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Summary

The scope of the thesis’ work is to extend the algorithms’ support in Trusted Execution
Environments, to include a PQ algorithm, in such a way that the algorithm can be
deployed to provide a quantum-safe system that can be relied upon to perform sensitive
tasks. Particular attention is paid to device with limited capabilities, since such solution
aims to the adoption of the quantum-safe alternative within devices in which several
contraints further complicate the deployment of a PQ solution.

In the first chapter presented are discussed the security properties that a Trusted
Execution Environment offers, along with its components, features, and security require-
ments. Moreover, the Keystone framework, core of the thesis’ work, is described. The
second chapter is used to present the characteristics of the Device Identifier Composi-
tion Engine specification, adopted to enable the definition of a strong device identity
by means of software techniques and minimal silicon requirements in devices in which
hardware used to provide such feature is not available, with particular reference to the
heavy usage of digital signature in the layered system characterising DICE. The work
proceeds then with a deep analysis on the quantum impact that quantum computers
pose on the current cryptographic technologies, evaluating the impact on the public-key
cryptosystems, symmetric-key cryptosystems, and hash functions.

The thesis work is then described in the subsequent chapters, starting from the fifth
chapter in which the solutions’ design is addressed, evaluating the Post-Quantum sub-
missions selected for standardization in relation with the ARM Cortex-M4 platform, and
analysing Falcon, the selected algorithm among the submissions. Then, the identified
quantum issues in the DICE-based Keystone version are presented, underlining the is-
sues that affect the framework from a quantum-safe perspective. Finally, in the sixth
chapter are presented the changes and the features introduced to provide a quantum-safe
alternative to be deployed, which is further analysed under the functional and perfor-
mance points of view in the seventh chapter, used to showcase various tests performed
on the software.
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Chapter 1

Introduction

Nowadays, significant attention is being given to the topic of quantum computing, alter-
native information processing approach based on quantum computers’ ability to generate
and manipulate quantum bits (in short qubits, subatomic particles) in order to perform
operations [7] [8]. Two fundamental properties characterize qubits: Superposition and
Entanglement . Superposition refers to the ability of a qubit to exist in a combination of
several possible configurations, allowing groups of qubits in superposition to create com-
plex computational spaces. Entanglement occurs when two qubits are paired in a single
quantum state, and any change in the state of one qubit causes an instantaneous and
predictable change in the state of the other qubit. By leveraging these properties, a quan-
tum computer can perform operations on various combinations of values simultaneously,
enabling the solution of problems that exceed the capabilities of classical and super-
computers due to their complexity. Despite the numerous benefits and advancements
introduced by quantum computing, it has also a detrimental effect on cybersecurity, pos-
ing potential threats in the cryptographic field [9]. Current cryptosystems heavily rely
on public-key cryptographic algorithms, such as RSA and Elliptic Curve Cryptography
(ECC), and on the computational complexity in factorising large numbers or computing
discrete logarithms, that are thought to be computationally infeasible problems for cur-
rent computers. However, quantum computers can exploit Shor’s algorithm to efficiently
solve these problems, rendering the underlined algorithms vulnerable [10]. As proof-of-
concept, by using 20 million qubits, it would be possible to crack an RSA 2048-bit key
in 8 hours [11]. Despite the widespread deployment of quantum computers is still in its
early stages, it is critical to implement suitable countermeasures prior to the widespread
adoption of practical systems. In this scenario, the development of quantum-resistant
solutions, known as Post-Quantum Cryptography (PQC) [12], becomes essential. The
National Institute of Standards and Technologies (NIST) in 2017 started a process to
standardize quantum-resistant cryptographic algorithms, narrowing down the proposals
to a few selected algorithms in 2022 [13].

Alongside quantum computing, the concept of confidential computing [14] has also
made significant advancements. It is the protection of data in use in a hardware-based
Trusted Execution Environment (TEE). A TEE is an area of the system secured by a
processor, hence secrets, sensitive data, and operations involving such elements can be
safeguarded within a TEE [15]. Typically, a TEE is commonly associated with a Rich
Execution Environment (REE), denoting the Operating System (OS) that the device is
running (e.g. Android, iOS), the hardware resources, and the regular running applica-
tions. In this particular scenario, the OS is referred to as Rich OS . According to this
approach, an application in which sensitive operations are performed can be divided into
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Introduction

sections. Sections that do not need protection are executed into the REE, meanwhile the
sensitive ones are executed within the TEE. Applications running in the TEE are known
as Trusted Applications (TA). There are two extents of isolation: isolation with respect
to the REE and isolation with respect to the TAs. Hence, the REE is unable to directly
gain access to the TEE but only via designated interfaces, while TAs are incapable of in-
terfering with other TAs. It is important to underline that a TEE must guarantee to TAs
exclusive and trusted access to peripherals, ensuring that there are no threats between
the trusted application and the I/O. This principle is referred to as Trusted Path.

In order to attain the intended level of security, it is of utmost importance that the
TEE becomes an integral component of the device’s secure boot chain. This needs a
Root of Trust (RoT), a trusted hardware component (which cannot be compromised by
software) assumed to be untainted and which the platform owner relies upon to ensure
security. In recent years, the Trusted Computing Group (TCG) [16] and the Global
Platform (GP) alliance [17] have collaborated to define the concept of a TEE based on the
Trusted Platform Module (TPM) as a RoT [18]. Developed by the TCG, the TPM is a chip
which enables the reporting and verification of a device’s state by securely storing artefacts
and measurements, that can be used to authenticate and attest the trustworthiness of
the system [19]. Stored within the TPM’s Platform Configuration Registers (PCRs), the
measurements consist of hash values related to the software executed and the system
state, reported to a verifier by digitally signing an attestation report with a unique key.
This schema enables the accomplishment of Remote Attestation (RA), which entails the
capability to monitor all activities within the operating system and validate the presence
and execution of solely authorized software. It is important to note that the usage of a
unique secret enables the provision of Device Identity (DevID), an identifier that can be
leveraged to authenticate the device.

To facilitate the establishment of device identity and attestation, a framework known
as Device Identifier Composition Engine (DICE) [20] has been developed. This framework
incorporates a variety of hardware and software techniques. The major goal of this
specification is to augment security and privacy in systems equipped with a TPM while
also offering security and privacy foundations for systems lacking a TPM, introducing
new solutions with minimal hardware requirements. One of the key requirements involves
generating a Compound Device Identifier (CDI) [3]. The CDI is created by applying a
one-way function using the CDI from preceding layers of the device boot sequence. The
initial CDI is formed through the combination of the Unique Device Secret (UDS), which
is a distinct secret value specific to each device and incorporated during the manufacturing
or provisioning, and certain measurements.

However, despite the robustness of this architecture against current threats, RA and
DICE employ distinct keys for the purpose of signing authentication challenges, attesta-
tion evidence, and issuing certificates for every layer within the device’s boot sequence.
This heavy reliance on digital signatures makes the attestation process and the security
properties provided vulnerable to quantum computers.

Hence, this thesis focuses on enabling protections in such an environment, expand-
ing the functionalities of a TEE to support post-quantum cryptographic algorithms. It
also takes into consideration the limitations posed by embedded systems’ constrained re-
sources and computational capabilities. To achieve this goal, the Keystone Enclave [21]
open-source framework is leveraged. Developed at the University of California, Berkeley,
Keystone offers software-defined blocks to build a customized TEE for RISC-V processors
[2]. On the other hand, the DICE specifications deployment guarantees DevID and RA
for devices with limited resources.
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This document starts by providing a comprehensive description of the TEE functional-
ities and architecture, including a description of the Keystone framework. Subsequently,
it covers the utilization of RA within the TEE and contextualizes it with the DICE
specification. After an analysis conducted on the state of the art, the ongoing PQC
standardization process, and the migration process needed to ensure a correct migration
towards a quantum-safe world, the selected algorithms from the third round of the NIST
call for proposal are presented. Afterwards, the methods employed for implementing the
TEE utilizing the mentioned frameworks are thoroughly examined, along with the nec-
essary expansion to encompass the selected PQC algorithms. Lastly, the accomplished
results and goals are showcased and directions for further developments on the topic are
presented.
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Chapter 2

Trusted Execution Environment

2.1 TEE definition

Devices offer an extensible and versatile operating environment called Rich Execution
Environment (REE). This REE, also called Rich Operating System, brings flexibility and
features to the device, but leaving it vulnerable to several security threats. In light of
such concerns, the GlobalPlatform (GP) introduced the concept of Trusted Execution
Environment (TEE). A TEE is designed to be paired with the REE and other execution
environments to provide a safe context in which protect assets and execute trusted code
[1]

For example, in an Android device, the operating system is run as rich OS. If a safe
execution environment is needed, is possible to run a TEE to perform sensitive operations
in a safe environment. The applications running in the REE can call specific modules
inside the trusted area by means of the TEE Client API.

Anything that runs in each execution environment cannot provide harm to the trusted
part. Additionally, any trusted application cannot damage or be damaged from any other
trusted application.

At the highest level, according to the GP, a TEE is an environment where:

❼ the code executing within the TEE is authenticated;

❼ the assets’ integrity and confidentiality of a TEE is ensured through isolation, cryp-
tography, or other mechanisms;

❼ the TEE capabilities such as isolation can be used to provide confidentiality of the
TA code asset;

❼ the TEE resists known software attacks, and a set of external hardware attacks;

❼ both code and assets are protected from unauthorized debug tracing and control
operations being performed though the device’s bug and test features.

The isolation feature ensures that at each time a resource is controlled either by
the REE or the TEE. To transfer the resource’s control from the TEE to the execution
environments, an explicit authorization is needed. Assets that cannot be shared by a
TEE are considered to be trusted resources. These resources can be accessed only by
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trusted resources, thereby creating a closed system that is isolated and protected from
other environments.

Unlike the previous case, another Execution Environment may permit some of its
resources to be accessible by the TEE without specific permission. In such cases, the TEE
should respect the security and access control policies of the other execution environment.

RICH EXECUTION ENVIRONMENT TRUSTED EXECUTION ENVIRONMENT

Trusted 
App

Trusted 
App

Trusted 
AppApp App App

TEE Client API

Rich OS

TEE Internal APIs

Trusted OS Components

HW Keys, Storage, TUI Peripherals (Screen and 
Keyboard), Secure Element

HW Secure Resources
Hardware Platform

TEE 
Comm. 
Agent

Trusted Core 
Framework

Trusted 
Drivers

Figure 2.1. TEE and REE (source: [1]).

2.2 TEE security requirements

On a high-level security perspective, the TEE requirements that must be satisfied can be
expressed as follows.

First of all, a Secure Boot process is needed, where the runtime environment is
instantiated from a RoT, using assets bound to the TEE and isolated from the REE.
The integrity and authenticity achieved through secure boot is extended and retained
throughout the entire lifetime and state transitions of a TEE.

Isolation, as underlined, is a compulsory feature. There are two extents of isolation:

❼ the TEE is isolated from the REE and other environments;

❼ the Trusted Applications running in the TEE are isolated from other Trusted Ap-
plications.

This is achieved by means of hardware mechanisms that other environments cannot con-
trol, providing protection against them. In fact, the primary purpose of a TEE is to
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protect its assets from the REE. Software outside the TEE cannot call directly the func-
tionalities offered by the TEE. Such requests must undergo through protocols that allow
the trusted OS or TA to verify the acceptability of the operations requested.

There is the concept of Trusted Path. The computation is protected, but concerns
can be raised as regards the I/O. In fact, a TEE must guarantee that a TA may require to
have an exclusive and trusted path to a specific peripheral (e.g. entering a pin to unlock
a key). To achieve this protection the TEE cut out from the bus temporarily the rich
OS, ensuring that between the input and the TA there are no malicious actors. Hence,
an infected rich OS is not able to affect the TEE. This protects the TEE from attacks
such as key logging or screen capture.

Finally, a TEE must provide Trusted Storage of data and keys. The storage is
bound to a particular TEE on a particular device, so that no unauthorized entity can
access, copy, or modify the data contained within it. The usage of Trusted Storage ensures
protection against rollback attacks.

2.2.1 Root of Trust (RoT)

To have secure boot, there is the need to rely on an element that is trusted and must
always behave as expected (its misbehaviour cannot be detected). The RoT are the
building blocks to establish trust in a platform.

In the context of a TEE, there are three RoT that must be provided:

❼ Root of Trust for Measurement (RTM): element that compute measurements and
sends them to the RTS ;

❼ Root of Trust for Storage (RTS): the measures computed must be protected in a
secure hardware storage, otherwise an attacker could change the values.

❼ Root of Trust for Reporting (RTR): entity which reports securely (e.g. digital
signature) the content of the RTS.

2.3 TEE building blocks

2.3.1 REE interfaces to the TEE

Within the REE, the components that constitute the interface towards the TEE are an
optional protocol specification layer, an API, and a supporting communication agent.

The REE Communication Agent, shared among all Client Applications, provides
REE support for exchanging messages between the Client Application and the related
Trusted Application.

The TEE Client API is a communication interface designed to allow a Client Ap-
plication running in the Rich OS to access and exchange data with a Trusted Application
running inside a TEE.

The TEE Protocol Specifications Layer in the REE offers Client Applications
a set of higher level APIs to access some TEE services. TA developers can develop
additional proprietary TEE APIs at the TEE Protocol Specifications layer.
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2.3.2 Trusted OS components

Within the TEE, two classes of software are defined: the Trusted OS Components, and
the Trusted Applications.

Trusted OS Components consist of:

❼ the Trusted Core Framework which provides OS functionalities to Trusted Ap-
plications and is part of the TEE Internal Core API;

❼ the Trusted Device Drivers which provide a communication interface to trusted
peripherals.

❼ the TEE Communication Agent is a special case of a Trusted OS component
that works with its peer, the REE Communication Agent, to safely transfer
messages between CA and TA.

2.3.3 Trusted applications (TAs)

The Trusted Applications are the applications running securely in the TEE.

The TAs communicate with the other components of the system via APIs exposed by
Trusted OS components:

❼ the TEE Internal APIs define the fundamental software capabilities of a TEE;

❼ Other Internal APIs that can be defined to support interfaces to further function-
alities.

In particular, when a Client Application wants to initiate a session with a TA, connects
to an instance of that TA. Each instance of TA has physical memory address space
separated from the ones of other TA instances and the session is used to create a logical
connection to the multiple commands issued in a TA. Thereby, each session has its own
state which contains the session context and the context of the task executing the session.

2.3.4 Relationship between TEE APIs

The TEE Client API architecture

The TEE Client API provides interfaces to enable communications between a Client
Application and a Trusted Application. On top of the functionalities exposed by the TEE
Client API, is possible to build high level standards and protocol layers, for example to
support common tasks such as trusted storage, cryptographic services, and so on.

Applications typically use the TEE Client API to perform the following tasks:

❼ establish communication with a TEE;

❼ establish a session with a TA;

❼ if there is the need to exchange data with the TA, the TEE Client API can be used
to set up a shared memory;

❼ issue specific commands to the TA, leveraging the service provided by that TA;

❼ close the communications.
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The TEE Internal API architecture

Global Platform specifies a series of APIs to provide a common implementation for func-
tionalities typically required by many Trusted Applications.

The TEE Internal Core API defines the various interfaces to enable to a Trusted
Application usage of the standard TEE capabilities. If further low-level functionalities
are needed, optional TEE Internal APIs such as the TEE Secure Element API, TEE
Sockets API, and TEE TA Debug API can be deployed.

As the TEE Client API, higher level standards and protocol layers can be built on
top of the features provided by the TEE Internal APIs, for example to support tasks such
as creating a trusted password entry screen for the user.

The TEE Internal Core API provides a number of functionalities to the Trusted
Application. Examples of such functionalities are as follows:

❼ Trusted Core Framework API which provides integration, communication,
memory management and system information retrieval interfaces;

❼ Trusted Storage API for data and keys which provides Trusted Storage;

❼ Cryptographic Operations API which provides cryptographic capabilities;

❼ peripheral API which enables interactions among Trusted Application and pe-
ripherals via the Trusted OS.

The TEE Sockets API provides a modular interface for the TA to communicate to
other network nodes as a client. It consists in the general API for accessing and handling
sockets.

The TEE TA Debug API provides services that to support TA development and
testing of the TEE Internal APIs. Two services are relevant in this context that are the
Post Mortem Reporting (PMR) service and the Debug Log Message (DLM) service

The first provides a method for a TEE to report to clients the termination status of
TAs that enter the Panic state. Without this capability, there would not be possible to
certify correct functionality of the TEE Internal APIs, as the Panic state is used to report
various error conditions that need to be tested. The second one provides a method for a
TA to report simple debug information on authorized systems.

The TEE Secure Element API is a layer that enables communication to Secure
Elements (SEs) connected to the device in which the TEE is implemented. A Secure
Element is a chip that is by design protected from unauthorized access and used to run a
limited set of applications, as well as store confidential and cryptographic data. SEs can
be connected in a shared way via the REE or exclusively to the TEE. A SE connected
exclusively to the TEE is accessible by a TA without using any resources from the REE
since the communication is considered trusted. A SE connected to the REE is accessible
by a TA using resources lying in the REE. In this last case, a secure channel must be used
to protect the communication between the TA and the SE, providing protection against
threats in the REE.

The TEE Untrusted User Interface API permits to provide a user interface while
achieving three objectives:

❼ secure display: information displayed to the user cannot be accessed, modified, or
obscured by any unauthorized component.
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❼ secure input: information entered by the user cannot be derived or modified by any
unauthorized component;

❼ security indicator: the user can be confident that the screen display is not a spoofed
screen.

2.4 Keystone Enclave

Keystone [2] is an open-source framework for building customized TEEs on RISC-V
architectures. Before diving in the Keystone architecture, it is critical to provide an
overview of the main RISC-V features leveraged in building secure enclaves.

2.4.1 RISC-V overview

RISC-V is an open-source instruction set architecture (ISA) [22], that has the properties
of modularization and extensibility. It consists of basic instruction sets and modular
extensions to be suitable in different scenarios, allowing to customize the ISA to perform
specific computing tasks. Therefore, users can freely combine RISC-V instruction set
extensions and customize private instruction sets according to the requirements needed.

For example an important field in which the RISC-V is employed is that of embedded
microprocessor applications. Moreover, Post-Quantum RISC-V ISA extension has been
proposed to fulfil the demands of high throughput and low latency in modern applications
by Post-Quantum algorithms.

Particularly important are two features of the architecture:

❼ the Privileged ISA, which defines four levels of privileges;

❼ the Physical Memory Protection, that ensures isolation among the TEE, the REE,
and the TAs.

RISC-V privileged ISA

The RISC-V provides privileged architecture for running operating systems, supporting
virtualization, and running secure Enclaves [23]. Hence a RISC-V hardware thread (called
hart) is running at some privilege according to the encoding provided within one or more
control and status registers (CSRs). The RISC-V privilege levels are defined in table 2.1.

Table 2.1. RISC-V privilege levels

Level Encoding Name Abbreviation

0 00 User/Application U
1 01 Supervisor S
2 10 Hypervisor H
3 11 Machine M

Privilege levels are used to provide protection between different components of the
software stack. Whenever a component attempts to perform operations not permitted
by the current privilege mode an exception is raised. The exceptions normally propagate
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as traps to the underlying execution environment which then can perform operations
according to a policy.

The highest privileges are provided by the Machine level (M-mode). It is the only
mandatory privilege level for a RISC-V hardware platform. In fact, the simplest imple-
mentation may provide only M-mode, but this will provide no protection against malicious
and incorrect code. The code running in M-mode is usually inherently trusted since it has
unfettered access to the whole machine and it can be used to manage secure execution
environments on RISC-V.

Right after the M-mode, the Hypervisor-mode (H-mode) is intended to support
virtual machine monitors. In particular, the H-mode aims to provide isolation between a
virtual machine monitor and an environment running in machine mode.

Given the issues that arise with a single privilege level, many RISC-V implementations
support the S-mode and the U-mode. The Supervisor-mode (S-mode) can be added to
provide isolation among the operating system running in S-mode and the secure execution
environment. The User-mode (U-mode) is the level attributed to classic applications.

According to the privilege level, a core set of privileged ISA extensions with optional
extensions and variants is available. For instance, M-mode supports several optional
extensions to perform address translation and memory protection.

It is possible to include in the implementations a Debug-mode (D-mode). The
D-mode can be considered as an additional privilege level with more access than the M-
mode, and is intended to support off-chip debugging and manufacturing testing. It works
by reserving some CSR addresses accessible only with this mode and may also reserve
some physical memory space on a device.

RISC-V PMP

As already mentioned, the RISC-V architecture standard employs a mechanism defined
Physical Memory Protection (PMP). It aims at segregating the system memory into
regions and each region has a set of policy and permissions to be accessed. This prevents
unprivileged software from accessing regions without the required privileges. Such feature
is critical in the context of secure processing, since it is necessary to limit the physical
addresses accessible by an unprivileged context running on a hart.

To achieve this goal, the PMP works with per-thread M-mode control registers that
allow to specify the operations (i.e. read, write, execute) possible on a certain memory
region. Whenever a thread is running in any of the aforementioned modes, the PMP
checks are applied and the violations are trapped at the processor.

The granularity and encoding of the PMP access control settings are platform-specific
and there might be different granularities and encodings of permissions for different phys-
ical memory regions on a single platform. This means that some PMP designs might just
employ few CSRs to protect a small number of physical memory segments, while others
might employ techniques to protect large physical memory spaces.

It is critical to underline that each RISC-V core has its set of PMP entries. Whenever
an enclave is created, the PMP changes must be propagated to all the cores and the SM,
executing on each of the cores, removes the access of other cores to the enclave. Such
communications are done only at creation and destruction. Modifications to the PMP
entries during execution are local to the core executing the enclave.
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2.4.2 Customizable TEEs

As already stated, Keystone is a framework that allows to build customized TEEs.

One reason for the development of a framework for customizable TEEs is that depend-
ing on the specific platform, use case, or application, the threat model differs. Moreover,
even on the same platform, different applications may operate under different threat
models. This differs from the existing commercial TEEs which lacks of flexibility.

