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Abstract

The thesis work will focus in the generation of SLT procedures aiming
at complementing the weaknesses of structural test methods. The case
of study will be the timer module of an industrial SoC.
This research will show different approaches adopted to produce pro-
grams suitable to test that parts of the component that are less stressed,
and that can only be covered by specific functional procedures. Each
method is described and detailed in order to provide a clear understand-
ing of the motivations behind its choice, exploring solutions that are
consistent with the analysis of the results obtained by the simulation
to which each test is subjected.
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Chapter 1

Backgound

1.1 Introduction
This section concerns the research area of the research,focused on the
concept of manufacturing test flow and on the explanation of the steps
that composed it, with a particular attention on the System Level
Test method. In addition, a part is dedicated to the structural and
functional approaches to explain what advantages they offer and why
they are crucial to reach a complete coverage of the system.

1.2 Manufacturing test flow
To introduce this background section, it is crucial to clarify the con-
cept of "manufacturing test flow", a key aspect for the purpose of this
research.
In the production of electronic devices, such as the integrated circuits, it
has become essential to subject these kind of products to a functionality
verification process in order to identify defects or malfunctions.
The manufacturing test flow is, therefore, a process to check whether the
design of these semiconductor devices was fabricated in the right way,
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Backgound

since the production process is inevitably not without imperfections [1].
It’s composed of several test phases, whose sequence order and orga-
nization could slightly change depending on the company context in
which it is applied. The scheme in Figure 1.1 could be referred to the
automotive field, scope of application for the board examined in this
research.

Figure 1.1: Manufacturing test flow.

Going into more detail, each step is performed targeting a specific
defect for ensuring the quality of the product during the production
phase.
Therefore the stages that compose the test flow are the following:

• Wafer Test, done at the wafer level, assess the individual integrated
circuits on the wafer for any electrical defects of the chip through
the application of several methods. During this phase, test patterns
are applied utilizing probes.

• Package Test, done after the product has been packed, checks the
integrity of the device and its basic functions to ensure the meeting
of the electrical requirements.

• Burn-In exposes the device to some stress tests, such us high voltage
and elevated temperature, in order to detect potential weaknesses
of the component.
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1.3 – Scan-based structural tests

• Final Test is used to apply both structural and functional tests to
identify possible faults

• System-Level Test includes complex functional programs to check
the correct circuit behavior and the functionality of the entire
system.

It is now crucial to make a distinction between structural and func-
tional tests, explaining the advantages in their usage and how they
have proven to be essential in SoC testing.
Structural tests exploits the knowledge of the internal structure of an
integrated circuit, employing various techniques to enhance the au-
tomation of tests production. Functional tests, on the other hand, are
focused on the overall behavior of the system, or a part of it, without
necessarily taking its structure into account.
It might appear that test automation is the more favorable option to
save time and effort, however, structural testing manages to cover only
a part of the total defects, making the choice to adopt a combination
of the two types of testing more comprehensive.

1.3 Scan-based structural tests
In this subsection, some information will be provided about the scan
chain based methods, since it will represent a useful analysis element
for an approach adopted during the program development.
These types of tests are named “scan" tests because they involve scan-
ning test patterns into internal circuits within the device under test.
The flip-flops structure is changed to a new one, becoming elements
capable of controlling the inputs and outputs of certain sections of
the circuit under test, while always maintaining their original normal
function.
Indeed, these elements, also called scan cells, allow to divide the whole
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system in many parts, composed of combinational circuits not so diffi-
cult to test like the sequential ones [2].
In Figure 1.2 is depicted the the normal flip-flop compared to the one
modified to scan the circuit.

Figure 1.2: D Flip-flop and scan Flip-flop.

The scan cell consists on a normal D flip-flop with the input pin
connected to the output of a multiplexer. The two inputs of the MUX
refers to the signal used in Normal mode and the one used in Test
mode. The signal SE is aimed to switch between these two modalities
allowed by this architecture.
Each scan flip-flop is linked with an other one in order to form a "scan
chain", as the one illustrated in Figure 1.3.

Figure 1.3: Scan Chain.

4



1.4 – System-Level-Test

The input and output pins used in Normal mode are connected
with the combinational logic of the circuit, that is part of its standard
functional path. Instead, every scan input (SI) and scan output (SQ)
pins are linked together, creating the testing path used in Test mode.
This additional design modification is utilized to allow the insertion of
test patterns generated by by an external automatic test equipment
(ATE) during the Test mode of the circuit, targeting the faults in the
combinational logic.
After the test patterns are loaded, the system function is switched into
Normal mode and the circuit response is captured in one or more clock
cycles. Then, again during Test mode, the captured test outputs are
shifted out, and, at the same time, a new test pattern is ready to be
shifted in, repeating the same process.
Finally, in order to detect possible defects, a dedicated component
compares the test response with the expected one stored in its memory,
to check if they match each other.
The advantages of the scan tests consist on their easy implementation
in the system under examination, with the possibility to exploit this
structure for debugging purposes.
However, it requires the utilization of a larger area and more compo-
nents compared to a circuit lacking such functionality.

1.4 System-Level-Test
Over the years, semiconductor technologies have continued to grow
in complexity, making it increasingly challenging for the industries to
achieve a comprehensive set of tests for the modern electronic devices.
As a consequence of this consideration, the System Level Test has
become rather convenient to be utilized as an additional test process by
the component manufacturers, providing a new tool to meet the strict
customer failure rate requirements for improving the product quality
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[3].
The System Level Test (SLT) consists on testing a device under test
(DUT) by using it rather than creating test vectors, simulating an
environment similar to the one in which it will be utilized, to evaluate
the system as a whole.
SLT method is it is particularly suitable to detect chip failures and
defects that are not scanned by the other steps of the industrial test
flow, such as those tests applied at wafer level and the final test that
don’t reach all parts of the circuit.
However, as a drawback, it required an amount of time dedicated for
each chip that tends to be significantly greater than the other phases,
a negative aspect that can be somewhat balanced by applying levels of
parallelism [4]. Therefore it is characterized by a significant cheaper
cost in terms of equipment needed to operate the testing, which allows
initiating multiple functional tests simultaneously.
To gain an overall understanding of the SLT-based approach, it might
be helpful to compare it with the other existing testing techniques,
especially the structural ones.
As described in [5], the key characteristics that define the SLT methods
can be found in its lack of standard methods that involve the use of
Automatic Test Pattern Generation (ATPG) procedures for producing
test patterns and that rely on fault models.
Automated test equipment (ATE) or built-in self-test (BIST) tech-
niques, that are based on these levels of automation, while considered
often essential in the field of integrated circuit testing, are not without
limitations, particularly when concerning the fault coverage. These
methodologies primarily target specific defects outlined by the fault
models taken into account, disregarding others that they may not be
adequately covered, maybe due to the fact that are related to those
parts of the circuit not reached by the ATPG patterns.
Moreover, SLT seems to be especially suitable to cover real-life cases,
given that it includes testing procedures closely resembling how the
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system would be used in the actual operational environment and sub-
jected to real workloads.
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Chapter 2

Generic Timer Module
description

2.1 Component Introduction

In this section of the research, a brief overview of the Generic Timer
Module (GTM) will be provided, outlining the fundamental principles
underlying its creation and detailing the internal structure, with a par-
ticular focus on highlighting the primary applications of its submodules.
The GTM consists of a generic timer platform that serves different
application domains, designed to reduce any significant interrupt load
for an external peripheral core used to configure it. Most tasks within
can operate independently and concurrently with the software. Indeed,
although there could be specific scenarios requiring CPU intervention,
the primary objective of this timer module is to minimize such occur-
rences.
The Figure 2.1 provides a general overview of the internal architecture
of the main blocks and how they are organized. However, it is important
to highlight that it represents only an approximate model of the actual
structure, as it does not depict the exact number of instances for each
module type that composed the timer.
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Generic Timer Module description

Figure 2.1: Generic Timer Module architecture.

The information about the GTM that will be provided in the next
sections are taken most of all from the official manual [6] and from the
guide [7].

2.2 Generic Timer Module principles
In order to give some details about the GTM, it’s important to speak
about the philosophy behind its design.
One possible approach to design a complex timer consists on adopting

10



2.2 – Generic Timer Module principles

a predominantly hardware-centric strategy, incorporating capture/-
compare units and counters in the module, managed by an external
processor or co-processor. In contrast, a second possible approach
regards to follow a more processing-oriented methodology, employing a
programmable micro controller that executes timer-specific tasks.
Of these two theories, the former faces some challenges, such as the
external core having to manage numerous interrupts to control the
timer module through the bus system; while the software-centric ap-
proach often encounters issues like lower signal processing resolution
and programming difficulties due to the highly specialized instruction
sets.
A potential third approach could involve combining the advantages of
both the design philosophies, aiming to address the need for a flexible
method to handle a substantial load on the CPU, while simultaneously
ensuring high performance.
This objectives forms the foundation of the GTM, equipped with sub-
modules capable of performing dedicated hardware functions, including
a RISC-like processing engine integrated within the GTM that facili-
tates signal processing and flexible signal generation.
The presence of the Multi Channel Sequencer (MCS), a generic data
processing module inside the timer, it is an evidence of how such an
approach has been implemented, enhancing the GTM’s flexibility. How-
ever the description of this component will be provided in a subsequent
dedicated section.
Figure 2.2, taken from the manual [6], illustrates the timer philosophies
and their alignment with the GTM.
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Generic Timer Module description

Figure 2.2: Market timer concepts.

