input, so we need to merge all the files into a single CSV file with all
functions from all the applications and all events. The merge acts on the region and seed
columns, which represent the function and the application input for that function call.

This is done in two phases: the csv_merge.py script generates a single CSV file ag-
gregating all measurements for an application (sha256_rfc6234.csv). Even if each event
group measurement refers to a different execution of the function, the order of executions
is deterministic and repeated for each event group. For this reason, we can merge all
the events, even from different groups, into a single row because they are all related to
an equivalent function call. Since the time-elapsed metric is present in all event group
measurements, we decided to associate each function call the average of all the time-elapsed
since having more measures as different features would be detrimental to the understanding
of the importance of the features. Also, all static features related to each function are
associated with each call as additional columns.
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The second phase consists of concatenating all the application’s CSV files in a single
file, the final dataset. This is done in the train_custom.py script, which also contains the
dataset preparation steps, the model training and validation. Having these phases together
lets us simplify the tuning process, starting with which features to use as the prediction
target.

4.7.2 Dataset Preparation

Despite the noise reduction measures implemented, the final dataset still contained some
outliers and unexpected results that could alter the model predictions. A data cleaning
phase was added in order to improve the quality of the results.

Table 4.3 summarizes the impact of the various preparation steps on the dataset
dimension.

Slower Vanilla

Obfuscation techniques add instructions and complexity to the application, so it is expected
that the measured features indicating performance would be bigger than the vanilla ones.
If that does not happen, it may be the result of external events, like context switches
and CPU migrations, that alter the correct measurements. On the other hand, it is also
possible that the execution was unaltered, but the performance degradation was smaller
than the measurement precision margin. To guarantee a more consistent dataset, rows
where the vanilla metric is bigger than the corresponding obfuscated metric are dropped.

Context Switches and CPU Migrations

Even if the vanilla version was faster than the obfuscated ones, it is still possible that a
Context Switch or a CPU Migration affected the accuracy of the measurement, so we also
removed rows affected by these events.

Median Deviation Outliers

After analyzing the results, some of the sample measurements still stood out from the other
measurements of the same function. While these may represent real data of particular
function calls, they are not representative of the common function behavior. For this
reason, a filter was implemented to discard all samples that diverged from the median
of that function for more than a certain threshold. The median was used for its better
outlier-resistance property. The actual threshold depended on the metric analysed and
was found experimentally by tuning it to avoid removing too many samples while still
providing improved prediction results.

44



Implementation

Complete Dataset Samples Complete Dataset Unique Functions
3,503,892 528

Table 4.2: Complete Dataset size
Cleaning Step Samples Removed % Samples

Removed
Slower Vanilla 721,855 20.60 %
Context Switches and CPU Migrations 1,768 0.05 %
Median Deviation Outliers 36,210 1.03 %
sweeplist Balancing 1,142,927 32.62 %
luaC_step Balancing 1,037,594 29.61 %

Table 4.3: Cleaning Steps
Filtered Dataset Samples Filtered Dataset Unique Functions
563,538 472

Table 4.4: Filtered Dataset size

Dataset Balancing

By evaluating the resulting dataset, it was evident that most samples referred to only 2 of
the initial 528 functions: sweeplist and luaC_step. While all of those were actual function
calls, it was highly unlikely that those represented over one million different execution
paths, so most of them only improved the quality of those function measurements. Keeping
only 2000 samples of both functions makes the resulting dataset smaller and more balanced
while maintaining high diversity. This benefits from improved training times and better
prediction results.

4.7.3 Data splitting

In order to be able to test the ability of the machine learning model to predict the
performance of functions, we need to split the data into training and validation data. The
model will only train using data from the train dataset, while the data from the validation
dataset will be used to evaluate the performance of the complete model. Since it would not
make sense to have different calls of the same functions both in the train and validation
dataset, the splitting is done at the function level, grouping samples of the same function
so that all samples are either in the train, or in the validation dataset.

We tried to balance the two set sizes: ensuring sufficient samples and unique functions
in the training set for effective training while also keeping enough samples and unique
functions for robust model validation and to avoid overfitting.

The final set sizes are shown in Table 4.5:
Both datasets are also split vertically to divide the data to be used as input and as

targets. The train target and validation target will just contain the column that we are
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Set Samples Unique Functions
Training Set 514,596 (91,32 %) 401 (84,96 %)
Validation Set 48,942 (8,68 %) 71 (15,04 %)

Table 4.5: Training and Validation Sets sizes

trying to predict, which will be the obfuscated counter of a feature that closely relates to
performance, or its overhead. In the final models, those will be cpu-clock_opaque (overhead)
and cpu-clock_flatten (overhead).

The train input and validation input will contain all columns available to the developers
who want to use the model: vanilla static and dynamic metrics. In a real scenario, these
could easily be computed automatically in a Continuous Integration / Continuous Delivery
pipeline without effort from the programmer and with little time required. With only those
metrics and access to the pre-trained machine learning model, predicting the performance
degradation of all obfuscation techniques covered by the framework becomes instantaneous.

Note that the region and seed columns must be removed since they are the only
non-numerical features, so they cannot be used for model training.

4.7.4 Model tuning

Prediction target

Since many metrics are indicators of the applications’ performance, it is not straightforward
to decide which of them will be easier and more valuable to predict. The selected
candidate obfuscated features to be predicted are: avg_time-elapsed_ms,cpu-clock,cpu-cycles
,ref-cycles,instructions. For each of those, also the corresponding Overhead was evaluated.
It is measured as:

Overhead = Obfuscated Metric

V anilla Metric

After conducting multiple tests, the metric that resulted in better-performing models
was the cpu-clock overhead.

Dataset preparation configuration

Since it was initially unclear which filters would improve the dataset for better results,
many tests were performed with the various filters enabled or disabled. The percentage
deviation from the median was also adjusted according to the obfuscation technique used,
resulting in a 250% deviation for both Flatten and Opaque. The split size was also tuned
so that the validation set would contain between 7% and 30% of all samples and about
15% of all distinct functions.
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Features engineering

One of the aspects that need to be taken into consideration when dealing with machine
learning models is the curse of dimensionality phenomenon. According to the statement,
if the amount of available data does not grow exponentially as the number of features
increases, performance may decrease. This happens because predicting the target variable
requires finding patterns and relationships between features and that variable. With
high-dimensional data, grouping data points together becomes difficult, as they appear
sparse and dissimilar.