Unlike existing commercial TEEs, in Keystone is possible to specify a per-enclave
configuration of security features. For instance, TEEs deployed in data centre or home
appliance may not need to operate with physical adversary protection since a physical
attacker may not be a realistic concern and Keystone can be configured to operate only
with the required protections.

There are some requirements that must be satisfied in a hardware platform supporting
Keystone:

❼ a trusted boot process;

❼ a device-specific secret key visible only to the trusted boot process;

❼ a hardware source of randomness.

In a system compliant with Keystone several components are present as the ones
depicted in the figure 2.2.
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Figure 2.2. Keystone system’s example (source: [2]).

❼ trusted hardware: comprehensive of RISC-V cores, optional hardware features,
and RoT;

❼ Security Monitor: software component that runs in M-mode used to manage the
enclaves’ lifecycle;

❼ enclave: secure execution environment isolated from other enclaves and from the
REE;
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❼ enclave application (eapp): the application running in a certain enclave;

❼ Runtime (RT): per-enclave component used to provide OS functionalities to the
enclave (i.e. system calls, traps, etc.).

2.4.3 Entities in TEE lifecycle

Five logical entities can be identified in the TEE’s lifecycle:

❼ hardware manufacturer: designs and fabricates RISC-V hardware including rel-
evant components needed by the trusted boot process;

❼ Keystone platform provider: purchases hardware, operates it, and configures
the SM;

❼ Keystone programmer: develops Keystone software components including SM,
RT, and eapps;

❼ Keystone user: chooses a Keystone configuration of RT and an eapp, and in-
stantiate an enclave executing on hardware provisioned by the Keystone platform
provider;

❼ eapp user: interacts with the eapp executing in an enclave on the TEE instantiated
using Keystone.

The provisioning and deployment of the elements that compose Keystone are shown
in the figure 2.3:

1. the platform provider configures the SM;

2. Keystone compiles and generates the SM boot image;

3. the platform provider deploys the SM;

4. the developer writes an eapp and configures the enclave;

5. Keystone builds the binaries and compute measurements;

6. untrusted host binary is deployed to the machine;

7. host deploys the RT, the eapp, and initiates the enclave creation;

8. the remote verifier can attest based on known platform specifications, keys, and SM
measurements.

2.4.4 Security Monitor

The most important component of a Keystone TEE is the Security Monitor (SM). Since
it uses only standard RISC-V features, it is easily portable to other RISC-V platforms. In
addition, Keystone provides an easy way of configuring and compiling the SM depending
on the underlying platform.

It is used to provide isolation and security features, as well as ensuring that the
security features required are respected.
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Figure 2.3. Entities in TEE lifecycle (source: [2]).

Memory isolation

As regards memory isolation, Keystone uses the PMP feature provided by RISC-V.

Through the definitions of PMP entries, Keystone restricts the accesses of components
operating in S-mode and U-mode to certain physical memory regions, since each PMP
entry controls the permissions of a physical memory region. More in depth, the PMP
address registers (e.g. pmpaddr in the figure 2.4) contain an encoding of the address
of a contiguous memory region, and the PMP configuration register (e.g. pmpcfg in the
figure 2.4) contains the bits specifying the read, write, execute permissions for the U-mode
and the S-mode. If any of two modes attempts to access a physical address and it does
not match any PMP address range, the hardware does not grant any access permissions.

PMP makes Keystone memory isolation flexible in three ways:

❼ multiple discontiguous enclave memory regions can coexist instead of having one
memory region shared by all enclaves;

❼ PMP entries can cover regions of different size, allowing for arbitrarily sized en-
claves;

❼ PMP entries can be reconfigured during execution to dynamically create new regions
or release a region’s memory.

During the boot phase of the SM, Keystone configures the first PMP entry (that
has the highest priority) to cover the SM memory region. This prevents any access
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Figure 2.4. How Keystone uses RISC-V PMP (source: [2]).

from unprivileged modes to the SM physical memory region. Then, the SM configures
the last PMP entry (that has the lowest priority) to cover the whole memory with all
the permissions enabled and associates it to the OS. Without such configuration, the
OS would not be able to access the memory since would not be covered by any PMP
entry. When an enclave must be created, the host application requests the OS to finds an
appropriate contiguous physical region and calls the SM which validates the request and
protects the enclave memory by adding a PMP entry (with priority higher than the OS
PMP entry) with no permissions. To be validated, the request requires that the region
that will be allocated to the enclave does not overlap with other enclaves’ regions or the
SM region. When transferring control to an enclave, the SM:

❼ sets PMP permission bits of the enclave memory region;

❼ removes all OS PMP entry permissions to protect the memory from the enclave.

This allows the enclave to access its own memory and no other regions. When a CPU
context-switch would swap to a non-enclave context, the SM disables all permissions for
the enclave region and re-enables the OS PMP entry to allow default access from the OS.

Each enclave requires a PMP entry for each isolated memory region used and such
entries are freed with the enclave destruction.

Given that N is the number of PMP entries available, N -2 simultaneous enclaves are
supported in Keystone. It is possible to further expand this limit virtualizing the PMP
entries.

Post-creation in-enclave page management

Keystone has a different memory management design from most TEEs.

Once the OS generates the page tables, the virtual to physical memory mapping is
delegated entirely to the enclave during its execution. Thanks to the per-hardware M-
mode thread views of the physical memory and the PMP feature provided by the RISC-V
architecture, it is possible to have concurrent and multi-threaded enclaves accessing the
separated memory partitions. Once created the isolated enclave operating in S-mode,
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Keystone can execute its virtual memory management manipulating the enclave page
tables located inside the isolated memory space of the enclave. Delegating the memory
management to the enclave bring two advantages:

❼ more flexible virtual memory management with several Runtime modules;

❼ no controlled side-channel attacks are possible since the OS cannot modify or ob-
serve the enclave memory mapping.

Interrupts and exceptions

During the enclave execution, while the interrupts trap directly to the SM, exceptions may
be propagated to the RT via a RISC-V feature called exception delegation register. At
this point, the RT handles exceptions as needed by means of a standard kernel abstraction
implementation and may forward traps to the untrusted OS via the SM.

The problem here, is that the enclave could hold a core, hence causing a Denial of
Service (DoS) in the host. To avoid this issue, the SM sets a machine timer before it
enters the enclave. When the timer interrupt triggers, the SM regains control and it may
return control to the OS or request the enclave exit.

Enclave lifecycle

Enclaves’ lifecycle is made up by three distinct states.

During creation, Keystone computes measurement of the enclave memory to ensure
that the enclave binary is correctly loaded to the physical memory. The initial virtual
memory layout is used for the measurement since the physical layout can vary across
different executions. In particular, the OS initialize the enclave page tables and allocate
the memory for the enclave. The SM waits the OS and then analyses the OS-provided
page table, seeking for invalid mappings and ensuring a unique one. Here, the SM hashes
the page contents, the virtual addresses, and the configuration data and at the execution,
the SM sets PMP entries and transfers control to the enclave.

At execution, the SM sets the appropriate PMP entries and transfers the control to
the enclave.

The enclave destruction is initiated by the OS. The SM frees the enclave memory
region and returns such memory to the OS, frees all the enclave resources, PMP entries,
and enclave metadata.

2.4.5 TEE primitives

The standard TEE primitives supported in Keystone are listed in the following:

❼ Secure Boot: at each CPU reset, the RoT measures the SM, creates a fresh
attestation key thanks to a secure source of randomness, stores it into the SM
memory, and signs the measurements and the public key;

❼ secure source of randomness: Keystone provides a secure Supervisory Binary
Interface call, random, which returns a 64-bit random value; the SBI is privileged
firmware that initialise hardware and allows unprivileged components to call low-
level functionalities such as managing cores;
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❼ Remote Attestation: the SM computes the measurement and the attestation
based on the provisioned secret;

❼ other primitives: Keystone can support other primitives if required by the TEE,
such as allowing enclaves to access the read-only timer registers.

2.4.6 Modular runtime

As the SM isolates each of the enclaves, we can safely run private S-mode code into the
enclave. The private S-mode code running into the enclave is called Runtime (RT).

The RT can be thought as a per-enclave kernel, without requiring all the kernel
functionalities. In Keystone the modular RT, namely Eyrie, allows to include only the
intended functionalities, thus reducing the TCB and the attack surface.

The usage of S-mode, allows to implement the selected functionality without the need
to modify the user applications. Furthermore, introducing an additional privilege layer
gives the chance to allow only the RT to access the shared memory buffer, enforcing the
security. Moreover, this enables the portability of microkernel within an enclave.

Enclave memory management modules

An enclave can run code in S-mode and U-mode. Given the in-enclave memory man-
agement capability, the code running in the enclave does not need to cross the isolation
boundary. The issue here is that enclaves’ memory regions occupy a fixed contiguous
physical section, allocated by the OS with a statical mapping among virtual and physical
memory at load time. This limits the memory usage of most legacy applications.

To enable a more flexible enclave memory management, some modules can be em-
ployed:

❼ free memory module: Eyrie RT performs page table management hence there is
no need to have pre-defined page mappings;

❼ in-enclave self paging module: generic in-enclave page swapping module for
Eyrie, which handles the enclave page faults and uses a generic page backing-store
that manages the page storage and retrieval, relaxing the memory restrictions in
an enclave due to a limited memory size;

❼ module for protection of the page content leaving the enclave: module that
allows to achieve confidentiality and integrity of the page contents when an enclave
handles a page fault, copying the content of the page out of the secure memory.

Finally, as examples, two modules provided in Eyrie are the Edge Call Interface and
the multi-threading.

As regards multi-threading, Keystone supports multi-threaded eapps by delegating
the thread management to the runtime. Parallel multi-core enclave execution can be
implemented by allowing the SM to invoke the execution of an enclave multiple times on
different cores.

The Edge Call Interface comes in place whenever there is the need to read or write
data outside of the enclave. In particular, eapps cannot access memory that is outside
the enclave’s memory, hence the edge calls are performed by the Eyrie RT on behalf of
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the eapps. An edge call consists of an index pointing to a function implemented in the
untrusted host, as well as the parameters needed by it. The call is safely propagated to
the untrusted host, the function is executed and the return values are copied into the
enclave and then sent to the eapp. To enable this mechanism is required access by Eyrie
to a buffer shared with the host. The shared buffer is allocated by the OS in the host
memory space and its address is passed to the SM at enclave creation. Here, the SM
passes the address to the enclave and a PMP entry is configured to enable OS access to
the shared buffer. This is needed to allow the RT and the OS to access the shared buffer.

Such module can be used to add support for syscalls, enclave-enclave communication
and so on.

2.4.7 Security analysis

Protection of the enclave

The attestation mechanism employed within Keystone ensures that any unauthorized
modification of the SM, the RT, or the eapps is detected at enclave creation. At enclave
execution, the PMP ensures that any malicious access to the enclave memory is denied.
Moreover, the data contained within the enclave, can be modified only by the enclave
itself or the SM, both isolated.

The usage of a dedicated page management and in-enclave page tables provide pro-
tections against controlled side channel attacks, rendering them not possible in Key-
stone. Cache side channel attacks as well are not possible in Keystone, since the
enclaves do not share any state with the host OS or the user application and when per-
forming context-switching, the SM flushes the enclave state. Moreover, only the SM can
see enclave’s events which are not visible to the host OS (e.g. interrupts, faults).

As regards the mapping attacks, the RT ensures that the virtual-to-physical mem-
ory mappings are valid, creates valid ones, and is trusted by the eapp. At enclave creation
the RT initializes the page tables or load a static mapping validated by the SM. During
execution the RT ensures that the mapping updates do not corrupt the memory layout.
New empty pages provided by the enclave are controlled by the RT, that determines if
the page can be safely used before mapping them to the enclave. This holds even when
any page is removed from an enclave, whose content is freed before returning the space
to the OS. Such mechanisms ensure that Keystone is not susceptible to mapping attacks.

The RT modules can be leveraged in Keystone to achieve protection against syscall
tampering attacks. In fact, whenever there is the need to invoke untrusted functions
implemented in the host process or execute OS syscall, there is the culprit for Iago attacks
and system call tampering attacks. RT modules are available and can be used to protect
the enclaves against such threats.

Protection of the host OS

The host OS is not susceptible to attacks coming from the enclave. This is due to the
fact that the RTs execute at the same privilege level of the host OS. This means that
the enclave cannot reference any memory outside the one allocated due to the PMP
isolation feature and the host state cannot be corrupted at context-switch time since the
SM performs it correctly and completely. Moreover, the page tables belonging to the host
application or to the host OS cannot be modified. Finally, an enclave cannot hold a core
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for too much causing a DoS, since the enclave will be interrupted by the timer set by the
SM, which in turn returns the control to the OS.

Protection of the SM

The security of the SM is ensured thanks to the PMP isolation and to the trust model
employed. In particular, the SM does not trust the lower privilege software components
(e.g. eapps, RTs, host OS, etc.) and its memory region is inaccessible to both enclaves
or host OS.

Concerns could arise considering the SM SBI, which constitutes another component,
hence another attack path. In Keystone the SBI code presents in the SM does not
require a complex resource management and has been formally verified due to its small
size, ensuring its security.

The SM is not subject to DoS since it does not require a scheduled execution time.

Other attacks such as side channel attacks are not a problem since the SM is protected
against such attacks by means of known techniques.

Protection against physical attackers

One last security consideration is related to the protection against physical threats that
could control the memory. In Keystone such protection is achieved via platform features
and a modification of the bootloader.

The enclave itself is physically protected by using an on-chip memory and the RT’s
paging module, with encryption and integrity protection on the pages leaving the on-chip
memory. The page backing-store is PMP protected, now containing only the encrypted
pages. This fully guarantees the confidentiality and integrity of the enclave code and data
from an attacker with control of DRAM.

The SM should be executed entirely from the on-chip memory, which may require
a modification of the trusted bootloader but it should be noted that the SM code is
relatively small, and statically sized.

With these techniques in place, content outside of the chip is either untrusted or
encrypted and integrity protected.
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Chapter 3

Device Identifier Composition
Engine and Remote Attestation

Cyber-attacks are becoming more and more sophisticated meanwhile new market seg-
ments like the Internet of Things (IoT) and embedded systems are built and designed
with innovative architectures, based on solutions in which resource and power constraints
lead to difficulties in implementing security solutions with a certain extent of security.
Leveraging on Trusted Platform Module allows to achieve an optimal and flexible solution
but not all the systems and devices are equipped with such silicon-based capabilities.

The Device Identifier Composition Engine specification proposed by the Trusted Com-
puting Group (TCG) [3], aims at providing a strong device identity in this context, in
which no special hardware for attestation is typically available. The main idea behind
the DICE specification is to combine software techniques with minimal and simple sili-
con capabilities to establish a cryptographic strong device identity, attest software and
security policy, and assist in safely deploying and verifying software updates.

3.1 Device Identifier Composition Engine (DICE)

To achieve the definition of a strong device identity, the idea behind DICE is to rely
on a Unique Device Secret (UDS) which is a statistically unique, uncorrelated value,
provisioned at manufacturing time that identifies a specific platform. This is used to
derive all the other values needed in the process.

There are some requirements and considerations that must be underlined around the
UDS. First of all, the UDS must be securely stored and not be rewritable, with a length
of at least 256 bits. In fact:

❼ changes in the UDS would cause a change in the identity of the device, preventing
proper attestation and access to secrets previously stored;

❼ a sufficient bit-length improves the likelihood of the implementation’s durability.

To protect the UDS from unauthorized access, the access to the UDS must be disabled
until the reset of the platform and before the execution of the untrusted code. To achieve
such protection is possible to place to UDS into read-once memory and to enable access
only within the range of DICE instructions addresses, or enable access from a secure
coprocessor on which DICE is executed. Moreover, to prevent computation of the UDS
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starting from values that could be used to reach this goal, the DICE engine must erase
such values before the execution of the first mutable code. The first mutable code is
defined as untrusted replaceable code executed after the DICE engine.

At each boot of the platform, the DICE uses the UDS (having exclusive access)
to generate a value called Compound Device Identifier (CDI). The CDI generation is
described in the figure 3.1.

Reset

Device Identifier Composition Engine (DICE)

First 
Mutable

Code

Compute measurement of the first 
mutable code and optionally

hardware state and config data

Combine Unique Device Secret (UDS) and the 
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create a Compund Device Identifier

Prevent access to the UDS (via hardware 
mechanism) and completelyerase any

remnants from memory

Transfer control to an architecturally defined
location in the mutable code passing the 

Compound Device Identifier

Measurement of 
the first mutable

code and optionally
hardware 

configuration data

Unique Device 
Secret (UDS)

Compound Device 
Identifier

Figure 3.1. CDI generation process (source: [3]).

More in depth, the CDI is derived using both the UDS and the measurement of the
first mutable code, and can optionally include measurements of data that influences the
execution of the first mutable code. A measurement is defined as a cryptographic
condensed representation of code.

The CDI computation must be carried out using techniques that make infeasible the
computation of the UDS with knowledge of both the CDI and the measurement. This
may be accomplished using a secure hash algorithm [24]:

H(UDS∥H(FirstMutableCode));

or by means of a secure HMAC function [25]:

CDI = HMAC(UDS,H(FirstMutableCode))

Once computed, the CDI is passed to the first mutable code which takes control of the
platform.

This process enables the benefit of obtaining a different CDI if the first mutable code
is modified in any way, preventing any access to precedent CDI to malicious code. Any
CDI leakage would cause the device to be vulnerable to replay or impersonation attacks.
To achieve such protection, two solutions are possible:

❼ dedicated hardware to protect the access to the CDI;
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❼ protect the CDI by means of the first mutable code which results responsible of the
CDI protection.

An example of the second approach may be erasing the CDI from the memory as soon
as possible after its usage. In this case, the first mutable code must have exclusive access
as long as needed to the location in which the DICE write the CDI, erasing the CDI and
all the values that could be used to determine the CDI.

Finally, the specification defines two categories of immutability for DICE:

❼ in simple devices the engine and its dependencies may be invariant and must be
such by the end of the manufacturing process;

❼ in complex systems the engine may be subject to updates which must take place
only through a secure process controlled by the manufacturer.

Any update must not influence the CDI.

3.2 Layering architecture

The DICE specification can be extended beyond a single-layer system to a multi-layers
system, where each layer is be made up by one or more components.

Defined as DICE Layering Architecture [4], it provides a way to know on a system
which components are being executed and if behaving as expected. It describes how to
extend the identifier composition beyond a single layer to a multi-layered TCB, in such
a way that the trusted functionality can be provided to higher TCB layers.

Starting from the DICE hardware RoT (assumed to be trustworthy) the approach over
which the DICE Layering Architecture is based, considers the execution states entered
progressively. Each transition between layers involves creating a CDI value and securely
passing it to the next layer, hence only when a layer is considered in a trusted state is
possible to move from one layer to the next one.

By convention the layers are enumerated following the underlined workflow, therefore
the layer above DICE implementation is considered the layer 0. This allows to build a
chain of trust, enabling the attestation of multiple components within the same device.

3.2.1 Layer capabilities

In oder to build the chain of trust, each TCB layer needs to have access to a set of
functionalities that must be protected when executing. The set of capabilities needed
and generated at each step:

❼ TCB Component Identifier (TCI): value that allows to describe a specific TCB
component as measurement of the code that will be executed and may include other
information.

❼ Compound Device Identifier (CDI): computed by means of a one-way function
using as input the CDI of the previous layer and measurement (TCI) of the current
one;

❼ One-way Function: pseudo-random function compliant with [26].
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The way in which such values are computed in a multi-layered system is depicted in
the figure 3.2, where each layer securely passes the CDI generated by means of the OWF
to the next layer. which in turn uses as input to generate a CDI for the current layer and
passes it to the next one and so on.

DICE Layer 0 Layer 1 Layer n

TCIL0

f()OWF

UDS

TCIL1

f()OWF

CDIL0

TCIL2

f()OWF

CDIL1

FSD

f()OWF

CDILn

Figure 3.2. CDI generation process in a multi-layered system (source: [4]).

It should be noticed that to achieve the creation of a strong DICE layered identity a
precise chain of TCB components is needed since the CDIs computed are accumulation of
the measurements of preceding TCB components. Therefore, the identity is determined
not only by the identities of the TCB components but also by the order in which each
component executes and is usually referred as DICE Layered Identity.

To achieve protection in terms of secrecy of the private keys, it is of utmost importance
to protect the layers. In particular, is important to access and use secrets preventing other
entities from accessing or intercepting such values, in the same way in which interference
with the transition from DICE to the layer 0 must be infeasible.

Certification, authentication, and attestation

A DICE layer TCB can be configured to include additional capabilities beyond the ones
already specified. The specification [4] identifies certification, attestation and authenti-
cation capabilities.

The Certification capability of a DICE layered component involves the issuance of
a certificate or token that links the next layer TCB to the current layer TCB. In this
context, certification can be granted by generating and certifying keys in the current layer
before passing the control to the next layer.

Based on the key purpose, certifications differ. In particular, in case of asymmetric
key generation, the certification is done by means of an X.509 certificate. On the other
hand, if a symmetric key is generated, a token is constructed containing the next layer’s
TCI, the next layer’s CDI, and a symmetric key derived from the CDI.

This certification takes two possible approaches:

❼ the TCB layer generates the key pair, issues the certificate for the keys, and finally
passes keys and certificates to the next TCB layer;
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❼ the TCB generates its own key pair and then sends a certificate request to the TCB
layer below, that in turn creates the certificate and sends it to the requester layer.

Once generated, the certified keys can be used for attestation and authentication.

In particular, attestation of a DICE layered component refers to the use of a sym-
metric or asymmetric key that is approved by a Certification Authority. Such attestation
asserts trustworthiness properties about a TCB layer or component which may be ex-
plicit (enumerated with an encoding available at a verifier) or implicit (properties are
determined based conditions that otherwise would not be possible).

Authentication of a DICE layered component refers to the use of a symmetric or
asymmetric key authorized to authenticate the device.