2.3 Generic Timer Module architecure
This section will elucidate and analyze details of the GTM function-
alities that have played a pivotal role in this research work for the
development of certain theories, aimed at the creation of dedicated
functional procedures. Consequently, a more comprehensive description
of this system is presented.
The GTM is composed of dedicated hardware submodules that are
placed all around a central routing unit, referred to as Advanced Rout-
ing Unit (ARU), that can combine inputs and outputs to produce more
complex signals. Indeed, this specific circuit can route signals derived
from different modules to processing units where an intermediate value,
representing for instance an incoming signal frequency, can be calcu-
lated.
Such approach to designed the architecture system allow to link dif-
ferent components in a way that facilitates a flexible interconnection
and, though the quantity of such components may differ from one
device to another, they can be added or removed to optimize the area
consumption.

12
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Moreover, this type of connectivity is programmable via software and
can be configured during runtime.
Broadly speaking about the submodules, there are some input compo-
nents for timers, where incoming signals can be captured and analyzed,
some modules that facilitate the implementation of intricate functions,
and others that follow a more generic architecture performing standard
timer functions, such as the PWM generation units.
A different category of submodules is dedicated to particular applica-
tion domains, for instance the DPLL caters to engine management
applications. Another set of them falls under a group that supports the
implementation of functions in order to meet defined safety standards
or with the purpose to handle interrupt services.
However, to get an overall picture of the system some main function-
alities assigned to individual components will be described more in
details.
Despite each version of this timer peripheral shows slight differences
for what concerns the architecture, it always presents the same basic
block structure, as that shown in the Figure 2.3, in which each block
type is grouped based on its utility and identified with a distinct color.

13



Generic Timer Module description

Figure 2.3: GTM block diagram.

In order to make a clear classification, the submodules represented
can be categorized into the following types:

• the infrastructural components, marked with green color in Figure
2.3, pertain to those responsible for routing data coming from the
CPU or the internal modules and directed towards other modules
within (this is the case of the PSM, BRC, and ARU). This category
includes also the TBU, providing a wide time base, the CMU, offer-
ing a clock prescaler for all the modules, and the ICM, responsible
for bundling the interrupts.

• the Input/Output submodules, marked with blue color, with the
purpose to sample external signals and produce complex output
signals. This classification concerns the core components for the
generation of PWM signals, such as the ATOM, the TOM, the
TIM block and the DTM, able to combine also the outputs of the
others.

• the application specific submodules, marked in yellow, representing

14



2.4 – GTM modules

those components which cover different application domains. The
DPLL, MAP and SPE modules are part of this category.

• the MCS programmable core, a RISC-like processor, with an own
internal RAM, that operates on the signals generated by the GTM
or provided by the CPU.

• submodules to support functional safety, marked in gray, like the
CMP, that can compare two adjacent channel outputs from ATOM
or TOM, and the MON component, with the goal to monitors the
internal clocks and MCS functionality.

2.4 GTM modules
In this section, the descriptions of some important modules for this
research work will be provided.

2.4.1 TIM
The Timer Input Module provides a measurement and management
system for GTM’s input signals and it can be controlled by both the
CPU and the ARU.
It is equipped with dedicated filters to eliminate any potential glitches
in the signals and offers five configuration modes allowing measurements
on the examined inputs.
At this point, it could be crucial to highlight how the instances of each
internal component within the General Timer that will be described
are actually composed of multiple channels, and therefore, multiple
signal paths, which can operate independently of each other, enabling
parallel functionality of the system and reducing data processing time.
For what concerns the TIM, there are six instances of the component,

15
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each with eight channels, these ones characterized by a data measure-
ment unit and a filter, as previously mentioned.
It is possible to set various time thresholds on the filter to determine
how they should be utilized for ’cleaning’ an input signal. For a clearer
explanation, these thresholds can be regarded as values that dictate
the time (controlled by an internal counter) during which the input
signal remains constant, removing sudden changes (called glitches).
Once the input data is validated by the filter, it can be sent to the
Signal Measurement Unit for the processing phase. Within this unit,
some operations are applied, including counting edges or measuring the
signal level time.
Each result from the measurement unit is stored in dedicated shadow
registers that must be processed before the arrival of a new value. These
registers, like the majority in the GTM, consist of 24 bits.
The general structure of the TIM is illustrated in the Figure 2.4, pro-
viding an overview of the organization of the aforementioned units.

Figure 2.4: TIM channel diagram.

In addition, among the modes that can be set for an individual
channel, and that primarily decide what operation has to be executed,
two specific modes should be mentioned:

• the TIM PWM Measurement mode (TPWM), that measures the

16



2.4 – GTM modules

duty cycle and period length of an incoming signal in number of
clock ticks, using an internal counter of 24 bits.

• the TIM Input Event Mode (TIEM), which enables the use of the
register counter to keep track of the number of edges in the input
signal.

These two settings will be utilized in the module’s test programs ex-
plained in a dedicated section of this research.

2.4.2 ARU
The ARU is an important component to guarantee the flexibility of
the GTM, since it’s the core of the communication system for the
submodules when the generic timer has to operate independently of
the external processor.
The ARU routing data register is designed as shown in the Figure 2.5.

Figure 2.5: ARU data organization.

There is a register of 53 bits, divided into three parts. The first one,
the ACB field of 3 bits, is used for the control signals, the other ones,
both 24-bit wide, are used to store the values to be transferred.
A pivotal aspect of the GTM involves the routing mechanism employed
within the ARU submodule to handle data streams. Grasping this
concept is essential for effectively leveraging the resources of the timer.
Every module connected to the ARU provide a variable number of
ARU write channels, that they can be referred to as data sources, and
ARU read channels, called data destinations. The underlying principle
is based on the system of a time multiplex communication scheme;
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Generic Timer Module description

consequently, at any given moment, there exists a unique path active
in the ARU stream between two channels.
The choice to forego the implementation of a switch matrix, to prefer
instead the employing of a serialized connectivity data router, takes
the advantage to optimize the resource cost, but always ensuring the
versatility for the GTM.
In Figure 2.6 it’s represented the ARU data routing principle, where
data sources are shown as green rectangles and data destinations as
yellow rectangles. The dashed lines within the ARU delineate config-
urable connections between data sources and data destinations.

Figure 2.6: ARU routing mechanism.

Considering that each data source has its unique address, the ARU
operates in the following manner: it systematically checks the data
destinations of the linked modules in a round-robin sequence. When a
destination requests new data from its configured data source, and this
one is valid, the ARU transports the data to the destination, notifying

18
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the successful processing of the transmission.
Then, the data source marks the delivered ARU data as invalid, indicat-
ing that the destination has consumed the data. If this not happened,
for instance there isn’t any data to be read yet, the destination waits
until the source channel provides a new value, this process is called
ARU blocking mechanism. The concept is shown in Figure 2.7.

Figure 2.7: ARU blocking mechanism.

It is important to emphasize that each data source should be exclu-
sively connected to a single data destination. Indeed, if two destinations
pointed to the same source, one destination would consume the data
before the other could do, causing a problem of conflict access to the
resources.

2.4.3 MCS
The Multi Channel Sequencer (MCS) is a programmable data process-
ing module connected to the ARU and it stands out as one of the most
powerful component of the GTM.
It can be used for different kind of applications in order to reduce the
CPU load, such as a complex engine position management [8].
Five instances of this submodule are present in the Generic Timer
version used in this research, each with eight channels.
Its functionality involves the computation of complex output sequences,
using data provided by the CPU or by the ARU in combination with
other submodule, for instance values coming from the TIM module.
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A picture of its internal architecture is presented in Figure 2.8.

Figure 2.8: MCS architecture.

It executes tasks based on a RISC-like instruction set stored in its
dedicated local RAM, in which, during the system startup, the MCS
program is loaded by the CPU via the bus interface.
The RAM is divided into two separate blocks, each with an own inter-
face for parallel access. Each RAM page has the capacity to hold code
and data sections of arbitrary size, all of which are accessible by every
MCS channel.
The memory layout contains up to 212 locations each 32-bit wide, there-
fore a maximum byte range from 0 to 214 − 1.
All the eight channels can be active at the same time, for each instance
of MCS, and they can operate as independent threads and exchange
data. Each of them is equipped with its own program counter and
register set, executing instructions from the same program or, instead,
in parallel from different programs.
The MCS submodule incorporates an Arithmetic Logic Unit (ALU)
with a RISC-like instruction set and multiple register sets, so that there
is no need to save registers on the stack during a task switch.
Thanks to a pipelined approach of five stages, the processor achieves
the execution of one instruction per clock cycle. In this way one task
fetches a new command from the RAM, while another task decodes its
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2.4 – GTM modules

instruction, and a third task utilizes the ALU for the data execution.
Figure 2.9 aims to elucidate the MCS pipelining.

Figure 2.9: MCS scheduling.

The illustration delineates all the stages of the pipeline and the tasks
arranged in a timing order.
It is evident that, when all tasks are active or when utilizing round-robin
scheduling mode, it takes nine cycles until the subsequent instruction
of a task can be executed. This last ninth cycle is allocated to provide
the CPU an advantage in accessing the RAM section from which tasks
retrieve their instructions.
Round-robin scheduling signifies that each task has its designated slot
for execution.
In addition, there is also a second scheduling mode, called accelerated
scheduling, that improves the computational performance of the MCS
by skipping suspended MCS-channels.
Regarding the instruction set, each instruction is 32 bit wide but the
duration varies in the range of 5 to 9 clock cycles, according to the
number of suspended channels.
The instruction format is shown in the Figure 2.10.