Feature engineering consists of identifying which features are the most useful, relevant
and impactful on model performance and excluding those that are not. This helps to focus
on the features that matter without getting distracted by the irrelevant ones. The added
benefit is that with a smaller dataset, the training time will also be reduced. To decide
which features are less relevant, two approaches can be used [26]:

• model.feature_importances_: This is a built-in attribute provided by some tree-based
models like the Random Forest Regressor. It calculates the importance based on how
much a feature splits a node in the decision tree, leading to a reduction in impurity.
The problem with this approach is that it favours features with high cardinality,
which are common in our dataset.

• permutation_importance: This is a more general technique that can be applied to any
model, not just tree-based ones. It works by shuffling the values of a single feature
and then measuring the decrease in model performance. The more the performance
drops, the more important the feature is considered to be. It takes longer to compute,
but it avoids the bias towards high-cardinality features. This is the technique that
was chosen.

To identify the most important features, one model for each obfuscation technique was
trained using all available features and with the permutation_importance technique. The
results are shown in 4.7 and 4.9. Various feature removal strategies were explored to
determine which combinations would lead to higher performance improvements. Ultimately,
features with importance values below 0.01 were selected for removal from the dataset,
resulting in the final models seen in 4.8 and 4.10. The opaque chart is on a logarithmic
scale to improve the visualization of the impact of various features. This scale prevents
the cycle_cost and jump features from dominating the visual representation and allows for
a better comparison of all features’ influence on the model’s accuracy. To improve visual
clarity, dynamic features are indicated in blue, while static features are indicated in red.

4.7.5 Random Forest Regressor
The library that we decided to use is Scikit-learn, one of the most popular machine-learning
libraries in Python. The RandomForestRegressor object implements the model that we are
going to use. [27]

Hyperparameter tuning is not as effective as for other models, so we only tuned these:
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Figure 4.7: Features importance for Control Flow Flattening

Figure 4.8: Features importance for Control Flow Flattening after Feature Selection

• n_estimators: The number of trees in the forest. A higher number typically produces
better results at the expense of higher training time. Different values were used when
exploring different configurations (25) and when trying to improve the models (100).

• n_jobs: How many threads to run in parallel to speed up training. Typically used 4
to avoid saturating the machine.

• random_state: Control randomness in sample selection to create new training sets
for each tree in the forest (bootstrapping). Also, randomness can be controlled by
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Figure 4.9: Features importance for Opaque Predicates

Figure 4.10: Features importance for Opaque Predicates after Feature Seletion

selecting a subset of features to create the best split point. Guarantees reproducibility
of training.

4.7.6 Neural Network Regressor

Because of their powerful and flexible nature, neural networks were used to try to get
different models with better results. Because of its simplicity of use, the Scikit-learn’s
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neural_network library was used. This provides a Multi-Layer Perceptron in the form
of the MLPRegressor model, which is the type of neural network that we will use. [28]
The disadvantage of this library is that it is slower than other more complex alternatives
because it does not take advantage of GPU-based implementations.

To reduce training time, an initial analysis was performed using only 10% of the full
dataset in order to understand if the results were promising enough to scale to a bigger
dataset. Since the results were optimistic, the training was repeated on the complete
dataset.

Hyperparameters

One of the disadvantages of neural networks is that they require extensive targeted
hyperparameters tuning to achieve good results. Hyperparameters are configuration
settings that regulate how the neural network is internally structured and its learning
process.

Since no literature exists for using neural networks to predict performance, we could
not use generally good values for the hyperparameters, so we tested several [29]:

• hidden_layers: These determine the complexity of the model. More layers can
potentially capture more complex relationships in the data, but also increase training
time and risk overfitting. Tested values used were 1,2,4,8,16

• neurons: These define the width of the network. More neurons allow for more
complex decision boundaries, but can also lead to overfitting. Tested values used
were: 16,32,64,128,256,512,1024

• learning_rate_init: The initial learning rate to use. It controls the step size when
updating the weights. This could have a big impact on the model’s performance.
Tested values used were: 0.001, 0.01, 0.05, 0.10

• random_state: Guarantees reproducibility in the neural network training by reusing
the same seed when random operations are needed. It ensures consistent weight
initialization to neuron connections and consistent batch sampling of the training
data during a single training iteration. The value used was 42

Scalers

Multi-layer Perceptrons are sensitive to the scale of the data, as having vastly different
ranges can negatively impact the training process. Many machine learning algorithms
assume feature values centered around a common value and with similar scales. Without
these assumptions, the performance of the model may degrade, with the risk of not
converging to an optimal solution.

Scaling the data is highly recommended to avoid this. This means adding or subtracting
a constant and then multiplying or dividing by a constant so that the resulting values
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are centered around 0. Scikit provides several Scalers that transform the data in different
ways. The two tested are [30]:

• StandardScaler: This is a common scaling technique that centers the data by sub-
tracting the mean of each feature and then scales it by dividing by the standard
deviation. This results in features with a mean of 0 and a standard deviation of 1.
[31]

• RobustScaler: This scaler is designed to be more robust to outliers. Instead of using
the mean and standard deviation, it subtracts the median of each feature and then
scales it by dividing it by the interquartile range (IQR). The IQR represents the
range between the 25th and 75th percentile of the data. Both median and IQR are
more resistant to outliers than average and standard deviation. [32]

Different scalers could be applied to the training and validation inputs and targets,
but since they all contain similar data, the same scaler was used. This means that the
resulting predictions will also be scaled, so an additional operation to invert the scaler’s
transformation is required before evaluating the model. [33]

4.7.7 Model Evaluation
To measure regression performance, metrics described in Section 3.2.6 were used. The
Scikit-learn library already implements functions to compute most of the metrics needed,
like RMSE, MAE, MAPE, R-squared and Percentiles.

