
POLITECNICO DI TORINO

Master’s Degree in Computer Engineering

Master’s Degree Thesis

Zero Trust Network Security Model in
Containerized Environments

Supervisor:
Prof. Cataldo Basile

Company Supervisor:
Andrea Buonerba
Salvatore Pecoraro
Stefano Loscalzo

Candidate:
Alessio Dongiovanni

Academic Year 2023/2024
Torino

Acknowledgements

Thanks to Spike Reply for giving me the opportunity to do this thesis work. Thanks to Salvatore,
Stefano and Giorgio, who supported me throughout the analysis and implementation process.
Thanks to Prof. Basile for his supervision, and for the passion he transmitted in this discipline.

A huge thanks to my mother and my father, for all the love and support they have given
me over the years and for every single sacrifice they have made to allow me to reach this great
milestone today. I couldn’t have asked for better parents in life. I owe you everything. I love you.

Thanks to my sister, to whom I have never dispensed love, but for whom I would actually
give all of myself. I will always be at your side. I love you (although I’ll never explicitly admit it).

Thanks to my grandparents, for all the love I received from them and for everything they
passed on to me, which I always carry with me. Your memory will always remain among the
most beautiful ones, to be jealously guarded. You will always be a part of me, wherever I am.

Thanks especially to my grandma Tetta, my second mum, whom I am lucky enough to still be
able to hug and see smile. Lunches and dinners with you are always the best thing, and they keep
alive part of that child you saw growing up. You don’t know how poignant it is to say goodbye
to you and see you sad every time I leave, hoping to be able to hug you again soon. Thank you
for everything, I love you immensely.

Thanks to Martina, who has always stood by me and believed in me even when I did not
and wanted to give up. Thank you also for all the peacefulness and lightness that you always
manage to transmit to me. I could not have asked for a better person at my side. Here’s to many
more successes to celebrate together. I love you.

Thanks to Ari and Niko, sister and brother not by blood, who taught me what true friend-
ship is, and who despite the distance and the years continue to be by my side, always. May it
last forever, no matter what comes.

Last but not least, a big thank you to all my lifelong friends who have stood by me over
these years. To Gabri P. with whom we grew up side by side, to Gabri C., Enrico, Stefano, Giulio
and all the others. Thanks to our friends in Turin, who made this long journey less burdensome.
Thanks to Giulia, who has only been in my life for a short time but whom I love as if I had known
her for years. Finally, thank you to those who have been in my life even in the slightest over these
years, leaving me something that, both positive and negative, have made me the person I am.

ii

Table of Contents

1 Introduction 1

2 Background Concepts 4
2.1 Microservice Architecture . 4
2.2 Virtualization and Containers . 7

2.2.1 Linux Namespaces and Container Networking 8
2.2.2 Advantages of Containers . 9

2.3 Kubernetes . 10
2.3.1 K8s Features . 10

2.4 Kubernetes Architecture and Resources . 11
2.4.1 Master Node . 12
2.4.2 Worker Node . 13
2.4.3 Pods . 13
2.4.4 Deployments and ReplicaSet . 14
2.4.5 Namespaces . 15
2.4.6 Service Account and RBAC . 16

2.5 Kubernetes Network Model . 17
2.5.1 Kubernetes Services . 17
2.5.2 Ingress and Ingress Controller . 18
2.5.3 Calico CNI Plug-in Networking . 18

3 Security Challenges And Zero Trust Model 20
3.1 Limitations of the Castle and Moat Approach . 20
3.2 Zero Trust Security Model . 22
3.3 Zero Trust Network Principles . 23
3.4 Zero Trust Architecture And Microsegmentation 25
3.5 Kubernetes Security Challenges . 28

4 Analysis Of Kubernetes Network Security Solutions 30
4.1 Istio Service Mesh . 30

iv

4.1.1 Istio Architecture . 32
4.1.2 Security Capabilities . 32
4.1.3 Identity . 34
4.1.4 Service Mesh Observability . 36

4.2 Palo Alto CN-Series Containerized Firewall . 36
4.2.1 CN-Series Core Building Blocks And Architecture 37
4.2.2 Deployment Modes . 39

5 Testing Environment Design, Installation And Configuration 42
5.1 Kubernetes Cluster Installation . 42
5.2 Microservices-based Application Design and development 44
5.3 IAM Service Design and Development . 47
5.4 Kubernetes Resources Design and Configuration 50
5.5 Istio And Ingress Gateway Deployment . 52

6 Zero Trust Network Model Implementation 55
6.1 Istio . 55

6.1.1 mTLS, Peer Authentication And Authorization 55
6.1.2 End-User Authentication And Authorization 60
6.1.3 Ingress And Egress traffic . 67

6.2 Palo Alto CN-Series Containerized Firewall . 69
6.2.1 CN-Series Components Deployment . 69
6.2.2 Microsegmentation Trough Firewall Security Policies 72
6.2.3 Deep Packet Inspection . 79

7 Results And Proof Of Concept Validation 82
7.1 Istio . 82

7.1.1 mTLS, Peer Authentication And Authorization 82
7.1.2 End-User Authentication And Authorization 89
7.1.3 Ingress And Egress traffic . 94
7.1.4 Network Traffic And Requests Visibility 96

7.2 Palo Alto CN-Series Containerized Firewall . 101
7.2.1 Network Microsegmentation And Traffic Visbility 101
7.2.2 URL filtering And Advanced Threat Prevention 107

8 Conclusions And Future Works 110

Bibliography 112

Acronyms 115

List of Figures 117

v

Chapter 1

Introduction

Over the past decade, the evolution of the technological landscape has been characterized by
a constant search for increasingly efficient, scalable and flexible IT solutions, moving from
centralized and monolithic systems to distributed and cloud-oriented models. The impact of cloud
computing services and today’s business needs to be agile, responsive and able to manage and scale
increasingly complex workloads have led to the development and adoption of new cloud-native
patterns, technologies and tools. As a result, microservice architecture and containers, along with
orchestration platforms such as Kubernetes, have emerged as leading transformation technologies
that enable organizations to meet these needs. Modern cloud-native applications are designed and
built on a microservice architecture composed of hundreds of small services that communicate
and cooperate to form a meaningful application. The old, traditional monolithic approach to
application development is thus being abandoned in exchange for greater efficiency in developing,
managing, maintaining, and scaling individual services independently of others.

Nevertheless, virtualization still remains a key technology enabling cloud computing and data
centers, but the use of traditional virtual machines to deploy and run applications is currently
being replaced by the adoption of a new virtualization technology called containers. Containers
are lightweight, properly isolated software packages, each of which encapsulates the application,
its dependencies and necessary libraries, providing consistent portability between development and
production environments, lower resource consumption and increased scalability. Containers are a
good way to bundle and run your applications. However, adopting containers for microservices
architecture involves running a large number of containerized entities, and as a result, manually
managing and scaling these entities, ensuring no downtime, has become quite complex. This is
why the advent of Kubernetes has been so successful. Also regarded as "the operating system of
the cloud," Kubernetes has become the leading orchestrator adopted for deploying and managing
cloud-native applications. Completely open source, K8s can run on any type of cloud, on-premise
data center or hybrid models, abstracting the differences between the underlying infrastructures
and thus enabling easy migration between different cloud platforms. It simplifies the operational
complexity of modern distributed systems and improves their flexibility and resilience at runtime
by taking care of the scalability and failover of your application in a fully automated way, and
providing many other useful features. According to Gartner’s prediction, by 2027 more than 90%
of global organizations will be running containerized applications in production, and 64% of them
are already adopting K8s as container orchestrators in production, while 25% is evaluating or
piloting its adoption in the future. [1] [2]

But today’s continuous increase in cyber attacks outlines a rapidly evolving threat landscape.

1

Introduction

Considering that cyber attacks can lead to devastating losses of money, trust and reputation,
companies are inherently motivated to strengthen their security infrastructure. Moreover, regula-
tory requirements are increasingly calling for tailored protections for different data categories,
demanding both technical and organizational measures to ensure data confidentiality, integrity,
availability, and privacy. However, as digital transformation advances, the cybersecurity scenario
is becoming more complex and challenging. Indeed, companies’ infrastructures where services and
data reside are becoming increasingly complex, often consisting of a combination of several internal
networks with a large number of endpoints, remote offices and workstations, mobile devices and
cloud services. Relying upon IaaS, PaaS, and SaaS services, organizations are migrating their
infrastructure, platforms, and applications (or even part of them) to cloud. As a result, modern
enterprise digital infrastructures are no longer confined within a single perimeter that clearly
separates them from the rest, but span on-premises data centers as well as private, public and
hybrid clouds. The Covid pandemic added further complexity to the cybersecurity scenario by
introducing remote working, which remains widely used by companies to this day.

This has rendered traditional perimeter-based network security solutions, such as firewalls,
intrusion detection systems, and others, inadequate because there is no longer a single, easily
identifiable perimeter for the enterprise to protect. Moreover, because these types of security
measures focus on north-south traffic, once attackers breach the perimeter there is no visibility
into east-west traffic and therefore unauthorized lateral movement cannot be prevented. Finally,
containerized environments have introduced additional complexity into the scenario and challenges
for enterprise IT security, as containers managed by Kubernetes are ephemeral entities that
continuously appear and disappear, thus dynamically changing the IP address used, which
complicates network security management and implementation of access control policies. The
inadequacy of the ’castle and moat’ approach and the difficulties in defining the perimeter of an
organisation’s information systems had already been highlighted in 2003 by the Jericho Forum
and later taken up by John Kindervag, a researcher at Forrester, who in 2010 proposed as a
solution a more rigorous approach to cybersecurity and access control within companies, called
Zero Trust. The Zero Trust security model assumes that all entities within the network could
potentially be compromised and therefore their operations must never be implicitly trusted, and
every communication must be protected regardless of network location. Implementing Zero Trust
principles also means that each resource must continuously undergo a security posture assessment
through a Policy Enforcement Point before a request for access to a company-owned asset is
granted, adopting the principle of least privilege access, and that full visibility over the network
requests and traffic is achieved.

The goal of this thesis, developed through the support of Spike Reply company, was to
demonstrate how Zero Trust can be achieved in Kubernetes environments, facing the complexity
introduced by the Kubernetes network model, which makes traditional security solutions being
unable to inspect and correctly understand the actual traffic exchanged, neither the east-west nor
the north-south one: in fact, containers communications in K8s occur trough overlay networks
that make use of IP-IP or VXLAN tunnels, as well the virtual network internal to the nodes and
the host source/destination NAT. Therefore, it is clear how Kubernetes network security differs
from traditional IT and infrastructure systems: many new aspects open the door to possible new
threats and attacks, easily leaving room for bad actors to infiltrate and move laterally through
the network and sensitive workloads if appropriate security measures are not taken.

A Proof of Concept was then accomplished by implementing a microservices application
through SpringBoot and then deploying it on a Kubernetes cluster made of 3 nodes: one master
node and two worker nodes. The application realizes a trivial Transport Ticketing System which
consists of 4 microservice: the Login service, the Traveler service,the Catalogue Service, and the

2

Introduction

Payment Service. Each microservice comes with its own private Postgres database instance for
storing and retrieving data, and cooperates with at least one microservice to implement some
specific functionalities.

Afterwards, two possible solutions for implementing zero-trust network principles within
Kubernetes environments have been evaluated: the Istio Service-Mesh and the Palo Alto CN-
series container-based Next-Generation Firewall. Therefore, in Chapters 6 and 7, the capabilities
of both solutions were analyzed and tested, in order to understand which features are actually
useful to achieve Zero Trust and obtain full visibility and control over network activities within
the cluster. Finally, Chapter 8 outlines the final considerations you should take into account
when using these two tools to implement Zero Trust security within your network.

3

Chapter 2

Background Concepts

In this chapter, we are going to explore and understand what approaches, paradigms, and leading
technologies are driving digital transformation.

We will see why microservice architectures are becoming increasingly popular, and what great
benefits the use of containers and orchestrators such as Kubernetes introduce. Next, we will go
over a brief overview of the basic concepts of the Kubernetes architecture and its components,
focusing on the related resources employed in this thesis work.

2.1 Microservice Architecture

Before the cloud revolution and microservice era, the traditional way of designing and developing
‘standard’ web applications was purely monolithic. With this architectural approach, any web
application is conceived as a monolith, that is, a set of logical layers and functionality that are
all implemented and executed in a single process. By adopting this approach, a web app is, in
general easy to design and implement, but it presents significant challenges in terms of scalability,
complexity, fault tolerance, and agility, especially as applications grow in size and complexity.
But this does not meet today’s business needs, which continually require significant innovations
in web systems to be delivered quickly, frequently and reliably, as well as a high level if scalability,
flexibility and resilience. And this is the reason why microservice architectures have become so
popular nowadays.

Microservices - also known as microservice architecture - is an architectural paradigm that
relies on breaking down a monolithic application and its functionality into a series of loosely
coupled and independently deployable services. These services have their own business logic and
database (keeping separated and private their own data) with a specific goal, following the divide
et impera principle: complex systems can be spitted in smaller parts until they are small enough
to be easy understandable. Microservices do not reduce complexity, rather they decompose it and
make it easier to manage by separating tasks into smaller processes that operate independently
of each other and contribute to the overall capabilities of the system.

Of course, in order to provide the functionalities of a web application, these microservices
require some form of communication and cooperation; each one is in charge of managing a given
business domain area, implementing part of the web app functionalities. Indeed, often a service
executes a part of a larger, more complex request that has been previously broken down generally
by a front-end layer. Often a service acts as a client of other microservices, contacting their APIs

4

Background Concepts

Figure 2.1: Monolithic vs Microservices Architecture (source: Hengky Sanjaya Blog)

and requesting certain functionality from them to accomplish a certain task and complete a more
complex request it has received. [3][4]

Figure 2.1 shows the difference between a web application developed by adopting a monolithic
approach and a microservice-oriented one. it is clear how a monolithic app encapsulates any
service and functionality in a single process, adopting a single DB instance (perhaps replicated
multiple times). Conversely, microservices architecture involves breaking down the application
business logic that resides behind the front-end tier into a multitude of smaller services, each
with its own application logic and DB instance (i.e. private data) separate from the others. Some
microservices interact with others to elaborate and provide a more complex task, and some do
not. Communication can be synchronous or implemented asynchronously by means of a message
broker such as Apache Kafka, which I used to implement the test microservice architecture in
Chapter 5.

Microservice architecture offers numerous benefits and advantages that meet modern software
development and deployment requirements:

• Flexibility: Each microservice can be developed, deployed, and maintained independently,
allowing teams to use different technologies, frameworks, and databases according to their
needs.

• Scalability: Microservices enable individual services to scale independently when they
reach their load capacity. Compared with scaling the entire application when the amount
of requests increases, this granular scalability ensures optimal resource utilization and
cost-effectiveness.

• Resilience: By distributing functionality across multiple services, microservice architectures
enhance the resilience of the system. A single failure of a given service does not impact the
entire system, but is contained within the individual service and can be easily mitigated
through microservice redundancy, failover mechanisms, and graceful degradation strategies.

• Agility: Microservices support faster development cycles and more frequent deployments,
facilitating a continuous integration and delivery strategy. They also simplify debugging,
troubleshooting, and updating software, reducing testing and maintenance costs. This

5

https://medium.com/hengky-sanjaya-blog/monolith-vs-microservices-b3953650dfd

Background Concepts

agility enables organizations to respond quickly to changing market demands and customer
feedback.

But microservice architecture also comes with some challenges to face:

• Design and Development Complexity: Decomposing an application into smaller, more
specialized services requires a high level of expertise and careful planning and management
of dependencies, communication protocols, and data consistency within the same transaction.

• Service Coordination: Microservices need to communicate and coordinate effectively, re-
quiring mechanisms for service discovery, load balancing, fault tolerance, and inter-service
communication. Coordinating a large number of services can become challenging, especially
as the system evolves and scales.

• Operational Overhead: Operating and managing a microservices-based system involves
managing a large number of services, each with its own deployment, monitoring and scala-
bility requirements. This can result in increased operational costs and complexity, including
managing infrastructure resources, configuring deployment pipelines, and diagnosing and
troubleshooting problems in a distributed environment. Implementing robust DevOps
practices and automation tools is essential to effectively manage the operational challenges
of microservice architecture.

• Security: The microservice architecture also presents some security challenges related to
the large number of distinct entities operating. The first is the increased overall attack
surface, since each microservice represents a potential entry point for attackers. Managing
authentication and authorization across services and ensuring consistent application of
security policies can be challenging. Ensuring the confidentiality and integrity of sensitive
data distributed across microservices becomes crucial. Encryption and access control
techniques should be implemented to protect data both in transit and at rest. Securing
communication between microservices is essential to prevent eavesdropping, tampering, and
unauthorized access. Finally, monitoring and logging microservices activities are essential
to detect and respond to security incidents, but they become challenging in a distributed
system composed of many entities.

Microservices continue to gain popularity due to the the innate flexibility of this architecture in
the cloud. As the size and scope of cloud-based applications and workloads continue to grow, it is
increasingly difficult and time-consuming to adapt monolithic architectures to meet new business
needs. Microservices and cloud-native patterns share common principles and practices that enable
organizations to build scalable, resilient, and agile applications in modern cloud environments,
while leveraging the scalability, flexibility and automation provided by cloud platforms. In fact, a
recent study conducted by Gartner revealed that nearly three-quarters (74%) of the organizations
surveyed are currently using microservice architecture. 23% of the leaders’ organizations are not
yet doing so but plan to do it soon. [5].

In the next sections of this chapter, we will dive into cloud-native virtualization and orchestra-
tion technologies, which are widely used today and are well suited to microservices architecture,
allowing their full potential to be exploited. Instead, the microservices security challenges
mentioned above will be reconsidered and addressed in Chapters 4 and 6.

6

Background Concepts

2.2 Virtualization and Containers

In recent years, digital transformation and the bursting advent of cloud computing have revolu-
tionized the way applications are deployed and managed. One of the key innovations driving this
transformation is the adoption of containerization technology.

Until a few decades ago, organizations relied on physical servers to host and run their
applications. But at some point, this approach showed some limitations for organizations and
data centers, as it did not allow clear boundaries to be established for each application’s resources,
leading to resource allocation and security issues.

When multiple applications share a single physical server, one application often monopolizes
resources, causing performance problems for the others. Or even worse, a security incident
affecting one application could threaten and impact the others as well.

For this reason, companies began to run each application on different physical servers, but this
solution was not scalable because resources were underutilized and it was expensive for companies
to maintain many physical servers. [6][7]

The winning solution has been the introduction of virtualization. Widely adopted by data
centers and enterprises, it has so far been the ideal solution for running applications in isolated
environments. Virtualization technology allows multiple virtual machines (VMs) to run on the
same physical server completely isolated from the others, each with its own separate operating
system, dependencies and resources.

It enables the isolation of applications running on separate virtual machines within the
same physical server, and provides a great level of security, as the resources, processes/threads
and information of one application cannot be freely accessed by another running on the same
physical host. The strong isolation property of VMs provides a great level of security, as the
resources, processes/threads and information of one application cannot be freely accessed by
another VM running on the same physical host. Virtualization offers many benefits, such as
increased scalability, better utilization of physical resources, and reduced resource consumption
and costs.

Virtual machines have been around for decades and enable companies to deploy several servers
running different applications on a single physical machine, even if they are running different
operating systems.

Despite the advantages introduced by virtual machines, they still have some limitations that
do not meet current business needs. Indeed, each virtual machine requires the installation and
boot of its own full operating system (OS), resulting in resource overhead, and limited portability
because moving virtual machines to different environments, such as from on-premise to the cloud
or between different cloud providers, can be complex and time-consuming due to differences in
infrastructure and basic configurations. In addition, virtual machines take several minutes to
spin up and down, limiting their scalability capabilities. [6][7]

On the other hand, containers have rapidly gained popularity in the early 2010s with the
development and diffusion of technologies such as Docker, and their features have quickly become
attractive for solving the limitations of VMs.

Containers are still a virtualization technology, but they take a different approach to application
deployment. Instead of virtualizing the entire operating system on which software runs, containers
encapsulate only applications in lightweight, portable units. This allows applications to run
consistently in different environments without the overhead associated with virtual machines.

This technology is based on the concept of containerization, which involves packaging an

7

Background Concepts

Figure 2.2: Evolution of Application Deployment (source: Kubernetes Documentation)

application along with its dependencies into a single unit called a container. Each container runs
as an isolated process, sharing the host operating system with other containers. This lightweight
approach to virtualization allows containers to boot quickly and consume fewer resources compared
to VMs, since it is required to boot only a single OS for running many containerized applications.

With containers, developers can package their applications once and run them anywhere, from
development environments to production servers and cloud environments. [6][7]

2.2.1 Linux Namespaces and Container Networking

The Linux kernel comes with various features intentionally provided to provide multi-tenancy
on hosts. Linux namespaces, among others, are the fundamental technologies behind modern
container implementations. They provide the highest level of isolation of global system resources
between independent processes running on the same operating system, which is useful for achieving
a more efficient and fine-grained level of virtualization. Given two processes running within
separate containers on the same server, without namespaces, they would be able to interfere with
each other’s resources, leading to the resource management and security problems mentioned
when discussing the pre-VMs era. There are several namespaces used to build containers, one
for each different type of resource they aim to isolate [8]. By namespacing these resources, the
process in a container isn’t even aware that the processes in other containers exist. Here is a list
of the several Linux namespaces types and what they aim to isolate:

• Mount Namespace: isolate filesystem mount points
• UTS Namespace: isolate hostname and domain name
• IPC Namespace: isolate interprocess communication (IPC) resources
• PID Namespace: isolate the PID number space
• Network Namespace: isolate network interfaces
• User Namespace: isolate UID/GID number spaces
• Cgroup Namespace: isolate cgroup root directory

We can think of containers as applications whose resources are isolated by a series of layers
that make up the various namespaces. Therefore, each container typically has its own network
namespace, providing isolation and allowing it to have its own virtual interfaces, including network
stack, IP addresses and routing tables. Containers can be connected to one or more virtual or
physical networks using various networking technologies such as bridges, overlays, or directly

8

https://kubernetes.io/docs/concepts/overview/

Background Concepts

attached networks. These networks facilitate communication by allowing containers to send and
receive data packets using standard networking protocols like TCP/IP.

Container orchestrators like Kubernetes facilitate the networking configuration and ensure
connectivity between containers, handling tasks such as network interface creation and its IP
address allocation, service discovery, and load balancing to support the seamless operation of
containerized applications.

2.2.2 Advantages of Containers

Containers offer several advantages over traditional virtual machines, especially in the context of
cloud computing and digital transformation:

• Efficiency: Containers are lightweight and consume fewer resources compared to VMs,
making them ideal for deploying and scaling applications in cloud environments. Indeed,
containers spin up in milliseconds since they do not require to boot of any OS. Moreover, a
single system can host many more containers as compared to VMs.

• Cloud and OS Distribution Portability: Containers encapsulate applications and their
dependencies together, enabling consistent deployment across different environments and
OS, from on-premises data centers to public and hybrid clouds. Each container runs the
same on a laptop as it does in the cloud. It also makes it easy to migrate workloads from
any platform to one another.

• Scalability: Containers can be easily scaled up or down to handle dynamic workloads,
enabling organizations to optimize resource utilization and improve application performance.

• Isolation: Containers offer process-level isolation, ensuring that applications run in isolated
environments without interfering with each other. This enhances security and helps prevent
conflicts between applications.

• Continuous development, integration, and deployment: Containers provide for reliable and
frequent containerized application image build and deployment with quick and efficient
rollbacks.

Thus containers have emerged as a transformative technology to modernize application
deployment and management in cloud environments. Since containers can run on top of a shared
OS, they need only to include application code, whether in the form of a single monolithic
application or microservices that are bundled together in one or more containers to encompass a
business function. By leveraging containerization technology, organizations can achieve greater
efficiency, flexibility, and scalability, driving innovation and accelerating digital transformation
initiatives.

It is clear how the benefits introduced by containers match well with the requirements and
advantages of microservices, providing technological support that facilitates the implementation
of such an architecture: rather than deploying many microservices in separate virtual machines,
it is better to do so in separate containers. As the adoption of microservices continues to grow,
containers are becoming an essential building block for building and deploying cloud-native
applications in today’s dynamic and competitive landscape. [7]

According to Gartner’s prediction, by 2027, more than 90% of global organizations will be
running containerized applications in production, which is a significant increase from fewer than
40% in 2021. [1]

9

Background Concepts

However, considering the large number of microservices and containers that an enterprise
must deploy and run, manually managing such a large number of entities (starting, restarting,
terminating, scaling, etc.) becomes complex and challenging. In a production environment, you
need to manage the containers that run the applications and ensure that there is no downtime.
Therefore, container orchestration platforms, such as Kubernetes, clearly become even more
essential by automating the deployment, scaling, and management of containers, streamlining
the application lifecycle and reducing operational overhead. Kubernetes provides a framework
for running distributed systems in a resilient manner. It addresses application scalability and
failover, provides deployment models and more. [6]

We will look at Kubernetes and its features in more detail in the next sections.

2.3 Kubernetes

In recent years, Kubernetes has emerged as the de facto open-source standard for container
orchestration, revolutionizing the way organizations deploy, manage and scale containerized
applications. Before Kubernetes, managing containerized applications at scale was complex and
challenging. Container orchestration involved manually scheduling and managing containers
across a cluster of machines, handling resource allocation, scaling, load balancing, and fault
tolerance. As the adoption of containers - and thus the number of containers to be managed -
increase, this manual approach was time-consuming, error-prone, and difficult to scale, especially
in dynamic cloud environments.

Kubernetes, also known as K8s, addresses these challenges by providing a robust and compre-
hensive platform for automating containerized application deployment, scaling, monitoring, and
management, as well as rolling out changes to your apps, and other interesting features. Moreover,
Kubernetes can be used anywhere. In fact, by abstracting the complexity of the underlying
infrastructure, K8s can run on any type of cloud platform, on-premise data center or hybrid
models, enabling easy migration between different cloud providers. This allows companies to run
their applications wherever they need them and easily migrate to different platforms as needed.
Therefore, Kubernetes enables organizations to focus on developing and delivering applications
without worrying about the operational overhead, improving company reliability and reducing
the time and resources attributed to daily operations. [9]

According to CNCF, Kubernetes is emerging as the ’operating system’ of the cloud. The
2022 CNCF survey outlines how 64% of organizations are already adopting K8s as container
orchestrators in production, while 25% are evaluating or piloting its adoption. [2]

2.3.1 K8s Features

Kubernetes comes with a lot of interesting features and benefits, that we can summarize as follow:
[6]:

• Scalability: Kubernetes enables horizontal scaling of applications, allowing them to handle
increasing workloads efficiently. Kubernetes autoscaling feature enables automatic spin-up
of new containerized application instances as needed to handle the additional workload.

• Flexibility: Kubernetes supports various deployment strategies, including rolling updates,
canary releases, and blue-green deployments, enabling organizations to iterate quickly and
experiment with new features.

10

Background Concepts

• Portability: Kubernetes abstracts away the underlying infrastructure, enabling applications
to run consistently across different environments, from on-premises data centers to public
and hybrid clouds.

• Resilience: Kubernetes provides built-in mechanisms for fault tolerance, self-healing, and
automated failover, enhancing application reliability and availability.

• Automation: Kubernetes automates repetitive and manual tasks related to container
management, such as deployment, scaling, service discovery, and load balancing, reducing
operational overhead and improving efficiency.

• Service Discovery and Load Balancing: Kubernetes offers built-in service discovery and load
balancing capabilities, enabling applications to communicate with each other seamlessly
and distribute incoming traffic across multiple instances.

• Rolling Updates and Rollbacks: Kubernetes supports rolling updates and rollbacks of
application deployments, enabling organizations to deploy new features or updates with
minimal downtime and risk.

• Security: Kubernetes provides built-in security features, including network policies, role-
based access control (RBAC), and container secrets management.

• Storage Orchestration: Kubernetes supports various storage options for containers, including
persistent volumes and storage classes, for managing application data and stateful workloads.

• IPv4/IPv6 Dual-Stack Provisioning: Kubernetes enable automated allocation and manage-
ment of IPv4 and IPv6 addresses to Pods and Services.

These benefits and features contribute to Kubernetes’ popularity and success as a leading container
orchestration platform in modern cloud-native environments.

The next section delves into the main features of Kubernetes, exploring the architectural
components and resources useful for understanding the thesis work laid out in the next chapters.

As we will see, Kubernetes resources can be expressed via a YAML file, that is, a configuration
file that adopts a JSON format. Then, using the kubectl apply -f <filename> command, you
can provide that resource as input to the apiserver to be created and deployed within the cluster,
if it doesn’t exist yet.

2.4 Kubernetes Architecture and Resources

Before delving into the components of Kubernetes, it is essential to understand the fundamental
elements that make up the Kubernetes architecture.

Each Kubernetes cluster consists of a set of worker machines, simply called Worker Nodes
or Nodes, that run containerized applications, and every cluster has at least one worker node.
Each worker node can be a virtual or physical machine that contains the services necessary to
run containers.

A K8s cluster implements a master-slave architecture, consisting of a control plane (called
Master Node) and one or more worker nodes (slaves) that actually run applications. Each
component plays a crucial role in managing and orchestrating containerized workloads within a
Kubernetes cluster.

11

Background Concepts

Figure 2.3: K8s Cluster Architecture (source: Simform)

The smallest unit that can be scheduled on the cluster is called Pod, and can have one or
more containers inside. The worker nodes deploy, run, and manage Pods (i.e. the containerized
applications within), while the control plane is responsible for managing the worker nodes and
the Pods in the cluster, and it runs a scheduler service that automates when and where the
containers are deployed based on developer-set deployment requirements and available computing
capacity. Each worker node requires the installation of the tool that is being used to manage the
containers — container runtime, such as Docker or Containerd — and a software agent called a
Kubelet that receives and executes orders from the master node, interacting with the container
runtime. [10][11]

2.4.1 Master Node

The Master Node serves as the brain of the Kubernetes cluster, responsible for managing and
coordinating all activities within the cluster. The control plane’s components make global decisions
about the cluster (such as pod scheduling, for example), as well as detecting and responding to

12

https://www.simform.com/blog/kubernetes-architecture/

Background Concepts

cluster events.
As shown in Figure 2.3 it is composed by several components: [10]:

• Kube-apiserver : The API server acts as the front-end for the Kubernetes control plane,
exposing the K8s APIs for all administrative tasks and enabling communication with the
cluster to configure and manage K8s resources.