21



Generic Timer Module description

Figure 2.10: MCS Instuctions Formats.

As it’s possible to observe there are two configurations for the bit
alignment:

• the first one depicted in Figure 2.10 is the literal instruction format,
for that instructions that accesses a 24 bit literal and a single 24
bit resister as operand.

• the second one is the double operand instruction format, for in-
structions that can access two operands stored in 24-bit registers

In addition, it is also possible to identify different categories within the
instruction set based on the purpose of each operation. This classifica-
tion is divided into:

• Data transfer functions, which can store data, provided either by
the MCS or by the CPU, into internal registers or memory locations
of the processor. Instructions such as POP and PUSH, used for
stack interactions, also fall into this category.

• ARU instructions, involving all the write and read access operations
of the ARU.

• Arithmetic logic instructions, covering all operations executed by
the ALU component of the datapath.
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• Test instructions, which regard some instructions used to compare
different operands.

• Control flow instructions, representing the basic instructions for
branching and function calls.

• Other instructions that do not fit into the aforementioned categories,
such as NOP, which performs no operation, and WURM, used
to wait for one or more trigger events generated by other MCS
channels or the CPU.

It is important to highlight that, in order to program the MCS, it is
necessary to write the code on a specific assembler source file, which
has the dedicated extension ".mcs".
Using the Bosch ASM-MCS tool, the instructions are translated into
machine code, generating a C-code array which is then processed by a
compiler along with the rest of the program.
For helping the assembler converter on how to translate the instructions,
some suitable directives are used for this purpose. All instructions and
directives are listed in manual [6].
As described in [9], to make this conversion, from the channel sequencer
code to the machine code, it has been used the command:

asm-mcs.exe -o out_file.c -odef out_file.h -olbl mcs_-
mem -I source_dir -I <mcs assembly source directory>
soucefile.mcs

The assembly tool takes as input the ".mcs" file, including the instruc-
tions that are used for the program, and a ".inc" configuration file, with
some useful architecture specifications.
As outputs, it generates:
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• a C-code file with the instructions array

• a header file with the label and memory offset definitions

Finally, these files can be integrate in a project, and the instructions
can be executed according to the scheduling 2.9.

2.4.4 ATOM
The ARU-connected Timer Output Module (ATOM) is a component
which can produce complex signals on the outputs of the GTM.
As shown in Figure 2.11, its channels are composed of two compare
units, referred to as CCU0 and CCU1, that includes the CM0 and CM1
register and the associated shadow registers SR0 and SR1, used as a
sort of terminal values for the counters CNT inside the channel.
In particular the compare registers CM0 and CM1 represent reference
time values for the counter,in order to create the desired signal output.

Figure 2.11: ATOM channel diagram.

This ATOM shows hardware characteristic similar to the Timer
Output Module, with the only main difference that a source linked to
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the ARU can be routed to feed the compare registers, both 24 bits
wide.
Such as the TIM, it’s also possible to change the functionality by setting
the operation mode, choosing among four of them, and once enabled,
each channel can operate independently from the others. These modes
are the following:

• Signal Output Mode PWM (SOMP)

• Signal Output Mode Compare (SOMC)

• Signal Output Mode Immediate (SOMI)

• Signal Output Mode Serial (SOMS)

• Signal Output Mode Buffer Compare (SOMB)

As previously done for the TIM component description, only the modes
of interest will be explained.
In SOMP mode, the ATOM channel is available for utilization as a
PWM generator. The registers CM0 and CM1 store the period and the
duty cycle values, respectively. Simultaneously, the shadow registers
can be employed to concurrently define new characteristics for the
upcoming PWM signal.
As observed from the Figure 2.12 the feature of this timer consists on
the possibility to use the ARU; therefore, the shadow registers SR0 and
SR1 can be reloaded with new data coming from the 53 bit wide ARU
word, implementing a two-stage pipeline in which the period and duty
cycle are set before the effective utilization.
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Figure 2.12: ATOM SOMP mode scheme.

The other mode to be mentioned is the SOMC modality, the most
complex of this submodule.
In this context, the updates of the output signals are not determined
by the independent counter registers within each channel; instead, they
are implemented by the global time bases generated by the TBU sub-
module. In SOMC, either the CPU or a source connected to the ARU
can supply compare values to the ATOM channel.
The CM0 and CM1 registers within the CCU0 and CCU1 units, or
better their shadow registers, can be dynamically updated with new
compare values until a match event is detected by one of the units.
A match is raised when the counter CNT reaches a compare value,
updating the output bit according to the options set.
Subsequently, it is feasible to input new compare values, but they
will not take immediate effect, because before either the CPU or a
destination connected to the ARU must read at least one value.
The menage of the compare mechanism within the two units involves
several control bits, that has the role to decide in which way the output
has to be updated, to define the compare strategy, such as comparing
in both the units simultaneously, or even to use a different TBU time
base values, for instance to facilitate the definition of an output signal
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event on two distinct time bases.
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Chapter 3

Hardware and software
environments

3.1 Hardware instrumentation

This section of the research will introduce and describe the hardware
instrumentation that has been employed.
The Device Under Test (DUT), for which the System Level Test pro-
grams have been developed, is identified as an industrial device named
Bernina, produced by STMicroelectronics and belonging to the SPC58
device family. However it would be more appropriate to use the term of
Component Under Test (CUT), since the target for which the tests have
been created corresponds to a specific component of the microcontroller,
a timer module named GTM344.
Developed by Bosch, this module is used for complex computations on
digital inputs, captured in real-time, in order to generate any output
signal shapes with Pulse Width Modulation (PWM).
To gain an overall overview, a reference has been made in Figure 3.1,
which depicts the complete system setup.
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Figure 3.1: Hardware setup of the motherboard and daughterboard.

As can be seen, the hardware setup consists on a SPC57XXMB
motherboard and a daughter card SPC58xxADPT, which plugs into
the motherboard.
This configuration allows a full access to the CPU and all motherboard
peripherals, serving as a support for the microcontroller device that is
placed in a dedicated MCU socket.
The motherboard provides a single external 12V power supply, with the
possibility of four on-board voltage regulators, and offers also a set of
freely connectable pins and LEDs, which can be configured according
to the requirements of the program being run.
Referring to the daughter board, the small one shown in Figure 3.1,
it’s possible to observe, on its left, the Jtag connector, which has been
utilized to connect the USB/JTAG interface SPC5-UDESTK, depicted
in Figure 3.2.
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This component is required in order to enable the debugger functionali-
ties and consequently verify the proper operation of the software.

Figure 3.2: SPC5-UDESTK debugger.

For what concerns the whole environment setup, instead, Figure 3.3
depicts a representative diagram of the system in which the research
work has been performed.

Figure 3.3: Hardware environment.

To sum up, the DUT is connected through the aforementioned debug-
ger interface to a host computer, allowing interaction with the device,
while a dedicated server has been provided in order to accomplish each
operation related to the simulations of the functional programs. Indeed,
it has been necessary as environment setup to apply all the analysis
scripts needed, and to gain all the information about the coverage and
the stimulated signals.
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3.2 Software tools

In this section, the software platforms and tools used for the research
are presented.
Regarding the code writing and debugger access, STMicroelectronics
provides a free integrated development environment called SPC5-Studio.
It consists of a built-on Eclipse plug-in development environment (PDE),
fully customized by the user to define new components and to better
control them [10].
It generates ANSI C compliant code, supporting the MISRA 2012
standard quality, and it provides an intuitive user interface and a com-
prehensive framework to design, build, and deploy programs for SPC5x
family 32-bit architecture, such as the Bernina device.
In order to test the Generic Timer Module, several programs have been
written using this software application, loaded into the board’s flash
memory, and tested through the debugger.
Additionally, some libraries provided by SPC5-Studio have been used
to manage each module of the GTM at a high level. These libraries
have been slightly extended during this research to adapt them to the
needs of the testing procedures.
After developing and debugging a program, the files generated from its
compilation have been uploaded to a dedicated server, that provided
the environment for simulation and analysis.
The publication [11] can be a reference guide for what concerns the
software used and the analysis procedure flow, because this research can
be considered an in-depth study of a specific part of the experiments
discussed in the article. Therefore the tools will not be explained in
detail, but the ones of interest for this work will be briefly described.
The evaluation process for the SLT methods, that has been adopted,
follows the steps outlined in the diagram of Figure 3.4.
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Figure 3.4: Software workflow.

The process starts from the functional programs loaded on the server.
It is important to mention that an additional initial step in the repre-
sented flow can be considered. Indeed, it might be necessary to check
the actual functionality of the program through an RTL simulation,
before the gate level analysis, performed in this case by a commercial
tool. This operation allows a kind of debugging in a high-level ab-
straction environment to verify the correct behavior of the system in
a short amount of time, since it employs relatively low computational
resources.
On the contrary, the netlist-based gate simulation, to which the func-
tional procedures are subjected, represents the step that requires the
highest amount of time, not only because it involves complex models
of circuit interconnections and logic gates, but also because it has to
write the VCD file, containing detailed information about signal value
changes.
Two types of VCD documents exist:

• Four state, to represent variable changes in 0, 1, x, and z, if in
binary format, with no strength information.

• Extended, to represent variable changes in all states and strength
information.