We decided to include additional metrics to have a practical idea of how far the
predictions were from the actual values. To achieve this, we counted the number of samples
with Prediction Errors < 5%, < 10%, < 20%, < 30%, > 30% and reported how many
samples belonged to each group.
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Results

This chapter summarizes the results of this thesis work.

5.1 Configuration used
The dedicated machine Hardware and Software versions used by the dedicated machine
are listed here:

1 CpuModel = Intel Core i7 -4910 MQ
2 OSVersion = " Ubuntu 21.04"
3 KernelVersion = "5.8.0 -59 - generic "
4 GLIBVersion = " Ubuntu GLIBC 2.33 -0 ubuntu5 "
5 CompilerVersion = "gcc ( Ubuntu 10.3.0 -1 ubuntu1 )"
6 python = "^3.10"
7 r2pipe = " ^1.8.0 "
8 multimetric = " ^2.0.5 "
9 Pygments = " ^2.16.1 "

10 chardet = " ^5.2.0 "
11 tqdm = " ^4.66.1 "
12 pandas = " ^2.1.0 "
13 scikit -learn = " ^1.3.0 "

5.2 Overhead Distribution
Table 5.1 summarizes the overhead distribution for the two obfuscation techniques used.
For most samples, the impact of obfuscation on performance is small, but there are cases
where it is significant. In these cases, the control flow flattening technique significantly
impacts the performance.
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Percentile Flatten Opaque
25th percentile 0.85% 0.82%
50th percentile 1.97% 2.23%
75th percentile 5.63% 5.77%
90th percentile 21.57% 9.59%

Table 5.1: Overhead Distribution

5.3 Random Forest Regressors Evaluation
Different simple regressors were created to serve as benchmarks for the performance of our
models. These use simple prediction strategies derived from the filtered dataset:

• Average: This regressor uses the average of the cpu-clock overhead of the filtered
dataset to make all predictions.

• Average of Average: This regressor calculates the average overhead for each function
of the filtered dataset, and then uses the average of those averages for all predictions.

• Weighted Average: This regressor calculates a weighted average of the overhead based
on the frequency of each function in the filtered dataset.

Two of the obtained models are compared with the benchmarks:

• All Features: This is the Random Forest Regressor model obtained from using all
the features available in the dataset

• After Feature Selection: This is the final Random Forest Regressor model trained
solely on the remaining features after removing the less important ones

Tables 5.2 and 5.3 present the comparison between the evaluation metrics values of the
main models.

For both obfuscation techniques, the data show that feature selection improved all the
metrics compared to the model trained on all features. Removing irrelevant or redundant
features results in a model that generalizes better and makes more accurate predictions.

From now on, we will only consider the results from the models after feature selection,
since they represent the most promising models.

All three error metrics (Root Mean Square Error, Mean Absolute Error, and Mean
Absolute Percentage Error) show significant improvement compared with the benchmark
regressors. Their values decrease considerably, indicating a reduction in prediction errors.
The RMSE is inferior to the standard deviation of the validation set, indicating that the
model is uncovering significant patterns in the data, resulting in more accurate predictions
than simply using the average values. The error prediction reduction is more evident
in the Control Flow Flattening model. This is likely because this obfuscation technique
introduces higher variability in possible overhead values, as the higher standard deviation
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Metric Average
Average
of
Average

Weighted
Average

All
Features

After
Feature
Selection

Standard Deviation of
Validation Set

0.1821 0.1821 0.1821 0.1821 0.1821

Root Mean Square
Error 0.2047 0.2200 0.2255 0.1212 0.1049

Mean Absolute Error 0.1671 0.1906 0.1983 0.0584 0.0469
Mean Absolute
Percentage Error 14.91 % 17.30 % 18.07 % 4.63 % 3.96 %

R-squared -0.2632 -0.4602 -0.5342 0.5572 0.6682
Samples with
Prediction Error <5% 4.66 % 4.06 % 3.94 % 78.16 % 81.58 %

Samples with
Prediction Error <10% 13.72 % 9.88 % 8.75 % 88.90 % 90.72 %

Samples with
Prediction Error <20% 94.92 % 80.82 % 59.75 % 95.89 % 96.40 %

Samples with
Prediction Error <30% 97.91 % 98.12 % 98.16 % 97.97 % 98.98 %

Samples with
Prediction Error >30% 2.09 % 1.88 % 1.84 % 2.03 % 1.02 %

Table 5.2: Models evaluation for Control Flow Flattening Obfuscation

indicates. Consequently, the average predictions for the Opaque model tend to be closer
to the actual values compared to the Control Flow Flattening model.

On the other hand, the R-squared metric in both cases goes from negative to positive
and shows a substantial increase. This indicates a strong improvement in the ability of
both models to explain the variance in the target variable, regardless of the obfuscation
technique used. Interestingly, despite a higher standard deviation, the Control Flow
Flattening model achieves an R-squared value even higher than the Opaque model. This
can be explained by the nature of Random Forest models, which can handle complex
and varied datasets. In this case, the higher variability might help the model distinguish
between data points with similar values. It can also provide a broader range of patterns
and relationships in the data for the Random Forest to learn from, resulting in a more
robust model that generalizes better to unseen data.

Two main chart types can help us visualize the actual model behavior effectively:
histograms and scatterplots.

Histograms allow us to see the distribution of actual and predicted sample values across
different overhead value ranges. A logarithmic scale was used to improve the visualization
of bins of different sizes.

When comparing our model to the average regressor, it is evident that the number of
samples predicted in each overhead range closely matches the distribution of the actual
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Metric Average
Average
of
Average

Weighted
Average

All
Features

After
Feature
Selection

Standard Deviation of
Validation Set

0.0953 0.0953 0.0953 0.0953 0.0953

Root Mean Square
Error 0.0953 0.1167 0.0992 0.0831 0.0724

Mean Absolute Error 0.0506 0.1002 0.0446 0.0425 0.0408
Mean Absolute
Percentage Error 4.38 % 9.35 % 3.70 % 3.81 % 3.66 %

R-squared -0.0000 -0.4989 -0.0824 0.2397 0.4221
Samples with
Prediction Error <5% 81.65 % 10.64 % 88.00 % 81.19 % 81.34 %

Samples with
Prediction Error <10% 93.37 % 49.00 % 92.34 % 92.38 % 92.30 %

Samples with
Prediction Error <20% 96.37 % 97.62 % 95.86 % 97.89 % 98.22 %

Samples with
Prediction Error <30% 98.80 % 99.57 % 98.35 % 99.32 % 99.63 %

Samples with
Prediction Error >30% 1.20 % 0.43 % 1.65 % 0.68 % 0.37 %

Table 5.3: Models evaluation for Opaque Obfuscation

overhead values, both in the Flatten (Figures 5.1 and 5.2) and in the Opaque (Figures 5.3
and 5.4) models.