• Etcd: As a distributed key-value store, etcd serves as the cluster’s persistent storage for all
Kubernetes cluster data, including configuration settings, state information, and metadata.

• Kube-scheduler : The scheduler component is responsible for assigning newly created pods to
nodes within the cluster based on a series of context information like resource requirements,
constraints, and availability.

• Kube-controller-manager : The controller manager oversees the operation of various con-
trollers responsible for maintaining the desired state of the cluster. These controllers include
the node controller, replication controller, endpoint controller, and service account controller,
among others.

• Cloud-controller-manager : In cloud-based Kubernetes deployments, the cloud controller
manager interacts with the underlying cloud provider’s APIs to manage resources such as
virtual machines, load balancers, and storage volumes. In our case, this was not used since
we implemented an on-premises K8s cluster.

2.4.2 Worker Node

Nodes, also known as Worker Nodes, constitute the computing units of a Kubernetes cluster,
where containerized applications run.

Each node hosts multiple components responsible for managing containers and providing
essential cluster services:[10]:

• Kubelet: The kubelet agent runs on each node and is responsible for communicating with
the control plane, managing pods on its behalf, and ensuring that containers are running
within pods as expected.

• Kube-proxy: The proxy component enables network communication between pods and
external clients by managing network routing, load balancing, and service discovery within
the cluster. It maintains on nodes the network rules that are needed by the pods for network
communication.

• Container Runtime: It is a fundamental component responsible for pulling container images,
creating containers, and managing their lifecycle on each node within the Kubernetes
environment. Kubernetes supports various container runtimes, including Docker, Containerd,
and Cri-o. In our case, we adopted Containerd.

2.4.3 Pods

Kubernetes Pods are the smallest deployable units of computing that you can create and manage
in K8s clusters. Essentially, a Pod represents a single Kubernetes resource encapsulating one
or more tightly coupled containers that share storage, network resources, and a specification

13

Background Concepts

of how they have to be executed. Containers within the same Pod share the same network
namespace (and thus share the same network stack and IP address) and can communicate with
each other over the localhost interface, simplifying inter-container communication and facilitating
collaborative workflows.

Consequently, pods can be viewed and managed as virtual machines or hosts, since they all
have a unique IP address, and containers within pods can be treated as processes running within
a virtual machine or host, since they run in the same network namespace and share an IP address.

Thus a pod can be conceptualized as an enclosure around a set of one or more containers,
providing isolation from other independent pods running in the cluster. This encapsulation
facilitates cohesion among the containers co-located within the Pod, allowing them to work
together smoothly: whenever a pod running multiple containers is deployed, they are all created
and executed correctly within it at all times. [12]

Pods in Kubernetes offer several key features that contribute to their usefulness and flexibility
within the platform. First, Pods support horizontal scalability; that is, identical Pods can
be replicated and deployed across the Kubernetes cluster to meet application demand. This
scalability enables efficient resource utilization and high application availability. In addition,
Kubernetes Pods incorporate robust self-healing mechanisms: if a Pod or its underlying node
fails, Kubernetes automatically reschedules the Pod onto a healthy node, ensuring continuous
operation of the application. This resilience is essential for maintaining application availability
and reliability in dynamic environments.[12]

Typically, each pod will certainly run a main application within a primary container and
possibly (depending on the needs of the application and cluster administrators) one or more
sidecar containers as well.

Sidecar containers are a powerful concept in Kubernetes Pods, allowing the functionality of
the main application to be augmented and extended without changing its code base. Sidecar
containers run alongside the main container within the same Pod, sharing the same lifecycle
and resources. This architecture facilitates the implementation of additional functionality such
as logging, monitoring, security or proxying alongside the main application container. Sidecar
containers allow for improving the resilience, observability and security of Kubernetes workloads
by separating issues and promoting modular design patterns. In fact, by leveraging sidecar
containers, developers can improve the capabilities of their applications without introducing
complexity or tightly coupling different functionalities, thus promoting scalability, maintainability
and agility of Kubernetes environments.[13]

As we will see in Chapters 5 and 6, the sidecar concept will be essential for implementing
Service Mesh solutions in the cluster: the Istio sidecar container is injected within each pod at its
boot, and is responsible for intercepting and managing pod network traffic produced or directed
to the main application container (since containers within the same pod share the same network
namespace, and thus network stack and IP address); instead, the main container executes only
the application logic, depending on the received traffic that is passed by the sidecar container.

2.4.4 Deployments and ReplicaSet

Kubernetes Deployments are a cornerstone of managing containerized applications within Ku-
bernetes clusters. Deployments provide a declarative way to define and manage the lifecycle of
application instances, ensuring consistency and reliability across environments: users can specify
the desired state of their applications, including the number of replicas, container images, and
deployment strategies. Kubernetes then orchestrates the deployment resource, automatically

14

Background Concepts

Figure 2.4: Kubernetes Pod With Sidecar (source: Kubebyexample)

managing the creation, scaling, and updating of application instances within pods to meet the
specified requirements.

Deployments also offer robust features for rolling updates and rollback mechanisms, enabling
seamless transitions between different versions of applications while maintaining availability
and stability. Overall, Kubernetes deployments streamline the process of managing and scaling
applications, promoting efficient and reliable operations in dynamic containerized environments.
[14]

A ReplicaSet instead, is a resource whose purpose is to maintain a stable set of replica Pods
running at any given time. Therefore, is adopted by K8s to guarantee the availability of a specified
number of identical Pods.[15]

Figure 2.5 shows an example of a Deployment. Once we run the kubectl apply -f <filename>
command, a Deployment named nginx-deployment is created, indicated by the .metadata.name
field. The Deployment creates a ReplicaSet that creates three replicated Pods: whenever any
of the 3 replicas terminate or has some issues, K8s immediately takes action to reestablish the
desired state, that is, to ensure that there are always 3 replicas operating at any time. The
.spec.selector field defines how the created ReplicaSet finds which Pods to manage. In this case,
you select a label that is defined in the Pod template. The Pods are labeled app: nginxusing the
.metadata.labels field. The .template.spec field, indicates that the Pods run one container, named
nginx, which runs the nginx Docker Hub image at version 1.14.2 and uses the Pod’s port 80 to
expose the related service. Each pod can be scheduled anywhere within the cluster. [14]

2.4.5 Namespaces

Kubernetes namespaces provide a mechanism for logically partitioning and isolating resources
(e.g. Deployments, etc.) within a cluster, ensuring the integrity of workloads. By creating distinct
namespaces, Kubernetes users can segregate their applications, services and resources, establishing
clear boundaries and access controls.

Each namespace functions as a virtual cluster within the larger Kubernetes environment,
with its own set of K8s objects and policies. Users can define role-based access control (RBAC)
policies at the namespace level, regulating who can interact with resources within that namespace.
In addition, user namespaces facilitate resource quota management, allowing administrators
to allocate and restrict resource usage for individual namespaces. Overall, Kubernetes user

15

https://kubebyexample.com/learning-paths/istio/intro

Background Concepts

Figure 2.5: An Example of a Deployment Resource (Source : Kubernetes Documentation)

namespaces promote multi-tenancy, security and resource isolation, facilitating collaboration and
efficient management of different workloads within Kubernetes clusters.

When you create a Service resource, it creates a corresponding DNS entry. This entry is of
the form <service-name>.<namespace-name>.svc.cluster.local, which means that if a container
only uses <service-name>, it will resolve to the service which is local to a namespace. [16]

Namespaces cannot be nested inside one another: the various namespaces in the cluster
co-exist isolated side by side on a single flat level, and each Kubernetes resource can only
be in one namespace. Kubernetes starts with four initial namespaces: default (a namespace
that Kubernetes uses by default for newly created resources, unless otherwise specified in the
.metadata.namespace field of the YAML configuration file) , kube-public, kube-node-lease,
and a namespace for objects created by the Kubernetes system named kube-system. However,
in a production cluster the default namespace should not be used. Instead, it is suggested that
other namespaces be created and used. [16]

2.4.6 Service Account and RBAC

A Service Account is an identity created inside the Kubernetes cluster, and it is used by pods
to interact with the K8s API server and other cluster services in a secure manner. Each service
account is associated with a specific namespace and provides a mechanism for authenticating and
authorizing access to resources within the cluster.

Service Accounts are also associated with secrets, which are securely stored and mounted into
pods as volumes. These secrets contain credentials or tokens that pods use to authenticate with
external services or APIs. By leveraging Service Accounts and secrets, Kubernetes provides a
secure mechanism for managing sensitive information and access credentials within the cluster.

Typically each pod is assigned a unique Service Account: whenever pods interact with the

16

https://kubernetes.io/docs/concepts/workloads/controllers/deployment/

Background Concepts

Kubernetes API server, the associated token is used to authenticate requests. This mechanism
ensures that only authorized pods can access cluster resources and perform actions within their
namespace. [17]

Role-Based Access Control (RBAC) is a Kubernetes feature that governs access to cluster
resources based on predefined roles and permissions. RBAC enables administrators to define
granular access policies for the API server, specifying which actions a given Service Account can
perform on specific resources. By assigning RBAC roles to Service Accounts, administrators can
enforce security policies and control access to sensitive resources within the cluster.

Implementing RBAC and Service Accounts is crucial for securing cluster access and preventing
unauthorized actions within the Kubernetes environment. [17]

2.5 Kubernetes Network Model

Kubernetes defines a network model that helps provide simplicity and consistency across a range
of networking environments and network implementations. It defines how pods and services
within Kubernetes communicate with each other, and how network traffic is routed and managed
within the cluster. It provides some principles to be followed for implementing networking within
a cluster [18][19]:

• Each pod is assigned a unique IP address
• Containers within the same pod share the same network stack, IP address and range of

ports, and communicate via loopback
• Pods can communicate with all other pods in the cluster using the pod IP addresses (without

performing any Network Address Translation)
• Isolation (restricting what each pod can communicate with) is defined using network policies

This model is implemented by the container runtime running on each node: it leverages the
Container Network Interface (CNI) plugins to manage their network and security capabilities.
CNI plugins are responsible for tasks such as assigning IP addresses to pods, setting up network
interfaces, configuring routing, implementing network policies, and enabling communication
between pods and external networks. There are many CNI plugins available, each with its own
features and capabilities, allowing users to choose the one that best fits their requirements. [20].

However, the K8s network model also introduces several interesting features, reported in the
next subsections.

2.5.1 Kubernetes Services

The Kubernetes workloads IPs are assigned when the pod that runs them is created, but they
can change over time for various reasons, such as pod rescheduling, node failures, or horizontal
scaling. Kubernetes Pods are, therefore, continuously created and destroyed to adapt to the
desired state of the cluster. Since pods are ephemeral resources, it is difficult for other pods or
external services to reliably communicate with pods using their IP addresses directly since they
are unreliable and unstable. The Kubernetes network model introduces the concept of Service,
with the goal of solving this problem.

The Services provide a way to abstract access to a group of pods as a network service by
providing a stable virtual IP address (which can be discovered using Kubernetes DNS) that can
be used to contact the pods hiding behind. Each service in Kubernetes automatically gets a DNS

17

Background Concepts

name that resolves to the cluster IP address of the service. This ensures that the DNS name and
virtual IP address remain constant throughout the lifetime of the Service, even though the pods
backing the Service may be continuously created or destroyed and the number of pods supporting
the Service may change over time.

Services in Kubernetes also provide load balancing across multiple pods that belong to the
service. This ensures that traffic is evenly distributed among the pods, improving the availability
and reliability of applications. [21].

There are several types of services in Kubernetes, each of which has a specific purpose and
meets different network requirements. Here are the most common types of services: [21]:

• ClusterIP: This is the default type of service used if you don’t explicitly specify a type. It
exposes the service on an IP address which is accessible only within the cluster.

• NodePort: This type of service exposes the service on each node’s IP address at a static
port. It allows external clients to access the service by connecting to any node in the cluster
on the specified port. Traffic is then forwarded to the service within the cluster.

• LoadBalancer : This type of service provisions an external load balancer (like those provided
by cloud providers) that routes traffic to the service.

2.5.2 Ingress and Ingress Controller

Ingress is another Kubernetes resource that enables external access to services within the cluster.
It acts as a layer of abstraction for HTTP and HTTPS routing, allowing cluster external traffic to
be routed to the appropriate services based on rules defined in the Ingress resource. The Ingress
resource allows HTTP and HTTPS requests with particular domains or URLs to be mapped to
some specific Kubernetes services, based on rules defined through that resource. But in order for
the Ingress resource to work, the cluster must have an ingress controller running.

An Ingress controller is a Kubernetes component responsible for managing and configuring
the underlying load balancer or reverse proxy that routes external traffic to services within the
cluster based on the rules specified in the Ingress resources. The Ingress controller watches for
changes to Ingress resources in the Kubernetes API server and reconfigures the load balancer or
reverse proxy accordingly.

There are several Ingress controllers for Kubernetes, each with its own features and capabilities.
In this thesis work, since Istio Service Mesh was being analyzed, it was decided to adopt its
built-in Ingress Gateway. [22][23]

2.5.3 Calico CNI Plug-in Networking

Calico implements the Kubernetes CNI as a plug-in and provides agents for Kubernetes to provide
networking for containers and pods. It creates a flat Layer-3 network by dividing an initial CIDR
into a series of smaller IP subnets (address blocks) and assigning one or more of these blocks to
nodes in the cluster. It then assigns a fully routable IP address to each pod, depending on which
node it is scheduled on (and thus on which logical subnet). When routing pod traffic, Calico uses
the node’s local route tables and iptables: all pod traffic goes through iptables rules before being
routed to its destination. A pod has its own network stack that is completely isolated from the
others, leveraging Linux network namespaces.

18

Background Concepts

Each pod is connected to the internal host’s virtual network (i.e. host network namespace)
using a pair of virtual Ethernet interfaces (called a veth pair). A pod sees eth0 as its local
interface, and the host kernel generates an interface name for each pod that begins with “cali.”
The Calico plugin then sets up the host’s network namespaces to act as a virtual router/switch:
each pod residing on the host is connected to that virtual router, and Calico makes sure that the
virtual router knows where all the pods in the rest of the cluster nodes are programmed so that
it can forward traffic to the right places. All traffic forwarding occurs natively within the Linux
kernel.

Traffic between pods on the same node is routed locally and traffic between pods on different
nodes is routed over the underlying network: in some cases, the underlying network does not
know how to forward the pod traffic, and therefore it is needed to run an overlay network.

Calico supports two overlay modes, VXLAN and IP-in-IP, which are implemented by virtual
interfaces within the Linux kernel. Whenever a pod sends a packet to a pod on a different node, it
is encapsulated using VXLAN or IP-in-IP in an external packet that uses the node’s IP addresses
and hides the pod IPs of the original internal packet. This creates a kind of tunnel between two
nodes. The underlying network handles this packet like any other node-to-node traffic. On the
receiving node, the packet is decapsulated to extract the original packet and then delivered to
the correct destination pod using the host’s internal virtual network. [24][25]

By default, the Kubernetes CNI plugin does not restrict any network traffic between pods,
therefore, any pod can communicate with any other pod in the cluster, as well as with external
sources. This can pose security risks, as malicious pods can exploit vulnerabilities in other pods
or access sensitive data.

19

Chapter 3

Security Challenges And Zero
Trust Model

3.1 Limitations of the Castle and Moat Approach

Until a few years ago, the traditional approach to cybersecurity taken by companies and datacenters
to defend their networks was centred on the idea of defining a perimeter within which their services,
data and devices resided, building strong boundary defence measures to protect everything within
the organisation’s network from outsider threats, and implicitly trusting everything and everyone
operating within that perimeter.

Also known as the ’castle and moat’ approach, the idea behind this model is to imagine the
corporate network to be protected as a castle and the network perimeter surrounding it as a
moat, creating a clear separation between the internal trusted zone and everything outside it,
namely the external untrusted network (i.e. the Internet).

Typically, organizations deploy many resources such as Firewalls, Intrusion Detection Systems
and Intrusion Prevention Systems, which are useful for implementing security at the network
perimeter, detecting external attackers and possibly blocking their penetration into the network.

These types of systems are suitably configured to act as a separation as well as the only point
of contact between the trusted network to be protected and the rest outside, thus forcing any
north-south traffic (i.e. that which flows from outside to the organization’s network, and vice
versa) to necessarily pass through these security solutions, being able to inspect such traffic and
detect any threats or unauthorized traffic and take timely countermeasures.

Unfortunately, although these solutions help to protect against external threats, they are not
as effective in detecting and blocking insider threats and attacks, or data breaches. In fact, this
perimeter-oriented security model does not take into account the possibility that such perimeter
security measures may sometimes fail or be unable to detect malicious traffic, due in part to
evolving threats and the ever-increasing skill of cybercriminals. In addition, malicious actors or
employees could infiltrate and operate from within the corporate network.

The lack of preventive security solutions inside the perimeter that would allow visibility into
activities within the network, and to inspect, authenticate and authorize east-west traffic is the
biggest security flaw of the castle-and-moat approach.

In fact, for most organizations, east-west traffic constitutes the majority of data center and

20

Security Challenges And Zero Trust Model

Figure 3.1: Corporate North-South and East-West traffic (source: Paloalto Networks)

cloud communication flows, and perimeter defenses have no visibility into this internal traffic.
As a consequence, the impact of a security incident and any lateral movement within the

network is not mitigated in any way.
If an attacker gains access to the network, i.e. if he is able to overcome the security measures

in place at the border, then he could move freely sideways and gain access to any sensitive
service or system within the castle, perhaps manipulating or worse, exfiltrating sensitive data, or
performing other types of attacks such as ransomware or cryptojacking.

Moreover, as a result of the ongoing digital transformation, there is no longer an easily
identifiable corporate network edge to protect. The typical enterprise infrastructures where
services and data reside, are becoming increasingly complex, often consisting of a combination of
multiple internal networks with a large number of endpoints, remote offices, IoT and mobile devices,
and cloud services. Relying upon IaaS, PaaS, and SaaS services, organizations are migrating their
infrastructure, platforms, and applications (or even part of them) to cloud. Therefore modern
enterprise digital infrastructures are no longer confined within a single perimeter that clearly
separates them from the rest, but span on-premises data centers as well as private, public and
hybrid clouds. The Covid pandemic added further complexity to the landscape by introducing
remote working, which remains widely used by companies to this day.

Due to the overall complexity of the scenario just described, traditional perimeter-based
network security solutions alone are considered obsolete and provide poor granularity of access
control, as there is no unique and easily identifiable perimeter for the enterprise, as well as proven
insufficient, as once attackers breach the perimeter, further lateral movements are not prevented.
[26]. To address this complexity and the new challenges facing cybersecurity, a new model called
Zero Trust was introduced.

21

https://www.paloaltonetworks.com/cyberpedia/what-is-microsegmentation

Security Challenges And Zero Trust Model

3.2 Zero Trust Security Model

The inadequacy of the ’castle and moat’ approach and the difficulties in defining the perimeter of
an organisation’s information systems had already been highlighted in 2003 by the Jericho Forum
and later taken up by John Kindervag, a researcher at Forrester, who, in 2010 proposed as a
solution a more rigorous approach to cybersecurity and access control within companies, called
Zero Trust.

Zero Trust is a strategic approach to cybersecurity that secures an organization by eliminating
the concept of a trusted corporate network and the implicit trust of any entity within it by
continuously analyzing, verifying, and authorizing every request and interaction with any IT
resource before it is allowed. The term ZT refers to a paradigm encompassing a set of concepts
and principles whose goal is to prevent unauthorized access to data, services and devices whenever
your internal network is compromised, leveraging upon the motto “never trust, always verify”.

Designing and implementing the Zero Trust Model for a given company means assuming that
threats might already be inside the network, perhaps through a malicious insider or an attacker
who has breached the perimeter defense, and thus considering any corporate network no different
or more trustworthy than any other nonenterprise, untrusted network.

An operative definition of zero trust and zero trust architecture, provided by NIST in the
800-207 standard, is as follows:

“Zero trust (ZT) provides a collection of concepts and ideas designed to minimize uncertainty
in enforcing accurate, least privilege per-request access decisions in information systems and
services in the face of a network viewed as compromised. Zero trust architecture (ZTA) is an
enterprise’s cybersecurity plan that utilizes zero trust concepts and encompasses component
relationships, workflow planning, and access policies. Therefore, a zero trust enterprise is the
network infrastructure (physical and virtual) and operational policies that are in place for an
enterprise as a product of a zero trust architecture plan.” [26]

When organizations require Zero Trust and Zero Trust architecture, the starting point is
assuming that all users, devices, and applications within the enterprise network can be potentially
compromised and should not be trusted by default. Therefore, there is no entity within the
corporate infrastructure that can be considered a secure origin and whose operations are implicitly
considered trusted without performing any kind of access control.

In contrast, in order to mitigate uncertainties (since they cannot be completely eradicated),
continuous verification of the identity and authorization of all requesting entities is required before
granting access to an IT resource, shrinking implicit trust zones and making the application of
access control as granular as possible. At the same time, it is also important to maintain resource
availability and minimize temporal delays in authentication mechanisms.

However, adopting a Zero-Trust strategy does not involve abandoning the castle-and-moat
defense. On the contrary, it means implementing the principle of defense-in-depth by integrating
firewalls and IDS/IPS with other types of countermeasures. Implementation of ZT within your
network offers an additional layer of security that complements the perimeter one, based on the
assumption that the enemy is not only at the gates but may already be inside the perimeter, thus
enabling organizations to be prepared for the eventuality and to respond more effectively and
timely to emerging threats, both external and internal.

The picture just above (Figure 3.2) shows the difference between a traditional trust-based
network and a zero-trust network.

By looking at the traditional network scheme, i.e. a castle-and-moat approach, it is clear how
the whole enterprise network is considered an implicit trust zone. Therefore once the attacker

22

Security Challenges And Zero Trust Model

Figure 3.2: Traditional Network vs Zero Trust Network (source: The SSL Store)

overcomes the first defense line (FW and maybe also IDS/IPS, which are not shown here), it is
free to move far and wide throughout the organization’s network without any impediment or
mitigation, since any action taken once inside the network is implicitly considered trusted and
safe.

Therefore, it may be sufficient to bypass the firewall and compromise any corporate resource,
and then carry out an attack from within the private network, maybe reaching further sensitive
targets.

The traditional model alone no longer works when techniques like credential phishing and
session hijacking are carried out. More robust security and authentication measures are needed.

The zero-trust environment, on the other hand, differs from a traditional security approach in
that zero-trust implies the need to continually prove trustworthiness, even once the perimeter
and related security controls have been passed.

It is clear from the image how a firewall (or other perimeter-based security measures) is
still present even when Zero Trust is implemented. ZT architecture doesn’t involve removing
perimeter defense, instead, it implies integrating this kind of solution with additional security
measures that enable individual resource protection even when the first defense line fails. In fact,
the image on the right shows how even once the attacker gains access to the network and the
resource is compromised. It will be allowed access only to the business assets it needs to complete
certain tasks and thus, for which it is actually authorized. Any other type of request to other
resources on the network (and thus unauthorized lateral movement) will be denied, obtaining
threat mitigation.

3.3 Zero Trust Network Principles

In 2020, the U.S. National Institute of Standards and Technology (NIST) developed and published
NIST SP 800-207, a document that addresses the Zero Trust approach in-depth, providing a
comprehensive but detailed overview of the fundamental tenets, architectural components, and
best practices for designing and implementing a Zero Trust architecture.

23

https://www.thesslstore.com/blog/the-rise-of-zero-trust-threats-are-no-longer-perimeter-only-concerns/

Security Challenges And Zero Trust Model

According to the 800.207 NIST pubblication[26] , we can summarize the key assumptions and
principles to consider when wanting to design and implement a Zero Trust network as follow:

1. All IT assets, data sources, devices, and computing services within the corporate network
are considered resources and can be compromised and subverted at any time.

2. The entire enterprise network infrastructure is not considered an implicit trust zone, and
therefore all resources must act at any time as if an attacker is already within the private
network. This means that all communication that involves an enterprise resource, whether
incoming or outgoing, should be done in the most secure manner available independently of
network location, always protecting message confidentiality, authentication and integrity,
and providing source authentication.

3. ’Never Trust, Always Verify’. Every request for access to any enterprise-owned asset must
always undergo a rigorous and dynamic security posture evaluation process, as no source
requesting any resource should be inherently trusted. A Policy Enforcement Point must
be placed in front of any enterprise resource and, before granting access to it, must be
able to perform source identity verification and request authorization for any request,
regardless of whether it comes from an external or enterprise-owned source. This means
that communications and access requests coming from entities located in the corporate
network infrastructure should not be considered implicitly trusted. They must be treated
as any other requests coming from non-enterprise networks and therefore must undergo the
same security requirements for resource access.

4. Every entity (users, services and devices) that interacts with corporate resources must possess
a reliable and verifiable digital identity, even if it is internal to the enterprise network.
Strong and verifiable authentication mechanisms must be continuously performed for every
access request received from any corporate resource, in order to demonstrate the digital
identity of the source (and thus that it is not an imposter) and then be able to retrieve and
verify the corresponding authorizations consecutively.

5. Access to every single enterprise resource should be granted on a per-session basis, ensuring
least-privilege access and default deny approach. When requesting access to any corporate
resource, a least-privilege policy should be applied by providing the requestor only the
minimum amount of privileges required to complete a given task. By default any request is
denied and requires a separate evaluation and authorization process that enables it: once
the request of a given entity is granted, it does not automatically grant it access to other
different resources, or to the same resource in the future, but further requests for access
must be submitted and evaluated separately.

6. Ensure visibility of network operations at any time, and continuous inspection and moni-
toring of activities. Since no corporate resource is inherently trusted, an enterprise should
continuously collect data and logs about asset security posture, network traffic and access
requests, process that data, and try to detect and analyse suspicious operations that don’t
reflect the “normal” behaviours. Constant monitoring of network activity, as well as traffic
patterns and request flow, can help to gain complete visibility into the activities taking
place within the network, and possibly detect anomalous and/or malicious activity and
promptly take any useful mitigation to limit the impact of a security incident. In addition,
the insights gained from this data can be used to improve policy creation and enforcement
and thus the security posture for any resource within the network.

24

Security Challenges And Zero Trust Model

Figure 3.3: A Conceptual Model of Zero Trust Logical Components (source: B-Nova)

7. Assets and workflows moving between enterprise and nonenterprise infrastructure should
have a consistent security policy and posture. Often nowadays some corporate resources do
not reside on the company-owned network, and in addition, they may need to use some
non-company network services (e.g., DNS resolution): some examples are remote users
(i.e. those connecting from remote nonenterprise networks) or workloads migrating from
on-premises data centers to nonenterprise cloud instances. It is extremely important to
retain assets and workloads security posture when moving to or from enterprise-owned
infrastructure, and thus a reliable PEP can be securely deployed to protect resources located
on a nonenterprise infrastructure as well.

In the next chapters, we will consider and follow all these basic principles and guidelines when
defining a Zero Trust architecture for our Proof Concept.

3.4 Zero Trust Architecture And Microsegmentation

Whenever implementing a zero-trust architecture, it should always be considered that, as also
reported by NIST [26], , any policy-based access control system consists of 2 main components: a
Policy Decision Point (PDP) and a Policy Enforcement Point (PEP). Actually, PDP is broken
down into two logical components: Policy Engine (PE) and Policy Administrator (PA).

The main idea is that PDP and PEP are those components that work together to apply a set
of controls, performing authentication and authorization processes, and thus determining whether
or not access to a given resource can be granted to a specific entity.

• PEP: The Policy Enforcement Point is the element that acts as a gateway. It is placed
in front of assets to be protected, and is responsible for enforcing authentication and
authorization mechanisms, enabling, monitoring, and terminating connections between a
subject and an enterprise resource. It communicates with the PA to forward requests and/or
receive policy updates to be applied from the PDP.[26].

• PE : The Policy Engine is the part of the PDP responsible for deciding which entity is
authorized to access each specific resource, by defining access control policies. The PE is

25

https://b-nova.com/en/home/content/trust-nobody-control-everyone-the-basics-of-a-zero-trust-architecture/

Security Challenges And Zero Trust Model

strictly coupled with the PA component. The policy engine typically makes and logs the
decision (as approved, or denied), and the policy administrator executes the decision.[26].

• PA: The Policy Administrator component is responsible for establishing and/or closing the
communication path between a subject and a resource, by communicating with the PEP.
It relies on the access control policies and decisions provided by the PE to configure the
PEP to deny or allow resource access requests coming from a given subject in the untrusted
zone.[26].

There are also some implementations that treat the PE and the PA as a single service,
commonly named PDP. Note in Figure 3.3 that PEP represents a clear separation between what
is considered an implicit trust zone and the untrusted one.

By following Zero trust principles and concepts, PDP/PEPs should be moved and maintained
as close to the resource as possible. This should be done to reduce the implicit trust zone to a
minimum, and explicitly authenticate and authorize all enterprise subjects, assets and workflows
that want to access the asset. This also permits the implementation of granular access rules and
to enforce the least privileges needed to perform the action in the request.

However, there are multiple ways through which an organization can establish a Zero Trust
Architecture for its workflows, still considering and adopting the general components and archi-
tecture described above. These methods differ in the components adopted and the primary source
of policy rules within the organization.

Chapter 3.1 of the NIST SP 800-207[26] outlines 3 possible different approaches, focusing on
Identity-based, Network-based, and Microsegmentation-based strategies.

Every approach adheres to all the principles of ZT (outlined in section 3.3 of the current
chapter), but may prioritize one or two of them as the primary driver of security policies.

