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Summary

Cooperative Intelligent Transport Systems (C-ITS) and Vehicle-to-Everything
(V2X) communication stand as leading forces in transforming transportation. C-
ITS facilitates the exchange of information between vehicles and traffic control
systems via wireless networks, promoting both cooperative behavior and automated
driving experiences. V2X is a broader term that includes various forms of vehicle
communication, such as vehicle-to-vehicle (V2V), vehicle-to-infrastructure (V2I),
vehicle-to-network (V2N), and vehicle-to-pedestrian (V2P) communications. These
technologies are integral to enhancing road safety, traffic efficiency, and driving
comfort. SCOOP@F, or "Système COopératif", is a pioneering C-ITS project in
France that aims to improve road safety and traffic management by enabling V2V
and V2I communication. This collaborative effort between road managers and
car manufacturers tackles real-life challenges such as privacy, cybersecurity, and
interoperability. The thesis in question examines the security mechanisms and
the protocols used in SCOOP@F. In particular, it focuses on message exchanges
between vehicles and Public Key Infrastructure (PKI) entities, as well as among
the PKI entities themselves. Given the complexity and potential vulnerabilities of
cryptographic protocols, which are crucial for protecting digital communications,
the security mechanisms of the protocol require meticulous inspection. This scrutiny
ensures the protection of message exchanges, thereby safeguarding user privacy
and system integrity. Formal verification of cryptographic protocols, also used in
C-ITS, is highlighted as a vital process to validate their resilience against potential
vulnerabilities and to verify their security properties and robustness against message
manipulation by attackers on the network. Proverif, a state-of-the-art tool for formal
verification, is utilized to symbolically model and analyze the protocol. Proverif
is capable of handling a wide range of cryptographic primitives and can process
an unlimited number of protocol sessions simultaneously, allowing for extensive
analysis and verification of protocols under various conditions and scenarios. The
results of the formal verification, which are described in the thesis, show the traces
produced by the tool. This verification process is essential to instill trust in the
C-ITS landscape, where highly reliable communications and secure protocols are
required.
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Chapter 1

Introduction

1.1 Thesis introduction

In this thesis, we explore the fascinating world of Cooperative Intelligent Transport
Systems (C-ITS), a rapidly evolving field that is reshaping the landscape of trans-
portation and communication. As we navigate through the complexities of C-ITS,
we focus on the security of communications, a critical aspect that underpins the
reliability and trustworthiness of these systems. C-ITS represents a paradigm shift
in how vehicles and infrastructure interact, promising to enhance safety, efficiency,
and sustainability in our transportation networks. However, as these systems
become increasingly interconnected, they also become more vulnerable to potential
security threats. Therefore, ensuring the robustness and integrity of communication
protocols within C-ITS is of paramount importance. Our focus in this thesis is
the Public Key Infrastructure (PKI) protocol within C-ITS, a cornerstone for
secure and trusted communication. We will conduct an in-depth analysis of this
protocol, exploring its design, functionality, and potential vulnerabilities. To ensure
the security and reliability of the PKI protocol, we employ formal verification, a
rigorous method of analysis that allows us to systematically evaluate the protocol.
Specifically, we focus on the SCOOP’s PKI protocol, a pioneering implementation
within the realm of C-ITS. Using ProVerif, a powerful tool for formal verification,
we dissect the protocol, examining its every facet to identify potential vulnerabilities
and areas for improvement. Through the course of this thesis, we aim to provide a
comprehensive understanding of C-ITS, the security of its communications, and
the importance of formal verification. Our goal is to contribute to the ongoing
efforts to make our transportation systems safer, more efficient, and more secure.
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Introduction

1.2 Thesis description
The subsequent section of this thesis is organized as outlined below.

• Chapter 2: provides a comprehensive overview and context of Cooperative
Intelligent Transport Systems (C-ITS) and Vehicle-to-Everything
(V2X) communications, specifically highlighting the security mech-
anisms as defined in the relevant ETSI standards.

• Chapter 3: offers a thorough analysis of the protocol for formal verification,
including all details related to the security mechanisms, data
structures, and messages.

• Chapter 4: introduces formal verification techniques and ProVerif, the tool
that will be utilized.

• Chapter 5: outlines the thesis’s objectives, the security properties to be verified,
and the attack scenarios.

• Chapter 6: offers a comprehensive analysis of the design choices and security
mechanisms, as well as the resulting model, which is then examined
using ProVerif.

• Chapter 7: presents the outcomes of the automated formal verification per-
formed on the models outlined in Chapter 6.

• Chapter 8: outlines the final conclusions drawn from this thesis and explores
potential avenues for future research that could enhance and build
upon the current work.
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Chapter 2

Overview of V2X

2.1 Intelligent Transport Systems

As urban areas evolve into smart cities, there is a continuous exploration of innova-
tive technologies to better manage these communities. Intelligent transportation
systems have become an integral part of every burgeoning smart city due to their
versatility and potential. These systems go beyond basic traffic management,
enabling smarter transportation networks that offer improved efficiency, safety, and
the ability to tackle persistent urban mobility challenges such as congestion. With
endless possibilities for implementation, intelligent transportation systems provide
smart cities with a more advanced approach to traditional transit infrastructure and
management. Their intelligent design allows for real-time data collection, analysis,
and response, facilitating dynamic and responsive transportation ecosystems. As
smart cities continue to develop, intelligent transportation systems will likely serve
as the backbone of next-generation urban mobility, leveraging connectivity, au-
tomation, and intelligence to revolutionize how people and goods traverse smarter
built environments. Intelligent transportation systems encompass the integration of
information and communication technologies within transportation infrastructure
and vehicles, with the aim of enhancing the efficiency, safety, and environmental
sustainability of transport networks. These systems are evolving swiftly, with the
incorporation of Internet of Things (IoT) technologies playing a significant role in
the advancement of intelligent transport solutions. ITS are increasingly becoming
a cornerstone in the management of transportation and traffic, contributing to
safer, more efficient, and sustainable travel. Intelligent transportation systems
are instrumental in creating smarter journeys and improving access for emergency
services, contributing to more sustainable transport. The development of intelligent
transportation systems is crucial in the context of smart city evolution, aiming to
significantly enhance transportation system efficiency, reduce energy consumption,
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Overview of V2X

lower transportation costs, and minimize environmental impact. Intelligent traffic
control is key to addressing traffic congestion and pollution issues. Current intelli-
gent transportation systems technologies primarily involve information technology,
data communication technology, and sensors. Intelligent transportation systems are
being implemented worldwide to increase the capacity of congested roads, reduce
travel times, and gather information on road users. These systems are designed to
integrate various functionalities, including electronic fare collection, road safety en-
hancement, and the provision of information to travelers. Intelligent Transportation
Systems (STS) are pivotal in bolstering safety and tackling the growing challenges
of emissions and traffic jams across Europe. By integrating various information
and communication technologies into transportation modes for both people and
goods, they enhance safety, increase operational efficiency, and foster environmental
sustainability. Additionally, the fusion of existing technologies paves the way for
novel service innovations. ITS are vital in stimulating job creation and economic
expansion within the transport sector. Nonetheless, to maximize their effectiveness,
the implementation of ITS must be systematic and well-synchronized across the
European Union [1].

2.1.1 ITS architecture and PKI
The ETSI EN 302 665 outlines an architecture for Intelligent Transport Systems
(ITS) stations, structured around four distinct processing layers: the Access Layer,
Networking and Transport Layer, Facilities Layer, and Applications Layer. These
layers are complemented by two vertical components: a Management entity and a
Security entity, as depicted in Figure 2.1.

2.2 Cooperative Intelligent Transport Systems
(C-ITS)

Cooperative Intelligent Transport Systems (C-ITS) are a specialized category within
Intelligent Transport Systems that utilize wireless telecommunication technologies
for real-time communication and information exchange between vehicles, and be-
tween vehicles and both central and roadside infrastructure. C-ITS focuses on
vehicle-to-vehicle (V2V), vehicle-to-infrastructure (V2I), and vehicle-to-everything
(V2X) communications. In Europe, C-ITS operations are regulated by a frame-
work of standards ensuring interoperability, safety, and efficiency in vehicular
communication systems. These standards are primarily developed by the European
Telecommunications Standards Institute (ETSI), with contributions from other
standardization bodies such as the International Organization for Standardization
(ISO) and the European Committee for Standardization (CEN). The European
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Overview of V2X

Figure 2.1: ETSI TS 102 940

C-ITS Protocol Stack is illustrated in the figure 2.2.

Figure 2.2: European C-ITS Protocol Stack (taken from [2])
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2.2.1 ETSI Security standards for C-ITS
The European Telecommunications Standards Institute has developed a compre-
hensive series of standards dedicated to enhancing the security of Cooperative
Intelligent Transport Systems. These standards encompass a wide range of security
aspects, including encryption, authentication, privacy, and the integrity of com-
munications. Key ETSI standards pertinent to C-ITS and Vehicle-to-Everything
security include:

• ETSI TS 102 731 [3]: details the security services and architecture for ITS
communications.

• ETSI TS 103 097 [4]: outlines the security architecture for ITS, includ-
ing security headers, certificate formats, security profiles, and cryptographic
algorithms.

• ETSI TS 102 940 [5]: describes the security architecture and security
management for V2X communications.

• ETSI TS 102 941 [6]: focuses on trust and privacy management within ITS,
detailing procedures for certificate and digital signature management.

• ETSI TS 102 942 [7]: specifies the technical requirements for access control
within ITS for V2X communications.

• ETSI TS 102 943 [8]: addresses confidentiality services in ITS for V2X
communications, emphasizing the protection of sensitive information to prevent
unauthorized access and ensure data privacy.

2.2.2 Security mechanisms and data structures
The ETSI TS 103 097 [4] standard specifies various security mechanisms for ITS,
leveraging elliptic curves and secure data structures. The cryptographic algorithms
employed include:

• Symmetric Encryption Algorithm: AES-128-CCM with a 128-bit key
size.

• Signature Algorithm: Based on ECDSA_nistP256_with_SHA256, a vari-
ant of the Digital Signature Algorithm (DSA) utilizing the NIST P-256 curve
and SHA-256 for hashing.

• Elliptic Curve Integrated Encryption Scheme (ECIES).
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2.2.3 CCM Mode
The Counter with Cipher Block Chaining-Message Authentication Code (CCM)
represents a cryptographic block cipher mode. This authenticated encryption
technique is crafted to deliver authentication along with data privacy. Encryption
is executed using the counter (CTR) mode, while authentication is achieved through
Cipher Block Chaining-Message Authentication Code (CBC-MAC). As depicted in
the Figure 2.3, the process begins by calculating the CBC-MAC on the message to
generate a MAC (tag), which is then, along with the message, encrypted utilizing
the counter mode. It has three inputs:

1. The message to be encrypted.

2. The encryption key K’.

3. A nonce (a random value used only once).

Figure 2.3: CCM encryption schema

The CCM encryption process can be summarized as follows:

1. The CBC-MAC is calculated using a structured input B, which is created
from the nonce N, any associated data A, and the plaintext message M. This
structured input B is composed of an initial block B0, succeeded by the blocks
containing associated data and plaintext.

2. The final segment of the CBC-MAC output is cut down to the required tag
size, resulting in the creation of the MAC tag T.

3. The message M along with the MAC tag T are merged and encrypted in
counter (CTR) mode utilizing the encryption key K’ and counter blocks A0,
A1, ... which are generated from the nonce N. In detail:

• The tag T undergoes encryption to become C0 = lsbt(ENCK′(A0)) ⊕ T

• Every block of plaintext Mi is encrypted to Ci = ENCK′(Ci) ⊕ Mi

17
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4. The resulting encrypted message C, comprising C0 || C1 || ... || Cm, along
with the related associated data A, is dispatched to the recipient. The nonce
N is also sent along if it’s deemed necessary.

The recipient is then able to decrypt the message and check the Message Authen-
tication Code (MAC) to confirm that the message remains unaltered and that it
originated from the expected sender.

The CCM decryption mode shown in Figure 2.4 has the same inputs as the
encryption mode. The ciphertext is first decrypted, and a plaintext is obtained.
This plaintext is then used to compute a MAC with the CBC-MAC, which is
compared with the MAC received. If the two MACs are equal, then the plaintext
is authenticated.

Figure 2.4: CCM decryption schema

2.2.4 ECIES
ECIES is an asymmetric encryption scheme defined in IEEE Std 1609.2 and
in ETSI standard that is used to transport symmetric encryption keys. It is a
hybrid encryption system that merges two distinct encapsulation mechanisms to
provide a secure encryption process. Specifically, it integrates a Key Encapsulation
Mechanism (KEM) with a Data Encapsulation Mechanism (DEM) to ensure both
confidentiality and integrity of the data. Key Encapsulation Mechanism (KEM): this
component of ECIES is responsible for generating a pair of keys (a public key and a
private key that are ephemeral) based on elliptic curve cryptography. The public key
may be freely distributed, whereas the private key is maintained in confidentiality.
KEM is used to encapsulate or "wrap" a symmetric encryption key, which is then
securely transmitted to the recipient with the public key generated by KEM. Data
Encapsulation Mechanism (DEM): once the symmetric key is encapsulated and
sent to the recipient, the DEM comes into play. It uses the symmetric key to
encrypt the actual data or message. This mechanism typically employs a symmetric
encryption algorithm like AES (Advanced Encryption Standard) to ensure the

18



Overview of V2X

data is encrypted efficiently and securely. The combination of KEM and DEM in
ECIES allows for the secure transmission of encrypted data. The symmetric key is
encrypted using the private key provided by the Key Encapsulation Mechanism
(KEM), and this symmetric key is subsequently utilized by the Data Encapsulation
Mechanism (DEM) to encrypt the message. The recipient, who possesses the
corresponding private key and the public key sent with the KEM, can decrypt the
symmetric key and, subsequently, the message itself. Figures 2.5 and 2.6 depict the
ECIES diagrams for encrypting and decrypting a plaintext message, denoted as
’m’. The ECIES ETSI schema is represented in Figure 2.7. The ECIES algorithms

Figure 2.5: ECIES encryption functional diagram [9]

and parameters defined in the ETSI standard are as follows:

• Key Agreement: Elliptic Curve Secret Value Derivation Primitive, Diffie-
Hellman version with cofactor multiplication (ECSVDP-DHC). It is a cryp-
tographic primitive used in key agreement protocols and is based on the
Diffie-Hellman key exchange mechanism, but it is adapted for use with elliptic
curve cryptography. In a key agreement protocol using ECSVDP-DHC, each
party generates an ephemeral private key and computes the corresponding
public key as a point on the elliptic curve. The parties then exchange their
public keys and use their own private keys along with the received public key
to compute the shared secret.

• P1 and P2: are designated as empty strings.

• Key Derivation Function: a Key Derivation Function (KDF) is a cryp-
tographic method that generates one or more secret keys from a private

19



Overview of V2X

Figure 2.6: ECIES decryption functional diagram [9]

Figure 2.7: ECIES ETSI schema

value, such as a master key, password, or passphrase. KDFs find application
in various scenarios, encompassing key derivation from secret passwords or
passphrases, generating keys of varying lengths, and as integral components
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of multiparty key-agreement protocols. KDFs serve the purpose of extending
keys into longer formats or obtaining keys with specific criteria. In this context,
KDF2 is employed, specifically utilizing SHA-256. To elaborate, KDF2(Z, P1)
= SHA-256(Z || Counter || P1), where the counter is 32-bit and Z represents
a point on the elliptic curve.

• Encryption: XOR. The XOR operation, also known as exclusive OR, is a
fundamental operation in cryptography, frequently employed in stream ciphers
and various cryptographic protocols. The XOR operation is both associative
and commutative, which means that the sequence and grouping of operands
do not influence the end result. Mathematically, this property is expressed as:

– (a ⊕ b) ⊕ c = a ⊕ (b ⊕ c) associativity
– a ⊕ b = b ⊕ a commutativity

• MAC: MAC1 with SHA-256. The MAC1 with SHA-256 is computed as
HMAC(K2, C). HMAC or Hash-based Message Authentication Code, is a
cryptographic technique used for data integrity and authentication. It com-
bines the benefits of cryptographic hash functions and a shared secret key,
making it more secure than many other authentication methods. HMAC is
designed to be one-way, meaning it’s easy to generate output from input but
complex to do the reverse. It’s also designed to be less affected by collisions
than hash functions.