While histograms give us a general overview of the ranges of prediction distributions,
scatterplots offer a more detailed analysis by revealing the relationship between individual
sample overhead values and their corresponding predictions. However, a static scatterplot
can become cluttered when dealing with tens of thousands of samples. The ‘plotly‘ Python
library allows interactive charts that allow zooming and panning, granting the ability to
explore different regions of the graph.

A static image of this chart can still be helpful to gain information. These scatterplot
components are:

• Axes: The x-axis represents the actual overhead values, and the y-axis represents the
predicted overhead values.

• Perfect Predictions: Points lying on the diagonal blue line indicate perfect matches
between the predicted and actual values.

• Prediction Error: The two red lines, positioned 10% above and below the diagonal
line, represent a prediction error of +/- 10%. Points falling between these lines have
predictions within 10% of the actual value.
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Figure 5.1: Flatten average regressor histogram

Figure 5.2: Flatten model histogram

• Color-coding: The color intensity of a data point reflects its distance from the diagonal
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Figure 5.3: Opaque average regressor histogram

Figure 5.4: Opaque model histogram

line. Points with colors closer to green are closer to perfect predictions, while points
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with colors closer to red have larger prediction errors.

• Histogram Integration: Histograms alongside the scatterplot can reveal the overall
distribution of the data points, highlighting which areas have higher concentrations
of samples. Note that the prediction histograms for the average regressors are
represented unintuitively by the application since they actually correspond to a single
prediction value while it looks like a large distribution.

Figures 5.5 and 5.7 show visually that even if the average benchmarks may obtain a
seemingly good evaluation for some metrics like Prediction Errors, they actually don’t
follow the sampling trend at all.

Figure 5.8, and even more Figure 5.6 show that predictions are not casual, but tend to
follow the absolute overhead values even when they are very distant from the average of
the distribution.

Ultimately, our meticulous efforts to refine the framework workflow, incorporate new
applications, extract static features, implement noise reduction techniques, establish a
precise dynamic feature extraction system, clean the dataset, tune and evaluate the models
ultimately paid off. This dedication resulted in high-quality predictions, demonstrating a
significant improvement from the research’s initial stages.

5.4 Neural Network Regressor Evaluation
The same feature selection used for the Random Forest models was applied to the Neural
Network models to compare the two algorithms’ performance more consistently. After
tuning the network’s hidden layers, number of neurons and initial learning rate, Neural
Network models results were compared to find the best.

Graphs in Figure 5.9 only focus on the RMSE value obtained by the models using
different hyperparameters values. Other evaluation metrics are not shown since having a
high RMSE compared to the validation set’s standard deviation directly correlates to poor
model performances. The figures also contain a red line corresponding to the Standard
Deviation of the Validation Set, which is used as a baseline value to compare the RMSE.
RMSEs lower than this threshold indicate promising models, for which other evaluation
metrics need to be analyzed.

While none of the Flatten models achieved performance comparable to the Random
Forest Models (Table 5.4), one promising model was obtained with the Opaque model,
using an Initial Learning Rate of 0.01, 8 layers and 64 neurons.

This promising result led to exploring other Initial Learning Rate values for the Opaque
model, as seen in Figure 5.10.

This revealed another promising model, with an Initial Learning Rate of 0.001, 4 layers
and 32 neurons.

A comparison of their performance with the Average benchmark model and the final
Random Forest model can be seen in Table 5.5.
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Metric Average Random
Forest

Neural Network
(8,64) 0.01

Standard Deviation of
Validation Set

0.1821 0.1821 0.1821

Root Mean Square
Error 0.2047 0.1049 0.2097

Mean Absolute Error 0.1671 0.0469 0.1753
Mean Absolute
Percentage Error 14.91 % 3.96 % 15.74 %

R-squared -0.2632 0.6682 -0.3262
Samples with
Prediction Error <5% 4.66 % 81.58 % 4.47 %

Samples with
Prediction Error <10% 13.72 % 90.72 % 12.17 %

Samples with
Prediction Error <20% 94.92 % 96.40 % 95.07 %

Samples with
Prediction Error <30% 97.91 % 98.98 % 98.01 %

Samples with
Prediction Error >30% 2.09 % 1.02 % 1.99 %

Table 5.4: Neural Network model evaluation for Control Flow Flattening Obfuscation

The final model outperforms all other Neural Network models, with results comparable
to the best Opaque Random Forest Regressor model. While the Random Forest Regressor
ultimately emerged as the superior model, having lower RMSE, higher R-squared and
lower overall prediction errors, the final Neural Network model demonstrates a marginally
improved MAE and MAPE.
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Metric Average Random
Forest

Neural Network
(8,64) 0.01

Neural Network
(4,32) 0.001

Standard Deviation of
Validation Set 0.0953 0.0953 0.0953 0.0953

Root Mean Square
Error 0.0953 0.0724 0.0841 0.0817

Mean Absolute Error 0.0506 0.0408 0.0527 0.0396
Mean Absolute
Percentage Error 4.38 % 3.66 % 4.80 % 3.53 %

R-squared -0.0000 0.4221 0.2220 0.2648
Samples with
Prediction Error <5% 81.65 % 81.34 % 76.10 % 79.83 %