This file begins with a header section with the date, the version of the
simulator utilized for the simulation, and the timescale used.
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Then, the definition of the scope and variables being recorded are
reported, succeeded by the changes at each simulation time increment
[12].
An example is shown in Figure 3.5.

Figure 3.5: VCD file example.

The file of interest for this research is the extended version one,
briefly named eVCD.
As described in [11], this file is a crucial element of the toolchain, as
it’s used as input for the dedicated designed analyzer tool which may
take a considerable amount of time for performing the analysis, since
the eVCD could be very large (hundreds of GBytes). This tool aims to
provide some useful stress metrics information; among them, the full
single-point metric (toggle coverage) represents an important data point
for this research. Indeed, it gives an indication of the total number
of gates that the programs, executed on the physical device, needs to
cover.
To better understand this concept, it is essential to highlight what is
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meant by "covering a gate".
As explained in the article [11], a gate is considered covered when it
operates both the transitions (i.e., from 0 to 1 and vice versa, from 1
to 0). Such coverage ensures that a logical node within the circuit has
been thoroughly tested.
The developed toolchain involves also the pruning of that signals which
do not affect the stress metrics during the evaluation phase. This
filtering method is achieved by matching the information in the VCD
file with the list of the actual gates that make up the physical device,
thus providing an accurate coverage of the SoC under examination.
Finally, in the last steps of this workflow, some scripts are provided to
collect all the data needed to characterized a test, such as the number of
gates not toggled, the coverage referred to each submodule of the GTM
and the list of signals with the corresponding executed transitions.
After each evaluation of a single program, the results are merged with
the previous ones, using a dedicated script, in order to gain a more
meaningful incremental coverage to keep track of progress.
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Chapter 4

Workflow

4.1 Workflow introduction
The work done for this research aimed to identify the most suitable
method for testing a specific complex peripheral timer, taking into
account the Generic Timer Module as subject of study.
In order to follow a logical work flow consistent with the results obtained
from simulations, the first programs have been based on simple logical
insights, to proceed then with the different methods explored after a
more accurate analysis of the available data. For instance, a deep study
of the covered and not covered signals has allowed to consider some
solutions over others.
Each test is detailed and followed by some examples to understand
better its goal and the ideas that led to its designed.

4.2 Research proposal
As starting point, it has conducted an analysis of the physical areas of the
Bernina microcontroller, using the heatmaps, provided in [11], in order
to identify possible regions of the hardware insufficiently stimulated by
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the structural tests, with a primary focus on the toggle coverage.
The picture in Figure 4.1 represents the final result, obtained from the
analyzer tool, of the superimposition of different stress patterns, such
as:

• 32 scan based ATPG patterns

• 12 selective ATPG patterns

• 1024 scan based pseudo-random patterns

• LBIST patterns

• MBIST patterns

• some functional patterns

Figure 4.1: Heatmap of the overall stress provided by the superim-
position of all stress patterns.

The red colored areas in Figure 4.1 represent the regions of interest
that did not achieve a sufficient stress level after the microcontroller
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underwent all the structural and functional tests listed. The region
inside the red circles is an example of these areas.
Therefore, analyzing the image, some "shadow zones" have been identi-
fied, located in those circuit locations where, among the components
that composed Bernina, the timer module GTM has been implemented.
One possible explanation for the lack of coverage in this module could
lie in its implementation.
Therefore, the Generic Timer Module, designed by Bosch, has been
interconnected using a dedicated hardware interface, different from the
rest of the device, that potentially has hindered the specific automatic
tests from effectively exciting the signals and gates within the compo-
nent itself.
The conclusion drawn has been the need to prioritize the development
of functional programs targeting the area of interest. This has been
done not only to achieve a more comprehensive coverage from a signal
testing perspective, but also to ensure the proper functioning of the
key features of such a complex module not originally part of the main
system.
So, after having identified the problem and some potential resolutions,
the initial phase would undoubtedly involve an in-depth study of the
device under test, in order to understand its usage and pinpoint the
weaknesses.
The work carried out has followed the scheme in Figure 4.2.
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Figure 4.2: Work process flowchart.
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4.3 In-depth study of the GTM

The first step has involved the studying of the manual [6] to establish a
basic understanding of the GTM’s functionalities, identifying the more
complex modules and those that could be used more frequently.
This initial phase also served as a sort of "testing ground" to become
familiar with the module, developing some programs with the sole
purpose of utilizing the GTM and studying its behavior.
In this regard, also the guide [7] has been consulted, which has allowed
to make use of some useful examples, such as the procedures that
leveraged the interaction between the different submodules within the
timer.

4.4 Logic test procedures

The first case of study has been focused on the input and output mod-
ules of the GTM.
The programs developed for testing, that follow a System Level Test
approach, aimed to simulate the behavior of a system as close as possi-
ble to the actual component’s usage.
The idea behind these first attempts has been to find a circuit element of
these types of components that, when tested, could provide a significant
increase in coverage and could toggle as many gates as possible.
This critical element has been identified in the counter registers, those
most commonly used for the operations of a timer, but, most of all,
those with the highest number of bits, so theoretically with a high
probability of reaching a good number of untoggled signals.
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4.4.1 ATOM SOMP tests
For the initial test has been involved the ATOM module, taken indi-
vidually, and it has been decided to focus on a single channel of it,
configured in SOMP mode by setting the appropriate control bits, in
order to generate PWM signals, as described in Section 2.4.4.
Specific functions have been created ad-hoc to speedup its programming
and configuration procedure.
The program was aimed to provide values to be stored in the compari-
son registers CM0 and CM1 of the CCU0 and CCU1 units, serving as
a sort of terminal counter values for the 24-bit counter registers.
Since the focus has been limited on the use of the ATOM, the com-
parison values has been provided via the CPU to the shadow registers
SR0 and SR1. These ones have the function of continuously supplying
values to the CM0 and CM1 registers after each output period time.
The operation is illustrated in Figure 4.3.

Figure 4.3: ATOM SOMP beahvior.

The 24-bit wide counter register CN0, starting from zero, allows
to toggle the output, each time it reaches the value stored in CM1
and, subsequently, the value stored in CM0, returning then to the
initial value. This results in the generation of a square wave, with the
possibility to customize the duty cycle and period time based on the
data stored in the compare registers. Instead, the Signal Level bit (SL)
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influences the starting value of the output.
The CM0 and CM1 registers have been cyclically changed to test them
with various possible values.
These functional procedures, however, have yielded unsatisfactory re-
sults, with an increase in coverage of only 0.001% and a simulation
time of approximately 30 hours.
The problem of this approach consisted on the excessive repetitions
in toggling the same signal, for instance the same bits in the counter
register, as this would slow down the program execution, especially in
simulation, due to the high number of signal changes.

4.4.2 ATOM Counters tests
Another issue to consider was that, by using the counters as they
actually operate in a real environment, the registers were not uniformly
tested.
A high number of bit transitions did not contribute to increasing the
coverage, reproducing the same toggles in the same gates.
It has been crucial to aim for a uniform toggle activity across all the
24 bits of each register, in order to avoid waste of simulation time and
achieve an adequate level of program efficiency.
Indeed, as outlined in Figure 4.4, the least significant bits appeared
to be highly stimulated by the counter’s usage, gradually decreasing
towards the most significant bits.
This condition is plausible even for a non-testing-oriented use of the

circuit.
Since the main functionalities of the Generic Timer Module also include
the generation of complex outputs, such as PWM signals, it has been
reasonable to assume that a counter would rarely reach high values in
its maximum range, or at least less frequently than lower values that
are revisited every time a comparison value was reached, as illustrated
in the example of Figure 4.3.
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Figure 4.4: Scheme of the stress for a 24-bit wide counter register.

To achieve this goal, several techniques has been explored, testing
different approaches.
Firstly, a "walking bit" method has been applied to the registers under
examination, which consists on a standard technique ensuring a com-
plete uniformity in bit transitions.
It involves the setting of the initial value to ’1’ (in the case of the
"walking one") and then the "shifting" of this bit to the left, so that
each bit undergoes both possible transitions only once. This process is
illustrated in Figure 4.5.

Figure 4.5: Walking bit of a register.

However, the application of this technique assumes that the counter
should increment by a different value each time, which is not supported
by the GTM settings.
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Given this consideration, a possible solution has been to insert the val-
ues "manually", so by directly writing into the target registers without
actually running the counter. This could only be achieved by disabling
the ATOM channel and cyclically updating the CNT register with the
correct values to perform the walking one.
In this case, the ATOM has been set in both SOMP and SOMC mode,
meaning both with the generation of a PWM output and relying solely
on triggering the output toggle (see Section 2.4.4 for an explanation in
detail of these modes).
Another test has been then considered, more geared towards an ap-
proach that included both uniform coverage in the register and a real
system utilization. This strategy has been aimed to use the counter
more effectively, keeping the counter active only long enough to per-
form a single increment, preventing it from overloading excessively the
simulation.
Specifically, it has planned to set the CNT register to optimal values
that, with an increment, would toggle an high number of bits. The
counter would then be stopped (or better reset to zero) immediately
after this increment by correctly setting the comparison registers CMx.
This procedure has been possible by configuring the ATOM channel
in one-shot mode, which involved generating a single period of PWM
signal. This choice has prevented the counter from automatically
restarting once reaching the initial value, which was to be avoided for
the purpose of this approach.
The diagram in the Figure 4.6 provides a clearer explanation of how
this approach works.
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Figure 4.6: Example of stress counter technique.