HMAC(K2, C) = Hash( (K2 ⊕ iPad) || Hash( (K2 ⊕ oPad) || C ) )

where:

– Hash is the SHA-256 algorithm.
– iPad and oPad are 256-bit (32-byte) blocks formed by repeating the byte

0x36 and 0x5C.
– K2 is the key derived from KDF2.
– C is the ciphertex.
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Chapter 3

SCOOP@F

3.1 SCOOP@F Project

SCOOP project, also known as SCOOP@F, is a French pilot project focused on
the deployment of Cooperative-Intelligent Transport Systems (C-ITS). The project
utilizes information and communication technologies in the field of transport, with
a cooperative approach based on the exchange of information between vehicles
and between vehicles and infrastructure, also known as V2X communication. The
project was divided into two parts: SCOOP@F Part 1 (2014-2015) and SCOOP@F
Part 2 (2016-2018). The first part tested and validated the C-ITS use cases using
ITS G5 communication technology, while the second part focused on a hybrid
communication technology, ITS G5 and cellular, and the development of new C-ITS
use cases. The project aims to enhance road safety, optimize traffic information,
develop new services, and prepare the vehicles of tomorrow. It is considered a
solution to make automated vehicles cope with critical situations they could not
cope with otherwise, such as toll gates and road works, and to anticipate sensor
detection for better driver comfort. SCOOP uses ITS G5 technology, a WiFi
technology adapted to high-speed vehicles, operating in the 5.9 GHz band. This
technology allows V2X exchanges with very low latency, which is crucial for road
safety use cases. The communication with infrastructure is done through Road Side
Units. The project does not involve any automation, and messages are received
by the driver. The project involves large-scale deployment (3000 vehicles on 2000
km of roads), in real conditions, with real-life constraints. The vehicles are sold to
real customers and are designed with the Commission Nationale de l’Informatique
et des Libertés (CNIL) and the Agence Nationale de la Sécurité des Systèmes
d’Information (ANSSI). The project is funded 50% by the European Commission,
and it includes ex ante and ex post evaluation. The project partners include
the French Ministry of Transport, local authorities, TEN-T road operators, car
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SCOOP@F

manufacturers, universities and research centers, a telecommunication operator,
and a provider of trust services [10].

3.2 SCOOP@F PKI
A primary objective of this project is the implementation of a dedicated Intelligent
Transport Systems (ITS) Public Key Infrastructure (PKI). The proposed PKI is
designed in accordance with the standards set by the European Telecommunications
Standards Institute (ETSI).

3.2.1 PKI Architecture
The architecture of the SCOOP@F PKI is depicted in Figure 3.1.

Figure 3.1: SCOOP PKI Architecture

The entities involved in this PKI are:

• Root Certificate Authority (RCA): an RCA, or Root Certification Author-
ity, is distinguished by possessing a self-signed certificate, where the issuer and
the signer are identical. Unlike other certificates, an RCA’s certificate cannot
be revoked through conventional means, such as inclusion in a Certificate
Revocation List (CRL). RCA is always used offline and never connected to any
network. The RCA certificate is self-signed. RCA never receives a certificate
from another CA (never certified or cross-certified with another external CA).
The RCA facilitates the provision of the following PKI functionalities:
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– Creation of a Root CA key pair and its own self-issued certificate.
– Generation of CA key pairs and certificates.
– Signature of TSL and CRL.
– Revocation of CA certificates.
– Update the CRL/TSL
– Rekey of CA certificates.
– Log trail generation.

• Long Term Certification Authority (LTCA): serves as a security manage-
ment entity tasked with issuing Long Term Certificates (LTCs) and validating
Pseudonym Certificates (PCs). Additionally, it oversees the management
of Intelligent Transport Systems Stations, encompassing registration, status
updates, and permissions. The LTCA functions in an online capacity[11].
LTCA has the responsibility to:

– Manage C-ITS-S status.
– Sign LTC certificate.
– Authenticate PCA using TSL signed by RCA that has signed LTCA.
– Transmit right public keys to be certified by RCA.
– Transmit right public keys to be certified by RCA.
– Communicates only with PCA authenticated with RCA validation infor-

mation communicated by DC.
– Respond to request from Policy Management Authority (PMA).
– Establishes contract with C-ITS-S Manufacturer.
– Manage PCA validation request for PC certificate request.

LTCA can only issue LTC and validate requests sent by a PCA for PC
certificate request from a C-ITS-S produced by an C-ITS-S Manufacturer and
for which the C-ITS-S is already registered by this LTCA.

• Pseudonym Certificate Authority (PCA): is a security management
entity tasked with the issuance, supervision, and utilization of Pseudonym
Certificates (PCs). It functions in an online mode. PCA can only issue PCs
for C-ITS-S which have been authorized.
PCA is responsible for:

– Managing C-ITS-S request.
– Signing PC certificate.
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– Authenticating LTCA using TSL issued by RCA.
– Managing communication with LTCA and DC.
– Submit accurate and complete information to the LTCA.
– Transmit right public keys to be certified by RCA.

• Distribution Centre (DC): is responsible for supplying the Intelligent
Transport Systems Stations with the latest trust information, including Trust
Service Lists (TSL) and Certificate Revocation Lists (CRL). This information
is crucial to ensure that the received data originates from legitimate and
authorized ITS-Ss or a Public Key Infrastructure (PKI) certification authority.
The DC provides the following PKI services:

– Publication service.
– Log trail generation.

3.2.2 Security objectives and the higher layers of the pro-
tocol stack

The protocol used in SCOOP@F aims to achieve the following security objectives
[12]:

• Authentication/Authorization Control: Authentication involves verifying
the identity of the data sender. Authorization control, on the other hand,
is the process of checking an access policy based on trusted authentication.
It is crucial to authenticate all entities participating in the protocol to pre-
vent unauthorized individuals from accessing the system or certain restricted
resources or services.

• Data Integrity: Ensuring the integrity of all transmitted data is vital to
confirm that the content of the received data remains unaltered.

• Confidentiality/Privacy: Data should be accessible only to authorized
entities. The real identity of the ITS Station must be safeguarded through
cryptographic mechanisms, depending on the type of data transmitted.

• Non-repudiation/Traceability: Ensuring non-repudiation is crucial to stop
the ITS Station or any involved parties from rejecting the sending or the
content of their communications. Equally critical is traceability, which secures
that an entity can not refute the sending or receiving of data.

• Unlinkability: This refers to the user’s ability to use resources or services
multiple times without others being able to associate these uses together.
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• Anonymity: This is the user’s ability to utilize a resource or service without
revealing their identity.

The technical specification specifies [12], the higher layers of the protocol stack,
Figure 3.2, and assumes either a fixed or cellular network with the ITS-S or an ITS
G5 communication profile supporting IP connectivity.

Figure 3.2: Higher-layer supported PKI protocols

Machine-to-machine communications with the LTCA, PCA, and DC compo-
nents use HTTP/1.1 as a transport mechanism over TCP/IP. No supplementary
cryptographic layer such as TLS is required. Messages are sent as HTTP GET or
POST requests.

3.2.3 Data structures
In the SCOOP project, the protocol messages exchanged between Intelligent Trans-
portation System Stations (ITS-S) and Public Key Infrastructure (PKI) entities,
as well as among the PKI entities themselves, utilize specific data structures—
Data, SignedData, and EncryptedData —along with associated algorithm identifiers.
These are precisely defined to provide clear security properties and they have been
meticulously defined using the Abstract Syntax Notation One (ASN.1) and are
encoded by adhering to the Distinguished Encoding Rules (DER) scheme. The
Certificate Revocation List structure enables the revocation of Long Term Certifi-
cates, that are employed by various actors and components within the PKI system.
Figure 3.3 provides a detailed depiction of the standardized message format that
is employed for the purpose of securing and transmitting requests for Long Term
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Certificates and Pseudonym Certificates. This format is meticulously designed
to ensure the integrity and confidentiality of the communication involved in the
certificate issuance process, thereby safeguarding the exchange of these critical
digital credentials within the system:

Figure 3.3: Format of messages designed for the secure transmission of LTC and
PC requests. [13]

• Data: type is utilized as the most external container within the protocol.
This design choice underscores its importance in serving as the outermost
layer that holds critical information necessary for secure communications.
Data ::= SEQUENCE {

version Version DEFAULT v1 ,
contentType ContentType ,
content OCTET STRING OPTIONAL

}

ContentType ::= OBJECT IDENTIFIER

• EncryptedData: is used to ensure confidentiality. It contains encrypted data
along with information about the encryption algorithm used. This structure
ensures that only authorized parties can decrypt and access the contents. It
is designed to secure a message by encrypting data for a number of recipients
following this process:
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1. The sender selects an encryption algorithm and parameters (such as a
nonce or IV) for encrypting the content and generates a symmetric key
for this purpose.

2. This symmetric key is encrypted by the sender, and for each recipient, a
specific RecipientInfo structure is created using the ECIES mechanism.

3. The chosen encryption algorithm, along with its associated parameters
and the symmetric key for content encryption, are used to encrypt the
content. For each recipient, these elements (the ciphertext, the algorithm,
and its parameters) are saved into each RecipientInfo structure, and all
these structures (in particular the array of RecipientInfo) are collectively
formed into an EncryptedData structure.

In scenarios where the recipient’s identity is verified using their public key
instead of their certificate (for instance, when the recipient is in the process of
requesting a certificate), the recipients field, which is of the HashedId8 type,
should be computed by applying the SHA256 hash function to the compressed
form of the encoded public key and then selecting the 8 least significant
octets. In cases where the encrypted content is intended to be sent separately
from the EncryptedData structure, the latter can be employed to convey the
encrypted symmetric key and the encryption parameters. The inclusion of the
encryptedContent field is not mandatory. It is defined in ASN.1 in [12]:
EncryptedData ::= SEQUENCE {

version Version DEFAULT v1 ,
recipients RecipientInfos ,
encryptedContentType ContentType ,
encryptionAlgorithm ContentEncryptionAlgorithmIdentifier ,
encryptedContent OCTET STRING OPTIONAL

}

RecipientInfos ::= SEQUENCE SIZE (1.. MAX) OF RecipientInfo

RecipientInfo ::= SEQUENCE {
recipient HashedId8 ,
kexalgid KeyEncryptionAlgorithmIdentifier
DEFAULT { algorithm id -ecies -103097 },
encryptedKeyMaterial OCTET STRING
}

• SignedData: is used to provide data integrity and authentication and to
verify the sender’s identity through an ECDSA signature. This structure
identifies the signer, linking the signature to a corresponding certificate. It is
composed of four key elements:
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– The actual content that requires signing, presented in an unencrypted
form.

– A cryptographic hash (digest) of the content awaiting signature.
– The signer’s identity information.
– The ECDSA signature that encompasses the aforementioned elements.

This data structure is designed with versatility in mind, accommodating both
internally and externally authenticated content, the possibility of numerous
signers and signatures and the capability for single-pass validation (streaming).
The process of signing data involves the following steps [12]: The process of
signing data involves the following steps [12]:

1. Create an empty SignedData structure:
– Set the version to v1.
– Assign the appropriate value to signedContentType.

2. Encapsulate the signed data:
– Either enclose it in an OCTET STRING and include it in the Signed-

Data structure, or
– Keep it separate (detached or external signature).

3. Each signer performs the following actions:
– Select their two favored hashing algorithms: the first for computing

a hash of the signed content and another for hashing the attributes.
And if desired, these hash algorithm identifiers can be added to the
hashAlgorithms array to aid in the streamlined verification of the
signature.

– Process the signed content through the chosen hash algorithm and
record the outcome in an Attribute structure labeled attr-messageDigest.

– Construct a SignerInfo structure that includes:
∗ The aforementioned Attribute structures within the signedAttributes

array and a facultative Attribute labeled attr-signingTime within
the signedAttributes array.

∗ The signerIdentifier adjusted to the correct identifier and if desired,
the sequence of certificates may be included to verify the identity
of the signatory.

∗ The digestAlgorithm matching the hash algorithm used on the
signed content and the signatureAlgorithm corresponding to the
cryptographic signature method employed by the signatory.

∗ The actual signature, which is the product of the cryptographic
operation performed on the serialized signedAttributes structure.
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– Incorporate the fully assembled SignerInfo structure into the array of
signerInfos.

It is important that the attr-messageDigest and attr-contentType attributes are
included in the signedAttributes. Their presence is mandatory. The inclusion
of the attr-signingTime attribute is optional and may be required depending
on the context. [12]. The complete definition in ASN.1 taken from [12]:
SignedData ::= SEQUENCE {

version Version DEFAULT v1 ,
hashAlgorithms HashAlgorithmsIdentifiers ,
signedContentType ContentType ,
signedContent OCTET STRING OPTIONAL ,
signerInfos SignerInfos
}

HashAlgorithmsIdentifiers ::= SEQUENCE OF HashAlgorithmIdentifier

SignerInfos ::= SEQUENCE OF SignerInfo

SignerInfo ::= SEQUENCE {
version Version DEFAULT v1 ,
signer [0] SignerIdentifier DEFAULT self:NULL ,
digestAlgorithm [1] HashAlgorithmIdentifier
DEFAULT { algorithm id - sha256 },
signatureAlgorithm [2] SignatureAlgorithmIdentifier
DEFAULT { algorithm ecdsa -with - SHA256 },
signedAttributes SignedAttributes ,
certificateChain SEQUENCE OF Certificate OPTIONAL ,
signature SignatureValue

}

SignerIdentifier ::= CHOICE {
self NULL ,
certificateDigest CertificateDigest ,
certificate Certificate
}

CertificateDigest ::= SEQUENCE {
algorithm HashAlgorithmIdentifier
DEFAULT { algorithm id - sha256 },
digest HashedId8 }

SignedAttributes ::= SEQUENCE OF Attribute

Attribute ::= SEQUENCE {
attrType ATTRIBUTE .&id({ SupportedAttributes }),
attrValue ATTRIBUTE .& Type ({ SupportedAttributes }{ @attrType })
OPTIONAL

}
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SignatureValue OCTET STRING

/************ -- Attributes ************/

ATTRIBUTE ::= CLASS {
&id OBJECT IDENTIFIER UNIQUE ,
&Type OPTIONAL } WITH SYNTAX { ID &id [VALUE &Type] }

attr - messageDigest ATTRIBUTE ::= {
ID id - messageDigest VALUE OCTET STRING

}

attr - contentType ATTRIBUTE ::= {
ID id - contentType VALUE ContentType

}

attr - signingTime ATTRIBUTE ::= {
ID id - signingTime VALUE Time32

}

SupportedAttributes ATTRIBUTE ::= {
attr - messageDigest |
attr - contentType |
attr - signingTime ,

... }

Internally, an ECDSA signature contains the following structure [12]:
Ecdsa -Sig -Value ::= SEQUENCE { r INTEGER , s INTEGER }

3.3 General Overview of the PKI Protocol
Within the PKI system, various entities communicate not only among themselves
but also with ITS Stations external to the system. This section outlines the different
PKI communications (requests and responses) aimed at providing ITS-Ss with
certificates (Long-Term Certificates or LTCs and Pseudonym Certificates or PCs).
The protocol involves 4 phases [13]:

1. Initialization Phase

2. LTC Request and Response

3. PC Request and Response

4. CRL/TSL Request and Response
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The initialization phase, conducted by the manufacturer, involves registering the
Intelligent Transport Systems Stations (ITS-Ss) on the PKI. This process unfolds
as follows:

1. The manufacturer generates a technical key pair, which includes a Technical
Public Key (TPK) and a Technical Secret Key (TSK). The TSK is generated
within the Hardware Security Module (HSM) [14] using the NIST P-256
curve[15].

2. A "Profile" is selected, and the TPK is associated with a unique canonical
Identifier (ID), which serves as the permanent ID for the ITS-S. The canonical
ID of the ITS-S must be unique for each LTCA.

3. The manufacturer specifies the associated Service Specific Permissions (SSP)
relevant to the supported services.

4. A registration request is sent to the LTCA.

5. The LTCA responds to the manufacturer with a registration confirmation.

As a result, the ITS-S is registered in the LTCA’s database, and the certificates of
the RCA, LTCA, and PCA are stored in the ITS-S.

3.3.1 LTC Request and Response
An LTC, or Long-Term Certificate, serves as a digital credential in communications
between an Intelligent Transportation System (ITS) Station and a security man-
agement entity, confirming that the legitimate possessor has the right to request a
pseudonym certificate.

1. LTC Request: An ITS-S sends an LTC request to the LTCA.

2. LTC Response: If the ITS-S is registered in the LTCA’s database, the LTCA
responds with an LTC response containing the requested LTC.

