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Summary

Recently, the Cloud Computing paradigm has significantly spread thanks to high-speed Inter-
net connections, the standardization of digital technology and the wide adoption of mobile de-
vices. The increasing usage of third-party cloud infrastructures poses considerable challenges in
maintaining sensitive data confidential and processes trustworthy. As a result, several privacy-
enhancing technologies have been developed, among which Confidential Computing aims to guar-
antee data protection in use. Among the various solutions proposed by Confidential Computing,
Trusted Execution Environments (TEEs) succeed, offering a secure area where data and code can
be securely processed and stored. Various TEE technologies from different vendors and with their
specific implementations are now available. This makes trusted application development difficult
for developers, requiring them to write and compile the application for each TEE supported. This
thesis focuses on the Enarx framework, an open-source and TEE-agnostic solution that adds an
abstraction layer on top of the TEE technologies, permitting the development of applications
unaware of which TEE will run. Enarx permits the deployment of workloads to various TEE
instances in the public cloud, being CPU-architecture independent and guaranteeing the secu-
rity of applications from cloud providers. Taking advantage of a WebAssembly runtime, Enarx
can run workloads compiled from different programming languages (C, C++, Rust, Python, and
others). The Enarx logic is loaded inside a TEE instance as a trusted application but must be
attested before running a workload. To do so, Enarx leans on a remote attestation service which
assesses the hardware’s trustworthiness. Despite the attestation of the platform and the Enarx
components, the chosen workload could be forged by a malicious software component running on
the cloud provider machine. Therefore, the primary objective of this thesis is to propose an exten-
sion where Enarx is capable of signing the workload and verifying the signature before carrying
on the deployment of the workload. To do so, a specific attestation service should be set up to
corroborate the signature and give a response back to Enarx. Moreover, the next objective is to
integrate the extended Enarx framework with the Trust Monitor system. The proposed extension
to the Enarx framework is described along with validation and tests to evaluate the performance
of the Enarx framework before and after the extension presented.
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Chapter 1

Introduction

Over the last few years, ICT infrastructures evolved from a centralized scheme, where a single node
processes and stores data, to a distributed scheme where various spread components contribute
to storing and processing data. The most widespread distributed system model is now Cloud
Computing, which completely changed the provision of IT services based on the Internet. The
Cloud Computing model is based on outsourcing the provisioning and managing hardware and
software resources to third-party enterprises, leading to a better quality of service and a lower cost
for resources. This is why Cloud Computing has proliferated, spreading to small and medium-sized
businesses and nowadays also to consumers.

Nowadays, plenty of sensitive data is stored and processed through third-party cloud infras-
tructure due to the diffusion of Cloud Computing, leading to a variety of potential privacy issues.
To enforce privacy protection, a Privacy-by-Design approach is deemed essential during the de-
sign and development of IT systems, so it is crucial to have well-defined methodologies, objectives
and evaluation metrics for Privacy-by-Design as well as any other process. Among the various
privacy-enhancing technologies presented over the years, the Confidential Computing paradigm
emerged with the intent of securing data in use, preventing the cloud providers from looking inside
data or altering the processes hosted on their machines. Various solutions have been proposed,
some based on cryptographic primitives, others on security isolation guarantees through formal
methods or hardware isolation mechanisms like Trusted Execution Environments (TEEs). The
TEE offered by CPU manufacturers is a secure area of the main processor that ensures sensitive
data is stored, processed and protected in an isolated and trusted environment. To speed up the
adoption of TEEs and their standard, the Confidential Computing Consortium (CCC) has been
founded, which is a project community at the Linux Foundation that favours open governance
and collaboration between multiple partner organizations and several open-source projects.

The Cloud Computing paradigm allows enterprises to run their workload as a VM, a con-
tainer or in a serverless environment. Still, here the workload is exposed to interference by any
malicious person or software. The TEE technology represents a solution, but the multiple TEE
implementations from different vendors make trusted application development difficult for devel-
opers, requiring them to write and compile the application for each TEE supported. As a result,
the adoption of TEE solutions slows down. The focus of this thesis work is the study of the
Enarx framework, an open-source project that is a TEE-agnostic solution to easily implement
encryption of data in use by deploying workload to various TEE instances in the public cloud,
being CPU-architecture independent and guaranteeing the security of applications from cloud
providers. Significance is given to the Remote Attestation done by Enarx, to what is attested and
the actors involved.

The purpose of this thesis work is to extend Enarx, making available a feature of validation
of the workload before running it inside the Enarx framework. Thus, a new specific attestation
service is developed to support the new characteristic and integrate the Enarx framework with
the Trust Monitor, a monitoring entity developed by the TORSEC research group for verifying
the integrity state of all the components of a Network Functions Virtualization (NFV) platform.
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Chapter 2

Cloud Computing

Thanks to Cloud Computing, the IT industry radically changed its hardware provisioning and the
development of services and infrastructures in recent years. Cloud Computing significantly spreads
thanks to new high-speed Internet connections, the standardisation of digital technology, and the
widespread of mobile devices. The main concept behind Cloud Computing is to outsource the
provisioning and management of hardware and software resources (e.g. storage, memory, network
bandwidth, and processing) to third-party enterprises, leading to a better quality of service and a
lower cost for resources. The National Institute of Standards and Technology (NIST) proposed an
exhaustive definition of Cloud Computing: “Cloud computing is a model for enabling ubiquitous,
convenient, on-demand network access to a shared pool of configurable computing resources (e.g.,
networks, servers, storage, applications, and services) that can be rapidly provisioned and released
with minimal management effort or service provider interaction.” [1].

2.1 Cloud Computing essential features

The NIST definition is widely accepted and explains how companies can use Cloud Computing
resources to develop, host and control their services on demand with full flexibility. According to
NIST, Cloud Computing models can be identified through five essential characteristics:

• On-demand self-service: cloud resources requested to the infrastructure are provided
automatically, without requiring human interaction with the cloud service provider;

• Broad network access: cloud capabilities are distributed through the network and ac-
cessed via standard client platforms (e.g. smartphones, tablets, PCs);

• Resource polling: computing resources offered by the cloud provider are assigned to serve
multiple customers based on the demand;

• Rapid elasticity: service capabilities can be provisioned when requested and immediately
released when not used, this helps to scale rapidly the resources needed by the customers’s
workload;

• Measured service: cloud infrastructures control and optimize resources autonomously,
these can be monitored and controlled by both the provider and the customer to provide
full transparency to them.

The above-presented Cloud Computing features are the essential functionalities. However,
two more important functionalities must be considered: multitenancy and virtualization. Re-
sources are virtualized in a Cloud system, allowing multiple resources from the same physical
layer infrastructure. Secondly, multitenancy refers to serving multiple customers from the same
infrastructure.
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2.2 Cloud Computing applications and services

Over the years, various Cloud Computing services have been proposed according to market re-
quests. The three main service categories initially proposed by NIST are [1]:

• Software as a Service (SAAS);

• Platform as a Service (PAAS);

• Infrastructure as a Service (IAAS).

In addition to these primary service categories proposed by NIST, it is possible to identify a
new variety of services like Storage as a Service (StAAS), and Security as a Service (SecAAS).

2.2.1 Software as a Service (SAAS)

The SAAS Cloud Computing model allows the customer to use the provider’s applications running
on its cloud infrastructure (i.e. the group of hardware and software to supply cloud computing
features). The customer can access cloud applications from various devices through a client
interface, like a program interface or a web browser page. Cloud infrastructure cannot be managed
by the customer, except for a limited set of user configuration settings. An example of SAAS
service is the web-based email, which is widely used today in substitution of email clients.

2.2.2 Platform as a Service (PAAS)

This model permits the customer to have a cloud-virtualized environment where they deploy
consumer-created or acquired applications with different programming languages, libraries, and
tools. The customer does not have control over the system, hardware and OS levels are under the
control of the cloud provider. The customer can control only the configuration of the application-
hosting environment and has full control over the deployed application.

2.2.3 Infrastructure as a Service (IAAS)

IAAS model provides high freedom to the customer, who has complete access to the fundamen-
tal computing resources and the abstracted hardware. The customer can build its system, by
deploying and running arbitral software on the cloud environment.

2.2.4 Storage as a Service (StAAS)

With Storage as a Service, data storage is offered to the customer by the cloud provider and billed
according to usage metrics. The pay-as-you-go approach of StAAS has advantages for customers,
it reduces the cost and risks associated with installing, maintaining and upgrading the storage sys-
tem. Thanks to StAAS, companies can benefit from higher-performing and customizable storage
resources focusing exclusively on their core business.

2.2.5 Security as a Service (SecAAS)

Security as a Service is a broadly covering solution to help customers address security issues
without needing their proprietary security team. The basic features offered by SecAAS are:

• constant threats monitoring;

• cybersecurity expertise from security analyst;
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• threat intelligence and response in case of an accident.

As for STAAS, SecAAS also helps companies focus on their major business by delegating security
stuff to the security provider. Moreover, SecAAS introduces benefits for customers like access to
the latest security technologies, and flexibility to scale security up or down quickly on demand.

2.3 Cloud Computing deployment models

Different Cloud Computing services have been presented in the previous section, but companies
can also deploy Cloud Computing infrastructure using four different cloud architectures. The
deployment models are based on the ownership, administration, location, security policies, and
nature of the data.

2.3.1 Private Cloud

The cloud environment is owned by a private owner exclusively for the secure storage of the
company’s data. Private clouds are usually managed by third-party providers and access is granted
only to organization staff which is in charge of managing authentications. This solution provides
full control over sensitive information ensuring privacy, but its primary shortcoming is the cost of
equipment and utilities to support this cloud infrastructure.

2.3.2 Community Cloud

This is a cloud model in which a group of organizations collectively owns the cloud system with the
same purpose. It works the same as the private cloud, computational resources and infrastructures
are managed by companies that convey the same privacy and security motives. Community Cloud
remains more expensive than public cloud.

2.3.3 Public Cloud

Large companies such as Amazon AWS, Google, and Microsoft own most of the public cloud
offering cloud services. Public cloud providers offer on-demand services mainly through a pay-as-
you-go fee. Ordinary public cloud users are home users or small organizations which access the
cloud services via the Internet. The public cloud model suffers from a lack of security and privacy
but despite these limitations, public cloud services are a good solution for small companies due
to their limited sensitive information with a minimal privacy risk.

2.3.4 Hybrid Cloud

A partnership between a private cloud owner and a public one creates a hybrid cloud service.
This approach mixes the scalability of the public cloud infrastructure without exposing sensitive
data to third-party applications as the private cloud aims to do. From a company point of view,
the hybrid cloud approach offers organizational abilities and flexibility to businesses compared to
other approaches. The security shortcomings of the hybrid cloud are the same of the public cloud,
such as the exposure of sensitive data. To solve this problem, identity and access management to
cloud facilities can be implemented.

2.4 Cybersecurity problems about Cloud Computing

Cloud Computing has acquired massive attention over the past years thanks to its increasing
demand. As stated in the previous section, there are advantages such as elasticity, resiliency, fast

12



Cloud Computing

provisioning and multitenancy for companies to move on to cloud-based solutions. Despite various
benefits, the Cloud Computing transition introduces security and privacy challenges related to
threats and risks in Cloud Computing. As shown in 2.1, security issues of cloud infrastructures
have been classified into five categories [2]:

• security policies;

• user-oriented security;

• data storage security;

• application security;

• network security.

Cloud security issues classification

Security policies

- Service level 
agreement

- Client management 
issue

- Antecedent trust

User-oriented security

- Authentication
- Authorization
- Identity and access 

management

Network

- Intrusion prevention 
system

- Intrusion detection 
system

- Firewall

Application

- Operating system
- Front-end / 

back-end
- Application 

vulnerabilities

Data storage

- Data 
warehouse

- Malware
- Metadata

Figure 2.1. Different categories of cloud security issues (source: [2])

2.4.1 Cloud Computing threats and risks

Every year companies publish their Global Treat Report, which helps to understand existing se-
curity challenges for cloud solutions. Many recent studies have given importance to threats such
as data breaches, hacked interfaces, exploited system vulnerabilities, account hijacking, malicious
insiders, and denial-of-service (DoS) attacks [3].

Data breaches

A data breach is an event where confidential information (e.g. credit card numbers, phone num-
bers, addresses, and Social Security numbers) is viewed, stolen or used for unauthorized purposes.
Nowadays, data breach is one of the top problems for cloud customers. Preventing data breaches
requires common security practices such as penetration testing of cloud systems, using strong
passwords, adopting malware protection, and applying software patches on systems. Moreover,
data encryption will preserve data confidentiality in case of a successful intrusion event.

Hacked interfaces and APIs

Application Program Interfaces (APIs) are user interfaces used by cloud providers to provide
access to customers to cloud services. APIs may have exploitable vulnerabilities, for the customer
may find it difficult to understand if its system has been compromised or something has been
changed. Thus, it is important for the cloud provider to improve the security of its cloud APIs
and for customers to stay up to date with the latest patches.
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Account hijacking

Cloud accounts may be stolen or hijacked by an attacker. Usually, the hijacked account is later
used to carry out malicious activity. An attacker may access reserved areas of cloud systems with
hijacked accounts, compromising the confidentiality, availability and integrity of those services.
Several solutions exist to solve hijacking such as one-time passwords or push notifications to allow
access to the account. Furthermore, cloud companies should include security capabilities in their
systems, such as end-to-end encryption, continuous data monitoring, and the ability to block
suspicious activity.

Malicious insider

Current or former employees may be malicious insiders since he or she has obtained access to the
system and may release information without authorization from the organization. Some practices
may be used to prevent this kind of activity such as controlling removable storage, controlling
email traffic, requiring strong passwords, and performing access control.

Distributed denial-of-service attack (DDoS)

DDoS refers to the deployment of a huge number of Internet bots1 situated everywhere. Bots are
designed to attack servers and networks by flooding the target service with requests, slowing down
or denying the service to legitimate users. This exposes cloud providers to reputational damage
and exposure to customer data. DDoS can be mitigated by integrating security strategies DoS
response plan and secure network infrastructure, it is important to address DDoS attacks as soon
as they are detected.

2.5 Privacy-Enhancing Technologies (PETs)

Nowadays, plenty of sensitive data is stored and processed through third-party cloud infrastruc-
ture. In this context, privacy and security play a crucial role in preserving users from their rights.
In the above section, risks and threats related to Cloud Computing have been presented. In partic-
ular, the principal privacy issues are related to the lack of user control, potential unauthorized use,
data proliferation, and dynamic provisioning. To enforce privacy protection, a Privacy-by-Design
approach is deemed essential during the design and development of IT systems, so it is crucial to
have well-defined methodologies, objectives and evaluation metrics for Privacy-by-Design as well
as any other process.

The European Union Agency for Cybersecurity (ENISA) refers to PETs as: “Software and
hardware solutions, ie systems encompassing technical processes, methods or knowledge to achieve
specific privacy or data protection functionality or to protect against risks of privacy of an in-
dividual or a group of natural persons.” [4]. Several privacy-preserving approaches have been
proposed in literature over the years, some of them will be illustrated hereafter [5].

2.5.1 Zero-Knowledge Proof (ZKP)

ZKP was proposed for the first time in the 1980s by S. Goldwasser et al.[6]. The idea of ZKP is
to have a verifier that can verify the authenticity of the data and the integrity of a computation
done by the prover, without accessing the data or reproducing the computation [7]. For example,
ZKP can check the identity authenticity of a digital certificate reducing the leaked information
about identity. Particularly, ZKP has some properties such as:

1Internet bot: is an automated software application that runs over the Internet, usually used to imitate human
activity or forward fake requests to servers to slow down or interrupt their service.
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• zero-knowledgeness: nothing new is learned by the verifier from the prover beyond the
correctness of the information;

• completeness: the prover can convince the prover about the correctness of the statement
with high probability;

• soundness: the prover cannot convince the prover about the wrongness of the statement
with high probability.