1. Identity-based Approach: This approach focuses on verifying user identities and implementing
access controls based on user attributes like role, location, and device posture. It emphasizes
robust authentication methods and precise access controls to ensure only authorized users
access resources.

2. Network-based Approach: The second approach leverages network infrastructure and Soft-
ware Defined Perimeter technologies to implement Zero Trust. This approach involves
creating secure perimeters around resources using software-defined policies rather than
relying solely on traditional network boundaries.

3. Microsegmentation-based Approach: The last approach involves placing individual resources
(or groups of them) on a single network segment protected by a security component that
acts as a gateway. It extends the concept of network segmentation to the application or
workload level, allowing for granular access controls and isolation of critical resources. The
main idea behind is containing and limiting the spread of potential threats by properly
isolating the workloads of individual applications.

A comprehensive zero-trust solution can include elements from all three approaches.
Each method has its strengths and weaknesses, and organizations may choose to adopt a

combination of these approaches based on their specific security requirements and infrastructure.
As reported in the next chapters, I mainly focused on the microsegmentation approach, since,

also analyzing the security issues and solutions on the market, it seemed to be the one best suited
to implement Zero Trust within dynamic environments like Kubernetes clusters.

26

Security Challenges And Zero Trust Model

Figure 3.4: A Conceptual View of Networks With and Without Microsegmentation (source:
Share Vault)

In cloud-native architectures such as Kubernetes, pods and containers inside are frequently
spin up and down in seconds in order to guarantee workloads self-healing and scaling.

Because of the dynamicity of such environments, the IP addresses assigned to workloads
running on the cluster are ephemeral, making it impossible to manage IP-based rules. With
micro-segmentation instead, security policies are expressed in terms of identities or attributes
rather than only on network properties such as IP address, protocol and port.

Microsegmentation might be enforced across application environments made up of microser-
vices, which often have a lot of dependencies. In fact, in a microservice-based application, typically,
each single microservice represents a different application workload. With micro-segmentation it
is possible to create more flexible solutions because you can microsegment individual workloads
and then apply access control policies specifically designed to keep them safe.

The goal is to isolate workloads (or groups of them) in a network to limit the effect and spread
of malicious threats with policies that precisely control traffic in and out of specific workloads.

Each pod (or set of pods if the microservice consists of many replicas) running in the cluster
will represent a different segment, shrinking the implicit trust zone around the single workload.
Every workload will have its own security perimeter around it, thus trying to prevent lateral
movement when the threat attempts to move from one segment/workload to another.

Figure 3.4 highlights how, without microsegmentation, every resource can be contacted by
any other within the same perimeter. Each node represents a different workload operating on
the enterprise network infrastructure. The dashed links highlight which resource can be reached
by each individual node. Once sensitive data sources and critical assets and services have been
found, we establish logical boundaries (represented in the figure above as dashed lines grouping
resources) between business resources and workloads by adopting PDP/PEP components.

The goal is to allow each workload to contact and cooperate only with those resources strictly
necessary to perform certain business activities. Any other communication or requests involving a
pair of workloads that were not intended to interact for any reason will be automatically blocked
and cannot leave the logical boundaries.

In this way, whenever a particular resource within the network has been compromised, in
a worst-case scenario, the attacker would be able to affect only those resources with which the
workload has been authorized to interact, greatly containing the spread and impact of threats

27

https://https://www.sharevault.com/blog/virtual-data-room/enhancing-zero-trust-cybersecurity-with-microsegmentation

Security Challenges And Zero Trust Model

within the network and protecting other critical resources that reside within distinct logical
perimeters.

Therefore, I moved towards identifying relationships and dependencies among microservices
deployed within the clusters, and implementing gateways (PEPs) around each different pod
(hosting a given service or workload) dynamically grant access to individual requests from a
client, asset or service. As already mentioned in section 3.3, identity is a crucial point in zero
trust. In this case, the identity-based approach was also partially considered and implemented to
achieve Proof of Concept, but the main emphasis was not on identities, as I did not dispose of a
sufficiently robust IAM framework and authentication mechanisms to test and integrate into the
ZT architecture.

3.5 Kubernetes Security Challenges

Thanks to its flexibility, scalability and automation properties, Kubernetes is now becoming
increasingly popular and widely adopted by companies to deploy, run and manage their services.
On the other hand, however, these modern environments and the related technologies adopted
raise many security issues.

Compared to traditional networks, Kubernetes significantly expands the attack surface: as
more pods and containers run on each node of the cluster and communicate with each other and
with external services and networks, there are more entry points for attackers to exploit. In the
case of a pod/container breach, the attack surface is directly related to the extent of the affected
pods’s communication with other pods and services. Furthermore, vulnerabilities contained within
individual container images and in the CI/CD process of workloads on the cluster, combined with
possible misconfigurations of cluster resources, could easily lead to privilege escalation and the
creation of malicious pods in the cluster that would act unimpeded.

Then, since Kubernetes is a highly dynamic environment where pods and containers are
constantly being created, terminated, moved across different nodes, and in general dynamically
scaled up and down according to needs that are constantly mutating, it makes it challenging to
maintain a consistent security posture for each of them.

Pods and containers need to communicate with other pods in the cluster and with other
external endpoints. The number of interactions required by each workload with other services is
often high, especially in a microservice-based architecture. But in an environment where pods
are ephemeral entities continuously spin up and down, and a different IP address is assigned each
time, it is difficult to implement network segmentation within the cluster due to the dynamic
nature of the actors (and their network configuration) within the network and thus the complexity
of manually configuring this type of policy. Moreover, manually setting up a security control for
the various pods and managing their security configuration becomes impossible.

But what is even more critical is the lack of visibility into the pod operations within a
Kubernetes cluster. As more and more containers are deployed, it becomes difficult to maintain
adequate visibility into the components of this cloud-native infrastructure. Moreover, the
distributed nature of containerized applications makes it difficult to investigate containers and
pods that could pose a significant vulnerability or risk to the business quickly and detect anomalous
behaviour.

Further complexity is introduced by the fact that the pods in Kubernetes often communicate
using overlay networks, which create a distributed network that can be easily ported to any
infrastructure. However, although flexible and powerful, this network model also reduces visibility
and makes it difficult to regulate traffic using traditional tools such as firewalls, IDS and IPS.

28

Security Challenges And Zero Trust Model

Traditional network access controls operate at the host level and are unaware of the containerised
resources running within a host: whenever two pods residing on different cluster nodes interact,
due to the fact that pod-to-pod traffic is often encapsulated using IP-IP or VXLAN tunnels, these
network solutions are unable to inspect and correctly understand the actual traffic exchanged.
The same also applies to traffic entering and leaving clusters, as this traffic is usually netted by
the host’s iptables before entering or leaving the host. Finally, of course, these tools have no
visibility into communications between pods deployed on the same nodes, since the related traffic
never leaves the host. Thus, also traditional perimeter-based security approaches are useless when
operating Kubernetes clusters, leaving also the north-south traffic exposed to security risks.

It is clear how Kubernetes network and security differs from traditional IT and infrastructure
systems: many new aspects open the door to possible new threats and attacks, easily leaving
room for bad actors to infiltrate and move laterally through the network and sensitive workloads
if appropriate security measures are not taken.

Consequently, security in Kubernetes requires a paradigm shift from traditional network secu-
rity due to its distributed, dynamic and container-centric nature. Therefore, the implementation
of Zero Trust principles is essential (and even more important) in Kubernetes environments. But
at the same time, it can be challenging, as the high level of dynamism of its component and the
virtual network model introduced by the orchestrator do not allow visibility into traffic entering
and leaving the pods and the cluster, and therefore it is not possible to adopt traditional network
security solutions to implement micro-segmentation between workloads. It is necessary to ensure
that a PEP is automatically placed in front of each newly created pod, regardless of whether
the K8s platform (or the specific cluster node) resides in an on-premises datacenter or in a cloud
provider’s infrastructure, and that authentication and authorisation mechanisms for requests
and communications between services are applied to any workload created within the cluster,
regardless of the underlying infrastructure. PEPs must also enforce policies by tracking dynamic
changes to cluster resources, updating them automatically (after explicit configuration by the
system administrator) when new Kubernetes Deployment, services and workload replicas are
created.

29

Chapter 4

Analysis Of Kubernetes Network
Security Solutions

4.1 Istio Service Mesh

The advent of microservices architecture has led to a major increase in highly dynamic and
distributed systems. But while microservices offer scalability, resilience and agility, they also
introduce some issues regarding communication between services. As the number of services
grows, discovering and locating services dynamically becomes complex, as well as ensuring security
and compliance across distributed systems.

Gathering information about the behavior and performance of microservices is essential for
effective system management and optimization, as well as from a security perspective. However,
also monitoring a distributed system composed of numerous microservices raises significant
observability issues.

Finally, because of their distributed nature, microservices are inherently susceptible to failures
and latency issues, and this impacts communications and performance. But in the context of the
microservice approach, service-to-service communications are what makes it possible to implement
this architecture and achieve its benefits. Therefore, properly managing services communication
and addressing these challenges becomes crucial.

A service mesh is a dedicated infrastructure layer responsible for managing and facilitate
communication between microservices within a distributed application, enabling fast, efficient
deployment and configuration. It consists of configurable, lightweight network proxies, called
sidecars, which are deployed alongside each service instance, handling inter-service communication
aspects such as traffic management, security, observability, and other cross-cutting aspects.

Each Service Mesh has 2 main logical components: the Data Plane (i.e. proxies that manage
network traffic) and the Control Plane, which receives all the configuration resources and then
pushes them to the Data Plane.

Without a service mesh, each microservice would be required to implement the logic governing
inter-service communication in its code, which means that developers are less focused on business
objectives. In addition, communication failures are more difficult to diagnose and troubleshoot
because the logic governing inter-service communication is hidden within each service and there
is no visibility into the behavior of microservices.

30

Analysis Of Kubernetes Network Security Solutions

Figure 4.1: A Conceptual View of a Service Mesh (Source: Red Hat)

In Kuberneters, these network proxies are typically deployed as sidecar containers within
K8s pods, decoupling the main business logic, implemented by the main container, from the
communication functionalities implemented by the sidecar. These sidecars are configured to
intercept traffic flows between services (both inbound and outbound), and properly manage and
route requests on behalf of a Control Plane. In essence, a service mesh abstracts the complexities
of network communication from individual services implementation, allowing developers to focus
on business logic rather than on network configurations and communications management. [27]

In general, we can summarize Service Mesh capabilities as follow [28]:

• Traffic Management: Service Mesh provides advanced traffic management features such as
load balancing, routing and traffic shaping. This allows cluster administrators to implement
sophisticated traffic management policies without changing the application code.

• Resilience and Fault Tolerance: Service Mesh improve the fault tolerance of microservices
communications by implementing resilience patterns such as circuit interruption, retries,
and timeouts.

• Observability and Monitoring: Service mesh enhances observability by providing in-depth
metrics, logs, and distributed traces. This allows administrators to monitor service interac-
tions, identify bottlenecks, and troubleshoot issues more effectively.

• Security: Service Mesh tries to address some security issues by providing features such
as mutual authentication, encryption, and fine-grained access control. This ensures that
communication between services is properly protected, trying to prevent unauthorized access
or tampering.

The security capabilities offered by service meshes and the ease and speed with which they
can be configured without changing the source code of individual microservices is what led to the
consideration of such solutions for implementing a zero-trust network.

Nowadays, there are several Service Mesh solutions on the market, most of them open-source.
They all provide similar functionality, and differ in their implementation of the proxy and some
extra or specific features. Each solution has its strengths and may be better suited to different
use cases or environments. When choosing a service mesh solution, factors such as ease of use,
performance, scalability, type of traffic that can be intercepted, and integration with existing
infrastructure should be considered.

Of course, the discriminating factor adopted to choose the best one to realize this Proof
of Concept was the security and observability capabilities provided by the various solutions
considered, and Istio Service Mesh was the chosen one. Istio integrates tightly with Kubernetes,
the de facto standard for container orchestration. This integration simplifies deployment and

31

https://www.redhat.com/en/topics/microservices/what-is-a-service-mesh

Analysis Of Kubernetes Network Security Solutions

management for organizations already using Kubernetes for containerized workloads. As far as
this thesis work is concerned, I have focused on the security features, so I will not go into further
detail on the other features of Istio since they involve a lot of useless details.

4.1.1 Istio Architecture

From an high level architectural point of view, at its core Istio is composed of two main logical
actors [29]:

• A data plane, which consists in a series of Envoy proxies (developed in C++) deployed
within each microservice pod as a sidecar container. They are properly configured at
the startup of each pod to intercept any traffic entering or leaving the main container
running the application logic, and consequently be able to manage and control network
communications between the microservices.

• A centralized control plane, which is in charge of configuring the data plane proxies to
enforce authentication and authorization policies and collect telemetry data. It takes the
desired configuration provided to the API gateway, and dynamically programs the proxies,
updating them as the policies or the environment changes.

Typically Envoy intercepts pod’s traffic using iptables rules, which are configured within each
Kubernetes pod. When a Kubernetes pod is created or restarted, the Envoy sidecar container is
initialized alongside the main application container within the same pod. Leveraging the fact
that multiple containers within the same pod share the same network stack, IP address and ports,
Istio Control Plane injects iptables rules into the network namespace of the pod, redirecting all
incoming and outgoing traffic to the Envoy proxy running as a sidecar. These iptables rules
ensure that traffic destined to the microservice’s IP address and port is intercepted and forwarded
to Envoy before reaching the main application container. [30]. Unfortunately, Envoy is only able
to intercept TCP traffic, letting UDP and ICMP traffic flow freely. It supports gRPC, HTTP,
HTTPS and HTTP/2 natively, as well as any plain TCP protocols.

Istio Control Plane provides service discovery, configuration and certificate management. It is
named Istiod, and consists of 3 main components [29]:

• Pilot: Pilot provides service discovery for Envoy sidecar proxies, traffic management
capabilities, and resiliency features like timeouts, retries, and circuit breakers.

• Citadel: Citadel is Istio’s identity and certificate management component, responsible for
issuing and rotating certificates for service-to-service communication within the mesh.

• Galley: Galley centralizes configuration validation, ingestion, processing, and distribution
across Istio’s control plane components.

4.1.2 Security Capabilities

Istio provides strong identity and robust management, powerful policy, transparent TLS encryption,
and authentication, authorization and audit (AAA) tools to protect your services and data.

These security features enable it to be well suited to the requirements of a zero-trust network,
ensuring security without requiring changes to the application code or infrastructure, following
the Security by Default principle. It also allows for easy implementation of the Defense in Depth

32

Analysis Of Kubernetes Network Security Solutions

principle, as this Mesh service can be easily integrated with pre-existing security systems to
establish multiple layers of protection. [31].

Here is a more detailed list of the features offered [31]:

• Secure Services Communication: Envoy can act as both TLS termination for incoming
connections, as well as TLS origination when making connections to upstream clusters.
TLS (Transport Layer Security) is a security protocol that enables the establishment of
a secure communication channel and provides many properties to service traffic, such as
peer authentication (for both client and server) before the channel is opened, confidentiality,
authentication and message integrity, and protection against replay and filtering attacks.
This means that proxy functionality can be leveraged to encrypt TCP traffic between
services using mutual TLS (mTLS), ensuring that all data exchanged within the network
is encrypted in transit, and thus achieving protection against eavesdropping, tampering,
and several kinds of man-in-the-middle attacks. Even if the main application container
produces plain traffic, this will be intercepted by the proxy through iptables rules and
encrypted before leaving the pod. Viceversa, the incoming traffic will be first decrypted by
the server-side proxy, and then sent as plaintext to the main container within the pod.

• Identity and Authentication: Istio assigns unique identities to each service within the
mesh, typically represented by Service Accounts (acting as Kubernetes Service Identities).
These workload identities are associated with certificates issued by the Certificate Authority
(CA) built into Istio, ensuring their validity through the Public Key Infrastructure. When
services communicate via mTLS, they present their certificates to each other for mutual
peer authentication, ensuring that only authenticated and trusted services can communicate
within the network. This subsequently allows communications between services to be
authorized or denied based on their identities. Istio also allows client end-user authentication
of each individual HTTP request (in addition to the peer client authentication), leveraging
JWT tokens within the HTTP traffic: hardcoded identities and claims within the token can
be extracted once the token is validated and used to authenticate the individual user or
entity. Thus, two types of Authentication can be achieved through Peer Authentication and
Request Authentication.

• Authorization Policies: Server-side Envoy proxies are able to apply authorization policies
to intercept traffic entering the pod, controlling who can access what services within the
mesh. Istio’s authorization functionalities provide mesh, namespace and workload-level
access control for workloads in the network. Policies can be defined based on attributes
like service identity (extracted during mTLS authentication), request path, or source IP
address. Fine-grained access control policies can be defined using RBAC. This enables
administrators to specify which services can access other services and what actions they
can perform. Istio enables the implementation of not only service-to-service authorization
policies, but also user-to-service policies by exploiting the JWT tokens contained in HTTP
traffic headers and the identities and claims extracted from them.

• Observability and Telemetry: As traffic passes through it, Envoy extracts rich telemetry
data for all service traffic within a cluster, including cluster ingress and egress traffic, which
can later be sent to monitoring systems to provide information on the behavior of the entire
mesh. Administrators can monitor security-related metrics, logs, and traces to gain insight
into communication between services, detect anomalous behavior, and enforce compliance
with security policies.

From a security point of view, the Istio architectural components is represented in Figure 4.2.

33

Analysis Of Kubernetes Network Security Solutions

Figure 4.2: Istio Security Components (Source: Istio Documentation)

Figure 4.2 shows the main security component involved in Istio. It is clear how the control plane
comes with a built-in Certificate Authority, that makes easy the key and certificate management
of workloads. A different X.509 certificate is produced, signed and injected within each Envoy
instance, and will be bound only to that specific workload identity. Each proxy acts as an
intermediary between the microservice and incoming/outgoing traffic, implementing security
measures and upgrading outgoing plaintext traffic to encrypted traffic, or decrypting incoming
traffic before passing it to the application. This reflects the general policy-based access control
model defined by NIST (Chapter 3, section 4): each sidecar and perimeter proxies (i.e. ingress
and egress gateways) thus work as Policy Enforcement Points (PEPs) placed in front of each
microservice and implement workload-specific authentication and authorization policies upon
instructions sent by a control plane that acts instead as a PDP [31]. The Envoy proxy thus
represents a transparent infrastructural layer that allows PEP to be shifted around each individual
workload and shrink the implicit trust zone, reducing the attack surface of individual services
and applying specific security policies to them.

This made such a solution even more interesting and suitable for our case. What is extremely
important is that the sidecar model adopted by Istio allows each workload to maintain its security
posture even when migrating from on-premises data centers to nonenterprise cloud instances: this
is possible because the PEP is lifted and moved along with the application container within the
pod, and thus the authentication and authorization policies are still enforced regardless of the
infrastructure in which the services reside.

4.1.3 Identity

As seen in Chapter 4, identity is a fundamental concept of any zero-trust architecture. Continuous
verification and validation of the identities of workloads and users interacting with a given service
are essential to eliminate implicit trust and ensure that only those who are actually authorized
can communicate with a given workload, even if they are internal to the enterprise.

Public key certificates are a key component of modern security infrastructure, providing strong

34

https://istio.io/latest/docs/concepts/security/

Analysis Of Kubernetes Network Security Solutions

Figure 4.3: Istio Certificate Management Schema (Source: Istio Documentation)

assurances of identity in many contexts. When properly implemented and managed, they offer
robust mechanisms for verifying the identity of entities such as websites, servers, and individuals
in online transactions.

Istio employs a certificate authority (CA) built into the control plane to issue X.509 certificates
for service identities. Istio’s CA is responsible for generating, signing and distributing certificates
to services within the mesh. Istio automatically injects sidecar proxies with these certificates. In
fact, in the same container where the envoy resides, it also runs an istio agent that cooperates
with istiod to automate key and certificate rotation: it is booted before Envoy, and is responsible
for creating and managing the public-private key pair, and requesting a valid certificate from
the control plane via certificate signing requests (CSR). If the CA validates the CSR, a valid
certificate is produced and sent to that agent. Then, when the proxy starts, it will retrieve
through the agent the key and the corresponding certificate to be used, thus having the assurance
that when it starts envoy always has a valid certificate ready to use.

The Istio agent continuously monitors workload certificate expiration, and this process is
repeated periodically to ensure certificate and key rotation, fully automating identity management
of the various microservices in the service mesh. These certificates are then used for mTLS
authentication between services, and consequently implementing identity-based authorization
policies. [31]

In Kubernetes, the Istio identities embedded in the certificates are automatically associated
with the Kubernetes service accounts mounted by the pods running the workloads, allowing
services to be uniquely identified regardless of their network location or IP address. This enables
secure communication between services regardless of their deployment environment, meeting the
security requirements of a zero-trust network and enabling their interoperability across clusters
and clouds. Consequently, to ensure that each Deployment kubernetes has its own distinct
identity, cluster administrators should take care to create different Service Accounts for each
microservice. Obviously, in the case of ReplicaSet, each replica will have the same identity/service
account.

35

https://istio.io/latest/docs/concepts/security/

Analysis Of Kubernetes Network Security Solutions

4.1.4 Service Mesh Observability

Istio provides several extra components and features for providing observability into the service
mesh, relying on the logs and metrics collected and sent by each Envoy proxy each time it
intercepts traffic. These components include:

• Prometheus: Istio integrates with Prometheus, an open-source toolkit for monitoring and
alerting, to collect and store metrics about the service network and the applications running
within it. Prometheus collects metrics from Istio components such as Envoy proxies. These
metrics include traffic metrics (such as request speed, latencies, and error rates), resource
utilization metrics, and more.

• Grafana: Grafana is a popular open-source visualization and analysis platform that works
seamlessly with Prometheus. Istio includes preconfigured Grafana dashboards that display
metrics collected by Prometheus, providing insights into the performance and behavior
of the service mesh and its applications. These dashboards provide visibility into traffic
patterns, latency distributions, error rates, and other important metrics.

• Jaeger : Jaeger is an open-source distributed tracing system that provides information about
the flow of requests from microservices. Istio integrates with Jaeger to collect distributed
traces from Envoy proxies and correlate them across multiple services. Jaeger makes it
possible to track requests as they propagate through the service network, identify latency
bottlenecks, diagnose errors, and understand the end-to-end flow of requests.

• Kiali: Istio includes an integrated Web-based dashboard called Kiali that provides a high-
level overview of the service mesh and its components. The dashboard displays information
on traffic routing rules, security policies, and telemetry configurations applied to the service
mesh. It also includes views of traffic flow between services, traffic distribution between
versions of a service, and other relevant information.

4.2 Palo Alto CN-Series Containerized Firewall

As already mentioned in Chapter 3, implementing a Zero-Trust network does not involve aban-
doning the castle-and-moat defense approach, since both physical and virtual FWs play an
indispensable role in securing on-premises and cloud deployments. On the contrary, it means
implementing the principle of defense-in-depth by integrating firewalls and IDS/IPS with other
types of countermeasures. Unfortunately, however, the Kubernetes network model raises new
challenges concerning the north-south traffic entering or leaving a pod within the cluster. When-
ever a pod send traffic to destinations external to the cluster, because of the network address
translation (NAT) performed by the host (typically using its own iptables) on the packets, all
outgoing traffic carries the node IP address as the source: thus, the IP address of the actual
source, i.e. the specific pod, is unavailable. As a result, firewalls sitting outside the Kubernetes
clusters are blind to the actual source of the traffic. At the same time, for effective security
in a containerized environment it is essential to know the true source address before NAT, but
the only way of doing this is by moving the firewall (or in general any security node) inside the
Kubernetes cluster for maximum effectiveness.

That was the idea embraced by the CN-Series firewall, a next-generation firewall specifically
designed by the Palo Alto Networks to meet the company’s security requirements and protect
their Kubernetes environments from modern threats, application attacks and data exfiltration. It

36

Analysis Of Kubernetes Network Security Solutions

consists of a containerized firewall which can be deployed within the cluster as a pod, intercepting
and authorizing the incoming traffic just before entering the pod, as well the outgoing traffic
as it leaves the pod, also ensuring source visibility before being natted or tunneled by the
node. Unlike a service mesh, therefore, it represents a specific security solution that can be
integrated within a Kubernetes cluster to overcome the security challenges posed by such a
dynamic containerized environment, achieving visibility and security for containerized application
workloads on Kubernetes clusters.

Unlike firewalls that operate at the L3 and L4 layer of the OSI model, which inspect and filter
traffic using IP addresses, protocols and ports and perform stateful inspection, the Palo Alto
Networks Container Native Firewall is actually a Next Generation Firewall (NGFW). This means
that it operates at the application layer of the OSI model (L7), inspecting the entire contents of
each packet, including application data, URLs and headers, thus providing the highest level of
visibility and control over network traffic. In addition to this capability, the CN-NGFW is able
to offer several security features. Advanced URL filtering, combined with DNS security, helps
prevent outbound connections to potentially malicious websites, including repositories containing
malicious code. This, combined with full visibility into the packet payload, also helps prevent the
exfiltration of sensitive data. Deep Packet Inspection (DPI) performed by CN-NGFW also enables
Advanced Threat Prevention functionality, protecting inbound, outbound and east-west traffic,
providing comprehensive protection against exploits, malware and command-and-control. In
addition, the traffic content inspection performed by CN-NGFW can also impact TLS-encrypted
traffic, allowing the firewall to decrypt (and possibly re-encrypt) packets and ensure that those
containing malicious payloads are immediately identified and blocked.

Being able to identify and block specific applications, services or protocols, the CN-Series
firewall is then able to implement and enforce more granular security policies based on application
behaviour and content: this implies that true workload-to-workload micro-segmentation can be
achieved, allowing only the traffic of a few specific services between two pods/workloads, while
blocking everything else. This, together with Advanced Threat Prevention, allows communications
between containers to be strictly protected, preventing threats that infect a particular workload
from spreading laterally to other Kubernetes workloads or the rest of the infrastructure.

The aim of the CN-NGFW is, therefore, to provide full visibility and protection to all incoming,
outgoing and east-west traffic of a cluster, but the most relevant consideration is that since it
can be deployed as a pod within the Kubernetes environment, the security capabilities of the
CN series are guaranteed regardless of the underlying infrastructure: this type of protection is
always achieved, regardless of whether the containerized workloads are hosted on an on-premise
data center or on a public cloud platform, or through a hybrid model. The CN firewall can
therefore act as a PEP to shrink the implicit trust zone around each individual workload/pod,
continuously inspecting incoming and outgoing traffic, having complete visibility over them and
applying appropriate authorization policies based on their content and properties. It also does
not slow down the deployment process, always ensuring the security posture of the pods behind
him, even when they are destroyed and recreated, or scaled horizontally. In addition, it overcomes
the limitation of traditional network security solutions on Kubernetes traffic visibility and makes
it easy to deploy firewall solutions even on cloud infrastructures. [32][33]

4.2.1 CN-Series Core Building Blocks And Architecture

The CN-Series firewalls consist of several components, which interoperate in order to provide the
functionalities mentioned before:

37

Analysis Of Kubernetes Network Security Solutions

• Panorama
• Kubernetes Plugin
• CN-NGFW
• CN-MGMT
• PAN-CNI

In short, the architecture can be summarised in two main logical components: a security
control plane and a data plane.

Panorama is the component that acts as the control plane or PDP for the entire security
system, allowing cluster administrators to correctly configure network traffic policies using a single
centralised security policy management system, and that can be deployed either in on-premise
environments or in the public cloud as a virtual machine or on a physical server within the
network. It is responsible for licensing the containerised firewalls deployed within the cluster
and sending them configuration and security policies: to do this, it is securely authenticated and
connected (using certificates) to the firewall management plan pods (CN-MGMT) deployed within
the cluster, which then configure the actual firewall pods (CN-NGFW) on behalf of Panorama’s
instructions. [34]

Panorama must be integrated and work with a specifically designed Kubernetes plugin
to allow it to gain visibility into container activity within a cluster. The K8s plugin is provided
with service account credentials that it leverages to communicate with the API server and
retrieve metadata about K8s resources in real-time. In this way, through the plugin, Panorama
continuously monitors the cluster and the K8s objects within it, always knowing when a K8s
resource or pod is created or destroyed.

Therefore, the Kubernetes plugin automatically collects information on existing namespaces,
services, deployments, ReplicaSets and associated identifying attributes defined in each YAML
file used to deploy K8s resources (such as the namespace in which they reside, or the application
ports exposed by each pod or service, and the K8s labels assigned to each resource). In this
way, Panorama can be constantly aware of the pods and K8s resources distributed within the
cluster, as well as their IP addresses and namespaces. Using the collected information, the
plugin automatically creates logical labels for each object (and corresponding pods) in the cluster,
keeping track of an up-to-date correspondence between Kubernetes logical resources and which IP
addresses are used by the pods representing each resource. Subsequently, these labels can be used
to define security policies to authorise traffic entering or leaving the pods: this IP-address-to-label
mapping thus simplifies the management of authorisation policies, as for each policy, it is sufficient
to specify the source and/or destination label, and Panorama will automatically translate these
labels into one or more policies affecting the various associated pods, and will continuously keep
track of changes within the cluster (e.g. whenever pods are restarted or new ones are created at
deployment time or for scaling reasons) and properly modify the authorisation policies using the
IP addresses used by the new pods. [34]

The CN-MGMT and CN-NGFW represent the management and data plan of the containerised
firewall, respectively: they have been separated to improve runtime protection workloads and
to support a smaller footprint. The CN-MGMT is deployed as a pod in the cluster and is
responsible for managing the NGFWs and, thus, licensing and configuring security policies on
each firewall on behalf of Panorama. Actually, it is deployed as a StatefulSet ensuring volume
persistence and configuration synchronization, and it is exposed as a K8s service. Typically,
at least two CN-MGMT pods are deployed in the cluster to ensure fault tolerance, as a single
CN-MGMT is capable of managing existing CN-NGFW pods in the event of a restart or failure
of a CN-MGMT pod. Each NGFW is connected to one CN-MGMT pod using an IPsec tunnel,

38

Analysis Of Kubernetes Network Security Solutions

Figure 4.4: An Overview of CN-series components in a DaemonSet Mode Deployment

granting secure communication. The CN-NGFW pods, on the other hand, are the actual PEPs
that intercept and inspect pod traffic and then enforce the authorisation policies received from
the PDP by exploiting the IP address and tag mapping created for the pods, nodes, namespaces
and services deployed in Kubernetes.