3.3.2 PC Request and Response
A PC is a digital credential that verifies the bearer’s authority to perform certain
designated tasks.

1. PC Request: An ITS-S sends a PC request to the PCA.

2. Validation Request and Response: The PCA sends a validation request to
the LTCA to verify the ITS-S’s LTC. The LTCA responds with a validation
response.
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Figure 3.4: LTC request and response [13, 16]

3. Verification Step: The LTCA performs a verification step to validate the
ITS-S’s LTC before the PCA can issue a PC.

4. PC Issuance: Upon successful validation, the PCA creates and sends a PC to
the requesting ITS-S.

CRL/TSL Request and Response

A Certificate Revocation List is a digitally signed list issued by a Certificate
Authority, detailing the identities of certificates that are no longer considered valid.
A Trust-service Status List is a signed collection of newly issued RCA, LTCA, and
PCA certificates, along with PKI service addresses (PCA and DC). The RCA signs
this list, which can then be transmitted over the air.

1. CRL/TSL Requests: An ITS-S sends a CRL (Certificate Revocation List) or
TSL (Trusted Service Status List) request to the Distribution Center (DC).

2. CRL/TSL Responses: The DC responds with a CRL or TSL response con-
taining the requested list.
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Figure 3.5: PC request and response [13, 16]

3. List Extraction and Verification: The ITS-S extracts the list and verifies its
authenticity by checking the signature of the authorized RCA.

3.3.3 Keys
First and foremost, it is crucial to thoroughly delineate all the keys used in the
complex communication protocol of the SCOOP Public Key Infrastructure, as
accurately depicted in Figure 3.6.

3.3.4 Technical Specifications
LTC request

To provide further detail, the ITS-S must construct an LTC request. This is
achieved by executing the steps outlined in Figure 3.7.

1. Generate the following elliptic keys:

• (RSK, REK).
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Figure 3.6: PC request and response [13]

• (LTC-VSK, LTC-VPK).
• optionally (LTC-ESK, LTC-EPK)

2. Construct an InnerECRequest structure containing the values:

• A randomly generated requestIdentifier.
• The canonical identifier of the ITS-S, the itsId.
• The desired attributes.
• Some optional restrictions.
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Figure 3.7: LTC request [13]

• The responseEncryptionKey (REK).

InnerECRequest ::= SEQUENCE {
requestIdentifier OCTET STRING (SIZE (16)) ,
itsId IA5String ,
wantedSubjectAttributes SubjectAttributes ,
wantedValidityRestrictions ValidityRestrictions OPTIONAL ,
responseEncryptionKey PublicKey

}

In this context, wantedSubjectAttributes represents the serialized form of the
subject_attributes structure, as specified in the ETSI Standard [4]. It is
mandatory that this structure includes precisely one occurrence of each of the
subsequent elements:
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• a verification_key,
• an its_aid_ssp_list.

wantedValidityRestrictions is the serialization of the subject validity_restrictions
defined in ETSI Standard [4]; the inclusion of this field is not mandatory, as
the Long-Term Certificate Authority (LTCA) possesses prior knowledge of the
Intelligent Transport System Station (ITS-S) and has the capability to inde-
pendently impose limitations on both the temporal validity and geographical
scope of the certificate.
In the event of a network disruption during the transaction, the ITS-S has
the option to utilize the same requestIdentifier when resending the request.
Under such circumstances, it is anticipated that the ITS-S will transmit an
identical request to the original.

3. A SignedData structure is then constructed, which:

• Sets the signedContentType to indicate an Enrolment Request.
• Contains the InnerECRequest within the signedContent.
• Includes a collection of signedAttributes, featuring an attribute for the

signing time.
• Specifies the signer as the ITS-S itself.
• Has a signature that is generated using the ITS-S’s canonical private key,

the TSK.

4. Following this, an EncryptedData structure is formed, where:

• The intended recipient is the Long Term Certificate Authority, and the pub-
lic key to be used for encryption is the LTCA’s encryption key, theLTCA-
EPK.

• The encryptedContentType is set to indicate that it contains SignedData.
• The encryptedContent holds the encrypted form of the SignedData struc-

ture.

5. Finally, a Data structure is put together, which:

• Specifies the contentType as containing EncryptedData.
• Includes the EncryptedData structure within the content.

If the ITS-S experiences a loss of network connectivity during the transaction,
it can reuse the requestIdentifier to resend the exact same request.
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LTC response

The ITS is designed to handle a specific data exchange format structured to ensure
secure communication. This format involves a hierarchical arrangement of data
structures, primarily focusing on the encapsulation of encrypted and signed data,
contingent upon the successful validation of a response encryption key. Upon
receipt of an LTC request, the LTCA performs the following steps:

1. When the LTCA Successfully Validates the Response Encryption
Key:

• The primary layer is a Data structure, identified by its content type as
id-ITS-ISE-ct-EncryptedData.

• Within this Data structure, there is an EncryptedData structure. This
structure is notable for several key features:

– It references the responseEncryptionKey specified in the initial request.
The recipient’s identifier is calculated as outlined in the EncryptedData
section.

– The type of encrypted content is designated as id-ITS-ISE-ct-SignedData.
– Upon decryption, the encrypted content reveals a SignedData struc-

ture.

2. When the LTCA Fails to Validate the Response Encryption Key:

• In scenarios where the LTCA cannot process the responseEncryptionKey,
the format adjusts accordingly:

– The data structure remains the outermost layer but is now identified
by the content type id-ITS-ISE-ct-SignedData.

– This structure directly contains a SignedData structure, bypassing the
need for the EncryptedData layer.

Regardless of the LTCA’s ability to validate the responseEncryptionKey, the
SignedData structure adheres to a consistent format:

• It is identified by the signedContentType id-ITS-ISE-ct-EnrolmentResponse.

• It encapsulates an InnerECResponse.

• The signer field is populated with the certificateDigest, which includes the
HashedId8 of the LTCA certificate.

• The signature is generated using the LTCA’s private verification key, corre-
sponding to the public verification key found in the LTCA certificate, the
LTCA-VSK.

38



SCOOP@F

The InnerECResponse Structure:
InnerECResponse ::= SEQUENCE {

requestHash OCTET STRING (SIZE (16)) ,
responseCode EnrolmentResponseCode ,
certificate OCTET STRING OPTIONAL ,

cAContributionValue INTEGER OPTIONAL
}

-- requestHash is a truncated SHA256 of the whole
Data structure received

• Begins with the requestHash, which is derived from the left-most 16 octets of
the SHA-256 digest of the Data structure received in the request.

• Includes a responseCode that signifies the outcome of the request.

– A responseCode of 0 indicates a positive outcome, leading to the issuance
of a certificate. Optionally, a CA contribution value may also be provided,
allowing the ITS to compute its private key for the LTC certificate using
ECQV (Elliptic Curve Qu-Vanstone) for implicit certificates.

– A responseCode other than 0 indicates a negative outcome, resulting in
the non-issuance of both a certificate and a CA contribution value.

Pseudonym Certificate request

After receiving the Long Term Certificate, the ITS-S can proceed to request
Pseudonym Certificates, following the scheme described in Figure 3.8 and Figure 3.9.
The procedure is as follows:

1. Generation of Cryptographic Keys

• An elliptic private key, referred to as the response-decryption-key, is
generated at random.

• The corresponding public key, known as the response-encryption-key, is
then computed.

• Additionally, a secret key of 32 octets in length, termed the hmac-key, is
randomly produced.

2. Computation of the Key Tag

• Utilizing the HMAC-SHA256 function, a tag is calculated with the hmac-
key against the combined serialization of verificationKey and encryption-
Key elements (note that the encryptionKey is optional).
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• This tag is truncated to 128 bits and is designated as the keyTag.

3. Construction of the SharedATRequest Structure

• A SharedATRequest structure is assembled, incorporating:
– A randomly generated requestIdentifier.
– The eaId that identifies the LTCA intended for verification.
– The previously computed keyTag.
– The desired attributes for the request.
– Any optional restrictions that may apply.
– A specified start date and time for the request.
– The response-encryption-key.

SharedATRequest ::= SEQUENCE {
requestIdentifier OCTET STRING (SIZE (16)) ,
eaId HashedId8 , keyTag OCTET STRING (SIZE (16)) ,
wantedSubjectAttributes SubjectAttributes ,
wantedValidityRestrictions ValidityRestrictions OPTIONAL ,
wantedStart Time32 ,
responseEncryptionKey PublicKey

}

4. Creation of the SignedData Structure:

• A SignedData structure is formulated, featuring:
– The signedContentType set to id-ITS-ISE-ct-SharedATRequest.
– A collection of signedAttributes, including an attr-signingTime at-

tribute.
– An absent signedContent to indicate an external signature.
– The signer identified by a certificateDigest that references the LTC.
– A signature generated with the private verification key of the LTC

certificate.

5. Building of the EncryptedData Structure:

• An EncryptedData structure is constructed, in which:
– The recipient is the LTCA, and the public key used is the LTCA’s

encryption key, the LTCA-EPK.
– The encryptedContentType is set to id-ITS-ISE-ct-SignedData.
– The encryptedContent includes the encrypted form of the aforemen-

tioned SignedData structure.
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6. Assembly of the InnerATRequest Structure:

• An InnerATRequest structure is created, containing:
– The verificationKey that is being requested for certification.
– An optional encryptionKey to be included in the same certificate.
– The generated hmac-key.
– The signedByEC which encompasses the SharedATRequest structure.
– The detachedEncryptedSignature holding the previously mentioned

EncryptedData structure.
InnerATRequest ::= SEQUENCE {

verificationKey PublicKey ,
encryptionKey PublicKey OPTIONAL ,
hmacKey OCTET STRING (SIZE (32)) ,
signedByEC SharedATRequest ,
detachedEncryptedSignature EncryptedData
}

7. Finalization with an EncryptedData Structure:

• An additional EncryptedData structure is created, featuring:
– The PCA as the recipient, using the PCA’s encryption_key, the

PCA-EPK.
– The encryptedContentType set to id-ITS-ISE-ct-AuthorizationRequest.
– The encryptedContent containing the encrypted version of the Inner-

ATRequest structure.

8. Compilation into a Data Structure:

• A Data structure is assembled, characterized by:
– The contentType set to id-ITS-ISE-ct-EncryptedData.
– The content encapsulating the aforementioned EncryptedData struc-

ture.

Validate Pseudonym Certificate request

The Pseudonym Certificate Authority is required to meticulously construct a
permissions verification request by adhering to a specific sequence of steps shown in
Figure 3.10, ensuring the secure validation of permissions. The detailed procedure
is as follows:

41



SCOOP@F

Figure 3.8: Structure of a Pseudonym Certificate request

1. Key Generation:

• A new elliptic private key, known as the response-decryption-key (REK),
is generated through a random process.

• Subsequently, the corresponding public key, referred to as the response-
encryption-key, is derived from the private key.
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Figure 3.9: Pseudonym Certificate request [13]

2. AuthorizationValidationRequest Structure:

• The PCA proceeds to create an AuthorizationValidationRequest structure,
which includes:

– A requestIdentifier that is generated randomly to uniquely identify
the request.

– The sharedATRequest that encompasses the signedByEC element,
which was previously submitted as part of the pseudonym certificate
request.

– The detachedEncryptedSignature, also submitted in the pseudonym
certificate request, ensuring the integrity and non-repudiation of the
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request.
– The responseEncryptionKey to facilitate secure communication with

the recipient.
AuthorizationValidationRequest ::= SEQUENCE {

requestIdentifier OCTET STRING (SIZE (16)) ,
sharedATRequest SharedATRequest ,
detachedEncryptedSignature EncryptedData ,
responseEncryptionKey PublicKey

}

3. SignedData Structure:

• A SignedData structure is then formulated, comprising:
– The signedContentType set to AuthorizationValidationRequest, indi-

cating the specific type of request being made.
– The signedContent, that contains the actual AuthorizationValidation-

Request.
– A collection of signedAttributes, which includes an attr-signingTime

attribute, providing a timestamp for the signature.
– The signer field, which is populated with the PCA’s certificate, au-

thenticating the source of the request.
– A signature that is generated using the PCA’s private signature key,

the PCA-VSK, ensuring the authenticity of the request.

4. EncryptedData Structure:

• Following the creation of the SignedData structure, an EncryptedData
structure is constructed, where:

– The recipient is identified as the LTCA, and the public key utilized
for encryption is the LTCA’s encryption key, the LTCA-EPK.

– The encryptedContentType is designated as id-ITS-ISE-ct-SignedData,
specifying the content type within the encrypted package.

– The encryptedContent includes the encrypted form of the SignedData
structure, protecting the data from unauthorized access.

5. Data Structure:

• Finally, a Data structure is assembled, characterized by:
– The contentType set to id-ITS-ISE-ct-EncryptedData, indicating the

nature of the content within.
– The content that encapsulates the previously mentioned Encrypted-

Data structure, completing the secure packaging of the request.
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Figure 3.10: The structure of PC validation request

Validate Pseudonym Certificate response

The Pseudonym Certificate Authority is tasked with processing a Data structure
that encapsulates an EncryptedData structure. This EncryptedData contains a
SignedData structure, which in turn includes an AuthorizationValidationResponse
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structure. There are instances where the EncryptedData structure may be absent,
especially if the Long Term Certification Authority has difficulty reading or vali-
dating the responseEncryptionKey included in the request. The process unfolds as
follows:

1. Successful Validation by LTCA:

• If the LTCA successfully reads and validates the responseEncryptionKey:
– The primary layer encountered is a Data structure, marked by its

contentType as id-ITS-ISE-ct-EncryptedData.
– This Data structure includes an EncryptedData structure, which:

∗ References the responseEncryptionKey (REK) from the request,
identifying the recipient as outlined in the EncryptedData section.

∗ Sets the encryptedContentType to id-ITS-ISE-ct-SignedData.
∗ Reveals a SignedData structure upon decryption of the encrypted-

Content.

2. Unsuccessful Validation by LTCA:

• In scenarios where the LTCA fails to read or validate the responseEncryp-
tionKey:

– The Data structure remains the outermost layer but is identified by
the contentType id-ITS-ISE-ct-SignedData.

– Directly houses a SignedData structure, bypassing the EncryptedData
layer.

For both scenarios, the SignedData structure is expected to:

• Should be identified by the signedContentType set to
id-ITS-ISE-ct-AuthorizationValidationResponse.

• Contain the AuthorizationValidationResponse.
AuthorizationValidationResponse ::= SEQUENCE {

requestHash OCTET STRING (SIZE (16)) ,
responseCode AuthorizationValidationResponseCode ,
subjectAssurance SubjectAssurance OPTIONAL ,
startDate [0] Time32 OPTIONAL ,
endDate [1] Time32 OPTIONAL

}

• Include a signer field that contains the certificateDigest, incorporating the
HashedId8 of the LTCA certificate.
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• Include a signature generated using the LTCA’s private key, the LTCA-VSK,
which aligns with the public verification key found in the LTCA certificate.

The InnerATResponse Structure:

• Starts with the requestHash, derived from the left-most 16 octets of the
SHA-256 digest of the Data structure received in the request.

• Includes a responseCode that signifies the outcome of the request.

InnerATResponse ::= SEQUENCE {
requestHash OCTET STRING (SIZE (16)) ,
responseCode AuthorizationResponseCode ,
certificate Certificate OPTIONAL ,
cAContributionValue INTEGER OPTIONAL
}

(

WITH COMPONENTS {
responseCode (ok),

certificate PRESENT
}

|
WITH COMPONENTS {

responseCode ALL EXCEPT (ok),
certificate ABSENT ,
cAContributionValue ABSENT
}

)

This structured approach to handling Data structures, whether through success-
ful or unsuccessful validation of the responseEncryptionKey, ensures that the PCA
can effectively process authorization validation responses, maintaining the integrity
and security of the ITS-S framework.

Pseudonym Certificate response

The ITS-S is designed to handle a specific data structure for the issuance of
Pseudonym Certificates. This structure typically includes an encrypted segment
containing a signed portion, which in turn holds an InnerATResponse. However,
in certain error scenarios, the encrypted part may be absent, if the Pseudonym
Certificate Authority is unable to process the responseEncryptionKey from the
request.

1. Successful Validation by PCA:
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• Upon successful reading and validation of the responseEncryptionKey
(REK) by the PCA:

– The initial layer encountered is a Data structure, identified by its
contentType as id-ITS-ISE-ct-EncryptedData.