There are various ZKP protocols, some interactive and others non-interactive. With the latter,
it is possible to convince parties of a claim with a single message, without a sequential message
exchange. These properties make non-interactive ZKP protocols valued for use in blockchains,
but also for privacy-preserving credentials to allow the verification of digital certificates without
revealing unnecessary data.

2.5.2 Secure Multi-Party Computation (SMPC)

SMPC is a cryptographic primitive to enable distributed computing among a group of partici-
pants enforcing security, and keeping secret the input data of each participant. Several privacy-
preserving problems like private database queries, secret voting, data mining, genomic comparison,
secure machine learning, and intrusion detection tools have been solved thanks to SMPC[8].
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Figure 2.2. Schema of a SMPC (source: [9]).

Even though SMPC guarantees privacy-preserving features, it is resource-demanding and suf-
fers from heavy processing and high communication costs. To achieve better performance, new
cloud-assisted SMPC techniques have been proposed. Usually, the SMPC schema refers to the
ideal model where a function f is executed by a trusted party. SMPC requires that during the
execution, parties cannot obtain other information about the inputs of the other entities than
they would learn if f was computed by the trusted parties. Moreover, SMPC models must be
compliant with additional properties such as:

• correctness: malicious entities should not be able to alter the output of honest parties;

• inputs’ independence: party’s entries are chosen independently from each others;

• fairness: even if a group of parties is malicious, an honest party must have access to the
correct output.

In SMPC, different types of parties exist and not always with good intentions:
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• honest party: follows the SMPC protocol, keeping its output, the intermediate result, and
the final output confidential:

• semi-honest party: follows the SMPC protocol as the honest one, but it tries to steal
other inputs, intermediate results, and final outputs;

• malicious party: a party who wants to modify data owned or received by other parties of
the SMPC.

2.5.3 Fully Homomorphic Encryption (FHE)

In recent years, Fully Homomorphic Encryption arose as one of the most promising cryptography
techniques by allowing computation directly on the ciphertext. FHE allows a user to encrypt
data and send it to the cloud just as ciphertext, the cloud can perform computations on en-
crypted data and evaluate it. The final results computed are encrypted. Only the user with the
decryption key can decrypt the results. Comparisons of FHE and SMPC show that FHE requires
less communication overhead between the user and the cloud infrastructure FHE is applied in
Cloud Computing scenarios such as end-to-end encryption, and Machine Learning neural network
inferences or training on ciphertext without the secret key [10].

Each homomorphic operation inevitably introduces noise in the encrypted data to enforce
security. An excessive amount of homomorphic operations can accumulate noise exceeding a
threshold, as a consequence the decrypted data cannot be decrypted anymore. To avoid this
problem, FHE periodically invokes a bootstrapping operation which supervises the noise [10].

2.5.4 Differential Privacy

Differential Privacy (DP) addresses the problem of privacy related to the interaction between a
data analyst and who is the owner of the dataset. DP takes advantage of cryptographic techniques
adding random noise to dataset query results, making it challenging to identify the owner of the
data inside the dataset. The quantity of random noise is called “epsilon” ϵ or “privacy budget”,
and there are two ways for random noise to be enforced [4]:

• interactive DP : noise is added to each query response and querying is terminated once the
privacy budget is reached;

• non-interactive DP : the level of identifiable information is a property of the information
itself, which is set for a given privacy budget.

Even so, the noise added slightly decreases the accuracy of the data. Hence, differential
privacy would be suitable for systems that analyse aggregated statistical results in data (e.g.
census analysis), and not for accurate individual-level analysis (e.g. tax calculation).
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Confidential Computing

Protecting data when they are at rest stored on a disk, is nowadays a solved problem. In the
same way, it is known how to protect data in transit over networks, by using transport-layer
protocols like TLS. Conversely from data at rest and in transit, protecting data in use is not an
exhaustively investigated issue. Ordinarily, the lack of knowledge about data protection would not
be a significant problem if not for Cloud Computing, a widespread industrial trend. Progressively,
sensitive computations are being set up on shared infrastructures owned and operated by cloud
providers. Traditional isolation technologies (e.g. hypervisors and OSes) are not sufficient in a
cloud scenario, where software systems are exposed to new security vulnerabilities and amplified
old ones.

Confidential Computing architectures and platforms emerged to secure data in use, preventing
the cloud providers from looking inside data or altering the processes hosted on their machines.
Various solutions have been proposed, some based on cryptographic primitives, others on secu-
rity isolation guarantees through formal methods or hardware isolation mechanisms like TEEs.
Each solution offers a compromise concern threat model, performance, maintenance and usabil-
ity. In particular, this thesis will concentrate on Enarx, a framework based on the Confidential
Computing paradigm and technologies.

3.1 Trusted Executions Environments (TEEs)

The literature proposed different definitions of TEE over the years, but a recent definition by
GlobalPlatform1 (the international TEE standardization authority) has been proposed: “The
TEE is a secure area of the main processor of a connected device that ensures sensitive data is
stored, processed and protected in an isolated and trusted environment. As such, it offers protection
against software attacks generated in the Rich Operating System (Rich OS).” [11].

3.1.1 Trust Concept

As suggested by the previous definition, the concept of trust has a key role in the Trusted Exe-
cution Environment. The main problem is that trust is a subjective property and consequently
not measurable, while computer systems require a trust property that can be quantified. In the
computer world, an entity is trusted if it has acted or will act as expected, as in the real world.
In computing, trust can be classified as:

• Static: based on an evaluation against a set of security policies, but the trustworthiness is
measured only once;

1GlobalPlatform: non-profit association with more than 100 international companies involved in the develop-
ment of secure digital services.
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• Dynamic: based on the evaluation of the state of a running system which changes fre-
quently, so the trustworthiness of the system is constantly measured. Dynamic trust re-
quires an entity capable of providing trustworthy evidence about the running system, such
as the Root of Trust.

In TEE, trust can be stated as static and semi-dynamic, or rather hybrid. The TEE security
level must be certified against a pre-defined set of security policies before each deployment. The
TEE state is not supposed to change its trust level while running thanks to the protection of the
Separation Kernel, thus the trust in TEE is considered semi-dynamic.

3.1.2 Separation Kernel

To understand the TEE concept, it is necessary to introduce the prerequisite concept of Separation
Kernel, a primary component of the Dual-Execution-Environment approach [12].

The Separation Kernel model aims to offer guarantees of strong isolation between different
functional units, called partitions, which are usually part of a platform. Each partition may need
a different set of security policies, they can communicate exclusively under the control of the
Separation Kernel. Thanks to this, multiple systems can be executed on the same platform. The
Separation Kernel has its main security policies, which are:

• Data (spatial) separation: data within one partition cannot be accessed or modified by
other partitions;

• Sanitization (temporal separation): it is not possible to leak information into other
partitions by shared resources;

• Control of information flow: communication between partitions must be explicitly per-
mitted;

• Fault isolation: a security breach in one partition cannot affect other partitions.

The Separation Kernel interacts with all the functional units of a TEE, as described in figure
3.1, where each one performs specific tasks:

• Secure Boot: at boot time the integrity code generated is validated against a reference
value ensuring that only trusted code is deployed on the system, otherwise the process is
interrupted;

• Secure Scheduling: guarantees the responsiveness of the Rich OS together with the se-
curity of the TEE;

• Inter-Environment Communication: allows the communication between the TEE and
the rest of the system providing a trusted interface;

• Secure Storage: guarantees confidentiality, integrity, freshness of stored data and autho-
rized data access only;

• Trusted I/O Path: ensures authentic and confidential communication between the TEE
and peripheral devices (e.g. mouse, keyboard, sensors);

3.1.3 Root of Trust

The entire computing system relies on the Root of Trust (RoT) to prove the trustworthiness of
its components, so it must be secure-by-designed since it is impossible to verify if it has been
compromised.

The RoT is designed to be a hardware, firmware or software innately trusted, performing
security and critical tasks. According to the Trusted Computing Group, there are a set of tasks
that are compulsory inside a trusted platform:
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Figure 3.1. TEE environment building blocks (source: [13])

• RoT for Measurement (RTM): it sends integrity measurements to the RTS, usually it is
the CPU controlled by the Core Root of Trust for Measurement (CRTM), while the CRTM
is the first set of instruction executed to establish a new chain of trust;

• RoT for Storage (RTS): usually a TPM (Trusted Platform Module) acts as RTS, en-
forcing the protection of sensitive data such as private keys, by allowing merely authorized
entities to access them;

• RoT for Reporting (RTR): generates measurement reports in the form of digitally signed
digests, based on the content of the RTS, which typically contains: platform configuration
evidence, audit logs, and key properties.

3.1.4 TEE Use Cases

TEE implementation has evolved from proprietary solutions to a standard-based procedure,
spreading to various new devices like mobile phones and Internet-connected devices. This subsec-
tion introduces some TEE use cases.

Cloud Computing

At present, Cloud Computing is one of the major fields of business in which TEEs are implied.
The increasing adoption of cloud services raises the need for security and adoption of TEEs on
cloud platforms, to protect both the cloud system’s owner and the customers’ workloads. For
instance, Enarx is a technology that aims to enforce the use of TEEs on cloud environments,
making TEE adoption easy and efficient.

Internet of Things

Usually, IoT devices are required to communicate with remote servers exchanging data that are
often sensitive and must be protected. Nowadays IoT implementations include fields like smart
cities, smart homes, industries, automotive, and healthcare [14]. TEE is suitable for ensuring the
security of IoT devices and relative data in these contexts.
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Premium Content Protection

Content owners request the implementation of hardware security before allowing them to display
high-resolution content on smart devices like TVs, smartphones and tablets. The first major
business adoption of Digital Right Management (DRM) using a TEE emerged in 2011 for Netflix:
protection of high definition contents. To secure premium contents, the following prerequisites
are needed [14]:

• the DRM code and the credentials must be protected, ensuring that keys and algorithms
cannot be spoofed;

• ensure the confidentiality of the content from the server to the device;

• ensure that the device has the license right to make use of the content;

• decrypt and secure the content received;

• display the content avoiding the third party capturing the screen (e.g. screen grabber).

The TEE can be employed to satisfy all the abovementioned requirements regarding premium
content protection.

Mobile Payments

Mobile payments have become widely adopted and easy to use, involving technologies like QR
code, NFC, and Bluetooth, alongside payment-untrusted applications sharing the same OS and
hardware. Data are not safe in this scenario so the TEE can provide trusted interfaces, end-to-end
data encryption during transmission and secure storage for keys.

Mobile Identity

Mobile identity is a solution which manages a set of user’s identity credentials associated with
PIN, biometrics, login-password, one-time password, and other technologies. Since operations
on mobile ecosystems increasingly occur, all the user-sensitive data must be secured from the
untrusted environment. The TEE perfectly fits this need, it can secure the user interaction
with the device, supporting biometric recognition, PIN, one-time password display, and similar
authentication mechanisms.

3.1.5 TEE technologies

The market of hardware technologies has a wide set of TEEs, proposed by different vendors
and with loads of different implementations. This section presents the main TEE architectures
available, their concepts and key aspects.

Intel SGX

Intel Software Guard Extensions (SGX) in an expansion of the Intel Architecture Instruction Set
able to provide integrity and confidentiality of specific memory areas, referred to as enclaves,
by isolating them from the outside environment (e.g. hypervisor, OS, and hardware attached
devices). Intel SGX’s goal is to supply a secure computation scenario where a user relies on a
trustworthy environment owned by an untrusted provider.

The contiguous memory area of the DRAM reserved by SGX-enable CPUs is called Processor
Reserved Memory, and it is used to store encalves. Therefore, because this piece of memory is
contiguous, the same integer power of two defines the size of the PRM and the alignment of its
start address; thanks to these two constraints, checking if an address is part of the PRM or not
is easier in hardware.
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Each PRM contains its Enclave Page Cache (EPC), which is a set of 4 KB pages (allocated
by the OS or the Hypervisor) used to collect enclaves’ code and data structures. These pages are
mapped by a specific data structure, the Encalve Page Cache Map (EPCM), which is an array
where each entry belongs to an EPC page: this just requires a bitwise shift operation and an
addition to compute the address of an EPCM page [15]. The overall memory structure of SGX
enclaves is shown in figure 3.2.

All the metadata of an enclave are stored inside a SGX Enclave Control Structure (SECS),
and each SECS is stored on a specific page of the EPC which is not part of any enclave’s address
space. The SECS contains, for instance, the measurement of the enclave (i.e. the digest of the
entire enclave content computed during its initialization) inside the MRENCLAVE field. The
MRENCLAVE is useful for performing authentication of the enclave by a remote party in remote
attestation scenarios.

Thanks to SGX it is possible to achieve a high level of security and strong separation between
trusted and untrusted environments. Despite that, when the input buffer of the workload in-
creases, the performance of SGX starts to decay because the quantity of secure memory allocable
to an enclave is limited by design.

DRAM PRM EPC

PRM EPC

4 KB page

4 KB page
4 KB page

4 KB page

4 KB page

Entry

Entry
Entry

Entry
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Figure 3.2. Enclave memory structure of Intel SGX (source: [15]).

Intel TDX

Intel Trust Domain Extensions is the novel TEE architecture proposed by Intel, which deploys
hardware-isolated VMs called Trust Domains (TDs) introducing a robust support for Confidential
Computing. It is a combination of technologies such as Virtual Machine Extension (VMX),
Instruction-Set- Architecture (ISA) extensions, Intel Total Memory- Encryption Multi-Key (TME-
MK) technology, Multi-key Total Memory Encryption (MKTME, and a CPU-attested software
module.

From a technical point of view, the innovation of TDX is a new CPU mode called Secure-
Arbitration Mode (SEAM). Moreover, the TDX module is located in a specific memory space
identified by the SAEM-range register (SEAMRR). By leveraging on VMX, the CPU allows
access to the SEAM-memory range only to software executing inside the SEAM-memory range.
Since hypervisors are no longer trusted, memory management is moved to the TDX module,
which checks the translation of TD’s private memory addresses. To install the module for TDX,
an authenticated code module called SEAM Loader is provided to verify the digital signature of
the TDX module and load it inside the SEAM memory range. Only after successful validation of
the quote, the challenger can proceed to establish a secure channel with the attester [16].

Regarding memory protection, primarily TDX enforces memory isolation for TDs. Memory
domains of SMM, hypervisor, TDX module and other VMs or TDs are not accessible by a TD.
Moreover memory partitioning, integrity, and confidentiality are provided by TDX [16]:
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• memory partitioning : enabling TDX permits to partition the entire memory in two regions,
respectively normal memory and secure memory ;

• memory integrity : to ensure memory integrity, TDX provides two different techniques called
Logical Integrity and Cryptographic Integrity ;

• memory confidentiality : thanks to the MKTME module, TDX encrypts its private memory
and metadata.

To reinforce the protection of memory from privileged software, tampered devices and mali-
cious administrators, TDX implements access control and cryptographic isolation; the first pre-
vents accessing TDs from other security domains, the latter prevents direct reads from TD’s
memory by malicious DMA devices or attackers with direct access to the physical memory.

TDX’s set of features also includes attestation. Given a TDX-enabled machine, when a chal-
lenger receives a request for attestation, the attester provides evidence of the right deployment of
a TD generating a TD quote.

Intel TDX
SEAMRR

TDX-enabled Processor

Trust Domain (TD) VM

Private Memory

Code Data

Page Table

Virtual Apic Page

VM ControlState Save Area

Secure Extended - Page 
Table

Shared Memory

Untrusted Software

TD Private Key

VMM Memory Pages

Figure 3.3. Intel TDX schema (source: [17])

AMD SEV

Security Encryption Virtualization (SEV) is a security feature introduced by AMD inside its
chips to implement TEE capabilities on them. AMD SEV brings together two different AMD
technologies:

• Secure Memory Encryption (SME): defines a simple and efficient architectural capability
for main encryption memory;
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• AMD-V : the AMD architecture to support virtualization.