Finally, the PAN-CNI is what makes it all work: it is a CNI plugin specifically designed
to be inserted into the CNI chain of each node within the cluster, with the objective of directly
managing and customising the process of allocating pod network interfaces. In fact, to put the
PEP in front of each pod and ensure its security posture, it is sufficient to tag the corresponding
Kubernetes resource (using its YAML file) or the namespace in which it is deployed with a
specific label: this will result in the CNI plugin reading the annotation on each application pod
as it arrives to determine whether or not to enable security, and possibly configure its network
interface to redirect traffic to the CN-NGFW pod for inspection as it enters and exits the pod.
This ensures that traffic cannot bypass the PEP, since the security node is decoupled from the
application pods and, and due to the proper network configuration provided by the PAN-CNI,
traffic must necessarily pass through the firewall and be explicitly authorised before entering or
leaving the ’trusted zone’. [34]

4.2.2 Deployment Modes

The firewall can be deployed within the cluster using two main modes: DaemonSet or Kubernetes
Service, depending on the enterprise’s performance requirements.

When deployed in DaemonSet mode, a different CN-NGFW pod instance is deployed on
each node of the cluster where the application pods reside. In this case, as can be seen from Figure
4.5, the CNI configures the network interface of each newly created application pod to redirect
traffic to the firewall using virtual wires. Each firewall pod has 60 vwire interfaces, and each
application pod to be protected requires a pair of these interfaces, which are connected together
internally to the FW, acting as a sort of physical network wire for the traffic. Since the vwire
interfaces do not have Layer 2 or Layer 3 network addresses, the firewall does not participate in
routing or switching the infrastructure, and therefore, if security policies allow traffic, packets
will transparently pass through this wire: each time a packet enters a vwire interface, it enters
the firewall pod and, once permission is obtained, it can only ’follow the wire’, necessarily exiting
the other corresponding one linked to the first. Each pair of vwire interfaces comprises a "trust"

39

Analysis Of Kubernetes Network Security Solutions

Figure 4.5: DaemonSet Mode Deployment

Figure 4.6: Service Mode Deployment

interface and an "untrust" interface, where the "trust" interface is connected directly to the pod
(the trust zone), while the "untrust" interface is connected to the Kubernetes overlay network (the
untrusted zone). In this way, the firewall acts as a PEP, reducing the trusted zone to a single pod
and separating it clearly from the rest of the network. This mode, however, limits the scalability
of the security nodes, as each CN-NGFW can connect and protect a maximum of 30 pods, so it
should only be used when you have a cluster with a large number of nodes or few pods. On the
other hand, it offers low latency and high firewall capacity. [34] [35]

On the other hand, the Service Mode allows the firewall to be deployed as a Kubernetes
service: in this case, the firewall pods can be deployed on a separate dedicated node (the security
node, as seen in Figure 4.6), and thanks to the properties of the Kubernetes service, they
can automatically scale up while maintaining a stable virtual IP address (a clusterIP), and
an appropriate number of NGFWs can be spin up and down according to current needs. The
configuration adopted by the CNI is slightly different in this case: VxLAN tunnels are used to
connect the network interfaces of the application pods that need to be protected to the CN-NGFW
K8s service, redirecting incoming and outgoing traffic to one of the backend pods for inspection
before entering or exiting the pod. [34] [35]

Finally, the PAN-CNI is what makes everything work: it is a CNI plugin specifically designed
to be inserted on the CNI chain of each node within the cluster, with the aim of customizing
the allocation process of pods network interfaces. In fact, in order to put the PEP in front of

40

Analysis Of Kubernetes Network Security Solutions

each pod and ensure its security posture, it is enough to label the corresponding Kubernetes
resource (using its YAML file) or the namespace where it is deployed: this will involve the CNI
plugin reads the annotation on each application pod as it comes up to determine whether to
enable security or not, and eventually configure its network interface to redirect traffic to the
CN-NGFW pod for inspection as it ingresses and egresses the pod. This ensures that the traffic
cannot bypass the PEP, since the security node is decoupled from the application pods, and
due to the network configuration, traffic must necessarily traverse the firewall and be explicitly
authorized before entering or leaving the “trusted zone”.

41

Chapter 5

Testing Environment Design,
Installation And Configuration

After studying the basic concepts and state-of-the-art network security solutions, we needed a test
environment that would allow us to recreate a realistic scenario that we could exploit to achieve
our goal. The first step was to install a Kubernetes cluster, and thus set up a set of machines on
which to install our orchestrator and deploy and run microservices-based applications. I then
proceeded to design and develop a small web application that adopts concepts and technologies
typical of microservice architectures, with a specific focus on the backend tier: this allowed me to
get to know the application well and have full control over the various aspects, especially how
these services interact with each other. After that, I designed and implemented a trivial IAM
service, which is strictly necessary to authenticate and authorize the users of my application.
Finally, I moved on to define and configure the Kubernetes resources needed for the orchestrator
to deploy, run, and manage my applications on the cluster

5.1 Kubernetes Cluster Installation

Kubernetes deploys and manages applications (also called workloads) by placing them within
pods and running these entities on the cluster nodes. The basis of everything, then is to have
a cluster of nodes, a set of machines whose purpose is to provide the computational resources
needed to run our services and the orchestrator that will manage them. Each cluster node can be
a virtual or physical machine, depending on the cluster you have or want to create. Nowadays,
we can find on-premise Kubernetes clusters, where organizations and datacenters have their own
clusters of nodes on which to install the orchestrator and run workloads, or you can refer to cloud
providers by asking and paying them for a set number of nodes and resources for each. In the
specific case of this work, Spike Reply already had an on-premise server and testing environment
with discrete compute capabilities and a VMWare hypervisor that easily allowed the underlying
resources to be virtualized. The availability of proprietary resources without additional costs and
the advantage of being able to have fine control and complete access over the resources used by
the nodes and various configurations as needed (and thus being able to inspect and test various
aspects at will), led us to create a cluster of virtual machines that would serve as cluster nodes.
Typically, a cluster is composed of several nodes in order to have an amount of computational
resources to ensure a good level of availability and resilience of the applications run, reducing

42

Testing Environment Design, Installation And Configuration

any downtime. But considering the limited amount of resources to be virtualized and that the
purpose of the cluster is solely to obtain a proof of concept of zero-trust networks, we opted for a
fair and realistic compromise by going for a cluster of 3 nodes, one of which is dedicated to run
the master node and two worker nodes where our pods will be run. Thus I moved on to create
three VMs that make up our cluster, installing Ubuntu Server 20.04 OS on each of them and
configuring SSH remote access via an asymmetric challenge-response authentication, using my
own private key. Each node was assigned 12 GB of RAM and 4 vCPUs, a different IP address
and a unique hostname to be uniquely identified within the cluster. Subsequently I moved on to
install the Kubernetes platform and its components: each node in the cluster must necessarily
have some basic components installed, such as kubelet, kube-proxy and a runtime container. For
our test environment I adopted version 1.23 of Kubernetes, which is one of the most stable and
broken-in versions.

There exist several tools you can use to deploy your own Kubernetes cluster, like:[36]:

• Minikube, an open-source tool which permits setting up a local Kubernetes cluster made
of a single node on your own laptop, and typically used for learning and testing purposes

• Kubeadm, which requires as a minimum a cluster of two nodes and requires a given
expertise degree

• Kind, another tool to deploy a Kubernetes cluster locally inside a docker container

• K3S, a light Kubernetes version created for production use on small servers, IoT appliances,
etc.

I chose to use Kubeadm, since allowed me to bootstrap and administrate a minimum
on-premise Kubernetes cluster that conforms to best practices and gave me the possibility to
discover the full potential of Kubernetes. Kubeadm is a tool whose aim is providing commands
like kubeadm init, kubeadm join , kubeadm upgrade etc. as best-practice fast and easy
way for installing Kubernetes clusters [37].

First of all it was needed to install the container runtime on each node, so that pods can
be run on them: we opt for containerd, which has been designed to be lightweight and focuses
on executing containers reliably and efficiently. I then moved on to installing the kubelet and
kubeadm services on each node, and subsequently I installed kubectl on the master node. Kubectl
is a command-line tool that allows you to execute any kind of command to Kubernetes clusters,
permitting you to deploy applications, inspect and manage cluster resources, view logs and other
stuffs. It represents the starting point for creating our testing environment and performing any
kind of action on Kubernetes. [36]

In order to initialize the Kubernetes control plane node, I launched the kubeadm init command
on master node. The penultimate step was to install the CNI that we want to use for implementing
the Kubernetes Network Model: the choice was Calico, which represents a plug-in that implements
the Kubernetes Container Network Interface (CNI) and, by leveraging some Kubernetes agents,
provides networking features for containers and pods. Calico does not stand out for its simplicity
but for its performance, reliability, and versatility. For these reasons is nowadays one of the most
widely adopted and the popular CNI plugin. Calico set up a flat Layer-3 overlay network and
assigns a fully routable IP address to every pod. It divides a large network CIDR (Classless
Inter-Domain Routing) into smaller ranges of IP addresses and assigns one or more of these
smaller blocks to nodes in the cluster. [38]

The default IPv4 address pool created by Calico at startup, unless otherwise specified, is
192.168.0.0/16. Each node is assigned a smaller subset of this pool, and the IPs of the Pods that

43

Testing Environment Design, Installation And Configuration

Figure 5.1: Kubernetes cluster nodes

will be deployed on a specific node will be chosen from the range of addresses assigned to that
node. We configured Calico in IP-in-IP mode, which means creating an IP-in-IP tunnel between
each pair of nodes in the cluster, and thus between each subnet hosted on the node. Whenever a
pod sends a packet that needs to leave the current node and reach another within the cluster, it
is encapsulated with the IP-in-IP header and the node’s IP address is used as the source. In this
way, the infrastructure router does not see the IP addresses of the pods. [38]

Finally, once the Kubernetes network configuration was set up, I moved on to run the ‘kubeadm
join’ command on the two worker nodes to make them part of the Kubernetes cluster, and thus
nodes fully managed and monitored by the master node.

Once the installation is finished, the situation of the created cluster is shown in the Figure 5.1

5.2 Microservices-based Application Design and develop-
ment

To make a realistic scenario suitable for implementing my Proof of Concept, I decided to develop
a small web application following the microservice approach described in Chapter 2. It was
realized web-based information system that supports a public transport company in managing the
ticketing process to access to the transport vehicles. The system will support two kinds of human
users, travelers and administrators. Travelers will be able to register and create an account by
providing a valid e-mail address they are in control of. Once logged in, travelers can manage their
profile, buy tickets and travelcards, consult the list of their purchases and download single travel
documents in the form of QRCodes encoding a JWS (JSON Web Signature).

Administrators (i.e., employees of the transport company) will be enrolled via an administrative
end-point by other administrators (provided they have the enrolling capability). At installation
time, a single administrative username/password with enrolling capability will be created in order
to bootstrap the process. Administrators can manage ticket and travel card types, by creating,
updating and modifying their properties (validity period, price, usage conditions) as well as
accessing traveler information and the related ticket purchased.

The application capabilities and features described above have to be implemented following
the microservice-architecture approach. Therefore, the first step was to identify the application
business domains and decompose the monolithic system into a series of smaller and loosely
coupled services that are organized around business capabilities. Four different subdomains were
identified, and consequently four distinct microservices were necessary:

• IAM Service
• Traveler Service
• Catalogue Service
• Payment Service

44

Testing Environment Design, Installation And Configuration

IAM Service is the one in charge of managing new user registration and their information,
as well as credential recovery and system user authentication through a login endpoint. It will be
discussed in more detail in Section 5.3.

Traveler Service is in charge of managing the identity and personal data of the travelers
registered to the web portal, and also keeping track of the corresponding tickets purchased through
the Catalogue Service. The service will be accessed via a REST API, which exposes various
end-points accessible by authenticated users only, and provides only information pertaining to the
identity of the client, some of which are accessible only to users having administrative privileges.
The Traveler Service indirectly cooperates with the Login Service: the latter exposes a REST
API consisting of some endpoints for registering a new user and validating their email address as
well as a login endpoint, which accepts user credentials (username and password) and returns,
when authentication is successful, a JWT temporarily representing the identity and role of the
user. A registered user will have first to contact the Login Service, posting their credentials to the
login endpoint and obtaining a JWT valid for the next hour, in order to be able to contact the
TravelerService later, specifying the JWT as a value of the Authorization HTTP header. Upon
reception of a new request, the TravelerService will validate the JWT (relying on a shared secret
kept into the service properties, which should be the same used by the LoginService to emit the
JWT) and, if successful, let the request be handled by the service business logic. Moreover, it
cooperates with Catalogue Service when a ticket purchase request comes, and if the operation is
successful, it generates and store within the Database the purchased tickets for that specific user.

The Traveler Service, as well as other microservices, have been implemented using the Kotlin
language and the SpringBoot Framework, which simplify the process of building and deploying
production-grade, enterprise-level applications. Traveler Service listens on port 8080, and exposes
the following endpoints:

• GET /my/profile: this endpoint returns the current user’s profile information (name,
address, date of birth, telephone number, etc)

• PUT /my/profile: this endpoint allows the update of the current user’s profile information.

• GET /my/tickets/ : this endpoint returns a list of all the tickets purchased by the current
user.

• POST /my/tickets/ : this endpoint accepts a JSON payload containing information about
the ticket type, transport zone, number of tickets to purchase and the validity period,
and generates a corresponding number of tickets for the indicated transport zones. The
generated tickets are stored in the service DB and will be returned as a payload of the
response.

• GET /admin/travelers: this endpoint returns a list of usernames for which there exists
any information (either in terms of a user profile or issued tickets). This endpoint is only
available for users with the Admin role.

• GET /admin/traveler/<userID>/profile: this endpoint returns the profile corresponding to
that userID. It is only available for users with the Admin role.

• GET /admin/traveler/<userID>/tickets: this endpoint returns the list of purchased tickets
corresponding to that userID. It is only available for users with the Admin role.

Since each involves access to specific user information, all of the above endpoints are authenticated,
which means that they mandatorily require requests to contain a valid JWT issued by the IAM

45

Testing Environment Design, Installation And Configuration

service. The Traveler Service has its own Database, which consists of a Postgres instance listening
on port 5432, containing 2 tables:

• The Traveler Table, containing user’s information
• The Tickets Table, containing the user’s tickets generated by the service at the time of

purchase.

Payment Service is the one in charge of managing the payment operations during the ticket
purchase process, handling payment data and interfacing with the banking service. It is actually
a mock service, in the sense that it emulates a payment operation by simply "flipping a coin" and
randomly deciding whether the payment transaction should be simulated as approved or not. It
is contacted by the Catalogue Service whenever a user decides to purchase a ticket, to find out
whether the purchase can be considered successful and tickets can be subsequently issued, or
failed.

It listens on port 8080, and as we will see, since payment requests are managed through
a message broker, it exposes only 2 endpoints (and both require a valid JWT, i.e. they are
authenticated):

• GET /transactions: it returns all the transactions of the current user.

• GET /admin/transactions: It returns all the transactions of all users. It is only available
for users with the Admin role.

The Payment Service has its own Database, which consists of a Postgres instance listening on
port 5432, containing only a table named Transactions storing all the information about occurred
transactions, both successful and failed.

Finally, the Catalogue Service is in charge of managing the sales process, providing the
list of available tickets that can be purchased. It exposes various end-points, some accessible
to everybody, some restricted to authenticated users and others accessible only to users having
administrative privileges. This service cooperates with Traveler Service: when a purchase request
is received, the Catalogue Service ask the Traveler one additional information about the customer
user, which is then used to check compatibility constraints with sales available. If checks succeed,
it further cooperates with both Traveler and Payment server: in case the acquisition process can
be performed, the Catalogue Service saves the order information with status PENDING in its
own database, and then sends back to the user a temporary status info. From this point, two
things happen: it sends payment information to the Payment Service (the latter is in charge of
sending payment information to the bank and establishing if the transaction is approved or not),
and if the Payment Service provides back a “payment allowed” response, the Traveler Service is
contacted in order to generate and store the tickets for that specific user, and the record with
status PENDING is updated to ALLOWED (viceversa, with DENIED).

Catalogue Service listens on port 8080, and exposes the following endpoints:

• GET /tickets: this endpoint returns a list of all available tickets.
• POST /shop/ticket-id: this endpoint
• GET /orders/ : this endpoint return a list of all user orders.
• GET /orders/<order-id>: this endpoint return a specific order. It can be used by the client

to check the order status after a purchase.
• POST /admin/tickets: this endpoint can be used only by users with an Admin role to add

catalog newly available tickets to purchase.

46

Testing Environment Design, Installation And Configuration

• GET /admin/orders: this endpoint can be used only by users with an Admin role to retrieve
a list of all orders made by all users.

• GET /admin/orders/<user-id>: this endpoint can be used only by users with an Admin
role to retrieve a list of all orders made by a specific user.

Except for the GET /tickets one, all the remaining above endpoints are authenticated, which
means that they mandatorily require that requests contain a valid JWT issued by the IAM service.
The Catalogue Service has its own Database, which consists of a Postgres instance listening on
port 5432, containing 2 tables:

• Tickets Table, which contains records representing the various tickets and their information.
• Orders Table, through which manages purchase orders and related information.

Even if each service exposes its own REST API, the communication between Traveler, Payment
and Catalogue services is managed through a Message Broker.

A message broker is an intermediary software component which provides a scalable, reliable,
and flexible infrastructure for facilitating communication and message exchange between different
applications or systems. It acts as a middleman, receiving messages from one application and
delivering them to another, decoupling the sender and receiver. In microservices architectures,
message brokers play a crucial role in facilitating communication between microservices. They
enable asynchronous communication patterns such as event-driven architecture, where services
publish messages and subscribe to them, allowing systems to communicate without the need for
both parties to be available at the same time. This asynchronous nature promotes the scalability
and flexibility of distributed systems, as well as their fault tolerance. Since this communication
pattern is pretty common in real-case scenarios, it was implemented in the architecture to recreate
a realistic context.

Apache Kafka was the message broker adopted. It allows several message queues to be
implemented, and communication between services takes place through them: each service can
act as a publisher or consumer. When it wants to contact other services, it acts as publisher and
pushes the message inside the queue; the broker is then responsible for delivering the message to
the services that have subscribed to that queue and want to consume the message inside it.

Because Kafka can scale horizontally by adding more brokers and partitions to distribute
the workload, it relies strictly on a service called Zookeeper, which is a distributed coordination
service used to maintain configuration information and provide distributed synchronization to
the various possible instances of Kafka.

However, an API Gateway will be further placed in front of the various microservices using
the Istio Ingress Controller, providing a unique endpoint that is able to manage the requests
directed towards the various services REST API.

The trivial microservice architecture implemented for testing the security solution can thus be
pictured as in Ffigure 5.2:

5.3 IAM Service Design and Development

A digital ticketing system needs to manage a set of users, securely storing their credentials
and providing a way to recover them in case they are lost. This, in turn, entails that users
have the ability to request a new registration, by posting a minimal set of personal information
(chosen username, password, email address) to a /user/register endpoint: as a consequence, some

47

Testing Environment Design, Installation And Configuration

Figure 5.2: The microservice-architecture that implements the transport ticketing system

information will be stored and a validation process that will either lead to accept the supplied
information, thus completing the registration, or to remove the request, dropping any supplied
data, will be started. Since the registration process is open to the general public, care has to
be taken to newly registered users. In order to prevent inconsistent data from being submitted,
several checks will be enforced: username, password, and email address cannot be empty, email
address must be valid, username and email address must be unique system-wide, and password
must be reasonably strong. If any check fails, the request will be rejected with status code
400-Bad Request; otherwise an entry will be stored inside a specific user DB table, containing the
uploaded data, together with the indication that the record is not yet active, since there is no
proof, yet, that the applicant has control of the submitted email address. A provisional random
ID will be returned with status code 202-Accepted.

In order to validate the given email address, when data have been recorded, a random activation
code will be generated and stored in another db table, together with the provisional random ID,
an expected activation deadline, an attempt counter, and a reference to the user record; moreover
an email message will be sent to the provided address containing the activation code. If, within
the expected time, a registration completion request is posted to the /user/validate endpoint
containing the provisional random ID and the corresponding activation code, the user record
will be transitioned to the active state, the corresponding record in the activation table will be
removed, and status code 201-Created, will be returned, together with the newly created user
information. If the request is received after the expiration of the deadline, the activation record
will be removed from the activation table, and status code 404 will be returned. If the provisional
random ID does not exist, status code 404 is returned. If the provisional random ID exists
but the activation code does not match the expected one, status code 404 will be returned and
the attempt counter will be decremented: if it reaches 0, the activation record will be removed
together with the User entry.

Whenever a user wants to use any of the other authenticated microservices endpoints, they
must necessarily log in first, providing their credentials (username and password) to a specific
endpoint /user/login, and it will return, when authentication is successful, a JWT temporarily
representing the identity and role of the user.

48

Testing Environment Design, Installation And Configuration

JWT stands for JSON Web Token. It is a compact and self-contained way of transmitting
information between two parties in the form of a JSON object. JWTs are commonly used for
authentication and authorization in web applications, APIs, and microservices architectures. The
payload of a JWT contains the claims, which are statements about an entity (typically the user)
and additional data. These claims can include information such as the user’s identity, roles,
permissions, and any other relevant data.

In our case, the JWT will encapsulate the user claim and its role within the web system (i.e.
simple user or administrator). Once the user performs authentication, the returned JWT can
then be provided to other microservices to authenticate itself and access the API: this is done by
enclosing the token within an HTTP header of the request, before sending it to the service. In
our case each JWT token has a validity period, and expires after 1 hour from its issue.

The loginservice has been provided with a public/private key pair: the private key is used to
digitally sign the JWT token at its issuing, providing integrity and authenticity to the transmitted
data, while the corresponding public key is used by microservices to verify and validate the JWT
authenticity provided by the user. In this way, microservices can verify whether the provided
identity is valid, by checking if the JWT has been tampered or it is expired. Typically a front-end
is in charge of managing login operation and subsequently automatically placed within a given
HTPP request to other microservices the JWT returned after the login: in our case, a front-end
was not implemented, thus tests in the next chapters have been performed manually inserting
JWT token in each HTTP request.

As with the other microservices, the SpringBoot framework and the Kotlin language were
adopted for the implementation of this service, which for simplicity I called loginservice. The
service listens on port 8081, and the REST API implemented and exposed by the service can
therefore be listed as follow:

• [POST] /user/register : this endpoint is used to sign up into the web application. It accepts
an HTTP POST request containing in the body nickname, email and password that the
user wants to use. Depending on whether the various checks succeed or at least one fails, it
returns a "202-Accepted" response with a provisional ID to be used for validation to follow,
or "404-Bad Request"

• [POST] /user/validate: this endpoint is used to validate newly created accounts after
registration. It accepts an HTTP POST request containing in the body the provisional ID
returned from the /user/register endpoint, and the activation code sent via email. If the
validation succeed, the account is activated and a "201-Created" response is sent.

• [POST] /user/login: this endpoint is used to sign in users into the application. It accepts
an HTTP POST request containing in the body nickname and password of the user. Upon
successful login, an HTTP response containing a valid JWT Token corresponding to the
authenticated user is sent. Otherwise a "404-Bad Request" is sent.

• [PUT] /admin/users/<userID>: this endpoint only allows system administrators to assign
new roles (like the "admin" role) to other simple users. It accepts an HTTP PUT request
containing in the body the role to be assigned.

• [GET] /security/iam/jwks: this API exposes a JSON Web Key Set (JWKS). It provides a
set of public keys that have to be used to verify any JSON Web Token (JWT) issued by this
authorization server. This is also extremely useful to implement Istio request authentication
in our PoC.

The IAM service makes use of a Postgres Database instance, with 3 tables:

• The User Table, containing information about the users (ID, date of birth, email, etc.)

49

Testing Environment Design, Installation And Configuration

Figure 5.3: Dockerfile used for Traveler Service container image

• The Activations Table, containing temporary information like provisional random ID,
attempts number, expiration, etc. about newly registered users that have not yet activated
their accounts after registration

• The Role Table, containing information about roles provided to each user (it is extremely
important during login to generate a JWT encapsulating user’s roles and subsequently
perform RBAC)

5.4 Kubernetes Resources Design and Configuration

Once we have installed our cluster and developed our microservice-based application and our
authentication and authorization service, we need to define and create the Kubernetes resources
needed to run our services within pods on the worker nodes of the cluster and make them
accessible to each other. To deploy and run microservices inside Kubernetes pods, I needed first
of all to create a Docker container image for each service I implemented and then upload them
onto my private container registry on DockerHub from which they will then be downloaded upon
deployment. A container image represents a binary file that encapsulates the application source
code and all its libraries and software dependencies. [39]

Thus, I first required a Dockerfile to be written for each Springboot microservice. Although I
could have used a more stripped-down base container image for security and performance reasons,
each Docker file starts from an OpenJDK Alpine-based image (as I then chose also to install the
curl tool on top of it to facilitate testing) and then copy the jar of the related service inside the
image and use it as the entry point which bootstrap the microservice business logic. The fFigure
5.3 here is the Dockerfile used for creating the Traveler Service container image, although all the
others are pretty much the same but they copy and use a different jar file:

For the Kafka, Zookeper, and Postgres services, however, I used the docker images available
on the corresponding official DockerHub image registries.

The second step was to think about how to organize our microservices and Kubernetes
resources within the cluster and then how many Kubernetes namespaces would need to be created
for our applications. Namespaces are a way to divide cluster resources between multiple users.
When installing a Kubernetes cluster, four namespaces are created by default: one namespace
called kube-system (where all Kubernetes management system resources, such as the API server,

50

Testing Environment Design, Installation And Configuration

scheduler and kube-controller, are distributed) and others called kube-node-lease, kube-public
and default.

If you do not specify any namespace metadata for Kubernetes resources, they will be automat-
ically assigned and placed within the default namespace, but as a best practice for a production
cluster it is strongly recommended to follow the separation of concerns principle and to organize
each different microservices-based application resources deployed on the cluster in a different
and newly created namespace, adopting different labels for the various resources in order to
distinguish them within the same namespace. [40]

Reason why I decided to create 3 new different namespaces by launching the kubectl create
namespace <name> command from master node: ticketapp, kafka and iam.

The ticketapp namespace will be used to deploy and group the ticketing application resources,
that is the microservices and their own databases Deployment, Services and ServiceAccounts,
while IAM and kafka namespaces will be used to deploy resources related to the IAM application
and resources needed to run the Kafka message broker and Zookeeper, respectively. As we will see
in the next chapters, I will then go on to create an additional namespace for testing reasons. Note
that in this case we are deploying the IAM service within the same cluster where applications
will run, but in a typical production scenario it could be provided by a third-party provider and
in general be deployed outside the cluster.

After all the container images were produced and pushed onto the DockerHub registry, it was
necessary to write the YAML files needed to deploy and expose the various services on the cluster
and make them communicate and function properly. For each service to be deployed, including
kafka, zookeeper and postgres services, I have defined three different Kubernetes resources: one
Deployment, one Service and a different ServiceAccount for each of them. Note that although
I could have used a single ServiceAccount for each microservice-database pair, since they are
tightly coupled, I preferred to use different SAs for each microservice and each postgres instance,
because this allows for separate concerns and fine-grained authorization aspects for each service.
In addition, as we will see in later chapters, ServiceAccounts will be extremely useful for providing
some sort of identity and authentication to workloads running on the cluster.

Here (Figures 5.5, 5.6, 5.4) it is the three resources defined for the Catalogue microservice,
but they are more or less the same for all the remaining services, with some slight changes:

Thus I created one single pod replica for each microservice, database instance and message
broker service, even if in a production scenario typically we have multiple instances of each service
for resilience and availability purposes. Then, since pods are ephemeral resources which are
continuously appearing and disappearing and changing the associated IP address, I could not
make each application call each other by simply using the Ephemeral IP of pods. Therefore
I created a ClusterIP Service abstraction, which allows exposing our applications as network
services within a cluster using unique stable IP addresses.

When Kubernetes creates a ClusterIP Service it assigns a virtual IP address which can be
exclusively accessed from within the cluster, and therefore solely by the other Services running
inside the cluster. This address is tied to the lifespan of the Service, and will not change while
the Service is alive. Moreover, a DNS name will make corresponding to each ClusterIP service,
adopting the <ServiceName>.<Namespace> notation. [41]

By using labels attached to each Deployment, I defined which pods and port will be backed to
each Service, and then how is evinced from the Service Resource image here above, I assigned to
each pod (i.e. to the corresponding Deployment resource) some environment variables containing
the DNS name of each ClusterIP Service that will be used by pods in their binary to contact the
postgres instances, the message broker and the zookeeper service.

51

Testing Environment Design, Installation And Configuration

Figure 5.4: Deployment resource for Catalogue
Service

Figure 5.5: Service resource for Cata-
logue Service

Figure 5.6: ServiceAccount resource for
Catalogue Service

Currently, services are not exposed outside the cluster, but are only available to services
running inside it. In order to do so, an Ingress Controller will be deployed in the next chapter.

5.5 Istio And Ingress Gateway Deployment

After deploying our Kubernetes cluster and configuring the Kubernetes resources for the various
microservices, the next step was to install Istio. Once we download the Istio package, it brings
with it an executable called istioctl that automates and facilitates the installation of the Service
Mesh. By running the command istioctl install –set profile=demo -y it was possible to
install the service mesh on the cluster in a jiffy, using the demo configuration profile. Istio offers
several built-in configuration profiles (which are preferred for production environments). However,
the demo was selected to have a good set of default features to test. Using such a configuration,
Istio permits you to easily and automatically deploy a number of already configured (or partially
configured) services, such as Prometheus, Grafana, Kiali and Jaeger instances. It also provides
us a couple of pre-configured gateways named istio-ingressgateway and istio-egressgateway, that
we can re-configure and use for managing, controlling and observing ingress and egress traffic.