– Within this Data structure lies an EncryptedData structure, which:
∗ References the responseEncryptionKey from the request, identifying

the recipient as detailed in the EncryptedData section.
∗ Sets the encryptedContentType to id-ITS-ISE-ct-SignedData.
∗ Reveals a SignedData structure upon decryption of the encrypted-

Content.

2. Unsuccessful Validation by PCA:

• If the PCA fails to read or validate the responseEncryptionKey:
– The Data structure remains the outermost layer but is identified by

the contentType id-ITS-ISE-ct-SignedData.
– Directly contains a SignedData structure, eliminating the need for the

EncryptedData layer.

In both scenarios, the SignedData structure is expected to:

• Be identified by the signedContentType id-ITS-ISE-ct-AuthorizationResponse.

• Contain the InnerATResponse.

• Include a signer field filled with the certificateDigest, incorporating the Hashe-
dId8 of the PCA certificate.

• Feature a signature generated using the PCA’s private key, the PCA-VSK,
which aligns with the public verification key found in the PCA certificate.

The InnerATResponse Structure:

• Begins with the requestHash, derived from the left-most 16 octets of the
SHA-256 digest of the Data structure received in the request.

• Includes a responseCode that signifies the outcome of the request.

– A responseCode of 0, indicating a positive response, results in the return
of subjectAssurance, startDate, and endDate to be set in the corresponding
Pseudonym Certificate.

– A responseCode other than 0, indicating a negative response, leads to no
subjectAssurance, no startDate, and no endDate being returned.
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InnerATResponse ::= SEQUENCE {
requestHash OCTET STRING (SIZE (16)) ,
responseCode AuthorizationResponseCode ,
certificate Certificate OPTIONAL ,
cAContributionValue INTEGER OPTIONAL

}

This structured approach to handling Data structures, whether through suc-
cessful or unsuccessful validation of the responseEncryptionKey, ensures that the
ITS-S can effectively process authorization responses, maintaining the integrity and
security of the communication with the PKI. This methodical process is crucial
for the secure and efficient operation of the ITS-S, facilitating the validation and
authorization of entities within the system.

3.4 Encryption of a message
It might be interesting to display the cryptographic operations implemented in
SCOOP@F [12] for encrypting any message in accordance with the ETSI standard
[4].

Transform a message m (N octets) from a sender into an encrypted form for a
receiver.

1. Assuming an elliptic curve:

(a) p: curve prime.
(b) G: base point.
(c) q: base point order.

2. The sender is solely in possession of the receiver’s authenticated public key
for encryption, denoted as "Kb".

• The sender initiates the process by creating a random AES key, labeled A,
which is 128 bits or 16 bytes in size.

• The sender selects a nonce, labeled n, that is 12 bytes long.

• Using the AES-CCM encryption mode, the sender encrypts the plaintext
message m with the AES key A and the nonce n, resulting in the ciphertext
message M, which includes an authentication tag, expanding the total size by
16 bytes.

• The sender generates a temporary private key, denoted as r, within the range
of 1 to q-1, and computes the corresponding public key v by multiplying r
with the base point G on the elliptic curve, which can be represented in 33
bytes if compressed.
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• The sender then computes a shared secret S by using the receiver’s public
encryption key, Kb. The shared secret S is the x-coordinate Px of the elliptic
curve point obtained by multiplying r with Kb. The sender must ensure that
the resulting point is not the identity element (0); if it is, the sender must
return to the previous step.

• the sender derives two keys, ke and km, using a key derivation function applied
to the shared secret S. The output is concatenated such that ke is 16 bytes
and km is 32 bytes in length.

• The sender then encrypts the AES key A using the derived key ke, resulting
in a ciphertext c (c = ke ⊕ A) that is 16 bytes long.

• The sender computes a message authentication code (MAC) over the ciphertext
c using the key km, producing a tag t that is also 16 bytes long.

• The sender assembles a message C for transmission to the receiver, which
includes the following components:

– The recipient’s certificate identifier (cert_id), which is 8 bytes long.
– The encrypted message M.
– The encryption parameters, which include the algorithm identifier for

aes_128_ccm and the nonce n, totaling 13 bytes.
– The ephemeral public key v.
– The encrypted AES key c, accompanied by its authentication tag t.

This comprehensive message C contains all the necessary elements for the receiver
to authenticate and decrypt the message securely.
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Chapter 4

Formal verification of
cryptographic protocols

Cryptographic protocols are designed to meet specific security requirements. How-
ever, if not properly designed, they can fail to serve their intended purpose, leaving
the system vulnerable to interference from malicious actors. Manual review and
analysis of a protocol are important but may not suffice to detect design flaws.
This is exemplified by the Needham-Schroeder case, where flaws were discovered in
both versions of the protocol, despite their widespread use and presumed security.
The symmetric key version was found to allow the use of a compromised old session
key, as revealed by Denning and Sacco [17], while the public key authentication
version was susceptible to a man-in-the-middle attack, as described by Lowe[18].
These instances underscore the importance of rigorous protocol design and thor-
ough security analysis to ensure the effectiveness of cryptographic protocols and
the security of the systems they protect. To uncover potential issues that might
otherwise remain hidden, employing formal methods is a viable strategy. By creat-
ing a formal mathematical model of a system, one can utilize formal verification
techniques to determine if the system meets certain criteria. Formal methods
provide a mathematical foundation for system development, enabling the creation
of software that is correct by construction. This approach is bolstered by validation
techniques such as proofs, which verify the development process against a precise
description of the required system properties. These methods encompass a variety
of specifications, including algebraic and equational, and are increasingly used as
tools for verification, such as static code analysis, to ensure property adherence
and proper management of complexities like floating-point operations. The formal
verification process for protocols is illustrated in the Figure 4.1, which typically
involves four key steps.

1. The process begins with a thorough review of the protocol’s specifications.
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2. The next step is building the model by hand according to the given specifica-
tions.

3. This model is then converted into the input language compatible with the
model checker or theorem prover.

4. The final stage involves examining the results of the formal verification. If
necessary, recommendations for amendments to the standard are made based
on these results.

Figure 4.1: Protocol’s formal verification procedure overview. [19]

Formal verification is the process of using mathematical methods to construct a
proof that a system, such as a cryptographic protocol, aligns with its specified
behavior. The objectives of formal verification can be broadly classified into several
categories:

1. System Behavior: the main goal of formal verification is to mathematically
ensure that a system’s behavior, as described by a formal model, adheres to a
specified property.
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2. Correctness: the purpose of formal verification is to validate or refute a
system’s correctness in relation to a particular specification through the use
of formal mathematical methods.

3. Design Implementation: formal verification inspects the design implemen-
tation of a system, providing a formal representation of the implementation
at a higher level of abstraction that matches or is derived from the actual
implementation.

4. Error Detection: formal verification is instrumental in identifying and pin-
pointing errors within designs. Should a property not hold, it can produce an
error trace to aid in understanding and verifying the error through simulation.

5. System Types: formal verification techniques can be employed to analyze
and validate a diverse array of systems, including cryptographic communica-
tion protocols, digital circuits with memory components, combinational logic
circuits, and software systems represented by source code written in various
programming languages.

6. Quality Assurance: formal verification enhances the quality of a system
by offering a mathematically sound assurance of the system’s correctness,
irrespective of the input values.

7. Specification and Implementation Alignment: formal verification checks
that the specification accurately reflects the designer’s intentions and that the
real-world implementation behaves in accordance with the model.

4.1 Formal Verification Challenges
Many questions about models are undecidable, which means that can always an-
swer these questions correctly within finite time and using finite memory. However,
this does not imply that an algorithm cannot correctly answer specific instances of
the question using finite resources [20]. The Halting Problem is an example of an
undecidable problem; it involves determining whether a given program will eventu-
ally halt or continue running indefinitely. It has been proven that no algorithm
can accurately solve the Halting Problem for every possible program input [21, 22].
Even when a problem is decidable, it may be too complex to solve in a reasonable
amount of time and space, as algorithms may not scale well with the problem size.
Potential solutions to manage such complex problems include:

• Semi-decision Procedures: These are specific types of algorithms that
may not always yield a conclusive answer for every scenario, but they can
affirm the existence of a property if it is present. For instance, a semi-decision
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procedure could verify that a program ceases for certain inputs, but it might
not conclude if the program continues indefinitely.

• Abstractions: In the realm of formal verification, abstraction refers to
the process of formulating a more straightforward model of the system that
maintains its key properties and is simpler to analyze. By diminishing the
complexity, the system’s verification becomes more manageable, albeit the
results might be less exact.

• Approximate/Non-exhaustive Modeling/Analysis: This method entails
scrutinizing a system in a manner that doesn’t encompass all potential behav-
iors or states, yet it still offers valuable insights. It’s a useful strategy when
comprehensive verification is unfeasible due to limitations in resources or the
system’s inherent complexity.

An alternative approach to circumvent these issues is the Correctness by
Construction: this approach deviates from the traditional method of verifying a
system post-construction. Instead, it incorporates verification within the develop-
ment process itself. The system is built in a manner that guarantees correctness at
every stage, typically employing formally defined methods and tools.
Such strategies play a pivotal role in the development of critical systems where
the margin for error is virtually non-existent, such as in the aerospace industry,
autonomous car, nuclear power control systems, and medical devices, that are
critical for patient safety.

For verifying the security properties of cryptographic protocols, two main
verification methods are employed:

• Symbolic: This method uses high-level symbolic models to represent the
system under consideration. A notable example is the Dolev-Yao model
[23], which portrays the network as a group of trustworthy users exchanging
messages composed of symbolic terms. It assumes flawless cryptographic
operations, thereby excluding attacks stemming from weak cryptography. The
attacker is capable of intercepting all network traffic, modifying or deleting
messages, creating new ones, and using every cryptographic operation available
to trustworthy users. However, terms identified as secret are initially beyond
the attacker’s reach. Tools such as ProVerif and Tamarin are utilized for
model checking and automated theorem proving, which help to verify security
properties including authentication, secrecy, and integrity.

• Computational: These models provide more realistic mathematical repre-
sentations of security protocols, with data represented as bit string values and
cryptographic primitives depicted as probabilistic polynomial-time algorithms.
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These models include positive functional attributes and negative security as-
sumptions about attackers’ capabilities. An adversary is any polynomial-time
algorithm with access to public communication channels and oracles represent-
ing additional information. A security property is considered computationally
secure if the probability of a polynomial-time attacker violating it within one
run of a probabilistic machine is negligible relative to the protocol’s secret size
[24].

Formal methods can be applied in two main ways: model checking and theorem
proving.

• Model checking is an automatic verification technique that is used to verify
finite state concurrent systems. It checks whether a given system model satisfies
a specific property or specification, there is the model M (interpretation) and
the property f (a well-formed formula, in the formal system). We check if
the formula f is true under the interpretation M. If it is false, the model
checker gives us a counterexample. Model Checking involves checking if a
finite-state model of a system meets a given specification (typically temporal
logic formulas).

• Theorem Prover (or proof assistants) involves using automated or interactive
tools to construct proofs that a system meets its specification based on a set of
axioms and inference rules. The input to a theorem prover typically includes
a formal system theory and a formula that needs to be proven. The formal
system theory is an abstract structure used for inferring theorems from axioms
by a set of inference rules, while the formula is a mathematical statement
that the system attempts to prove. The theorem proving process often starts
with a state transition model (STM), which is transformed into a deductive
system by generating a set of axioms and rules, these are combined with other
axioms and rules, such as those of temporal logic, to form a new theory and
this theory, along with the formula, is then given to the theorem prover.

4.2 ProVerif
ProVerif is a widely used security protocol verifier that employs theorem proving
techniques to analyze the security properties of protocols. It has been applied to
various scenarios, including simulating authentication protocols for client-server
communication over insecure networks and proving unlinkability, a critical privacy
property for systems like mobile phones and RFID chips [25]. ProVerif has also
been used to analyze other protocols, such as TLS 1.3 Draft 18 [26].
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4.2.1 How ProVerif Works
ProVerif employs a symbolic model of the protocol using Horn clauses and applies
a resolution technique to these clauses with the aim of establishing the protocol’s
security attributes or identifying potential breaches [27].

Figure 4.2: ProVerif internal [20]

ProVerif is based on applied pi calculus, a formal language for modeling concurrent
systems where data can be exchanged on channels. Given a protocol and a security
property, it may either prove that the property is satisfied or exhibit an attack. It
may also return "cannot be proved," meaning that it cannot reach a conclusion. In
some cases, it may not be efficient enough to conclude in a reasonable amount of
time, or it may not terminate at all. It has been extended with several features to
improve its precision, efficiency, and expressiveness. These features include lemmas,
axioms, proofs by induction, natural numbers, and temporal queries. These not
only extend the scope of ProVerif but can also be used to avoid false attacks and
make it terminate more often. The algorithms used in ProVerif, such as generation
of clauses, resolution, and subsumption, have been optimized to improve its speed
on large examples [28].

4.2.2 Specifying Protocols
To specify protocols in ProVerif, users have two options:

• Horn Clauses: A low-level approach best suited for experts, Horn clauses
offer a robust representation for modeling the symbolic manipulations of an
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attacker on terms. They allow for arbitrary applications across an unlimited
number of protocol sessions, which is crucial for verifying protocols with an
unbounded number of sessions.

• Typed or Untyped Extended Pi-Calculus: This higher-level method is
internally converted into Horn clauses by ProVerif. The extended pi-calculus,
which incorporates cryptographic operations into the pi calculus, enables more
straightforward and legible protocol specifications. In this model, each pi-
calculus process represents a protocol participant, including honest participants
who adhere to the protocol specifications. Explicit modeling of the attacker is
unnecessary because the attacker’s capabilities are implicitly covered by the
symbolic model.

4.2.3 Security Properties
ProVerif can check the following main security properties:

• Secrecy: it can prove that certain values or terms remain confidential and
are not disclosed to the attacker by checking if the secret can be derived from
the protocol’s execution

• Authentication: it can verify that a participant is indeed the intended party
in a protocol, ensuring mutual authentication between the initiator and the
responder.

• Reachability Properties: it can demonstrate that certain states are unattain-
able, confirming that a protocol does not expose sensitive information or reach
an insecure state.

• Correspondence Assertions: it can ensure that specific events occur in a
particular sequence or under certain conditions, which is essential for proving
non-repudiation and fair exchange.

• Observational equivalence: it can establish that two processes are indis-
tinguishable to any adversary, a robust form of equivalence that is crucial for
proving anonymity and privacy properties, as shown in [29].

4.2.4 Limitations
ProVerif has several limitations that affect its applicability to certain types of
protocols and its ability to model and analyze them accurately. The main limitations
include:

57



Formal verification of cryptographic protocols

• Handling of Algebraic Properties: it can model any equational theory,
but it may not terminate when dealing with certain algebraic properties, such
as limited support for Exclusive-Or (XOR) and Diffie-Hellman exponentiation.
While it can handle the commutativity of exponentiation, more complex
properties can lead to non-termination.

• Abstraction and Over-approximation: it uses abstractions to represent
protocols, which can sometimes lead to false attacks or hinder attack recon-
struction due to over-approximation of the attacker’s capabilities.

• Global State: it has limitations when dealing with protocols that maintain
a global, mutable state, as its abstraction mechanisms may not accurately
represent state changes, potentially resulting in false attacks or missed attacks.

• Termination: it implements a sound semi-decision procedure that may not
terminate, meaning it may not provide a definitive answer on the satisfaction
of a security property for some complex protocols.

• Side-Channel Attacks: it does not consider side-channel attacks such as
timing, power consumption, or physical attacks against smart cards, which
can provide additional information to an attacker
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Chapter 5

Thesis objective

In the realm of automotive innovation, Cooperative Intelligent Transport Systems
stand out as a pivotal solution in the ongoing quest for fully automated vehicles.
The integration of C-ITS addresses a spectrum of challenges inherent in autonomous
driving, particularly in instances where traditional automation systems might falter.
Cooperative Intelligent Transport Systems (C-ITS) in Europe use Public Key
Infrastructure (PKI) to ensure secure and efficient communication between vehicles
and infrastructure. The main objective of this thesis is the formal analysis and
verification of the communication protocol used within the Public Key Infrastructure
(PKI) of the SCOOP project discussed earlier. Naturally, this necessitated an initial
phase of comprehensive study of the protocol to determine what aspects to model
and what to simplify. Formal verification of a protocol is a critical process that
confirms the protocol’s correctness, security, and adherence to specific properties. It
enables a thorough analysis of the protocol’s behavior, helping to pinpoint potential
vulnerabilities, design flaws, and possible security breaches. In this context, we
will utilize Proverif as described in che 4. The procedure with Proverif involves
creating a model of the SCOOP protocol using typed pi calculus, a high-level
language that is well-suited for describing communication protocols. Once the
model is established, we specify the security properties we wish to examine. These
properties could include aspects like confidentiality, integrity, and authentication.
Proverif then rigorously analyzes the protocol against these properties, providing a
robust and comprehensive assessment of the protocol’s security posture. By using
formal verification with Proverif, we can ensure that the SCOOP protocol is not
only functionally correct but also secure against a wide range of potential threats.
This process is crucial in maintaining the integrity and reliability of the protocol in
real-world applications. The main phases of the analysis are as follows:

1. Model in Proverif :

• Cryptographic mechanisms employed in the protocol.
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• The protocol.
• The security properties.