Thanks to these two technologies, SEV can offer memory encryption capabilities with virtualiza-
tion to support encrypted virtual machines (VMs) and enhance isolation. Differently from SGX
which is process-based, AMD SEV is VM-based, thus defining a new security virtualization model
which is specifically appropriate for cloud environments where VMs can be protected from entities
with higher privileges (e.g. hypervisors and administrators). As described in figure 3.4, the SEV
model isolates the code data at a certain level, so each level cannot access data that does not
belong to it. The two levels are commonly classified as guest and hypervisor.

Hypervisor

Guest

Traditional 
Model

Hypervisor Guest

AMD SEV 
Model

Figure 3.4. Traditional security model vs. AMD SEV security model (source: [18]).

From a technical point of view, SEV hardware (when enabled) marks all code and data stored
in DRAM with its VM ASID, to indicate which VM originated this data or to which VM data are
intended for. Thanks to this tag, data cannot be used by anyone except the owner. The ASID
tag protects data inside the CPU, but not outside; here the AES with 128 symmetric encryption
is used to encrypt data. Data that exits or enters the CPU is encrypted or decrypted with a
symmetric key related to the associated ASID tag. This working scenario is shown in figure 3.5

VM A VM B VM C

Key A Key B Key C

Hypervisor

DRAM

AES-128 Engine

Inside the 
CPU

Outside the 
CPU

Figure 3.5. AMD SEV architecture schema (source: [18]).

The security of SEV leans on the encryption keys, but the hypervisor must not know the
encryption keys, even if it manages the guests and their resources. To deal with the encryption

23



Confidential Computing

keys, AMD realised specific hardware called AMD Secure Processor (AMD-SP). Whenever the
AMD-SP driver is notified, the AMD-SP is contacted to load the key of a specific VM inside
the AES-128 engine. Thanks to the SEV secure interface, key management can be done without
exporting the encryption keys outside the firmware and the hypervisor is unable to access them.

Keystone Enclave

In 2018, UC Berkeley University started the Keyston Enclave open-source project. Differently
from SGX and SEV, Keystone is an academic TEE project published in 2020 at EuroSys’20 [19].
Keystone is designed for RISC-V hardware platforms like QEMU, FireSim (FPGA) or system-on-
chip boards. The Keystone objective is to fix the limitations of commercials TEEs such as SGX
and SEV, providing a secure execution environment where developers can use a set of shared
components to tailor the security model to their specific hardware platform and deployment
scenario.

Keystone development is focused on the concept of customizable TEE. Often commercial TEEs
are developed with proprietary hardware and code, specifically for certain platforms, leaving few
customization alternatives. In addition, commercial TEEs are expensive to build from scratch and
the implementation of additional features requires expedient to reach the proper implementation.

As a modular TEE, Keystone exposes security building blocks enabling customization of secu-
rity features. This ensures the deployment of a trustworthy TEE design according to characteristic
requirements. To support Keystone, a hardware platform only requires:

• a trusted boot process;

• a device secret key visible only to the trusted boot process;

• a hardware-based source of randomness.
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Figure 3.6. Keystone architecture (source: [19])
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To enforce security constraints, Keystone relies on the Security Monitor (SM). It provides
memory isolation and security-critical features, relying on RISC-V primitives such as Physical
Memory Protection. Moreover, the SM can be easily integrated with extra security hardware.
These characteristics permit to have a limited Trusted Computing Base (as a consequence, a
lower attack surface), and a portable and high-privilege component.

3.1.6 TEE shortcoming

Different TEE technologies have been presented in this section, but the principal problem of them
is still the lack of a standard for Trusted Execution Environments in literature. As discussed above,
each TEE technology has its distinguishable features; SGX generally targets general-purpose PCs,
while SEV is designed for isolating intensive computation on the cloud VMs.

Trusted Execution Environments are not exempted from threats, in particular, they are tar-
geted by some attack categories:

• Software-based attacks: created to exploit some actors of the software stack (e.g. kernel
attacks, system call attacks);

• Architectural attacks: exploit flaws of the hardware design;

• Side-channel attacks: this category of attacks includes the exploitation of power con-
sumption, electromagnetic and acoustic leaks, and timing;

• Micro-architectural attacks: focused on micro-architectural components like the cache.

3.2 Threat Model of Confidential Computing

Confidential Computing (CC) aims to reduce the possibility for an attacker to access data and
code in use inside a TEE. Of course, speaking about “absolute security” is unsuitable. Still, thanks
to TEEs it is possible to achieve better results in terms of confidentiality, integrity, usability and
cost, compared to other protection techniques.

3.2.1 Threat Vectors

Attackers may exploit vulnerabilities of systems through various vectors, but Confidential Com-
puting does not aim to address them all. Various threat vectors are considered in-scope for CC,
while many others are out-of-scope. There is also a group of threat vectors for which the success
of the mitigation differs based on the silicon implementation.

In-Scope Threat Vectors

Confidential Computing aims to solve in-scope threat vectors like [20]:

• Software attacks: attacks on the firmware and software installed on a host machine,
including OS, hypervisor, and BIOS;

• Protocol attacks: attacks related to attestation and data transport;

• Cryptographyic attacks: vulnerabilities being found in ciphers and algorithms often, so
it is fundamental to keep cryptographic primitives up-to-date;

• Basic physical attacks: cold DRAM extraction, bus and cache monitoring, attacks
through interfaces (e.g. PCIe, Firmware, USB-C).
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Out-of-Scope Threat Vectors

Threat vectors generally considered out-of-scope by CC are:

• Sophisticated physical attacks: physical attacks for which require direct access to the
hardware;

• Upstream hardware supply-chain attacks: attacks on chip manufacturing time and at
key generation or injection time;

• Availability attacks: such as DoS or DDoS attacks.

3.3 Confidential Computing Consortium

To widespread the adoption of Confidential Computing paradigms and TEE technologies, the
Confidential Computing Consortium (CCC) has been founded; as stated by the CCC itself: “The
Confidential Computing Consortium is a community focused on projects securing data in use and
accelerating the adoption of confidential computing through open collaboration.”[21].

The Confidential Computing Consortium is a project community at the Linux Foundation, that
favours open governance and collaboration between multiple partner organizations and several
open-source projects. Numerous companies such as Google, Arm, Microsoft, Meta, Huawei, Intel
and Amd are part of the premier members of the CCC. Hardware vendors, cloud providers and
software developers are jointly part of the CCC to speed up the adoption of TEEs and their
standards for those organizations that handle sensitive data including Personally Identifiable
Information (PII), financial data, or health information.

3.3.1 Supported Projects

Alongside the member companies which are part of the Confidential Computing Consortium,
there are also several supported open-source projects securing data in use and supporting the
adoption of confidential computing standards. CCC aims to enforce open collaboration between
projects.

Enarx

As reported by the CCC: “Enarx provides a platform abstraction for Trusted Execution Environ-
ments (TEEs) enabling creating and running private, fungible, serverless applications.”[21]. The
Enarx framework is extensively discussed in the next chapter number 4.

Gramine

Gramine is a weightless library OS designed to run applications with minimal host requirements.
Gramine creates an isolated environment to run applications, with benefits comparable to running
an OS on a virtual machine (VM). Presently, Gramine runs on Linux and Intel SGX enclaves on
Linux platforms.

For applications to benefit from the confidentiality and integrity assurances of Intel SGX, a
high level of expertise is requested by developers to deal with code inside the SGX environment. As
described in figures 3.7 and 3.8, Gramine runs applications inside Intel SGX without modifications
and supports dynamically loaded libraries, runtime linking, multi-process abstractions, and file
authentication.
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Figure 3.7. Regular integration flow with Intel SGX (source: [22]).
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Figure 3.8. Integration of Intel SGX with Gramine (source: [22]).

Keystone

Keystone is an open-source project started at UC Berkeley University in 2018 and published
in 2020 at EuroSys’20 [19]. The goal of the project is to run a customizable TEE on RISC-V
hardware architecture, addressing all the limitations of other vendor-specific Trusted Execution
Environments.

Keystone aims to expose some security building blocks to enable customization of security
features for different hardware platforms and use cases. To be supported by a hardware platform,
Keystoly requires:

• a trusted boot process;

• a device secret key visible only to the trusted boot process;

• a hardware-based source of randomness.

Occlum

Similarly to Enarx and Gramine, Occlum makes running applications inside enclaves easy allowing
to run unmodified programs inside enclaves with just a few simple commands. As the project
mentioned above, Occlum is an open-source project. The main features of the project are [23]:

• efficient multitasking thanks to the light-weighted LibOS processes;

• support of multiple filesystems;

• memory safety thanks to the fact that Occlum is written in Rust language;

• ease of use.
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Open Enclave SDK

Open Enclave SDK is an open-source SDK that aims to create a unified enclave abstraction for
developers to build TEE-based applications in C and C++. Open Enclave SDK is dedicated to
supporting an API set that permits developers to build once and deploy on multiple technology
platforms.

Veracruz

As stated by the Veracruz project: “Veracruz is a framework for defining and deploying collabora-
tive, privacy-preserving computations amongst a group of mutually mistrusting individuals.” [24].
Strong isolation technologies along with remote attestation protocols are used by Veracruz to es-
tablish a safe environment on an untrusted device where a collaborative computation takes place.
Veracruz computations are WebAssembly binaries that use the WebAssembly System Interface
(WASI).

Veraison

Veraison builds software components that can be used to create an Attestation Verification Service.
Nowadays building just one Verification Service solution which can address all deployments for
a technology is challenging since there are various technologies on the market, each one with its
attestation report. As reported by the Veraison project: “Veraison aims to provide consistency
and convenience to solving this issue by building the software components that can be used to
build Attestation Verification Services.” [25]. Around a core structure of verification, attestation
can be extended to other technologies using plugins.
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Enarx

The Cloud Computing paradigm allows enterprises to run their workload as a VM, a container
or in a serverless environment 1. Still, here the workload is exposed to interference by any
person or software with the hypervisor, root or kernel access. When a workload runs in the cloud
environment, there are no technological barriers to prevent the cloud providers from looking inside
the workload, peeking into the data or changing the running process.

Trust only in the cloud provider is not sufficient. The software running on their systems
could be malicious or compromised, allowing other entities to interfere with the workload; compo-
nents like operating system, firmware, hypervisor, application stack, drivers and libraries must be
trusted. Cloud providers focus their work on protecting their systems from the workloads which
run inside and isolating workloads from different tenants, instead of protecting workloads from
vulnerabilities of their systems. The encryption of data at rest and in transit is used ordinarily,
but the solution to the problem described above is to adopt a Confidential Computing paradigm
implementing the protection of data in use, by taking advantage of TEE implementations offered
by CPU manufacturers.

Enarx open-source project is a TEE-agnostic solution to easily implement encryption of data
in use by deploying workload to various TEE instances (referred to as “Keeps” by Enarx) in the
public cloud, being CPU-architecture independent and guaranteeing the security of applications
from cloud providers.

4.1 Threat Model

Usually, in a cloud computing environment, a substantial number of layers should be trusted.
Enarx aims to wipe out the need to trust any other layer than CPU and firmware (directly
provided by the silicon vendor), meaning that the next layer to trust below the application is the
Enarx middleware as shown in figure 4.1.

The core principle of Enarx is the exchange of computing resources between two parties that
do not trust each other, called ”Host” and ”Guest”. The Host aims to provide the Guest access
to computing resources requiring hardware, firmware and software privacy and integrity from
the Guest. Nevertheless, the Host must maintain full control of resource allocation; the use of
computing resources can be measured, restricted or terminated by the Host at any time. On
the other hand, the Guest wants to maintain the privacy and integrity of its code and data the
Host processes. Furthermore, the Guest needs a guarantee that the Host will irrevocably provide
such protection. Since the Host may be malicious, the Host cannot provide this assurance. The
solution proposed by Enarx is having the hardware adopt the desired protections combined with
a cryptographic attestation that such hardware rules the execution environment.

1Serverless environment: a cloud environment where developers can run applications on demand without man-
aging servers and their resources, instead managed by the cloud provider.
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Figure 4.1. Example of stack layers of a cloud virtualization architecture on the left side and stack
layers to be trusted with Enarx on the right side (source: [26, Sez. Docs, Technical Overview]).

4.2 Design Principles

Enarx is built to comply with the current security standards and guarantees a high isolation level
between the cloud host machine and the workload running on it. This led to accurate design
principles:

• Minimal Trust Computing Base

Deal with a huge number of code lines in the computing base exposes the Host to attack
the code and the data of the workload running on it. Enarx takes care to have as few lines
of code as possible inside its trust computing base and performs a validation of it.

• Minimum trust relationship

Inside the Host machine, Enarx trusts: the CPU and its firmware, the Enarx Keep platform;
everything else is explicitly untrusted.

• Deployment-time portability

Every application deployed with Enarx can be redeployed on different CPU architectures
without recompilation; the set of trusted CPU and firmware versions can be properly con-
figured.

• Network stack Outside the Trust Computing Base

Network stacks are complex and full of bugs, leaving the door open to privilege escalation
and compromise; as a result, Enarx opts for OS-provided networking, although it manages
encryption and decryption of packets inside of the Keep.

• Security at rest, in transit and in use

All data stored or transmitted within the Keep are encrypted at rest and in transit by
default; redeployment of Keep is trivial, but migration of it is not allowed.

• Auditability, open source and open standards

Enarx code is open source, uses well-known open standards and is split into independent
components to be easily audited, making everyone able to tailor it to their needs.

• Memory safety

Enarx is written in Rust, a programming language that enforces memory safety to reduce
memory failures; every exception to this policy needs to be justified.
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• No backdoors

The Enarx project founders and core team believe that backdoors 2 in software, firmware
or hardware should not be employed. Plage to resist insert into any aspect of Enarx.

4.3 Architecture

One of the key design decisions of Enarx’s project is to support TEEs on multiple silicon vendor
architectures and run the workload on whatever platform. Moreover, Enarx gives the way to
write the application to be run in whatever programming language thanks to the support of the
WebAssembly instruction format.

To do what was mentioned above, Enarx provides four layers in the run-time stack crossed by
the Enarx Keep logic; from the lowest up, they are:

1. a Loader or VMM (Virtual Memory Manager);

2. a Linux microkernel (also called “shim”, which highly differs between process-based and
VM-based TEEs);

3. a WebAssembly run-time (WASM);

4. a WebAssembly System Interface implementation (WASI).

All the run-time stack layers mentioned above are cryptographically measured and checked
before each deployment of an application inside the Keep. However, the run-time stack also
includes the CPU and its firmware, the Host kernel and the application itself, as shown in figure
4.2. Each layer is associated with a specific trust domain, in particular:

• the CPU and its firmware must be trusted to perform operations, their validity is checked
cryptographically at run-time as they provide the hardware root of trust for the entire
architecture;

• the kernel provided by the Host machine is untrusted because it is under the control of the
Host’s owner;

• in VM-based TEEs (like SEV-SNP), the VMM (or hypervisor) of the platform is untrusted
as well as the Loader in process-based TEEs (like SGX), because under the control of the
Host’s owner;

• the shim is a Linux microkernel provided by Enarx and trusted, it performs standard kernel
operations;

• the WASM run-time provides the run-time for the application within the Enarx Keep, it is
provided by Enarx and trusted;

• the WASI is an interface for WebAssembly applications running on server-type systems, it
is trusted and provided by Enarx;

In summary, Enarx (release 0.7.1) is made up of four different binaries:

• the main Enarx binary, which makes available Enarx’s CLI (Command Line Interface)
and the launcher of shims;

• the SGX shim (inside the Enarx Keep);

• the KVM shim (inside the Enarx Keep), which works with VM-based TEEs;

• the WASM runtime (inside the Enarx Keep).

2Backdoor: hidden part of code which permits to bypass authentication or encryption and obtain access to
privileged information.