Samples with
Prediction Error <10% 93.37 % 92.30 % 86.78 % 91.35 %

Samples with
Prediction Error <20% 96.37 % 98.22 % 96.03 % 97.53 %

Samples with
Prediction Error <30% 98.80 % 99.63 % 99.89 % 99.64 %

Samples with
Prediction Error >30% 1.20 % 0.37 % 0.11 % 0.36 %

Table 5.5: Neural Network models evaluation for Opaque Obfuscation
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(a) Flatten 0.01 Initial Learning Rate
RMSE

(b) Opaque 0.01 Initial Learning Rate
RMSE

(c) Flatten 0.05 Initial Learning Rate RMSE (d) Opaque 0.05 Initial Learning Rate
RMSE

(e) Flatten 0.1 Initial Learning Rate RMSE (f) Opaque 0.1 Initial Learning Rate RMSE

Figure 5.9: Models RMSE values with different hyperparameters
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(a) Opaque 0.001 Initial Learning Rate
RMSE

(b) Opaque 0.0001 Initial Learning Rate
RMSE

Figure 5.10: Opaque models RMSE values with additional hyperparameters
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Chapter 6

Future Works

The meticulous enhancements made to the various aspects of the framework workflow have
resulted in significant improvements towards a more accurate prediction of the performance
overhead introduced by obfuscation techniques. Future research can expand upon these
robust findings to explore additional areas and integrate new aspects. Some of the possible
improvement areas are listed in this section.

6.1 Application selection

Since the goal is to generalize the prediction of the performance overhead to all possible
functions, it would be beneficial for the models to increase data diversity. This can be
achieved by adding more applications to the pool or by considering more execution paths
of the current applications.

Adding new applications is a challenging process; it requires proper configuration of
the application and its build settings to ensure compatibility with Tigress obfuscation.

Increasing the coverage of the applications already present in the dataset can be done
by fuzzing or manually creating new tests. Both options require enough knowledge of the
application to create useful tests that would increase the execution path coverage, without
adding redundant data to the dataset. A possible solution would be to let all interested
developers themselves add their application and its testing inputs to the pool.

6.2 Obfuscation

Since only Control Flow Flattening and Opaque Predicates were explored, a necessary next
step will be to apply different obfuscation techniques and their combinations to represent
real obfuscation scenarios better.
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6.3 Machine learning
Due to the sensitivity of Neural Network models to hyperparameters, it is possible that
improved models could be discovered through a more extensive and comprehensive tuning
process.

A different approach can be explored, based on training multiple models and then
using the most appropriate one depending on the function that needs to be obfuscated.
The other models would be trained on different sets of functions, depending on their
properties. Several criteria can be used to partition functions based on the available static
and dynamic features. Top Down Microarchitecture Analysis is one possible approach
commonly used to find workload bottlenecks in the CPU microarchitecture, but it could be
leveraged to cluster functions according to their bottleneck location. For example, a model
could be trained on functions limited by many branch mispredicts, while another could be
trained on functions limited by many cache misses, and so on. This could help train more
specialized models with better performances and be used on different types of functions.

6.4 Protection Strength
While this framework addresses the problem of predicting the performance impact of
obfuscation, the other important factor to consider when choosing which technique to use
is the protection strength that each technique provides. This is a very complex aspect to
consider and estimate since modeling MATE attacks is very difficult. Some promising recent
advancements in the literature explore ways to evaluate this through formal approaches,
user studies, code metrics or resistance against symbolic execution attacks [34]. Integrating
together the performance degradation prediction and the protection strength for each
obfuscation technique would empower the application developers to make informed decisions
and effortlessly find the best tradeoff between security and performance.
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User Manual

A.1 Directory Structure
• app/: Applications files

– source/: Applications sources
∗ <application-name>/

– seeds/: Applications inputs
∗ <application-name>/

• config/: Configuration files

– compiling_dict.json
– config.ini

• workdir/: Default folder for ‘performance.py‘ outputs

– app/: Obfuscated sources and executables
– results/: Feature extraction results

∗ <application-name>/: Static metrics extracted and Dynamic features ex-
tracted using Event Counting
· sampling/: Dynamic features extracted using Event Sampling

• utils/: Compiled third party utilities

• output_analysis/: Output manipulation scripts

– csv_processing/: Scripts to manipulate csv files, like merging
– ML/: Machine Learning related scripts

• benchmark_system_config.py
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• measure.py

• metrics.py

• performances.py

• README.md

• requirements.txt

• utils.py

A.2 Environment setup
In order to install all needed dependencies, a README.md file is included, containing the
required steps:

1 # clone repository
2 git clone https :// github .com/b3xul /2023 _Obfuscation_Thesis .git
3 cd 2023 _Obfuscation_Thesis
4

5 # install system dependencies
6 sudo apt -get install build - essential python3 virtualenv pmccabe cpuset

libreadline -dev
7

8 # create virtualenv using Python version >= 3.10
9 virtualenv -p $(which python3 .10) PyEnv

10 source PyEnv/bin/ activate
11

12 # install python libraries ( r2pipe multimetric Pygments chardet tqdm
pandas scikit -learn matplotlib plotly )

13 pip install -r requirements .txt
14

15 cd utils
16

17 # add environmental variables for tigress
18 export TIGRESS_HOME =$(pwd)/ tigress /3.1
19 export PATH=$PATH:$(pwd)/ tigress /3.1
20

21 # install radare2
22 git clone https :// github .com/ radareorg / radare2
23 radare2 /sys/ install .sh
24

25 # Test that the external dependencies work:
26 ctags -bin/ctags --version
27

28 perforator -0.4.1/ perforator -v
29

30 r2 -v
31
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32 tigress --Environment = x86_64 :Linux:Gcc :4.6 --Transform = Virtualize --
Functions =main ,fib ,fac --out= result .c $(pwd)/ tigress /3.1/ test1.c

33 gcc -o result .exe result .c
34 strip result
35 ./ result .exe
36 rm a.out result .c result .exe
37

38 cd ..

A.3 Add new application
Adding a new application to the dataset requires adding its source code, including its
Makefile under app/source/<application-name>. All input files required for testing needs to
be added under app/seeds/<application-name>. An entry describing the application must
be added in the config/compiling_dict.json file.