2. Conduct sanity checks.

3. Verify the security properties.

5.1 Security Properties
ProVerif can verify several types of security properties, which are generally catego-
rized into trace properties and equivalence properties. Trace properties are those
that can be defined for each execution trace of the protocol, while equivalence
properties involve comparing the behavior of two different protocols or two instances
of the same protocol under different conditions. The properties we aim to validate
using the tool include:

1. Sanity checks, specifically focusing on executability assessments.

2. Secrecy: This attribute guarantees that specific data within the protocol are
kept confidential and inaccessible to unauthorized parties.

3. Authentication and Correspondences: This feature confirms the identities
of entities communicating through the protocol, ensuring that the participants
are genuinely who they purport to be.

4. Integrity

5. Non-repudiation

6. Privacy, with a particular emphasis on Anonymity.

5.2 Attack scenarios
In pursuit of more realistic use cases, the project underwent verification in two
phases, each employing distinct scenarios:

• Scenario 1: The attacker does not have the certificates of the authorities
(LTCA and PCA).

• Scenario 2: The attacker possesses the certificates of the authorities (LTCA
and PCA).
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Modelling of analysed
protocol

To analyze a protocol using ProVerif, the protocol needs to be represented using a
modified version of the applied pi calculus, expands upon the standard pi calculus
by incorporating features that facilitate the execution of cryptographic functions.
This modelling includes specifying the protocol’s behavior as processes and defining
the cryptographic primitives used. In the subsequent chapter, we will delve into
the process of modelling the cryptographic primitives and the security properties.
We will describe the various decisions and assumptions made to ensure the model
remains as faithful as possible to the original protocol.
As extensively outlined in Chapter 3, the protocol comprises four primary phases:

1. Initialization Phase: The manufacturer registers the ITSS with the corre-
sponding LTCA to enable proper vehicle communication within the PKI.

2. LTC Request and Response: After successful registration, the vehicle can
request a Long Term Certificate from the Long Term Certification Authority.

3. PC Request and Response: PC Request and Response: With an LTC, the
ITSS can request Pseudonym Certificates from the Pseudonym Certification
Authority.

4. CRL/TSL Request and Response: This phase involves the exchange of
Certificate Revocation Lists (CRL) and Trusted Service Lists (TSL) between
the vehicle and the relevant authorities.
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6.1 Initial Procedures and Presumptions
Starting with the model depicted in figure 3.1, it was essential to make certain
assumptions to optimally represent the protocol. This approach facilitated the
reduction of testing complexity in ProVerif.
Specifically, the Distribution Centre, which is responsible for supplying the ITS-Ss
with the TSL (Trust Service List) and CRL (Certificate Revocation List), has not
been modelled.

6.2 Security mechanisms
ProVerif uses applied pi-calculus to model and verify these protocols. The tool
supports a wide range of cryptographic primitives, which can be defined by rewrite
rules or equations.

6.2.1 Encryption
As described in chapter 2 and in 3, the process of encryption is executed through
the utilization of the AES-128-CCM algorithm, encompassing a series of procedural
steps:

1. Initialization: A unique nonce and a secret key are used to initialize the
encryption process. The nonce must be carefully chosen to never be reused
with the same key, as this could compromise security.

2. Authentication: Before encrypting the data, AES-CCM generates an authen-
tication tag (also known as a MAC or MIC) using CBC-MAC. This tag is
computed over the plaintext and any additional associated data that needs to
be authenticated but not encrypted.

3. Encryption: The actual encryption is performed using the CTR mode, where
the AES algorithm encrypts a counter value, and the resulting keystream is
XORed with the plaintext to produce the ciphertext.

4. Combination: The ciphertext and the authentication tag are combined and
transmitted together. This ensures that any changes to the ciphertext or the
associated data can be detected by the recipient.

5. Decryption and Verification: Upon receipt, the process is reversed. The
recipient decrypts the ciphertext using the same nonce and secret key and
then verifies the authentication tag to ensure the data has not been tampered
with.
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The implementation of AES-CCM in ProVerif first involves computing the cipher-
text, which, in our case, is of the type aead_bitstring using the function aead_enc.
Subsequently, the tag is computed using the compute_tag and and a reduction is
performed for computing the decryption.
type nonce.
type tag_aead .
type aead_bitstring .
type result_aead .

fun aead_enc (bitstring , bitstring , nonce ): aead_bitstring .
fun compute_tag (bitstring , aead_bitstring , bitstring , nonce ): tag_aead .

reduc forall m:bitstring , k:bitstring , n:nonce;
aead_dec ( aead_enc (m,k,n), k, n) = m.

6.2.2 Elliptic Curves
Representing elliptic curves in ProVerif involves abstracting the operations and
properties of elliptic curve cryptography (ECC) into a form that can be analyzed
by the tool. The tool, being an automatic proof verifying tool, does not directly
support the complex mathematical structures of elliptic curves. Instead, it uses
applied pi calculus to model cryptographic protocols, including those based on ECC.
The key to modelling ECC in ProVerif is to abstract the elliptic curve operations
into rewrite rules or equations that capture the essence of ECC operations within
the limitations of ProVerif ’s analysis capabilities.
The only operation on elliptic curves required for the analysis of the protocol is
multiplication, which has been modelled using an equation.
type point.
const G: point [data ].

type secretkey .

fun ec_mult (point , secretkey ): point.

equation forall x:secretkey , y: secretkey ;
ec_mult ( ec_mult (G,x), y) = ec_mult ( ec_mult (G,y),x)

6.2.3 Digital Signature
As described in chapter 2 , the signature algorithm employed in the protocol is
ECDSA. The provided code is a representation of the ECDSA.
type result_signature .
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fun ok_signature (): result_signature .
fun sign(bitstring , secretkey ): bitstring .

reduc forall m:bitstring , y: secretkey ; getmess (sign(m, y)) = m.
reduc forall m:bitstring , s: secretkey ; checksign (sign(m,s),
ec_mult (G,s)) = ok_signature ().

6.2.4 Hash Function
The hashing algorithm utilized to compute the digest of the request is SHA-256.

fun hash( bitstring ): bitstring .

6.2.5 Certificates
In the modelling of the system’s PKI, two types of certificates are established:
self-signed root certificates issued by the RCA, which are private, and certificates
issued by the PCA, LTCA, LTC, and PC, which are categorized as ’certificate’.
type root_certificate .

fun issue_rootcertificate (nat , nat , point , point , secretkey ) :
root_certificate [ private ].

type certificate .

fun issue_certificate (nat , bitstring , nat , bitstring , point ,
point , secretkey ) : certificate .

6.2.6 ECIES
XOR

XOR is used to encrypt the AES key in ECIES. However, modelling it in ProVerif
presents a challenge due to its unique algebraic properties, specifically associativity
and cancellation, leading to an infinite number of rewrite rules. Consequently,
ProVerif does not directly support XOR operations, as their associativity can
prevent the program from terminating. The modelling of XOR adheres to a concise
set of rules, involving the computation of the XOR of two inputs and the definition
of XOR properties through four equations [30].
fun xor(bitstring , bitstring ): bitstring .

equation forall x:bitstring , y: bitstring ;
xor(xor(x,y),y)=x.
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equation forall x:bitstring , y: bitstring ;
xor(y,xor(x,x))=y.

equation forall x:bitstring , y: bitstring ;
xor(xor(x,y),xor(x,x))= xor(x,y).

equation forall x:bitstring , y: bitstring ;
xor(xor(x,y),xor(y,y))= xor(x,y).

Key Derivation Function

The Key Derivation Function, as outlined in Section 2.2.4, is implemented using
SHA-256 and takes an elliptic curve point along with a counter to derive two keys.
In the ProVerif modelling, it is expressed as:
const zero: bitstring .
const one: bitstring .

fun hkdf(point , bitstring ): bitstring .

MAC

In the ECIES scheme, HMAC serves the purpose of generating a tag for the
authentication of the ciphertext. Within the ProVerif model, it is intricately
designed as a function, wherein the initial parameter corresponds to the key derived
from the Key Derivation Function (KDF), while the second parameter pertains
to the ciphertext. Specifically, the ciphertext represents the result of XORing the
AES key with another key, also generated by the KDF.
fun hmac(bitstring , bitstring ): bitstring .

6.3 Protocol Analysis
In this section, the queries and security properties required in the various phases
of the protocol in both scenarios are illustrated.

6.3.1 Initialization Phase
The initial phase of the protocol entails the manufacturer registering the ITSSs by
sending their respective canonical ID and TPK key to the corresponding LTCA.
Subsequently, the LTCA responds by transmitting the certificates of the Certifi-
cation Authorities (LTCA, RCA, PCA, DC), which will be installed in the ITSS.
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The interaction between the ITSS manufacturer and the LTCA during the ITSS
registration process necessitates a robust security measure. These communications
are conducted through a secure channel or a dedicated, physically segregated
network to mitigate the risk of eavesdropping. This initial phase has been mod-
elled in ProVerif by defining a RCA that issues a self-signed certificate for use
as the root certificate, an LTCA, and a PCA. The LTCA and PCA send their
respective IDs and public keys to the RCA, which certifies these keys by issuing
two certificates. Subsequently, the manufacturer generates a canonical ID and a
public key, sending them to the LTCA. The LTCA registers this Canonical ID and
the corresponding TPK in a table and forwards its certificate. In this initial phase,
as per the specifications, all communications occur over private channels and so in
this phase is not necessary to perform any query.

6.3.2 Requests to the LTCA
After obtaining the certificates of authorities, ITS-S can submit a request for a
Long Term Certificate to the respective LTCA, as described in Section 3.3.4.
In this phase, it’s crucial that the adversary is unable to acquire the Canonical
ID, the ITS-S signature along with its TSK, and the elliptic keys LTC-VPK and
LTC-EPK.

query attacker ( canonical_id ).

query secret ltc_vpk .

query secret ltc_epk .

query secret signedData .

It is important that the ITS-S request is received correctly by the LTCA, particularly
ensuring adherence to the security mechanisms previously outlined, and that the
LTCA can verify their proper application upon receiving a request.

query event( ltc_request_received ()).

query inj -event( ecies_correct_ltc_request ()) ==>
inj -event( send_ltc_request ()).

6.3.3 Receipt of the Long Term Certificate
After receiving the request, the LTCA verifies its ability to read the responsEn-
cryptionKey (REK), the Canonical ID, and validate the signature with the correct
TPK associated with that Canonical ID. This part of the protocol requires that
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the issued LTC remains confidential, and the response sent by the Long Term
Certification Authority is authenticated. Therefore, authentication is crucial in
this context.

query secret ltc_cert .

query secret signedDataLTCA .

query event( ltc_request_received ()) ==>
event( send_ltc_request ()).

query inj -event( ltc_request_received ()) ==>
inj -event( send_ltc_request ()).

query event( get_ltc_cert ()) ==> event( release_ltc ()).

query inj -event( get_ltc_cert ()) ==>
inj -event( release_ltc ()).

6.3.4 Request of a Pseudonym Certificate
This is the most relevant and complex part of the protocol, consisting of two
sub-phases where the PCA communicates with the LTCA to authorize the issuance
of Pseudonym Certificates. It is crucial that attackers cannot access the data
structure created for the LTCA, known as PCRequestSharedContent. Additionally,
it is necessary to ensure that the PCA correctly receives the request and that it
conforms to the specified format.

query event( pc_request_received_from_its ()) ==>
event( pc_request_sent_from_its ()).

Validate Pseudonym Certificate request

After receiving a PC request from the ITS-S, the PCA deduces from the request (in
particular from its HashId8 certificate) which LTCA to contact and subsequently
prepares a validation message that also includes the encrypted portion received in
the request. In this phase, it is essential to prevent an adversary from conducting
a Man-In-The-Middle (MITM) attack or replay attacks.

query inj -event( wrong_PCRequestreceived_from_its ()) ==>
inj -event( pc_request_sent_from_its ()).

query inj -event( validation_pc_request_received_from_pca ()) ==>
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inj -event( pc_request_received_from_its ()).

query inj -event( validation_PCRequestSharedContent_from_its ()) ==>
inj -event( pc_request_received_from_its ()).

query inj -event( validation_pc_request_received_from_pca ()) ==>
( inj -event( pc_request_received_from_its ())

&&
inj - event( pc_request_sent_from_its ())

).

Validate Pseudonym Certificate response

In this phase, the LTCA receives the validation request from the PCA and must
ensure two things:

1. That the request indeed originates from the PCA, making it essential to verify
the signature and the certificate..

2. If the request comes from the PCA, the LTCA must validate that the request
inserted by the ITS-S in its request is well-structured and that it can validate
the signature of the request fields with the certified public key of the certificate
(LTC-VPK), ensuring that the certificate was issued by the LTCA itself.

query inj -event( pc_response_validation ()) ==>
inj -event( pc_request_validation ()).

query inj -event( pc_sent_to_its ()) ==>
inj -event( pc_response_validation ()).

query inj -event( pc_response_validation ()) ==>
(inj -event( pc_request_received_from_its ())

&&
inj -event( pc_request_sent_from_its ())).

query inj -event( pc_response_validation ()) ==>
(inj -event( pc_request_received_from_its ())

&&
inj -event( pc_request_sent_from_its ())

).

6.3.5 Receipt of a Pseudonym Certificate
In this final phase, it is intended to verify that the ITS-S correctly receives the
pseudonym certificate from the PCA; therefore, authenticating the PCA is essential.
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query inj -event( pc_received_from_pca ()) ==>
inj -event( pc_sent_to_its ()).

query inj -event( pc_received_from_pca ()) ==>
(inj -event( pc_request_received_from_its ())

&&
inj -event( pc_request_validation ())

&&
inj -event( pc_response_validation ()
).

query inj -event( pc_received_from_pca ()) ==>
( inj -event( pc_response_validation ) ==>

inj -event( pc_request_validation ())
).

6.4 Privacy
The cryptographic protocol must also fulfill the properties of privacy, specifically
Anonymity and Unlinkability.

6.4.1 Anonimity
In this context, anonymity is defined as the capacity of a user to access a resource or
service while maintaining the confidentiality of their identity. To formally represent
this characteristic, the construct of noninterference was employed to ascertain the
sufficiency of the ECIES security mechanism in ensuring the indetectability of the
LTC request and response. This evaluation specifically focused on the interaction of
the ITS signature with the LTC-VPK and the PC request and response, particularly
in relation to the public pseudonym keys PC-VPK and PC-EPK.

noninterf canonical_id .

query secret signedData .

query secret signedDataLTCA .

query secret pc_vpk .

query secret pc_epk .
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6.4.2 Unlinkability
This property refers to the user’s ability to use resources or services multiple times
without others being able to associate these uses together. This attribute pertains
to the user’s capacity to repeatedly utilize resources or services in such a manner
that prevents external parties from correlating these instances of use. In order to
conceptualize this property, the construct choice was employed with the objective of
determining whether an adversary possesses the capability to associate two distinct
requests of the pseudonym certificates (PCs).

equivalence
...

(PCA(ltca_cert ,pca_cert , pca_vpk , pca_vsk , pca_epk , pca_esk , rca_cert ) |
ITSSendPCRequest (ltc_esk , ltc_vsk , ltca_cert , pca_cert , rca_cert , ltc_cert ) |
LTCA(idltca , ltca_cert , ltca_esk , ltca_vsk , pca_cert , rca_cert , ltc_cert )

)

...