31



Enarx

Trusted via 
Measurement

Distrusted

Root of Trust

Figure 4.2. Enarx stack layers. On the left side is an example of Intel architecture with pro-
cess-based SGX, and on the right side is an example of AMD architecture with VM-based SEV
(source: [26, Sez. Docs, Technical Overview]).

4.4 Runtime

This section focuses on Enarx’s runtime, giving an introduction to WASM JIT3 run-time and
WASI APIs as mentioned above analyzing the architecture of the Enarx framework. Enarx chooses
the combination of WASM and WASI to achieve portability and isolation. Specifically, the WASM
virtual machine provides isolation to the Host machine from the Guest workload, whereas the TEE
guarantees the isolation of the Guest from the Host.

4.4.1 WASM: WebAssembly run-time

WebAssembly is a binary instruction format for a stack-based virtual machine, designed to be a
portable compilation target for programming languages, permitting the deployment of client and
server applications on the web. Inside all systems which have a WASM virtual machine runtime,
a WASM application will run in the same way and it does not need to be recompiled to run on
different platforms. WebAssembly main objectives upon which it is designed are [27]:

• to be a memory-safe execution environment;

• to be easily debuggable and open-source;

• to be efficient and fast with a stack machine encoded in a size and load-time efficient binary
format;

• to be part of the open web platform but also runnable on non-web environments.

Specifically, Enarx’s run-time leans on a standalone WebAssembly run-time project called
Wasmtime, carried out by “Bytecode Alliance” [28]; Wasmtime supports a wide set of languages,
and it is built following the same design goals as WebAssembly.

Wasmtime owes its performance to Carnelift, a code compiler backend that quickly generates
machine code at runtime or ahead of time. Wasmtime’s development is strongly focused on
correctness and security, this is facilitated by Rust’s runtime (since Wastime is written in Rust),
careful review via an RFC process, and 24/7 fuzz testing of new features implemented. Wasmtime
can be configured to provide fine-grained control over settings like CPU and memory consumption.
It supports a rich set of APIs to interact with the host environment through the WASM standard.

3Just-In-Time compilation: is a compilation of code during execution of a program rather than before execution.

32



Enarx

4.4.2 WASI: WebAssembly System Interface

The WebAssembly System Interface is a proposed standard set of APIs to give WASM applications
standardized access to a few operating-system-like features. The WASI subgroup developed them,
as part of the WebAssembly Community Group. In the spirit of WebAssembly high-level goals,
WASI aims to [29]:

• define a set of portable, modular and runtime-independent APIs which can be used by
WebAssembly code;

• extend API designs with documentation and tests;

• support compatibility with existing applications and libraries;

• support portability with APIs that can run across a diversity of engines when feasible;

4.5 External Components

Following the paradigm of the minimal trust computing base and relationship, Enarx does not
need a wide range of components to work properly. In addition to the Enarx core, the Enarx
WASM runtime and WASI APIs are two fundamental components that have been discussed in
the previous sections but are not sufficient to comply with the requirements for which Enarx has
been designed.

The leading Enarx business is the attestation of the hardware which runs the Enarx Keep
and the measurement of the Enarx runtime. Moreover, the Enarx project wants to provide a
repository service where workloads are stored and can be repeatedly run on a host machine able
to contact the repository. These two features are carried out by two outer services, Steward and
Drawbridge, provided by Profian, the company custodian of the Enarx project.

4.5.1 Drawbridge

The Drawbridge is a component that acts as a registry storing workloads that will be executed
inside Enarx Keeps, helping their deployment on Keeps and ensuring their integrity check; it is a
required component of the overall architecture though Enarx permits direct uploading workloads
inside a Keep bypassing the Drawbridge.

The overall flow starts uploading a workload inside the Drawbridge by a Publisher user as
described in figure 4.3, the workload can be published as a public or private workload. The
Publisher could sign the workload with its private key wsigkey. Then the Drawbridge stores the
workload received and generates:

• its signature of the workload;

• the Publisher’s public key used to sign the workload (wsigkey);

• the digest of the workload (wdig);

• a token linked to the workload (dtoken);

• the workload identifier (slug).

If the workload is successfully uploaded, the Drawbridge sends back to the Publisher the
following information: the slug, the dtoken (only with private workloads), and the wdig. Right
now the Publisher can share the received information with the Host out of band, allowing the
Host to download the right workload from the Drawbridge in future, only showing a certificate
released by the Steward after the attestation phase.
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Publisher

Prepares a workload 
on a local filesystem.

Stages workload , 
optionally provides his 
signing key - wsigkey.

[opt] Signs the 
workload with wsigkey.

Drawbridge

Upload workload using Publisher’s credentials.

Stores the workload. 
Generates its own 

signature, wdig and 
dtoken.

Publisher
Drawbridge

Success + slug + dtoken + wdig

Figure 4.3. Communnication schema between Publisher and Drawbridge during workload
upload on the Drawbridge (source:[30]).

4.5.2 Steward

The Steward is a key element of the Confidential Computing infrastructure adopted by Enarx.
The fundamentals of Confidential Computing are achieved when the Enarx runtime (with We-
bAssembly) deployed into a TEE is assessed before a workload is released into the Enarx Keep
from the Drawbridge. As a remote attestation service, Steward must perform evidence verifica-
tion and assess the hardware’s trustworthiness; running workloads without attestation validation
violates the Zero Trust basics [31]. Steward has been devised to be modular, pluggable and
scalable:

• Steward adopts a modular design to process types of evidence from different hardware
platforms because the architecture of the TEE considerably differs between hardware ven-
dors;

• Steward utilises a pluggable architecture permitting the addition of new evidence informa-
tion to the attestation payload and the support of new TEEs;

• Steward receives a request from a client and performs an assessment, so it is lightweight and
scalable relative to the request load.

Perform hardware and runtime attestation is not the only Steward’s responsibility. Steward
also acts as an interpreter translating vendor-specific attestation evidence into a format trusted by
standard services on the Internet (e.g. X.509 standard format of public key certificates), acting as
a Certification Authority that assesses the attestation evidence and issuing a public key certificate
based on the evidence. The certificate is sent back to the Enarx Keep as requested. It will be used
in authenticated data exchange with other services (e.g. to contact the Drawbridge and retrieve
the workload afterwards the attestation of the Keep’s TEE and Enarx binary). Furthermore,
an external Relying Party (RP) is highly recommended to assert the certificates provided by the
Steward.
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4.6 Overall Provisioning Flow with Attestation

This section summarises the Enarx provisioning and attestation flow discussed in previous sections,
which is outlined in figure 4.4. All the involved participants in the Enarx flow have been introduced
and illustrated beforehand, in short, they are:

• Host: the system where the Confidential Computing workload will be deployed;

• Guest: the Enarx software stack that would run a workload, also identified as the Enarx
Keep;

• Drawbridge: the repository where workloads are stored;

• Steward: the attestation service and certification authority;

• Relying Party: software component which asserts the certificate a Steward provides to a
Guest.

4.6.1 Configure a Host to run a Guest

The Host configuration is vendor-specific, based on the hardware platform of the Host machine.
First of all, the Host kernel must be configured to support the TEE and the Host machine must
be configured to fetch and cache vendor-specific information useful for the further attestation
process. Secondly, the Enarx binaries can be installed on the Host. They are composed of:

• the Enarx CLI (Command Line Interface) that runs on the Host, but outside of the Keep;

• the Enarx run-time stack that runs inside the Keep;

• the utility to fetch vendor-specific hardware data and certificates.

4.6.2 Publisher stages a workload

This sequence starts with the Publisher who uploads a workload into the Drawbridge. In the
end, the Publisher receives by the Drawbridge the result of the upload: the slug, the dtoken, the
wdig, and the wsigkey.

4.6.3 Deploy a workload

This phase starts from the Enarx CLI on the Host, by invoking the deployment of a workload
using the slug and other data received by the Publisher from the Drawbridge in the previous
stage. Through the slug and the dtoken, the Guest can retrieve the right workload metadata
from the Drawbridge, like:

• the Steward URL to contact;

• the wdig;

• the wsig, the workload signature (includes the Publisher’s wsigkey used to create the
signature);

Right now the Guest can validate the workload metadata by:

• verifying the wdig and wsigkey equality with those received out of band by the Publisher;

• verifying the wsig.

The download of the workload and its execution will be done only after the acquisition of a
certificate by the Guest from the Steward.
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4.6.4 Acquire a certificate

During this stage, the Guest collects the CPUmeasurement from the hardware, the hash of Keep in
memory, and the hash of the signing key of the Enarx binary (attached with the Enarx installation
package); everything is needed to assemble an attestation report (detailed in subsection 5.2.1).

Once the attestation report has been constructed, Enarx receives it as an opaque blob from
the CPU. From this moment on, a CSR (Certificate Signing Request) should be composed by the
Guest and sent to the Steward because Enarx intends to obtain a digital identity certificate from
the Steward to identify the Enarx Keep. A digital identity certificate has an associated key pair,
so the Enarx Keep generates a key pair; in particular, AMD SEV-SNP uses an Elliptic Curve
NIST P384 (SECP 384 R1) and Intel SGX uses an Elliptic Curve NIST P256 (SECP 256 R1).
Once the key pair has been generated, the CSR can be finally made up of:

• the hash of public key of the previous generated key pair (to perform the hash SGX uses
SHA256, while SEV-SNP SHA384);

• the platform technology (AMD or Intel);

• the attestation report received by the CPU as an opaque blob.

The attestation report generation and the process of remote attestation through the Steward
will be discussed in the next chapter 5.

4.6.5 Download and execute the workload

After the Guest acquires a certificate from the Steward, it is used to authenticate the Guest from
the Drawbridge. If the authentication succeeds, the Guest can fetch the workload content from
the Drawbridge and run it.

4.6.6 Attest to Relying Party

Although this phase is not mandatory, it is highly recommended to make the workload connect
to the RP to validate the Steward certificate issued before. This represents the final step of the
flaw that verifies nothing has been tampered with in the previous phases.
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Figure 4.4. Overall Enarx provisioning schema with attestation and all parties involved (source: [30]).
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Chapter 5

Remote Attestation in Enarx

Nowadays network infrastructures are increasing significantly in several business areas, introducing
a vastness of connected devices. Unfortunately, low-end device manufacturers do not prioritise
security due to cost, size and power constraints. Instead of trying to prevent attacks on a device,
checking whether the device has been tampered with is preferred.

According to the Trusted Computing Group (TCG), the concept of attestation must be lead-
ing in any platform defined as trusted, or rather trustworthy [32]. The attestation process is
fundamental for a trusted platform, allowing transferring the integrity report of a platform (the
Requestor) to the Verifier. When the attestation process requires a network protocol for commu-
nication, attestation is named Remote Attestation (RA): “A distinct security service allowing a
trusted party, called verifier, to validate or reason about the internal state (including memory and
storage) of a remote untrusted party, possibly infected with malware, called the prover.”[33].

5.1 Remote Attestation principles and limitations

Remote Attestation protocols and architectures, summarily described in figure 5.1, must be
founded and evaluated according to five strong principles, which are [34]:

• Fresh information: assertions about the Prover should reflect the state of the Prover at
runtime;

• Comprehensive information: attestation mechanism should be able to deliver compre-
hensive information about the Prover;

• Constrained disclosure: the Prover should be able to enforce policies, managing which
measurements are sent to each Verifier and reducing the lack of information regarding the
Prover itself;

• Semantic explicitness: the semantic content of attestation should be explicitly presented
in logical form, this helps to identify the Prover and the Verifier to infer outcomes;

• Trustworthy mechanism: the Verifier should obtain evidence of the trustworthiness of
the attestation process on which they rely.

In particular situations, it may be sufficient to fulfil these principles only partially and each
system may require a limited form of evidence about the Prover. This led to a variation in how
systems meet principles. Remote Attestation can be classified into three different RA categories,
which are:

• hardware-based RA: to achieve attestation it leverages on chips, including TPMs, and
dedicated CPU architectures (e.g. SEV, SGX, TDX);
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• software-based RA: does not rely on hardware, the attestation process is run from memory
to validate the software state of the system without relying on trustworthy hardware, but
this limits the security achieved;

• hybrid RA: designed as a combination of software and hardware-based RA, to combine
the security guarantees offered by the hardware-based RA, with the lower implementation
cost of the software-based RA.

Verifier

Verifier

Prover

Prover

1. Request

3. Report

2. Authenticated 
attestation report

4. Verify the report 
against the golden 
values of the Verifier

Figure 5.1. Brief Remote Attestation (RA) protocol schema.

Although Remote Attestation techniques can enforce a higher level of security inside IT sys-
tems, RA is not exempt from attacks and limitations. Remote Attestation protocols are usually
vulnerable to Time-Of-Check-To-Time-Of-Use (TOCTTOU) attacks and DoS [35].

The TOCTTOU attack is performed by an adversary who has compromised the node to
attest and record the right code image. At the moment in which the compromised node receives
an attestation challenge request, the adversary returns the previously recorded correct code (time-
of-check); however, the executed code is different from the code checked (time-of-use) because the
node has been compromised. Usually, the TOCTTOU attack is possible when code is loaded from
low-speed storage to high-speed memory. To fix this problem a nonce can be generated by the
Verifier, and sent to the Prover ; the nonce will be included by the Prover in the digest of the
attestation report.

Since Remote Attestation requires a network protocol for communication, RA is vulnerable
to DoS attacks. A malicious actor may send tons of fake attestation responses to the Verifier,
affecting the service by slowing down it.

5.2 Enarx-based Remote Attestation

Enarx aims to achieve Confidential Computing fundamentals, so it should guarantee the following
properties to perform attestation:

• integrity of application data and code: without this guarantee, the code usage of the
data could be changed by an attacker after the attestation process;

• confidentiality of application data: without this guarantee, an attacker could steal data
and use it for different purposes.

These are the minimum requirements in the Confidential Computing definition, and the system
that provisions these properties is the TEE. At present, attestation technologies provide a single
primitive for conveying how data will be used by the code: measurement.
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Once Enarx has been run, it requests the deployment of a new TEE to the underlying chipset
(the Host), and then the Enarx core and runtime are added to the TEE’s memory creating the
Keep (the Guest). The attestation phase starts now, Enarx does not perform attestation of the
Keep but collects data from the CPU, and sends it to a Steward intending to acquire a certificate.

5.2.1 Attestation Report

Until now Enarx supports two TEEs, SGX2 by Intel and SEV-SNP by AMD. The CPU measure-
ment differs highly between the two technologies, making measurements difficult to be consistent.
The measurement of the CPU requested by the Guest to the Host firmware includes a set of CPU
information like:

• bits of the architecture;

• version, model and stepping of the CPU;

• version of the firmware.

The Steward needs assurance that the CPU measurement was produced by the hardware that
instantiated the TEE, not by fraudulent software or hardware. It is still insufficient to receive
a signed attestation report with CPU measurements only; an attacker can copy the attestation
report and reuse it, so it is necessary to bind the attestation report to some specific data produced
inside the Keep. To do that, information related to the Enarx runtime and binary must be added
to the attestation report:

• hash of the Keep in memory before adding the workload;

• hash of the signing key which signed the Enarx binary (the signature file is provided with
each release of Enarx).

Each TEE technology has its steward.toml configuration file on the Steward side, through
which it is possible to customize what will be checked inside the CPU quote from the attestation
report. The objectives of the attestation configuration are:

• white-list trusted, signed release versions of Enarx;

• black-list compromised or obsoleted Enarx versions;

• black-list compromised or obsoleted CPU firmware versions.

Lastly, the final attestation report is signed by the key pair of the CPU which set up the TEE.
For the Steward to trust this key pair, its public key is signed by a hierarchical key certificate
structure with the root certificate provided out of band by the hardware manufacturer. The
Steward will be able to establish trust that a legitimate CPU generated the attestation report by
validating the hierarchical certificate structure.