1 "< application -name >": {
2 " comment ": " Insert here a brief description of the app",
3 " tigress_flags ": " Compilation flags that may be needed for

Tigress compatibility ",
4 " compile_cmd ": "Gcc parameters needed for compiling this

specific app. $IN_FILE and $OUT_FILE are used as placeholders for
the input .c files and the output .exe file",

5 "args ": " Execution arguments for the app. $SEED is a placeholder
that will refer to files under app/seeds/< application -name >",

6 " cleanup_cmd ": "Bash command to be executed after each run to
remove leftover files. CAUTION !!! ANY COMMAND inserted here will be
executed after each run. Use at your own risk .",

7 "git ": "If available , reference to the source URL of the app"
8 },

An example entry for the fastdnaml application will look like this:

1 " fastdnaml ": {
2 " comment ": "ML applied to DNA analysis . Heavly modified to

delete conditional compiling for Master /Slave config . Preserved
Sequential processing ",

3 " tigress_flags ": "",
4 " compile_cmd ": " -O2 -fno -inline -small - functions -fno -indirect -

inlining -fno -inline - functions -fno -inline -functions -called -once -
fno -early - inlining $IN_FILE -o $OUT_FILE -lm",

5 "args ": " < $SEED",
6 " cleanup_cmd ": "rm -f checkpoint * treefile *",
7 "git ": "https :// directory .fsf.org/wiki/ FastDNAml "
8 },
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A.4 Configure features extraction
The config/config.ini file is used to store the configuration information needed by the
performances.py script to perform features extraction. It is divided in multiple sections:
The Paths section contains paths used by the various external dependencies, inputs and
outputs

1 [Paths]
2

3 Tigress_path = ./ utils/ tigress /3.1/
4 Ctags_path = ./ utils/ctags -bin/ctags
5 Perforator_path = ./ utils/perforator -0.4.1/
6

7 Sources_path = ./ app/ source /
8 Seeds_path = ./ app/seeds/
9 Work_path = ./ workdir /

The Paths section contains different options that can be enabled and disabled by setting
them as true or false to customize the performances.py behavior

1 [ Processing ]
2 Clean = # Clean workdir before processing
3 Merge = # Merge .c files using tigress -merge
4 Build = # Compile the apps
5 Obfuscate = # Enable obfuscation
6 CollectMetrics = # Collect Static Metrics
7 MeasureTime = # Event Counting
8 MeasureSample = # Events Sampling
9

10 PostExecCleanup = # Clean residual files after execution
11 SkipIfError = # Skip the app if an exception occurs
12 DeleteOut = # Delete .out files in root after compilation

The Compile section includes compilation flags that will be applied to all applica-
tions measured, in addition to the ones present in the compiling_dict.json entry of each
application. It also allows to set the verbosity of the tigress commands.

1 [ Compile ]
2 default_compiler = # Default compiler command
3 tigress_merge_cmd = # Tigress_merge parameters
4 default_compile = # Default compiler arguments
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5 debug_flags = # Debug compiler flags
6 fixed_flags = # Mandatory compilation flags
7

8 tigress_verbosity = false

The Measure section includes the commands used to perform Event Counting and Event
Sampling, with placeholders that will be replaced at runtime while iterating the application
measurements

1 [ Measure ]
2

3 perforator_cmd = $PERFORATOR_PATH -V --summary --csv --kernel -e $EVENTS
-r $FUNCTIONS -o $OUT_PATH -- $EXEC_PATH $EXEC_ARGS

4 measurement_number = 1
5 sampling_cmd = perf record -e $EVENTS -F 50000 --strict -freq --

$EXEC_PATH $EXEC_ARGS
6 report_cmd = perf report --show -total - period --show -nr - samples --fields =

overhead ,sample ,period ,sym > $OUT_PATH

A.5 Features extraction
The performance.py script without arguments iterates over all applications in the app/source
directory. It is also possible to provide a single <application-name> as an argument to
extract only its features. All results are inserted under the results folder in the output
directory configured in Work_path: Work_path/results/<application-name>. This will contain
a metrics.json file with the static metrics extracted. Then, one folder for each version of
the application considered: vanilla, flatten, opaque will contain ten event_group_<number>.
results.csv files with the results of the Event Counting for each event group considered. A
sampling folder would be present with ten more CSV files if the MeasureSample option were
enabled.

1 python performances .py [ app_name ]

A.6 Merge into dataset
All the output files obtained from one application can be merged into a single <application
-name>.csv file using the csv_merge.py script:
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1 python output_analysis / csv_processing / csv_merge .py <input_folder > <
output_path > [< application -name >]

As the performance.py script, it can merge all and a single application.

A.7 Train models
The input folder containing the merged applications’ CSV files must be passed as an
argument to train the machine learning models. The script will internally merge all found
files into a single merged.csv file, which will be the input dataset for the machine learning
models. It only does so if the merged.csv file is not yet present in the <input-folder>. The
results of the model training will be placed in the output_path. These outputs include

• a results.csv file with the configurations used for the training and the evaluation
metrics of the model

• a predictions.csv file with all the actual values of the target features and the corre-
sponding predictions

• a weights_importances.csv and weights_importances.png file with the features impor-
tances computed on the model. This is only present when Random Forest is trained

The filename of the outputs also contains some information to quickly see some
configuration parameters used during training and to help when dealing with outputs
related to many different models.

1 python output_analysis /ML/ train_custom .py <input_folder > <output_path >

To configure the training parameters, global variables defined at the top of the
train_custom.py script are used. Filtering_config and Preparation_config allow customiz-
ing which data cleaning procedures to enable or disable, and regulate outlier deviation
percentage and validation sample size.

Training config allow to choose the machine learning technique to be used, on which
obfuscation technique to train the model, the target feature, if the overhead of the feature
must be considered or the actual value, and which features of the dataset the model should
ignore.

Random forest config let customize two hyperparameters used by the Random Forest
Regressor.