The program described has been finally applied to all the eight chan-
nels of all the six instances of the ATOM module.
Furthermore, it is worth considering that other registers have been
stressed to expand the testing area of the program, such as that dedi-
cated for the control operations, that aimed for the configuration, and
some shadow registers

4.4.3 TIM tests

Then, it has been the turn of the Timer Input Module of the GTM,
which has proved to be a more challenging component to test.
In fact, applying the same approach as for the ATOM to this compo-
nent, presents a problem due to the design of the GTM, since it is a
module that does not offer much freedom in managing the counters, at
least not for testing purposes.
A emblematic case is the TIM, as it has many counter registers within
each channel that do not allow the possibility of loading values into
them from the CPU.
To get a clearer idea, let’s consider an example by looking at the internal
structure of the TIM channel, as shown in Figure 4.7.
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Figure 4.7: TIM channel structure.

The registers circled in red in the image are the channel counters
(CNT, ECNT, and CNTS) and some registers where output values are
temporarily stored (GPR0 and GPR1). They all represent examples of
24-bit registers, and therefore, they are some of the largest registers in
the entire GTM, but they cannot be overwritten directly by the CPU.
Testing them can only be done by starting the normal functionality of
the counters, resulting in long simulation times.
Therefore, the option of trying to test the registers for reduced bit
ranges, smaller than the maximum one corresponding to 24 bits, has
been considered.
Subsequently, the results from the simulations would be collected to
decide whether, given the increase in coverage achieved, it would be
advantageous to spend a lot of time reaching the most significant bits
of these register counters.
The most suitable mode for configuring the TIM for this purpose has
been found to be the TIEM mode, already cited in Section 2.4.1. This
timer option allows to count the edges of the input signal (rising, falling
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or both, depending on the preference), using the CNT register, shown
in the Figure 4.7, to keep track of the count.
So, for instance, if the goal was to stimulate the last 4 bits of the
counter, it would have been sufficient to toggle the input (24 − 1) times,
so that the register would reach the MSB of the chosen range with the
value "1111".
Given that the TIM allows to provide input not only from the com-
ponents outside the GTM, but also directly from the CPU, the latter
option has been chosen, iteratively changing a value so that, during
the program execution, a number of edges equal to the desired value
have been created. This procedure has been tested for 4, 8, and 12-bits
counters.
After several tests, the results in this case have showed a slight increase
in coverage; however, increasing the number of bits used for a counter
has proved to be an inefficient strategy, since, contrary to expectations,
the toggle coverage did not increase.
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4.5 ATOM and TIM tests results

The simulation results have been reported in Table 4.1 and Table 4.2.

Table 4.1: Table of ATOM and TIM tests coverages.

SLT application
Toggle coverage [%]

Total ports Toggled ports
Not toggled

Ports
Single coverage

Incremental
coverage

Delta

structural(32 atpg) 3785917 2951554 834363 78.13 78.130 0.000
structural(1024 pseudo

random + 12 selective +
3 delay + mbist + lbist)

3785917 3616021 169896 95.51 95.510 17.380

TIM(4-bit counter) 3785917 3616207 169710 8.77 95.518 0.008
TIM(8-bit counter) 3785917 3616215 169702 8.78 95.518 0.000

TIM(12-bit counter) 3785917 3616218 169699 8.78 95.518 0.000
ATOM(walking_bit) 3785917 3616269 169648 10.17 95.519 0.001
ATOM(stress_test) 3785917 3616356 169561 10.86 95.523 0.004

Table 4.2: Table of ATOM and TIM test simulation data.

SLT application
Simulation

Clock Cycles [cc]
Execution Time [ms]

@80Mhz
Simulation Time [h]

TIM(4-bit counter) 1675118 20.94 19

TIM(8-bit counter) 1727466 21.59 20

TIM(12-bit counter) 1846378 23.08 20

ATOM(walking_bit) 726642 9.08 11

ATOM(stress_test) 934642 11.68 14
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4.5.1 Tables format description
It is now necessary to briefly explain how the table 4.1 and 4.2 are
organized, because the same format and fields will be used to represent
the results in the subsequent sections as well.
The tables present the System Level Test (SLT) programs developed in
each phase of this research, dividing them into rows and showing the
most significant information obtained from both their simulation and
from the elaboration scripts discussed in Section 3.2.
In detail, the collected information includes:

• Total ports, the total number of gates within the GTM.

• Toggled ports, the number of signals stressed by the specific program
combined with all the previous ones.

• Not toggled ports, the total number of gates that have not yet been
toggled.

• Single coverage, the coverage with respect to the Generic Timer
Module and obtained only from the individual program, without
considering the previous ones.

• Incremental coverage, the coverage produced by the intersection
between the single program and all the previous ones.

• Delta, the incremental difference between the single functional test
coverage and that belonging to the previous test.

• Clock Cycles, the number of clock cycles of the test simulated.

• Execution Time, the actual duration time of the program (in ms),
with a clock frequency set at 80 MHz.

• Simulation Time, a value indicating the time taken by the tool to
simulate the test (expressed in hours).
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In addition, it is important to consider that in all the table types, as
4.1, that will be presented, the first two rows have been dedicated to the
structural tests mentioned in the reference article [11], both for the test
patterns generated through the ATPG and for the others scan-based
techniques.
Regarding these two cases, only some significant information has been
reported, such as the total toggle coverage, which is essential to under-
stand the extent of the increment achieved by the subsequent functional
tests. However, all the information about the simulations are not
reported (Not Available), since these fields refer to functional tests,
instead of structural ones.

4.6 Analysis of the GTM Flip-flops and
signals

After attempting several other programs applied to multiple submod-
ules of the Generic Timer, it has been decided to proceed with a more
analytical approach, seeking to derive useful information from the RTL
structure of the component and from the signal lists, before operating
the actual tests.
First of all, since the purpose of these System Level Test procedures was
to complete a work already started with a structural testing approach,
a specific consideration was given to the scan chain used in these tests,
as described in Section 1.3.
In particular, a useful information could be the total number and the
location of the flip-flops not included in the chain, and thus maybe not
yet tested.
Indeed, after obtaining the list of all flip-flops in the Bernina micro-
controller, divided into two files in order to distinguish between those
transformed into scan cells and those not, a specific Python script has
been created to recursively search through this list for all flip-flops
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included in the GTM.
Then, a second script has been devised to compare the flip-flop names,
in these lists, with the names of the toggled and non-toggled gates
present in those files that have been generated by the toolchain after
applying the structural tests.
So, in the end, the results of this process have been collected and
organized into a table, similar to the one described below.

Table 4.3: Table of GTM Flip-flops.

Flip-Flops Total FFs Scan FFs nScan FFs Scan FFs nt nScan FFs nt

GTM 88081 83488 4593 233 35

gtm_control 2364 2302 62 58 5

adc_interface 496 474 22 45 0

ip_gtmdi_syn 5774 5556 218 42 11

gtm_ip 79347 75063 4284 88 19

The table 4.4 displays the total number of flip-flops present in the
Generic Timer Module, followed by the count of the scan FFs, the
number of those not included in the scan chain, and, finally, in the last
two columns, those of both types that haven’t reached a toggle coverage
equal to 100%. The latter, in particular, are considered "uncovered"
since not all signals associated with these gates have been toggled, or
have not been tested with both the bit transitions (from ’0’ to ’1’ and
from ’1’ to ’0’).
While the data of the second row are referred to the GTM, the other
ones show the FFs included of all the four sub-entities that composed
the timer.
The first three rows refer to components dedicated to control bits,
the external interrupt management, and the ADC interface used in
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conjunction with the timer.
However, it’s the last row (named gtm_ip) that represents the actual
RTL enitity descibing the structure of the GTM, with all the modules
already mentioned in Section 2.4.
What is easily evident from the data is that this part has the majority
of the non-scanned FFs, making it the most problematic.
Additionally, an aspect that was not expected from these results has
been the number of scan FFs not fully covered, greater than previously
thought, most of all with respect to the total of those that are not part
of the scan chain.
The signals related to these "untoggled gates" have been listed in the
following table:

Table 4.4: Table of GTM Flip-flops not toggled signals.

Flip-Flops signals Total Input(D) Reset(SN) Enable(E)

Scan FFs Not Toggled 233 162 25 46

FFs Not Toggled 35 0 0 35

The nodes in the circuit not covered by the scan chain are primarily
related to Enable signals of some FFs. However, concerning the others,
there is a significant amount of nodes corresponding to the FFs inputs.
This may suggest that there are parts of the system that have not
been reached by previous tests, and so not adequately tested during
simulation.
However, determining the exact location of these flip-flops within the
timer has been quite challenging. Therefore, an attempt was made
to gather more information through a detailed analysis of the files
containing the lists of toggled and untoggled gates within the GTM.
For the analysis, a script whas been used to provide information about
the signals, dividing them by submodules.
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Table 4.5: Table of GTM not toggled signals divided into submodules.