3.2.2 Keys and credentials

In the DICE layered architecture several types of keys and credentials may be managed
by each TCB layer. In the following sections a comprehensive description of the types,
uses, generation and derivation requirements and modalities are presented, along with
security considerations.

Asymmetric keys

Asymmetric keys can be used in the attestation process to provide attestation of the
trustworthiness properties of a TCB layer. As regards the generation, the asymmetric
keys generation is seeded using the CDI. This means that the layer semantics are implicitly
represented in the resulting asymmetric keypair since the CDI is computed by means of
measurements of the current layer and CDI of preceding layers. As shown in the figure 3.3,
the key-derivation function is seeded using the CDI of the current layer, generating a
keypair for the current layer.

DICE Layer 0 Layer 1 Layer n

Hardware

CDIL0

f()KGEN

AKeyL0 AKeyL1

f()KGEN

CDIL1

AKeyLn

f()KGEN

CDILn

Figure 3.3. Asymmetric keys generation example (source: [4]).

Typical algorithms used for keys generation are the ECDSA and RSA algorithms.
When deploying ECDSA, the TCB context must influence the generation of the key
pair. In particular, a value derived from the CDI can be used to seed the key-derivation
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function such as a random number generating derived from the CDI, while using theRSA
algorithm, the influence of the TCB context can be provided using the CDI-derived value
to seed the random number generator that produces the p and q primes. In constrained
environment, the ECDSA algorithm is preferred over RSA due to the reduced keys size
and improved sign operation performance. The first case is preferred for constrained
environments due to smaller key size and improved sign operation performance.

Whenever a certificate is needed for keys that are generated for the current or a higher
layer, an Embedded Certificate Authority Key (ECA) can be used by a TCB component
to sign the issued certificate. It is critical to sign only data that is known to the TCB
layer, hence external structures cannot be signed with an ECA key.

A key used to sign attestation evidence is called Attestation Key. As the previous
case, data structures external and unknown to the TCB layer cannot be signed with an
Attestation key.

A Key used to sign authentication challenges is called Identity Key.

The DeviceID Key is the asymmetric key derived from the CDI value that is computed
by the DICE, hence is dependent on the device’s UDS and the measurement of Layer 0.
Certified during the manufacturing process, the key is a long-lived identifier used to sign
certificates for key generated for a TCB layer or that may contain attestation evidence,
therefore it can be classified as an ECA Key as well as an Attestation Key, and an Identity
Key since it is dependent on the CDI.

Unlike the DeviceID Key, the key pair generated using the last CDI value in the chain
of TCB layers is defined Alias Key. In the DICE derivation chain, certificate related
to an Alias Key contains attestation evidence related to the top-level device firmware.
Therefore, the Alias Key can be classified as an Identity Key and an Attestation Key.

Symmetric keys

As regards the symmetric key generation, a Key Derivation Function (KDF) can
be used by seeding the KDF with the UDS or a CDI value derived from the UDS.
When performing this operation, is critical to use a CDI with adequate length to avoid
cryptographic overlap among the seed value and the symmetric key generated. To achieve
this goal, the CDI can be increased with additional data. An example of the symmetric
key derivation is shown in the figure 3.4, where the CDI and the TCI of the current layer
are used as input to the KDF, generating a symmetric key for the current TCB layer.

Analogously to the Asymmetric Key case, a Symmetric Alias Key is a key type gen-
erated based on the CDI that can be used for Symmetric Key Attestation and Layered
Identity.

A Wrapping Key is a symmetric key used to protect asymmetric key pairs. This
solution is valuable whenever the regeneration of Asymmetric Key Pairs on each boot is
undesirable, providing persistence to the generated keypair.

Credential types

The IDevID is a credential type containing a DeviceID key that is issued by a device
manufacturing process. The TCB layer that generates an IDevID should be immutable
or under the control of the device manufacturer.

The LDevID is a credential type containing a DeviceID-derived key issued at deploy-
ment time in the owner’s network.
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Figure 3.4. Symmetric key derivation example (source: [4]).

Security considerations

There are some considerations that are needed for a correct key management.

The TCB context values (i.e. TCI, UDS, CDI, etc.) can be exploited by an attacker
to perform impersonation by generating the keys for a given layer. Therefore, the current
TCB layer must protect such values, avoiding the exposure of the values above the layer
trusted to protect the secrets such as the private portion of a key. Moreover, before
transferring control to the next layer, the current one needs to erase any value used to
generate keys to avoid inappropriate duplication or unauthorized usage.

Another critical point regards the key persistence. If private keys are generated
without dependency on the CDI value and are made persistent, then a change to the
layer TCB would not be reflected in the persistent key. This means that the resulting
persistent key would implicitly attest the trustworthiness properties of a configuration no
more used, misrepresenting the state of the TCB layer. Due to this problem, if the layer
TCB code is updated, it is necessary to revoke the current set of asymmetric keys and
generate new asymmetric keys from the updated layer.

3.2.3 Layered certification

In a DICE layered architecture is possible to implement a CA hierarchy consisting of a
manufacturing root CA that issues device identity and attestation certificates, starting
from the Device manufacturer certificate of the DICE hardware RoT (HRoT).

A Device identity certificate is a data structure certifying that a cryptographic
identity has been embedded during the manufacturing process, allowing to verify the
expected device provenance.

A Device attestation certificate asserts that the device’s manufacturer has embed-
ded a cryptographic key in a device, allowing a verifier to determine which manufacturer
created the device, and to authenticate evidence of trustworthiness properties of the
system.
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Figure 3.5. Certificate hierarchy with Embedded CA (source: [4]).

Certification

Within a DICE layer TCB is possible to implement an Embedded Certificate Au-
thority (ECA) rooted in the DICE HRoT, that allows to issue certificates for a higher
layer’s keys. This enables to higher layers and external entities the ability to verify the
trustworthiness properties for a given DICE TCB layer.
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Figure 3.6. Layered certification example (source: [4]).

For example in the figure 3.6 is depicted the scenario in which layered certification is
provided. In particular, each TCB layer has generated its specific identity key, while
the layer 0 has obtained a manufacturing certificate used as IDevID. It should be noted
that each TCB layer implements an ECA that issues certificates for a higher layer.

The specification [4] defines two models for intra-layer certification:

❼ an ECA-embedded policy describes how and when to issue a certificate for a higher
layer;
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❼ a Certificate Signing Request (CSR) is created by the higher layer and is sent
to the ECA accepting certificate enrolment requests.

Another solution to obtain device identity is to interact with an external CA (i.e. not
an ECA). In this case, the identities can be provisioned when deploying the device in the
network or at manufacturing time.

During manufacturing two general approaches are adopted:

❼ device keys and identity credentials are provisioned when the device is still not
operating;

❼ device keys and identity credentials are generated after the device has requested
the provisioning.

3.3 Attestation architecture

Whenever changes are made to a trustworthy environment, is necessary to determine
if the new state of the system is trustworthy as well. In this context, an attestation
architecture provides a framework to determine if a trust change occurred and to enable
appropriate responses.

The attestation architecture specification [5] defines a set of roles (i.e. Attester, En-
dorser, Verifier, Relying Party, and Owner) characterising the attestation architecuture.
Each role consists in an entity exchanging messages with other roles according to the
deployment model adopted. Even if different deployment models can be adopted, the
selected model does not change the roles and their responsibilities. Furthermore, the
framework includes the definition of certificate extensions that can be leveraged to con-
struct attestation evidence

The basic functionalities of the architecture are the generation, transportation, and
appraisal of the evidence.

3.3.1 Attestation roles

There are five roles defined within the attestation architecture as shown in figure 3.7,
where each role produces or consumes attestation information and interacts with the
other roles based on the deployment model adopted.

Attester role

The main responsibility of the Attester role is to provide attestation evidence to a Veri-
fier, leveraging an identity used to achieve authentication of the evidence. The underlying
identity is often provisioned during the manufacturing process, where the manufacturer
embeds the credentials in the entity implementing the Attester role.

As shown in the figure 3.8, the Attester is made up by two components:

❼ the Target Environment;

❼ the Attesting Environment which collects the assertions, called Claims, about
the trustworthiness properties of the Target Environment.
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Figure 3.7. Attestation Roles and message flow (source: [5]).
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Figure 3.8. Device with Attesting Environment and Target Environment (source: [5]).

In light of the definitions provided, any TCB layer can be an Attesting Environment
that generates Evidence that is a Claim authenticated and integrity protected. For
instance, prior the execution of a layer LN, the preceding layer (e.g. layer LN-1) performs
the role of Attesting Environment, while the former is the Target Environment. When
the layer LN takes control, it becomes in turn the Attesting Environment for the layer
LN+1, and so on.
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Endorser role

The Endorser is the entity that creates reference values or measurements known to be
correct, called Endorsements, containing assertions about the device’s intrinsic trust-
worthiness properties that can be used as reference values by a Verifier seeking to compare
Evidence to values that correspond to a manufacturer’s result.

Such Endorsements are typically authorized using digital signatures such as with
certificates.

For a given DICE layer, there may be multiple Endorsers. In this scenario, if the layer
LN or an higher one implements the Attester role, the previous layer LN-1 implements
the Endorser role.

Evidence and Endorsement values transmitted over a public network can be subject
to privacy concerns. Due to this, is responsibility of the protocol used to perform this
task to confidentiality protect the payloads of Evidence and Endorsement values.

Verifier role

The Evidence and Endorsements are sent to the Verifier. The entity implementing the
Verifier role, accepts Endorsements and Evidence, applies Appraisal Policies for Evidence,
and then sends the Attestation Results to one or more Relying Party. For example,
in a Remote Attestation scenario, this role is implemented by a service provider.

The policies are obtained from an entity with whom the Verifier has a trust relation-
ship. Once obtained, the policies are authenticated and the Verifier is trusted to correctly
apply the supplied policies.

Verifier owner role

The policies obtained from the Verifier are provided by the Verifier Owner role. In
particular, the Verifier Owner generates Appraisal Policy for Evidence and sends it
to the Verifier, which uses it to determine the acceptability of the Evidence and Endorse-
ments.

A policy is used for various goals:

❼ to determine which Evidence and Endorsements are acceptable, based on a database
of acceptable Endorsements;

❼ to determine the trustworthiness state of the Attester;

❼ to best represent the state of the Attester as Attestation Results.

Relying party role

The Attestation Results produced by the Verifier are conveyed to the Relying Party.
Once received, the Attestation Results are evaluated against the Appraisal Policies for
Attestation Results that are received from a trusted entity and according to the evalua-
tion, the Relying Party takes subsequent actions. For example, possible actions include
granting or denying access, triggering transactions, and so on.

The Verifier is trusted from the Relying Party to correctly fulfil its role (i.e. evaluate
Attestation Evidence, apply Appraisal Policies for Evidence, and produce Attestation
Results).
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Relying party owner role

The trusted entity that provisions the Appraisal Policies for Attestation Results to the
Relying Party is the Relying Party Owner. The Relying Party Owner role is imple-
mented by an entity that determines if the policies supplied are applied correctly and if
the results generated based on the policies are the intended ones.

The Appraisal Policies for Attestation Results defines whether Attestation Re-
sults provided by the Verifier about an Attester can be considered acceptable.

It should be noted that, as with some other Attestation Roles, the Relying Party
Owner Role and the Relying Party Role may be implemented by the same actor.

3.3.2 Role messages

Role messages consist of Claims flowing among the roles.

Actors evaluate the role messages based on the reputation of the entity asserting the
role message. As part of the attestation trust model, such messages must be authenticated
and integrity protected, so that the receiving Actor is able to determine both if the sender
is the expected one and if the message has been subject to unauthorized manipulations.

Critical in this context if the freshness of Role messages. In fact, the efficacy of the
trustworthiness properties can decrease over time or after the collection and reporting of
Evidence.

Message freshness can be achieved by including as part of Evidence:

❼ a requester supplied nonce;

❼ a timestamp;

❼ a validity period.

Evidence

Evidence is a role message containing Claims from the Attester, describing the state of
the device or entity.

Normally this role message is generated as a result of a request (i.e. challenge). For
example, when the attesting environment at layer LN collects claims about the target
environment at layer LN-1, it can supply Evidence about the layer LN in an identity
credential issued by the attesting environment.

Finally, Evidence can describe previous states of the device such as the state of the
Attester during the initial boot and also states that may change among different requests
and should contain freshness Claims that enhance the Evidence.

Appraisal policy for evidence

An Appraisal Policy for Evidence is a role message, used by the Verifier, that con-
tains policies that reconcile trustworthiness Claims in Evidence with expected operational
conditions involving the Attester.
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Endorsements

Endorsements are reference values used by the Owners to form Appraisal Policies,
signed by the Endorser.

In a DICE layered architecture, if the layer LN-1 creates the Endorsement values,
then the layer can supply Endorsements about a layer LN. For example, if the lower layer
applies memory layout randomization to the upper layer when loading an executable
in memory, the former one collects the measurements by accessing the upper layer and
creating the Endorsement values.

Attestation results

Attestation Results are role messages containing the results of attestation Evidence
appraisals that are conveyed to the Relying Party and expected to comply with the
Verifier Owner policies. Subsequently, the Relying Party enables actions based on the
results provided.

The Verifier must provide authentication, integrity, and confidentiality, protecting the
message.

Appraisal policy for attestation results

An Appraisal Policy for Attestation Results is an input to a Relying Party that
contains policies that reconcile trustworthiness claims in the Attestation Results with
expected operational conditions involving the Attester.

3.3.3 Layered device attestation

In the DICE layered architecture, the trust in a given layer depends on the trustworthiness
of the previous ones. With layered attestation the specification [5] refers to the process
of attesting the layer LN based on Evidence signed by the layer LN-1which in turn is
attested by the layer LN-2 and so on up to the DICE HRoT that is inherently trusted.
As a result, a Verifier of layered attestation must evaluate the attestation evidence of
previous layers before trusting the current layer. The overall process is shown in the
figure 3.9.

Attestation Verifiers require attestation evidence that can be conveyed using several
techniques. The specification describes the following approaches:

❼ X.509 identity certificates and certificate revocation lists (CRLs) with extensions
that contain Evidence;

❼ X.509 attribute certificates containing Evidence;

❼ manifest containing Evidence.

Evidence as X.509 certificate extensions

X.509 extensions encode reference Endorsements about a DICE TCB environment. Such
extensions are used by certificate issuer to assert the trustworthiness claims that apply to
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Figure 3.9. Layered Attestation (source: [5]).

the DICE TCB that protects the subject private key identified by the certificate subject
public key. This field is used to carry the public key and identify the algorithm with
which the key is used (e.g. RSA, DSA, or DH) [27]. In this way, when the certificate
is presented to a Verifier, the reference Endorsements are available for trustworthiness
evaluation.

A CRL issuer uses an extension to assert that these trustworthiness claims apply to
the DICE TCB environment that protects the subject private key that is identified by
the certificate serial number, since it identifies the certificate that identifies the subject
public key. A Verifier having the CRL, can use Endorsements contained in the extension
to evaluate the TCB properties associated with the revocation request. Endorsements in
a CRL describe claims that are no longer trustworthy.

The TCB Info Evidence Extension defines attestation Evidence about the DICE
layer that is associated with the Subject key. The Subject and SubjectPublicKey fields
identify the entity to which the DiceTcbInfo extension applies. When this extension
is used, the measurements in Evidence usually describe the software/firmware that will
execute within the TCB. If this extension is supplied, the AuthorityKeyIdentifier must
be supplied since it allows the Verifier to locate the signer’s certificate by means of the
keyIdentifer that identifies the Issuer public key. The issuer of the certificate must ensure
that any non-constant field within the extension contributes to the CDI that generated
the subject key. For non-constant field (e.g. measurement and values that would affect
the trustworthiness properties of a device if changed), the issuer must ensure that it
derives the value by measuring the subject layer LN+1. The Verifier queries a database
containing Endorsements that correspond to this Evidence using fields contained in the
DiceTcbInfo extension such as querying by digest, vendor, model, and version values.

When the initial state of a DICE TCB is represented by multiple measurement, the
Multiple DiceTcbInfo Structures Extension can be used. This certificate extension
defines a sequence of DiceTcbInfo structures, one for each measurement.

The UEID Evidence Extension contains a UEID that is an identifier which iden-
tifies an individual manufactured entity, hence must be universally and globally unique
across manufacturers and countries. Therefore, this extension identifies the device con-
taining the private key and is identified by the certificate’s subjectPublicKey. The issuer
must ensure that the content of this extension contributes to the CDI which generated
the subject key, such that a change in the field value will cause a change in the CDI.
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Evidence as X.509 attribute certificate

Evidence might be created using an X.509 attribute certificate that is signed by an attesta-
tion key. Evidence is collected by the Attesting Environment that controls the attestation
signing key about a Target environment.

Endorsements

To encode Endorsements three approaches are defined within the specification.

Endorsement values may be conveyed using certificate extensions containing a mani-
fest structure that is signed by an Endorser. A manifest is defined as a set of references.
In particular, it contains reference values about the target TCB and can be used by a Ver-
ifier to appraise Evidence contained in a DiceTcbInfo extension. It is possible to include
extension containing a Universal Resource Identifier (URI) that locates a reference
manifest.

Finally, two other possible approaches are deploying attribute certificates which
may contain attribute values that endorse an Attester or Endorsement manifest, that
is a signed structure containing Endorsement claim. In the last case the manifest signing
key may have an associated certificate or other credential that contains Endorsement
claims.
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Chapter 4

Quantum impact on the current
technologies

In this section, an overview of the quantum advent’s effects on the current cryptographic
technologies is given. The analysis starts by describing the state of the art of today’s
cryptosystems and the quantum impact on such technologies, followed by considerations
on the migration process towards a quantum-safe state.

Finally, the Post-Quantum Cryptography is introduced, along with the cryptographic
primitives over which quantum-safe solutions are built upon. Crucial in this context is
the National Institute of Standards and Technology (NIST) standardization process [13].
Started in 2016, the goal of this Call for Proposal is the standardization of quantum-
resistant cryptographic algorithms. Therefore, the selected algorithms are presented and
briefly analysed.

Before diving in the discussion, it is essential to provide an overview of the algorithms
that a quantum computer would rely upon to efficiently carry out attacks on the high-
lighted cryptographic systems. Two algorithms, Shor’s and Grover’s algorithms, stand
out as the most significant ones in this context.

4.1 Shor’s algorithm

Shor’s algorithm is known for its ability to endanger public-key cryptography since it can
efficiently factor large numbers and solve the Discrete Logarithm Problem, foundation of
security for many public-key algorithms [10].

The algorithm is made up by two components:

❼ a reduction phase in which the Factoring problem is reduced to the Order-Finding
problem, lowering the complexity;

❼ the quantum algorithm to solve the Order-Finding problem.

The Order-Finding problem consists in determining the period of a modular exponen-
tial function.

Formally, given the exponential function ax the modular exponential function is de-
fined as the remainder of the division among the exponential function and an integer
N :

FN (x) = ax mod N
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The order of the modular exponential is the smallest positive integer x such that:

ax mod N = 1

The strategy over which the Order-Finding solution is based on consists in computing
the function FN (x) for many values of x in parallel, aiming to detect the period in the
function sequence’s values. It is known that using randomization, factorisation can be
reduced to finding the order of an element. In the following is described on a high level
the algorithm’s workflow:

1. pick a random value x mod N ;

2. compute the order r of x ;

3. compute the gcd(xr/2 − 1, N).

The quantum algorithm to compute the order can be found in [10]. The value computed
in the last step fails to be a non-trivial factor of N only under the two conditions

r mod 2 = 0

xr/2 = −1 mod N

Using this criterion, it can be shown that this procedure, when applied to a random
x mod N , yields a factor of N with probability at least

p = 1− 1/2k−1

where k is the number of distinct odd prime factors of N .

The time complexity of the algorithm is O((logN)3) = O(n3), respectively the number
to factor (e.g. N ) and the number of bits required to represent N .

Hence, a quantum computer equipped with adequate resources and computational
power can effectively utilize Shor’s algorithm to efficiently solve the factorisation problem
as well as the DLP, thereby jeopardizing systems reliant on this mathematical property.

It is crucial to emphasize that while there are currently no implementations capable
of factoring large numbers, successful factorizations of small numbers have been achieved
[28]. Therefore, it can be confidently stated that the algorithm is effective and imple-
mentable.

However, it is uncertain when a large and practical machine will be constructed to
handle large numbers.

4.2 Grover’s algorithm

Grover’s algorithm, in contrast, endangers symmetric algorithms since it is able to reduce
the amount of operations needed to break a symmetric key, or more in general provides a
speed up for searching an unstructured database with respect to the classical algorithms.

The task that the algorithm aims to solve can be expressed as follows:

given an abstract function f(x) that accepts search items x , a item x0 is a solution to
the search task if

f(x0) = 1
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otherwise

f(x0) = 0

The Search Problem consists in finding any item such that f(x0) = 1.

Based on this problem, the purpose of the algorithm is essentially inverting a given
function y = f(x) such that on a quantum computer, Grover’s algorithm allows to solve
the search problem. Hence the algorithm enables the search for specific solutions across
all possible input combinations.

Formally, as the ETSI states [29], if a problem has the following four properties:

❼ the only way to solve the problem is by repeatedly answering and checking the
answers;

❼ the number of possible answers to check corresponds to the number of inputs;

❼ it takes the same amount of time to check every possible answer;

❼ there are no indications of which answers may be better, thus randomly generating
candidates is equivalent to follow a precise order.

The time required for a quantum computer to solve problems with these four properties
is proportional to the square root of the number of inputs.

Classically, in the worst case, f(x) has to be evaluated a total of N − 1 times, where
N is the total number of items (e.g. in the symmetric algorithms and hash functions
contexts, this can be seen as all the possibilities that must be evaluated to respectively
brute force the secret key or a pre-image). On a quantum computer, the algorithm can
find a specific entry in an unsorted database of N entries in

√
N searches [30]. Stems

that, roughly, the algorithm’s complexity is O(
√
N).