(PCA(ltca_cert ,pca_cert , pca_vpk , pca_vsk , pca_epk , pca_esk , rca_cert ) |
ITSSendPCRequest (ltc2_esk , ltc2_vsk , ltca_cert , pca_cert , rca_cert , ltc2_cert ) |
LTCA(idltca , ltca_cert , ltca_esk , ltca_vsk , pca_cert , rca_cert , ltc2_cert )

)
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Chapter 7

Results

In this chapter, we will present the comprehensive findings derived from the auto-
mated examination performed using ProVerif, focusing on the security attributes
outlined by the SCOOP@F project and detailed in the preceding chapter.

7.1 Sanity Checks
In ProVerif, a sanity check refers to a basic verification process to ensure that a
cryptographic protocol operates as intended, particularly that all phases of the
protocol are reachable and executable. This concept is crucial in the context of
formal verification, where the goal is to mathematically prove the security properties
of a protocol under certain assumptions.
Sanity checks in ProVerif can include various types of verifications, such as ensuring
that the protocol can be executed from start to finish without logical inconsistencies,
verifying the secrecy of critical information, and checking for mutual authentication
between parties involved in the protocol.

7.1.1 Executability
The executability sanity check is a preliminary assessment designed to confirm
that a protocol can successfully complete its intended process. Its primary goal
is to ensure that the protocol is structured to execute without encountering any
blocking conditions or incorrect pathways, and that it can properly conclude after
achieving its intended goals.

First phase: LTC request and response

The sanity checks considered in the first phase of the protocol were performed in
the following order:
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• Long Term Certificate request by an ITS-S.

• Receipt of the request by the LTCA.

• Issuance of the Long Term Certificate.

• Receipt of the certificate.

Based on the conducted checks, it was determined that all the described steps
were accurately executed in both scenarios.

Second phase: PC request and response

During this second phase, the following checks were conducted:

• An ITS-S requested a Pseudonym Certificate (PC).

• The PCA received the request.

• A Validate Pseudonym Certificate request was sent.

• A Validate Pseudonym Certificate response was received.

• The Pseudonym Certificate was issued.

• The certificate was received.

Upon review of the conducted checks, it was determined that all the described
steps were accurately completed in each scenario.

7.2 Authentication
Within the realm of digital interactions, verifying the identity of communicating
parties is an essential initial step that guarantees these entities can confirm each
other’s authenticity in a secure and dependable manner. This verification process
is critical in safeguarding the messages shared between parties against threats
like impersonation, message replay, and counterfeiting, thereby preserving the
communication’s integrity and security.
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First phase: LTC request and response

In the initial phase, it is crucial to ensure that both the vehicle and the LTCA are
authenticated. The results of the queries outlined in 6, particularly in Sections 6.3.2,
which deal with the request to the LTCA and the receipt of LTC, are thoroughly
examined, including the injective queries.

If the attacker possesses the certificates of the authorities (LTCA), they can
create requests that appear formally valid; however, these requests will not pass
validation because the signature will not be verified, as demonstrated by the
following trace.

Second phase: PC request and response

In this phase of the protocol, formal verification has uncovered attacks in scenarios
where the adversary acquires the certificates of the entities involved. If the adversary
does not have the certificates, all authentication properties are maintained. However,
if the adversary manages to obtain the certificates of the LTCA and PCA, they can
initiate attacks such as making PC requests that appear formally valid from the
perspective of ECIES verification, as illustrated in the trace referenced in Figure
7.2. Another attack that can be executed involves the attacker generating PC
requests that are formally valid from the perspective of ECIES verification. These
are then forwarded as a Validation PC request to the LTCA, as illustrated in
Figure 7.3.

7.3 Privacy
Among the verified properties is privacy, specifically anonymity and unlinkability.

7.3.1 Anonimity
The formal verification of this property of the protocol was positive due to the
strong security mechanisms employed by the protocol. In the absence of additional
information provided to the adversary, the prover demonstrates that the ECIES
mechanism is sufficiently robust to protect the symmetric encryption key used to
encrypt the requests and responses. However, if the adversary is provided with a
private key of an authority, for instance pca_vsk or ltca_esk, ProVerif is unable
to provide a response and does not terminate.

7.3.2 Unlinkability
The prover does not provide a response for this property because it does not
terminate.
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Figure 7.1: Long Term Certificate request performed by the attacker
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Figure 7.2: PC request performed by the attacker
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Figure 7.3: Validation PC request generated by the attacker
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Chapter 8

Conclusions

The thesis has elucidated the SCOOP@F Public Key Infrastructure and the proto-
cols employed for the exchange of information between vehicles, as well as between
vehicles and road infrastructure. We discuss various techniques for the formal
verification of cryptographic protocols. Specifically, we utilize the automated theo-
rem prover ProVerif, detailing its capabilities and limitations. We then describe
the SCOOP@F protocol and its associated security mechanisms. The protocol is
formally modeled using ProVerif, and due to its complexity, it is divided into two
parts and considers two attack scenarios. For each phase, we outline and verify
the security properties of interest: authentication, privacy, and secrecy. We
demonstrate that the security properties can largely be verified for the analyzed
protocol. However, in scenarios where information loss occurs, attackers can poten-
tially execute denial-of-service attacks by making requests to the involved entities.
Additionally, some analyses regarding equivalent processes through observational
equivalences with ProVerif were not completed, likely due to the complexity of the
mechanisms and the tool’s limitations in handling such approximations.

8.1 Future work
This project naturally paves the way for further development through the inves-
tigation of additional automated theorem proving tools. Among these tools is
Tamarin, which utilizes multiset rewriting rules for modeling protocols and supports
reasoning in the presence of equational theories. Such theories are necessary for
cryptographic operations like the Diffie-Hellman key exchange and XOR. Tamarin’s
approach allows for a more direct representation of cryptographic operations and
their algebraic properties. Moreover, it offers two methods for proving security
lemmas: an autoprover for automated solutions and a manual mode that pro-
vides step-by-step guidance. Exploring Tamarin could significantly enhance our
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understanding and application of automatic prover tools in complex scenarios.
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Appendix A

Proverif Code

A.1 LTC Request and Response

type point.

const G: point [data ].
type secretkey .

fun ec_mult (point , secretkey ): point.
equation forall x:secretkey , y: secretkey ; ec_mult ( ec_mult (G,x),
y) = ec_mult ( ec_mult (G,y),x).

type certificate .
type root_certificate .
type result .
fun ok (): result .

fun issue_rootcertificate (nat , nat , point , point , secretkey ):
root_certificate [ private ].

reduc forall signerInfo : nat , typecert :nat , rcavpk :point ,
rcaepk :point , sk: secretkey ;
getrcatypecert ( issue_rootcertificate (signerInfo , typecert ,
rcavpk , rcaepk , sk )) = typecert .

reduc forall signerInfo : nat , typecert :nat , rcavpk :point ,
rcaepk :point , sk: secretkey ;
getrcapksign ( issue_rootcertificate (signerInfo , typecert , rcavpk ,
rcaepk , sk )) = rcavpk .

fun issue_certificate (nat , bitstring , nat , bitstring , point ,
point , secretkey ) : certificate .
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fun hashId8 ( certificate ): bitstring .
fun hashId8Root ( root_certificate ): bitstring .

reduc forall signerInfo : nat , hashId :bitstring , typecert :nat ,
cid:bitstring , vpksign :point , vpkenc :point , sk: secretkey ;
checkcert ( issue_certificate (signerInfo , hashId , typecert , cid ,
vpksign , vpkenc , sk), ec_mult (G, sk)) = ok ().

reduc forall signerInfo : nat , hashId :bitstring , typecert :nat ,
cid:bitstring , vpksign :point , vpkenc :point , sk: secretkey ;
getpksign ( issue_certificate (signerInfo , hashId , typecert , cid ,
vpksign , vpkenc , sk)) = vpksign .

reduc forall signerInfo : nat , hashId :bitstring , typecert :nat ,
cid:bitstring , vpksign :point , vpkenc :point , sk: secretkey ;
getpkenc ( issue_certificate (signerInfo , hashId , typecert , cid ,
vpksign , vpkenc , sk)) = vpkenc .

reduc forall signerInfo : nat , hashId :bitstring , typecert :nat ,
cid:bitstring , vpksign :point , vpkenc :point , sk: secretkey ;
getcid ( issue_certificate (signerInfo , hashId , typecert , cid ,
vpksign , vpkenc , sk)) = cid.

reduc forall signerInfo : nat , hashId :bitstring , typecert :nat ,
cid:bitstring , vpksign :point , vpkenc :point , sk: secretkey ;
getcahashid ( issue_certificate (signerInfo , hashId , typecert , cid ,
vpksign , vpkenc , sk)) = hashId .

reduc forall signerInfo : nat , hashId :bitstring , typecert :nat ,
cid:bitstring , vpksign :point , vpkenc :point , sk: secretkey ;
getsignerinfo ( issue_certificate (signerInfo , hashId , typecert ,
cid , vpksign , vpkenc , sk)) = signerInfo .

reduc forall signerInfo : nat , hashId :bitstring , typecert :nat ,
cid:bitstring , vpksign :point , vpkenc :point , sk: secretkey ;
gettypecert ( issue_certificate (signerInfo , hashId , typecert , cid ,
vpksign , vpkenc , sk)) = typecert .

type result_signature .

fun ok_signature (): result_signature .

fun sign(bitstring , secretkey ): bitstring .

reduc forall m:bitstring , y: secretkey ; getmess (sign(m, y)) = m.

reduc forall m:bitstring , s: secretkey ; checksign (sign(m,s),
ec_mult (G,s)) = ok_signature ().
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type nonce.
type tag_aead .
type aead_bitstring .
type result_aead .

fun compute_tag (bitstring , aead_bitstring , bitstring , nonce ):
tag_aead .

fun aead_enc (bitstring , bitstring , nonce ): aead_bitstring .
reduc forall m:bitstring , k:bitstring , n:nonce;

aead_dec ( aead_enc (m,k,n), k, n) = m.

fun hash( bitstring ): bitstring .

fun xor(bitstring , bitstring ): bitstring .
equation forall x:bitstring , y: bitstring ; xor(xor(x,y),y)=x.
equation forall x:bitstring , y: bitstring ; xor(y,xor(x,x))=y.
equation forall x:bitstring , y: bitstring ;

xor(xor(x,y),xor(x,x))= xor(x,y).
equation forall x:bitstring , y: bitstring ;

xor(xor(x,y),xor(y,y))= xor(x,y).

const zero: bitstring .
const one: bitstring .
fun hkdf(point , bitstring ): bitstring .

fun hmac(bitstring , bitstring ): bitstring .

free channel_its_ltca : channel .

free channel_its_pca : channel .

free chan_secret_request_ltca_rca : channel [ private ].
free chan_secret_response_ltca_rca : channel [ private ].

free chan_secret_request_pca_rca : channel [ private ].
free chan_secret_response_pca_rca : channel [ private ].

free chan_secret_manufacturer_pca : channel [ private ].
free chan_secret_manufacturer_receiver_pca : channel [ private ].

free chan_secret_manufacturer_ltca_request : channel [ private ].
free chan_secret_manufacturer_ltca_response : channel [ private ].

free channel_its_manufacturer : channel [ private ].
free channel_attack : channel .

(**)
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not attacker (new ltca_vsk ).
not attacker (new ltca_esk ).
not attacker (new pca_vsk ).
not attacker (new pca_esk ).
not attacker (new tsk_sk ).
not attacker (new ltc_vsk ).
not attacker (new ltc_esk ).
not attacker (new rek_sk ).
not attacker (new rca_sign_sk ).
not attacker (new rca_enc_sk ).
not attacker (new eph_sk ).
not attacker (new new_eph_sk ).

(**)
table rootCerts (bitstring , root_certificate ).
table otherCerts (bitstring , certificate ).
table itsAndPks (bitstring , point ).

free canonical_id : bitstring [ private ].

(**)
event release_ltc ().
event not_phase_2 ().
event good_pca_cert ().
event good_certs ().
event get_ltc_cert ().
event not_in_ltca_db ().
event ltc_request_received ().
event send_ltc_request ().
event ecies_correct_ltc_request ().

query event( get_ltc_cert ()).
query event( good_certs ()).
query attacker ( canonical_id ).

query secret signedData .

query secret ltc_cert .
query event( ltc_request_received ).

query event ( not_in_ltca_db ()).

query event( ltc_request_received ()) ==> event( send_ltc_request ()).

query inj -event( ltc_request_received ()) ==> inj -event( send_ltc_request ()).
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query event( get_ltc_cert ()) ==> event( release_ltc ()).

query inj -event( get_ltc_cert ()) ==> inj -event( release_ltc ()).

query secret signedDataLTCA .

noninterf canonical_id .

query attacker ( canonical_id ).

query inj -event( ecies_correct_ltc_request ()) ==>
inj -event( send_ltc_request ()).

let RCA =
new idrca: bitstring ;

new rca_sign_sk : secretkey ;
let rca_sign_pk = ec_mult (G, rca_sign_sk ) in

new rca_enc_sk : secretkey ;
let rca_enc_pk = ec_mult (G, rca_enc_sk ) in

let rca_cert = issue_rootcertificate (0, 4, rca_sign_pk ,
rca_enc_pk , rca_sign_sk ) in

let rca_hashid8 = hashId8Root ( rca_cert ) in

insert rootCerts ( rca_hashid8 , rca_cert );

in( chan_secret_request_pca_rca ,( idpca:bitstring , pcapksign :point ,
pcapkenc :point) );

in( chan_secret_request_ltca_rca ,( idltca :bitstring ,
ltcapksign :point , ltcapkenc :point) );

let pca_cert = issue_certificate (1, rca_hashid8 , 2, idpca ,
pcapksign , pcapkenc , rca_sign_sk ) in

let ltca_cert = issue_certificate (1, rca_hashid8 , 3, idltca ,
ltcapksign , ltcapkenc , rca_sign_sk ) in

insert otherCerts ( hashId8 ( pca_cert ), pca_cert );
insert otherCerts ( hashId8 ( ltca_cert ), ltca_cert );
out( chan_secret_response_pca_rca , (idpca , pca_cert , rca_cert ));

out( chan_secret_response_ltca_rca , (idltca , ltca_cert , rca_cert ));
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out( channel_attack , (pca_cert , ltca_cert ));
0.

let LTCA =

new ltca_vsk : secretkey ;
let ltca_vpk :point = ec_mult (G, ltca_vsk ) in

new ltca_esk : secretkey ;
let ltca_epk :point = ec_mult (G, ltca_esk ) in

new identity : bitstring ;

out ( chan_secret_request_ltca_rca , (identity , ltca_vpk ,
ltca_epk ));

in( chan_secret_response_ltca_rca , (= identity ,
ltca_cert : certificate , rca_cert : root_certificate ));

if checkcert (ltca_cert , getrcapksign ( rca_cert )) = ok() &&
getpkenc ( ltca_cert ) = ltca_epk
&& getpksign ( ltca_cert ) = ltca_vpk && gettypecert ( ltca_cert ) = 3
&& getrcatypecert ( rca_cert ) = 4 then

let my_cert_id = hashId8 ( ltca_cert ) in

in ( chan_secret_manufacturer_ltca_request , (= canonical_id ,
its_station_vpk :point ));

insert itsAndPks ( canonical_id , its_station_vpk );

out( chan_secret_manufacturer_ltca_response , ( canonical_id ,
ltca_cert , rca_cert ));

in( channel_its_ltca , ( typeRequest :nat , certId :bitstring ,
ciphertex_aesccm : aead_bitstring , tag_aesccm :tag_aead ,
nonce_aes_ccm :nonce ,
ciphertex_ecies :bitstring , tag_ecies :bitstring ,
eph_pk :point ));

if certId = my_cert_id && typeRequest = 0 then

let shared = ec_mult (eph_pk , ltca_esk ) in

let ke = hkdf(shared ,zero) in
let km = hkdf(shared ,one) in

let tag_ecies_computed = hmac(km , ciphertex_ecies ) in
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if tag_ecies = tag_ecies_computed then

let aes_key = xor( ciphertex_ecies , ke) in

let firma = aead_dec ( ciphertex_aesccm , aes_key , nonce_aes_ccm ) in

let tag_aesccm_computed = compute_tag (firma , ciphertex_aesccm ,
aes_key , nonce_aes_ccm ) in

if tag_aesccm = tag_aesccm_computed then(

event ecies_correct_ltc_request ();

let ( canonical_id_its :bitstring , SSP:bitstring , LTC_VPK :point ,
LTC_EPK :point , REK:point) = getmess (firma) in

get itsAndPks (= canonical_id , tsk_its_pk ) in (

if checksign (firma , tsk_its_pk ) = ok_signature () then

event ltc_request_received ();

new new_nonce_aes :nonce;

let ltc_cert = issue_certificate (1, hashId8 ( ltca_cert ), 0,
canonical_id_its , LTC_VPK , LTC_EPK , ltca_vsk ) in

insert otherCerts ( hashId8 ( ltc_cert ), ltc_cert );

let signedDataLTCA = sign(
(hash (( certId , ciphertex_aesccm , tag_aesccm , nonce_aes_ccm ,

ciphertex_ecies ,tag_ecies , eph_pk )),
0,
ltc_cert ), ltca_vsk ) in

new new_aes_key : bitstring ; (* new aes_key *)

let new_ciphertex_aesccm = aead_enc ( signedDataLTCA , new_aes_key ,
new_nonce_aes ) in

let new_tag_aesccm =
compute_tag ( signedDataLTCA , new_ciphertex_aesccm , new_aes_key ,
new_nonce_aes ) in

new new_eph_sk : secretkey ;

let new_eph_pk = ec_mult (G, new_eph_sk ) in
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let new_shared = ec_mult (REK , new_eph_sk ) in

let new_ke = hkdf(new_shared ,zero) in

let new_km = hkdf(new_shared ,one) in

let new_ciphertex_ecies = xor( new_aes_key , new_ke ) in

let new_tag_ecies = hmac(new_km , new_ciphertex_ecies ) in

event release_ltc ();

let EncryptedData_For_ITS = ( new_ciphertex_aesccm ,
new_tag_aesccm , new_nonce_aes , new_ciphertex_ecies ,
new_tag_ecies , new_eph_pk ) in

out( channel_its_ltca , (0, EncryptedData_For_ITS ));