52

Testing Environment Design, Installation And Configuration

They are all deployed within the istio-system namespace, a namespace created on purpose when
installing Istio to deploy all the related resources, including the Istio Control Plane pods/services.

In particular, the built-in ingress gateway will allow us to expose HTTP services out of our
cluster through an endpoint, and this will allow us to easily handle different types of tests, and
most importantly, to recreate a full-fledged realistic scenario. We will only need to provide an
appropriate configuration to route traffic to the various services in the cluster appropriately, and
then it will map a path to a route at the edge of your mesh.

In order to be accessed from outside, the Ingress Gateway requires a stable IP address and
port that can be easily reached. Since we did not have a third-party LoadBalancer, we opted to
use a Service NodePort to expose our reverse proxy: thus, a host port was selected that each host
should exclusively reserve for the ingres gateway service, automatically remapping and redirecting
incoming traffic on that host port, to the pod running the ingress gateway. Istio’s Ingress gateway
can act as a TLS gateway and also perform authentication and authorization of incoming HTTP
and TCP requests, as Envoy’s proxies for each pod in the cluster also do. Next I also exposed
the Kiali, Prometheus and Grafana services as NodePort so that it can be easily accessed as a
web service from outside. There is no need to manually inject Envoy proxies within each pod. In
order to allow Istio to inject Envoy sidecar proxies when deploying the application automatically,
simply label the namespace to which the application will belong with istio-injection=enabled: for
example, for the ticketapp namespace we have to run the command kubectl label namespace
ticketapp istio-injection=enabled.

I then labeled the various namespaces ticketapp, kafka, iam, and default, and then deployed
the Kubernetes resources associated with the various microservices in the namespaces so that
when they started, a proxy envoy would be automatically injected into each pod. Figure 5.7 shows
the states of the pods running in the cluster immediately after their deployment, in the ticketapp,
kafka and iam namespace: note that each pod in these namespaces executes 2 containers, one
represented by the main application container and the other represented by the injected sidecar.
Note also that we have 2 pods associated with each microservice, representing the business
application logic and the related database instance. Note also that the zookeeper service, which
is strictly necessary for kafka to run, also runs in the kafka namespace. Each application and
database pod mounts and uses a separate purpose-built service account: this ensures that the
certificate injected into each service’s proxy is tied to a unique identity that will allow fine-grained
policies to be applied to microsegment traffic between services.

To enable the ingress gateway to properly route the received traffic to the various services in
the mesh, Istio is required to configure two Kubernetes Resources: a Gateway and a VirtualService.
The first describes a load balancer located at the edge of the network, which acts as an API
gateway receives all incoming HTTP/TCP traffic and allows it to specify which connections can
enter the network. The second, on the other hand, must contain the specific information that the
gateway must use to forward incoming requests and reach the correct destination service within
the cluster (Figure 5.8 and 5.9).

Figure 5.8 shows the Gateway resource provided: the gateway is now able to accept only
HTTP traffic on port 80. Figure 5.9 instead, shows a part of the original VirtualService deployed,
since it was too long: highlighted here is the configuration for handling traffic directed to the
login and traveler service within the cluster. In this way, any HTTP traffic directed to services
within the cluster can be sent to the IP address and port of the gateway, which serves as the
only point of contact with the outside world, and based on the specific URL path contained, it
will be forwarded to one service or another on the specified port. In this example, whenever the
URL begins with "/iamservice/," this prefix is removed from the actual path and the request
is forwarded to the Login Service in the iam namespace, on port 8081. Conversely, if the URL

53

Testing Environment Design, Installation And Configuration

Figure 5.7: Pods running in Ticketapp, Kafka and Iam namespace after Istio deploy-
ment

Figure 5.8: Gateway Resource

Figure 5.9: VirtualService Resource

starts with "/travelerservice/", the request is forwarded to the Traveler Service in the ticketapp
namespace on port 8080. The same process also occurs for the other services.

54

Chapter 6

Zero Trust Network Model
Implementation

In this chapter, we will attempt to implement the zero-trust principles explained in Chapter 4,
using first Istio and then the containerized Palo Alto CN-Series firewall. Naturally, the proof
of concept was implemented using the microservices of the ticketing application developed and
deployed specifically. The results obtained and the validation of this implementation will be
discussed in Chapter 7.

6.1 Istio

As far as Istio is concerned, its authentication and authorisation capabilities, provided by Envoy
proxies after appropriate control plane configuration, were explored. In section 6.1.1 will seek
to protect communications within the cluster and implement an authentication mechanism
based on the identity contained in X.509 certificates and, consequently, workload-to-workload
authorisation policies based on the identity extracted from them, in an attempt to micro-segment
the network. In section 6.1.2, on the other hand, an attempt was made to implement a more
fine-grained authorisation policy, focusing on the specific end-user and request instead of generic
communication between two workloads.

6.1.1 mTLS, Peer Authentication And Authorization

One of the main features of Istio is the adoption of mTLS for protecting service-to-service
communications. When an mTLS channel is established, it permits encrypting all the traffic
sent over this channel, using a suitable ciphersuite. This guarantees the confidentiality of the
communication. Moreover, for each message exchanged between the two parties, its authentication
and integrity can always be verified (and in some sense, be guaranteed) through a Message
Authentication Code (MAC) generated by the client. These two features provide protection against
several Man-in-the-Middle (MitM) Attacks: It is not possible to eavesdrop on communications
occurring over mTLS channels, let alone alter the messages exchanged without detection. In
addition they also provide protection against replay and filtering attacks.

However, the most relevant security property in our case is Peer Authentication: in mutual

55

Zero Trust Network Model Implementation

TLS it provides strong authentication. Peer Authentication occurs during the TLS handshake
process (i.e., before the channel is opened): both the client and the server exchange certificates
with each other to prove their identities. Before opening the communication channel, each party
verifies the presented certificate to ensure its validity, that it was issued by a trusted CA (the
Istio CA in this case), and that the identity information in the certificate matches the expected
identity of the peer. This verification process helps ensure that the peer/workload is who it claims
to be.

This means that both the client and the server authenticate each other’s identities before
proceeding with the communication. If the verification process of even one of the two certificates
fails, the Authentication process is considered failed, and the channel will never be opened.
Otherwise, the cryptographic keys to be used for the confidentiality and integrity of messages
will be exchanged, and from here on all traffic exchanged through this channel will be implicitly
protected, both parties being in the meantime sure of the identity of the other party.

Unless otherwise specified, Istio automatically configures each proxy to use mTLS when the
corresponding workload contacts other services in the same Istio mesh (i.e., their Envoy proxies)
and to use plaintext traffic when communicating with other workloads without Envoy proxies.
This kind of auto-configuration is possible because Istio keeps track of the various services in the
Mesh. This means that even if the outgoing traffic produced by the main container is in the clear,
service-to-service communication is automatically upgraded to mTLS traffic by the client-side
proxy. It implies that if authentication succeeds (i.e., everything concerning the certificate is
ok), the client proxy is now aware of the identity of the server by extracting it from the valid
certificate. Viceversa, the communication is immediately denied since it is not possible to trust
the identity of the other party. The same thing applies on the server side, with the difference that
in that case, the identity of the client is strictly necessary to verify and enforce authorization
policies on the source: so all the more reason communication should be blocked since it is not
possible to know who wants to access the resource.

During the handshake, the client-side Envoy also does a secure naming check to verify that
the service account presented in the server certificate is authorized to run the target service,
providing stronger protection.

When acting as a server-side proxy, Envoy can be configured to operate as servers in different
mTLS modes: PERMISSIVE, STRICT and DISABLE.

• PERMISSIVE : it configures the proxies to accept both plaintext and mTLS traffic
• STRICT : it configures the proxies to accept only mTLS traffic
• DISABLE : it configures the proxies to accept only plaintext traffic

By default, Istio automatically configure proxies in PERMISSIVE mode. However, even if
the permissive mode is useful when operators want to migrate services to Istio without breaking
existing plaintext communications, from a security point of view it should be avoided. With this
mode, the proxy may allow plaintext traffic, and in such cases no authentication or authorization
checks will be performed. Authentication is the first step towards microsegmentation: without
it, we cannot know the identity of the source sending the request, and thus zero trust is never
achieved. Thus is preferable to adopt only STRICT mode, which allows workloads to accept
only connections from authenticated entities (thus applying the required security controls), and
granting that the communication is protected from any man-in-the-middle.

In order to configure which mTLS mode a given workload has to adopt as a server, a
PeerAuthentication has to be created and applied. It is a Custom Resource Definition introduced
by Istio, which is used by the control plane to properly configure the authentication policy that the
various proxies must adopt for incoming connections. Peer and request authentication policies use

56

Zero Trust Network Model Implementation

Figure 6.1: PeerAuthentication applied to ticketapp namespace

selector fields to specify the label of the workloads to which the policy applies. The authentication
policy can be applied at different levels of granularity, each with a more or less specific target:

• Mesh-wide: it applies to all the workloads within the namespaces of the Service Mesh (i.e.,
properly labeled with "istio-injection=enabled")

• Namespace-wide: it applies to all the workloads within a specific namespace
• Workload-wide: it applies to a specific workload within a specific namespace, maybe on a

specific port

It is possible to set a single mesh-wide policy and a single namespace-wide policy for each
namespace. Multiple authentication policies can be set for a given workload at different layers,
but Istio will always apply the narrowest matching policies for each workload. This means that if
a DISABLE mode is applied to the whole namespace, and a STRICT mode is instead applied
only to a specific workload X within that namespace, workload X will be configured in STRICT
mode, while all the others with DISABLE. This provides better flexibility for policy configuration.

However, in our case, it is enough to apply either a Mesh-wide policy or a Namespace-wide
policy to each namespace, in this way, all the workloads within them will only accept mTLS
traffic. The second option was adopted.

Thus, a STRICT mTLS PeerAuthentication was applied to every namespace of my application
(i.e., to the pods within them): ticketapp, kafka and iam. This implies that not only communication
between microservices will be protected and authenticated, but also communications between
microservices and kafka, as well as between microservices and their database instances, since
they are TCP based ones. Figure 6.1 shows the PeerAuthentication resource set for the ticketapp
namespace (for the other namespaces, they are pretty much the same, with only a different value
of the selector field).

Attention must, however, be paid to the fact that Istio, unless a DestinationRule is specified,
configures client-side proxies to use mTLS or not depending on the PeerAuthentication mode set
for the various server-side workloads: this means that if the recipient is inside the Mesh and has
an incorrect configuration in DISABLE mode, the outgoing traffic will not be authenticated and
protected (i.e., plaintext). This behaviour can be overridden by setting a specific DestinationRule
for each service in the mesh, as I did: figure 6.2 shows the DestinationRule specified for the
Catalogue Service. This implies that Istio will also configure all proxies to mandatorily use mTLS
with the specific target workload in the mesh (the catalogue service in the specific case of the
figure) when acting as a client, resulting in a more secure configuration. The ISTIO MUTUAL
mode specifies that proxies must necessarily use certificates generated automatically by Istio for
mTLS authentication.

57

Zero Trust Network Model Implementation

Figure 6.2: DestinationRule for the Catalogue Service

Once the mTLS connection has been successfully established, each party will then know the
identity of the other extracted from the received and verified X.509 certificate, i.e. the Service
Account of the workload. This retrieved workload identity can then be used by the server-side
proxy to apply authorisation policies, and verify whether or not a given request from that specific
source is actually legal, or should be rejected. Through the use of Istio’s Authentication and
workload-to-workload Authorization policy, I will therefore try to micro-segment communications
within the cluster, ensuring that only services that actually need to communicate and cooperate
are enabled to do so, while denying all other requests (both unauthorised and authenticated but
unauthorised).

To micro-segment the traffic and ensure maximum security, a whitelisting approach was
adopted: it means that in order to secure cluster connections and requests, a default-deny
authorization model was adopted, which denies all requests by default and only accepts those
that are explicitly allowed.

When there exists several Authorization Policies defined for the same workload at the same
time, and these use CUSTOM, DENY and ALLOW actions, the CUSTOM action is evaluated
first, then the DENY action, and finally the ALLOW action. The evaluation is determined by
the following rules:

1. If there are any CUSTOM policies that match the request, evaluate and deny the request if
the evaluation result is denied.

2. If there are any DENY policies that match the request, deny the request.

3. If there are no explicit ALLOW policies for the workload, implicitly allow the request.

4. If any of the ALLOW policies match the request, allow the request.

5. Otherwise implicitly deny the request.

However, as with an authentication policy, an authorization policy may have scopes with different
levels of granularity to provide more flexibility in policy definition, such as mesh-wide, namespace-
wide, and workload-wide policy. And of course, if multiple policies exist that target the same
workload but at different levels of granularity, the proxy will automatically apply the narrowest
matching policy: i.e. in our case, this means that a deny policy at the namespace level will
always be applied unless an explicit allow exists for the same service at the workload level. The
Authorization Policy target is determined by the metadata/namespace field and an optional
selector field to express the eventual specific workload.

58

Zero Trust Network Model Implementation

Therefore, the next steps were two: the first was to define a DENY AuthorizationPolicy for
iam, kafka and tikcketapp namespaces in order to deny by default all traffic entering the various
workloads deployed within these namespaces; then, the second was to define multiple ALLOW
policies, each targeting a specific workload, so that it could only accept the specified traffic from
the defined source.

I first went to consider what should be the normal behaviour of my ticketing application,
and then, I identified which service pairs needed to communicate in order to complete tasks
and correctly implement the application’s functionality. First of all, each microservice (login,
catalogue, traveller and payment) must be externally exposed to provide the application’s web
services, but can only be contacted on its specific exposed HTTP port by the ingress gateway,
which will act as an intermediary between the traffic coming from outside and the cluster services:
no other entity outside or inside the cluster must be able to contact the four microservices. In
this way, imagine in a realistic case that a security node is placed just before the gateway (e.g. a
WAF), or between the gateway and the services, the only connections received will have been
appropriately security checked, and thus verified. Then, each of the 4 microservices requires
access to its own database and thus opens connections only to the specific postgres service for
which it is intended. At the same time, Catalogue, Traveler and Payment Service must connect to
the Kafka message broker service in order to exchange requests reliably whenever the Catalogue
service receives a POST /shop request. Finally, the Kafka service requires, in order to function,
to connect to the Zookeeper service, which resides in the same namespace. Figure 5.2 in Chapter
4, shows what has just been described in words.

Once I had a complete picture of the communications between the various microservices in
the mesh, I moved on to define three namespace-wide Deny-By-Default policies (one for each
namespace in my application). This will ensure that unless otherwise specified, all traffic received
by services within that namespace will be automatically denied by the proxy if it does not match
any explicit allow policy.

Figure 6.3 shows the policy specifically used for the ticketapp namespace, but the others are
pretty much the same, with only a different target namespace.

Each Envoy proxy runs an authorization engine that authorizes requests at runtime, and
whenever a request comes to the proxy, the authorization engine evaluates the request context
against the current authorization policies defined, and returns the authorization result, either
ALLOW or DENY.

In general, the selector field allows you to express the scope to which the policy applies. As
can be seen, in this case the policy has no selector field to help specify the scope of the policy,
and will therefore automatically apply the policy to any workload in the ticketapp namespace.
The spec field of the policy has the empty value , and therefore the to,from and when fields are
also not specified to indicate any boundary conditions under which the policy is to be applied,
such as a specific source, or a certain ports. This means that no traffic is allowed, effectively
denying all requests.

Next, I went on to define the specific ALLOW policies for each individual pair of services that
need to be able to interact and communicate with some specific sources. Figure 6.4 shows the
policy required for the Kafka service to be contacted by the 3 microservices Catalogue, Traveler
and Payment. The spec.selector.matchLabels.service field is used to specify the target service to
which the policy has to be applied (the Kafka service in the specific case of the image, or to be
more accurate, the workload labeled with app: kafka in the Kubernetes resource defined before).
The principal subfield of the from.source field, specifies to the server-side proxy that the identity
extracted from the mTLS peer authentication (i.e., the client Service Account) must be used to

59

Zero Trust Network Model Implementation

Figure 6.3: Deny-by-default Policy applied to Ticketapp namespace

authorize the request: if, upon successful authentication, the Service Account contained in the
source certificate does not match one of those listed in that field, the request will be denied as an
essential condition is missing. This will therefore allow pods running Kafka to be accessed only
by one of the 3 identities corresponding to the 3 services on port 9092, and by no one else, even if
the latter authenticates correctly by presenting a valid certificate but with a different contained
identity. Note that in the event that the proxy server is mistakenly set to mTLS DISABLE
mode (or in any case PERMISSIVE mode, but plaintext traffic is nevertheless received), mTLS
authentication will be absent and consequently it will not be possible to extract and use any
principals fields to authorise the traffic: the absence of an extracted principal will in any case
lead the proxy to deny the connection since it is unable to verify the condition on the source
defined in the policy. Thus, the possible absence of server-side authentication policies will not
prevent the proxy from applying authorization policies. The to.operation.port field also specifies
another boundary condition, namely, on which specific port the traffic must be directed: if the
destination port is different from this, the traffic will automatically be denied.

Figure 6.5 shows the policy required for the Zookeeper service in order to be contacted by
Kafka: the only source identity from which it can be contacted on port 2181 will therefore be
Kafka’s service account. All other traffic directed to the same pod, but on different ports or from
workloads that do not have that service account and a valid certificate, will be denied (even if the
identity is the allowed one).

Figure 6.6 instead, shows the policy that had to be defined for the Postgres service specifically
used by the catalogue service, so that only the latter can connect to its database, and no others:
a similar policy was also applied to the postgres instances of the Traveler, Payment and Login
services to be accessed only by the corresponding microservices. Finally, the figure 6.7 shows the
allow policy required by the catalogue service in order to be contacted from outside, i.e. from the
Ingress Gateway: the same policy, with different target, identity and port, was also applied to
the other three microservices.

6.1.2 End-User Authentication And Authorization

As already mentioned in Chapter 4 and subsection 6.1.1 of Chapter 6, for each authorization
policy, Istio provides flexibility by allowing a list of rules to be defined that match the request,
using the rules field: a policy match occurs when at least one of these rules matches the request.
In this way, I can easily make explicit several conditions under which a request can be granted in
a single policy. A rules field without any rules implies that any request is automatically matched.
In order to match a specific request, each rule allows three optional subconditions to be expressed
trough the following subfields:

• from.source: this field allows to specify the source of a request. If not set, any source is

60

Zero Trust Network Model Implementation

Figure 6.4: Allow Policy For Kafka Service Figure 6.5: Allow Policy For Zookeeper Ser-
vice

Figure 6.6: Allow Policy For Cat-
alogue Service Database

Figure 6.7: Allow Policy For Catalogue Ser-
vice

allowed. You can express three main types of source, which are:

1. a list of peer identities derived from the X.509 certificate using the from.source.principals
field. You can also express a list of negative matches of peer identities through the
function named from.source.notPrincipals, which will involve that any principal not
matching the specified ones, will match the rule.

2. a list of request identities derived from a validated JWT inside the request, using the
from.source.requestPrincipals field. You can also express a list of negative matches of
request identities through from.source.notRequestPrincipals, which will involve that
any request principal extracted from a valid JWT not matching the specified ones, will
match the rule.

3. a list of IP blocks, derived from the source address of the IP packet, using the
from.source.ipBlocks field. In this case you can express a single IP address or a CIDR.
Also a list of negative matches of IP blocks can be used using the from.source.notIpBlocks

61

Zero Trust Network Model Implementation

field.

• to.operation: this field allows to specify the operations of a request. If not set, any
operation is allowed. You can express three main types of operation, which are:

1. a list of hosts as specified in the HTTP request, trough the hosts field. Also a list of
negative matches can be expressed trough the notHosts field.

2. a list of ports as specified in the connection, using the ports field. Also a list of negative
ports can be expressed trough the notPorts field.

3. a list of methods as specified in the HTTP request, using the methods field. Also a list
of negative methods can be expressed trough the notMethods field.

4. a list of paths as specified in the HTTP request, using the paths field. Also a list of
negative paths can be expressed trough the notPaths field.

• when: this field allows to specify a list of additional conditions of a request by expressing a
series of attributes that the request should have. If not set, any condition is allowed. You
can express conditions using a couple of key-values fields for each attribute, in which you
can explicit

1. that a request has a specific HTTP header trough the key value request.headers
2. that a request should (or should not) have a given source and/or destination ip, trough

the key value source.ip and destination.ip
3. that the valid JWT token contained within the HTTP request, is bound to a specific

principal embedded within (trough the request.auth.principal field), or that contains a
specific claim (trough the request.auth.claims field)

4. and many other less interesting attributes

Fields in the from.source section are automatically ANDed together by the proxy, and thus
it is possible to specify the source of a request in great detail by specifying both the IP and the
identity of the source peer, and also the specific identity to be contained in the JWT (the latter
condition, however, can only be applied in the case of HTTP traffic). This would allow us to
provide greater security for our workloads, guaranteeing source authorisation on several levels:
network level, transport level and application level.

For example, Kubernetes allows labels to be added to cluster nodes, and then allows Pods to
be targeted for scheduling on specific nodes or groups of nodes: this functionality can be used to
ensure that specific Pods are only executed on nodes with certain isolation, security or regulatory
properties. In cases such as these, knowing that a certain workload can only be scheduled on a
given node, one can for instance redefine the authorisation policies defined in section 6.1.1 by also
specifying the block of IP addresses that has been assigned to the Pods of a specific node, thus
achieving a double security check based on both source IP and digital identity (this would for
instance also prevent a certain certificate from being stolen and used by different IP addresses).
The same can be done in the case where a certain resource deployed in the kubernetes cluster
is to be accessed only from within a certain IP subnet or a host with a static IP. A possible
example is shown in figure 6.8: the policy provided just before in picture 6.7 has been redefined,
specifying the IP addresses actually allowed by the Ingress Gateway pod when contacting the
Catalogue service providing a valid certificate and service account within it. If even one of these
two conditions miss, the connection is denied.

Also, for what concerning the to.operation section, the fields expressed in that section are
ANDed together, and thus it is possible to specify the operation of a specific request in great

62

Zero Trust Network Model Implementation

Figure 6.8: Allow Policy for Catalogue Service with a specific source identity and IP address

detail by specifying port, hostname, path and method of the request. Unfortunately, the last
three can only be used in the case of HTTP traffic, thus allowing policies to be more refined for
this type of traffic, and only the specific port to be used in the case of simple TCP traffic, as seen
in the 6.6 and 6.5 images for kafka, zookeeper and postgres traffic.

However, another security capability of Istio is the fact that it is also able to implement
end-user authentication mechanisms based on the single HTTP request, exploiting JWTs that
validate the user’s login instead of X.509 certificates. This is possible by applying to the API
server a .yaml file containing a RequestAuthentication Kubernetes resource.

Thus, I first went on to define authentication policies for the individual HTTP requests of
my microservices. In fact, as seen in Chapter 5, each microservice has endpoints that require
prior authentication to the IAM server in order to be accessed, i.e. they require a valid JSON
Web Token (JWT) in the request’s authorization header in order to be accessed since they imply
access to a specific user’s personal data.

In particular, the Login service presents only one authenticated endpoint, PUT /admin/users/<userID>,
and all the others are freely accessible as they serve to guarantee registration, validation and
login operations. Payment and Traveler services, on the other hand, present only authenticated
endpoints. Finally, the Catalogue service has all authenticated endpoints except GET /tickets,
which must also be freely accessible by non-authenticated users in order to be able to show the
catalogue of tickets on sale to the end user.

In order to define a RequestAuthentication policy, three pieces of information must be defined:

• the location of the token in the request (i.e., the HTTP header in which the JWT to be
authenticated is contained)

• the issuer of the request, that is the value of the iss field contained in the token.

• the JSON Web public key set (JWKS). It is a set of keys containing the public keys used to
verify any JSON Web Token (JWT) issued by the Authorization Server and signed using
the RS256 signing algorithm.

I therefore went on to define a RequestAuthentication policy for each individual microservice,
specifying these three pieces of information for each one. Figures 6.9 and 6.10 show the ones
provided for the Catalogue and Login services, even if the other two are similar.

63

Zero Trust Network Model Implementation

Figure 6.9: RequestAuthentication for Cata-
logue Service

Figure 6.10: RequestAuthentication for Login
Service

As can be seen from the images above, the details from which the proxies will retrieve
information to verify the JWT must be expressed in the jwtRules field. In particular, a jwksUri
field has been specified for the JWKS: this represents a URI that will be provided to each
proxy so that it is able to download and retrieve the valid JWKS periodically, and subsequently
it will be used for JWT validation and verification. In this case, having realised a custom
IAM service, I set the URI of the purpose-built server used to retrieve the JWKS, namely
/iamservice/security/iam/jwks. At each successful user login, the Login service returns a digitally
signed JWT, the signature of which can be verified using the public key contained in the
downloaded JWKS. Furthermore, the JWT generated by the Login service will have the form
shown in the figure 6.11 Note that it has five claims, sub, roles, iss, exp, iat respectively. The
iss represents the issuer of the token, which in the case of my custom IAM service will always
be “issuertest@iamdomain.com”, the reason why I set it as a issuer field in the policy. The sub
claim represents the identity of the user, in this specific case its own username. Furthermore,
since the endpoints also need to receive the JWT in order to be able to extract the user’s identity
information and manage its data, it was necessary to explicitly tell the proxy to forward the JWT
to the application container as well, otherwise by default the Envoy’s behaviour would have been
to validate the jwt, and then remove it from the request before forwarding it. Unless otherwise
expressed through the fromHeaders field, by default envoy assumes the token is presented within
the Authorization header and tries to extract it from there automatically. Therefore, since in our
case it is inserted right there, there was no need to specify that field.

By defining only the request authentication policies, what happens is that Istio verifies
the digital signature of the token received in the HTTP request using the JWKS downloaded
from the URL, then verifies its authenticity and integrity, and once this first check has been
passed, it then verifies that the correct issuer is contained in the iss field. If even one of these
checks fails, the JWT is considered invalid, and consequently, the request is immediately denied.
However, if the HTTP request does not carry any tokens inside to be authenticated and validated,
RequestAuthentication alone will fail, and by default will let the request pass anyway. Which is
why, once we’ve applied the RequestAuthentication policies we’ve seen, we must also ensure that
no HTTP requests without tokens are allowed to pass through, and this must be done by forcing
AuthorizationPolicies.

In addition to being able to validate the JWTs contained in the headers, and thus verify
that they are not expired or compromised, the Envoy proxy is able to extract the information
contained in them (the so-called claims) to subsequently authorize the request.

Therefore, I then defined a DENY AuthorizationPolicy for each microservice, in which I would

64

Zero Trust Network Model Implementation

Figure 6.11: An example of JWT produced by the Login Service

explicitly deny all traffic that did not contain any claim principals: the Request Principal is an
attribute of the specific request which is automatically extracted by the proxy from within the
received JWT, and which will therefore be absent in the absence of JWT. It corresponds to
the sub ("subject") claim of the JWT, which is a string that identifies the principal that is the
subject of the JWT. The "*" character in notRequestPrincipals["*"] serves as a wildcard to match
any principals extracted from the JWT, and the fact that it is therefore denied, results in the
condition "if no principal has been extracted from the JWT, either because that field is absent,
or because the JWT is absent, then deny the request".

The images 6.12 and 6.13 show the AuthorisationPolicies for the Catalogue and the Login
Service. Note that the condition to.operation.notPaths: ["/tickets"] has also been expressed for
the Catalogue, since the /ticket endpoint is not authenticated, and therefore does not require
JWT to access it, and by doing so I guarantee that the policy will not deny requests without
JWT directed to this endpoint (but at most will authenticate the JWT if it is present anyway,
since the authentication policy remains valid anyway). Similarly, in the case of the Login Service
on the other hand, the condition to.operation.paths: ["/admin/*"] has been expressed, since the
only authenticated endpoint to which the JWT’s necessary presence condition is to be applied is
the /admin/users/<userID> endpoint. All its other endpoints, instead, do not require JWT to
access them, and therefore no to.operation.paths or to.operation.notPaths condition was required
this time, but just the notRequestPrincipals["*"] one.

After that, I moved on to exploit the jwtRules offered by the AuthorizationPolicy Istio to
authorize access to all endpoints of my services that required administrative privileges and would,
therefore also be more sensitive in a realistic scenario. I then defined an additional authorization
policy for all endpoints requiring the Admin role, exploiting the roles claims contained in each
issued JWT, extracted upon successful JWT validation: this claim contains the list of roles of
each principal, and only those who possess the "ADMIN" role (as shown in Figure 6.11) are
considered as such and can access these privileged endpoints.

65

Zero Trust Network Model Implementation

Figure 6.12: JWT Authorization Policy for
Catalogue Service

Figure 6.13: JWT Authorization Policy for
Login Service

Figure 6.14: Admin Authorization Policy for
Catalogue Service

Figure 6.15: Admin Authorization Policy for
Payment Service

I then went on to define an additional DENY Authorization Policy for each microservice,
specifying as conditions that all traffic directed to endpoints beginning with the prefix "/admin"
i.e. to.operation.paths: ["/admin/*"], should be denied if it does not have the value "ADMIN"
in the claim roles of the JWT, i.e. when request.auth.claims[roles] notValues["ADMIN"], as also
shown in Figures 6.14 and 6.15.

66

Zero Trust Network Model Implementation

6.1.3 Ingress And Egress traffic

For incoming traffic to the cluster, the Istio Ingress Gateway implements the same functionality
as the proxies. It is able to act as a TLS Gateway for HTTP traffic coming from outside,
also exposing an HTTPS port and possibly performing Peer Authentication and Authorization
leveraging upon the TLS Client Certificate at the edge.To test its functionality, I wrote a YAML
file to overwrite the ingress-gateway configuration with my own custom one, requiring MUTUAL
TLS requests for each service of the Mesh. In Figure 6.16, there is an example of how I configured
the Gateway for accepting the traffic directed to Login service and Catalogue service. Note that
in general for each specific service that runs in my mesh I can configure the gateway to require
TLS or not, and if required, I can specify whether I want it simple or mutual, as I have done
here for example: the Login service requires it simple, and therefore even if the client does not
present any certificate the request will be accepted, instead the Catalogue mutual, rejecting
clients without a certificate or with an invalid certificate. Thus, for the Ingress Gateway, there is
no explicit peer authentication policy, but simply configure the exposed HTTPS port to accept
only clients with a valid certificate via the mutual option.