As soon as the attestation report has been signed, it is embedded as an extension inside a
CSR (Certificate Signing Request) in PKCS10 format, along with the public key of the Enarx
Keep (which needs to be certified by the Steward). The CSR is sent to the Steward through an
HTTPS channel. The Steward component is already equipped with a TLS certificate to instantiate
HTTPS communication. The Steward’s URL to contact can be specified inside the Enarx.toml

of a Rust workload project or provided by the Drawbridge in which the workload is stored. The
overall attestation report creation and related CSR are described in figure 5.2.

40



Remote Attestation in Enarx

Hardware Attestation Service

Manufacturer Root Certificate

Intermediate Cert(s)

signs

Host

CPU Firmware

CPU Key Pair
signs

Enarx Keep (Guest)

TEE Measurement

1. creates 
and 

measures

2. signs

Attestation Report

- CPU Measurement
- Attestation Data

4. returns

Steward

CSR: Attestation 
Report + pubkey

5. provides 
as CSR

Certificate

7. issues

6. validates

3. requests

Relying Party

Certificate

9. provides

6. validates

Legend

HTTPS:
Optional:

8. sends 
back

TEE

WASI

WASM runtime

shim

Figure 5.2. Overall creation of attestation report, CSR and following validation
by the Steward (source: [36])

5.2.2 Validation of the Attestation Report

The validation of an attestation report is a complex task to do. It requires a careful analysis of a
signature hierarchy, moreover, managing cryptographic measurements is error-prone. Neverthe-
less, the attestation validation needs to be simple and auditable. As explained in section 4.5.2, the
component in charge of doing so is the Steward, which acts as a universal interpreter processing
raw attestation data by the Enarx Keep and producing a conventional X.509 certificate easily
evaluated by existing tools and protocols.

As explained above, the attestation report contains several information and some factors can
be configured using the steward.toml configuration file. Regardless, there are non-negotiable
validation aspects:

• ensure proper algorithms: Elliptic Curve NIST P256 for SGX, Elliptic Curve NIST P384
for SEV-SNP; any other algorithm is evidence of tampering with the data;

• ensure the report is signed with a valid signature;

• ensure the signature validates with the CPU’s public key;

• ensure the CPU’s public key is part of the vendor’s certificate chain;

• ensure that the CRL from Enarx is signed by the vendor’s private key;

• ensure CPU’s certificate has not been revoked by the vendor;

• ensure the CRL is not expired;

• ensure the firmware information blob does not mention CPU vulnerabilities forbidden inside
the steward.toml file;
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• ensure reserved fields in the attestation report are zeroed;

• ensure certain fields, set by Enarx in the report, are not zero (these may be checked using
the steward.toml file);

• ensure that KVM and debug mode of SGX and SEV are only allowed if Steward is in debug
mode;

• only on AMD platforms with SEV-SNP, ensure the CPU is not using guest migration (mov-
ing of encrypted guest VMs between hosts).

Since Enarx is a developing project, the Steward is working but it still has some missing
attestation features which may be implemented in the future.

5.3 Limitations

Enarx works on Confidential Computing technologies which are constantly developing, so its
components are subject to be regularly improved and fixed; as an open-source project, Enarx has
a public list of issues to be solved to enhance the overall project.

5.3.1 Lack of supported TEEs

Currently, the major limitation of Enarx is related to the number of TEEs supported. Enarx just
supports two TEE technologies by Intel and AMD, respectively SGX2 and SEV-SNP. Because of
this, the Enarx project wants to expand the Enarx core and the Steward to support additional
TEE technologies (e.g. RISC-V’s Keystone, ARM’s CCA, IMB’s Power PEF).

5.3.2 Remote Attestation shortcomings

Remote Attestation (RA) requires trusting a Certification Authority (CA) to issue a certificate
and this pattern is done through the Enarx core and the Steward (which acts as CA) inside the
Enarx RA scenario. Trusting a new CA can be problematic and should not be taken lightly, the
CA can be tampered or a bad actor can abuse the relationship.

A second limitation of the Enarx RA concerns what the Enarx core includes in the attestation
report. Information about the hardware is included in the attestation report by Enarx, but in
the future, the Enarx project aims to reduce the leak of private CPU information necessary to
perform the attestation. Enarx developers are worried about the leakage of information because
it could allow someone to track an application online.
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Trust Monitor (TM)

Developed by the TORSEC research group of Politecnico di Torino, the Trust Monitor (TM) is a
system that aims at managing the Remote Attestation of Virtualized Network Functions (VNFs),
in a SecAAS scenario. It was presented at the “IEEE Conference on Network Softwarization”
[37] in 2019. The TM has been developed to be a stand-alone element in the Network Function
Virtualization Management and Orchestration (MANO) [38].

6.1 Architecture

The TM has been conceived with a modular architecture, whose schema is shown in figure 6.1,
which provides the below-listed functionalities:

• integrity verification of heterogeneous nodes;

• notification and reporting of integrity status about the infrastructure to external entities;

• audit of Integrity Verification logs about the infrastructure.

Specific sub-components called Attestation Drivers perform the attestation of the host inside
the infrastructure. Attestation Drivers can be developed as plugins of the TM, permitting the
instantiation of different remote attestation flows. This method permits the TM to manage
different attestation host Root of Trusts (RoTs) (e.g. AMD SEV-SNP, Intel SGX or TDX, TPM),
not being restricted to just one vendor platform. Right now, several attestation drivers have been
developed for the TM:

• Open Attestation (OAT): a framework which allows the integrity verification of NFVI nodes
deployed as Docker [39] containers exploiting the DIVE technology [40] (it supports only
version 1.2 of the TPM);

• Open Cloud Integrity Technology (OpenCIT): allows attesting only the nodes of NFVI and
it supports both TPM 1.2 and TPM 2.0;

• Hewlett Packard Enterprise Switch (HPESwitch): sed for attestation of switches and con-
trollers;

• Keylime: a framework for bootstrapping hardware-rooted cryptographic identities for cloud
hosts and their periodic attestation (its driver has been proposed with the newer TM 2.0).

The TM uses a set of databases (e.g. the Whitelist DB, the Audit DB) to store plenty of data
like whitelists, attestation reports, policies, and other relevant information. To interact with the
TM, some Attestation and Management APIs are exposed, permitting the registration of nodes
and starting the attestation. In addition, pluggable Connectors are used to Notifing and Reporting
functionalities of interaction between components of the SecAAS scenario.
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Figure 6.1. Trust Monitor architecture (source: [37])

6.2 Trust Monitor 2.0

In the last years, a newer version of Trust Monitor was proposed. Version 2.0 also permits the
TM deployment in cloud scenarios with lightweight virtualization, introducing the interaction
with a container orchestrator (e.g. Kubernetes), providing attestation for applications deployed
as clusters of containers. Other updates in this version are related to a custom version of the
Keylime attestation framework [41], and the implementation of a Whitelist Web Service that
permits the management of hosts and container whitelists. A set of APIs is exposed to interact
with the TM itself.

6.2.1 Architecture of the Trust Monitor 2.0

The new TM architecture maintains the basic structure of the previous one but makes the TM
more independent from the attestation technologies used. To achieve this result, some new com-
ponents have been added to the TM architecture, represented in figure 6.2.

The innovation in Trust Monitor 2.0 makes it more independent from attestation technologies
with which the TM interacts. This objective is obtained by moving the attestation logic of the TM
inside Attestation Adapters, which are comparable to the previous Attestation Drivers. Thanks
to this change, the TM is unaware of which attestation technology is used, it simply contacts the
proper adapter and then it manages the received result. The attestation results received from each
entity are aggregated in a unique report for each entity with an active remote attestation. The
attestation reports are saved inside the reports DB of the TM. The described process is realized
thanks to message queues, and sorting of attestation results coming from different attestation
technologies. Thanks to message queues, the TM core application can obtain information in an
asynchronous way that allows processing of other requests during the waiting time.
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Figure 6.2. New Trust Monitor architecture (source: [38])

6.3 Components of the TM 2.0 architecture

In the following sub-section, the entire set of components of the TM 2.0 architecture will be
presented and described.

6.3.1 TM Core Application

The TM Core Application is the leading component of the TM architecture, it manages the high-
level logic and all the requests about the attestation process, but not the direct overall attestation
process. When the TM Core receives a request for remote attestation, it contacts the proper
Database Connectors to retrieve necessary data and passes them to the appropriate Attestation
Adapter, which will manage the remote attestation process.

The TM Core has quite simple logic because the purpose of the TM 2.0 project is to move the
attestation logic on adapters, maintaining the TM Core Application light and flexible.

6.3.2 Attestation Adapters

The flexibility in the management of the attestation process is obtained thanks to Attestation
Adapters, which is the key to the abstraction of the new TM 2.0.

The Attestation Adapter connects an attestation service with the TM Core Application but
without giving the TM any information about the attestation framework used. The idea is to
have adapters with a fixed structure to expose to the TM Core a common interface to the specific
attestation service, this permits not exposing anything to the TM about the implementation of
the attestation framework. Each adapter can be developed with the best approach in compliance
with the specifications of the attestation service.

The flexibility given by the Attestation Adapters is also achievable thanks to several metadata
fields stored inside databases. This information allows for saving custom data that is obscure to
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the TM but used by adapters. Moreover, the layout of whitelists is customizable because different
attestation services can support whitelist structures.

6.3.3 Connectors

The Connectors are interfaces used by the TM Core to interact with all other architecture compo-
nents, permitting the exchange of data between the TM Core Application and other components.

The Database Connectors permit the TM Core to query databases, exchanging data with
them. In this way, the Tm Core can be unaware of the technology used to contact the databases.
A more significant role is held by Adapters Connectors, which are designed to interface the TM
Core Application with attestation adapters necessary to perform the attestation of an entity.
All the attestation adapters are declared inside a configuration file and dinamically loaded when
needed, making the system easily configurable.

6.3.4 Databases

Databases are essential components of the TM architecture, they store information that permits
the validation of the integrity of infrastructure’s entities and allow saving reports to be able to
perform analysis with them. The Trust Monitor uses five different databases.

Instances database

It is a relational database which stores information related to the entities of the infrastructure
that will be attested. It contains just one table called “entities” with the following attributes:

• entity_uuid: it is the internal identifier primary key of the table and is assigned from
outside during the registration of a new entity of the TM;

• inf_id: it allows to identify the infrastructure to which the entity belongs;

• atte_tech: it is a list of attestation technologies that will be used to verify the integrity of
the specific entity (more than one attestation technology can be used for each entity);

• name: name of the entity assigned during its registration;

• external_id: it is an identifier of the entity external to the TM, it permits the definition
of an identifier that can be used for example by an attestation technology;

• type: it represents the type of entity (e.g. node, VM, container, etc.);

• whitelist_uuid: it is an external reference to the whitelist DB;

• child: it is a list of entity_uuid values and permits to know entities contained in another
one;

• parent: opposite to the previous one, it represents the entity_uuid of the entity that
contains the represented objects;

• state: it represents the state of the entity in the TM to be able to understand which process
is running related to the specific entity;

• metadata: it is crucial because it represents the flexibility of the TM, storing custom in-
formation interpreted by the TM as a blob (Binary Large Object) and used by attestation
technologies to work correctly.
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Whitelist database

It stores reference values for the remote attestation. These values are not directly used by the TM,
but they are retrieved and sent to the respective attestation technology. The whitelist database
is a NoSQL database, which allows storing whitelists with different structures depending on the
attestation technology used. The NoSQL document of a specific whitelist contains two fields:

• metadata: which permits to define some custom values;

• whitelist: contains the reference values in the most appropriate structure compliant with
the attestation service.

Report database

The Report database allows storing reports produced by the TM during the process of aggregation
of attestation results received from attestation frameworks through a message queue. Thanks to
this database it is possible to do a historical analysis of attestation results. This is a NoSQL
database, where a document that stores a report contains:

• time of creation;

• state of the entity at that moment; list of attestation results for every attestation technology
performing integrity checks on that particular entity.

Verifier database

The Verifier database is destined to store data about the attestation technology of each infrastruc-
ture operated by the system. Only one field is associated with an attestation technology, which
is metadata. This attribute allows the storing of custom information about a Verifier, which
will be used during the remote attestation workflow. The same as the metadata attribute of the
Instances database, the metadata attribute of this database is not interpreted by the TM core
application but only by the proper adapter, which will use the information to interact with the
specific attestation framework.

Policy database

The Policy Database permits storing policies and bound them with entities. Policies are used
during the aggregation of the attestation report. In this way, it is possible to have different
results about the trustworthiness of an entity depending on the policies specified.

6.3.5 Queues

Two types of queues are used inside the TM architecture: the Single Result Queue and the
Aggregate Report Queue.

The first one is used to collect attestation results coming from attestation technologies through
the adapters. This permits the TM Core Application to receive attestation results asynchronously,
letting optimized management of them for the creation of aggregate reports following policies. A
single queue will be used for each entity supervised.

The second makes available the aggregated reports for live consultation, giving the customer
the possibility to develop a custom consumer to analyze them and take action accordingly.
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6.4 Interfaces and high-level workflow

Adapters permit communication of the Trust Monitor with the attestation technologies and the
APIs Manager. The APIs manager has the task of serving requests coming from an external sys-
tem, making available several operations to perform remote attestation processes. The operations
permitted are:

• register entity: allows to store a new entity inside the Instances database, specifying a set
of information needed for the following attestation of the entity;

• edit entity: allows to edit one or more attributes of an entity stored inside the Instances
database;

• delete entity: allows to delete an entity from the Instances database;

• add whitelist: permits saving a new whitelist to the Whitelist database, the whitelist will
be linked to a distinct entity during the registration of the entity or through edit operations;

• delete whitelist: permits deletion of a whitelist from the TM database;

• add verifier: permits the addition of new information needed by a specific attestation
framework, but does not give any information about the adapter to the TM;

• delete verifier: permits the deletion information needed about a specific attestation frame-
work, but the related adapter will still be loaded inside the TM;

• add policy: permits the addition of a new policy for an entity which will be used during the
creation of a report when attestation results will be received from the attestation service;

• delete policy: removes a policy for a specific entity from the Policy database;

• start attestation: an operation that permits to launch the attestation process of a specific
entity;

• stop attestation: an operation that permits stopping the attestation process of a specific
entity on the TM and the attestation service.

The launch of an attestation procedure is the main operation performed by the trust monitor.
The entire workload of this operation is described in the figure 6.3, and it is carried out this way:

1. the flow begins by contacting the APIs Manager which communicates with the TM Core;

2. the TM Core retrieves the data needed to start the remote attestation process;

3. with the necessary data, the TM Core contacts the Adapters’ Connector which selects the
proper Attestation Adapter;

4. once contacted, the Attestation Adapter starts its communication with the framework;

5. the results of the attestation process are published inside the Single Report queue, which
makes them available to the TM Core;

6. the TM Core reads the attestation results and periodically produces a report aggregating
all the results;

7. aggregated reports are published on the Aggregate Report queue and stored in the Report
database, permitting to perform historical analysis on all reports collected from a specific
attestation service.
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Chapter 7

Extending the Enarx Keep’s
Chain of Measurement to the
WASM application

In chapter 4 and 5 the features and actors of the Enarx framework and its remote attestation
have been exposed. Excluding the Drawbridge as an actor of the Enarx deployment model of a
WASM application inside a Keep, the Enarx-based remote attestation performed by the Steward
only attests to the Keep. The WASM application is loaded and run inside the Keep only after a
successful attestation of the Keep. According to this model, the Enarx Keep is trustworthy after
the remote attestation, but nothing proves the authenticity of the WASM application. Following
the idea conceived during the development of this thesis work, this chapter focuses on extending
the chain of measurement to the WASM application, to have proof of authenticity about the
WASM application before running it inside the Keep.