0

)else

let SignedData = sign (( hash (( certId , ciphertex_aesccm ,
tag_aesccm , nonce_aes_ccm ,
ciphertex_ecies ,tag_ecies , eph_pk )),1) , ltca_vsk ) in

out( channel_its_ltca , (1, SignedData ));

event not_in_ltca_db ();0

)else

let SignedData = sign (( hash (( certId , ciphertex_aesccm ,
tag_aesccm , nonce_aes_ccm ,
ciphertex_ecies ,tag_ecies , eph_pk )),1) , ltca_vsk ) in

out( channel_its_ltca , (1, SignedData ));

0.

let PCA =

new pca_vsk : secretkey ;
let pca_vpk :point = ec_mult (G, pca_vsk ) in
new pca_esk : secretkey ;
let pca_epk :point = ec_mult (G, pca_esk ) in

new identity_pca : bitstring ;
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out ( chan_secret_request_pca_rca , ( identity_pca , pca_vpk ,
pca_epk ));

in( chan_secret_response_pca_rca , (= identity_pca ,
pca_cert : certificate , rca_cert : root_certificate ));

if checkcert (pca_cert , getrcapksign ( rca_cert )) = ok() &&
getpkenc ( pca_cert ) = pca_epk
&& getpksign ( pca_cert ) = pca_vpk
&& gettypecert ( pca_cert ) = 2 && getrcatypecert ( rca_cert ) = 4
then(

let myID8 = hashId8 ( pca_cert ) in

event good_pca_cert ();

out( chan_secret_manufacturer_pca , pca_cert );

0

)else
0
.

let manufacturer =
new tsk_sk : secretkey ;
let tsk_pk = ec_mult (G, tsk_sk ) in
out ( chan_secret_manufacturer_ltca_request , ( canonical_id ,

tsk_pk ));

in ( chan_secret_manufacturer_ltca_response ,
(= canonical_id , ltca_cert : certificate ,
rca_cert : root_certificate ));

in ( chan_secret_manufacturer_pca , pca_cert : certificate );

if checkcert (ltca_cert , getrcapksign ( rca_cert ))= ok() &&
checkcert (pca_cert , getrcapksign ( rca_cert ))= ok() then

event good_certs ();

out( channel_its_manufacturer , ( canonical_id , tsk_sk ,
tsk_pk ,ltca_cert , pca_cert , rca_cert ));

0.

let its_station =
in( channel_its_manufacturer , (= canonical_id , tsk_sk :secretkey ,
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tsk_pk :point , ltca_cert : certificate , pca_cert : certificate ,
rca_cert : root_certificate ));

new SSP: bitstring ;

new ltc_vsk : secretkey ;

let ltc_vpk = ec_mult (G, ltc_vsk ) in

new ltc_esk : secretkey ;
let ltc_epk = ec_mult (G, ltc_esk ) in

new rek_sk : secretkey ;
let rek_pk = ec_mult (G, rek_sk ) in

let signedData = sign (( canonical_id , SSP , ltc_vpk , ltc_epk ,
rek_pk ), tsk_sk ) in

new aes_key : bitstring ;

new nonce_aes_ccm :nonce;

let ciphertex_aesccm = aead_enc (signedData , aes_key ,
nonce_aes_ccm ) in

let tag_aesccm = compute_tag (signedData , ciphertex_aesccm ,
aes_key , nonce_aes_ccm ) in

new eph_sk : secretkey ;

let eph_pk = ec_mult (G, eph_sk ) in

let shared = ec_mult ( getpkenc ( ltca_cert ), eph_sk ) in

let ke = hkdf(shared ,zero) in

let km = hkdf(shared ,one) in

let ciphertex_ecies = xor(aes_key , ke) in

let tag_ecies = hmac(km , ciphertex_ecies ) in

event send_ltc_request ();

let EncryptedData = ( hashId8 ( ltca_cert ), ciphertex_aesccm ,
tag_aesccm , nonce_aes_ccm , ciphertex_ecies ,
tag_ecies , eph_pk ) in

out( channel_its_ltca , (0, EncryptedData ));
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let computed_hash = hash (( hashId8 ( ltca_cert ), ciphertex_aesccm ,
tag_aesccm , nonce_aes_ccm , ciphertex_ecies , tag_ecies , eph_pk ))
in

in( channel_its_ltca , ( externaldata :nat , content : bitstring ));

if externaldata = 0 then (

let ( new_ciphertex_aesccm : aead_bitstring ,
new_tag_aesccm :tag_aead , new_nonce_aes :nonce ,
new_ciphertex_ecies :bitstring , new_tag_ecies :bitstring ,
new_eph_pk :point) = content in

let response_shared = ec_mult (new_eph_pk , rek_sk ) in

let new_ke = hkdf( response_shared ,zero) in

let new_km = hkdf( response_shared ,one) in

let new_tag_ecies_computed = hmac(new_km , new_ciphertex_ecies ) in

if new_tag_ecies_computed = new_tag_ecies then

let new_aes_key = xor( new_ciphertex_ecies , new_ke ) in

let new_firma = aead_dec ( new_ciphertex_aesccm , new_aes_key ,
new_nonce_aes ) in

let new_tag_aesccm_computed =
compute_tag (new_firma , new_ciphertex_aesccm , new_aes_key ,
new_nonce_aes ) in

if new_tag_aesccm_computed = new_tag_aesccm then(

if checksign (new_firma , getpksign ( ltca_cert )) = ok_signature ()
then

let new_message = getmess ( new_firma ) in

let (= computed_hash , response_code :nat , ltc_cert : certificate ) =
new_message in

if response_code = 0
&& checkcert (ltc_cert , getpksign ( ltca_cert )) = ok()
&& canonical_id = getcid ( ltc_cert ) && gettypecert ( ltc_cert ) = 0
then

event get_ltc_cert ();
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0

else
0

)else
0
else
0

)else

0.

process
(RCA () | !LTCA () | PCA () | ! manufacturer () | ! its_station ())

A.2 PC Request and Response

type point.

const G: point [data ].
type secretkey .

fun ec_mult (point , secretkey ): point.
equation forall x:secretkey , y: secretkey ; ec_mult ( ec_mult (G,x),

y) = ec_mult ( ec_mult (G,y),x).

type certificate .
type root_certificate .
type result .
fun ok (): result .

fun issue_rootcertificate (nat , nat , point , point , secretkey ):
root_certificate [ private ].

reduc forall signerInfo : nat , typecert :nat , rcavpk :point ,
rcaepk :point , sk: secretkey ;
getrcatypecert ( issue_rootcertificate (signerInfo , typecert ,
rcavpk , rcaepk , sk )) = typecert .

reduc forall signerInfo : nat , typecert :nat , rcavpk :point ,
rcaepk :point , sk: secretkey ;
getrcapksign ( issue_rootcertificate (signerInfo , typecert ,
rcavpk , rcaepk , sk )) = rcavpk .
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fun issue_certificate (nat , bitstring , nat , bitstring , point ,
point , secretkey ) : certificate .

fun hashId8 ( certificate ): bitstring .

fun hashId8Root ( root_certificate ): bitstring .

reduc forall signerInfo : nat , hashId :bitstring , typecert :nat ,
cid:bitstring , vpksign :point , vpkenc :point , sk: secretkey ;
checkcert ( issue_certificate (signerInfo , hashId , typecert , cid ,
vpksign , vpkenc , sk), ec_mult (G, sk)) = ok ().

reduc forall signerInfo : nat , hashId :bitstring , typecert :nat ,
cid:bitstring , vpksign :point , vpkenc :point , sk: secretkey ;
getpksign ( issue_certificate (signerInfo , hashId , typecert , cid ,
vpksign , vpkenc , sk)) = vpksign .

reduc forall signerInfo : nat , hashId :bitstring , typecert :nat ,
cid:bitstring , vpksign :point , vpkenc :point , sk: secretkey ;
getpkenc ( issue_certificate (signerInfo , hashId , typecert , cid ,
vpksign , vpkenc , sk)) = vpkenc .

reduc forall signerInfo : nat , hashId :bitstring , typecert :nat ,
cid:bitstring , vpksign :point , vpkenc :point , sk: secretkey ;
getcid ( issue_certificate (signerInfo , hashId , typecert , cid ,
vpksign , vpkenc , sk)) = cid.

reduc forall signerInfo : nat , hashId :bitstring , typecert :nat ,
cid:bitstring , vpksign :point , vpkenc :point , sk: secretkey ;
getcahashid ( issue_certificate (signerInfo , hashId , typecert ,
cid , vpksign , vpkenc , sk)) = hashId .

reduc forall signerInfo : nat , hashId :bitstring , typecert :nat ,
cid:bitstring , vpksign :point , vpkenc :point , sk: secretkey ;
getsignerinfo ( issue_certificate (signerInfo , hashId , typecert ,
cid , vpksign , vpkenc , sk)) = signerInfo .

reduc forall signerInfo : nat , hashId :bitstring , typecert :nat ,
cid:bitstring , vpksign :point , vpkenc :point , sk: secretkey ;
gettypecert ( issue_certificate (signerInfo , hashId , typecert ,
cid , vpksign , vpkenc , sk)) = typecert .

type result_signature .

fun ok_signature (): result_signature .
fun sign(bitstring , secretkey ): bitstring .
reduc forall m:bitstring , y: secretkey ; getmess (sign(m, y)) = m.
reduc forall m:bitstring , s: secretkey ; checksign (sign(m,s),
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ec_mult (G,s)) = ok_signature ().

type nonce.
type tag_aead .
type aead_bitstring .
type result_aead .
fun compute_tag (bitstring , aead_bitstring , bitstring , nonce ):

tag_aead .

fun aead_enc (bitstring , bitstring , nonce ): aead_bitstring .

reduc forall m:bitstring , k:bitstring , n:nonce;
aead_dec ( aead_enc (m,k,n), k, n) = m.

fun hash( bitstring ): bitstring .

fun xor(bitstring , bitstring ): bitstring .
equation forall x:bitstring , y: bitstring ; xor(xor(x,y),y)=x.
equation forall x:bitstring , y: bitstring ; xor(y,xor(x,x))=y.
equation forall x:bitstring , y: bitstring ;

xor(xor(x,y),xor(x,x))= xor(x,y).
equation forall x:bitstring , y: bitstring ;

xor(xor(x,y),xor(y,y))= xor(x,y).

const zero: bitstring .
const one: bitstring .
fun hkdf(point , bitstring ): bitstring .

fun hmac(bitstring , bitstring ): bitstring .

free channel_its_pca : channel .
free channel_ltca_pca : channel .

not attacker (new rca_sign_sk ).
not attacker (new rca_enc_sk ).

not attacker (new ltca_vsk ).
not attacker (new ltca_esk ).

not attacker (new pca_vsk ).
(* not attacker (new pca_esk ).*)

not attacker (new ltc_esk ).
not attacker (new ltc_vsk ).
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not attacker (new new_eph_sk_for_its ).

not attacker (new eph_sk_ltca_pca ).

not attacker (new eph_sk_from_pca_to_LTCA ).

not attacker (new eph_sk_for_pca ).

not attacker ( new pc_vsk ).
not attacker ( new pc_esk ).

not attacker (new rek_sk ).

not attacker (new response_sk_for_ltca_response ).

not attacker (new eph_sk_from_its_to_ltca ).

event pc_sent_to_its ().
event pc_received_from_pca ().

event pc_request_sent_from_its ().
event pc_response_validation_received_from_ltca ().
event not_correct ().
event hmac_keys_not_right ().
event pc_response_validation_from_ltca ().
event pc_request_validation ().
event pc_response_validation ().
event pc_request_received_from_its ().

event validation_pc_request_received_from_pca ().
event validation_PCRequestSharedContent_from_its ().

event wrong_PCRequestreceived_from_its ().

query event( pc_request_validation_received_from_pca ()).
query event( pc_response_validation_from_ltca ()).
query event( pc_response_validation_received_from_ltca ()).
query event( pc_received_from_pca ()).

query inj -event( pc_received_from_pca ()) ==>
inj -event( pc_sent_to_its ()).

query inj -event( pc_response_validation_from_ltca ()) ==>
inj -event( pc_request_sent_from_pca ()).

query inj -event( pc_request_received_from_its ()) ==>
inj -event( pc_request_sent_from_its ()).
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query secret PCRequestSharedContent .
query event( not_correct ()).
query event( pcr_received ()).
query event( hmac_keys_not_right ()).
query secret request_pca .
query secret tag_mac_keys .

query secret pc_vpk .
query event( pc_response_validation_received_from_ltca ()).
query event( pc_received_from_pca ()).
query secret pc_cert .
query secret PCRequestSharedContent .
query secret PCRequestSharedContent_LTCA .

query inj -event( pc_request_received_from_its ()) ==>
inj -event( pc_request_sent_from_its ()).

query inj -event( wrong_PCRequestreceived_from_its ()) ==>
inj -event( pc_request_sent_from_its ()).

query event( validation_PCRequestSharedContent_from_its ()).

query inj -event( validation_pc_request_received_from_pca ()) ==>
inj -event( pc_request_received_from_its ()).

query inj -event( validation_PCRequestSharedContent_from_its ())
==> inj -event( pc_request_received_from_its ()).

query inj -event( pc_response_validation ()) ==>
inj -event( pc_request_validation ()).

query inj -event( pc_sent_to_its ()) ==>
inj -event( pc_response_validation ()).

query event( wrong_PCRequestreceived_from_its ).

query event( pc_received_from_pca ()).

query inj -event( pc_received_from_pca ()) ==>
inj -event( pc_sent_to_its ()).

query inj -event( pc_received_from_pca ()) ==>
(inj -event( pc_request_received_from_its ()) &&

inj -event( pc_request_validation ()) &&
inj -event( pc_response_validation ())).

query inj -event( pc_received_from_pca ()) ==> (
inj -event( pc_response_validation ) ==>
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inj -event( pc_request_validation ())).

query inj -event( pc_response_validation ()) ==>
(inj -event( pc_request_received_from_its ()) &&

inj -event( pc_request_sent_from_its ())).

query inj -event( validation_pc_request_received_from_pca ())
==> (inj -event( pc_request_received_from_its ()) &&

inj -event( pc_request_sent_from_its ())).