4.3 Cryptographic schemes affected

4.3.1 Asymmetric schemes

Any cryptosystem, security protocol, and product relying on algorithms that exploit the
mathematical complexities of Integer Factoring and Discrete Logarithm will no longer
be deemed secure. This includes RSA, Diffie-Hellman (DH), and the Elliptic Curve
Cryptography (ECC) [31].

RSA is an asymmetric cipher based on the complexity of Integer Factorisation used
to encrypt and sign data.

When encrypted traffic is intercepted, the public key could be determined by exam-
ining the destination of the traffic and using Shor’s algorithm, the private key could be
derived from the public key. Recall that for a public key (N, e), the private key is the
value d such that

e · d = 1 mod ϕ(N)

where

ϕ(N) = (p− 1)(q − 1)

N = p · q
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Once N is factored into primes, it is straightforward to compute the private key.
Furthermore, publishing the public key would be equivalent to posting the private key as
well.

Not only would all data encrypted with this method be vulnerable, but no message
could be guaranteed to be secure, effectively destroying the purposes of the encryption
and digital signatures.

Unlike RSA, DH and ECC variants base their security on the Discrete Logarithm
Problem. Diffie-Hellman is an asymmetric cipher widely deployed that uses the aforemen-
tioned properties to transmit keys securely over a public network. Rather than exploiting
the classic DLP, algorithms that employ Elliptic Curve Cryptography (e.g. ECDH) rely
on the hardness of computing the Elliptic Curve Discrete Logarithm for their security.

The difficulty of breaking these cryptosystems is based on the difficulty in determining
the integer r such that:

gr = x mod p

which can be expressed as:

r = logg x mod p

The integer r is called the DLP of x to the base g.

Unfortunately, both the technologies are under the same threat that RSA is: a mod-
ification of the Shor’s algorithm could solve the DLP behind ECC and DH [32]. In fact,
smaller keys are needed for an ECC system than for an equivalent RSA system, therefore
smaller quantum computer could break ECC before they could break RSA.

The underlined algorithms are widely used in various applications:

❼ Public Key Infrastructure (PKI);

❼ Secure Software Distribution;

❼ Key Exchange over a Public Channel;

❼ Virtual Private Networks;

❼ Secure Web Browsing (e.g. SSL/TLS);

❼ Secure Boot.

4.3.2 Symmetric schemes

For symmetric cryptography quantum computing is considered a minor threat [31]. This
is because the foundational components that these algorithms depend on are not based on
computational assumptions vulnerable to the Shor’s algorithm. The only known threat
is the Grover’s algorithm.

In the case of symmetric ciphers (e.g. block and stream ciphers), the primary target of
a quantum attack is the brute force search of the secret symmetric key. The Grover’s algo-
rithm demonstrates that a quantum computer can enhance the search process, resulting
in a quadratic speed up compared to classical search methods.

Consequently, a quantum computer would not significantly speed up the brute force
search to find symmetric keys much faster than classical computers, ensuring that the level
of security can be retained by doubling the key length, assuming that the symmetric key
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algorithm does not rely on a structure that can be exploited by quantum computers. This
means that for a n-bit cipher the quantum computer operates in

√
2n = 2n/2 attempts.

In practice, a symmetric cipher with a key length of 128-bits would provide a security
level of 64-bits key. For example, the Advanced Encryption Standard (AES) is considered
to be one of the resilient cryptographic algorithms in a quantum era, but only when is
used with key sizes of 192 or 256 bits that results in a security equivalent to 96-bits
and 128-bits key sizes. Moreover, the Grover’s algorithm does not parallelise well. As
described in [33], even running several instances of quantum computers in parallel, the
improvements offered to the brute force search would be minimal.

In the table 4.1, are shown the classic and quantum key strength provided by different
cryptographic schemes in light of the aforementioned quantum algorithms.

Table 4.1. Comparison of classical and quantum security levels for the most used
cryptographic schemes

Crypto Scheme Key size Classic strength (bits) Quantum strength (bits)

RSA-1024 1024 80 0
RSA-2048 2048 112 0
ECC-256 256 128 0
ECC-384 384 256 0
AES-128 128 128 64
AES-256 256 256 128

4.3.3 Hash functions

The family of hash functions suffer from a similar problem as symmetric ciphers.

In the context of hash algorithms, attackers aim to achieve either a collision, which
refers to seeking for two different messages that produce the same hash value, or a pre-
image, which means looking for the message corresponding to a specific hash output.
According to previous considerations on the Grover’s algorithm, it can be exploited to
find a pre-image of a specific hash value in square root steps of its length.

To ensure pre-image resistance, it is necessary to increase the size of the output by
doubling it to keep the same level of security.

On the other hand, it has been proved that is possible to combine Grover’s algorithm
with the Birthday Paradox to enhance the collision search process [34].

The Birthday Paradox [35] refers to the phenomenon whereby the likelihood exceeds
50% that within a group of at least 23 randomly selected individuals, there will be at least
2 individuals sharing the same birthday. Exploiting this paradox, it is possible to conduct
an attack known as Birthday Attack [36]. Birthday attack is a collision-find attack to
detect two messages that collide to the same hash value. If x is the given hash-length in
bits, then with probability 50% in roughly 2x/2 time with 2x/2 random messages as input
is possible to find a collision.

By creating a table of size 3
√
N (e.g. this is the quantum resource requirement that

must be satisfied by a quantum computer) and utilizing Grover’s algorithm to find a
collision, an attack is said to work effectively. This means that to provide a b-bit collision
resistance, a hash function must provide at least a 3b-bit output. As a result, many hash
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algorithms are disqualified in the quantum era, except algorithms such as SHA-2 and
SHA-3 with longer outputs.

In the table 4.2 is summarized the impact on the different most-widely used crypto-
graphic algorithms.

Table 4.2. Summary of the quantum impact on different cryptographic algorithms

Crypto Algorithm Type Purpose Quantum impact

AES Symmetric key Encryption Larger keys needed
SHA-2, SHA-3 — Hash functions Larger output needed

RSA Public key Signatures, key establish. No longer secure
ECDSA, ECDH Public key Signatures, key exchange No longer secure

DSA Public key Signatures, key exchange No longer secure

4.4 Migration to the Quantum safe state

4.4.1 Migration challenges

According to the National Institute of Standards and Technology (NIST), the PQC mi-
gration cannot be achieved as a simple drop-in replacement [37]. In fact, the multitude of
contexts in which the transition will occur, encompassing IoT devices, embedded systems,
applications, and protocols causes the migration to be difficult for several reasons.

For instance, PQC algorithms present significant differences in key sizes, ciphertext
sizes, and signature sizes, as well as communication and computational requirements that
may not be compatible with the current infrastructures.

Also, many algorithms introduce new requirements (e.g. state management) that will
demand modification to existing frameworks, and these cryptographic schemes may be
suitable in certain scenarios but not aligned in others.

Furthermore, the introduction and adoption of innovative schemes necessitates the
NIST submissions to undergo additional cryptanalysis. Thus is crucial to emphasize that
there will not be a single replacement or solution, but rather multiple options according
to the needs and environment considered.

Such features must be carefully considered under several considerations such as per-
formance, security, and implementation.

Performance considerations

Considering that PQC algorithms demand greater computation, memory, storage and
communication requirements, an important research field regards the performance’s as-
sessment in various deployment scenarios. In fact, before PQC can be adopted in real
world contexts and systems, research is needed to develop practical and suitable imple-
mentations.

For example, consider networking. Larger key sizes, digital signatures and keys, intro-
duces latency and demands an higher bandwidth within secure communication protocols
(e.g. TLS). As a consequence, the performance is directly affected and research is needed
to develop efficient and scalable solutions.
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The modifications in turn impact the set of network devices optimized for the current
cryptographic protocols in favour of performance and scalability.

Included in this research challenge is the need to understand performance in IoT de-
vices where compute, memory and battery constraints are first order considerations. This
can affect the practical adoption of PQC schemes within those devices until a practical
implementation is made available.

Security considerations

The implementation’s impact of new public key algorithms affect the performance as well
the security.

First, unlike RSA and ECC algorithms, PQC candidates have a different set of trade-
off in configurable parameters such as key sizes, ciphertext size, and computation time.
Hence a key challenge is understanding the trade-off between security and algorithm
requirements for a wide variety of usage domains since a wrong configuration could extend
the attack surface decreasing the security offered.

Furthermore, the PQC candidates are currently under further cryptanalysis with re-
spect to the fully-understood RSA and ECC algorithms (e.g. Multivariate Cryptographic
Schemes). In particular, a critical research field is the analysis of the algorithms across
protocols and contexts. Here researchers analyse systems to discover weaknesses under
various models which rely on assumptions on the adversary behaviour.

One important category of weaknesses in this area are the Side Channel Vulner-
abilities. A Side Channel Attack consists in exploiting an information leak within a
certain implementation which allows to gather information to negatively affect a system.
This is possible since, in general, individual PQC algorithms will introduce new patterns
of memory usage, timing, communication, failure modes which could be exploited by an
attacker to compromise a system. Hence, how can implementations help to guard against
side channel attacks is an important research field as well.

Implementation considerations

The implementation of cryptographic algorithms itself is critical for the security of the
systems. In fact, a wrong implementation may introduce vulnerabilities.

This includes not only the implementation of the schemes within a system, but also
the translation of the algorithm from a mathematical formulation to platform specific
architectures. This is due to the complexity of mathematical algorithms, and the difficulty
in implementing and translating them. Factors such as data representation and layout,
and its interactions with the system memory and buffering mechanisms, can introduce
vulnerabilities which may go unnoticed.

The implementation complexities and issues become even more complicated when
dealing with embedded systems and IoT devices. The variety of devices in memory
size, computing resources and power availability causes the implementation to be more
difficult, especially considering that IoT devices are exposed to tampering.

Finally, it should be noted that the existing reference code associated to the NIST
submissions cannot be practically adopted, hence it is important to rely on robustly im-
plemented libraries (e.g. Liboqs by Open Quantum Safe [38]) to support experimentation
on specific platforms.

52



Quantum impact on the current technologies

4.4.2 Cryptographic Agility

Definitions

With the new advancements in cryptanalysis, the effort required to break a cryptographic
algorithm will decrease, rendering systems vulnerable. Furthermore, new algorithms may
be necessary in response to known vulnerabilities or as a better alternative to existing
solutions. With such premises, it is needed to assume in advance that as the technology
evolves and the cryptanalytic techniques improve, any algorithm will be at a certain point
in time obsolete.

In light of this, is critical to design and project systems with a certain degree of
flexibility, in such a way that allows to apply modifications and replacements without
the need to re-design the whole infrastructure. This property is defined as Cryptographic
Agility .

As defined in [39], crypto-agility describes the feasibility of replacing and adapting
cryptographic schemes in software, hardware and infrastructure, and should enable such
procedures without interrupting the flow of a running system.

To ensure cryptographic agility there are some principles that must be followed when
designing systems:

❼ design in light of crypto-agility from the earlier design stages;

❼ assume that the cryptographic algorithms will be broken at a certain point in the
future;

❼ implement the crypto algorithms in a crypto-agile manner;

❼ allow efficient change of algorithms.

Besides the just defined Algorithmic Agility, defined as the capability to migrate from
a cryptographic suite to another with as little as possible human intervention, several
forms of crypto-agility or modalities are described in [39]. The goal of crypto-agile
modalities is to enable modifications and provide flexibility in broader contexts.

Modalities

Whereas algorithmic agility is restricted to considerations on algorithms and crypto-
graphic schemes, Implementation Agility is one modality that answer the question of
how the implementation process can be enhanced so that applications can be considered
crypto-agile.

Besides the agility in terms of implementation, is important to provide a convenient
workflow that enables combining cryptographic building blocks in a secure way, such as
with hybrid schemes. This modality is defined as Composability Agility .

In [39], particular importance is given to the Security Strength Agility , defined as
the dynamic scaling of an algorithm’s security level based on the provided configuration.
This concept applies especially to new vulnerabilities or broken algorithms, enabling a
fast and secure adaption.

A cryptographic algorithm need to run across different platforms and systems. The
Platform Agility property, is defined as enabling the independent and seamless usage of
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the algorithms on different platforms, independently from the underlying software and
hardware components. This is critical in the context of IoT and embedded systems, due
to the variety of both the worlds.

A similar property is the Context Agility , which indicates the flexibility of algorithms
and security levels so that the algorithm can be dynamically configured according to the
system’s properties. With respect to the Security Strength Agility, this modality refers
to the limitations posed by a system’s properties rather than achieving a certain extent
of security by means of a provided configuration.

A platform should be designed in such a way that enables migrating from one scheme
to another when necessary. Supporting multiple schemes leads to a more flexible system
which can be adapted based on real-time needs. This is called Migration Agility . An
example of this crypto-agility modality can be found within the cipher-suite negotiation
within the TLS protocol.

Due to the aforementioned issues, since a cryptographic algorithm may become obso-
lete, it is necessary to enable a seamless retirement of vulnerable cryptographic schemes.
Defined as Retirement Agility , this property enables the retirement of obsolete or broken
algorithms from a system.

There is no one single security standard that must be followed. Moreover, different
security standards may be required and the infrastructure should be designed to allow
modifications to be compliant with frameworks and regulations. The Compliance Agility
is defined as the capability to reconfigure the infrastructure so that is compliant with
regulations and frameworks. This includes the local laws and the modalities in which
service providers ensure the availability of a product in different regions.

4.4.3 Hybrid schemes

The IETF in [40] addresses the need to employ hybrid schemes in which traditional and
PQ algorithms are combined according to specific patterns, since there may be the desire
or requirement for protocols to use both the algorithm types. This approach enables
protections against quantum attackers in addition to the security properties provided by
traditional algorithms. Furthermore an hybrid setting allows to implement post-quantum
algorithms alongside traditional ones for ease of migration. Schemes that combine post-
quantum and traditional algorithms for key establishment or digital signatures are re-
ferred to as hybrids.

More in general, a Post-Quantum Traditional Hybrid (PQ/T) scheme is defined as a
multi-algorithm scheme where at least one component is quantum-resistant and at least
one is traditional. A Multi-Algorithm Scheme is a cryptographic scheme in which are
incorporated more algorithms with the same purpose.

The security of hybrid schemes depend on the security of its components. If the post-
quantum component is broken, the scheme will be vulnerable to a quantum-attacker but
secured against a classical attacker.

The hybrid schemes takes more importance in the context of Retrospective Decryption.
Aslo defined as ”Harvest Now, Decrypt Later” (HNDL) attack, it refers to an attacker
storing encrypted information with the scope of decrypting the stored data when a prac-
tical quantum computer will be available. The deployment of hybrid schemes may help
to guard against HNDL.

Fo example, how post quantum certificates should be managed in a migration scenario,
enabling a hybrid configuration, is addressed in [40]. In the cited document, the IETF
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states that hybrid certificates need to contain public keys for two or more component
algorithms where at least one is a traditional algorithm and at least one is a post-quantum
algorithm.

The public key could be included as a composite public key or as individual public
keys. A Composite Cryptographic Element is defined as a cryptographic element that
incorporates multiple Component Cryptographic Elements of the same type to compose
a Multi-Algorithm Scheme. A Component Cryptographic Element is a cryptographic
component in a Multi-Algorithm Scheme.

Altough separate certificates could be used for individual component algorithms, an
hybrid certificate could be used to facilitate a hybrid authentication protocol.

Is important to clarify that, as IETF underlines, the use of PQ/T hybrid certificates
does not necessarily achieve hybrid authentication of the identity of the sender. For
example, an end-entity certificate that contains a composite public key, but which is
signed using a single-algorithm digital signature scheme could be used to provide hybrid
authentication of the source of a message, but would not achieve hybrid authentication
of the identity of the sender.

4.5 Post-Quantum Cryptography

4.5.1 Post-Quantum families

Post-Quantum Cryptography is the cryptographic branch that can provide security against
both quantum and traditional computers, since PQC algorithms are based on mathemat-
ical problems that cannot be compromised by the aforementioned algorithms.

There are five families of primitives that these algorithms fall into, all based on trap-
door functions.

A trapdoor function consists in a function that is computationally feasible to compute
in one direction but infeasible in the opposite direction without specific information.

Lattice-based cryptography

Lattice-based Cryptography is a form of public-key cryptography that avoids the weak-
nesses of RSA, having the foundation of its security on lattices.

A lattice is defined as a set of points in n-dimensional space with a periodic structure.
Therefore, a lattice is defined as a set of vectors which can be represented as a matrix.
Rather than multiplying primes, lattice-based cryptography involves computations among
matrices.

The security of these constructions is based on the presumed hardness of lattice prob-
lems, with the Shortest Vector Problem (SVP) being the most fundamental among
them. Here, is given as input a lattice represented by an arbitrary basis (e.g. combination
of vectors), and the goal is to output the shortest non-zero vector in it. This problem is
NP-hard.

More in depth, lattice-based cryptographic schemes take advantage of the worst-case
to average-case reduction principle. This means that breaking such schemes is at least as
hard as solving several lattice problems in the worst case. In other words, breaking the
cryptographic construction implies an efficient algorithm for solving any instance of the
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underlying lattice problem, which in most cases consists in approximating lattice problems
(e.g. SVP) to within polynomial factors, that is conjectured to be a hard problem [41].
This implies that all the keys are strong and hard to break in the easiest case as in the
worst case.

Lattice-based algorithms are very fast and considered quantum safe. Moreover the
flexibility offered by the configurable parameters allows to adapt the scheme to several
cases. The drawback is that a wrong configuration would lower the degree of security,
expanding the attack surface.

Currently there are no known quantum algorithms for solving lattice problems that
perform significantly better than the best known classical algorithms.

Code-based cryptography

Code-based cryptography uses the theory of error-correcting codes [42].

An error-correcting code is an encoding scheme that allows to transmit messages
as binary numbers, in such a way that the message can be recovered even if some errors
occur during the transmission causing changes to one or more bits.

The most widely known efficient error correcting codes are Goppa codes. To build
a secure coding scheme around Goppa codes, it is necessary to keep the encoding and
decoding function a secret and to publicly disclose a disguised encoding function. The
purpose of this last encoding function is to allow a mapping of a message to a set of code
words. To remove the secret mapping and recover the plaintext is necessary to possess
the secret decoding function.

In code-based cryptographic algorithms, the ciphertext consists of a codeword which
have been combined with errors that can be removed only with the knowledge of private
information. Such algorithms provides further redundancy to the communication so that
the receiver can in real time correct errors, which may occur during transmission.

This type of scheme is based on a mathematical problem called Syndrome Decoding
Problem. This is known to be an NP-complete problem without the knowledge of the
code, hence is computational hard to reverse using either a conventional or quantum
computer.

Generally, Code-based schemes offer short signatures but very large key sizes, which
is the biggest drawback of this cryptosystem that prevents its practical adoption.

Despite the advantages offered, code-based algorithms perform weakest among the
quantum safe primitives.

Multivariate polynomial cryptography

Multivariate cryptography is based on the hardness of finding a solution to a system of
multivariate quadratic equations over finite fields [43].

The trapdoor function leveraged in this primitive takes the form of a multivariate
quadratic polynomial map over a finite field. This mapping transforms linear quadratic
equations into non-linear quadratic polynomials.

More efficient schemes leverage systems of equations with some hidden structure that
is known only to the person that built the system, while the systems of equations are
perceived as random to outsiders.
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Not so efficient, multivariate encryption schemes present large public keys and long
decryption times. This issue stems from the inefficiency that lies behind the decryption
process since it includes some guessing that is a required part of the algorithm, ensuring
its security.

Furthermore such schemes offer a short signature, rendering it suitable for several
deployment scenarios.

Hash-based signatures

Hash-based cryptography offers signature schemes based on hash functions [44] and due
to their ubiquity, the security of practical hash functions is well understood.

Such schemes are interesting in this context since the non-number theoretic assump-
tions allow to avoid the quantum issues aforementioned. More importantly, it is known
that even quantum computers cannot significantly improve the complexity of generic
attacks against cryptographic hash functions.

Despite the advantages of this kind of signatures, there are some drawbacks.

The main problem is that they usually arise in the context of one-time signatures
(OTS). One-time signature scheme can only be used once to sign one single message with
a specific key. Reusing one-time signature keys would allow an attacker to gather enough
information to forge a valid signature.

To overcome the OTS limitation, such schemes are combined with binary tree struc-
tures so that instead of using a signing key for a OTS, a key may be used for a number
of signatures limited by and bounded to the size of the binary tree.

The main concept behind using a binary tree with hash signature schemes is that each
position on the tree is calculated to be the hash of the concatenation of their children
nodes. Nodes are thus computed successively, with the root of the tree being the public
key of the global signature scheme. The leaves of the tree are built from one-time signature
verification keys.

To perform a signature, a OTS unused key pair is picked from the tree. To sign a
i-th message, the signature is then computed taking into account the i-th leaf in the
tree, the OTS public key picked, the digest of the leaf, and its authentication path. The
authentication path is defined as the path from the root (e.g. the public key) to the leaf
selected to compute the signature.

One important feature regards the design of hash-based signature schemes. The de-
signs fall into stateless and stateful scheme. The former work as normal signatures,
while for the latter the signer needs to keep track of some information (e.g. the number
of signatures generated using a given key). State-fullness is an important drawback, in
that the signer must keep track of which one-time signature keys have already been used,
which can be cumbersome in a large scale environment.

A significant strength of hash-based signature schemes is their flexibility as they can
be used with any secure hash function, and so if a flaw is discovered in a secure hash
function, a hash-based signature scheme needs only to switch to a new and secure hash
function to remain effective.

4.5.2 NIST selected algorithms

In this section a general background on the objects considered in the NIST competition
is given.
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The PQC algorithms address three fundamental applications: encryption, key encap-
sulation mechanisms (KEMs), and digital signatures.

A Public Key Encryption (PKE) scheme consists of three algorithms.

❼ the key generation algorithm which generates a key pair consisting of a private and
public key;

❼ the encryption algorithm takes a message and a public key to compute a ciphertext;

❼ the decryption algorithm take a ciphertext and a private key to compute the plain-
text.