Not toggled signals Total nt signals ATOM TIM TOM DPLL TBU CMU AEI, ARU MCS

structural (1024 pseudo random,

12 selective, 3 delay, mbist, lbist)
169896 1151 449 127 610 114 49 645 166751

ATOM(walking_bit) 169648 999 449 127 606 114 49 553 166751

ATOM(stress_test) 169561 895 449 127 606 114 49 570 166751

ATOM(ctrl_regs) 169581 935 449 127 606 114 49 550 166751

TIM(counter 4-bits) 169807 1151 440 127 606 114 49 569 166751

TIM(counter 8-bits) 169804 1151 439 127 606 114 49 567 166751

TIM(counter 12-bits) 169803 1151 439 127 606 114 49 566 166751

The values reported in the Table 4.5 show the the number of the
untoggled signals for the most significant modules that composed the
GTM; each row represent the results collected by some example tests
for ATOM and TIM, already explained in the dedicated subsection. In
addition, in the second row, the respective values obtained from the
application of the structural tests are reported.
It was thus possible to observe that the initial tests did not stimulate
a sufficient number of gates. However, the most significant finding
concerned the module where almost all the signals were located, namely
the Multi-Channel Sequencer (described in Section 2.4.3), a component
that had not been considered up to that point.
Therefore, the subsequent efforts has been focused on this part of the
generic timer, initially studying its functionalities and then developing
ad-hoc programs in order to reach an higher coverage.
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4.7 SLT programs for the Multi Chan-
nel Sequencer

The first step has involved ad in-depth study of the MCS instruction set
and the writing of some test programs, in order both to gain familiarity
with the module’s usage and to obtain the first simulation results. The
aim has been to verify whether this component represented the critical
part of the GTM.

4.7.1 First MCS functional programs
The initial functional procedure has been applied to the first of the five
channel sequencers (referred to as MCS0), focusing on only one of the
eight channels that allow parallel execution of the program (referred to
as Channel 0).
The chosen approach has involved a comprehensive test of the entire
instruction set, systematically trying each operation supported by the
MCS.
The process has begun with the creation of the ".mcs" file, containing
the dedicated program. Subsequently, following the procedure described
in Section 3.2, this document has been translated into the correspond-
ing array representing the program in C-code, placed in the ".c" file,
along with the respective header file ".h", which included the directive
definitions. For this purpose, the assembler tool provided among the
plug-ins of the SPC5-Studio application has been utilized.
Given the necessity to ensure that the program executed by the CPU
did not finish before the code executed by the Multi-Channel Sequencer,
as this would prematurely terminate the simulation, a check has been
inserted at the end of the program. This check involved the CPU
verifying that a specific register internal to the module stored a key
value assigned by a final instruction in the MCS code, in this case the
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R7 register has been chosen among the eights provided.
The procedure has been applied also for the first three channels of
MCS0 and the results of the simulations have been collected.
However, the coverage values and the number of toggled signals, ob-
tained from the simulations, were consistent with the previous tests,
failing to provide a significant increase in the coverage of the GTM
component.
These values are reported in the first rows of Table 4.6, and they are
compared to the results of the structural tests that initiated this re-
search work, while the Table 4.7 shows the data about the execution
time of the simulations.

Table 4.6: Table of first MCS tests coverages.

SLT application
Toggle coverage [%]

Total ports Toggled ports
Not toggled

Ports
Single coverage

Incremental
coverage

Delta

structural(32 atpg) 3785917 2951554 834363 78.13 78.130 0.000
structural(1024 pseudo

random + 12 selective +
3 delay + mbist + lbist)

3785917 3616021 169896 95.51 95.510 17.380

MCS0_prova 3785917 3616389 169528 5.72 95.523 0.013
MCS0_test(1 channel) 3785917 3616782 169135 8.18 95.533 0.010
MCS0_test(3 channels) 3785917 3617288 168629 8.50 95.546 0.013

MCS0_all_channels 3785917 3618109 167808 9.03 95.568 0.022
MCS1_all_channels 3785917 3619688 166229 9.09 95.610 0.042
MCS2_all_channels 3785917 3621214 164703 9.34 95.650 0.040
MCS3_all_channels 3785917 3621388 164529 8.92 95.655 0.005
MCS4_all_channels 3785917 3621702 164215 8.89 95.663 0.008
MCS012(alu_test) 3785917 3621633 164284 16.69 95.664 0.001
MCS34(alu_test) 3785917 3621753 164164 13.16 95.665 0.001
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It should be considered, however, that the low incremental coverage
values may be justified by the fact that only a portion of the MCS0
channels has been stimulated.
Therefore, the next step has been to extend the test to all the eight
channels of the first channel sequencer, and then to subject the same
process to the other MCS modules.
The new tests, also reported in Table 4.6 (labeled as MCSx_all_channels),
show much more promising results, with increments that reach up to
0.042% for what concerns the delta value.
Although this has represented a slight improvement in the overall sys-
tem view, since it has indicated that the direction taken could have
been the right one.
For the sake of completeness, two additional functional procedures have
been added, focusing on specific tests for the ALU of the datapath
and on the general-purpose registers of the five MCS. The goal has
been to apply more intense stress on the bits of these registers and to
specifically utilize only those instructions involving the arithmetic unit.
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Table 4.7: Table of first MCS test simulation data.

SLT application
Simulation

Clock Cycles [cc]
Execution Time [ms]

@80MHz
Simulation Time [h]

MCS0_prova 243581 4.10 5

MCS0_test(1 channel) 291281 4.70 5

MCS0_test(3 channels) 364475 5.61 6

MCS0_all_channels 373149 5.72 7

MCS1_all_channels 465671 6.88 7

MCS2_all_channels 467471 6.90 7

MCS3_all_channels 471568 6.95 7

MCS4_all_channels 471568 6.95 7

MCS012(alu_test) 1101877 14.83 15

MCS34(alu_test) 952977 12.97 14

4.7.2 MCS0-ARU test programs
Following the simulation of these tests, a more specific analysis has
been conducted on the signals related to these RISC-like processors.
In particular, from the lists obtained from the respective elaboration
scripts, it has been noticed that a significant portion of the untoggled
gates were located in the circuitry area comprising the connection
interface with the ARU, a component described in Section 2.4.2.
This discovery has been crucial since it has allowed to shift the target
of this research towards a specific zone of each MCS, focusing the
attention on a potential weak point of the whole system.
From this analysis, it has been possible to identify in the RTL description
of the circuit the processes related to the gates to be stressed. These
processes handle the execution of those instructions, belonging to the
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MCS, that are used for data transmission through the ARU component.
These instructions are the following:

• AWR/AWRI, that execute a write access to the ARU to transfer
two 24-bit values from two general registers to the ARU, using
a literal value to define the write address port. They block the
current MCS channel until the operation is finished.

• ARD/ARDI, which, on the contrary of the previous instructions,
execute a blocking read access to the ARU, storing two 24-bit
values in the MCS registers. Also in this case a literal value is used,
but to define the ARU read address.

• NARD/NARDI, that have the same purpose of ARD/ARDI in-
structions, but they suspend the MCS channel only for a maximum
of one ARU round trip cycle.

Therefore, the functional procedures have been programmed using only
these instructions. However, to execute them, it has been necessary to
enable other modules through which an MCS core could communicate
via ARU.
For this purpose, the TIM and ATOM components have been chosen,
as they were those submodules with the greater number of gates to
stimulate and the greater number of ARU addresses available.
So, as a first step, each channel of the MCS0 component has been
subjected to dedicated programs aimed at writing to the buffer register
of the ARU, a register that has been subsequently read by every channel
of all available ATOMs in the GTM.
This has been achieved by trying various combinations of MCS general
registers used to transfer data and by using all associations between
the MCS addresses and the addresses of the ATOMs.
In order o optimize the simulation times, for each of the eight channels
of the MCS0, a program has been created. In this way more than one
code could be simulated at the same time, without wasting time in case
of issues.
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Simultaneously, an ad-hoc procedure has been developed for the TIM
components, this time for reading instructions performed by the selected
channel sequencer, since, unlike the ATOMs, the TIM components did
not allow the writing.
For this test, only one program has been simulated, as it fell within
acceptable timeframes.
The same reading procedure has been then applied to the ATOM
submodules.
A simple scheme of the program approach has been provided in Figure
4.8.

Figure 4.8: MCS and ARU scheme.

Furthermore, it is worth to highlight that a key point for these tests
has been the use of the WURM instruction, detailed in the manual
[6], as a synchronizing method between the program executed by the
CPU of the board and the small program executed by the MCS0 core,
a necessary measure to allow the simulation of the entire code.
The results has been collected in the Table 4.8 and Table 4.9.

In the tables, a stress test applied only to the buffer register of the
ARU has been also reported; however it did not yield promising results.
On the contrary, the eight programs focused on writing data from
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Table 4.8: Table of MCS0 tests coverages.

SLT application
Toggle coverage [%]

Total ports Toggled ports
Not toggled

Ports
Single coverage

Incremental
coverage

Delta

structural(32 atpg) 3785917 2951554 834363 78.13 78.130 0.000
structural(1024 pseudo

random + 12 selective +
3 delay + mbist + lbist)

3785917 3616021 169896 95.51 95.510 17.380

ARU_test 3785917 3621753 164164 5.89 95.665 0.155
MCS0_awr_ch0 3785917 3623104 162813 11.26 95.700 0.035
MCS0_awr_ch1 3785917 3624816 161101 11.24 95.745 0.045
MCS0_awr_ch2 3785917 3626782 159135 11.14 95.797 0.052
MCS0_awr_ch3 3785917 3628571 157346 12.59 95.844 0.047
MCS0_awr_ch4 3785917 3629994 155923 12.59 95.882 0.038
MCS0_awr_ch5 3785917 3631297 154620 12.56 95.916 0.034
MCS0_awr_ch6 3785917 3632704 153213 11.24 95.954 0.038
MCS0_awr_ch7 3785917 3633982 151935 12.24 95.987 0.033
MCS0_TIM_ard 3785917 3637740 148177 12.24 96.087 0.100

MCS0_ATOM_ard 3785917 3637964 147953 12.64 96.100 0.013

the MCS to the ATOM (denoted as MCS0_awr_chx) have showed
better results compared to all previous tests, demonstrating that the
stimulated part of the circuit was the right target to achieve a significant
increase in coverage.
Indeed, as can be observed in Table 4.8, each of the test, dedicated
to a single MCS channel, has produced an increase in toggle coverage
ranging from 0.033% to 0.047%, for a total delta equal to 0.322%.
Regarding the tests on the ARU reading (denoted as MCS0_TIM_ard
and MCS0_ATOM_ard) which involves the TIM, they have shown an
increase of 0.113%, but with a disparity in the contribution provided.
Indeed, the test related to the TIM have showed a delta of 0.100%,
while the one related to the ATOM have provided a delta of 0.013%.
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Table 4.9: Table of MCS0 tests simulation data.