Neural network config let customize the scalers and hyperparameters for the Neural
Network Regressor.
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1 # Filtering config
2 FILTER_LONGER_VANILLA = # Filter out rows where "cpu - clock_flatten " or

"cpu - clock_opaque " is lower than "cpu -clock"
3 FILTER_CONTEXT_SWITCHES_CPU_MIGRATIONS = # Filter out rows where

context switches > 1 and rows where cpu_migrations > 1
4 FILTER_OUTLIERS = # Filter out outliers above {

OUTLIER_MEDIAN_DEVIATION_PERC } deviation from median
5 OUTLIER_MEDIAN_DEVIATION_PERC = # Percentage of deviation from the

median over which the row is considered an outlier
6 BALANCE_DATASET = # Remove most of the sample of the 2 functions

sweeplist and luaC_step that fills most of the dataset
7

8 # Preparation config
9 SPLIT_BY_FUNCTION = # Split the dataset by samples or by functions

10

11 VALIDATION_SIZE = # 0.15 = 15% of samples
12 VALIDATION_SAMPLES_MIN = # 7 = 7% of samples
13 VALIDATION_SAMPLES_MAX = # 30 = 30% of samples
14

15 # Training config
16 RANDOM_FOREST = # Enable Random Forest training
17 NEURAL_NETWORK = # Enable Neural Network training
18 OBFUSCATION_TARGETS = # Models to create [" flatten "," opaque "]
19 TRAIN_COL_NAME = # avg_time - elapsed_ms ","cpu -clock ","cpu - cycles ","ref -

cycles "," instructions "
20 PREDICT_OVERHEAD = # consider overhead associated with the target feature

, or the actual feature values
21 EXCLUDE_COLS = [" region ","seed","cpu - clock_flatten ","ref - cycles_flatten "

," instructions_flatten ","avg_time - elapsed_ms_flatten ", "cpu -
clock_opaque ","ref - cycles_opaque "," instructions_opaque ","avg_time -
elapsed_ms_opaque " ,] # allows feature selection . always include
region , seed and the obfuscated features present on the dataset

22

23 # Random forest config
24 N_THREADS = # Number of threads for training .
25 N_ESTIMATORS = # Number of estimators (decision -trees) used in the

Random Fores
26 DUMP_MODEL = False # Possibility to dump the resulting model on a file
27

28 # Neural network config
29 NN_TESTING = # Use 10% of the dataset or the full one
30 INPUT_SCALER = # How to scale input data
31 OUTPUT_SCALER = # How to scale output data
32 HIDDEN_LAYERS = [1, 2, 4, 8, 16] # hidden layers in the neural network
33 NEURONS = [16, 32, 64, 128, 256, 512, 1024] # neurons in the neural

network
34 LEARNING_RATE_INITS = [0.01 , 0.05 , 0.10] # initial learning rate of the

neural network
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Developer Manual

This section integrates the implementation details described in Chapter 4 to make it easier
for developers to navigate the project structure.

• performances.py
performances.py is the coordinator script that handles the metrics extraction workflow.
Its configuration instructions can be seen in the User Manual. It coordinates all the
operations needed by calling the appropriate functions defined in the other scripts. It
also handles Logging the workflow status in performances.py.exec.log and handling
Exceptions. Errors are escalated to such script using a standardized Exception,
ExecError, defined in utils.py.

• utils.py
utils.py contains most of the logic and utility functions, such as reading configurations
and handling folders and paths, as well as source file merging, compilation and
obfuscation.

• metrics.py
metrics.py handles the collection of static metrics from both the C sources and the
assembled executable.

• benchmark_system_config.py
benchmark_system_config.py is responsible for implementing Noise Reduction tech-
niques. Its working is explained in detail in Section 4.5

• measure.py
measure.py handles dynamic feature extraction. Its two main functions, collect_dynamic_metrics
and sample_dynamic_metrics were explained in detail in Section 4.6

• output_analysis/csv_processing/csv_merge.py
Merge all the .csv files into one file per each program.

• output_analysis/ML/train_custom.py
train_custom.py is the script that merges files into the full dataset, performs the data
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cleaning procedures selected, and trains the machine learning models according to
the selected configuration. The two main functions trainRandomForestRegressor and
trainNeuralNetworkRegressor and the various configuration options are explained in
Section 4.7

• output_analysis/ML/plot_features_importance.py
This script takes as input a ...weights_importances.csv file created by the train_custom
.py script and outputs a png visualizing features importance.

• output_analysis/ML/create_scatterplot_predicted_vs_actual.py
This script takes as input a ...predictions.csv file created by the train_custom.py
script and outputs a html visualizing an interactive scatterplot of the predicted and
actual values.

• output_analysis/ML/create_histogram_predicted_vs_actual.py
This script takes as input a ...predictions.csv file created by the train_custom.py
script and outputs a png visualizing a histogram of the predicted and actual values.

• output_analysis/ML/compare_nn_results.py
This script takes as input a folder containing multiple ...inverted_results.csv created
by the train_custom.py script when Neural Networks are trained and outputs a rmses
.csv and a rmses.png files extracting their rmse values from the results. They also
create an histogram containing the prediction error values compared between models
in diffs.csv and diffs.png
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Events Table

Event
name in
Perforator
(Perf)

Type Corresponding
PERF_TYPE
(PERF_COUNT_
)

Description Group
Num-
ber

bus-cycles Hardware HW_BUS_
CYCLES

Counts only CPU clock
cycles spent on bus trans-
actions

0

cpu-cycles Hardware HW_CPU_
CYCLES

Counts CPU clock cycles
elapsed

0

ref-cycles Hardware HW_REF_CPU_
CYCLES

Counts CPU clock cycles
elapsed, not affected by
CPU frequency scaling

0

instructions Hardware HW_
INSTRUCTIONS

Counts instructions exe-
cuted by the processor

0

context-
switches

Software SW_CONTEXT_
SWITCHES

Counts context switches
occurred

0

cpu-
migrations

Software SW_CPU_
MIGRATIONS

Counts CPU migrations
occurred

0

cpu-clock Software SW_CPU_CLOCK Counts Time Stamp
Counter clocks elapsed

0

page-faults Software SW_PAGE_
FAULTS

Counts page faults oc-
curred: process tries
to access a non-existent
or non-mapped page in
memory