Other features provided by Istio ingress gateway are Request Authentication and Authorization
by means of the JWT attached to the incoming HTTP request: it can verify the authenticity
and integrity of the JWT attached to the incoming HTTP request, and then perform End-user
Authorization. If either authentication or authorization phase fails, we are able to reject the
request before it reaches the destination service.

In order to test this concept, I configured a Request Authentication policy with Istio Re-
questAuthentication resource as Figure 6.17, and I applied it to the Ingress Gateway. Then I
configured also two Authorization policy, one for let requests directed to some specific endpoints
pass without requiring any attached JWT (Figure 6.18, and another one to strictly require the
ADMIN role in the JWT claim whenever the /admin endpoints of the various services are required.
In this way, except for a few specific ones, all endpoints will require a valid JWT, i.e. that the
user has previously logged in (the login service is obviously excluded from this condition for
obvious reasons), and all those that have an invalid or absent JWT will be rejected already by
the ingress gateway. Finally, if endpoints are reserved for admins, all requests to them from users
without that role will be refused, as also seen in Chapter 6.1.2.

With regard to outgoing traffic from the service mesh and the services within it, all outgoing
traffic from an Istio-enabled pod is intercepted by its sidecar proxy, which will handle it correctly.
Accessibility to URLs outside the cluster depends on the proxy configuration, and by default,
Istio configures the Envoy proxy to pass through requests for unknown services, and thus all
connections towards external HTTP and HTTPS services from applications inside the mesh, and
in general any traffic towards unknown destinations, are implicitly allowed. This behaviour can
be overridden at a Sidecar level by setting the OutboundTrafficPolicy to REGISTRY ONLY at
installation time. Istio has an internal service registry containing several Service Entries, each
one with information about workloads within the mesh (its DNS name, clusterIP, IP address,
etc). Services that are not defined in Istio’s internal service registry, are considered unknown:
this is the case of the services external to the cluster, i.e. on the Internet.

If the option is set to REGISTRY ONLY, then the Istio proxy automatically will block any
host without an HTTP service or service entry defined within the registry, preventing anomalous
outgoing connections. However, this is not a strong security measure, since if the proxy is
by-passed, the job is done. While this is useful to prevent accidental dependencies, if you want
to secure egress traffic, and enforce all outbound traffic goes through a specific proxy, maybe
performing strong security checks, you should instead rely on an Egress Gateway. When combined

67

Zero Trust Network Model Implementation

Figure 6.16: Ingress Gateway Configuration

Figure 6.17: Ingress Gateway Request Au-
thentication

Figure 6.18: Ingress Gateway Request Au-
thorization Figure 6.19: Ingress Gateway Admin Autho-

rization

with a Network Policy, you can enforce all traffic, or some subset, that goes through the egress
gateway. This ensures that even if a client accidentally or maliciously bypasses their sidecar, the
request will be blocked.

I then went on to reinstall the service mesh using the REGISTRY ONLY configuration, and
then to appropriately configure the routing of outgoing traffic, since we have already deployed
our egress gateway, but currently outgoing traffic does not pass through there. In particular, to
test access to external services via the egress gateway, I used the service "www.google.com" as
an example. assuming that only access to the latter was required from within the mesh services.
Thus, It has been configured through a Gateway resource (Figure 6.21) and, in order to define
the exiting routes, it also required a Destination Rule and a Virtual Service. The virtual service
was used to configure two routes, the first from inside the mesh to the exit gateway and the
second from the gateway to the external service, defined via the host and destination port fields,
as shown in Figure 6.20: it thus will direct the traffic from the sidecars to the egress gateway and
then from the egress gateway to the external service. The entries of this Istio’s internal registry

68

Zero Trust Network Model Implementation

can be defined with the Service Entry resource, by specifying the host, the port, the type of
protocol, then also whether the service is internal or external to the mesh, and finally how the
destination host must be resolved (often using the DNS service). Therefore, also a Service Entry
has been created for the Google service so that this outgoing communication will not be blocked
by Istio (Figure 6.22). With those resources, we created an exit gateway for google.com, port 443:
to route multiple hosts through an exit gateway, you can include a list of hosts, or use * to match
them all, in the gateway.

6.2 Palo Alto CN-Series Containerized Firewall

6.2.1 CN-Series Components Deployment

The first step in testing the containerised firewall solution was to deploy Panorama within our
cluster. A virtual machine ready to run Panorama was provided by Palo Alto and installed with a
suitable resource configuration to function properly. It provides a centralised management platform
for Palo Alto Networks firewalls, including the CN Series. Panorama allows administrators to
manage multiple CN-Series firewalls from one centralised interface, including configuration
management, policy implementation and monitoring. It can be used to define expected security
policies and their enforcement, pushing them to management pods to configure NGFW pods.
In addition, Panorama is able to collect logs from all managed CN-Series firewalls, providing
centralised log storage and analysis capabilities. This provides complete visibility of network
traffic and security events across the entire environment, while also offering reporting and alerting
capabilities.

I then went on to download and install the Kubernetes plugin on Panorama, using a suitable
version that also matched the version of Kubernetes installed on our cluster: it is necessary to
configure the IP address and port of the K8s API server running, so that Panorama is able to
monitor through it the creation and destruction of K8s resources, as well as any changes occurring
within the cluster. Furthermore, since the API server requires authenticated communication, a
ServiceAccount was specially created for Panorama to use each time it contacts the API server.
The corresponding ServiceAccount will, of course, have permission to read the existing resource
configuration and deployment details. In this way, Panorama is now able to monitor the cluster
and thus collect information about existing Kubernetes objects, such as pods, services, deployment
and associated identifying attributes, and this will consequently allow us to create context-aware
policies. The time interval used to periodically query the API server and retrieve information has
been set to 30 seconds, but this can be changed.

Next, I downloaded the CN-series deployment files from Palo Alto Networks’ GitHub repository
and, by customising and applying these YAML files to the API server, I inserted the PN-
CNI into each node’s CNI chain, then deployed the management and firewall pods within the
cluster: NGFWs, management pods, and Panorama pods were configured through these files to
communicate properly with each other via IPsec tunnels, ensuring secure communication. Figure
6.23 shows a part of the YAML file used for the NGFW deployment.

The DaemonSet mode was chosen to distribute the firewalls: consequently, since our cluster
consists of two worker nodes, two NGFWs were distributed within the cluster, one for each node.
For fault-tolerance issues, however, two management pods were also deployed, guaranteeing no
service interruptions in the event of a failure of one. As you can see from Figure 6.24, all the
cn-series pods are deployed within the kube-system namespace, since they should be granted
significant permissions.

69

Zero Trust Network Model Implementation

Figure 6.20: Virtual Service Resource

Figure 6.21: Service Entry Resource

Figure 6.22: Gateway Resource
70

Zero Trust Network Model Implementation

Figure 6.23: NGFW YAML Configuration File

Figure 6.24: CN-Series core blocks deployed in the cluster

A different pan-cni pod is distributed on each node in the cluster to apply the CNI cn-series
specification, while a different NGFW and MGMT pod is distributed on each worker node: the
master node does not require them, as it does not host and run applications on top, but only the
control plane pods.

However, in order for firewall pods to intercept incoming or outgoing traffic from a given
application pod, the application yaml or corresponding namespace had to be annotated using the
label paloaltonetworks.com/firewall=pan-fw. I opted for the latter, since this implied that each
newly created pod in the specified namespace would be directly connected to the firewall and,
in order to guarantee zero-trust principles, each workload in the cluster’s namespace had to be
protected via a PEP. I then annotated the various namespaces of my applications (i.e. ticketapp,
iam and kafka) using the command kubectl annotate namespace <namespace-name>
paloaltonetworks.com/firewall=pan-fw. Since the DaemonSet mode has been adopted, the
CNI is then configured to connect the network interface of each newly created pod within these
annotated namespaces to the firewall via a virtual wire, avoiding any kind of bypass: in this way,
we are quite sure that whenever traffic exits or enters the pod, it is because the firewall lets it
pass after an appropriate authorisation policy has been applied. Of course, in this mode, pods
scheduled on a specific node can only be connected to the NGFW instance running on that node.
This implies that a maximum of 30 application pods can be connected to each firewall (since it
only has 30 pairs of vwire interfaces), but since I only deployed a few test pods, this was sufficient
in my case.

Log Forwarding was then enabled and configured for each NGFW pod to automatically send
logs on allowed or denied traffic to Panorama, which will collect and store them. Panorama’s

71

Zero Trust Network Model Implementation

K8s plugin continuously monitors the API server and has been configured to automatically create
tags for the following Kubernetes objects:

• Pod Classes: ReplicaSets, DaemonSets, StatefulSets
• Service Types: ClusterIP, NodePort, LoadBalancer
• Service Objects: port, targetPort, nodePort, and pod interfaces

Thus, finally, the Kubernetes plugin was configured to dynamically send the created tags to
the management pods and, subsequently, to configure the firewall and its policies using the source
and destination tags of each rule by exploiting the IP-tag address mapping.

6.2.2 Microsegmentation Trough Firewall Security Policies

In order to test the security capabilities of the containerised firewall, as I also did in the case
of Istio, I first considered how the microservices interact with each other within my ticketing
application, and thus which services are exposed by each workload, and which pair of workloads
actually requires to communicate and use which specific service.

Four microservices (login, catalogue, traveler and payment) must be exposed outside the
cluster to provide the application’s web services, but they can only be contacted on their specific
HTTP port, which must be exposed via the Ingress Gateway, which will act as a reverse proxy
routing traffic from outside to the specific workload. Thus, the first consideration is that the Istio
service mesh has been uninstalled, but its Ingress Gateway has been retained to ensure public
exposure of the web microservices, acting as the only point of contact between the cluster and the
rest; the second is that only the gateway must be able to contact the four workloads: no other
entity must be allowed. Naturally, then, each of the four microservices requires access to its own
database, and thus to open connections only to the specific postgres service for which it is intended.
Catalogue, Traveler and Payment Services must be able to use the Kafka message broker service to
reliably exchange requests whenever the Catalogue service service receives a POST /shop request:
therefore, traffic between these three workloads and the Kafka service must be allowed. Finally,
the Kafka service requires to connect to the Zookeeper service in order to function. Taking this
into account, to micro-segment traffic between Kubernetes pods, a whitelisting approach was
considered and implemented: this means that to protect the cluster’s connections and requests,
a default-deny authorisation model was adopted which denies all requests by default and only
accepts those that are explicitly allowed.

Since the goal is to achieve Zero Trust through pod firewalls, all three ticketing app namespaces
have been annotated with the label textitpaloaltonetworks. com/firewall=pan-fw, and this will
ensure that every time a pod starts or restarts within these namespaces, the PAN-CNI will
connect its network interface to the pod firewall running on the same worker node (this is true
for DaemonSet mode, while for Service mode a VxLAN tunnel is adopted), and traffic entering or
leaving that pod will necessarily first have to pass through the pod firewall, be inspected, and
then only if authorised will it be forwarded to the correct destination. This is possible through
virtual wires: each firewall has 30 pairs of virtual interfaces, where each pair consists of one
interface connected to the pod, and the other to the K8s overlay network. The one connected to
the pod is labelled ’trust’, while the other is labelled ’untrust’, clearly decoupling what is the
implicit trust zone from the rest. The firewall connects these two interfaces internally, ensuring
that anything that enters one interface and is authorised by the PEP can only reach that which
is connected to the other interface linked to the first.

As also reported by NIST, true Zero Trust can only be implemented by ensuring that a
security perimeter is placed around every workload (or at least every sensitive load). Therefore,

72

Zero Trust Network Model Implementation

in a real-world scenario, all namespaces within the cluster should be annotated and their pods
protected by the firewall: however, in this case, the Service mode implementation is suggested,
since the DaemonSet one would not be scalable with a large number of pods per node (it can
only protect at most 30 pods per node in DaemonSet mode).

However, with regard to the pods already present in the namespaces annotated prior to the
deployment of the PAN-CNI and the firewall pods, traffic interception cannot take place, as their
network interfaces can only be appropriately configured for redirection at the time of deployment,
thus ensuring that no one can bypass the firewall. Therefore, it was necessary to restart the
various workloads of the ticketing application to actually place the PEP in front of each of them.

The second step was to create the so-called Dynamic Address Group (DAG). As already
mentioned in the previous chapters, the dynamism of the Kubernetes environment also implies a
continuous spin up and down of pods, and consequently a never-consistent and stable IP address
for each pod. DAGs help manage these ephemeral entities by exploiting the IP-address-to-tag
mapping function provided by the K8s plugin for pods, nodes, namespaces and services within the
cluster. In fact, the plugin continuously polls and monitors the API server, retrieving information
on the created K8s entities and automatically generating a set of labels (or tags) using a specific
hierarchical format and mapping these labels to a set of IP addresses corresponding to the entities
associated with these K8s resources. For example:

• For each existing Namespace, a label with the following format is created: k8s.cl_<cluster-
name>.ns_<namespace>. The plugin retrieves the information about the IP addresses
of the existing pods within that specific namespace, and map them to that label.

• For each existing DaemonSet, a label with the following format is created: k8s.cl_<cluster-
name>.ns_<namespace>.ds_<pod-name>. The plugin retrieves the information
about the IP addresses of the existing pods which are part of that specific DaemonSet
deployed within that specific namespace, and map them to that label.

• For each existing ReplicaSet, a label with the following format is created: k8s.cl_<cluster-
name>.n_<namespace>.rs_<pod-name>. The plugin retrieves the information
about the IP addresses of the existing pods, which are part of that specific ReplicaSet
deployed within that specific namespace, and maps them to that label.

• For each existing StatefulSet, a label with the following format is created: k8s.cl_<cluster-
name>.ns_<namespace>.ss_<pod-name>. The plugin retrieves the information
about the IP addresses of the existing pods which are part of that specific StatefulSet
deployed within that specific namespace, and map them to that label.

• For each existing Service, a label with the following format is created: k8s.cl_<cluster-
name>.ns_<namespace>.svc_<svc-name>. The plugin retrieves the information
about the IP addresses of the existing pods which are part of that specific Service (and
also the clusterIP address) deployed within that specific namespace, and map them to that
label.

• And many others...

A Dynamic Address Group thus consists of a group of IP addresses that can change dynamically:
you simply specify a name for the group and a set of matching criteria to be used for including some
specific IP addresses within this group at runtime, and then you can use these DAGs as sources
or destinations of your security policies, ensuring greater ease and flexibility in policy definition,
while also ensuring that your security policy is always up-to-date, taking into account the dynamic

73

Zero Trust Network Model Implementation

Figure 6.25: DAG for the Catalogue Service Figure 6.26: DAG for the Catalogue
Database Service

Figure 6.27: IP addresses for the Catalogue
Service DAG

Figure 6.28: IP addresses for the Catalogue
Database Service DAG

changes in the Kubernetes environment and entity IPs. These criteria are expressed via labels
created by the Panorama K8s plugin, and this implies that whenever the set of IP addresses
associated with that label changes (perhaps because the number of pods scales horizontally and
new ones associated with that label are created, or perhaps because a pod has been terminated
and restarted), these changes are automatically reflected on the Dynamic Address Group, and
Panorama ensures that these updates are immediately propagated to the management pods,
which will consequently alter the configuration of firewall policies, ensuring a consistent security
posture of resources at all times. This then allows sets of IP addresses automatically updated
by the plugin to be used as the source and destination of a security policy, avoiding the need to
personally monitor each change and manually manage the policy update each time.

The flexibility provided by these tags/labels allows us to achieve different levels of granularity
when defining authorization policies, from DAGs at the node or cluster-level, to DAGs at the
namespace and workload-level: for example, to isolate communication between pods within two

74

Zero Trust Network Model Implementation

different namespaces, using only namespace labels as source and destination DAGs. It is therefore
clear that it is possible to specify and implement fine-grained policies, providing different types of
checks and permissions performed by the firewall for each workload in the cluster.

Therefore, using Panorama, a different DAG was created for each workload within the cluster:
one for each microservice, one for each instance of Postgres, one for the Kafka service and another
for the Zookeeper service.

Figures 6.25 and 6.26 show the DAGs created for the Catalogue Service and its Postgres
instance, respectively. Note that the type is ’dynamic’ and that the matching criteria used to add
IP addresses to these groups are different. In fact, for each DAG, the labels to be considered
should be those relating to the various K8s resources associated with that workload, and thus
the associated DaemonSet, ReplicaSet and clusterIP services exposed for that workload. These
criteria were put into OR, since a workload at any given time can only be expressed as a source or
destination using a single IP, which can be the actual IP of the pod or its virtual cluster IP. This
ensures that traffic to that DAG service is allowed or denied whether the cluster IP or the pod IP
is used as the destination of the packets: otherwise, since the clusterIP destination addresses are
mapped to a corresponding pod IP by the host’s kernel Iptables (Destination NAT), the firewall
would not be able to match that destination address and could unexpectedly allow or deny traffic.

Figures 6.27 and 6.28, on the other hand, demonstrate how the K8s plugin actually retrieved
the IP addresses associated with those specific K8s resources, namely the IP of the pod and the
cluster IP of the Catalogue service and its postgres instance respectively, and placed them within
the DAG associated with that service.

Once the DAGs to be used as sources and destinations for the security policies had been
defined, the authorisation policies were created following the default deny approach, and thus
explicitly permitting only the services expected between each pair of workloads, ensuring the
least privilege principle.

First, therefore, a Deny All policy was created: as shown in Figure 6.29, this policy will
match and deny any type of traffic, since the source and destination of the policy has been set to
any zone, address, user and device, and the specific applications, services and URLs it impacts
have also been set to any. This ensures that any traffic is denied by default unless an explicit
authorisation policy has been defined for a specific tuple [source,destination,application,service].
The action was then set to deny (Figure 6.30), which implies that the corresponding packets will
be dropped and no response will be returned to the source, generating a client-side timeout failure;
however, other actions could have been specified, such as ’reset connection’. Finally, the rule
has also been set up so that the firewall generates logs at the beginning and end of each session
that corresponds to the denial policy: in this way, we will be able to inspect any anomalous
traffic generated (or received) within the Kubernetes cluster, being able to monitor any security
problems or attempts at lateral movement.

Since the packets are checked against firewall rules from top to bottom, and the first rule that
matches the packet overrides the other rules below, the Deny All rule must be put at the bottom
and all the other allow policies on top of it: in this way a deny policy will be applied only if no
explicit allow policy matched that specific traffic.

I then defined explicit authorisation policies for each pair of services that must communicate,
so that only that type of traffic is actually allowed. The following policies were then created:

• An ALLOW policy for the DNS service: since the various services running in the pods need
access to the DNS service within the Kubernetes cluster for name resolution and to operate
correctly, an explicit policy must be defined to allow such traffic that will otherwise be
blocked by the deny all. This is why I defined two DAGs, one for the DNS service to be

75

Zero Trust Network Model Implementation

Figure 6.29: Deny All Policy Definition

Figure 6.30: Deny All Policy Action and Logs Configuration

used as the destination, and another to allow all pods, services and nodes in the cluster to
be included through a single explicit label.

• An ALLOW policy for permitting web traffic between the Ingress Gateway and the four
microservices (Login, Catalogue, Traveler and Payment): the gateway must be the only
entity which can contact the web services exposed by the four workloads.

• An ALLOW policy for permitting the four microservices (Login, Catalogue, Traveler and
Payment) to contact their own specific Postgres instance

• An ALLOW policy for permitting only Catalogue, Traveler and Payment workloads to
contact the Kafka service message broker

• An ALLOW policy for permitting the Kafka message broker to contact the Zookeeper service

Figure 6.31 shows the allow policy created to allow the Catalogue Service pod to contact only its
own instance of Postgres, allowing only Postgres application traffic on the specified port 5432 that
is exposed by the service. Note that for each rule allow, the source and destination DAGs of the
pods that need to communicate (i.e. the pods and IPs of the service) have been set, and also on
which ports of the service they are allowed to communicate. In addition, the specific application
type was also specified for each authorisation policy: since the CN-series firewall is in fact a Next
Generation Firewall, it is able to inspect and allow/deny traffic not only at the OSI L3 and L4
levels, but also at the L7 level, achieving complete visibility of the content. Consequently, the
CN-series is equipped with a series of application signatures that allow it to match and recognise

76

Zero Trust Network Model Implementation

Figure 6.31: Allow ’Catalogue to DB’ Policy Definition

the type of traffic exchanged regardless of the port used. It is also possible to create a signature
for your own customised application, in case it differs from the known standard ones. Therefore,
by also specifying the type of application traffic, we are able to provide stronger authorisation
measures. The Figures 6.32, 6.33, 6.34, and 6.35 show the specific application types which the
CN-series is able to recognize and that I set for the various allow policies (i.e. the Postgres, Kafka,
Zookeper and Web traffic type).

77

Zero Trust Network Model Implementation

Figure 6.32: Policy For Web-Browsing Appli-
cation Traffic Figure 6.33: Policy For Postgres Application

Traffic

Figure 6.34: Policy For Kafka Application
Traffic

Figure 6.35: Policy For Zookeeper Applica-
tion Traffic

Figure 6.36: Overview of the Allow Policies created

The Figure 6.36 shows an overview of the created ALLOW policies described above.

78

Zero Trust Network Model Implementation

Figure 6.37: URL Category
Figure 6.38: URL Filtering Profile

Figure 6.39: URL Filtering Policy Definition

6.2.3 Deep Packet Inspection

In order to test the deep packet inspection features of the Next Generation Firewall, the URL
Filteringand the Advanced Threat Prevention capabilities were considered. Therefore two specific
security policies were defined.

For the URL filtering policy, it was first necessary to create a customised URL category with
some URLs associated with it, then, as shown in Figure 6.37, a trivial category including the
URLs www.ebay.it and www.gazzetta.it. was created. It was then necessary to create a URL
filtering profile and add the previously created category (Figure 6.38) to it. This is necessary to
specify the URLs that you wish to filter. Finally, a security policy has been created that allows
outbound traffic to any destination, but implements the URL filtering function with respect to
the previously defined URL filtering profile (Figure 6.39). This will allow the specified source to
contact any destination, but any outgoing connection to these URLs will be prevented by the
packet inspection performed by the firewall at L7. This is extremely useful for setting a category
of malicious website or repository URLs and preventing outgoing traffic regardless of source.
Figure 6.40 shows instead the final policy.

As far as the Advanced Threat Prevention functionality is concerned, I decided to test the
antivirus capability. This involved first of all defining an antivirus security profile (a default

79

Zero Trust Network Model Implementation

Figure 6.40: URL Filtering Policy

Figure 6.41: Antivirus Policy Profile

profile was already provided, as shown in Figure 6.41), and then defining a security policy and
setting within the configuration the profile to be adopted during packet inspection (Figure 6.42).
The CN-series is equipped with a database of virus signatures, and by leveraging these signatures,
which are always up-to-date, it is able to recognise traces of viruses in the traffic exchanged.

80

Zero Trust Network Model Implementation

Figure 6.42: Antivirus Policy Configuration

81

Chapter 7

Results And Proof Of Concept
Validation

7.1 Istio

7.1.1 mTLS, Peer Authentication And Authorization

To test whether communication between two workloads is actually updated to an mTLS commu-
nication, I used curl, a command-line tool that developers use to transfer data to and from a
server. It was specially installed inside each container image produced for our microservices to
test this type of functionality. Then I adopted wireshark, a network packet sniffer that is very
popular nowadays, so that I could listen in on the virtual network interface of the pod server,
and thus be able to intercept and see all the traffic received, inspecting its contents. Since the
containers in the same pod share the same network namespace and virtual network interface
(and thus IP address), the traffic received on the pod’s virtual interface from outside will actually
be the traffic destined for the sidecar proxy, which will then be passed internally to the main
container. This means that we expected the traffic received by the pod to be TLS.

Therefore, I moved to use the kubectl exec command to execute curl inside the Login service
pod, deployed in the iam namespace, and send a request to the Catalogue service, deployed instead
in the ticketapp namespace. Before sending the request, I logged in the application through the
login service and retrieved a valid JWT. After that, I decided to make the login service (whose
pod has an injected istio proxy) contact the POST /shop endpoint of the Catalogue Service,
providing a valid JSON as the body of my request. This way I could easily verify whether my
request will be encrypted after sending or not. The JWT was placed within the request as well,
since /shop is an authenticated endpoint. Figure 7.1 shows the request sent through curl by the
login service in the iam namespace, and the answer received: the request was accepted and a 200
- OK message was returned, and thus the communication was necessarily successful. Figure 7.2
instead, shows what I saw on the Catalogue Service pod network interface with wireshark: it
is clear from the picture that a TLS connection comes from the IP address of the login service
pod, and after exchanging the TLS handshake messages to authenticate each other and negotiate
cryptographic parameters, application data are exchanged over the established secure channel. In
fact, by inspecting the content of these data, it is possible to see that they are actually encrypted
(Figure 7.3).

82

Results And Proof Of Concept Validation

But neither the Login service nor the Catalogue service were configured with TLS settings, so
this necessarily meant that the client’s proxy automatically upgraded outgoing plaintext traffic
to mTLS, whereas since the connection received sniffed on the server’s pod was TLS but the
Catalogue application container within the pod does not accept TLS traffic, the server’s proxy
necessarily acted as a TLS tunnel terminator, decrypting the traffic and passing it on to the
workload on localhost interface.

Next, I went on to test whether, indeed, the PeerAuthentication policy set in STRICT mode
prevented proxies operating as servers from accepting plaintext traffic (not mTLS). To do this, I
created a temporary namespace called test-nomtls, and deployed the login service in it: in this
way, I got the same client service, but without any proxy histio injected, since I did not label the
namespace test-nomtls. I then repeated a similar test as before, but this time the outgoing traffic
from the login was plaintext (since no proxy was upgrading it to mTLS traffic). By listening on
the same virtual interface of the Catalogue service pod, and sending the same request as before, I
could actually see that the traffic received was plain TCP traffic, and above all I could actually
confirm that the connection, not being TLS (and thus neither authenticated nor protected), was
automatically dropped by the proxy server, and no reply was provided. (See Figures 7.4 and 7.5)

Please note, however, that these two tests were carried out shortly before setting and applying
any authorisation policy, otherwise traffic between the two workloads login service and catalogue
service would not have been possible, since they are not supposed to communicate directly with
each other.

Figure 7.1: Test Peer Authentication

Figure 7.2: TLS traffic exchanged

83

Results And Proof Of Concept Validation

Figure 7.3: TLS traffic content

Figure 7.4: Test without mTLS

Figure 7.5: Non-mTLS traffic content

After enforcing the AuthenticationPolicy in STRICT mode on our workloads, only mTLS
traffic (and therefore authenticated and protected) is accepted. However, before applying the
AuthorizationPolicy seen in section 6.1, there is no restriction on incoming mTLS authenticated
traffic: so at this very moment, with no authorisation policy applied, any pod within the network
is able to contact our services/pods, provided it uses a valid X.509 certificate and authenticates
itself correctly. Just before deploying the Istio authorization policies thus, some tests were
carried out in order to demonstrate it: as you can see from the test performed in Figure 7.6 for

84

Results And Proof Of Concept Validation

example, the Traveler service is able to contact the Catalogue service endpoints without any
problem, receiving a valid response (HTTP/1.1 200 OK) although this was not considered a
normal behaviour for the Traveler service. In fact, the Catalogue Service (as well as any other
microservice) should only be allowed to be contacted by the Ingress Gateway on the specific
exposed port 8080.

Then, to demonstrate that any other service is also able to contact any instance of the
Postgres database (which instead should only be allowed to the specific microservice, as it stores
its own private data), a service psql was deployed within a pod in the ticketapp namespace: psql
(PostgreSQL) is a terminal-based front-end for PostgreSQL, which allows one to connect to the
DBMS and type queries interactively, send them to PostgreSQL and see the results. The pod
mounted a different but valid service account, and since it was deployed within the ticketapp
namespace, an Envoy proxy with a valid certificate was automatically injected into it, and thus
was able to produce valid mTLS traffic. In Figure 7.7 it is shown how, by simply running psql and
specifying the hostname, port and username, we connected to the Postgres DBMS and started the
authentication process (since each instance of Postgres is protected by a password) and, once the
correct password was provided, we gained access to the contents of the Traveler Service database
and could easily exfiltrate any sensitive data. The communication was immediately accepted as it
was correctly authenticated with mTLS and protected, and no authorisation policy was applied.

Figure 7.6: Test 1 before authorization policy

Figure 7.7: Test 2 before authorization policy

Subsequently, after having applied the AuthorizationPolicy instead, we repeated the same
tests to see whether they actually worked as intended. Figure 7.8 shows how this time, instead
of getting the 200 OK response, a HTTP/1.1 403 Forbidden was returned: this is the HTTP
response automatically generated by the proxy whenever an authorisation policy is applied and
the connection or the request is denied. We then tried immediately afterwards to contact the
same service via the Ingress Gateway, to verify that, indeed the latter is the only one capable of
contacting the service and providing its functionality by acting as an intermediary. This time
a platform for API testing called Postman was used from my own personal computer, allowing
me to easily send a GET request to the same Catalogue service endpoint from outside: the test
performed, shown in Figure 7.9, demonstrated that indeed traffic is allowed in this case, because
if this had not been the case, contacting the Ingress gateway would not have resulted in any
valid response. Instead, a 200 OK response was returned, along with a list of tickets in JSON
format within its body. This not only proved that ALLOW authorization policies work well on
the Catalogue service, but also on the Postgres instance of the Catalogue, since without access to
its database, the microservice would not have been able to retrieve and send the list of tickets.
Finally, Figure 7.10 shows how now, the same psql service can no longer contact the traveler’s
database: the connection was closed by the server due to the Authorization policy, and now only
the Traveler service can actually access it now.