7.1 The problem of untrustworthy WASM application in-
side the Enarx framework

As mentioned above, bypassing the Drawbridge during the deployment of the Keep does not
give any guarantee about the trustworthiness of the WASM application. In this scenario, the
deployment schema described in figure 7.1 is the following:

1. a new instance of a Keep is requested through the Enarx Command Line Interface (CLI)
with the command:

$ enarx run <application_name>.wasm

2. Enarx instantiates a new TEE instance (SGX2 or SEV-SNP based on the underlying plat-
form);

3. the WASI, the WASM runtime and the shim which constitute the logic of the Keep are
loaded inside the TEE’s memory;

4. the Keep requests the attestation report to the CPU and creates a public key, these are
embedded inside a CSR;

5. the Steward validates the attestation report and if it is valid a certificate is provided to the
Keep;

6. once received the certificate, the Enarx Keep is considered trustworthy and the WASM
application specified at the first step is run.
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In a Cloud Computing scenario, the cloud provider controls the machine where the WASM
application will be run. The WASM application to run inside the Keep can be forged before the
deployment of the Keep by the cloud provider itself or by a malicious software component running
on the machine. The lack of trustworthiness on the cloud provider machine originated the idea of
proposing an extension on the chain of measurement to the WASM application.
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Figure 7.1. Overall flow of Enarx deployment and Keep attestation without the extension of the
chain of measurement to the WASM application.

7.2 Proposed extension

The problem highlighted in the previous section leads to an extension of the Enarx binary able to
expand the chain of measurement to the WASM file. After a successful attestation of the Keep by
the Steward, the WASM bytecode loaded into the Keep should be measured and attested before
running it inside the WASM runtime. To do so, the Enarx binary should be modified adding the
logic able to measure the WASM bytecode and contact a proper attestation service. Moreover, a
new attestation service should be set up to perform validation of the measurement of the WASM
application done by the Keep. The attestation is performed by a specific attestation adapter of
the Trust Monitor (TM), its implementation will be defined in the next chapter 8.

The entire Enarx framework has been implemented using Rust programming language [42],
and its repository has the following structure:

enarx

crates

exec-wasmtime

sallyport

shared

shim-kvm

shim-sgx

docs

helper

release

src

target

tests

Since the Keep wants to contact the Trust Monitor to check the WASM bytecode measurement,
it is necessary to modify the code to ensure that the user can specify the TM URL to contact
inside the Enarx.toml (as done for the Steward). Inside /crates/enarx-config/src/lib.rs

file there are the definition of the pub struct Config and its implementation of the Default

trait, these should be adjusted as shown in listing 7.1 by adding:
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• pub tm: Option<Url> as new field of the pub struct Config structure;

• tm: None as default value of the pub struct Config structure;

1 pub struct Config {

2 /// An optional Steward URL

3 #[serde(default)]

4 pub steward: Option<Url>,

5
6 /// An optional Trust Monitor URL

7 #[serde(default)]

8 pub tm: Option<Url>,

9
10 /// The arguments to provide to the application

11 #[serde(default)]

12 pub args: Vec<String>,

13
14 /// The array of pre-opened file descriptors

15 #[serde(default)]

16 pub files: Vec<File>,

17
18 /// The environment variables to provide to the application

19 #[serde(default)]

20 pub env: HashMap<String, String>,

21 }

22
23 impl Default for Config {

24 fn default() -> Self {

25 let files = vec![

26 File::Stdin(Default::default()),

27 File::Stdout(Default::default()),

28 File::Stderr(Default::default()),

29 ];

30
31 Self {

32 env: HashMap::new(),

33 args: vec![],

34 files,

35 steward: None, // TODO: Default to a deployed Steward instance

36 tm: None

37 }

38 }

39 }

Listing 7.1. pub struct Config and its Default trait extended to support the TM
URL from Enarx.toml

The second file which needs to be extended is /crates/exec-wasmtime/src/runtime/mod.rs.
Inside mod.rs file there is the implementation of the execute(package:Package)->anyhow::

Result<Vec<Val>> function shown in listing 7.2 (the full code is available in appendix B), which
is responsible for:

1. generating a key pair and the CSR which will be sent to the Steward;

2. getting the WASM bytecode and its configuration from the Enarx.toml configuration file;

3. contacting the Steward providing the CSR and obtaining a certificate chain back in case of
successful validation of the attestation report;

4. deploy the WASM runtime to load and run the WASM bytecode.
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1 pub fn execute(package: Package) -> anyhow::Result<Vec<Val>> {

2 let (prvkey, crtreq) = identity::generate()

3 .context("failed to generate a private key and CSR")?;

4 let Workload { webasm, config } = package.try_into()?;

5
6 let Config {steward, tm, args, files, env,} =

7 config.unwrap_or_default();

8
9 let cert_chain = if let Some(url) = steward {

10 identity::steward(&url, crtreq.clone())

11 .context("failed to attest to Steward")?

12 } else {

13 identity::selfsigned(&prvkey)

14 .context("failed to generate self-signed cert.")?

15 };

16
17 let certs = cert_chain.clone()

18 .into_iter()

19 .map(rustls::Certificate)

20 .collect::<Vec<_>>();

21
22 let mut config = wasmtime::Config::new();

config.memory_init_cow(false);

23
24 let engine = trace_span!("initialize Wasmtime engine")

25 .in_scope(|| Engine::new(&config))

26 .context("failed to create execution engine")?;

27
28 ...

29 }

Listing 7.2. Part of the execute(package: Package) function of
./crates/exec-wasmtime/mod.rs file.

As mentioned above, the WASM bytecode should be measured after the Steward call and
before initiating the WASM runtime (Wasmtime) environment. Consequently, the proposed
extension is inserted between lines 20 and 22 of the listing 7.2. The code added inside pub

fn execute(package: Package)-> anyhow::Result<Vec<Val>> is shown in the listing 7.3 (the
complete function with the provided extension is available in appendix B) and it executes the
following operations:

1. get the Trust Monitor URL (tm_url) from the struct Config;

2. parse the previously generated key-pair (prvkey) of type Zeroizing<Vec<u8>> into a
PrivateKeyInfo variable (pki);

3. get the algorithm used to generate the key-pair (ECDSA-P256-SHA256 for Intel platforms,
ECDSA-P384-SHA384 for AMD platforms);

4. get the hash of the webasm WASM bytecode (using SHA 256 for Intel platforms and SHA384
for AMD platforms)

5. perform the digest of the webasm WASM bytecode and then sign it (everything is done by
the pki.sign(&webasm, sign_algo) function at line 14 of the listing 7.3);

6. create an aggregate of byte (agg_data) as Vec<u8> and attach to it the number of bytes
of the signature (size_signature), the signature performed above (signed_hashed_wasm)
and the certificate of the Keep obtained from the Steward (cert_chain[0]);

7. at last, the Trust Monitor is contacted through identity::trust_monitor(&tm_url,agg_

data) (shown in the listing 7.4) which encloses the POST request sending agg_data to
tm_url.
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1 // Get the Trust Monitor URL

2 let tm_url = tm.expect("TM URL must be defined inside Enarx.toml");

3 println!("\nTM URL contacted: {}", tm_url.as_str());

4
5 // Get the PKI from the generated keypair in byte format

6 let pki = PrivateKeyInfo::from_der(&prvkey)

7 .context("failed to parse DER-encoded private key before sign the

wasm")?;

8
9 // Get the algorithm used to generate the PKI

10 let sign_algo = pki.signs_with()?;

11 println!("Key Algorithm: {:?}", sign_algo.oid);

12
13 // Digest sha256 of the wasm file

14 let platform = Platform::get().context("failed to query platform")?;

15
16 let mut hash_256 = GenericArray::default();

17 let mut hash_384 = GenericArray::default();

18 match platform.technology() {

19 Technology::Snp => {

20 hash_384 = Sha384::digest(&webasm);

21 println!("SHA384(wasm): {:x}", hash_384);

22 }

23 _ => {

24 hash_256 = Sha256::digest(&webasm);

25 println!("SHA256(wasm): {:x}", hash_256);

26 }

27 };

28
29 // Sign the .wasm with the PKI

30 let signed_hashed_wasm = pki.sign(&webasm, sign_algo)

31 .context("failed to sign the hash of the wasm file")?;

32
33 // Print the signature over the .wasm with

//ECDSA_P256_SHA256_ASN1_SIGNING | ECDSA_P384_SHA384_ASN1_SIGNING

34 println!("Size signature over digest(wasm): {}",

signed_hashed_wasm.len());

35 print!("\nSignature over digest(wasm): ");

36 for byte in signed_hashed_wasm.iter() {

37 print!("{:02x}", byte);

38 }

39 print!("\n");

40
41 // Create aggregated data bytes to send to the TM:

42 // agg_data:Vec<u8> {

43 // hash_dimension: byte

44 // size_signature: byte

45 // hash_of_wasm: bytes

46 // signature: bytes

47 // certificate_emitted_by_Steward: bytes

48 //}

49 // Multiple WASM files can be run from the same machine, so the TM needs

the hash to find it inside its list of WASM file hashes

50
51 let mut agg_data = Vec::new();

52
53 // Add the hash dimension
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54 match platform.technology() {

55 Technology::Snp => {

56 agg_data.push(48);

57 }

58 _ => {

59 agg_data.push(32);

60 }

61 };

62
63 // Add the size_signature

64 agg_data.push(signed_hashed_wasm.len().try_into()

65 .context("failed to convert form usize to u8")?);

66
67 // Add the hash of the wasm

68 match platform.technology() {

69 Technology::Snp => {

70 agg_data.extend_from_slice(&hash_384);

71 }

72 _ => {

73 agg_data.extend_from_slice(&hash_256);

74 }

75 };

76
77 // Add the signature

78 agg_data.extend_from_slice(&signed_hashed_wasm);

79
80 // Add the certificate of the Keep released by the Steward

81 agg_data.extend_from_slice(&cert_chain[0]);

82
83 let response_tm = identity::trust_monitor(&tm_url, agg_data)

84 .context("failed to attest signature of wasm to Trust Monitor")?;

85
86 println!("{}\n", response_tm);

Listing 7.3. Extension code added to execute(package: Package) function of
./crates/exec-wasmtime/mod.rs file

1 #[instrument(skip(agg_data))]

2 pub fn trust_monitor(url: &Url, agg_data: impl

3 AsRef<[u8]>) -> anyhow::Result<String> {

4
5 // Send to the TM the certificate previously

6 // retrieved from the Steward

7 let response = ureq::post(url.as_str())

8 .send_bytes(agg_data.as_ref())?;

9
10 let status_text = response.status_text().to_owned();

11
12 Ok(status_text)

13 }

Listing 7.4. Function which wraps the POST to the TM inside
crates/exec-wasmtime/src/runtime/identity/mod.rs

The POST request forwarded to the Trust Monitor by the identity::trust_monitor(&tm_

url,agg_data) function, may receive a successful response or not. If the signature over the
WASM bytecode is successfully checked, the Keep can proceed with deploying the WASM runtime.
Alternatively, an error is thrown (line 45 of the listing 7.3) and the Enarx Keep is aborted.

After the implementation of the proposed extension to the Enarx framework, the WASM
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application deployment schema inside the Enarx framework follows the new schema shown in
figure 7.2.
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Figure 7.2. Overall flow of Enarx deployment and Keep attestation with the proposed extension
of the chain of measurement to the WASM application.
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Chapter 8

Trust Monitor Adapter
implementation for the extended
Enarx framework

In the previous chapter 7, a new extension to the Enarx framework has been proposed to hash
and sign the WASM bytecode. This requires a new attestation service which will be presented in
this chapter alongside its integration with the Trust Monitor presented in chapter 6.

8.1 TM Enarx Adapter as Attestation Service for WASM
applications

To propose an integration between Enarx and the Trust Monitor, the remote attestation service
needed to check the trustworthiness of the WASM bytecode is developed inside a specific attes-
tation adapter of the Trust Monitor. Before requesting the deployment of the WASM file inside
Enarx, the Trust Monitor must be set and the proper attestation thread should be run through
the corresponding APIs.

8.1.1 Trust Monitor operations and APIs

After the Trust Monitor has been deployed (deployment instructions described in appendix A), it
is necessary to populate the TM database by invoking the following APIs (detailed in appendix
B):

• /entity: it permits registering, retrieving, deleting or modifying an entity in the Instances
database;

• /verifier: it permits management of the information stored in the Verifier database;

• /whitelist: it permits management of whitelists inside the related database and specifying
the list of trustworthy WASM file hashes;

• /attest_entity: this API called with the POST method permits running an attestation
thread and starting the remote attestation service inside the Enarx Attestation Adapter.

As described in the figure 8.1, the starting point of the attestation is a request received on the
POST attest_entity API. After, the TM core retrieves all the information about the entity, the
whitelist and the verifier, then launches a thread (Verify thread). The Verify thread launches two
other threads. The first one is the Kafka consumer thread that will execute the consumer which
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reads attestation results on the result_entity_{entity_uuid} topic and produces the reports.
The second one is the Attestation thread which executes the attest method of the adapter, in
this particular case, the Enarx adapter. Once the attestation is done, the attest function of
the Enarx adapter ends and the attestation thread terminates. Moreover, the Kafka consumer
thread has a stop event (stop_event), which will be set from the Verify thread at the end of
the attestation process and the Kafka consumer thread terminates too. At this point, the Verify
thread joins the Kafka consumer thread and terminates.

Main thread

.

.

.

POST attest_entity

start verify thread

save information about the 
attestation process (threads 

information)

.

.

.

Verify thread

start Kafka consumer 
thread

start attestation thread

wait attestation thread 
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the specific entity and produce reports 
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stop_event is set

Attestation thread
attest(entity, _steward, 

whitelist, _se, topic) 
implementation

the stop_event is set and the consumer 
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set the stop_event and 
join the Kafka consumer 

thread

the thread terminates

the attestation thread 
terminates

the WASM attestation server is 
run awaiting requests

the result of the WASM 
attestation is processed

Figure 8.1. Threads schema of WASM Enarx attestation inside the TM.

8.1.2 Attestation Service

After the launch of the Attestation thread, the attest function of the Enarx adapter is called
and the attestation server for WASM bytecodes is run (its hostname and port are specified inside
the config/config.ini file of the TM). The server has just two APIs:

• POST: it receives a blob of bytes with the signature over the WASM file and the certificate
of the Enarx Keep, then it performs the check over the signature and gives the result of the
attestation to the Kafka consumer of the Trust Monitor;

• GET: it is used exclusively to get the status of the server and see if it is online or not.

The server is designed to be on for a certain amount of time (the time can be specified through
the timeout parameter inside the config/config.ini file), handle only one request and then shut
down itself. As described in figure 8.2, the process flow of the attestation service after receiving
a POST request is the following (the full code of the Enarx adapter is listed in appendix B):

1. get the signature and the certificate from the blob of bytes received;
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2. check if the signature over the hash of the WASM bytecode (retrieved from the TM whitelist
database) is valid or not;

3. if the signature is valid, a positive response with 200 status code is returned to the Enarx
Keep, otherwise an invalid signature exception is thrown and a negative response is sent
back with 400 status code;

4. since one request has been received and processed, the server shuts down itself and the
Attestation thread can continue to process the result.

In case the server timeout expires before receiving any request, the server shuts down itself
specifying that the timeout is expired and no request has been received.

Internet

Enarx Adapter (Attestation 
Service)

2. Receives the blob of bytes from 
the Keep

3. Retrieves the signature over the 
WASM bytecode and the certificate 
from the Keep

4. Is the signature valid?

5. Invalid 
Signature 
Exception

5. Valid 
Signature

Response: 
200, 

Success!

Response: 
400, Bad 
Request!

6. Response 
back to the 
Enarx Keep

Enarx Keep

1. Sends the blob 
of bytes to the 
Adapter

Trust Monitor

Figure 8.2. Overall flow of the developed attestation service for checking the WASM bytecode.
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Chapter 9

Test and Validation

The chapter presents the results of the tests performed on the Enarx framework and the proposed
extension. Specifically, functional tests were performed to verify the correct behaviour of the
WASM attestation process with the Trust Monitor. Moreover, performance tests were executed
to evaluate and compare the latency time of the Enarx framework with and without the proposed
extension.