0

branch-
instructions

Hardware HW_BRANCH_
INSTRUCTIONS

Counts branch instruc-
tions retired

1

branch-
misses

Hardware HW_BRANCH_
MISSES

Counts mispredicted
branch instructions

1
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cache-misses Hardware HW_CACHE_
MISSES

Counts misses to the
cache hierarchy, includ-
ing reads, writes and
prefetches

1

cache-
references

Hardware HW_CACHE_
REFERENCES

Counts accesses to the
cache hierarchy, includ-
ing reads, writes and
prefetches

1

alignment-
faults

Software SW_ALIGNMENT_
FAULTS

Counts alignment faults,
that occur when the ker-
nel needs to handle an
unaligned memory access

1

emulation-
faults

Software SW_EMULATION_
FAULTS

Counts emulation faults,
that occur when the ker-
nel traps on an instruc-
tion not implemented
and needs to emulate it
for user space

1

major-faults Software SW_PAGE_
FAULTS_MAJ

Counts only page faults
that required disk I/O to
handle

1

minor-faults Software SW_PAGE_
FAULTS_MIN

Counts only page faults
that did not require disk
I/O to handle

1

bpu-read-
accesses
(branch-
loads)

Cache HW_CACHE_BPU
HW_CACHE_OP_
READ
HW_CACHE_
RESULT_ACCESS

Counts read accesses ini-
tiated by the Branch Pre-
diction Unit (BPU)

2

bpu-read-
misses
(branch-
load-misses)

Cache HW_CACHE_BPU
HW_CACHE_OP_
READ
HW_CACHE_
RESULT_MISS

Counts read misses initi-
ated by the Branch Pre-
diction Unit (BPU)

2

node-read-
accesses
(node-loads)

Cache HW_CACHE_
NODE
HW_CACHE_OP_
READ
HW_CACHE_
RESULT_ACCESS

Counts read accesses to
the local memory

2
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node-read-
misses
(node-load-
misses)

Cache HW_CACHE_
NODE
HW_CACHE_OP_
READ
HW_CACHE_
RESULT_MISS

Counts read misses to
the local memory

2

itlb-read-
accesses
(iTLB-loads)

Cache HW_CACHE_
ITLB
HW_CACHE_OP_
READ
HW_CACHE_
RESULT_ACCESS

Counts read accesses to
the Instruction Trans-
lation Lookaside Buffer
(TLB)

3

itlb-read-
misses
(iTLB-load-
misses)

Cache HW_CACHE_
ITLB
HW_CACHE_OP_
READ
HW_CACHE_
RESULT_MISS

Counts read misses to
the Instruction Trans-
lation Lookaside Buffer
(TLB)

3

node-write-
accesses
(node-
stores)

Cache HW_CACHE_
NODE
HW_CACHE_OP_
WRITE
HW_CACHE_
RESULT_ACCESS

Counts write accesses to
the local memory.

3

node-write-
misses
(node-store-
misses)

Cache HW_CACHE_
NODE
HW_CACHE_OP_
WRITE
HW_CACHE_
RESULT_MISS

Counts write misses to
the local memory.

3

dtlb-read-
accesses
(dTLB-
loads)

Cache HW_CACHE_
DTLB
HW_CACHE_OP_
READ
HW_CACHE_
RESULT_ACCESS

Counts read accesses to
the Data Translation
Lookaside Buffer (TLB)

4

dtlb-read-
misses
(dTLB-load-
misses)

Cache HW_CACHE_
DTLB
HW_CACHE_OP_
READ
HW_CACHE_
RESULT_MISS

Counts read misses to
the Data Translation
Lookaside Buffer (TLB)

4
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dtlb-write-
accesses
(dTLB-
stores)

Cache HW_CACHE_
DTLB
HW_CACHE_OP_
WRITE
HW_CACHE_
RESULT_ACCESS

Counts write accesses
to the Data Translation
Lookaside Buffer (TLB)

5

dtlb-write-
misses
(dTLB-
write-
misses)

Cache HW_CACHE_
DTLB
HW_CACHE_OP_
WRITE
HW_CACHE_
RESULT_MISS

Counts write misses to
the Data Translation
Lookaside Buffer (TLB)

5

l1d-read-
accesses
(l1d-loads)

Cache HW_CACHE_L1D
HW_CACHE_OP_
READ
HW_CACHE_
RESULT_ACCESS

Counts read accesses to
the Level 1 Data Cache

6

l1d-read-
misses
(l1d-load-
misses)

Cache HW_CACHE_L1D
HW_CACHE_OP_
READ
HW_CACHE_
RESULT_MISS

Counts read misses to
the Level 1 Data Cache

6

l1d-write-
accesses
(l1d-stores)

Cache HW_CACHE_L1D
HW_CACHE_OP_
WRITE
HW_CACHE_
RESULT_ACCESS

Counts write accesses to
the Level 1 Data Cache

7

l1i-read-
misses
(l1i-load-
misses)

Cache HW_CACHE_L1I
HW_CACHE_OP_
READ
HW_CACHE_
RESULT_MISS

Counts read misses to
the Level 1 Instruction
Cache

7

ll-read-
accesses
(LLC-loads)

Cache HW_CACHE_LL
HW_CACHE_OP_
READ
HW_CACHE_
RESULT_ACCESS

Counts read accesses to
the Last Level Cache
(LLC)

8

ll-read-
misses
(LLC-load-
misses)

Cache HW_CACHE_LL
HW_CACHE_OP_
READ
HW_CACHE_
RESULT_MISS

Counts read misses to
the Last Level Cache
(LLC)

8
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ll-write-
accesses
(LLC-stores)

Cache HW_CACHE_LL
HW_CACHE_OP_
WRITE
HW_CACHE_
RESULT_ACCESS

Counts write accesses to
the Last Level Cache
(LLC)

9

ll-write-
misses
(LLC-write-
misses)

Cache HW_CACHE_LL
HW_CACHE_OP_
WRITE
HW_CACHE_
RESULT_MISS

Counts write misses to
the Last Level Cache
(LLC)

9

time-elapsed Not a perf event, but
time elapsed according
to the System Clock, re-
trieved by Perforator.

all

Table C.1: List of events measured
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