It is required to obtain the same message in decryption phase if the correct private
key is used.

A Key Encapsulation Mechanism (KEM) is a cryptographic technique to securely
exchange a symmetric key over an insecure channel. The KEM encapsulation results in a
fixed-length symmetric key that can be used to encrypt data or to derive an encryption
key. It consists of three algorithms:

❼ the key generation algorithm generates a key pair consisting of a public and private
key;

❼ the encapsulation algorithm takes a public key and a session key to compute a
ciphertext;

❼ the decapsulation algorithm takes a private key and a ciphertext to compute the
session key.

If the correct private key is used, then the decapsulation of the ciphertext returns the
same key as the encapsulation that generated it.

A Digital Signature Scheme (DSS) consists of three algorithms.

❼ the key generation algorithm generates a key pair consisting of a public and private
key;

❼ the signature algorithm takes a message and a private key and returns a signature;

❼ the verification algorithm takes a signature, a public key, and a message and returns
true or false.

For correctness, a correctly generated signature verifies under the right public key.

After three rounds of evaluation and analysis, the NIST has selected the first algo-
rithms it will standardize as a result of the PQC standardization process.

❼ PKE/KEM: CRYSTALS-Kyber;

❼ DSS: CRYSTALS-Dilithium, Falcon, SPHINCS+.
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Besides the selected algorithms, another algorithm worth mentioning is the Extended
Merkle Signature Scheme (XMSS) which is gaining more and more importance in the
quantum safe context given the capabilities and features offered by this hash-based sig-
nature scheme.

In addition to the selected group of algorithms, which is considered to be the most
promising to fit most use cases and ready to be standardized at the end of the third round,
the algorithms regarded as alternate candidates instead, are also considered promising
algorithms based on the high confidence in their security.

The main issue regards the performance or the algorithms have shown acceptable
performance but necessitate further assessment of their security. As a result, the alternate
candidates have been advanced to the fourth round of evaluation.

Acceptance criteria

The NIST required the submissions to respect some security properties.

In particular, for PKE/KEM schemes, the Call for Proposal required Indistinguisha-
bility under adaptive Chosen-Ciphertext Attack (IND-CCA2 ). This security no-
tion for encryption scheme ensures the confidentiality of the plaintext, resistance against
chosen-ciphertext attacks, and prevents an attacker from forging new ciphertexts.

A chosen ciphertext attack is a cryptanalysis technique in which the attacker can
select specific plaintexts and obtain the corresponding ciphertexts. The goal consists in
gathering information to compromise the security of the system.

On the other hand, digital signatures schemes were required to provide Existentially
Unforgeable Signatures with respect to an adaptive Chosen Message Attack
(EUF-CMA).

A chosen message attack is a cryptanalysis technique in which the attacker can select
and modify messages to be signed in order to gather information to compromise the
security of the cryptographic scheme.

This security property guarantees that an adversary cannot forge a valid signature
for an arbitrary message even when the attacker has access to a signing oracle. The
EUF-CMA property provides protection against forgery attacks, ensuring the integrity
and authenticity of signatures by preventing unauthorized modifications or fraudulent
signatures.

Evaluation criteria

To quantify and evaluate the security of the submissions, NIST defined five security
strength levels.

More in depth, the levels are based on the computational resources required to per-
form certain brute-force attacks against the existing standards for AES and SHA3 under
different models of the cost of computation, both classical and quantum.

It is important to note that the strength of the categories are defined in a way that
leaves open the relative cost of the computational resources. This means that the security
levels are valid under any plausible assumption regarding the relative cost of the various
resources in a real-world scenario. Hence valid opinions may arise regarding what is
considered to be a plausible assumption regarding the cost of computational resources.
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Furthermore, there is still uncertainty related to the effective cost and resources that
an actual attack may require.

The security categories are described in the table 4.3 and are categorized based on
the security, expressed as a function of resources required to break the specified AES and
SHA3 algorithms.

Table 4.3. PQC Security levels

PQC Security Level AES/SHA hardness PQC Algorithms

1 exhaustive key recovery in AES-128 Kyber512, Falcon512
2 collision search in SHA3-256 Dilithium2
3 exhaustive key recovery in AES-192 Kyber768, Dilithium3
4 collision search in SHA3-256 No algorithm tested at this level
5 exhaustive key recovery in AES-256 Kyber1024, Falcon1024, Dilithium5

The second most important evaluation criteria is the cost. As the NIST specified
in the Call for Proposal, cost includes the computational costs associated to the key
generation, public and private key operations, the transmission costs for public keys and
signatures or ciphertexts, and the implementation costs in terms of resources needed (e.g.
RAM).

Additionally, when comparing the overall performance of the algorithms, both compu-
tational cost and data transfer cost were considered. For general-purpose algorithms, the
evaluation takes in account the cost of transferring public key and signature or ciphertext
during each transaction.

For KEMs the key generation cost is evaluated since many applications in which
forward secrecy has been achieved, make use of a new KEM key pair for each transaction.
On the other hand, in the digital signature schemes the key generation cost is considered
less important.

According to the evaluation criteria presented, the algorithms selected result to be
the most promising under all the criteria considered.

CRYSTALS-Kyber

Kyber is a IND-CCA secure PKE/KEM, whose security has been thoroughly analysed
and is based on results in lattice-based cryptography.

On the performance level it has achieved excellent overall results in software, hard-
ware, and hybrid settings. In particular it has shown fast key generation, encapsulation
and decapsulation.

Like the other structured lattice KEMs, Kyber’s public key and ciphertext sizes are
on the order of a thousand bytes.

In the table 4.4 are summarized the sizes (in bytes) of the keys and ciphertext with
respect to traditional cryptographic solutions.

The submission lists three different configurations with three different security levels:

❼ Kyber-512 with a configuration that provide a security level that matches AES-128;

❼ Kyber-768 with a configuration that provide a security level that matches AES-192;
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Table 4.4. Comparison among Kyber and traditional KEMs/KEXs public key, private
key and ciphertext sizes (in bytes)

Security Level Algorithm Pub. key size Priv. key size Ciphertext size

Traditional P256 HKDF SHA256 65 32 65
Traditional P521 HKDF SHA512 133 66 133
Traditional X25519 HKDF SHA256 32 32 32

1 Kyber512 800 1632 768
3 Kyber768 1184 2400 1088
5 Kyber1024 1568 3168 1588

❼ Kyber-1024 with a configuration that provide a security level that matches AES-
256.

According to the consideration on the quantum algorithms (e.g. Grover) and the
symmetric key algorithms, among the sets the usage of Kyber-768 is recommended since
it achieves a security level known to be secured against both classic and quantum attacks.

Digital Signature Schemes (DSS)

As previously stated, the DSS selected are Dilithium, Falcon, and SPHINCS+. All the
schemes provide EUF-CMA security, as requested in the Call for Proposal.

Moreover, the schemes are based on the Hash-and-sign paradigm. This means
that the signature is computed only after that the original message is hashed. In this
way the scheme can benefit of the collision-resistance of the underlying hash function.
Furthermore, the paradigm leads to improvements on the performance level, reducing the
size of the signed messages since a fixed digest is signed, ensuring compatibility with a
wide range of protocols and systems.

Dilithium is a digital signature scheme that is strongly secure under chosen message
attacks based on the hardness of lattice problems. This security notion means that an
adversary having access to a signing oracle cannot produce a signature of a message
whose signature he hasn’t seen yet, nor produce a different signature of a message that
he already saw signed.

Internally, this signature scheme applies a hash function and uses the result for the
signature generation process.

Dilithium offers a number of options for varying parameters in order to increase
security at the cost of either increased sizes and/or slower performance.

It is, along with Falcon, one of the two most efficient signature protocols in Round 3,
suitable for a broad range of cryptographic applications.

Falcon is a lattice-based cryptographic signature scheme.

It generally has shorter keys and signatures than Dilithium, although Dilithium has
the benefit of not requiring floating-point arithmetic, which leads to difficulties in secure
implementations (e.g. to achieve constant-time signing) against side-channel attacks.

Due to its low bandwidth (e.g. public key size plus signature size) and fast verification,
Falcon may be a superior choice in some constrained protocol scenarios. However, signing
and keys generation are slower than Dilithium and the complex data structures used
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make the algorithm’s implementation challenging with respect to other lattice signature
schemes.

SPHINCS+ is a stateless hash-based signature scheme.

The scheme combines the use of one-time signatures, few-times signatures, and trees
to construct a digital signature scheme that is suitable for general use.

Is a stateless scheme, hence it does not require the user to keep track of any state
between signatures. In contrast, there are also stateful hash-based signature schemes
which are faster and produce smaller signatures but require the user to keep state across
signatures with negative consequences if the state is mismanaged.

The security of this scheme is based on the underlying hash function. Because of the
way SPHINCS+signatures are formed, keys generation and verification are much faster
than signing. In particular, performs internally randomized message compression using
a keyed hash function that can process arbitrary length messages.

Two designs have been proposed:

❼ a faster signature computation at the cost of larger signatures;

❼ smaller signatures at the cost of a slower signature computation.

It is possible to select more extreme trade-offs which may be convenient in some cases.
Furthermore, SPHINCS+public keys are very short, but signatures are quite long.

The biggest drawback is related to the complexity of the scheme since a complex
scheme’s implementation is error-prone. This renders also the security evaluation of the
whole scheme harder.

Finally, the design of the algorithm imposes limitations on the number of signatures:
for any number of signatures using a public key, there is a negligible likelihood that the
signatures will reveal enough of the private key to allow an attacker to forge a signature.
To keep this likelihood low, it is necessary to limit the number of signatures performed
(e.g. NIST required the ability to securely perform 264 signatures).

In the table 4.5 are shown the differences in the key and signature sizes among the
described PQC solutions and traditional algorithms (e.g. RSA with a 2048-bit key length
and the ECC signature algorithm P256). The SPHINCS+entries are considered in the
design of the faster construction at the cost of larger signatures.

Table 4.5. Comparison among PQC DSS and traditional signature algorithms

Security Level Algorithm Pub. key size Priv. key size Ciphertext size

Traditional RSA2048 256 256 256
Traditional P256 64 32 64

1 Falcon512 897 1281 666
1 Sphincs SHA256-128f Simple 32 64 17088
2 Dilithium2 1312 2528 768
3 Dilithium3 1952 4000 3293
3 Sphincs SHA256-192f Simple 48 96 35664
5 Falcon1024 1793 2305 1280
5 Sphincs SHA256-256f Simple 64 128 49856
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Extended Merkle Signature Scheme (XMSS)

Stateful hash-based signature scheme, XMSS allows to sign a potentially large but fixed
number of messages without relying on mathematical problems [45].

Instead, it is proven that it only relies on the properties of cryptographic hash func-
tions. In particular, an advantage of this scheme is that it does not require that the
underlying cryptographic hash function is collision-resistant for its security.

XMSS is suitable for compact implementations, is relatively simple to implement,
and naturally resists side-channel attacks but the statefulness of the scheme requires that
the secret key used to perform computations changes over time, otherwise no security
guarantees remain since it would become feasible to forge a signature over a new message.

It has the smallest signatures among hash-based schemes and used with a multi-tree
variant is possible to solve the slow key generation problem.

Unlike most other signature systems, hash-based signatures can so far withstand
known attacks using quantum computers.

In the table 4.6 are summarized the families of PQC algorithms, along with examples
and notable attributes.

Table 4.6. PQC algorithms families, examples, and notable attributes

PQC Family Use Examples Notable Attributes

Hash-based Crypto Digital Signatures XMSS, SPHINCS+ Large signature
Lattice-based Crypto KEM, Digital Signatures Falcon, Kyber, Dilithium Short parameter set
Code-based Crypto KEM BIKE, Classic McEliece Large public keys
Multivariate Crypto Digital Signatures EMSS, LUOV, Rainbow Large keys
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Chapter 5

Post-Quantum support in
Keystone: design

The purpose of the designed solution is to provide PQ algorithms support in TEE, migrat-
ing the system from a quantum-unsafe to quantum-safe state. In the following sections
are outlined and described the primary evaluations conducted to design the quantum-safe
solution. More in depth, the analysis conducted on the NIST submissions is discussed,
along with considerations and motivations that led to select Falcon as the best algorithm
in the given context, followed by a qualitative analysis of the algorithm, with features,
advantages, and limitations. Then the assessment of the quantum-vulnerable operations
performed in DICE and Keystone is presented, which constitutes the starting point in
the solution’s implementation, discussed in the next chapter.

5.1 PQC submissions evaluation

In order to select the PQ submission to be implemented, the algorithms have been eval-
uated taking into account the following criteria:

❼ NIST Security Levels;

❼ Keypair size;

❼ Signature size;

❼ Performance in keypair generation, signature computation, and signature
verification.

Given the need to provide a solution suitable for constrained devices, an initial per-
formance assessment was conducted using the pqm4 [6] benchmark. Such benchmark
addresses the evaluation of the algorithms’ performance on the ARM Cortex-M4 plat-
form. The considerations derived from this first assessment are the starting point into
determining the most promising algorithm

It is critical to underline that the evaluations reported in the following sections regard
the algorithms’ clean implementation, which means that the implementation does not
include any platform specific improvement.
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5.1.1 SPHINCS+

As regards this hash-based DSS submission, three different signature schemes have been
proposed, according to the underlying hash function:

❼ SPHINCS+-SHAKE256;

❼ SPHINCS+-SHA-256;

❼ SPHINCS+-Haraka.

For each version, two variants have been submitted:

❼ slow version: slower computation, smaller signature size;

❼ fast version: faster computation, bigger signature size;

Among the three versions, only the SHA-256 version with the slow variant in simple
form (i.e. it does not use a bit mask when hashing) is evaluated below due to the following:

❼ the biggest issue in SPHINCS+is the excessive signature size hence reducing the
signature size is necessary given the limited storage available in embedded systems,
and the SHA-256 variant shows the smallest signature;

❼ the SHA-256 version is the fastest;

❼ the memory footprint is smaller.

The main aspects taken into account in the SPHINCS+evaluation is the signature
size. As shown in the table 5.1, the algorithm shows private and public keys with sizes
comparable to the actual ECC algorithms, but excessive signatures.

Considering the certificates management and the signatures computation usage in
the DICE-based Keystone version, the algorithm’s deployment would be critical due to
memory constraints.

Table 5.1. SPHINCS+parameters size.

scheme Public key size Private key size Signature size

sphincs-sha256-128s-simple 32 64 7856
sphincs-sha256-192s-simple 48 96 16224
sphincs-sha256-256s-simple 64 128 29792

Note. — sizes are expressed in bytes

As regards the performance, according to the aforementioned benchmark SPHINCS+shows
worse general performance than the other DSS submissions. Such performance are de-
picted in the table 5.2 considering 3 executions of the algorithm.

Hence, due to the excessive memory needed to store the signatures and the worse
performance with regards to the other submissions, SPHINCS+has been disqualified.
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Table 5.2. SPHINCS+performance (source: [6]).

scheme keypair generation sign verify

sphincs-sha256-128s-simple AVG: 985,367,046 AVG: 7,495,603,716 AVG: 7,165,875
sphincs-sha256-192s-simple AVG: 1,450,073,477 AVG: 13,764,196,955 AVG: 11,763,703
sphincs-sha256-256s-simple AVG: 952,799,879 AVG: 12,304,132,668 AVG: 16,715,346

Note. — values expressed in CPU cycles

5.1.2 CRYSTALS-Dilithium

Dilithium is considered the best algorithm among the submissions due to the following
reasons:

❼ fastest key generation;

❼ fastest signature computation;

❼ fast signature verification, comparable to Falcon.

Considering that the algorithm belongs to the lattice-based schemes’ family, the keys
and signature sizes (shown in the table 5.3) are compact and smaller with respect to
many of the PQC submissions.

Table 5.3. Dilithium parameters size.

scheme Public key size Private key size Signature size

Dilithium2 1312 2528 2420
Dilithium3 1952 4000 3293
Dilithium5 2592 4864 4595

Note. — sizes are expressed in bytes

The algorithm performance are depicted in the table 5.4 considering 10000 executions
of the algorithm.

Evaluating both the performance and the parameters set, the algorithm looks a more
promising choice than SPHINCS+and in many scenarios may be the best solution.

The only drawback of the algorithm, besides the parameters size is the memory foot-
print. In fact the algorithm is RAM demanding, as shown in the table 5.5.

Hence the Dilithium submission has been disqualified due to the memory consumption
and the parameters size in favour of Falcon, which has lower RAM footprint, smaller keys
and signature, and offers a better trade-off in terms of security level offered and memory
required in both execution and storage.
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Table 5.4. Dilithium performance (source: [6]).

scheme keypair generation sign verify

Dilithium2 AVG: 1,944,539 AVG: 7,144,383 AVG: 2,064,129
Dilithium3 AVG: 3,365,142 AVG: 11,634,591 AVG: 3,430,286
Dilithium5 AVG: 4,826,422 AVG: 8,779,067 AVG: 4,705,693

Note. — sizes are expressed in CPU cycles

Table 5.5. Dilithium memory evaluation (source: [6]).

scheme keypair generation sign verify

Dilithium2 38,308 51,932 36,220
Dilithium3 60,844 79,588 57,732
Dilithium5 97,692 115,932 92,788

Note. — values expressed in bytes

5.1.3 Falcon

Lattice-based signature scheme, has been selected among the alternatives due to the
following reasons:

❼ smallest parameter set size;

❼ lower RAM footprint than Dilithium;

❼ best tradeoff among security level and keys/signature sizes.

In fact, in the table 5.6 are shown the parameters size, and it should be noted that
the most secure version of Falcon, with a security level equals to 5, has |pk|+ |sk|+ |sig|
smaller than the Dilithium version with security level 2, offering a better trade-off.

On the other hand, Dilithium results the best algorithm is terms of performance, as
shown in the table 5.7, where 100 executions of Falcon are considered.

Nevertheless, the constraints imposed by the Keystone project disqualifies Dilithium
due to the higher sizes and the higher memory required. In fact, Falcon has a consider-
able smaller RAM footprint than Dilithium, as shown in the table 5.8, with a memory
consumption corresponding to the security level 5 version comparable with the security
level 2 version of Dilithium.

5.1.4 Further considerations

It is critical to underline that the memory evaluations have been proved by implementing
and testing the two algorithms within the framework.

As a result, the Dilithium keypair generation caused the boot hart to hang, mean-
while the Falcon-512 keypair generation has been completed successfully. Moreover, the
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Table 5.6. Falcon parameters size.

scheme Public key size Private key size Signature size

Falcon-512 897 1281 666
Falcon-1024 1793 2305 1280

Note. — values expressed in bytes

Table 5.7. Falcon performance (source: [6]).

scheme keypair generation sign verify

Falcon-512 AVG: 217,740,948 AVG: 61,102,456 AVG: 774,876
Falcon-1024 AVG: 589,059,133 AVG: 133,598,726 AVG: 1,547,336

Note. — values expressed in CPU cycles

Dilithium keypair generation in the SM layer caused overflows into adjacent buffer used
within the PMP configuration, rendering the PMP management impossible.

Nevertheless, Falcon-1024 works as expected in all the layers, but performing many
operations at enclave’s layer caused the same issue presented with Dilithium in all the
layers.

5.2 FALCON

Falcon is the algorithm selected as the best algorithm and suitable for the implemen-
tation in Keystone. It stands for the acronym Fast Fourier lattice-based compact
signatures over NTRU [46].

At a high-level the algorithm is made up by three components:

❼ GPV framework for constructing lattice-based signature schemes.

❼ NTRU, a lattice-based open-source public key cryptosystem.

❼ Fast Fourier Transform (FFT)-based trapdoor sampling, an optimized algorithm
to compute the Discrete Fourier Transform, which is used in the lattice vectors
computation for signature and verification.

5.2.1 The FALCON framework

The algorithm is designed following the principle to minimize the quantity |pk|+ |sk|+
|sig|, respectively public key, secret key, and signature sizes. This is due to the fact
that transitioning from a pre-quantum signature algorithm to a post-quantum signature
algorithm poses challenges due to the increased size of keys, signatures, or both, and
relying on a lattice-based signature scheme allows to achieve this goal.

The algorithm offers the following features:
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Table 5.8. Falcon memory evaluation (source: [6]).

scheme keypair generation sign verify

Falcon-512 18,416 42,508 4,724
Falcon-1024 36,296 82,532 8,820

Note. — values expressed in bytes

❼ Security: a true Gaussian sampler is used internally to generate independent key
generation coefficients, which guarantees negligible leakage of information on the
secret key up to more than 264 signatures.

❼ Compactness: thanks to the usage of NTRU lattices, signatures are shorter than
in any lattice-based signature scheme with the same security guarantees, while the
public keys are around the same size

❼ Fast signature generation and verification: the signature generation and ver-
ification procedures are very fast, especially for the verification algorithm.

❼ Scalability: operations have cost O(nlogn), allowing the use of long-term security
parameters at moderate cost.

❼ RAM economy: the enhanced Falcon’s key generation algorithm uses less than
30 KB of RAM, making it compatible with memory-constrained devices.

5.2.2 Floating point operations

The biggest drawback of Falcon is the need to perform FP operations. In fact, FP
operations are complex and may lead to non-constant time operations, which translates to
the possibility of building a system that is vulnerable to side-channel attacks. Moreover,
devices with limited capabilities may lack of FP Unit (FPU) to perform such computation.

In light of such concerns, in the last reference implementations some improvements
and new features have been introduced:

❼ FPA is emulated by means of integers operations using the uint32 t and uint64 t
C types, hence devices do not have the necessity to be equipped with a FPU, which
can still be used to achieve a faster and more efficient computation

❼ FP operations are performed in constant-time, avoiding related side-channel vul-
nerabilities

5.2.3 Hash-and-sign

As for any signature scheme, the first step when computing or verifying a signature
involves the hash computation of the message.

During this procedure, as specified in the FIPS 202 [47], an approved Extendable-
Output Hash Function (XOF) must be used, and it must have a security level at least
equal to the security level targeted by the signature scheme.