9.1 Testbed

To evaluate the functioning and performance of the proposed solution, the testbed was set up
with 3 different machines as follows:

1. Steward machine deployed on Render[43] in Ohio (US East), with 512MB of RAM;

2. Trust Monitor machine running in Turin (Italy) on an Intel NUC:

• Processor: Intel(R) Core(TM) i5-5300U CPU @ 2.30GHz;

• RAM: 16GB DDR4;

• Operative System: Ubuntu 22.04.4 LTS, 64 bit;

3. Enarx node running on a Beelink SEI10 with SGX2 in Maryland (US East):

• Processor: Intel(R) Core(TM) i5-1035G7 CPU @ 1.20GHz;

• RAM: 16GB DDR4;

• Operative System: Debian 6.1.76-1, 64 bit;

9.2 Functional tests

The functional tests outlined in this section aim to validate the features implemented in the Enarx
framework and its integration with the Trust Monitor. To run the tests successfully it is important
first of all to:

• deploy the Steward (as described in appendix A);

• deploy the Trust Monitor and populate its database to be ready for the WASM application
verification (the procedure and the APIs are described in appendix A);

All information about the status of the TM will be available inside trust-monitor.log file
of the trust-monitor repository. Once the Steward and the attestation thread of the TM have
been deployed, a terminal can be used to run a WASM application inside an Enarx Keep with
the command (the full procedure is described in appendix A):
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$ enarx run --wasmcfgfile ./Enarx.toml ./wasm32-wasi/release/hello-world.wasm

The picture 9.2 shows the output given by Enarx to the user after a successful attestation of
the WASM file and the execution of the WASM application. At the same time, the output of the
trust-monitor.log file shows the signature received by the Keep, its certificate and the result
of the WASM attestation (as shown in the figure 9.1).

[2024-03-08 17:05:17,233] - TM Enarx Attestation Server started at http://0.0.0.0:2107

[2024-03-08 17:05:17,713] - [2024-03-08 17:05:17 +0000] [1] [INFO] 172.20.0.1:53398

POST /attest_entity 1.1 200 64 1002644

[2024-03-08 17:05:54,905] -

[2024-03-08 17:05:54,905] - Total Bytes Received:

[2024-03-08 17:05:54,905] - 462

[2024-03-08 17:05:54,905] - Size in bytes of the signed .wasm: 72

[2024-03-08 17:05:54,906] - Signature on the .wasm:

304602210089a1ffd9d5f855d8d860f28411ebffa4caef4d0aa0805db3214e1137b94c1c41022100a13022

a4a1db14369f776d0eefa8e879f6b4d6fb0c13f64b93e42d2a8753c90d

[2024-03-08 17:05:54,906] - CERTIFICATE OF THE KEEP:

[2024-03-08 17:05:54,906] - Issuer:

[2024-03-08 17:05:54,906] - <Name(CN=steward-tm-spirs.onrender.com)>

[2024-03-08 17:05:54,906] - Subject:

[2024-03-08 17:05:54,906] - <Name()>

[2024-03-08 17:05:54,906] - Serial Number:

[2024-03-08 17:05:54,906] - 298512609196571135829845427660000111714

[2024-03-08 17:05:54,907] - Expiration Date:

[2024-03-08 17:05:54,907] - 2024-04-05 17:05:54+00:00

[2024-03-08 17:05:54,907] - Version:

[2024-03-08 17:05:54,907] - Version.v3

[2024-03-08 17:05:54,907] - Signature:

[2024-03-08 17:05:54,907] - 3046022100c85b5120ed22588819c0e8d39c1d260419a700bd6be35211

2a53fc6b2f8ef870022100a7e83c151c41140d572a5ec1b68260f7f8a7f75640622582421d75763ca1ee7c

[2024-03-08 17:05:54,907] - Signature Algorithm:

[2024-03-08 17:05:54,907] - 1.2.840.10045.4.3.2

[2024-03-08 17:05:54,909] - Attestation: True

[2024-03-08 17:05:54,909] - 172.20.0.1 - - [08/Mar/2024 17:05:54]

"POST / HTTP/1.1" 200 -

[2024-03-08 17:05:54,935] - Attestation done! - Server Shutdown.

Figure 9.1. Trust Monitor log after a successful attestation of a WASM file.

Figure 9.2. Enarx’s terminal output after a successful WASM attestation.

Once a trustworthy list of WASM application hashes has been registered, only WASM appli-
cations from this list can be run inside the Enarx. If a different WASM file is run, the attestation
does not succeed and the deployment of the Keep is aborted. The Enarx shell is shown in figure
9.3. The figure 9.4 shows the Trust Monitor log of an unsuccessful check of the WASM application
signature.
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Figure 9.3. Enarx’s terminal output after a failed WASM attestation.

[2024-03-11 09:57:29,274] - Error: Invalid Signature exception!

[2024-03-11 09:57:29,274] - 172.20.0.1 - - [11/Mar/2024 09:57:29] "POST / HTTP/1.1" 400 -

[2024-03-11 09:57:29,308] - Attestation done! - Server Shutdown.

Figure 9.4. Trust Monitor log after a failed attestation of a WASM file (log rows with Keep’s
certificate and the received signature are not reported here since the same as before).

Moreover, if the attestation thread of the TM is started but no WASM application deployment
is requested by Enarx when the timeout expires (specified in trust-monitor/config/config.

ini) the WASM Attestation Server shuts down. The TM log is reported in the figure 9.5.

9.3 Performance tests

The following performance tests have been conducted to depict an overview of the Enarx frame-
work performance compared with the extended Enarx framework proposed in this thesis work.

The first metric analysed is the average time taken by Enarx to start the execution of the
WASM application. To evaluate this metric, 10 different time samples from separate runs have
been taken to calculate the average time Enarx needs to start the WASM application. The chart in
figure 9.6 shows the average execution time of the Enarx framework compared with the extended
one. As seen in the diagram, the execution time of the extended Enarx framework is higher than
the not extended one as expected. The proposed extension adds procedures like performing the
signature over the WASM bytecode, contacting the Trust Monitor, and waiting for an answer
from the Trust Monitor, so it is feasible to have a minimum increase in average execution time.

The second metric analysed is the average time taken by the two most computationally ex-
pensive operations added to the proposed solution:

• the computation of the hash of the WASM application and its signature inside Enarx;

• the check over the signature inside the Trust Monitor.

The diagram in figure 9.7 shows the average execution time of the procedures listed above. Ex-
amining the chart reveals that the two operations have a millisecond order duration and the check
over the signature by the TM is the shorter between the two. This leads to the understanding
that the hash, signature and check over the signature operations added with the proposed solution
do not affect the average execution time of the extended Enarx framework. Thus, the increase in
execution time is mainly due to the network’s latency of the testbed used for testing since it has
geographically distant machines, which increases the overall execution time of the framework.
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[2024-03-11 10:44:26,275] - TM Enarx Attestation Server started at http://0.0.0.0:2107

[2024-03-11 10:44:26,971] - [2024-03-11 10:44:26 +0000] [1] [INFO] 172.20.0.1:35266

POST /attest_entity 1.1 200 64 1002319

[2024-03-11 10:49:26,398] - WASM Attestation Server Timeout Expired! - Server shutdown.

Figure 9.5. Trust Monitor log after WASM Attestation Service timeout due to not receiving
WASM attestation requests.

Average Execution Time [s] (◄ Lower is better)

0 1,25 2,5 3,75 5

Extended Enarx framwork Enarx Framework

Figure 9.6. Average execution time of the Enarx framework compared with the extended one.
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Figure 9.7. Average time comparison between hash + signature operation over the WASM file
(by the extended Enarx) and the check over the signature (by the TM).
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Chapter 10

Conclusions and future work

This thesis investigated the Enarx framework, a Confidential Computing solution to simplify and
speed up the adoption of TEE solutions in Cloud Computing scenarios. Due to the possibility
of running untrustworthy applications inside Enarx, the objective of the work conducted was
to extend Enarx to check the application’s trustworthiness before running it inside the Keep.
Another intent was to propose integrating the extended Enarx framework and the Trust Monitor
(TM) system.

The results from the testing stage confirm that the designed extension works as expected,
identifying trusted or untrusted WASM applications, and that Enarx can be integrated into the
Trust Monitor with the proper attestation adapter. The performance evaluation proves that the
extension provided to Enarx does not significantly affect the execution time of the framework.
The potential variability of the execution time is caused by the network latency since the machines
are geographically distant from each other.

The proposed extension is a good starting point for realizing the remote attestation of the
WASM application inside the Enarx framework with the Trust Monitor. Still, it can be improved
by aggregating inside the TM both the results from the attestation of the Keep (performed by the
Steward) and of the WASM workload. The Enarx framework’s design also involves the presence
of a third actor, the Drawbridge, which acts as a registry storing workloads that will be executed
inside Enarx Keeps. Further, the features of the Drawbridge can be analysed and integrated with
the Trust Monitor to manage WASM workloads and guarantee their integrity.

Now Enarx supports just Intel SGX2 and AMD SEV-SNP TEEs technologies. Since Enarx has
been developed to support multiple TEEs, favouring the spread adoption of TEE solutions, the
framework may be extended to support additional TEEs (as the Enarx team has already planned).
Among the various TEEs not supported yet, RISC-V’s Keystone open-source framework and ARM
TrustZone are options. RISC-V is an open-source hardware architecture to implement processors
without licensing restrictions, achieving resounding success among industries which started to
develop chipsets based on RISC-V standards, while Keystone allows the building of customizable
TEEs on top of the RISC-V chipset. Moreover, in recent years the adoption of ARM processors has
been widespread due to their low costs, low power consumption, and low heat generation among
smartphones, laptops, tablets, and embedded systems. Thus, ARM TrustZone and Keystone
represent an effective option to extend the Enarx framework.
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Appendix A

User’s Manual

This chapter provides a guide to deploying the Steward, and the Trust Monitor, installing the
extended Enarx framework, and executing the main tasks and tests described in this thesis.

A.1 Deploying the Steward

The Steward has been deployed on Render [43] to perform the tests. To do so:

1. Create an account on https://render.com/.

2. Deploy a new free Web Service specifying the Steward’s GitHub repository: https://

github.com/enarx/steward.git

A.2 Deploying the Trust Monitor

To correctly deploy the Trust Monitor, it is needed to build its Docker image. To do so, using the
Dockerfile present in the main project directory is sufficient. The procedure to build the image is
the following:

1. Open the file Catalano_software_tm_20240322.zip provided as thesis source code or clone
the repository from GitHub with the command:

$ git clone git@github.com:torsec/trust-monitor.git

2. Move to the docker-compose subdirectory of the trust-monitor main directory:

$ cd ./trust-monitor/docker-compose

3. Run the following command to build and run all the Docker containers:

$ sudo docker compose up --build -d

Once this procedure is done, the Trust Monitor will be available at the localhost on port 5080.

A.2.1 Populating the Trust Monitor database

To test the extended Enarx framework proposed in this thesis work, it is necessary to populate
the TM database with a whitelist, a verifier, and an entity before running Enarx and validating
a WASM application. The TM APIs to call are shown below. Some JSON fields of the requests
shown below are empty because they are used with other frameworks, but are unnecessary with
the extended Enarx.
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POST /verifier

Register a new attestation technology in the TM.

Request JSON object:

• att_tech (string): the name of the attestation technology;

• inf_id (int): the identifier of the infrastructure;

• metadata (JSON): the JSON object containing all metadata about the attestation technol-
ogy.

Example of request:

1 {
2 "att_tech": "enarx_v0_7_1",

3 "inf_id": 1,

4 "metadata": {}
5 }

POST /whitelist

Insert a new whitelist in the TM.

Request JSON object:

• _id (int): the identifier of the whitelist (whitelist_uuid);

• metadata (JSON): the JSON object containing all metadata about the whitelist;

• whitelist (JSON): the JSON object which contains the whitelist.

Example of request:

1 {
2 "_id": 1,

3 "metadata": {
4 "att_tech": "enarx_v0_7_1",

5 "hash_algo": ""

6 },
7 "whitelist": {
8 "wasm_hashes_list": [

9 "1605253d9b003156ce55ee875e5c3e32e09b041ba6537d7249650ae422aab4bc",

10 "14a06813843f1ea78d5ec39fe9f4cd63ff4a8f0d9f9c6a9b735b04e95a6f23f5"

11 ]

12 }
13 }

The wasm_hashes_list stores all the hashes of the trusted WASM application which can be run
inside the Enarx entity registered thereafter.

POST /entity

Register a new entity in the TM.

Request JSON object:

• entity_uuid (int): identifier of the object in the TM’s database;
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• inf_id (int): the identifier of the infrastructure;

• att_tech (string[]): list of all attestation technologies which perform the remote attestation
on the object;

• name (string): name of the entity;

• external_id (string): custom identifier;

• type (string): type of the entity;

• whitelist_uuid (int): the identifier of the entity whitelist;

• child (int[]): list of the entities contained in the specified one (it could be empty);

• metadata (JSON): the JSON object containing all metadata about the entity (it is custom
information that can be needed during the process of remote attestation).

Example of request:

1 {
2 "entity_uuid": 1,

3 "inf_id": 1,

4 "att_tech": ["enarx_v0_7_1"],

5 "name": "enarx_wasm_att",

6 "external_id": "",

7 "type": "node",

8 "whitelist_uuid": 1,

9 "child": [],

10 "metadata": {}
11 }

POST /attest_entity

Start the WASM remote attestation thread for a specific Enarx entity.

Request JSON object:

• entity_uuid (int): identifier of the object in the TM’s database;

Example of request:

1 {
2 "entity_uuid": 1

3 }

A.2.2 Enabling TLS on the Trust Monitor

To enable TLS on the API Manager it is sufficient to uncomment the tls section in the configu-
ration file config.ini and modify the three associated parameters:

• ca_certs="<PATH OF CA CERTIFICATE FILE>";

• certfile=<PATH OF CERTIFICATE FILE>;

• keyfile=<PATH OF KEY FILE>

These files must be added to the project directory to be copied during the docker image build.
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A.3 The extended Enarx framework

The extended Enarx framework needs to be installed, it has been tested on Ubuntu 22.04.4 LTS
and Debian 12 operating systems. The following Enarx installation guide refers to Ubuntu/Debian
distributions (for different distributions refer to the official Enarx’s Installation Guide [26]).

A.3.1 Installing Enarx

1. Install Linux Dependencies (Ubuntu/Debian):

$ sudo apt update

$ sudo apt install -y git curl gcc musl-tools python3-minimal

2. Install Rust

To install Rust on Linux (or MacOS) run the following commands:

$ curl --proto ’=https’ --tlsv1.2 -sSf https://sh.rustup.rs | sh -s --

--default-toolchain nightly -y

$ source $HOME/.cargo/env

3. Install the extended Enarx framework by using the Catalano_software_enarx_20240322.
zip file provided with the thesis source code:

$ cd enarx_TM_SPIRS/

$ cargo install --locked --bin enarx --path ./

Alternatively, install the extended Enarx by cloning its repository:

$ git clone https://github.com/fulmicotone98/enarx_TM_SPIRS.git

$ cd enarx_TM_SPIRS/

$ cargo install --locked --bin enarx --path ./

A.3.2 Running Enarx

1. Install the WebAssembly Rust toolchain:

$ rustup toolchain install nightly -t wasm32-wasi

2. Create a simple Rust program compiling it with the WebAssembly directive. First, make
sure you’re not in the repository you have already created:

$ cd ~/

$ cargo init --bin hello-world

$ cd hello-world

$ echo ’fn main() { println!("Hello, Enarx!"); }’ > src/main.rs

$ cargo +nightly build --release --target=wasm32-wasi

3. Create the Enarx.toml configuration file inside the hello-world binary directory created
before.

4. Add inside the Enarx.toml the Steward and the Trust Monitor URLs:

steward = "<STEWARD URL>"

tm = "<TM URL>"

5. Move inside the hello-world directory and run the WASM application compiled before:

$ cd ./hello-world

$ enarx run --wasmcfgfile ./Enarx.toml

./wasm32-wasi/release/hello-world.wasm

70



Appendix B

Deveoper’s Reference Guide

In this appendix, the significant or extended functions of the Enarx framework are completely
listed and described. The functions already present in the Enarx framework are fully reported
with the proposed extensions.