SLT application
Simulation

Clock Cycles [cc]
Execution Time [ms]

@80Mhz
Simulation Time [h]

ARU_test 2440924 31,57 25

MCS0_awr_ch0 5414259 68,74 37

MCS0_awr_ch1 5414263 68,74 37

MCS0_awr_ch2 5365663 68,13 37

MCS0_awr_ch3 5365713 68,13 37

MCS0_awr_ch4 5414313 68,74 37

MCS0_awr_ch5 5414313 68,74 37

MCS0_awr_ch6 5414213 68,74 37

MCS0_awr_ch7 5365563 68,13 37

MCS0_TIM_ard 6979398 88,30 42

MCS0_ATOM_ard 7155803 90,50 51

This could be attributed to the fact that both, despite using differ-
ent ARU addresses, have stimulated the same part of the circuit that
executes the read instructions (ARD/ARDI and NARD/NARDI), pro-
viding almost identical single coverage contribution and stressing the
same gates.
The total increase in toggle coverage has been equal to 0.435%.
Having received a positive feedback from the previous tests, it has
been reasonable to make the hypothesis that similar outcomes could
be attained also by the other MCS instances.
To validate this theory, the programs have been adapted and executed
on the remaining channel sequencers.
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4.7.3 MCS1-ARU test programs
Thus, the same functional procedures which have been applied pre-
viously to the first MCS, have been replicated on the second MCS
(referred to as MCS1), and the results of the simulations have been
collected in Table 4.10 and Table 4.11.

Table 4.10: Table of MCS1 tests coverages.

SLT application
Toggle coverage [%]

Total ports Toggled ports
Not toggled

Ports
Single coverage

Incremental
coverage

Delta

structural(32 atpg) 3785917 2951554 834363 78.13 78.130 0.000
structural(1024 pseudo

random + 12 selective +
3 delay + mbist + lbist)

3785917 3616021 169896 95.51 95.510 17.380

MCS1_awr_ch0 3785917 3639917 146000 11.81 96.150 0.640
MCS1_awr_ch1 3785917 3641394 144523 11.78 96.191 0.041
MCS1_awr_ch2 3785917 3643391 142526 11.86 96.237 0.046
MCS1_awr_ch3 3785917 3644995 140922 11.87 96.285 0.048
MCS1_awr_ch4 3785917 3646365 139552 11.86 96.321 0.036
MCS1_awr_ch5 3785917 3647860 138057 11.88 96.358 0.037
MCS1_awr_ch6 3785917 3649064 136853 11.87 96.390 0.032
MCS1_awr_ch7 3785917 3654719 131198 11.86 96.438 0.048
MCS1_TIM_ard 3785917 3654201 131716 12.28 96.528 0.090

MCS1_ATOM_ard 3785917 3654315 131602 12.56 96.533 0.005

The tests have been organized in the same order as in Table 4.8, and,
as anticipated, very similar values have been obtained with respect to
those observed with MCS0.
Indeed, the total increment obtained from the eight ARU writing pro-
grams amounted to 0.319%, relative to the coverage of the last simulated
test.
Additionally, the other two ARU reading tests, combined with ATOM
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Table 4.11: Table of MCS1 tests simulation data.

SLT application
Simulation

Clock Cycles [cc]
Execution Time [ms]

@80MHz
Simulation Time [h]

MCS1_awr_ch0 5629635 71,43 37

MCS1_awr_ch1 5629639 71,43 37

MCS1_awr_ch2 5629789 71,43 37

MCS1_awr_ch3 5629789 71,43 37

MCS1_awr_ch4 5629789 71,43 37

MCS1_awr_ch5 5629939 71,43 37

MCS1_awr_ch6 5629789 71,43 37

MCS1_awr_ch7 5629635 71,43 37

MCS1_TIM_ard 7078974 89,50 49

MCS1_ATOM_ard 7316179 92,50 54

and TIM modules, have contributed with an additional 0.095%, result-
ing in a total delta of 0.414%.

4.7.4 MCS2-ARU test programs
The same process, already tested for the MCS0 and MCS1, has been
applied to the third MCS, called MCS2.
The results are shown in Table 4.12 and Table 4.13, organized with the
same format of the previous tables.
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Table 4.12: Table of MCS2 tests coverages.

SLT application
Toggle coverage [%]

Total ports Toggled ports
Not toggled

Ports
Single coverage

Incremental
coverage

Delta

structural(32 atpg) 3785917 2951554 834363 78.13 78.130 0.000
structural(1024 pseudo

random + 12 selective +
3 delay + mbist + lbist)

3785917 3616021 169896 95.51 95.510 17.380

MCS2_awr_ch0 3785917 3655459 130458 11.88 96.555 1.045
MCS2_awr_ch1 3785917 3657366 128551 11.84 96.605 0.050
MCS2_awr_ch2 3785917 3659377 126540 11.86 96.658 0.053
MCS2_awr_ch3 3785917 3660671 125246 11.85 96.692 0.034
MCS2_awr_ch4 3785917 3662262 123655 11.86 96.734 0.042
MCS2_awr_ch5 3785917 3663787 122130 11.85 96.775 0.041
MCS2_awr_ch6 3785917 3664925 120992 11.86 96.805 0.030
MCS2_awr_ch7 3785917 3666210 119707 11.85 96.839 0.034
MCS2_TIM_ard 3785917 3670167 115750 12.27 96.943 0.104

In this case, the coverage has been incremented of a delta value equal
to 0.410%, aligned with the previous results.
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Table 4.13: Table of MCS2 tests simulation data.

SLT application
Simulation

Clock Cycles [cc]
Execution Time [ms]

@80MHz
Simulation Time [h]

MCS2_awr_ch0 5629635 71,43 37

MCS2_awr_ch1 5629639 71,43 37

MCS2_awr_ch2 5629789 71,43 37

MCS2_awr_ch3 5629789 71,43 37

MCS2_awr_ch4 5629789 71,43 37

MCS2_awr_ch5 5629939 71,43 37

MCS2_awr_ch6 5629489 71,43 37

MCS2_awr_ch7 5629939 71,43 37

MCS2_TIM_ard 7076274 89,51 49

4.7.5 MCS subcoverages

In order to better understand how much the performed tests have
contributed to improving the reliability of these individual modules,
the components of the Multi-Channel Sequencers have been further
analyzed using a dedicated processing script suitable to gain the differ-
ent sub-coverages of the components taken individually, distinguishing
between the parts (RTL description entities) that compose them.
From this study’s results, the coverage of each MCS and their respective
toggled gates have been derived, focusing on the comparison between
those gained before the application of the stress programs and those
collected after the System Level Testing.
The results have been organized in the Table 4.14.
The table is organized so that the first five rows refer to all those gates

66



4.7 – SLT programs for the Multi Channel Sequencer

Table 4.14: Table of MCS modules coverages

MCS signals analysis Total ports Toggled ports Not toggled
Ports

Not toggld ports
(MCS012 tests) Single coverage Single coverage

(MCS012 tests)
MCS0 (AEI) 12472 12459 13 13 99.90 99.90
MCS1 (AEI) 3404 3386 18 18 99.47 99.47
MCS2 (AEI) 3497 3464 33 33 99.06 99.06
MCS3 (AEI) 3211 3185 26 26 99.19 99.19
MCS4 (AEI) 3335 3323 12 12 99.64 99.64

Total 25919 25817 102 102 99.61 99.61
MCS0(ARU,registers) 302764 271414 31350 13442 89.65 95.56
MCS1(ARU,registers) 307517 276154 31363 13888 89.90 95.48
MCS2(ARU,registers) 318968 285122 33846 16041 89.39 94.97
MCS3(ARU,registers) 316440 280827 35613 35467 88.75 88.79
MCS4(ARU,registers) 309410 275649 33761 33429 89.20 89.20

Total 1555099 1389166 165933 112267 89.33 92.80

that are included in the part of the circuit representing the interface
between the MCS components and the AEI (called Generic Bus Inter-
face), especially regarding the data transfer with the CPU.
The five categories in the second part of the table, instead, show the
signals belonging to the internal system of each MCS and to the com-
munication with the ARU.
Toggled and non-toggled gates, along with their respective toggle cov-
erage, are collected.
At the end of each of the two parts, the total count is computed for
the gates, and the average is calculated for what concerns the coverage
percentage.
These data have been obtained prior to the application of the dedicated
programs, unlike the two columns that include the statement "(MCS012
tests)", which instead show the results subsequent to the tests on the
first three MCS.
Going into detail, in the first group there are few signals to be toggled,
with individual channel sequencer coverages that remain very high,
averaging 99.61%.
As expected, the situation is different in the second group, which, as
already explained, includes the main gates of the circuit of all five MCSs,
including the interface with the ARU. Indeed, in the initial results, no
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component exceeded the 90% coverage threshold, demonstrating an
unacceptable stress level.
However, the increase provided by the functional tests corresponds to
4.17% for the MCS0, to 5.33% for the MCS1 and to 5.58% for the MCS2,
reaching an average of 92.80%, above an acceptable threshold but still
improvable by applying the same tests to the remaining modules.
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Chapter 5