69



Post-Quantum support in Keystone: design

A XOF is a function in which the output can be extended to any desired length.
Meanwhile the suffixes used with the hash functions indicate the digest length, with
XOF the suffixes indicate the security strength that the function can support. When an
application requires a cryptographic hash function with a non-standard digest length, an
XOF is a natural alternative to constructions that involve multiple invocations of hash
function and/or truncation of the output bits.

The XOF used within Falcon is SHAKE-256 . It is used in two places:

❼ As a PRNG: pseudorandom data is needed by the keypair generation and signature
computation functions

❼ As the hashing mechanism involved in the signature computation

The code is written in pure ANSI C and avoids the usage of dynamic memory, which is
not supported in Keystone.

5.3 Quantum issues in Keystone and DICE

In this section are outlined the quantum-vulnerable operations performed in the Keystone
project.

The starting point of the solution design and implementation is the DICE-based
Keystone [48] version developed by the TORSEC group of Turin’s Politecnico which
integrates the DICE specification into the Keystone framework. Thanks to the efforts
put by the TORSEC group the following features have been added:

❼ secure boot support;

❼ DICE certificates support.

The developed solution aims at migrating the DICE-based Keystone version to a quantum-
safe state.

Before describing the identified issues, it is necessary to give a brief overview of the
cryptographic elements that are included within the system, followed by a description of
the DICE-based Keystone project, enlightening the sections that require modifications,
presented in the next chapter.

5.3.1 Cryptographic functions

When designing the solution, the most sensitive task has been identifying all the quantum-
vulnerable operations performed within the DICE-based Keystone project. This goes
along with the analysis of the cryptographic capabilities over which this system relies
upon to perform cryptographic operations.

During the analysis of the system, the usage of the following cryptosystems has been
identified:

❼ the SHA3 hash functions family

❼ the ECC ed25519 cryptosystem
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SHA3

According to the developed solution, the usage of the SHA3 family answers to several
issues since it is based on the KECCAK cryptographic function [49]. This family of hash
function is based on what is called a sponge construction: after the pre-processing (which
divides the message into blocks and provides padding) the sponge construction consists
of two phases:

❼ Absorbing (or input) phase: the message blocks xi are passed to the algorithm
and processed;

❼ Squeezing (or output) phase: an output of configurable length is computed.

In light of the quadratic speed up in collision and pre-image searches deriving from the
Grover’s algorithm, this hash function allows to retain the level of security by roughly
doubling the output size, hence it remains a valid choice as a post-quantum solution.
Furthermore, the SHA3-512 hash function is used in both the developed solution and the
original DICE-based Keystone version to compute the measurement and the CDI values
used in the process, providing a level of security equal to n/2 = 512/2 = 256 bits, which
is considered quantum-safe.

ed25519

As regards the ed25519 implementation, it comes for free with the reference DICE-based
Keystone version. Following are listed the functions composing the API exposing the
cryptographic functionalities:

❼ void ed25519 create keypair(unsigned char *public key, unsigned char*

private key, const unsigned char *seed): function used to perform the key-
pair generation, starting from the seed parameter const unsigned char *seed;

❼ void ed25519 sign(unsigned char *signature, const unsigned char *

message, size t message len, const unsigned char *public key,

const unsigned char *private key): function used to compute the signature
over the const unsigned char *message parameter with the private key const

unsigned char *private key;

❼ int ed25519 verify(const unsigned char *signature, const unsigned char

*message, size t message len, const unsigned char *public key): function
used to verify the provided signature const unsigned char *signature using the
public key const unsigned char *public key.

Given the usage of a quantum-vulnerable algorithm to perform public-key operations
and due to the concerns raised by the existence of the Shor’s algorithm, following are
listed on a high-level the actions taken in the developed solution to migrate the system
from the quantum-unsafe to the quantum-safe state:

❼ replace the pre-quantum keys with PQ keys;

❼ perform public-key operations with a quantum-safe algorithm (e.g. Falcon);

❼ replace the certificates used in the system with PQ certificates in which PQ keys
and signatures are used.
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Hence the solution implementation starts by implementing the Falcon algorithm in all
the layers composing the system, removing the vulnerable operations, and replacing them
with the quantum-safe selected alternative.

5.3.2 X.509 certificate management

The original Keystone project does not provide any support for the creation and parsing
of X.509 certificates.

Thanks to the effort of the TORSEC group, the functionalities to manage certificates
are provided within the X509custom library, built starting from the Mbed TLS library,
embedding all the functionalities necessary for the correct management of the X.509 cer-
tificates. Such library includes functions that operate on data in Distinguished Encoding
Rules (DER) format, encoding supported by the X.509 standard.

It includes the following files:

❼ oid custom.h: header file containing the OIDs definitions;

❼ x509custom.c: source file containing the functions’ implementation;

❼ x509custom.h: header file containing structure declarations and the functions’ dec-
laration;

In the proposed design, modifications to this library are needed due to the following:

❼ support for further PQ keys context structure;

❼ correct parsing of PQ keys;

❼ signature computation over the certificate with PQ algorithm;

❼ correct parsing of certificate in DER format containing PQ keys;

❼ new OIDs definition.

all the modifications are discussed in the implementation chapter.

5.3.3 Root of Trust

At manufacturing time, several elements are provisioned by the manufacturer. In partic-
ular according to the DICE specification the RoT that is produced by the manufacturer
comes provided with:

❼ UDS: Unique Device Secret as described in the DICE specification;

❼ TCISM signature: signature computed over the SM’s reference measure with the
manufacturer private key;

❼ Manufacturer certificate: X.509 certificate in DER format used in the TCISM
signature verification;

❼ DRK certificate: X.509 certificate in DER format of the RoT keypair, issued by
the manufacturer.
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During the system boot, the first step is the verification of the SM signature using
the public key contained in the manufacturer certificate:

1. the RoT computes the TCISM;

2. the reference signature computed over the TCISM provided by the manufacturer
is verified using the public key contained in the manufacturer certificate;

3. if the verification is correct the boot process continues, otherwise the process is
stopped.

The process is summarized in the figure 5.1.

SM Memory SHA3

SM TCI

Ed25519 Sign Man SK

SM reference
signature

Ed25519 VerifyMan
certificate

Manufacturer
process

PK

SM Memory

SHA3SM TCI

Ok
Boot process

continues Stop boot
fail

Figure 5.1. Secure boot process using quantum vulnerable algorithm.

If the signature verification process is successful, the keypairs needed in the process
are generated as shown in the figure 5.2:

1. the CDIL0 is computed hashing the TCISM and the UDS

2. the DRK keypair is generated using the CDIL0 as seed;

3. the seed for the ECA keypair generation is computed by hashing the CDIL0 and
the TCISM;

4. the ECA keypair is computed starting from its seed;
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Figure 5.2. Keypairs creation with quantum vulnerable algorithm.

The final steps are shown in the figure 5.3, in which after the keypairs generation,
the respective certificates are issued. For developing purposes, in the TORSEC Keystone
project, the DRK certificate is not stored in memory and is recomputed on the fly by
the RoT at each boot. This is due to the fact that the DRK keypair depends on the
CDIL0, hence in this scenario in which the SM is subject to changes, the resulting keypair
reflects such changes. Therefore, a precomputed certificate would corresponds to a wrong
keypair after a SM modification.

In the following are listed the steps performed by the RoT as regards:

❼ the certificates issuance;

❼ the SM keypair generation;

❼ the SM signature computation.

1. the DRK certificate is generated and signed with the ManSK;

2. the SM ECA certificate is generated and signed with the DRKSK;

3. the SM keypair is generated using as seed the hash computed over the DRKSK

and the TCISM;

4. the quantity TCISM∥SMPK is computed;

5. the signature over the previous quantity is computed with the DRKSK.

5.3.4 Security Monitor

At this layer, the SM, first, receives securely the following parameters from the BootROM:
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Figure 5.3. Certificates generation with quantum vulnerable algorithm.

❼ TCISM: SM measure;

❼ CDIL0: SM CDI computed in the previous layer;

❼ SM keypair: keypair used in the attestation process;

❼ ECA certificate: used in this layer to issue certificates for upper layers;

❼ Manufacturer certificate;

❼ DRK certificate;

Once received the parameters from the RoT, the SM proceeds as follows:

1. the ECA certificate is parsed from DER format to mbedtls x509 crt struct;

2. the DRK certificate is parsed from DER format to mbedtls x509 crt struct;

3. the manufacturer certificate is parsed from DER format to mbedtls x509 crt

struct;

4. the certificates are validated;

5. the ECA certificate signature is verified using the DRKPK;

6. the DRK certificate signature is verified using the ManPK;

7. the TCISM contained in the diceTcbInfo extension is verified with respect to the
computed TCISM;
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8. the ECA keypair is recomputed.

if any of the steps listed above fails, then the boot process is stopped, otherwise the SM is
initialized and the system can be deployed. The steps are summarized in the figures 5.4
and 5.5.
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Figure 5.4. Certificates verification with quantum vulnerable algorithm.
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Figure 5.5. Signature verification with quantum vulnerable algorithm.

At this point, enclaves can be created and executed. When creating an enclave, the
SM is responsible for the generation of the following entities:

❼ Local Attestation Keys (LAK): keypair created when a new enclave has to be
created;

❼ Local Attestation Keys certificate: X.509 certificate in DER format released
for the public part of the Local Attestation keypair.

the LAK are generated starting from the enclave’s CDI, computed as follows:

CDIenclave = SHA3(CDIL0||TCIenclave)

The process is summarized in the figure 5.6.
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Figure 5.6. Local Attestation Keys and X.509 certificate generation with quan-
tum vulnerable algorithm.

5.3.5 Enclave

When it comes to the Enclave execution, critical tasks from a quantum security perspec-
tive are the following possible operations:

❼ the Remote Attestation;

❼ the Sealing Key Derivation.

Both are provided in the original Keystone framework and make heavy usage of the
quantum vulnerable algorithm ed25519.

Remote Attestation

Once an enclave has started, it may request the SM to provide a signed enclave report
and signed SM report.
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The SM report contains:

❼ the TCISM;

❼ the SMPK;

❼ the signature computed over the previous elements with the DRKSK;

The enclave report contains:

❼ the TCIEnclave;

❼ a data block from the enclave of up to 1 KB;

❼ the signature computed over the previous elements with the SMSK.

The attestation evidence generation is shown in the figure 5.7
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Enclave
signature

Enclave signature
 computation

TCI enclave SM TCI

Ed25519 Sign Dev SK

SM signature

Performed during
the boot stage

SM PK

SHA3

SM TCI ||
SM PK

Enclave
report SM report

Attestation
report

Figure 5.7. Attestation evidence generation with quantum vulnerable algorithm.

The verifier, when provided with the DRKPK, TCISM, and TCIEnclave, will verify
the signatures these reports. In particular:

1. the Verifier process is executed, generating a nonce;

2. the untrusted host process is executed, receives the nonce, and requests the enclave
creation;

3. the enclave is created and executed, receives the nonce, and requests the SM to
provide the report through an SBI CALL;

4. the SM creates the report and copies it to the enclave memory;

5. the enclave sends the report back to the host which returns it to the Verifier;

6. the Verifier validates the reports and verifies the signatures.

The process is depicted in the figure 5.8
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Figure 5.8. Remote attestation flow.

Sealing-Key derivation

The data-sealing feature allows an enclave to derive a key for data encryption, to be able
to sava data in untrusted, non-volatile memory outside the enclave. This key is bound
to the identity of the processor, the SM and the enclave. Hence only the same enclave
running on the same SM and same processor is able to derive the same key.

After an enclave restart, the enclave can derive the same key again, fetch the encrypted
data from the untrusted storage and decrypt them using the derived key.

The root of the key hierarchy is the asymmetric processor key pair (DevSK, DevPK).
The asymmetric security monitor keypair (SMSK, SMPK) is derived from the measure-
ment of the SM and the private processor key DevSK. Therefore, the resulting SM
keypair is bound to the processor and to the identity of the SM itself.

Starting from this key hierarchy, the process deriving the sealing-key in Keystone is
depicted in the figure 5.9.

The key is derived using three main inputs:

❼ the SMSK;

❼ the TCIEnclave;

❼ a key identifier.

Following are listed the properties that stem from the sealing-key derivation process:

❼ the SMSK ensures that the resulting sealing-key is bound to the identity of the
processor and the identity of the SM;

❼ whenever one of the two components change, the resulting sealing-key is different;

❼ the TCIEnclave ensures that the sealing-key is bound to the enclave’s identity;

79



Post-Quantum support in Keystone: design

Figure 5.9. Keystone Sealing-Key Derivation with quantum vulnerable algorithm (source: [2]).

❼ the key identifier is an additional input to the key derivation function which can
be chosen by the enclave, allowing the enclave to derive multiple keys by choosing
different values for the key identifier.
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Chapter 6

Post-Quantum support in
Keystone: implementation

In this chapter are described the implementation steps and the modifications applied to
integrate the designed solution into the Keystone TEE.

More in depth, in this chapter are discussed:

❼ the Falcon reference implementation: configuration file, API;

❼ x509custom modifications presented in the design chapter;

❼ the changes applied into the Keystone project, involving the following components:
sm, bootloader, SDK, runtime, opensbi;

6.1 Falcon reference implementation and modifications

The Falcon’s code has been retrieved from the original project website, in which several
resources can be consulted [46].

The algorithm is implemented in pure ANSI C, which makes it portable, built without
standard dependencies. This allows to reduce the amount of code included into the
executable, leading to the following advantages:

❼ the attack surface is reduced;

❼ the applications can be used in contrained context (e.g. embedded systems, IoT
devices);

The Falcon reference implementation includes the following files, grouped according
to the purpose:

❼ falcon.h, falcon.c: files containing the external Falcon API, relative implemen-
tation, and several macros useful in the implementation and deployment of the
algorithm;

❼ config.h: configuration file containing compile-time options which can be used to
enable compilation options and platform-specific improvements;
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❼ fpr.h, fpr.c: files containing the aforementioned FP emulations, useful in context
in which a FPU may not be available or FP operations are complex;

❼ fft.c, fft.h: FFT implementation used in the signature computation and verifi-
cation;

❼ keygen.c: file containing the functions’ implementation to perform keypair gener-
ation;

❼ vrfy.c: file containing the functions’ implementation to perform signature verifi-
cation;

❼ sign.c: file containing the functions’ implementation to perform signature compu-
tation;

❼ rng.c: file containing the PRNG logic based on the SHAKE256 XOF, the ChaCha20-
based PRNG, and the interface to the enable the OS-provided RNG if available.

❼ shake.c: file containing the SHAKE256 implementation in pure ANSI C;

❼ codec.c: file containing the encoding and decoding functions’ implementation and
used internally in the public-key operations;

❼ common.c: file containing support functions to perform the signature;

❼ inner.h: file containing internal functions for Falcon, providing all the primitives
on which wrappers are built to provide the external APIs.

Due to the fact that the system is built without standard dependencies, to correctly
integrate the algorithm in the Keystone project, the library included with the header
file string.h has been removed and a custom library my string.h has been included,
replacing all the calls to the mem* family of functions. Following are listed the functions
included within the new custom library for which the replacement was necessary:

❼ void* my memcpy(void* dest, const void* src, size t len): to copy len bytes
from the source (src) memory address to the destination memory address (dest);

❼ void* my memset(void* dest, int byte, size t len): to set len bytes to the
byte value starting at the address dest;

❼ void* my memmove(void *dest, void const *src, size t count): to move count
bytes from the source (src) memory address to the destination memory address
(dest);

❼ int my memcmp (const void *str1, const void *str2, size t count): to com-
pare count bytes between the string str1 memory address and the string str2

memory address;

❼ unsigned int my strlen(const char *s): to compute the length of the string
s;

❼ int my strncmp( const char * s1, const char * s2, size t n ): to compare
n bytes among the string s1 memory address and the string s2 memory address;

❼ char* my strncpy(char* destination, const char* source, size t num): to
copy num bytes from the source string (source) memory address to the destination
string (destination) memory address;.
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6.1.1 Configuration file

In the reference implementation is included the configuration file config.h which includes
several macros to configure the cryptosystem. Each macro is an option which can be
enabled by setting the macro value to 1, otherwise 0. In the implemented solution, two
options have been enabled:

❼ FALCON FPEMU: macro that enables the usage the emulated floating-point implemen-
tation, necessary since in the RISC-V FP operations are complex and not constant-
time and in general a FPU is not available in embedded devices;

❼ FALCON KG CHACHA20: macro that enables the usage of a PRNG based on ChaCha20

and seeded with SHAKE256 for keypair generation purposes, which provides a speed
up the keypair generation. It has been enabled to provide a small speed up to the
slow keypair generation issue that affects Falcon.

The emulation uses only integer operations with uint32 t and uint64 t C types and
all the operations are performed in constant-time, provided that the underlying platform
offers constant-time opcodes for the following operations:

❼ multiplication of two 32-bit unsigned integers into a 64-bit result;

❼ left-shift or right-shift of a 32-bit unsigned integer by a shift count in the range (0,
31).

6.1.2 External FALCON API

All the functions needed to perform public-key operations and to manage the SHAKE256

context are contained within the header file falcon.h.

SHAKE256 implementation

The SHAKE256 context is defined as follows:

typedef struct {

uint64_t opaque_contents[26];

} shake256_context;

The advantage of this declaration is the usage of the uint64 t opaque contents[26]

field, that is pure data with no pointer. This means that there is no need to release the
context explicitly and the data is allocated on the stack, avoiding the dynamic memory
allocation which is critical in embedded devices. Furthermore Keystone does not support
at the time of writing a dynamic memory management in the lower layers composing the
system.

The functions needed to properly manage the SHAKE256 context are listed in the
following:

❼ void shake256 init(shake256 context *sc): to perform the initialization of the
shake256 context;

❼ void shake256 inject(shake256 context *sc, const void *data, size t len):
to inject len data bytes into the shake256 context;
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❼ void shake256 flip(shake256 context *sc): flip the shake256 context state
to output mode, enabling the call to the shake256 extract function;

❼ void shake256 extract(shake256 context *sc, void *out, size t len): ex-
tract bytes from the shake256 context after flipping the context to output mode;

❼ int shake256 init prng from system(shake256 context *sc): initialize a
shake256 context as a PRNG, using an initial seed from the OS-provided RNG;

❼ void shake256 init prng from seed(shake256 context *sc, const void *seed,

size t seed len): to initialize the RNG from a provided seed rather than a OS-
provided source of randomness.

Dute to the fact that Keystone does not have an adequate entropy source, and there
is no OS-provided RNG at bootloader and SM level, in the implemented solution the
shake256 context is always initialised from a provided seed.

Falcon public-key operations

The Falcon algorithm is parametrised by a degree logn, expressed as a power of two 2logn.
Formally only two values are possible:

❼ 512: corresponding to the Falcon-512 version;

❼ 1024: corresponding to the Falcon-1024 version.

In practice, the reference implementation supports lower degree as well (e.g. 2 to 256)
but such versions do not offer an adequate level of security, hence should be used only
for research purposes. In all the functions and macros used in the algorithm, the degree
is provided logarithmically as the logn parameter, ranging from the value 1 to 10.

In the implemented solution, support for both the versions has been provided, by
introducing in the file falcon.h the macro:

/*set 9 for the 512 version, 10 for the 1024 version*/

#define LOGN_PARAM 9

given that the falcon.h file is included by all the components that need visibility of
the LOGN PARAM value, it is sufficient to modify the value set to enable the usage of
Falcon-1024. This has been done to provide a certain degree of flexibility in light of the
cryptographic agility principle.

The main functions used within the solution developed to perform the public key
operations are listed in the following:

❼ int falcon keygen make( shake256 context *rng, unsigned logn, void *

privkey, size t privkey len, void *pubkey, size t pubkey len, void *tmp,

size t

tmp len): function that generates the PQ keypair returning by reference in the
privkey field the generated private key and in the pubkey field the generated pub-
lic key. The function takes as input the shake256 context as RNG, which must
be previously initialized by the caller;

84



Post-Quantum support in Keystone: implementation

❼ int falcon sign dyn(shake256 context *rng, void *sig, size t *sig len,

int sig type, const void *privkey, size t privkey len, const void *data,

size t data len, void *tmp, size t tmp len): method used to sign the data
provided in the data parameter, using the specified private key privkey. The
function takes as input the shake256 context as RNG, which must be previously
initialized by the caller;

❼ int falcon verify(const void *sig, size t sig len, int sig type, const

void *pubkey, size t pubkey len, const void *data, size t data len, void

*tmp, size t tmp len): function used to perform the verification of the signature
sig with the provided public key pubkey, computed over the data parameter data.

All the functions require a temporary buffer (received by reference as the parame-
ter void *tmp) to store intermediate values during the public-key operations processing
and according to the operation to be performed, the buffer’s size varies. The reference
implementation comes with the definition of several macros to determine the size needed
by the buffers. Such macros receive the LOGN PARAM parameter and expand into the buffer
size. Moreover, macros to compute the lengths of public key, private key, and signature
are available and use the same logic expressed for the temporary buffers. This allows to
achieve two goals:

❼ there is no need for dynamic memory allocation;

❼ the LOGN PARAM parameter allows to to simulate a ‘dynamic‘ allocation, therefore
providing a big degree of flexibility in the declaration of the buffers and the algo-
rithm’s version to use.

All the macros are defined in the falcon.h header file.