B.1 Exec-Wasmtime crate

B.1.1 Extension of the Enarx runtime implementation

Listing B.1 shows the implementation of the extended Enarx runtime, which embeds the attesta-
tion of the WASM application before lunch it inside the WASM runtime.

1 // The Enarx Wasm runtime

2 pub struct Runtime;

3
4 impl Runtime {

5
6 // Execute an Enarx [Package]

7 #[instrument]

8 pub fn execute(package: Package) -> anyhow::Result<Vec<Val>> {

9 let (prvkey, crtreq) =

10 identity::generate().context("failed to generate a private key

and CSR")?;

11
12 let Workload { webasm, config } = package.try_into()?;

13 let Config {

14 steward,

15 tm,

16 args,

17 files,

18 env,

19 } = config.unwrap_or_default();

20
21 let cert_chain = if let Some(url) = steward {

22 identity::steward(&url, crtreq.clone()).context("failed to attest

to Steward")?

23 } else {

24 identity::selfsigned(&prvkey).context("failed to generate

self-signed certificates")?

25 };

26
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27 let certs = cert_chain.clone()

28 .into_iter()

29 .map(rustls::Certificate)

30 .collect::<Vec<_>>();

31
32 /******* Thesis Integration *******/

33
34 // Get the Trust Monitor URL

35 let tm_url = tm.expect("TM URL must be defined inside Enarx.toml");

36 println!("\nTM URL contacted: {}", tm_url.as_str());

37
38 // Get the PKI from the generated keypair in byte format

39 let pki = PrivateKeyInfo::from_der(&prvkey)

40 .context("failed to parse DER-encoded private key before sign the

wasm")?;

41
42 // Get the algorithm used to generate the PKI

43 let sign_algo = pki.signs_with()?;

44 // println!("Key Algorithm: {:?}", sign_algo.oid);

45
46 // Digest sha256 of the wasm file

47 let platform = Platform::get().context("failed to query platform")?;

48
49 let mut hash_256 = GenericArray::default();

50 let mut hash_384 = GenericArray::default();

51 match platform.technology() {

52 Technology::Snp => {

53 hash_384 = Sha384::digest(&webasm);

54 println!("SHA384(wasm): {:x}", hash_384);

55 }

56 _ => {

57 hash_256 = Sha256::digest(&webasm);

58 println!("SHA256(wasm): {:x}", hash_256);

59 }

60 };

61
62 // Sign the .wasm with the PKI

63 let signed_hashed_wasm = pki.sign(&webasm, sign_algo)

64 .context("failed to sign the hash of the wasm file")?;

65
66 // Print the signature over the .wasm with

ECDSA_P256_SHA256_ASN1_SIGNING | ECDSA_P384_SHA384_ASN1_SIGNING

67 println!("Size signature on digest(wasm): {}",

signed_hashed_wasm.len());

68 print!("\nSignature on digest(wasm): ");

69 for byte in signed_hashed_wasm.iter() {

70 print!("{:02x}", byte);

71 }

72 print!("\n");

73
74 // Create aggregated data bytes to send to the TM:

75 // agg_data:Vec<u8> {

76 // hash_dimension: byte

77 // size_signature: byte

78 // hash_of_wasm: bytes

79 // signature: bytes

80 // certificate_emitted_by_Steward: bytes
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81 //}

82 // Multiple WASM files can be run from the same machine, so the TM

needs the hash to find it inside its list of WASM file hashes

83
84 let mut agg_data = Vec::new();

85
86 //Add the hash dimension

87 match platform.technology() {

88 Technology::Snp => {

89 agg_data.push(48);

90 }

91 _ => {

92 agg_data.push(32);

93 }

94 };

95
96 // Add the size_signature

97 agg_data.push(signed_hashed_wasm.len().try_into()

98 .context("failed to convert form usize to u8")?);

99
100 //Add the hash of the wasm

101 match platform.technology() {

102 Technology::Snp => {

103 agg_data.extend_from_slice(&hash_384);

104 }

105 _ => {

106 agg_data.extend_from_slice(&hash_256);

107 }

108 };

109
110 // Add the signature

111 agg_data.extend_from_slice(&signed_hashed_wasm);

112 // println!("\n{:?}", agg_data.len());

113
114 // Add the certificate of the Keep released by the Steward

115 agg_data.extend_from_slice(&cert_chain[0]);

116 // println!("{:?}", agg_data);

117
118 let response_tm = identity::trust_monitor(&tm_url, agg_data)

119 .context("failed to attest signature of wasm to Trust Monitor")?;

120
121 println!("{}\n", response_tm);

122
123 /**************************************/

124
125 let mut config = wasmtime::Config::new();

126 config.memory_init_cow(false);

127 let engine = trace_span!("initialize Wasmtime engine")

128 .in_scope(|| Engine::new(&config))

129 .context("failed to create execution engine")?;

130
131 let mut linker = trace_span!("setup linker").in_scope(||

Linker::new(&engine));

132 trace_span!("link WASI")

133 .in_scope(|| add_to_linker(&mut linker, |s| s))

134 .context("failed to setup linker and link WASI")?;

135
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136 let mut wstore = trace_span!("initialize Wasmtime store")

137 .in_scope(|| Store::new(&engine, WasiCtxBuilder::new().build()));

138
139 let module = trace_span!("compile Wasm")

140 .in_scope(|| Module::from_binary(&engine, &webasm))

141 .context("failed to compile Wasm module")?;

142 trace_span!("link Wasm")

143 .in_scope(|| linker.module(&mut wstore, "", &module))

144 .context("failed to link module")?;

145
146 let mut ctx = wstore.as_context_mut();

147 let ctx = ctx.data_mut();

148
149 let mut names = vec![];

150 for (fd, file) in files.iter().enumerate() {

151 names.push(file.name());

152 let (file, caps): (Box<dyn WasiFile>, _) = match file {

153 File::Null(..) => (Box::new(Null), FileCaps::all()),

154 File::Stdin(..) => stdio_file(stdin()),

155 File::Stdout(..) => stdio_file(stdout()),

156 File::Stderr(..) => stdio_file(stderr()),

157 File::Listen(file) => listen_file(file, certs.clone(),

&prvkey)

158 .context("failed to setup listening socket")?,

159 File::Connect(file) => connect_file(file, certs.clone(),

&prvkey)

160 .context("failed to setup connection stream")?,

161 };

162 let fd = fd.try_into().context("too many open files")?;

163 ctx.insert_file(fd, file, caps);

164 }

165
166 ctx.push_env("FD_COUNT", &names.len().to_string())

167 .context("failed to set environment variable ’FD_COUNT’")?;

168 ctx.push_env("FD_NAMES", &names.join(":"))

169 .context("failed to set environment variable ’FD_NAMES’")?;

170
171 for (k, v) in env {

172 ctx.push_env(&k, &v)

173 .context("failed to set environment variable k")?;

174 }

175
176 ctx.push_arg("main.wasm")

177 .context("failed to push argv[0]")?;

178 for arg in args {

179 ctx.push_arg(&arg).context("failed to push argument")?;

180 }

181
182 let func = trace_span!("get default function")

183 .in_scope(|| linker.get_default(&mut wstore, ""))

184 .context("failed to get default function")?;

185
186 let mut values = vec![Val::null(); func.ty(&wstore).results().len()];

187 trace_span!("execute default function")

188 .in_scope(|| func.call(wstore, Default::default(), &mut values))

189 .context("failed to execute default function")?;

190
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191 Ok(values)

192 }

193 }

Listing B.1. crates/exec-wasmtime/src/runtime/mod.rs

B.1.2 Definition of the function to contact the Trust Monitor

Listing B.2 shows the function added to contact the Trust Monitor attestation service and attest
the WASM bytecode. With the response received it is possible to distinguish if the Keep can
continue the deployment of the WASM bytecode or abort it.

1 #[instrument(skip(agg_data))]

2 pub fn trust_monitor(url: &Url, agg_data: impl AsRef<[u8]>) ->

anyhow::Result<String> {

3
4 // Send to the TM the certificate chain previously retrieved from the

Steward

5 let response = ureq::post(url.as_str())

6 .send_bytes(agg_data.as_ref())?;

7
8 let status_text = response.status_text().to_owned();

9
10 Ok(status_text)

11 }

Listing B.2. crates/exec-wasmtime/src/runtime/identity/mod.rs

B.2 Enarx Attestation Adapter

Listing B.3 shows the implementation of the extended Enarx Attestation Adapter for WASM
applications. This adapter embeds the AttestationServer class which performs the check of the
signature over the WASM file, and the EnarxAdapter class which has the attest function run
inside the Attestation thread invoked by the Trust Monitor. Once the Attestation thread starts,
the WASM attestation server is set on 0.0.0.0:2107 by default (as defined in config/config.ini
file).

1 config = configparser.ConfigParser()

2 config.read(’config/config.ini’)

3
4 tech = "enarx_v0_7_1"

5
6 hostname = config["enarx_wasm_att_service"]["hostname"]

7 port = int(config["enarx_wasm_att_service"]["port"])

8 att_server_timeout = int(config["enarx_wasm_att_service"]["timeout"])

9
10 att_result = None # Used to check if the attestation has been done

(att_result = bool(True) or bool(False))

11 allowed_wasm_hashes = []

12
13 class AttestationServer(BaseHTTPRequestHandler):

14 def do_GET(self):

15 self.send_response(200, "Hello World!")

16 self.end_headers()

17
18 def do_POST(self):

19
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20 global att_result

21 global allowed_wasm_hashes

22
23 # Retrive the total lenght of the received bytes

24 content_length = int(self.headers[’Content-Length’])

25 print("\nTotal Bytes Received: ", content_length, "\n")

26
27 # Read all bytes received

28 all_bytes = self.rfile.read(content_length)

29
30 # Take the 1st byte which is the size (number of bytes) of the .wasm

hash

31 bytes_size_hash = all_bytes[0:1]

32 num_bytes_hash = int.from_bytes(bytes_size_hash, "little")

33 print("Size in bytes of the .wasm hash: " + str(num_bytes_hash))

34
35 # Take the 2nd byte which is the size (number of bytes) of the .wasm

signature

36 bytes_size_signature = all_bytes[1:2]

37 num_bytes_signature = int.from_bytes(bytes_size_signature, "little")

38 print("Size in bytes of the signed .wasm: " +

str(num_bytes_signature))

39
40 # Take the hash of the .wasm

41 bytes_hash = all_bytes[2:(num_bytes_hash+2)]

42 print("Hash of the .wasm: " + bytes_hash.hex() + "\n")

43
44 # Take the signature of the .wasm

45 bytes_signature =

all_bytes[(num_bytes_hash+2):(num_bytes_hash+2+num_bytes_signature)]

46 print("Signature on the .wasm: " + bytes_signature.hex() + "\n")

47
48 # Take the certificate of the Keep (bytes)

49 bytes_cert =

all_bytes[(num_bytes_hash+2+num_bytes_signature):(content_length+1)]

50
51 # Parse the certificate bytes into Certificate object

52 x509_cert = x509.load_der_x509_certificate(bytes_cert)

53
54 # Take the current datetime UTC and compare it with the expiration

date of the Keep’s certificate

55 current_utc_datetime = current_utc_datetime = datetime.now(pytz.utc)

56 if x509_cert.not_valid_after_utc.__lt__(current_utc_datetime):

57 raise ValueError("Certificate expired!\n")

58
59 # Print the certificate of the Keep

60 print("CERTIFICATE OF THE KEEP:")

61 print("Issuer: ", x509_cert.issuer)

62 print("Subject: ", x509_cert.subject)

63 print("Serial Number: ", x509_cert.serial_number)

64 print("Expiration Date: ", x509_cert.not_valid_after_utc)

65 print("Version: ", x509_cert.version)

66 print("Signature: ", x509_cert.signature.hex())

67 print("Signature Algorithm: ",

x509_cert.signature_algorithm_oid.dotted_string)

68
69 # Get the public key from the certificate
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70 pubkey = x509_cert.public_key()

71 hash_str = bytes_hash.hex()

72 print("WASM hash: " + hash_str + "\n")

73 try:

74 if hash_str in allowed_wasm_hashes:

75 print("WASM hash is in the whitelist!")

76
77 # SHA256 (Intel CPU)

78 if len(bytes_hash) == 32:

79 # Verify the signature over the .wasm’s hash with the

public key

80 if pubkey.verify(bytes_signature, bytes_hash,

ec.ECDSA(utils.Prehashed(hashes.SHA256()))) == None:

81 att_result = bool(True) # Record successful

attestation

82 print("Attestation: " + att_result.__str__())

83 self.send_response(200, "Certificate successfully

received and signature over the .wasm verified!")

84 self.end_headers()

85 return

86
87 # SHA384 (AMD CPU)

88 if len(bytes_hash) == 48:

89 # Verify the signature over the .wasm’s hash with the

public key

90 if pubkey.verify(bytes_signature, bytes_hash,

ec.ECDSA(utils.Prehashed(hashes.SHA384()))) == None:

91 att_result = bool(True) # Record successful

attestation

92 print("Attestation: " + att_result.__str__())

93 self.send_response(200, "Certificate successfully

received and signature over the .wasm verified!")

94 self.end_headers()

95 return

96 else:

97 print("Error: WASM hash is not in the whitelist!")

98 self.send_response(400, "Bad Request!")

99 self.end_headers()

100 return

101
102 except:

103 att_result = bool(False) # Record unsuccessful attestation

with invalid signature

104 print("Error: Invalid Signature exception!")

105 self.send_response(400, "Bad Request!")

106 self.end_headers()

107
108 class EnarxAdapter():

109
110 def __init__(self) -> None:

111 pass

112
113 def register(entity, whitelist, verifier):

114 """

115 Enarx does not need an implementation for the delete method

116 """

117 pass
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118
119 def attest(entity, _steward, whitelist, _se, topic):

120
121 def stop_server():

122 print("Stopping server...")

123 webServer.shutdown()

124
125 if tech not in entity["att_tech"]:

126 return {"error" : tech + " is not present into the entity’s

attestation technologies list"}

127
128
129 if not whitelist["whitelist"]:

130 return {"error" : " empty whitelist of WASM hashes"}

131
132 global allowed_wasm_hashes

133 allowed_wasm_hashes = whitelist["whitelist"]["wasm_hashes_list"]

134
135 print(allowed_wasm_hashes)

136
137 webServer = HTTPServer((hostname, port), AttestationServer)

138 webServer.socket.settimeout(att_server_timeout) # Set the server

timeout

139
140 # Create a timer that will stop the server after a certain time

141 shutdown_timer = threading.Timer(att_server_timeout, stop_server)

142
143 # Start the timer

144 shutdown_timer.start()

145
146 print("TM Enarx Attestation Server started at http://%s:%s"

%(hostname, port))

147
148 webServer.serve_forever()

149
150 if att_result == True:

151 run_kafka_producer( {

152 "entity_uuid": entity["entity_uuid"],

153 "att_tech": tech,

154 "trust": True

155 }, topic )

156
157 else:

158 run_kafka_producer( {

159 "entity_uuid": entity["entity_uuid"],

160 "att_tech": tech,

161 "trust": False

162 }, topic )

163
164 # If the server timeout expires, att_result is still None, otherwise

is True or False and attestation has been performed

165 if att_result == None:

166 print("WASM Attestation Server Timeout Expired! - Server

shutdown.")

167 else:

168 print("Attestation phase done! - Server Shutdown.")

169
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170 def delete(entity, verifier):

171 """

172 Enarx does not need an implementation for the delete method

173 """

174 pass
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