85

Results And Proof Of Concept Validation

Figure 7.8: Test 3

Figure 7.9: Test 4

Figure 7.10: Test 5

Finally, in order to prove that communications between the various microservices and Kafka,
as well as that between Kakfa and Zookeper are also authorised, I carried out a further test by
contacting the /shop endpoint of the Catalogue service from outside the cluster via the Ingress
Gateway (as this was the only way to contact the service due to the policies applied): Figure 7.11
shows the /shop request sent using a valid JWT and the positive response 200 OK. In order to
verify that indeed the communication between Catalogue and the services was correct, I then
went to contact the /transactions endpoint of the Payment Service: this endpoint returns the
list of transactions attempted by the Payment service and their outcome, and thus, given the
presence of a transaction stored in the service’s DB would necessarily imply that a purchase
request was received by the Catalogue and processed. Figure 7.12 shows how indeed a transaction
has been attempted, and thus that the service was contacted by Catalogue to handle the payment
operation, which was then denied and stored. This not only shows that Payment is also able to
access its postgres database to store and retrieve the requests data, but more importantly that the
communication via Kafka works and consequently so does the Kafka-Zookeeper communication,

86

Results And Proof Of Concept Validation

otherwise the communication between the two microservices would never have been possible
without Zookeeper as well.

Figure 7.11: Test 6

Figure 7.12: Test 7

In addition, another test was performed to prove that actually Envoy doesn’t intercept non-
TCP traffic, and thus it is not able to have visibility on it, and to enforce authentication and
authorization policies. Thus I deployed an app that exposes a test UDP endpoint in the ticketapp
namespace: so being an Istio namespace, that pod will be injected with a proxy envoy. In that
namespace it is still applied an Authentication policy mTLS STRICT and an Authorization policy
DENY ALL as done for the 3 namespaces in the previous tests: The UDP service is exposed via
nodeport on port 30015, and I then go to send via the netcat tool a UDP packet to that service
to see if the proxy intercepts it. Figure 7.13 shows the last UDP message sent to the service,
while Figure 7.14 shows the various UDP messages received by the service in the various tests
done, of which the last message is the last one sent in the test done in Figure 7.13. This proves
that non-TCP traffic is not in fact intercepted and therefore authorized. In addition also ICMP
protocol was tested with ping over pods IP, and also this kind of test failed, leaving the ICMP
packets leave the pod: Figure 7.15 shows the ping performed by the Catalogue service towards
the Traveler service pod IP freely flows without any problem.

87

Results And Proof Of Concept Validation

Figure 7.13: Test UDP - source view

Figure 7.14: Test UDP - destination view

Figure 7.15: Test ICMP

Figure 7.16: Customer JWT

88

Results And Proof Of Concept Validation

Figure 7.17: Admin JWT

7.1.2 End-User Authentication And Authorization

In order to check whether the End-User Authentication and Authorization policies work correctly,
I performed several tests in which I sent several requests to my microservices from outside the
cluster (due to the other policies applied in section 6.1.1), i.e. via the Ingress Gateway.

In particular, in order to also be able to verify the check carried out on the endpoints /admin/*
and the respective user role possessed in the JWT, I logged in using two different users, one
having an admin role, and the other not. Figure 7.16 shows the JWT of the user with the ADMIN
role, while Figure 7.17 shows the one without (having only the CUSTOMER role). Both JWT
are valid (neither expired nor with an invalid signature) and with a valid issuer embedded.

Figures 7.19 and 7.18 show the two tests performed on the Catalogue server. In particular, I
went to send an HTTP POST /shop request to the service, both with and without JWT. This
endpoint requires prior authentication of the user, in order to be able to subsequently manage
their purchase data, tickets, and personal information. This is why the JWT is strictly necessary.
Figure 7.18 shows how indeed without any JWT inserted in the authorisation header, the request
is denied, receiving a 403 - Forbidden reply and an RBAC: access denied message, a sign that the
proxy authentication has indeed been bypassed (otherwise a 401 Unauthorized message would
have been returned), but PEP has blocked it as, since the JWT and therefore the claim field sub
was absent, it was unable to retrieve the requestPrincipal.

Figure 7.19 instead shows how using a valid JWT (even without the ADMIN role), the request
succeeded, returning a 200 OK and the order number taken, 10. So given that the request was
authorized, this means that first of all the mTLS peer authentication was successful and therefore
the traffic was protected, subsequently the authentication of the JWT was also successful (and
therefore the proxy correctly downloaded the public key from the provided endpoint and verified
the signature, its integrity and temporal validity, and that its issuer was correct), and finally that
the principal client (i.e. the client identity extracted from the certificate), was indeed the Ingress
Gateway. Also note that in the case of the request without JWT, the DENY policy is evaluated
before the other ALLOWs for a specific workload, so before the ALLOW defined in section 6.1.1

89

Results And Proof Of Concept Validation

can match, the former will match and deny the traffic.

Figure 7.18: Test without JWT

Figure 7.19: Test with valid JWT

In figures 7.21 and 7.20 instead, I repeated the same test at the shop endpoint, but first using
a token modified from the original (thus compromised, 7.20), and then a second time using a
token with a valid, but expired signature (7.21). Note that both return a 401 - Unauthorised but
different messages: Jwt verification fails the first and Jwt is expired the second one, confirming
the reasons why the proxy denied the request.

Figure 7.20: Test with expired JWT

Figure 7.21: Test with tampered JWT

90

Results And Proof Of Concept Validation

Figure 7.22 shows how instead, the endpoint /tickets is freely accessible without any JWT, as
intended.

Figure 7.22: Test /ticktes endpoint

Finally, I tested the Role Based Access Control on the ADMIN role when accessing privileged
endpoints: Figure 7.23 shows how before applying this authorization, by contacting the Payment
service /admin/transactions endpoint and providing a valid JWT but with only the CUSTOMER
role I was able to reach the application layer of my service, but then the JWT controls implemented
at the software level by me still denied the request (returning the message Not Authorised User,
and instead after applying the policy on the /admin endpoints, the same request (Figure 7.24) is
still denied, but by the proxy itself at the "infrastructure" level, thus preventing it from reaching
the application layer of my container and returning the message RBAC: access denied.

Figure 7.23: Test Admin Endpoint 1

Figure 7.24: Test Admin Endpoint 2

Instead, repeating the test after applying the policy but with a JWT containing the ADMIN

91

Results And Proof Of Concept Validation

role (figure 7.25), my request is successful and I am able to get back a list of transactions from
the service.

Figure 7.25: Test Admin Endpoint 3

Although in the case of the microservice application I developed for testing, the various JWT
checks (signature, expiration, RBAC) were already implemented at the software level for each
microservice, having a security check at the infrastructure level instead of the software level
facilitates its implementation, management and makes life easier for programmers by separating
the security aspects from the development ones. The usage of JWT and claims within it to define
policies, allow you leveraging on some specific attributes of the user (or the identity of the user
itself) to authorize and microsegment the access to the resource. This, in combination with the
workload-to-workload authorization thanks to the X.509 certificate, allows you to achieve a good
level of zero trust in your network, especially for what concerning HTTP services.

Two further tests were carried out later to test the policy refinement offered by Istio. After
removing the authorization policies of section 6.1.1 used to segment the expected traffic in
the ticketing application, I assumed that the two endpoints of the same Traveler service GET
/my/profile and PUT /my/profile had different security requirements. In particular, the first
endpoint should be accessible from any workload with a valid identity (i.e. in the mesh), and
thus without any authorisation of any kind, but only protected and authenticated traffic via
mTLS; and instead the second, with the PUT method, should also have restricted access only to a
specific workload, in this case for instance the Payment service, and thus a specific authorisation
on a certain type of very precise requests (i.e. specific method and path). The Authorization
Policy provided was the one in picture 7.26. Instead, the pictures 7.27 and 7.28 show respectively
the Catalogue and the Payment service trying to contact the specific endpoint PUT /my/profile,
and how in the first case the request was denied because the identity of the source workload is the
Catalogue service account, while in the second case it was accepted without problems because it
is the Payment service account. Figure 7.29, on the other hand, demonstrates how the Catalogue
is free to contact the same workload path, but with different methods (e.g. GET).

92

Results And Proof Of Concept Validation

Figure 7.26: Specific Request Path And Method Authorization Policy

Figure 7.27: Test 1 - Specific Request Path And Method Authorization Policy

Figure 7.28: Test 2 - Specific Request Path And Method Authorization Policy

Figure 7.29: Test 3 - Specific Request Path And Method Authorization Policy

However, the fact that Istio allows authorization policies to be expressed and enforced using so
many details within the rule specification means that it is easy to express increasingly fine-grained
and workload-specific authorisation policies. Unfortunately, this level of detail in defining policies
in Istio is only possible for HTTP traffic, since Service Mesh is primarily designed to optimise
functionality and interactions between services of this type: Istio authorization supports any
plain TCP protocols as well, but certain fields like and conditions are only applicable to HTTP

93

Results And Proof Of Concept Validation

workloads. Hosts, methods and paths fields, as well as the requestPrincipal one, can be used only
with HTTP traffic. Thus the end-user authtentication and authorization can be performed only
with that kind of traffic.

In any case, this potential of Istio can be exploited to fine-tune the type of authorization of
each HTTP request, thus restricting access to certain endpoints of the various microservices to
only certain workloads (using the identity in X.509 certificates) or to certain users (using the
identity in either certificates or JWTs, or perhaps a combo of the two to provide greater security).

7.1.3 Ingress And Egress traffic

In order to test the Ingress Gateway functionalities, I leveraged openssl to first generate a custom
CA private key and a root certificate, and subsequently I created a pair private key-certificate for
each service inside the Mesh, that will be signed using the CA private key. In this way connections
towards each service inside the Mesh will require a different and specific Service certificate for
server authentication. Figures 7.30 and 7.31 show that in fact, when an X.509 certificate is not
used, the TLS connection to the Catalogue service from outside the cluster is refused (fig. 7.30),
ensuring that only after mutual authentication is possible: in fact, when using a valid certificate,
the same endpoint is reachable and returns the response (fig. 7.31).

Figure 7.30: Ingress Test 1

Figure 7.31: Ingress Test 2

Other tests concerning authorisation policies on authenticated and privileged endpoints were
carried out and were basically the same as those carried out in Chapter 7.1.2. The results showed
how indeed, the authentication of the peer, of the specific HTTP request, and the authorisation
of the individual user and of the claims contained in the JWT attached to the request, can
already be carried out by the ingress gateway, thus making it possible to anticipate any security
checks, and thus reject unauthorised and/or authorised requests already at the edge of the cluster.

94

Results And Proof Of Concept Validation

However, in order to implement a zero-trust approach, it is best to implement these authentication
and authorisation policies (both peer and end-user) at the gateway level, but above all at the
individual service level, because in order to guarantee an adequate security posture for the various
services in the cluster, it is also important to protect against any unauthorised accesses made
from within the corporate network and the cluster itself.

With regard to outgoing traffic, two tests were first performed (in the images 7.32 and 7.33),
before and after configuring Istio in REGISTRY ONLY mode. The tests consisted of making
the Traveler service contact "www.google.com" service. Note how indeed just before changing
the configuration, traffic to random external services like Google (7.32) was let through, and
afterwards, how the same traffic and request is blocked by the pod’s proxy automatically (7.33),
since the service ’www.google.com’ is not present in Istio’s service registry. Internal services
within the mesh, on the other hand, being managed by Istio, have a Service Entry in the registry
automatically, and thus let outgoing traffic flow to them from sources internal to the mesh itself
(which is why server-side permissions are used to restrict intra-cluster communications afterwards).
After deploying the VirtualService, ServiceEntry, Gateway and DestinationRule resources instead,
now a path towards the Google service has been configured, and the proxies now forward the
traffic for that DNS name to the egress gateway, and the egress gateway will forward it to the
proper external service. Figure 7.34 shows how indeed, now the Traveler service now is able again
to contact the Google service, but is still prevented from contacting all the others not explictly
configured external services (i.e., connections towards "www.facebook.com" service, in Figure
7.35, has been blocked altough the Google one was permitted).

Figure 7.32: Egress Test 1

Figure 7.33: Egress Test 2

Figure 7.34: Egress Test 3

95

Results And Proof Of Concept Validation

Figure 7.35: Egress Test 4

So we we created an exit gateway for google.com, port 443: but it is possible to route multiple
hosts through the egress gateway, by including a list of hosts, or using the "*" value for the hosts
field in the gateway, to match them all.

However, while Ingress Gateway is useful for performing authentication at the edge of the
cluster and preventing external unauthorized access to it, the Egress gateway is a symmetrical
concept with respect to the former, and it defines exit points from the mesh. Also in this case it
is useful to inspect the outgoing traffic leaving the Mesh, but also to force traffic leaving only to
pass trough a specific node and be properly redirected.

Considering for example an organization that has strict security requirements, and thus that all
traffic leaving the service mesh must flow through a set of dedicated nodes for policy enforcement
and monitoring on the egress traffic (e.g a WAF), and these nodes run on dedicated machines,
separated from the rest of the nodes running applications in the cluster: in such cases the egress
gateway can be used in pair with Network Policies to ensure that the outgoing traffic of each
wokload within the mesh can only pass through these security nodes, otherwise it will be blocked.
Unfortunately, however, this is possible only for HTTP and HTTPS traffic, and thus this is a
great limitation.

7.1.4 Network Traffic And Requests Visibility

However, Istio generates detailed telemetry for all service communications within a mesh, in
order to provide overall service mesh workloads observability. To monitor services behavior, each
proxy generates a rich set of metrics and distributed traces about all traffic passing through
the proxy (both inbound and outbound). These metrics provide information on behaviors such
as the overall volume of traffic, the error rates within the traffic, and the response times for
the intercepted requests. Each proxy is also able to automatically generate access logs for each
HTTP request, providing a way to monitor and understand behavior from the perspective of an
individual workload instance.

Thus the presence of a proxy injected within each pod, is not only useful to enforce authenti-
cation and authorization policies, but also to gain information about the behaviour of each single
workload, and their interaction with both internal and external services. This permits then to
Envoy to easily send those data and logs to the Prometheus instance, the Istio addon that we
installed together with Kiali and Grafana. Prometheus is a centralized monitoring system, which
automatically collects and stores these data, while Kiali and Grafana will retrieve these stored
data and represent them trough some specific Dahsboards: the former with a default Dashboard
built on-purpose to show the most interesting data in Istio, the latter instead allows you to create
custom dashboards as you prefer. This permits you to understand how traffic and requests flow
among services, and to detect eventual anomalous behaviours by also setting on-purpose alerting
systems integrated with these tools.

96

Results And Proof Of Concept Validation

Figure 7.36 shows how Kiali Dashboard offers a powerful visualization of the mesh traffic,
providing a Graph View of the requests and connection in a specified time interval. The various
circle-shaped nodes are the workloads within the Mesh grouped by their own namespace, and the
triangle-shaped nodes are the ClusterIP service to which the former belong, indicating whether
they have been contacted through their ClusterIP address (and consequent resolution), or directly
using the pod IP addresses (in case the triangle-shaped one is missing). Multiple Graph Types
are provided, which allows you to visualize traffic as a high-level service topology, a low-level
workload topology, or as an application-level topology. In the case of picture 7.36, this is a
low-level workload one, showing specific workloads interactions. In particular, it is clear how
communications are all mTLS protected from the "lock" symbol on each edge: edge colored in
blue represents non-HTTP traffic (i.e., plain TCP traffic) that has been upgraded to a TLS one,
while instead the edge representing HTTP requests (i.e., HTTP workload) appear with different
colors depending on the response code returned to the various requests.

Figure 7.36: Kiali Dashboard Visbility 1

Figure 7.37 shows how Kiali also represents the identities of the client and server workloads in
each mTLS interaction/edge, symptom that the certificates are actually exchanged and identities
are extracted correctly from them, and moreover all these data about each specific connection and
request are collected by the proxies and then stored by Prometheus. On the other hand, figure
7.38 shows how unauthorized connections appear on Kiali: this was the case of a test performed
in Chapter 7.1.1 after having applied the workload-to-workload Authorization Policies and trying
to make the Traveler service contact the Catalogue one, even if they would not require to interact.
Since the identity extracted from the client certificate was not the one of the Ingress Gateway,
the request was rejected by the proxy. Instead, connection coming from the Ingress was accepted
for obvious reasons.

97

Results And Proof Of Concept Validation

Figure 7.37: Kiali Dashboard Visbility 2

Figure 7.38: Kiali Dashboard Visbility 3

However, all these graphical representations are extracted from the Access Logs and Metrics
collected by the proxy of each workload. By clicking on each node/workload, a Details View is
shown with several information, including inbound and outbound metrics, and specific Envoy
instance logs: Figure 7.39 shows the logs referring to the Catalogue service deployment incoming
and outgoing connections. For each request log several details are represented, such as whether
it is an outgoing or incoming connection, the source and destination IP address and port, as
well a timestamp and the duration of the connection. Figures 7.40 and 7.41 show a user-friendly
representation of the information contained in each log.

98

Results And Proof Of Concept Validation

Figure 7.39: Proxy logs of the Catalogue service workload

Figure 7.40: First part of the Envoy log Figure 7.41: Second part of the Envoy log

Figure 7.42: Envoy incoming traffic view

Figure 7.42 also shows a generic view of the incoming traffic for the Catalogue service, which
can be further inspected in more details by opening the specific source of interest.

Figure 7.43 shows how also unauthorized and unauthenticated requests are logged by the

99

Results And Proof Of Concept Validation

proxy: in this case it is the traffic received by the ingress gateway, demonstrating that also the
latter is able to provide visibility over the incoming traffic.

Figure 7.43: Logs of unauthorized and unauthenticated requests

It is clear from the pictures above, how Envoy provides detailed logs about HTTP and gRPC
requests (as method, path and protocol type and version), while for plain TCP traffic, it only
provides generic information like IP addresses, ports, amount of sent/received bytes, K8s services
names, etc. Finally, the collected metrics and logs about network traffic and each Envoy status,
can be displayed using your own customizable Grafana Dashboard. Figure 7.44 shows one of
the possible View obtained by aggregating and elaborating the various Envoy metrics about
the workloads within the Mesh. Moreover, also the logs of the request for retrieving the JWKS
needed to validate the JWT is present.

Figure 7.44: Grafana workload-level incoming traffic view

As mentioned in the previous chapters, unfortunately, the Envoy proxy is only able to intercept
TCP traffic, thus rendering the authentication, authorisation and visibility that one has over the
rest of the traffic, such as UDP or ICMP, practically null and void.

However, it is clear that the traffic observability offered by Istio for TCP and HTTP traffic,
perhaps combined with external traffic profiling and analysis tools, enables security-related traffic
auditing and monitoring for detection and investigation of network behavior anomalies.

100

Results And Proof Of Concept Validation

7.2 Palo Alto CN-Series Containerized Firewall

7.2.1 Network Microsegmentation And Traffic Visbility

For testing purpose, as for Istio tests, also a pod running a PostgreSQL service (psql) was deployed
within the ticketapp namespace; the various tests were carried out by simply running curl, psql
and ping tools, and thus generating HTTP, ICMP, Postgres, Kafka, and Zookeper traffic. All the
pods within the ticketapp, iam and kafka namespaces were restarted to make the CNI attach
their network interface to the firewall pod.

However, prior to the creation of any policy, all types of traffic were permitted. Indeed, Figures
7.45 and 7.46 show how the Traveler service was free to contact the Catalogue endpoint GET
/tickets and how the psql pod was able to contact the Postgres instance of Traveler, perform
the authentication process and then freely access the contents of the Traveler database. These
two operations should not occur in a normal situation, but the four microservices should only be
contacted by the ingress gateway, while each Postgres instance should only be accessible by the
corresponding microservice in charge of handling its sensitive data. We then went on to apply
the various deny and allow policies defined in section 6.2.2.

Figure 7.45: Test 1 - Web traffic

Figure 7.46: Test 2 - Postgres traffic

Immediately after the application of the ’Deny All’ policy (but still without the ’Allow service

101

Results And Proof Of Concept Validation

X’ policies), no microservice was able to contact DNS and resolve the names of other services,
as DNS traffic was also dropped (see Figure 7.47). Figure 7.48 shows the logs of the stopped
traffic that corresponded to the Deny All policy, and it is clear that we also have full visibility
into the DNS communication intercepted by the firewall, as well as the source and destination
IP addresses (10.96.0.10 is the IP address of K8s DNS service). Note that since no DAG was
specified in the source and destination of the policies, no DAG is shown in the logs, only the IPs.

Figure 7.47: Test DNS

Figure 7.48: Logs DNS traffic dropped

After ensuring that DNS traffic was allowed within the cluster, another test was performed to
confirm that none of the microservices within the cluster could also be contacted by an external
entity, and thus that the firewall at that time also applied the deny all policy on incoming traffic,
i.e. that coming from the ingress gateway. The gateway was still configured to act as a reverse
proxy and route incoming HTTTP requests to the specific microservice (i.e. its specific clusterIP)
using the prefix contained in the request URL. The requests sent from my laptop to the incoming
gateway address in Figures 7.49 and 7.50, show how the traffic actually reached the gateway
(since the response was provided by an ’istio envoy’ server), was then forwarded to the service
pod (since its configuration worked fine before applying the policies), but before reaching the
specific endpoint, the firewall in front of the service pod dropped the packets and communication
failed after no response was provided within a specified time period. Note that the firewall was
not connected to the inbound gateway traffic, but only to the ticketing application’s pods.

Figure 7.49: Test ingress traffic with Postman

102

Results And Proof Of Concept Validation

Figure 7.50: Test ingress traffic with curl

The various ALLOW policies defined for the various services, including DNS, were then
applied. Repeating the same tests as before, the pod of the Traveler service was still unable
to contact the Catalogue service, either using its DNS name (and thus the IP address of the
Catalogue cluster) or the actual IP address of the pod (see Figures 7.51 and 7.52). However,
this time the test showed firstly that DNS communication was now allowed, as DNS resolution
was successful and curl did not show any related errors, as had happened previously in Figure
7.47, and consequently that the "Allow DNS" policy worked correctly. Secondly, the deny policy
worked correctly for both traffic using the address of the clusterIP service and the IP of the pod
as the destination of the packets. As can be seen, the connection failed due to a timeout: this
occurred because the action taken by the deny all policy (based on my configuration) was simply
to drop packets rather than reset the connection. Figure 7.53 shows the log of the allowed DNS
traffic requested by the Traveler service for DNS resolution and the subsequent HTTP traffic to
the clusterIP service resolved and denied by the firewall.

Figure 7.51: Test 3 - Web traffic to the clusterIP address after policies enforcing

Figure 7.52: Test 4 - Web traffic to the pod IP address after policies enforcing

Figure 7.53: Logs about DNS and HTTP traffic leaving the Traveler service pod

The psql pod could also contact DNS, but was now unable to contact the Postgres service,
either using its DNS name or the actual IP address of the pod (see Figures 7.54 and 7.55). Figure
7.56 shows the logs corresponding to the test in Figure 7.54.

Figure 7.54: Test 5 - Postgres traffic to the cluster IP address after policies enforcing

103

Results And Proof Of Concept Validation

Figure 7.55: Test 6 - Postgres traffic to the pod IP address after policies enforcing

Figure 7.56: Logs about DNS and Postgres traffic leaving the Psql service pod

The same was true for some ping tests performed towards various microservices: the ICMP
traffic was dropped by the firewall (Figure 7.57 shows the attempt, while Figure 7.58 shows the
corresponding logs).

Figure 7.57: Test ICMP traffic after policies enforcing

Figure 7.58: Logs of ICMP traffic dropped by the firewall

After making sure that the Deny All policy was blocking all unwanted traffic, I had to check
whether the ’Allow Service X to Service Y’ policy was working properly, and thus that all service
pairs (and only them, since all other traffic was blocked as seen above) that needed to communicate
were able to do so.

I then ran a few requests from my laptop (i.e. from outside the cluster) to check that everything
was working properly. So, I first logged in by contacting the Login microservice through the Istio
ingress gateway (Figure 7.59) and then, using the returned JWT, I sent a request to the POST
/shop endpoint of the Catalogue service (Figure 7.60: a valid response was returned, with both
microservices, so the policy allowing HTTP traffic between the ingress gateway and the various
microservices worked correctly. Subsequently, by also contacting the GET /my/tickets/ endpoint
of the Traveler service (Figure 7.61) and the GET /transactions/ endpoint of the Payment service
(Figure 7.62), it became clear that the last record written by the two microservices within their
Postgres instance referred to the same ticket purchase request that had been sent to Catalogue
shortly before, and therefore that the three microservices were communicating correctly. This
implicitly demonstrates that communication between the three microservices and Kafka was
allowed to take place correctly (since communication between them was designed to take place only

104

Results And Proof Of Concept Validation

through the message broker), as was communication between Kafka and Zookeeper (otherwise
communication would have failed). Finally, of course, it was also shown that each microservice
was able to contact its own instance of Postgres to store and retrieve data.

Figure 7.59: Test HTTP request to Login service

Figure 7.60: Test HTTP request to Catalogue service

Figure 7.61: Test HTTP request to Payment service

Figure 7.62: Test HTTP request to Traveler service

However, explicit proof was provided by the logs inspected by Panorama. Figure 7.63 shows
that the various authorisation policies matched and worked correctly for the services within the
cluster, and also demonstrated and highlighted that with the CN series we have full visibility
of any traffic received by the firewall protected pods, as the CN series is able to provide full
L7 visibility. Figure 7.64 shows some of the detailed information that can be obtained for each
specific traffic log.

105

Results And Proof Of Concept Validation

Figure 7.63: Logs about all the services traffic intercepted by the firewall

Figure 7.64: Detailed view of a log

It should be noted that for each ’allow policy’, not only the source and destination DAGs and
the service port were specified, but also the specific type of application running on each port.
In Figure 7.65, a test was performed, letting the Catalogue service contact the pod running its
Postgres instance on the same Postgres port, but using an HTTP request. Although this situation
did not make sense, the test (and the logs in Figure 7.66) showed that the firewall does indeed
have full L7 visibility and is able to inspect and recognise the application content of the packets,
detecting that even though the traffic between the two pods was on a correct service port, it was
actually HTTP traffic rather than Postgres traffic, and was therefore denied. This demonstrated
that the CN series can be used to achieve fine-grained micro-segmentation, based not only on the

106

Results And Proof Of Concept Validation

IPs of the source and destination pods, but also on the specific application traffic (and service
types) exchanged between the two entities.

Figure 7.65: Test HTTP traffic towards the Postgres service

Figure 7.66: Logs about the HTTP traffic denied towards the Postgres service

However, these logs generated by the firewall and collected by Panorama can optionally be
integrated with a monitoring and alerting configuration, to report any abnormal behaviour or
security incidents detected by the firewall by leveraging the defined security policies. Finally, it
is clear that complete visibility into all network activity is provided and that almost complete
micro-segmentation has been achieved through CN-series: in fact, unlike Istio, CN-series alone
does not automatically provide any strong identity for our Kubernetes services to authenticate
each other. However, if a valid TLS certificate is somehow provided to the various pods, a TLS
client authentication mechanism can be configured on each firewall (also generating a custom
server-side certificate to be deployed within each firewall acting as a TLS server). Through a client
authorisation list, the firewall can check the Subject or Subject Alt Name of the client certificate,
and if it does not match an identifier in the authorisation list, authentication is denied. This,
combined with the specific L7 authorisation policies defined for our tests, and mTLS adoption,
will achieve zero trust within our network. Unfortunately, at the same time, this would require
us to have our own Certificate Authority embedded in a valid PKI, to manually configure and
manage the issuance of valid X.509 certificates for each workload within the cluster, and to
properly set up the pods to establish mTLS communication each time they wish to contact the
server, ensuring that only outgoing mTLS connections are used during communication.

7.2.2 URL filtering And Advanced Threat Prevention

With regard to advanced threat prevention functionality, the antivirus profile set for our security
policy was tested using a simple EICAR file. The EICAR antivirus test file is a computer
file developed by the European Institute for Computer Antivirus Research (EICAR) and the
Computer Antivirus Research Organisation (CARO) to test the response of computer antivirus
programmes. Instead of using real malware, which could cause real damage, this test file allows
antivirus software to be tested without having to use a real computer virus.

To simulate a lateral movement scenario, an HTTP server was then deployed within our
Kubernetes cluster as a pod (Figure 7.67), which hosts the EICAR file downloaded from the official
site [EICAR] , and an allow policy which permitted HTTP traffic between the client pod and
the server hosting the file was set, also enforcing the antivirus profile configured in section 6.2.3.
Subsequently, an attempt was made to download the hosted file by sending an appropriate HTTP
request to the server: the connection matched the authorisation policy, but the virus present in

107

https://www.eicar.org/download-anti-malware-testfile/

Results And Proof Of Concept Validation

the traffic was detected and the firewall immediately interrupted the connection, providing as
a response the warning HTML page displayed in Figure 7.68. Naturally, logs were generated
and archived in Panorama, highlighting the threat and thus the reason why the connection was
interrupted (Figure 7.69.

Figure 7.67: YAML file of the HTTP server hosting the EICAR file

Figure 7.68: Warning HTML page returned by the firewall - 1

Figure 7.69: Logs about the detected and blocked threat

Finally, in order to test the URL filtering profile defined in our security policy, I simply had
a pod connected to the firewall contact the URLs www.gazzetta.it and www.ebay.it set in the
customised URL profile via curl: the result was that the connection to these external sites was
blocked and the firewall responded with a warning HTML page (the 7.70 shows the response for
www.gazzetta.it). In addition, I tried to contact some URLs stored in the malicious website’s
CN series database (in this case a couple of Palo Alto test URLs) and the connection was again
blocked and the response returned was the same (Figure 7.71). In addition, the corresponding
logs were generated, showing what happened (Figure 7.72).