Following are listed the macros used in the implemented solution:

❼ FALCON TMPSIZE KEYGEN: temporary buffer size for key pair generation

❼ FALCON TMPSIZE SIGNDYN: temporary buffer size for signature computation

❼ FALCON TMPSIZE VERIFY: temporary buffer size for signature verification

❼ FALCON PUBKEY SIZE: public key length

❼ FALCON PRIVKEY SIZE: private key length

❼ FALCON SIG CT SIZE: signature size (constant format)

Finally, it is critical to underline that the falcon sign dyn function, receives the
parameter sig type, which allows to specify the signature type. Three are the signature
types that can be set:

❼ Compressed: default format which yields to the shortest signatures on average, but
the size is variable;

❼ Padded: compressed format but with extra padding bytes to obtain a fixed size at
compile-time;

❼ Constant: fixed-size format which allows constant-time preprocessing with regard
to the signature value and the message data.

in the implemented solution, the constant format is used due to the conservative choice
to opt for to the constant-time preprocessing feature, but other formats are possible and
deployable.
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6.2 X.509 library modifications

To enable the usage of PQ keys and signature within the X.509 certificate management,
in the implemented solution some changes have been introduced. The files interested by
the modifications are the files included under the x509custom/ folder:

❼ oid custom.h: with the definitions of the OIDs for the two Falcon version;

❼ x509custom.c: with the modifications of the functions used to embed the PQ keys
in the certificates and to compute the signature over the tbsCertificate field;

❼ x509custom.h: with the definition of the structures needed by functions defined in
the x509custom.c file.

OIDs definition

The major modification applied to the oid custom.h file is related to the introduction
of two new OIDs:

❼ MBEDTLS OID FALCON512 SHAKE256;

❼ MBEDTLS OID FALCON1024 SHAKE256.

Since there are no official OIDs defined for the two versions at the time of writing,
the OIDs defined have been retrieved from the OID mapping described in the IETF-
Hackathon 116 [50].

x509custom.h modifications

Following are reported the major changes introduced in the x509custom.h header file to
support the Falcon usage within Keystone:

❼ the Falcon implementation has been made available by including the falcon.h

header file, rendering available the LOGN PARAM macro to the library, along with
the functions to perform the signature computation and to manage the SHAKE256

context;

❼ the enum mbedtls pk type t type definition has been modified to include the
MBEDTLS PK FALCON512 and MBEDTLS PK FALCON1024 values;

❼ the mbedtls falcon context to embed the PQ keys has been defined;

❼ the generic mbedtls pk context has been modified to include the
mbedtls falcon context struct as a field;

x509custom.c modifications

Here are reported the major changes introduced in the x509custom.c source file to sup-
port the Falcon keys and signature:

❼ size t falcon get bitlen: new function that returns the Falcon public key size
in bits, based on the LOGN PARAM;
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❼ mbedtls pk write pubkey der: this function has been modified to correctly write
Falcon PQ public key in the subjectPublicKey field and to insert the respec-
tive OID (according to the Falcon version used) into the algorithm field of the
SubjectPublicKeyInfo sequence of the certificate;

❼ mbedtls x509write crt der: this function has been modified to compute the sig-
nature with Falcon over the tbsCertificate field of the certificate;

❼ mbedtls x509write crt der tmp: new function based on the
mbedtls x509write crt der function and modified to accept as further parameters
the unsigned char *tmp temporary buffer, the shake256 context *rng RNG,
and the unsigned char* sig buffer, all used in the signature computation. The
advantage is that in this case the new parameters are provided by the caller, aiming
at reducing the stack usage by reusing variables and buffers already allocated by
the caller.

6.3 BootROM

The major changes implemented at this layer regards the file bootrom.c in which keys
and certificates are created and the signature check for the secure boot is performed.

The DICE-based Keystone project comes with the file test dev key.h, which con-
tains:

❼ an ECC keypair provided by the manufacturer;

❼ the manufacturer certificate in DER format.

both provided to the booting stage simulating a secure storage.

Therefore:

❼ A PQ keypair has been generated with the falcon keygen make function and the
ECC keys have been replaced;

❼ the manufacturer certificate has been created using a script, in DER format,
containing PQ keys and self-signed using the falcon sign dyn function.

both included in the test dev key.h file.

According to the DICE specification, the RoT should be provided by the manufacturer
with the DRK certificate. Due to the fact that that the DRK keypair is generated
starting from the CDI which depends on the SM measure, in this implementation the
DRK certificate and the DRK keypair are computed on the fly, since any modification
to the SM would cause the generation of a different DRK keypair, hence the provided
certificate would be associated to the wrong keypair.

As previously described, the first operation performed by the RoT at boot stage is
the SM signature verification, needed for the secure boot. For developing purposes, since
the SM code may change in this context, the SM signature is computed during the boot
stage, simulating a manufacturer-provided signature and verified.

The steps performed in the implemented solution are listed in the following (e.g.
figure 6.1:
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1. the TCISM is computed;

2. the shake256 context RNG is initialized with a random seed;

3. the reference SM signature is computed using the falcon sign dyn function,
which receives the RNG and the PQ ManSK;

4. the TCISM is recomputed by the RoT;

5. the reference signature is verified with the falcon verify function, which receives
as parameter the PQ ManPK contained in the certificate, the reference signature,
and the TCISM;

6. if the verification process is successful, the boot process continues otherwise is
halted.

SM Memory SHA3

SM TCI

Falcon Sign Man PQ SK

SM reference
signature

Falcon VerifyMan
certificate

Manufacturer
process

PQ PK

SM Memory

SHA3SM TCI

OkBoot process
continues Stop boot

fail

SHAKE256
RNG

Figure 6.1. Implemented PQ secure boot process.

Once completed the signature verification successfully, the DRK and the ECA keypairs
generation has been modified so that in the implemented solution is performed using the
Falcon API. In particular:

1. the CDIL0 is computed;

2. the shake256 context RNG is initialized using the CDIL0 as seed;
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3. the RNG is passed to the falcon keygen make function which is used to generate
the DRK keypair;

4. the ECA keys seed variable is filled with the hash computed over the SMmeasure

and the CDIL0;

5. the shake256 context RNG is initialized using the ECA keys seed;

6. the RNG is passed to the falcon keygen make function which is used to generate
the ECA keypair;

More in depth, the CDIL0 is computed in the following way:

CDIL0 = SHA3(UDS||SMMeasure)

and the ECA keys seed is computed as follows:

seed = SHA3(CDIL0||SMMeasure)

The process is depicted in the figure 6.2
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SHA3CDI Layer 0
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RNG
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SHAKE256
RNG

seed

Falcon
keygenDRK keys
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Figure 6.2. Implemented PQ keypairs generation.

After the keypairs generation, the DRK and the ECA certificates are created using
the modified version of the x509custom library, so that the functions can handle the larger
PQ keys and signatures(e.g. figure 6.3).

The last change implemented in the bootloader.c file is related to the SM keypair
generation and the SM signature computation. More in depth, in the implemented
solution (shown in the figure 6.4):
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Figure 6.3. Implemented PQ certificate issuance.

1. the seed for the keypair generation is created hashing the DeviceSK provided by
the manufacturer and the SMMeasure;

2. the shake256 context RNG is initialized from the computed seed;

3. a call to the falcon keygen make function, which receives the initialized RNG, is
used to create the SM keypair;

4. the value SMmeasure∥SMPK is computed;

5. the SM signature is computed over the value computed in the previous step with
the falcon sign dyn function, which uses the previously initialized RNG, and the
DeviceSK.

The last operation performed is the cleanup of the memory from any secret used in
the process.

6.3.1 Linker script file

The various layers in Keystone are built independently. Hence, to share parameters
among the components, is necessary to rely on a .lds file (Linker Script file extension),
which allows to specify to the linker where the variables have to be stored in memory,
and the size of such variables. By setting the same linking option in both the bootloader
and the sm components, variables can be shared among layers.

In particular, in the implemented solution some variables’ size have been redefined to
accommodate the bigger PQ keys, signatures and certificates within the
bootrom/sanctum params.lds file.
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Figure 6.4. Implemented SM PQ keypair generation and PQ signature computation.

To reflect the same changes into the sm component, a patch has been created and
located at overlays/keysone/patches/opensbi/params.patch. The modifications ap-
plied are described in the figure 6.5 and are related to the size of the parameters needed
in the process using the Falcon-512 version. To enable the Falcon-1024 usage, besides
the LOGN PARAM value, the .ldS file must be modified accordingly. This would enable the
flexible usage of both the versions, without the need to apply further changes to the file.

6.3.2 Compilation option

Finally, the last modification in this layer regards the compilation’s optimization flag
used.

In the Keystone project, the bootloader was compiled with the −O2 flag (in the
Makefile contained in the bootrom/ folder), which caused an infinite loop within the
Falcon keypair generation. In particular, the custom memcpy function already present
into the original project was trapped in an infinite recursive loop, causing the system to
hang. Reducing the optimization flag from −O2 to −O1 solved the issue.

6.4 Security Monitor

Once the control is passed to the SM, the first operation performed is the parsing of
the certificates obtained from the previous layer from DER format to mbedtls x509 crt

structure to verify that the certificates are formally correct. At this point, the first major
change implemented is the verification of the certificates’ signature, as shown in the
figure 6.6, performed with the falcon verify function. If the verification is successful
then the public keys are extracted from the respective certificates and printed in armored
base64 (DER format encoding).

Once completed the certificates verification, the SM is initialised and it is possible to
deploy the system to create and execute enclaves.
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. = 0x801fd000; /* the last page before the payload */

/*CDI, hash are not shown*/

...

/* 1281 Bytes : ECASM private key */

PROVIDE( sanctum_ECASM_priv = . );

. += 0x501;

/* 891 Bytes : security monitor public key */

PROVIDE( sanctum_sm_public_key = . );

. += 0x381;

/* 1281 Bytes : security monitor secret key */

PROVIDE( sanctum_sm_secret_key = . );

. += 0x501;

/* 809 Bytes : security monitor’s signature*/

PROVIDE( sanctum_sm_signature = . );

. += 0x329;

/* 2065 Bytes : security monitor’s certificate */

PROVIDE( sanctum_cert_sm = . );

. += 0x811;

/* 1883 Bytes : root certificate */

PROVIDE( sanctum_cert_root = . );

. += 0x75b;

/* 1903 Bytes : manufacturer certificate */

PROVIDE( sanctum_cert_man = . );

. += 0x76f;

Figure 6.5. Linker Script file modifications.

tbsCertificate

signature

...

Falcon Verify

PK field
(PQ Key)
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struct
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struct

...

Figure 6.6. PQ Signature verification.
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The Keystone project has been modified at this layer to perform the creation of a PQ
Local Attestation keypair and the related certificate issuance. The function modified
is the create enclave function, implemented in the file enclave.c. More in depth, the
implemented workflow is displayed in the figure 6.7:

1. the CDIEnclave is created hashing the CDIL0 and the TCIEnclave;

2. the CDIEnclave is used as seed to initialize the shake256 context used by the
falcon keygen make function;

3. a call to falcon keygen make allows to create the Local Attestation Keys of the
enclave;

4. the X.509 certificate for the Local Attestation Keys is created and signed with
the ECASK.

Figure 6.7. Implemented PQ Local Attestation Keys generation and relative
X.509 certificate creation.

To correctly perform the Local Attestation Keys generation, other modifications
were necessary. Such modifications have been applied to the sm/enclave.h and the
sm/enclave.c files. In particular, due to the memory needed by the keypair generation
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and the certificate issuance, the stack was subject to overflow into adjacent memory lo-
cations. This in turn affected the functions used for the PMP management, which were
using the modified memory locations, resulting in errors in the PMP entries’ configura-
tion. The issue has been solved applying the following changes, aimed at reducing the
stack memory used:

❼ the mbedtls pk context structures used to embed the issuer and subject keys into
the certificate have been removed from the create enclave function and moved
into the enclave structure;

❼ the cert der array used in the DER format parsing of the certificate has been
included in the struct enclave;

For the same reason above the method used to perform the parsing of certificate in
DER format has been modified:

int mbedtls_x509write_crt_der_tmp(mbedtls_x509write_cert *ctx,

unsigned char *buf, size_t size,

int (*f_rng)(void *, unsigned char *,

size_t), unsigned char *tmp,

shake256_context *rng, unsigned char*

sig);

the function now includes three new parameters:

❼ unsigned char *tmp: parameter used to pass by reference the temporary buffer
used in the signature computation over the tbsCertificate field. This allows to
allocate the buffer in the caller, avoiding to allocate such buffer in the stack and
reducing at the minimum the memory footprint posed by the operations performed
by the SM. In the implemented solution, the buffer is allocated during the SM
initialization and reused to perform various tasks.

❼ shake256 context *rng: the RNG is now provided by the caller and not allocated
on the stack.

❼ unsigned char *sig: the buffer in which the signature is stored is provided by
the caller and not allocated in the stack.

6.5 Enclave

The original Keystone project supports a simple attestation scheme, as well the data-
sealing feature. In the implemented solution, PQ support for both the functionalities
has been integrated.

6.5.1 Remote attestation

As regards the remote attestation, three entities are involved:

❼ the Verifier

❼ the untrusted host
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❼ the enclave

Following are described the changes implemented within the various components in-
volved in the attestation process, as well as the modifications applied to the SDK which
provides the tools to validate the attestation report, and to the runtime that is involved
in propagating the enclave’s request to the SM and in copying the attestation buffer from
the enclave to the host.

Verifier

The first step in implementing the PQ support in the attestation procedure was to include
the Falcon algorithm in the SDK, since it contains the functions used by the Verifier to
validate the reports.

After making the Falcon implementation available at the Verifier, the major modifi-
cations are:

❼ the enclave report t structure, defined in the sdk/include/verifier/Report.hpp
file, now supports the computation of the PQ signature over the TCIenclave and
the data copied from the enclave;

❼ the sm report t structure now supports the insertion of the PQ SMPK;

❼ the sm report t structure, defined in the sdk/include/verifier/Report.hpp file,
now supports the computation of the PQ signature over theTCISM and the SMPK.

❼ the report t structure now supports the insertion of the PQ DevicePK.

❼ the checkSignaturesOnly function (defined in sdk/src/verifier/Report.cpp)
used to perform the signatures verification of the report t structure has been
modified by removing the calls to the ed25519 verify function, replaced with the
falcon verify method.

The structures’ changes has been reflected in the corresponding structures defined in the
sm/enclave.h file;

Enclave and runtime

Once the enclave has requested the SM to provide the attestation report, the SM is
delegated to compute all the values needed in the report. To cross the enclave’s boundary,
the enclave must communicate via the edge call

int attest_enclave(void* report, void* data, size_t size)

Following are described the steps characterising the attestation flow:

1. the Verifier process is executed, generating a nonce;

2. the untrusted host process is executed, receiving the nonce;

3. the enclave process is executed, receives the nonce from the untrusted host via a
shared buffer through the copy from shared(nonce, retdata.offset, retdata.size)

edge call, and calls the attest enclave edge call, passing as parameters the pointer
to the report buffer (allocated in the enclave memory) which is filled with the attes-
tation report computed by the SM, the data block from the enclave which contains
the nonce, and the size of the nonce
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4. the runtime exits the enclave with an SBI CALL;

5. the SM resumes its execution, performs the attestation by executing the attest enclave

function that is mapped to the SBI CALL called by the runtime, fills the buffer and
returns;

6. on return the runtime copies the attestation report in the buffer allocated by the
enclave;

7. the enclave copies the buffer into the untrusted host via the shared memory region
with the ocall(OCALL COPY REPORT, buffer, size, 0, 0) edge call;

8. the untrusted host returns the attestation report to the Verifier which validates the
report.

The Runtime is responsible to copy data from the enclave to the SM memory, from the
enclave to the user space host process, and vice versa. In the original Keystone implemen-
tation the attestation buffer size copied into the host process memory is statically set to
2048 Bytes, hence the size of the buffer has been manually increased to correctly process
the report. The modification have been applied to the file runtime/call/syscall.c:

copy_to_user((void*)arg0, (void*)rt_copy_buffer_1, 5120);

Attestation and Security Monitor

The major modifications related to the attestation are related to the Security Monitor.

The first update, as already stated is related to the reports structure, reflecting the
changes to the enclave report, sm report, and report structs.

In the implemented scenario, the modifications applied to the attestation report cre-
ation process (e.g. figure 6.8) are:

❼ the PQ DevicePK is copied into the report struct;

❼ the PQ SMPK and the SM signature, both computed in the boot stage, are
copied into the sm report;

❼ the PQ Enclave signature is computed using the falcon sign dyn function.

More in depth, the signature over the enclave is computed with the following method:

void sm_sign(void* signature, const void* data, size_t len)

{

sign(signature, data, len, sm_private_key, tmp, &rng);

}

The call to the Falcon API has been implemented in the the function sign defined in the
file sm.c which now receives the shake256 context parameter, initialized during the SM
initialization. Internally, it performs the following call:

void sign(void* sign, const void* data, size_t len,const unsigned

char* private_key, unsigned char* tmp, shake256_context *rng)

{

size_t sig_len;
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Figure 6.8. Implemented PQ attestation evidence generation.

falcon_sign_dyn(rng, sign, &sig_len, FALCON_SIG_CT, private_key,

FALCON_SK_SIZE, data, len, tmp,

FALCON_TMPSIZE_SIGNDYN(LOGN_PARAM));

}

6.5.2 Sealing-key derivation

Finally, the last changes have been applied to the sealing-key derivation mechanism.

In particular the sealing struct has been modified (both in the sdk/ folder and
in the sm/enclave.h file) to include the PQ signature computed over the sealing key.
The new implemented process is described in the figure 6.9:

1. the SM PQ keypair is generated as previously described in the bootrom;

2. the KDF receives as input the PQ SMSK, the TCIEnclave, a Key identifier, and
returns the generated Sealing-Key;

3. the signature over the generated Sealing key is computed with the falcon sign dyn

function using the PQ SMSK;

4. the PQ signature and the Sealing key are inserted in the seal key struct.
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Figure 6.9. Implemented PQ Sealing-Key derivation.
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Chapter 7

Test

This chapter contains the description of several tests conducted on the implemented
solution.

The first part addresses the functionalities offered by the developed project, followed
by performance test in which the execution time is analysed. Then, the Falcon algorithm
is compared with the Dilithium algorithm, running simple RISC-V executables on the
RISC-V emulated QEMU platform, showing the differences in sizes and performances in
the keypair generation, signature computation, and signature verification.

7.1 Testbed

The tests have been conducted on a single machine by means of the RISC-V QEMU
emulated platform provided by the original Keystone project. The testbed consists in a
Acer Aspire 7 (A715-71G-76HB) machine with the following specifications:

❼ CPU: Intel Core i7-7700HQ @ 2.8GHz;

❼ GPU: NVIDIA GeForce GTX 1050 2GB GDDR5 Dedicated VRAM;

❼ RAM: 8GB DDR4;

❼ Storage: 128 GB SSD, 1TB HDD;

❼ OS: Ubuntu 22.04 LTS, 64-bit.

7.2 Functional tests

Different tests have been executed to check the correctness of the features introduced.

The first test presented shows the correct behaviour of the secure boot process with the
PQ support, in which PQ keys, PQ signatures, and PQ certificates are generated/used.
In the figure 7.1 is shown the screen output of the correct secure boot execution, along
with the PQ public key extracted from the manufacturer certificate during the SM ini-
tialization. Due to space issues the public keys extracted from the ECA and the DRK
certificates are not shown.

This example shows that the following steps are executed correctly:
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❼ certificates parsing from DER format to mbed tls x509 structure, in which PQ keys
and PQ signature are parsed correctly;

❼ verifications of the PQ signatures computed over the certificates performed correctly
with the falcon verify function;

❼ verifications performed with the PQ keys extracted from the certificates’ issuers;

❼ extraction of the PQ PK from the respective certificates.

Figure 7.1. Correct Secure Boot in the PQ implementation.

The second example shows the effect of a failed SM signature verification in the
bootrom. The secure boot feature permits the RoT to successfully halts the boot process
due to the failure. In particular, in the figure 7.2 is shown the screen output when the
verification fails.

The third test has been conducted to check the output whenever the verification of
any of the signature contained in any PQ certificates provided by the RoT fails. More in
depth, in the figure 7.3 is shown an example of verification failure of the ECA certificate’s
signature.

Due to space issues, in the following tests, certificates and public keys have been
printed on screen only partially.

The fourth test aims to present the output in case of a correct remote attestation
procedure. By running the modified version of the attestor.ke executable located
at /usr/share/keystone/example/attestor.ke, the Verifier process, the host process,
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Figure 7.2. Wrong SM PQ signature verification.

Figure 7.3. Wrong certificate PQ signature verification.

and the enclave process are executed and the attestation is performed. The example (e.g.
figure 7.4) shows the output of the correct procedure in which:

❼ the PQ Local Attestation Keys and PQ certificate are generated correctly at
enclave creation;

❼ the PQ signature of the report structure is correct and verified;

❼ the TCISM and the TCIenclave are correct and match with expected;

❼ the PQ signature of the enclave report structure is verified correctly;

❼ the nonce provided by the Verifier matches with the one expected.

Finally, is shown the example executing the provided file tests.ke that allows to run
several enclaves consecutively. More in depth, the figure 7.5 shows the output of sealing-
key derivation process, which is the most relevant among the enclaves executed due
to the changes introduced in the previous chapters. In particular, besides the Local
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Figure 7.4. Remote attestation example with PQ support.

Attestation Keys creation and the PQ certificate issuance, the figure shows the
output in case of correct sealing-key derivation.

Figure 7.5. Modified Sealing-key derivation output example.

7.3 Performance test

In this section are shown the performance of the developed solution with respect to the
DICE-based reference Keystone version. In particular, in the tests are reported the ticks
needed to perform various tasks, compared with the ticks needed to perform the same
tasks in the TORSEC developed Keystone.

The ticks computation has been possible thanks to the usage of the sbi time.h library,
available with the original Keystone project, which allows to determine the time window
in which the task is executed by means of calls to the sbi timer value function:

❼ init value = sbi timer value(): the initial reference value is obtained;

❼ final value = sbi timer value(): the final reference value is obtained;

❼ the ticks are computed as final value - initial value and printed on screen.

102



Test

Such values are used in the following graphs to show the performance downgrade with
respect to the following operations:

❼ booting stage;

❼ SM initialization;

❼ Local Attestation Keys and certificate generation at enclave creation.

In the figure 7.6 are shown the ticks reported in different execution of the two versions
of the project. In particular, due to the overhead introduced by the Falcon algorithm with
respect to the ed25519 algorithm, the ticks are increased on average around 30%. This is
due to the complex operations performed by the PQ algorithms in performing the key-
pair generation, signature computation, signature verification, and certificate generation
performed during the boot stage.