Results and
conclusions

5.1 Final results analysis

In this section, a summary table of all the tests performed from the
beginning to the end of this research will be shown, with the different
programs sorted in chronological order of development. In addition,
some final results regarding the toggled signals and the heatmaps will
be discussed, accompanied by a brief reflection on the work carried out.
In Table 5.2, it is possible to observe how the most significant results
coincide with the phase of the workflow following the in-depth analysis
of the system, where the Multi Channel Sequencer has been identified
as the weak point of the circuit in terms of gate and signal stress level.
These results, collected using the elaborations scripts, demonstrate the
difficulty of trying to increase a coverage percentage that is already high
for the previous performed structural tests, however they also highlight
the challenges in stimulating the correct nodes of a complex module
such as the Generic Timer Module.
The final toggle coverage obtained has been of 96.943%, which is an
acceptable value that can still be increased by developing specific tests
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for the remaining MCS modules.
Considering that the results of each tested MCS showed an incremental
delta ranging between 0.4% and 0.5%, it is plausible to assume that
the others modules would also show similar values, reaching an ideal
coverage between 97.743% and 97.943%.
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Table 5.1: Summary table of GTM tests coverages (Part1).

SLT application Toggle coverage [%]

Total ports Toggled ports Not toggled
Ports Single coverage Incremental

coverage Delta

0 structural(32 atpg) 3785917 2951554 834363 78.13 78.130 0.000

1
structural( 1024 pseudo

random + 12 selective +
3 delay + mbist + lbist)

3785917 3616021 169896 95.51 95.510 17.380

2 TIM(4-bit counter) 3785917 3616207 169710 8.77 95.518 0.008
3 TIM(8-bit counter) 3785917 3616215 169702 8.78 95.518 0.000
4 TIM(12-bit counter) 3785917 3616218 169699 8.78 95.518 0.000
5 ATOM(walking_bit) 3785917 3616269 169648 10.17 95.519 0.001
6 ATOM(stress_test) 3785917 3616359 169558 10.86 95.523 0.004
7 MCS0_prova 3785917 3616389 169528 5.72 95.523 0.000
8 MCS0_test(1 channel) 3785917 3616782 169135 8.18 95.533 0.010
9 MCS0_test(3 channels) 3785917 3617288 168629 8.50 95.546 0.013
10 MCS0_all_channels 3785917 3618109 167808 9.03 95.568 0.022
11 MCS1_all_channels 3785917 3619688 166229 9.09 95.610 0.042
12 MCS2_all_channels 3785917 3621214 164703 9.34 95.650 0.040
13 MCS3_all_channels 3785917 3621388 164529 8.92 95.655 0.005
14 MCS4_all_channels 3785917 3621702 164215 8.89 95.663 0.008
15 MCS012(alu_test) 3785917 3621733 164184 16.69 95.664 0.001
16 MCS34(alu_test) 3785917 3621753 164164 13.16 95.665 0.001
17 ARU_test 3785917 3621753 164164 5.89 95.665 0.000
18 MCS0_awr_ch0 3785917 3623104 162813 11.26 95.700 0.035
19 MCS0_awr_ch1 3785917 3624816 161101 11.24 95.745 0.045
20 MCS0_awr_ch2 3785917 3626782 159135 11.14 95.797 0.052
21 MCS0_awr_ch3 3785917 3628571 157346 12.59 95.844 0.047
22 MCS0_awr_ch4 3785917 3629994 155923 12.59 95.882 0.038
23 MCS0_awr_ch5 3785917 3631297 154620 12.56 95.916 0.034
24 MCS0_awr_ch6 3785917 3632704 153213 11.24 95.954 0.038
25 MCS0_awr_ch7 3785917 3633982 151935 12.24 95.987 0.033
26 MCS0_TIM_ard 3785917 3637740 148177 12.24 96.087 0.100
27 MCS0_ATOM_ard 3785917 3637964 147953 12.64 96.100 0.013
28 MCS1_awr_ch0 3785917 3639917 146000 11.81 96.150 0.050
29 MCS1_awr_ch1 3785917 3641394 144523 11.78 96.191 0.041
30 MCS1_awr_ch2 3785917 3643391 142526 11.86 96.237 0.046
31 MCS1_awr_ch3 3785917 3644995 140922 11.87 96.285 0.048
32 MCS1_awr_ch4 3785917 3646365 139552 11.86 96.321 0.036
33 MCS1_awr_ch5 3785917 3647860 138057 11.88 96.358 0.037
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Table 5.2: Summary table of GTM tests coverages (Part 2).

SLT application Toggle coverage [%]

Total ports Toggled ports Not toggled
Ports Single coverage Incremental

coverage Delta

34 MCS1_awr_ch6 3785917 3649064 136853 11.87 96.390 0.032
35 MCS1_awr_ch7 3785917 3649719 136198 11.86 96.438 0.048
36 MCS1_TIM_ard 3785917 3654201 131716 12.28 96.528 0.090
37 MCS1_ATOM_ard 3785917 3654315 131602 12.56 96.533 0.005
38 MCS2_awr_ch0 3785917 3655459 130458 11.88 96.555 0.022
39 MCS2_awr_ch1 3785917 3657366 128551 11.84 96.605 0.050
40 MCS2_awr_ch2 3785917 3659377 126540 11.86 96.658 0.053
41 MCS2_awr_ch3 3785917 3660671 125246 11.85 96.692 0.034
42 MCS2_awr_ch4 3785917 3662262 123655 11.86 96.734 0.042
43 MCS2_awr_ch5 3785917 3663787 122130 11.85 96.775 0.041
44 MCS2_awr_ch6 3785917 3664925 120992 11.86 96.805 0.030
45 MCS2_awr_ch7 3785917 3666210 119707 11.85 96.839 0.034
46 MCS2_TIM_ard 3785917 3670167 115750 12.27 96.943 0.104

5.1.1 Incremental toggled gates results

From the provided Table 5.2, it has been also possible to extract the
number of gates specifically stimulated by each individual test devel-
oped, delineating a sort of trend in the contribution given to circuit
stress in terms of the quantity of toggled elements.
This information has been represented in the graph depicted in Figure
5.1.
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Figure 5.1: Stress gates graph.

The graph has been structured such that the number of stimulated
gates is indicated on the y-axis, while the test identification number,
as listed in Table 5.2, is represented on the x-axis.
The trend of the data interpolation shows some peaks corresponding
to the tests targeting the MCS component, with the highest result
obtained from programs aimed at the interaction between TIM and
MCS.
This could be due to the high number of possible connection combina-
tions with the different channels of the two submodules, focusing on a
large area within the zone of interest. In addition, the intensive use of
ARU read instructions, used in these type of programs, have played a
key role in test execution.

5.1.2 Heatmaps results
In order to obtain a physical feedback on the layout of the Bernina
board, it has been also possible to generate the heatmap of the entire
system after the stimulation applied by the tests, showing the exact
location of the gates of interest. This representation is shown in the
Figure 5.2.
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Figure 5.2: Heatmap of the SLT tests.

The green zones are that areas stressed by the functional tests listed
in the Table 5.2, while the red zones are the parts of the circuit not
stressed, and so not used. This representation allows to show the
position of the Generic Timer Module in the microcontroller.
Finally, as last step of the research, an heatmap image representing the
intersection between the SLT programs and the structural tests has
been also generated. This has been done to facilitate a comparison with
the initial heatmap, which only considered the structural approach.
The two pictures are shown in Figures 5.3 and 5.4.
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Figure 5.3: Heatmap - SLT
and structural test application.

Figure 5.4: Heatmap - struc-
tural tests application.

It is possible to observe in Figure 5.4 that in the vicinity of the GTM
area, some small red zones, since stressed, have been colored in green
in Figure 5.3. Indeed, they could represent the modules of the Multi
Channel Sequencer that have been utilized in the SLT programs.

5.2 Conclusions
After analyzing the obtained results, both for what concerns the study
of the covered signals by the functional procedures and the derived
toggle coverage percentages, it has been observe that there are certain
areas of the timer that cannot be effectively stressed using the structural
tests. Therefore, they require programs developed with an in-depth
understanding of how the internal modules interact with each other.
The combined use of the main timer output and input components,
along with the data processing core and communication interface, man-
aged to reach a coverage that hardly some scan-based structural tests
and some simple functional procedures could gain.
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Indeed, the purpose of this work has been to adopt a System Level
Test approach aimed at mimicking, as closely as possible, the real-usage
environment of the system, a functionality not efficiently possible for
other techniques.
It should be also considered that this research can be continued by both
stimulating the remaining MCS and using the ARU communication
module in combination with other internal components of the GTM, in
order to increase much more the overall coverage.
Furthermore, it is important to not underestimate that a significant
goal has been reached. This research has successfully identified which
part of a complex timer module should be taken into account to gain an
efficient stress test, and how the different components should interact
with each other to develop a suitable program.
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