108

Results And Proof Of Concept Validation

Figure 7.70: Warning HTML page returned by the firewall - 2

Figure 7.71: Warning HTML page returned by the firewall - 3

Figure 7.72: Logs about the denied URLs tests

This demonstrated that the CN series capabilities allow for (at least partially) a zero-trust
network with very strong network security PEPs that not only provide fine-grained authorisation
policies, but also advanced capabilities that allow for the detection and blocking of certain network
threats even if the connection was actually authorised at first. The lack of an integrated identity
system for workloads within the cluster and traffic encryption, however, is the only negative point
of this solution.

109

Chapter 8

Conclusions And Future Works

The starting objectives of the thesis were to attempt an implementation of Zero Trust Network
models within Kubernetes clusters, and analyse and adopt the security functionalities provided
by modern tools available on the market such as Service Mesh and Containerized Firewalls. After
implementing and testing Istio and the Palo Alto CN-Series functionalities, some considerations
were made, based on the results obtained.

Taking advantage of the sidecar pattern and Envoy proxies, Istio allows TCP communications
to be protected by default via mTLS, regardless of when and where pods are executed, and without
requiring any explicit configuration of the application: in this way, any plain TCP connection
is automatically switched to a TLS channel, guaranteeing the confidentiality, authentication
and integrity of every message exchanged, and thus achieving protection against eavesdropping,
tampering and various types of man-in-the-middle attacks. Furthermore, thanks to the integrated
CA and automated key and certificate management, Istio provides each pod with a reliable and
verifiable digital identity, enabling the PEP to implement and execute a strong authentication
mechanism. Unfortunately, these identities are based on the Service Account mounted by each
pod, so care must be taken with any (possibly malicious) misconfigurations during the deployment
phase, ensuring that a different Kubernetes Service Account is created and mounted for each
service.

Thus, to ensure that only authorised entities can access a given resource within a pod, it
is possible to successfully utilise the identity-based authorisation policies of Istio, extracting
them from mTLS certificates and subsequently using these identities to match the defined
authorisation policies. In addition, finer-grained policies can be implemented for incoming HTTP
traffic, granting access to a specific HTTP endpoint only to certain workloads or end-users. In
addition, network visibility is achieved for services within the network with some connection
details, providing the ability to monitor operations within the cluster. However, some possible
limitations of the Istio solution should be highlighted. First of all, the Envoy is only able to
intercept TCP traffic, allowing non-TCP traffic to freely enter and leave the pods. This means
that it is not possible to gain visibility and control over this type of traffic. The level of visibility
provided by Istio on non-HTTP traffic is also limited, as any other TCP traffic is simply treated
as plain TCP, and therefore no details are provided on the specific type of L7 traffic exchanged,
and visibility is limited to L4 of the OSI layer. In addition, the proxy does not have full L7
visibility over HTTP traffic, but only over its headers (i.e. methods, paths, authorisation tokens):
however, using the WebAssembly (Wasm) it is possible to extend the proxy’s functionality and
implement WAF capabilities, seeking full content visibility (but this is left to possible future

110

Conclusions And Future Works

work). In addition, server-first protocols are not supported by authorisation policies, since the
latter operate server-side on the incoming traffic, while the former require that the first bytes
after acceptance of the TCP connection are actually sent by the server (i.e. outgoing traffic).
Finally, the most relevant consideration to take into account is that, since the application and
sidecar containers run in the same network/process namespace, due to misconfiguration or poor
implementation, the application may have the ability to remove the redirection rules and remove,
alter, terminate or replace the sidecar proxy: this would allow a pod to intentionally bypass its
sidecar for outgoing traffic or intentionally allow incoming traffic to bypass its sidecar.

On the other hand, the CN series does not encrypt traffic or provide a strong identity to
workloads. By default, the containerised firewall simply relies on the IP addresses assigned to each
K8s pod or service to enforce policies. However, these containerised firewalls can be configured to
act as a TLS gateway for inbound or outbound traffic, using an appropriate certificate, and then
to decrypt the traffic and express authorisation policies by also exploiting client/server identity.
In addition to this, the CN series enables strong workload-to-workload micro-segmentation, based
not only on source-destination IP pairs, but also on specific applications and service types. The
level of observability achieved within any network traffic through these solutions is very high:
full L7 inspection and visibility are achieved on any type of traffic, including non-TCP traffic.
Moreover, the NGFW capabilities provided by the firewall allow north-south and east-west traffic
to be protected, performing deep packet inspection and providing advanced protection against
various threats, mitigating also their lateral spread. In addition, enhanced security is provided
for each connected pod: since it is deployed as a completely separate node within the cluster and
traffic redirection is implemented when the pod’s network interface is created, there is no way
around this PEP unless a product-specific vulnerability is discovered and exploited. However,
both solutions provide a consistent and portable security posture and apply their security policies
to any asset and workflow even when these are moved between corporate and non-company
infrastructures, as the CN series can also be easily deployed on cloud-provider infrastructures,
even overcoming the limitations of perimeter security solutions on such infrastructures. Both
provide authorisation mechanisms to grant access with minimal privilege to every resource within
the K8s cluster, realising micro-segmentation in different ways, and somehow limiting the lateral
spread of threats.

Overall, in the end, I can say that both solutions alone do not entail a strong implementation
of the zero-trust architecture, but they are a good starting point: each has some security features
that are useful to achieve part of the complete zero-trust principles, and thus complement those
of the other. This, however, was only the first step towards zero trust in these environments:
future work will be done trying to integrate these two solutions together, exploiting the principle
of defence in depth, and thus hopefully achieving a strong zero trust network in Kubernetes
environments. Other future works will specifically address endpoint security within a Kubernetes
cluster: the use of tools such as EDR (Endpoint Detection and Response) and XDR (eXtended
Endpoint Detection and Response) are extremely useful nowadays within a network, as they
offer real-time security monitoring and threat response capabilities, being able to detect patterns
of behaviour that could indicate signs of malicious activity on a particular endpoint. As the
integration of these security solutions within the network is important for threat detection, their
deployment within Kubernetes modern environments (i.e., containers, pods and worker nodes)
also becomes crucial to achieving complete Zero Trust and visibility.

111

Bibliography

[1] Google. Google is a Leader in the 2023 Gartner® Magic Quadrant™ for Container Manage-
ment. 2023. url: https://cloud.google.com/blog/products/containers-kubernetes/
a-leader-in-2023-gartner-magic-quadrant-for-container-management.

[2] CNCF. CNCF 2022 Annual Survey. 2022. url: https://www.cncf.io/reports/cncf-
annual-survey-2022/.

[3] IBM. What are microservices? -. url: https://www.ibm.com/topics/microservices.
[4] Altassian. Microservices vs. monolithic architecture. -. url: https://www.atlassian.com/

microservices/microservices-architecture/microservices-vs-monolith.
[5] Gartner. Microservices Architecture: Have Engineering Organizations Found Success? 2023.

url: https://www.gartner.com/peer-community/oneminuteinsights/microservices
-architecture-have-engineering-organizations-found-success-u6b.

[6] Cloud Native Computing Foundation. Concepts Overview. 2023. url: https://kubernetes.
io/docs/concepts/overview/.

[7] VMware. Why use containers vs. VMs? 2023. url: https://www.vmware.com/topics/
glossary/content/vms-vs-containers.html.

[8] Dinesh Kumar Ramasamy. Life of a Packet in Kubernetes. 2020. url: https://dramasamy.
medium.com/life-of-a-packet-in-kubernetes-part-1-f9bc0909e051.

[9] Google. What is Kubernetes? 2023. url: https://cloud.google.com/learn/what-is-
kubernetes.

[10] CNCF. Kubernetes Components. 2023. url: https://kubernetes.io/docs/concepts/
overview/components/.

[11] IBM. What is Kubernetes? 2023. url: https://www.ibm.com/topics/kubernetes.
[12] CNCF. Pods. 2023. url: https://kubernetes.io/docs/concepts/workloads/pods/.
[13] CNCF. Sidecar Containers. 2023. url: https://kubernetes.io/docs/concepts/worklo

ads/pods/sidecar-containers/.
[14] CNCF. Deployments. 2023. url: https://kubernetes.io/docs/concepts/workloads/

controllers/deployment/.
[15] CNCF. ReplicaSet. 2023. url: https://kubernetes.io/docs/concepts/workloads/

controllers/replicaset/.
[16] CNCF. Namespaces. 2023. url: https://kubernetes.io/docs/concepts/overview/

working-with-objects/namespaces/.
[17] CNCF. Service Accounts. 2023. url: https://kubernetes.io/docs/concepts/security/

service-accounts/.

112

https://cloud.google.com/blog/products/containers-kubernetes/a-leader-in-2023-gartner-magic-quadrant-for-container-management
https://cloud.google.com/blog/products/containers-kubernetes/a-leader-in-2023-gartner-magic-quadrant-for-container-management
https://www.cncf.io/reports/cncf-annual-survey-2022/
https://www.cncf.io/reports/cncf-annual-survey-2022/
https://www.ibm.com/topics/microservices
https://www.atlassian.com/microservices/microservices-architecture/microservices-vs-monolith
https://www.atlassian.com/microservices/microservices-architecture/microservices-vs-monolith
https://www.gartner.com/peer-community/oneminuteinsights/microservices-architecture-have-engineering-organizations-found-success-u6b
https://www.gartner.com/peer-community/oneminuteinsights/microservices-architecture-have-engineering-organizations-found-success-u6b
https://kubernetes.io/docs/concepts/overview/
https://kubernetes.io/docs/concepts/overview/
https://www.vmware.com/topics/glossary/content/vms-vs-containers.html
https://www.vmware.com/topics/glossary/content/vms-vs-containers.html
https://dramasamy.medium.com/life-of-a-packet-in-kubernetes-part-1-f9bc0909e051
https://dramasamy.medium.com/life-of-a-packet-in-kubernetes-part-1-f9bc0909e051
https://cloud.google.com/learn/what-is-kubernetes
https://cloud.google.com/learn/what-is-kubernetes
https://kubernetes.io/docs/concepts/overview/components/
https://kubernetes.io/docs/concepts/overview/components/
https://www.ibm.com/topics/kubernetes
https://kubernetes.io/docs/concepts/workloads/pods/
https://kubernetes.io/docs/concepts/workloads/pods/sidecar-containers/
https://kubernetes.io/docs/concepts/workloads/pods/sidecar-containers/
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/workloads/controllers/replicaset/
https://kubernetes.io/docs/concepts/workloads/controllers/replicaset/
https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/
https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/
https://kubernetes.io/docs/concepts/security/service-accounts/
https://kubernetes.io/docs/concepts/security/service-accounts/

BIBLIOGRAPHY

[18] Tigera. Kubernetes Networking: The Complete Guide. 2024. url: https://www.tigera.
io/learn/guides/kubernetes-networking/.

[19] Cloud Native Computing Foundation. Services, Load Balancing, and Networking. 2023.
url: https://kubernetes.io/docs/concepts/services-networking/.

[20] Tigera. Kubernetes CNI Explained. 2024. url: https://www.tigera.io/learn/guides/
kubernetes-networking/kubernetes-cni/.

[21] Cloud Native Computing Foundation. Service. 2023. url: https://kubernetes.io/docs/
concepts/services-networking/service/.

[22] Cloud Native Computing Foundation. Ingress. 2023. url: https://kubernetes.io/docs/
concepts/services-networking/ingress/.

[23] Cloud Native Computing Foundation. Ingress Controllers. 2023. url: https://kubernetes.
io/docs/concepts/services-networking/ingress-controllers/.

[24] IBM. Calico. 2022. url: https://www.ibm.com/docs/pl/cloud-private/3.1.2?topic=
ins-calico.

[25] Sumudu Liyanage. Kubernetes Networking With Calico. 2022. url: https://medium.com/
@sumuduliyan/kubernetes-networking-with-calico-623f4583ae8d.

[26] National Institute of Standards and Technology. Zero Trust Architecture. 2020. url: https:
//nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-207.pdf.

[27] Red Hat. What’s a service mesh? 2018. url: https://www.redhat.com/en/topics/
microservices/what-is-a-service-mesh.

[28] Dynatrace Corey Hamilton. What is a service mesh? Service mesh benefits and how to
overcome their challenges. 2024. url: https://www.dynatrace.com/news/blog/what-is-
a-service-mesh/.

[29] The Istio Authors. Architecture. 2024. url: https://istio.io/latest/docs/ops/
deployment/architecture/.

[30] Jimmy Song. Sidecar injection, transparent traffic hijacking, and routing process in Istio
explained in detail. 2022. url: https://jimmysongio.medium.com/sidecar-injection-
transparent-traffic-hijacking-and-routing-process-in-istio-explained-in-
detail-d53e244e0348.

[31] The Istio Authors. Security. 2024. url: https://istio.io/latest/docs/concepts/
security/.

[32] Palo Alto Networks. CN-Series Firewall for Kubernetes. 2024. url: https://docs.paloalt
onetworks.com/cn-series/getting-started/cn-series-firewall-for-kubernetes.

[33] Palo Alto Networks. Secure Kubernetes Workloads with CN-Series Firewall. 2024. url:
https://docs.paloaltonetworks.com/cn- series/getting- started/cn- series-
firewall-for-kubernetes/secure-kubernetes-workloads-with-cn-series.

[34] Palo Alto Networks. CN-Series Core Building Blocks. 2024. url: https://docs.paloalt
onetworks.com/cn-series/getting-started/cn-series-firewall-for-kubernetes/
cn-series-core-building-blocks#id823f264f-a373-41c4-a1d0-54a3cd00953a.

[35] Palo Alto Networks. Virtual Wire Interfaces. 2024. url: https://docs.paloaltonetworks.
com/pan-os/10-1/pan-os-networking-admin/configure-interfaces/virtual-wire-
interfaces.

[36] Cloud Native Computing Foundation. Install Tools. 2023. url: https://kubernetes.io/
docs/tasks/tools/.

113

https://www.tigera.io/learn/guides/kubernetes-networking/
https://www.tigera.io/learn/guides/kubernetes-networking/
https://kubernetes.io/docs/concepts/services-networking/
https://www.tigera.io/learn/guides/kubernetes-networking/kubernetes-cni/
https://www.tigera.io/learn/guides/kubernetes-networking/kubernetes-cni/
https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/services-networking/ingress/
https://kubernetes.io/docs/concepts/services-networking/ingress/
https://kubernetes.io/docs/concepts/services-networking/ingress-controllers/
https://kubernetes.io/docs/concepts/services-networking/ingress-controllers/
https://www.ibm.com/docs/pl/cloud-private/3.1.2?topic=ins-calico
https://www.ibm.com/docs/pl/cloud-private/3.1.2?topic=ins-calico
https://medium.com/@sumuduliyan/kubernetes-networking-with-calico-623f4583ae8d
https://medium.com/@sumuduliyan/kubernetes-networking-with-calico-623f4583ae8d
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-207.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-207.pdf
https://www.redhat.com/en/topics/microservices/what-is-a-service-mesh
https://www.redhat.com/en/topics/microservices/what-is-a-service-mesh
https://www.dynatrace.com/news/blog/what-is-a-service-mesh/
https://www.dynatrace.com/news/blog/what-is-a-service-mesh/
https://istio.io/latest/docs/ops/deployment/architecture/
https://istio.io/latest/docs/ops/deployment/architecture/
https://jimmysongio.medium.com/sidecar-injection-transparent-traffic-hijacking-and-routing-process-in-istio-explained-in-detail-d53e244e0348
https://jimmysongio.medium.com/sidecar-injection-transparent-traffic-hijacking-and-routing-process-in-istio-explained-in-detail-d53e244e0348
https://jimmysongio.medium.com/sidecar-injection-transparent-traffic-hijacking-and-routing-process-in-istio-explained-in-detail-d53e244e0348
https://istio.io/latest/docs/concepts/security/
https://istio.io/latest/docs/concepts/security/
https://docs.paloaltonetworks.com/cn-series/getting-started/cn-series-firewall-for-kubernetes
https://docs.paloaltonetworks.com/cn-series/getting-started/cn-series-firewall-for-kubernetes
https://docs.paloaltonetworks.com/cn-series/getting-started/cn-series-firewall-for-kubernetes/secure-kubernetes-workloads-with-cn-series
https://docs.paloaltonetworks.com/cn-series/getting-started/cn-series-firewall-for-kubernetes/secure-kubernetes-workloads-with-cn-series
https://docs.paloaltonetworks.com/cn-series/getting-started/cn-series-firewall-for-kubernetes/cn-series-core-building-blocks#id823f264f-a373-41c4-a1d0-54a3cd00953a
https://docs.paloaltonetworks.com/cn-series/getting-started/cn-series-firewall-for-kubernetes/cn-series-core-building-blocks#id823f264f-a373-41c4-a1d0-54a3cd00953a
https://docs.paloaltonetworks.com/cn-series/getting-started/cn-series-firewall-for-kubernetes/cn-series-core-building-blocks#id823f264f-a373-41c4-a1d0-54a3cd00953a
https://docs.paloaltonetworks.com/pan-os/10-1/pan-os-networking-admin/configure-interfaces/virtual-wire-interfaces
https://docs.paloaltonetworks.com/pan-os/10-1/pan-os-networking-admin/configure-interfaces/virtual-wire-interfaces
https://docs.paloaltonetworks.com/pan-os/10-1/pan-os-networking-admin/configure-interfaces/virtual-wire-interfaces
https://kubernetes.io/docs/tasks/tools/
https://kubernetes.io/docs/tasks/tools/

BIBLIOGRAPHY

[37] Cloud Native Computing Foundation. Kubeadm. 2023. url: https://kubernetes.io/
docs/reference/setup-tools/kubeadm/.

[38] IBM. Calico. 2023. url: https://www.ibm.com/docs/pl/cloud-private/3.2.x?topic=
ins-calico.

[39] Cloud Native Computing Foundation. Images. 2024. url: https://kubernetes.io/docs/
concepts/containers/images/.

[40] Cloud Native Computing Foundation. Namespaces. 2023. url: https://kubernetes.io/
docs/concepts/overview/working-with-objects/namespaces/.

[41] Cloud Native Computing Foundation. Connecting Applications with Services. 2023. url: ht
tps://kubernetes.io/docs/tutorials/services/connect-applications-service/.

114

https://kubernetes.io/docs/reference/setup-tools/kubeadm/
https://kubernetes.io/docs/reference/setup-tools/kubeadm/
https://www.ibm.com/docs/pl/cloud-private/3.2.x?topic=ins-calico
https://www.ibm.com/docs/pl/cloud-private/3.2.x?topic=ins-calico
https://kubernetes.io/docs/concepts/containers/images/
https://kubernetes.io/docs/concepts/containers/images/
https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/
https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/
https://kubernetes.io/docs/tutorials/services/connect-applications-service/
https://kubernetes.io/docs/tutorials/services/connect-applications-service/

Acronyms

API
Application Program Interface

CA
Certification Authority

CD
Continuous Delivery

CI
Continuous Integration

CNI
Container Network Interface

CSR
Certificate Signing Request

DNS
Domain Name System

HTTP
HyperText Transfer Protocol

HTTPS
HyperText Transfer Protocol over Secure Socket Layer

IaaS
Infrastructure as a Service

ICMP
Internet Control Message Protocol

IDS
Intrusion Detection System

115

Acronyms

IPS
Intrusion Prevention System

K8s
Kubernetes

NGFW
Next Generation Firewall

OS
Operating System

PaaS
Platform as a Service

PDP
Policy Decision Point

PEP
Policy Enforcment Point

PKI
Public Key Infrastructure

RBAC
Role Based Access Control

SaaS
Software as a Service

TCP
Transmission Control Protocol

TLS
Transport Layer Security

UDP
User Datagram Protocol

URL
Uniform Resource Locator

ZT
Zero Trust

116

List of Figures

2.1 Monolithic vs Microservices Architecture (source: Hengky Sanjaya Blog) 5
2.2 Evolution of Application Deployment (source: Kubernetes Documentation) . . . 8
2.3 K8s Cluster Architecture (source: Simform) . 12
2.4 Kubernetes Pod With Sidecar (source: Kubebyexample) 15
2.5 An Example of a Deployment Resource (Source : Kubernetes Documentation) . . 16

3.1 Corporate North-South and East-West traffic (source: Paloalto Networks) 21
3.2 Traditional Network vs Zero Trust Network (source: The SSL Store) 23
3.3 A Conceptual Model of Zero Trust Logical Components (source: B-Nova) 25
3.4 A Conceptual View of Networks With and Without Microsegmentation (source:

Share Vault) . 27

4.1 A Conceptual View of a Service Mesh (Source: Red Hat) 31
4.2 Istio Security Components (Source: Istio Documentation) 34
4.3 Istio Certificate Management Schema (Source: Istio Documentation) 35
4.4 An Overview of CN-series components in a DaemonSet Mode Deployment 39
4.5 DaemonSet Mode Deployment . 40
4.6 Service Mode Deployment . 40

5.1 Kubernetes cluster nodes . 44
5.2 The microservice-architecture that implements the transport ticketing system . . 48
5.3 Dockerfile used for Traveler Service container image 50
5.4 Deployment resource for Catalogue Service . 52
5.5 Service resource for Catalogue Service . 52
5.6 ServiceAccount resource for Catalogue Service . 52
5.7 Pods running in Ticketapp, Kafka and Iam namespace after Istio deployment . . 54
5.8 Gateway Resource . 54
5.9 VirtualService Resource . 54

6.1 PeerAuthentication applied to ticketapp namespace 57
6.2 DestinationRule for the Catalogue Service . 58

117

https://medium.com/hengky-sanjaya-blog/monolith-vs-microservices-b3953650dfd
https://kubernetes.io/docs/concepts/overview/
https://www.simform.com/blog/kubernetes-architecture/
https://kubebyexample.com/learning-paths/istio/intro
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://www.paloaltonetworks.com/cyberpedia/what-is-microsegmentation
https://www.thesslstore.com/blog/the-rise-of-zero-trust-threats-are-no-longer-perimeter-only-concerns/
https://b-nova.com/en/home/content/trust-nobody-control-everyone-the-basics-of-a-zero-trust-architecture/
https://https://www.sharevault.com/blog/virtual-data-room/enhancing-zero-trust-cybersecurity-with-microsegmentation
https://www.redhat.com/en/topics/microservices/what-is-a-service-mesh
https://istio.io/latest/docs/concepts/security/
https://istio.io/latest/docs/concepts/security/

List of Figures

6.3 Deny-by-default Policy applied to Ticketapp namespace 60
6.4 Allow Policy For Kafka Service . 61
6.5 Allow Policy For Zookeeper Service . 61
6.6 Allow Policy For Catalogue Service Database . 61
6.7 Allow Policy For Catalogue Service . 61
6.8 Allow Policy for Catalogue Service with a specific source identity and IP address 63
6.9 RequestAuthentication for Catalogue Service . 64
6.10 RequestAuthentication for Login Service . 64
6.11 An example of JWT produced by the Login Service 65
6.12 JWT Authorization Policy for Catalogue Service 66
6.13 JWT Authorization Policy for Login Service . 66
6.14 Admin Authorization Policy for Catalogue Service 66
6.15 Admin Authorization Policy for Payment Service 66
6.16 Ingress Gateway Configuration . 68
6.17 Ingress Gateway Request Authentication . 68
6.18 Ingress Gateway Request Authorization . 68
6.19 Ingress Gateway Admin Authorization . 68
6.20 Virtual Service Resource . 70
6.21 Service Entry Resource . 70
6.22 Gateway Resource . 70
6.23 NGFW YAML Configuration File . 71
6.24 CN-Series core blocks deployed in the cluster . 71
6.25 DAG for the Catalogue Service . 74
6.26 DAG for the Catalogue Database Service . 74
6.27 IP addresses for the Catalogue Service DAG . 74
6.28 IP addresses for the Catalogue Database Service DAG 74
6.29 Deny All Policy Definition . 76
6.30 Deny All Policy Action and Logs Configuration 76
6.31 Allow ’Catalogue to DB’ Policy Definition . 77
6.32 Policy For Web-Browsing Application Traffic . 78
6.33 Policy For Postgres Application Traffic . 78
6.34 Policy For Kafka Application Traffic . 78
6.35 Policy For Zookeeper Application Traffic . 78
6.36 Overview of the Allow Policies created . 78
6.37 URL Category . 79
6.38 URL Filtering Profile . 79
6.39 URL Filtering Policy Definition . 79
6.40 URL Filtering Policy . 80
6.41 Antivirus Policy Profile . 80

118

List of Figures

6.42 Antivirus Policy Configuration . 81

7.1 Test Peer Authentication . 83
7.2 TLS traffic exchanged . 83
7.3 TLS traffic content . 84
7.4 Test without mTLS . 84
7.5 Non-mTLS traffic content . 84
7.6 Test 1 before authorization policy . 85
7.7 Test 2 before authorization policy . 85
7.8 Test 3 . 86
7.9 Test 4 . 86
7.10 Test 5 . 86
7.11 Test 6 . 87
7.12 Test 7 . 87
7.13 Test UDP - source view . 88
7.14 Test UDP - destination view . 88
7.15 Test ICMP . 88
7.16 Customer JWT . 88
7.17 Admin JWT . 89
7.18 Test without JWT . 90
7.19 Test with valid JWT . 90
7.20 Test with expired JWT . 90
7.21 Test with tampered JWT . 90
7.22 Test /ticktes endpoint . 91
7.23 Test Admin Endpoint 1 . 91
7.24 Test Admin Endpoint 2 . 91
7.25 Test Admin Endpoint 3 . 92
7.26 Specific Request Path And Method Authorization Policy 93
7.27 Test 1 - Specific Request Path And Method Authorization Policy 93
7.28 Test 2 - Specific Request Path And Method Authorization Policy 93
7.29 Test 3 - Specific Request Path And Method Authorization Policy 93
7.30 Ingress Test 1 . 94
7.31 Ingress Test 2 . 94
7.32 Egress Test 1 . 95
7.33 Egress Test 2 . 95
7.34 Egress Test 3 . 95
7.35 Egress Test 4 . 96
7.36 Kiali Dashboard Visbility 1 . 97
7.37 Kiali Dashboard Visbility 2 . 98
7.38 Kiali Dashboard Visbility 3 . 98

119

List of Figures

7.39 Proxy logs of the Catalogue service workload . 99
7.40 First part of the Envoy log . 99
7.41 Second part of the Envoy log . 99
7.42 Envoy incoming traffic view . 99
7.43 Logs of unauthorized and unauthenticated requests 100
7.44 Grafana workload-level incoming traffic view . 100
7.45 Test 1 - Web traffic . 101
7.46 Test 2 - Postgres traffic . 101
7.47 Test DNS . 102
7.48 Logs DNS traffic dropped . 102
7.49 Test ingress traffic with Postman . 102
7.50 Test ingress traffic with curl . 103
7.51 Test 3 - Web traffic to the clusterIP address after policies enforcing 103
7.52 Test 4 - Web traffic to the pod IP address after policies enforcing 103
7.53 Logs about DNS and HTTP traffic leaving the Traveler service pod 103
7.54 Test 5 - Postgres traffic to the cluster IP address after policies enforcing 103
7.55 Test 6 - Postgres traffic to the pod IP address after policies enforcing 104
7.56 Logs about DNS and Postgres traffic leaving the Psql service pod 104
7.57 Test ICMP traffic after policies enforcing . 104
7.58 Logs of ICMP traffic dropped by the firewall . 104
7.59 Test HTTP request to Login service . 105
7.60 Test HTTP request to Catalogue service . 105
7.61 Test HTTP request to Payment service . 105
7.62 Test HTTP request to Traveler service . 105
7.63 Logs about all the services traffic intercepted by the firewall 106
7.64 Detailed view of a log . 106
7.65 Test HTTP traffic towards the Postgres service 107
7.66 Logs about the HTTP traffic denied towards the Postgres service 107
7.67 YAML file of the HTTP server hosting the EICAR file 108
7.68 Warning HTML page returned by the firewall - 1 108
7.69 Logs about the detected and blocked threat . 108
7.70 Warning HTML page returned by the firewall - 2 109
7.71 Warning HTML page returned by the firewall - 3 109
7.72 Logs about the denied URLs tests . 109

120

	Introduction
	Background Concepts
	Microservice Architecture
	Virtualization and Containers
	Linux Namespaces and Container Networking
	Advantages of Containers

	Kubernetes
	K8s Features

	Kubernetes Architecture and Resources
	Master Node
	Worker Node
	Pods
	Deployments and ReplicaSet
	Namespaces
	Service Account and RBAC

	Kubernetes Network Model
	Kubernetes Services
	Ingress and Ingress Controller
	Calico CNI Plug-in Networking

	Security Challenges And Zero Trust Model
	Limitations of the Castle and Moat Approach
	Zero Trust Security Model
	Zero Trust Network Principles
	Zero Trust Architecture And Microsegmentation
	Kubernetes Security Challenges

	Analysis Of Kubernetes Network Security Solutions
	Istio Service Mesh
	Istio Architecture
	Security Capabilities
	Identity
	Service Mesh Observability

	Palo Alto CN-Series Containerized Firewall
	CN-Series Core Building Blocks And Architecture
	Deployment Modes

	Testing Environment Design, Installation And Configuration
	Kubernetes Cluster Installation
	Microservices-based Application Design and development
	IAM Service Design and Development
	Kubernetes Resources Design and Configuration
	Istio And Ingress Gateway Deployment

	Zero Trust Network Model Implementation
	Istio
	mTLS, Peer Authentication And Authorization
	End-User Authentication And Authorization
	Ingress And Egress traffic

	Palo Alto CN-Series Containerized Firewall
	CN-Series Components Deployment
	Microsegmentation Trough Firewall Security Policies
	Deep Packet Inspection

	Results And Proof Of Concept Validation
	Istio
	mTLS, Peer Authentication And Authorization
	End-User Authentication And Authorization
	Ingress And Egress traffic
	Network Traffic And Requests Visibility

	Palo Alto CN-Series Containerized Firewall
	Network Microsegmentation And Traffic Visbility
	URL filtering And Advanced Threat Prevention

	Conclusions And Future Works
	Bibliography
	Acronyms
	List of Figures