Figure 7.6. Ticks needed to complete the secure boot process.

As regards the SM initialization process (e.g. figure 7.7), in this case the performance
downgrade is significantly smaller than the previous example, resulting around a 3%
downgrade of performance on average. This is due to the operations performed at this
stage, that are certificates parsing and signatures verification, in which Falcon shows the
best performance among the PQ candidates with small overhead.

Finally the last performance test, depicted in the figure 7.8, shows the downgrade
introduced due to the PQ Local Attestation Keys and related certificate issuance at
enclave creation. More in depth, the keypair generation and certificate issuance are
compared, excluding the entire enclave process. This is due to modifications introduced
in the original Keystone project, over which this version is built upon, in which now the
enclave measure is computed in a more efficient way. This does not allow to compare
correctly entirely the enclave creation in the two versions. The performance downgrade
here is clear, since the PQ process is more complex and critical under this point of
view. More in depth, the PQ process’ ticks are two orders of magnitude greater than the
ed25519-based process.
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Figure 7.7. Ticks needed to complete the SM initialization.

Figure 7.8. Ticks needed to complete the Local Attestation Keys and certificate
generation at enclave creation.

7.4 PQ algorithm evaluation on RISC-V

In this section are evaluated and compared the public-key operations performed with the
following algorithms on the RISC-V platform provided by the original Keystone project:

❼ Dilithium-2 vs Falcon-512;

❼ Dilithium-5 vs Falcon-1024.

In particular are compared the average ticks necessary to perform:
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❼ 1000 keypair generations;

❼ 1000 signature computation;

❼ 1000 signature verification.

To perform the abovementioned tests, two RISC-V executables have been gener-
ated with the riscv64-unknown-elf-gcc compiler (namely test min.o to compare the
Dilithium-2 and Falcon-512 versions, and test max.o to compare the Dilithium-5
and Falcon-1024 versions). Both the executables then have been copied under the
build-generic64/overlay/root/ folder to provide the executables in the RISC-V em-
ulated environment. The output is shown in the figure 7.9 and figure 7.11.

Figure 7.9. Dilithium2 vs Falcon512.

Figure 7.10. Falcon512 vs Dilithium2.
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As previously stated, Dilithium remains the best choice in terms of performance with
respect to Falcon (e.g. figure 7.10 and 7.12) which may be a viable choice in scenar-
ios in which signature verifications are performed more frequently than the signature
computation.

Figure 7.11. Dilithium5 vs Falcon1024.

Figure 7.12. Falcon1024 vs Dilithium5.

Nevertheless, Falcon has been selected due to the reduced keys and signature sizes
and due to the memory issues caused by the Dilithium implementation and deployment.
In fact, considering the mechanism used in the Keystone project to share the certificates,
keys, and useful values among the components composing the system, Falcon results the
best choice in constrained environments in which such aspects are critical and must be
considered.
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Conclusions

In this document, the extension of the algorithm’s support in the Keystone TEE to
include PQ algorithms has been described, designed and implemented.

Starting from analysis on the state of the art as regards the issues that the IT secu-
rity is facing with respect to the quantum computing impact on the current technologies
and an analysis conducted on the actual TEEs technologies, an evaluation of the PQ
candidates led to select Falcon as the most promising algorithm, employed in modify-
ing the DICE-based Keystone framework. Such modifications have been conducted in
accordance to the best practices established by organizations that are putting effort in
providing guidelines to migrate the actual technologies from a quantum-vulnerable state
to a quantum-safe state, designing a system that is secured and not endangered by the
quantum advent, posing attention to the requirements set by constrained devices in which
several limitations further complicate the deployment of PQ algorithm.

The RISC-V platform over which Keystone is deployed, is perfectly suitable in this
context due to its flexibility and the characteristic configuration extent, features that
allow to deploy the platform as a basis over which IoT and small embedded devices can
be designed and built upon.

The adoption of the DICE specification within the described solution, enables the
definition of a strong device identity in such devices, and the consequent usage of the
identity in performing operations that are crucial from a security perspective and hard-
ened by the deployment of the PQ Falcon algorithm, which remains a suitable solution
in embedded systems and IoT devices.

This work can be referenced as a starting point for further developments on the topic,
to provide improvement in the performance issues that PQ algorithms may present in
this context or to analyse and implement other suitable algorithms. Example of projects
can be: implementation of the Dilithium algorithm due to the greater performance in
the RISC-V platform but solving the issues mentioned in this document, extension of
the algorithm support within Keystone to allow flexible swap among PQ and the ECC
algorithms, hardware accelerator to increase the PQ algorithms’ performance, or support
for hybrid certificates.
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A.1 System setup

Below are listed all the operations needed to correctly setup and configure the system.

Dependencies installation

The following commands are used to install on the Ubuntu distribution the dependencies
needed by the project:

sudo apt update;

sudo apt install autoconf automake autotools-dev bc bison

build-essential curl expat jq libexpat1-dev flex gawk gcc git

gperf libgmp-dev libmpc-dev libmpfr-dev libtool texinfo tmux

patchutils zlib1g-dev wget bzip2 patch vim-common lbzip2 python3

pkg-config libglib2.0-dev libpixman-1-dev libssl-dev screen

device-tree-compiler expect makeself unzip cpio rsync cmake

ninja-build p7zip-full;

Setup repository

Clone the github repository by means of the following command:

git clone --recurse-submodules

https://github.com/CarusoGiuseppe/pq-keystone.git;

It allows to clone the repository containing the developed solution as well as the sub-
modules, since Keystone uses Make and Buildroot to build the system’s components and
cloning the submodules allows to manage dependencies to the Buildroot system.

Build system’s components

Due to the fact that Make is used as build system with Buildroot, in the root directory
is located the Makefile responsible for the system’s building. It provides an easy and
flexible way to build the whole system, collecting the options needed by the Buildroot
system and initiates the building which takes place in Buildroot. Hence, to build the
system, the following command must be used in the root directory:
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make -j✩(nproc)

Options that can be passed to the make command aforementioned are listed below,
with the related usage:

❼ KEYSTONE PLATFORM=<platform>: configures the platform where Keystone is de-
ployed. At the time of writing only the generic platform is supported, related to
the QEMU virtual environment;

❼ KEYSTONE BITS=<bits num>: configures the bits num-bit system. Allowed param-
eters are 64 and 32;

❼ BUILDROOT CONFIGFILE=qemu riscv✩(KEYSTONE BITS) virt defconfig: Buildroot
configuration file to be used;

❼ BUILDROOT TARGET=<target>-dirclean: whenever a component is modified, changed
components are detected by the Buildroot system, which keeps synchronization
among the various components. This option allows to remove the stale source
directory detected, which can be followed by the classic build command make

-j✩(nproc).

Configure Buildroot and Linux

It is possible to configure Buildroot and Linux using the following commands:

make buildroot-configure

make linux-configure

This allows to configure the two components by means of a menu-based interface.

A.2 System deployment

A.2.1 Functional tests

Once completed the build of all the components, the system can be deployed. To run the
QEMU emulation the following command must be used in the root directory:

make run

This will start the QEMU virtualization starting from the RoT which will run the SM
that in turn boots Linux.

Following are listed the credentials to login into the system:

❼ username: root;

❼ password: sifive.

To run the modified enclaves, the Keystone driver must be inserted with the following:

modprobe keystone-driver
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The modified enclaves are located under the directory /usr/share/keystone/examples/.
The following executables are available:

❼ attestor.ke: performs the modified remote attestation procedure executing the
verifier, the host, and the enclave processes;

❼ hello.ke: executables provided by the original Keystone project where an enclave
is executed and asks the host the print the Hello, world! string on stdout;

❼ hello-native.ke: executable analogous in functionality to the previous one but
running without relying on the libc library;

❼ tests.ke: executable running multiple enclaves consecutively, performing various
functionalities, among which the modified sealing-key derivation.

A.2.2 Performance test

To perform the performance test and evaluate the performances related to the two versions
of Keystone compared, is necessary to perform the following actions. One cloned the
repository containing the implemented project described in this document, build, and
run the the PQ DICE-based Keystone version.

Then run the following commands to clone and build the repository containing the
TORSEC developed DICE-based Keystone version:

git clone https://github.com/valerio1805/keystone.git;

cd keystone;

./fast-setup.sh;

source source.sh;

mkdir build;

cd build;

cmake ..;

make buildroot KBUILD\_MODPOST\_WARN=1;

make qemu;

make linux KBUILD\_MODPOST\_WARN=1;

make sm;

make bootrom;

make driver;

make image;

make hello-package;

cp ./examples/hello/hello.ke ./overlay/root;

make image;

./scripts/run-qemu.sh;

after this process, the DICE-based Keystone version will be successfully built and will
be running. Once completed the system boot, login with the credentials username:root
password:sifive and run the following commands to execute the executable hello.ke;

insmod keystone-driver.ko

./hello.ke

In another terminal, run the make run command within the pq-keystone/ directory
and follow the previous instructions to run the modified version. The programs will
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be run and will print the number of ticks necessary to perform the various operations
described in the performance test section 7.3, which can be compared with the version
designed in this document.

A.2.3 Post-Quantum algorithm performance evaluation

To evaluate the performances of the PQ algorithms as described in the section 7.4, the
following operations allow to make available the executable in the Linux environment:

cp ./test_min.o ./build-generic<KEYSTONE_BITS>/overlay/root;

cp ./test_max.o ./build-generic<KEYSTONE_BITS>/overlay/root;

make -j✩(nproc);

make run;

There is no necessity to insert the Keystone driver to perform the following tests. At this
point the executables are available to be run with the following command:

chmod 777 ./test_min.o;

chmod 777 ./test_max.o;

./test_min.o; ./test_max.o
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B.1 Falcon usage

Below are listed information useful to configure and to apply correctly modifications to
the Falcon implementation.

B.1.1 Configuration file

The reference configuration file is config.h, which contains all the configuration op-
tions defined as macros. Each option can be enabled by setting the macro’s value to 1.
Commenting or setting an option value to 0 disables the option.

❼ FALCON FPNATIVE: Use the double C type for floating-point computations, using the
CPU hardware and/or compiler-provided function; the first may be constant-time
while the second is typically not constant-time. If neither FALCON FPNATIVE, nor
FALCON FPEMU are enabled, the default behaviour is enabling the FALCON FPNATIVE

macro.

❼ FALCON FPEMU: use floating-point emulation provided in the reference implementa-
tion.

❼ FALCON ASM CORTEXM4: Enable use of assembly for ARM Cortex-M4 CPU; Emu-
lated FP operations with ARM assembly are constant-time and will be used unless
other options override this choice.

❼ FALCON AVX2: use AVX2 for better performance if available as ISA.

❼ FALCON FMA: ISA used only if FALCON AVX2 is enabled;

❼ FALCON LE: assert that the platform uses little-endian encoding, providing slightly
better performance; if not enabled autodetection is applied.

❼ FALCON UNALIGNED: assert that the platform tolerates accesses to unaligned multi
byte values; if enabled, then some operations are slightly faster, otherwise autode-
tection is applied.

❼ FALCON KG CHACHA20: uses ChaCha20 seeded with SHAKE256 for the keypair gener-
ation; this provides, according to the platform, a speed-up in the computation.

116



Developer manual

❼ FALCON RAND GETENTROPY: targets the platform where the getentropy() system
call is available to use as explicit OS-provided RNG;

❼ FALCON RAND URANDOM: targets the platform where the /dev/urandom special file is
available to use as explicit OS-provided RNG;

❼ FALCON RAND WIN32: targets the platform where the CryptGenRandom() function
call is available to use as explicit OS-provided RNG.

Among the OS-provided RNG, in small embedded-systems none will be available and
the entropy source needs to be provided somehow. In the falcon.h file is defined the
LOGN PARAM used to set the Falcon degree used within the system.

B.1.2 Falcon usage in bootrom

The code listed in this section has been implemented in the bootrom.c file, removing the
quantum-vulnerable operations, and replaced with the quantum safe solution.

In particular are shown

❼ the SM PQ signature verification for the secure boot functionality, shown in Lst. B.1;

Listing B.1. SM PQ signature verification

...

// Measure the SM to simulate manufacturer provided signature

sha3_init(&hash_ctx, 64);

sha3_update(&hash_ctx, (void*)DRAM_BASE, sanctum_sm_size);

sha3_final(sanctum_sm_hash, &hash_ctx);

falcon_sign_dyn(&rng, sanctum_sm_sign, &sig_len, FALCON_SIG_CT,

_sanctum_dev_secret_key, FALCON_SK_SIZE, sanctum_sm_hash,

64, tmp_sig, falcon_tmpsign_size_test);

//verify the signature

sha3_init(&hash_ctx, 64);

sha3_update(&hash_ctx, (void *)DRAM_BASE, sanctum_sm_size);

sha3_final(sanctum_sm_hash, &hash_ctx);

if((falcon_verify(sanctum_sm_sign, sig_len, FALCON_SIG_CT,

_sanctum_dev_public_key, FALCON_PK_SIZE, sanctum_sm_hash,

64, tmp_vrfy, falcon_tmpvrfy_size_test)) != 0)

{

// The return value of the bootloader function is used to

check if the secure boot is gone well or not

return 0;

}

...

❼ the ECA and the DRK keypairs generation in the Lst. B.2.
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Listing B.2. ECA and the DRK PQ keypairs generation

// Combine the SM hash and the UDS to obtain the CDI

sha3_init(&hash_ctx, 64);

sha3_update(&hash_ctx, sanctum_uds, sizeof(*sanctum_uds));

sha3_update(&hash_ctx, sanctum_sm_hash,

sizeof(*sanctum_sm_hash));

sha3_final(sanctum_CDI, &hash_ctx);

// The DRK are created from the CDI

shake256_init_prng_from_seed(&rng, sanctum_CDI,

sizeof(*sanctum_CDI));

//generate device root key from CDI

falcon_keygen_make(&rng, LOGN_PARAM,

sanctum_device_root_key_priv, FALCON_SK_SIZE,

sanctum_device_root_key_pub,

FALCON_PK_SIZE,tmp,falcon_tmpkeygen_size_test);

// The ECA keys seed is generated hashing the CDI and the SM

measure

unsigned char seed_for_ECA_keys[64];

sha3_init(&hash_ctx, 64);

sha3_update(&hash_ctx, sanctum_CDI, 64);

sha3_update(&hash_ctx, sanctum_sm_hash, 64);

sha3_final(seed_for_ECA_keys, &hash_ctx);

//rng for the ECA keys

shake256_init_prng_from_seed(&rng, seed_for_ECA_keys, 64);

falcon_keygen_make(&rng, LOGN_PARAM, ECASM_priv,

FALCON_SK_SIZE, ECASM_pk, FALCON_PK_SIZE, tmp,

falcon_tmpkeygen_size_test);

❼ the SM PQ keypair and SM PQ signature generation in the Lst. B.3.

Listing B.3. SM PQ keypair and SM PQ signature generation

byte scratch[64 + FALCON_PK_SIZE];

sha3_init(&hash_ctx, 64);

sha3_update(&hash_ctx, _sanctum_dev_secret_key, FALCON_PK_SIZE);

sha3_update(&hash_ctx, sanctum_sm_hash,

sizeof(*sanctum_sm_hash));

sha3_final(seed_for_SM, &hash_ctx);

shake256_init_prng_from_seed(&rng, seed_for_SM, 64);

falcon_keygen_make(&rng, LOGN_PARAM, sanctum_sm_secret_key,

FALCON_SK_SIZE, sanctum_sm_public_key, FALCON_PK_SIZE, tmp,

falcon_tmpkeygen_size_test);
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// Endorse the SM

memcpy(scratch, sanctum_sm_hash, 64);

memcpy(scratch + 64, sanctum_sm_public_key, FALCON_PK_SIZE);

// Sign (H_SM, PK_SM) with SK_D

falcon_sign_dyn(&rng, sanctum_sm_signature, &sig_len,

FALCON_SIG_CT, _sanctum_dev_secret_key, FALCON_SK_SIZE,

scratch, 64 + FALCON_PK_SIZE, tmp_sig,

falcon_tmpsign_size_test);

B.1.3 Falcon usage in sm

In the code listed in this section are shown the major modifications applied to the SM in
the sm.c and crypto.c files. In particular are shown:

❼ the certificates’ signature verification performed during the SM initialization (e.g.
Lst. B.4);

Listing B.4. Certificates’ signatures verification during the SM initialization

...

if((falcon_verify(uff_cert_sm.sig.p, uff_cert_sm.sig.len,

FALCON_SIG_CT, uff_cert_root.pk.pk_ctx.pub_key,

FALCON_PUBKEY_SIZE(LOGN_PARAM), hash_for_verification, 64,

tmp, falcon_tmpvrfy_size_test)) != 0){

sbi_printf("[SM] Error verifying the PQ signature of the ECA

certificate\n\n");

}

...

if(falcon_verify(uff_cert_root.sig.p, uff_cert_root.sig.len,

FALCON_SIG_CT, uff_cert_man.pk.pk_ctx.pub_key,

FALCON_PUBKEY_SIZE(LOGN_PARAM), hash_for_verification, 64,

tmp, falcon_tmpvrfy_size_test) != 0){

sbi_printf("[SM] Error verifying the PQ signature of the

DRK certificate\n\n");

sbi_hart_hang();

}

...

❼ the modifications applied to the sm sign function (e.g. Lst B.5);

Listing B.5. SM signature computation function’s modifications applied.

void sm_sign(void* signature, const void* data, size_t len)

{

shake256_init_prng_from_seed(&rng, seed, sizeof(*seed));
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sign(signature, data, len, sm_private_key, tmp, &rng);

}

...

void sign(void* sign, const void* data, size_t len,const unsigned

char* private_key, unsigned char* tmp, shake256_context *rng)

{

size_t sig_len;

falcon_sign_dyn(rng, sign, &sig_len, FALCON_SIG_CT,

private_key, FALCON_PRIVKEY_SIZE(LOGN_PARAM), data, len,

tmp, FALCON_TMPSIZE_SIGNDYN(LOGN_PARAM));

}

...

B.1.4 Falcon usage in enclave

Here are listed the major code changes to correctly use Falcon in the following cases,
affecting the files enclave.c, enclave.h, and Report.cpp:

❼ Local Attestation Keys creation and enclave struct changes (e.g. Lst. B.6);

Listing B.6. Modifications applied to the enclave struct and to the Local
Attestation Keys generation

struct enclave

{

byte sign[FALCON_SIG_SIZE];

byte local_att_pub[FALCON_PK_SIZE];

byte local_att_priv[FALCON_SK_SIZE];

...

};

...

sha3_init(&hash_ctx_to_use, 64);

sha3_update(&hash_ctx_to_use, CDI, 64);

sha3_update(&hash_ctx_to_use, enclaves[eid].hash, 64);

sha3_final(enclaves[eid].CDI, &hash_ctx_to_use);

shake256_init_prng_from_seed(&rng, enclaves[eid].CDI, 64);

if(falcon_keygen_make(&rng, LOGN_PARAM,

enclaves[eid].local_att_priv,

FALCON_PRIVKEY_SIZE(LOGN_PARAM),

enclaves[eid].local_att_pub,

FALCON_PUBKEY_SIZE(LOGN_PARAM), tmp,

FALCON_TMPSIZE_KEYGEN(LOGN_PARAM)) != 0)

{

sbi_printf("\n[SM] Error during PQ keypair generation\n");

goto unlock;

}

...
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❼ SDK modifications (e.g. Lst. B.7) to correctly provide the Falcon utilities to check
the Falcon signatures computed and used in the attestation evidence.

Listing B.7. SDK modifications applied to correctly implement the remote attes-
tation with PQ parameters.

...

struct enclave_report

{

byte hash[MDSIZE];

uint64_t data_len;

byte data[ATTEST_DATA_MAXLEN];

byte signature[FALCON_SIG_SIZE];

};

struct sm_report

{

byte hash[MDSIZE];

byte public_key[FALCON_PK_SIZE];

byte signature[FALCON_SIG_SIZE];

};

struct report

{

struct enclave_report enclave;

struct sm_report sm;

byte dev_public_key[FALCON_PK_SIZE];

};

...

//modifications applied into the sdk/src/verifier/Report.cpp file

/* verify SM report */

sm_valid = falcon_verify(

report.sm.signature, FALCON_512_SIG_SIZE, FALCON_SIG_CT,

dev_public_key, FALCON_512_PK_SIZE,

reinterpret_cast<byte*>(&report.sm), MDSIZE +

FALCON_512_PK_SIZE,

tmp, FALCON_TMPSIZE_VERIFY(LOGN_PARAM));

/* verify Enclave report */

enclave_valid = falcon_verify(

report.enclave.signature, FALCON_512_SIG_SIZE,

FALCON_SIG_CT, report.sm.public_key, FALCON_512_PK_SIZE,

reinterpret_cast<byte*>(&report.enclave), MDSIZE +

sizeof(uint64_t) + report.enclave.data_len,

tmp, FALCON_TMPSIZE_VERIFY(LOGN_PARAM));

...

B.2 Apply patches

If there is the necessity to modify source files in the opensbi component such as the Linker
Script file (e.g. with .ldS extension) used to share variables among the components of
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the system, such files cannot be modified directly. It is compulsory to create and apply
patches. Following are listed the operations needed to apply such patches:

❼ identify the files to modify which will be located at <path to file>/file;

❼ from the parent directory run the following commands to create the related patch:

cp file file_mod;

//apply necessary modifications to the newly created file...

cd ..;

diff -Naur <path_to_file>/file <path_to_file>/file_mod >

file.patch;

❼ modify the file so that the first lines result as follows:

--- a/<path_to_file>/file

+++ b/ <path_to_file>/file

❼ run the following commands to apply the patch:

cp file.patch <KEYSTONE_HOME_DIR>/overlays/patches/opensbi

BUILDROOT_TARGET=opensbi-dirclean make;

make -j✩(nproc);

At the end of this process the patch is applied.
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