let PCA( ltca_cert : certificate , pca_cert : certificate ,
pca_vpk :point , pca_vsk :secretkey , pca_epk :point ,
pca_esk :secretkey , rca_cert : root_certificate ) =

in( channel_its_pca , ( externaldata :nat , content : bitstring ));

if externaldata = 0 then (

let (= hashId8 ( pca_cert ), ciphertex_aesccm_its : aead_bitstring ,
tag_aesccm_its :tag_aead , nonce_aes_ccm_its :nonce ,
ciphertex_ecies_its :bitstring , tag_ecies_its :bitstring ,
eph_pub_its :point ) = content in

let compute_shared = ec_mult ( eph_pub_its , pca_esk ) in

let ke = hkdf( compute_shared , zero) in
let km = hkdf( compute_shared , one) in

let tag_ecies_computed = hmac(km , ciphertex_ecies_its ) in

if tag_ecies_its = tag_ecies_computed then

let aes_key = xor( ciphertex_ecies_its , ke) in

let mess_from_its = aead_dec ( ciphertex_aesccm_its , aes_key ,
nonce_aes_ccm_its ) in

let tg_aesccm_computed =
compute_tag ( mess_from_its , ciphertex_aesccm_its , aes_key ,
nonce_aes_ccm_its ) in

if tg_aesccm_computed = tag_aesccm_its then

let ( pc_vpk_its :point , pc_epk_its :point ,
encapsulate_ltca :bitstring , PCRequestSharedContent :bitstring ,
hmac_key :bitstring , idits: bitstring ) = mess_from_its in

let (= hashId8 ( ltca_cert ), SSP:bitstring ,
tag_mac_chiavi_from_its :bitstring , rek_pk :point ) =
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PCRequestSharedContent in

let compute_hmac_keys = hmac(hmac_key ,
(pc_vpk_its , pc_epk_its )) in

if compute_hmac_keys = tag_mac_chiavi_from_its then(

event pc_request_received_from_its ();

new aes_key_from_pca_to_LTCA : bitstring ;
new nonce_aes_ccm_from_pca_to_LTCA :nonce;

new response_sk_for_ltca_response : secretkey ;

let response_pk_for_ltca_response = ec_mult (G,
response_sk_for_ltca_response ) in

new request_identifier : bitstring ;
let dati_to_ltca = ( request_identifier , encapsulate_ltca ,

PCRequestSharedContent , response_pk_for_ltca_response ) in

let firma_dati_dall_its = sign( dati_to_ltca , pca_vsk ) in

let cifra_firma_dati_aesccm = aead_enc ( firma_dati_dall_its ,
aes_key_from_pca_to_LTCA , nonce_aes_ccm_from_pca_to_LTCA ) in

let tag_firma_dati_aesccm =
compute_tag ( firma_dati_dall_its , cifra_firma_dati_aesccm ,
aes_key_from_pca_to_LTCA , nonce_aes_ccm_from_pca_to_LTCA ) in

new eph_sk_from_pca_to_LTCA : secretkey ;

let eph_pub_from_pca_to_LTCA = ec_mult (G,
eph_sk_from_pca_to_LTCA ) in

let shared_from_pca_to_LTCA = ec_mult ( getpkenc ( ltca_cert ),
eph_sk_from_pca_to_LTCA ) in

let ke_pc_request = hkdf( shared_from_pca_to_LTCA , zero) in

let km_pc_request = hkdf( shared_from_pca_to_LTCA , one) in

let ciphertex_key_ecie_from_pca_to_LTCA =
xor( aes_key_from_pca_to_LTCA , ke_pc_request ) in

let tag_ecies_from_pca_to_LTCA = hmac( km_pc_request ,
ciphertex_key_ecie_from_pca_to_LTCA ) in

event pc_request_validation ();
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let EncryptedData_PCA_LTCA = ( hashId8 ( ltca_cert ),
cifra_firma_dati_aesccm ,
tag_firma_dati_aesccm , nonce_aes_ccm_from_pca_to_LTCA ,
ciphertex_key_ecie_from_pca_to_LTCA ,
tag_ecies_from_pca_to_LTCA , eph_pub_from_pca_to_LTCA ) in

out( channel_ltca_pca , (0, EncryptedData_PCA_LTCA ) );

let compute_hash_request = hash (( hashId8 ( ltca_cert ),
cifra_firma_dati_aesccm ,
tag_firma_dati_aesccm , nonce_aes_ccm_from_pca_to_LTCA ,
ciphertex_key_ecie_from_pca_to_LTCA ,
tag_ecies_from_pca_to_LTCA , eph_pub_from_pca_to_LTCA )) in

in( channel_ltca_pca ,
( contenttype_from_ltca :nat , content_from_ltca : bitstring ));

if contenttype_from_ltca = 0 then(

let (= hashId8 ( pca_cert ),
ciphertex_ltca_aesccm_response : aead_bitstring ,
tag_ciphertex_dati_ltca_aesccm_response :tag_aead ,
nonce_aes_ccm_from_ltca_to_pca_response :nonce ,
ciphertex_key_ecie_from_ltca_to_pca_response :bitstring ,
tag_ecies_from_ltca_to_pca_response :bitstring ,
eph_pub_from_ltca_to_pca_response :point ) = content_from_ltca
in

let compute_shared_response =
ec_mult ( eph_pub_from_ltca_to_pca_response ,
response_sk_for_ltca_response ) in

let ke_response = hkdf( compute_shared_response ,zero) in
let km_response = hkdf( compute_shared_response ,one) in

let tag_ecies_computed_response = hmac( km_response ,
ciphertex_key_ecie_from_ltca_to_pca_response ) in

if tag_ecies_computed_response =
tag_ecies_from_ltca_to_pca_response then

let aes_key_from_ltca =
xor( ciphertex_key_ecie_from_ltca_to_pca_response , ke_response )
in

let risposta_dalla_ltca =
aead_dec ( ciphertex_ltca_aesccm_response , aes_key_from_ltca ,
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nonce_aes_ccm_from_ltca_to_pca_response ) in

let tag_firma_risposta_dalla_ltca_calcolato =
compute_tag ( risposta_dalla_ltca ,
ciphertex_ltca_aesccm_response , aes_key_from_ltca ,
nonce_aes_ccm_from_ltca_to_pca_response ) in

if tag_firma_risposta_dalla_ltca_calcolato =
tag_ciphertex_dati_ltca_aesccm_response then

if checksign ( risposta_dalla_ltca , getpksign ( ltca_cert )) =
ok_signature () then

let (= compute_hash_request , risultato :nat) =
getmess ( risposta_dalla_ltca ) in

if risultato = 0 then

event pc_response_validation_received_from_ltca ();

let pc_cert = issue_certificate (1, hashId8 ( pca_cert ), 1,
idits , pc_vpk_its , pc_epk_its , pca_vsk ) in

let firma_risposta = sign ((
hash (( hashId8 ( pca_cert ), ciphertex_aesccm_its ,
tag_aesccm_its , nonce_aes_ccm_its ,
ciphertex_ecies_its , tag_ecies_its , eph_pub_its )),

0,
pc_cert
), pca_vsk ) in

new new_aes_key : bitstring ;
new new_nonce_aes :nonce;

let new_ciphertex_aesccm = aead_enc ( firma_risposta ,
new_aes_key , new_nonce_aes ) in

let new_tag_aesccm =
compute_tag ( firma_risposta , new_ciphertex_aesccm ,
new_aes_key , new_nonce_aes ) in

new new_eph_sk_for_its : secretkey ;

let new_eph_pk_for_its = ec_mult (G, new_eph_sk_for_its ) in

let new_shared_for_its = ec_mult (rek_pk , new_eph_sk_for_its ) in

let new_ke = hkdf( new_shared_for_its , zero) in
let new_km = hkdf( new_shared_for_its , one) in
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let new_ciphertex_ecies = xor( new_aes_key , new_ke ) in
let new_tag_ecies = hmac(new_km , new_ciphertex_ecies ) in

let EncryptedData_PCA_ITS = ( new_ciphertex_aesccm ,
new_tag_aesccm , new_nonce_aes ,
new_ciphertex_ecies , new_tag_ecies ,
new_eph_pk_for_its ) in

event pc_sent_to_its ();

out( channel_its_pca , (0, EncryptedData_PCA_ITS ));
0
)else
0

)else
0

)else
0
.

let LTCA ( id_cert : bitstring , ltca_cert : certificate ,
ltca_esk :secretkey , ltca_vsk :secretkey , pca_cert : certificate ,
rca_cert : root_certificate , ltc_cert : certificate ) =

in( channel_ltca_pca , ( externaldata :nat , content : bitstring ));

if externaldata = 0 then (

let (= hashId8 ( ltca_cert ), ciphertex_aesccm : aead_bitstring ,
tag_aesccm :tag_aead , nonce_aes_ccm :nonce ,
ciphertex_ecies :bitstring , tag_ecies :bitstring ,
eph_pk :point ) = content in

let compute_shared = ec_mult (eph_pk , ltca_esk ) in

let ke = hkdf( compute_shared , zero) in
let km = hkdf( compute_shared , one) in

let tag_ecies_computed = hmac(km , ciphertex_ecies ) in

if tag_ecies = tag_ecies_computed then
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let aes_key = xor( ciphertex_ecies , ke) in
let firma_da_validare = aead_dec ( ciphertex_aesccm , aes_key ,

nonce_aes_ccm ) in

let tag_firma_dati_ricevuti_aesccm =
compute_tag ( firma_da_validare , ciphertex_aesccm , aes_key ,
nonce_aes_ccm ) in

if tag_firma_dati_ricevuti_aesccm = tag_aesccm then

if checksign ( firma_da_validare , getpksign ( pca_cert )) =
ok_signature () then

event validation_pc_request_received_from_pca ();

let ottieni_dati = getmess ( firma_da_validare ) in

let ( requestId :bitstring , encapsulate_ltca :bitstring ,
PCRequestSharedContent_From_PCA :bitstring , rek_pca_key :point)

= ottieni_dati in

let (= hashId8 ( ltca_cert ), SSP:bitstring ,
tag_mac_chiavi :bitstring , rek_pk :point ) = PCRequestSharedContent_From_PCA in

let ( ciphertex_aesccm_from_its : aead_bitstring ,
tag_aesccm_from_its :tag_aead , nonce_aes_ccm_from_its :nonce ,
ciphertex_key_ecies :bitstring , tag_its_ecies :bitstring , eph_pub_ltca :point) = encapsulate_ltca in

let new_compute_shared = ec_mult ( eph_pub_ltca , ltca_esk ) in

let ke_its = hkdf( new_compute_shared , zero) in

let km_its = hkdf( new_compute_shared , one) in

let tag_ecies_computed_req = hmac(km_its , ciphertex_key_ecies )
in

if tag_ecies_computed_req = tag_its_ecies then

let aes_key_its = xor( ciphertex_key_ecies , ke_its ) in

let ( firma_PCRequestSharedContent_LTCA :bitstring ,
firma_PCRequestSharedContent : bitstring ) =
aead_dec ( ciphertex_aesccm_from_its , aes_key_its ,
nonce_aes_ccm_from_its ) in

let tag_aesccm_computed_its =

103



Proverif Code

compute_tag (( firma_PCRequestSharedContent_LTCA ,
firma_PCRequestSharedContent ), ciphertex_aesccm_from_its ,
aes_key_its , nonce_aes_ccm_from_its ) in

if tag_aesccm_computed_its = tag_aesccm_from_its then

let ( PCRequestSharedContent : bitstring ) =
getmess ( firma_PCRequestSharedContent ) in

let ( PCRequestSharedContent_for_LTCA :bitstring ,
= hashId8 ( ltc_cert )) =
getmess ( firma_PCRequestSharedContent_LTCA ) in

if checksign ( firma_PCRequestSharedContent_LTCA ,
getpksign ( ltc_cert )) = ok_signature ()
&& checksign ( firma_PCRequestSharedContent , getpksign ( ltc_cert ))
= ok_signature () then

event validation_PCRequestSharedContent_from_its ();

let hash_request = hash (( hashId8 ( ltca_cert ), ciphertex_aesccm ,
tag_aesccm , nonce_aes_ccm , ciphertex_ecies , tag_ecies , eph_pk ))

in

let response = 0 in

let firma_ltca_pca = sign (( hash_request , response ), ltca_vsk ) in

new eph_sk_ltca_pca : secretkey ;

let eph_pub_ltca_pca = ec_mult (G, eph_sk_ltca_pca ) in

let shared_ltca_pca = ec_mult ( rek_pca_key , eph_sk_ltca_pca ) in

let ke_ltca_pca = hkdf( shared_ltca_pca , zero) in

let km_ltca_pca = hkdf( shared_ltca_pca , one) in

new aes_ltca_pca : bitstring ;

new nonce_aes_ccm_ltca_pca :nonce;

let ciphertex_key_ecies_ltca_pca = xor( aes_ltca_pca ,
ke_ltca_pca ) in

let tag_ecies_ltca_pca = hmac( km_ltca_pca ,
ciphertex_key_ecies_ltca_pca ) in

let ciphertex_aesccm_response = aead_enc ( firma_ltca_pca ,
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aes_ltca_pca , nonce_aes_ccm_ltca_pca ) in

let tag_aesccm_response =
compute_tag ( firma_ltca_pca , ciphertex_aesccm_response ,
aes_ltca_pca , nonce_aes_ccm_ltca_pca ) in

event pc_response_validation ();

let EncryptedData_LTCA_PCA = ( hashId8 ( pca_cert ),
ciphertex_aesccm_response , tag_aesccm_response ,
nonce_aes_ccm_ltca_pca , ciphertex_key_ecies_ltca_pca
,tag_ecies_ltca_pca , eph_pub_ltca_pca ) in

out( channel_ltca_pca , (0, EncryptedData_LTCA_PCA ));

0
)else

event wrong_PCRequestreceived_from_its ();
0

)else
0
.

let ITSSendPCRequest ( ltc_esk :secretkey , ltc_vsk :secretkey ,
ltca_cert : certificate , pca_cert : certificate , rca_cert :

root_certificate , ltc_cert : certificate ) =

new pc_vsk : secretkey ;

let pc_vpk = ec_mult (G, pc_vsk ) in

new pc_esk : secretkey ;
let pc_epk = ec_mult (G, pc_esk ) in

new rek_sk : secretkey ;
let rek_pk = ec_mult (G, rek_sk ) in

new hmac_key : bitstring ;
let tag_mac_keys = hmac(hmac_key , (pc_vpk , pc_epk )) in

new SSP: bitstring ;

let PCRequestSharedContent = ( hashId8 ( ltca_cert ), SSP ,
tag_mac_keys , rek_pk ) in
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let PCRequestSharedContent_LTCA = ( PCRequestSharedContent ,
hashId8 ( ltc_cert )) in

let PCRequestSharedContent_signed = sign( PCRequestSharedContent ,
ltc_vsk ) in

let PCRequestSharedContent_LTCA_signed =
sign( PCRequestSharedContent_LTCA , ltc_vsk ) in

new ase_key_ltca : bitstring ;
new nonce_aes_ccm_for_ltca :nonce;

let ciphertex_aesccm_for_ltca =
aead_enc (( PCRequestSharedContent_LTCA_signed ,
PCRequestSharedContent_signed ), ase_key_ltca ,
nonce_aes_ccm_for_ltca ) in

let tag_aesccm_for_ltca =
compute_tag (( PCRequestSharedContent_LTCA_signed ,

PCRequestSharedContent_signed ), ciphertex_aesccm_for_ltca ,
ase_key_ltca , nonce_aes_ccm_for_ltca ) in

new eph_sk_from_its_to_ltca : secretkey ;

let eph_pub_ltca = ec_mult (G, eph_sk_from_its_to_ltca ) in

let shared = ec_mult ( getpkenc ( ltca_cert ),
eph_sk_from_its_to_ltca ) in

let ke = hkdf(shared , zero) in

let km = hkdf(shared , one) in

let ciphertex_key_ecies = xor( ase_key_ltca , ke) in
let tag_key_ecies = hmac(km , ciphertex_key_ecies ) in

new its_id : bitstring ;
let encapsulate_ltca = ( ciphertex_aesccm_for_ltca ,

tag_aesccm_for_ltca , nonce_aes_ccm_for_ltca , ciphertex_key_ecies , tag_key_ecies , eph_pub_ltca ) in

let request_pca = (pc_vpk , pc_epk , encapsulate_ltca ,
PCRequestSharedContent , hmac_key , its_id ) in

new aes_key_pca : bitstring ;
new nonce_aes_ccm_for_pca :nonce;

let ciph_aesccm_for_pca = aead_enc ( request_pca , aes_key_pca ,
nonce_aes_ccm_for_pca ) in
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let tg_aesccm_for_pca = compute_tag ( request_pca ,
ciph_aesccm_for_pca , aes_key_pca , nonce_aes_ccm_for_pca ) in

new eph_sk_for_pca : secretkey ;

let eph_pk_for_pca = ec_mult (G, eph_sk_for_pca ) in

let new_shared = ec_mult ( getpkenc ( pca_cert ), eph_sk_for_pca ) in

let ke_for_pca = hkdf(new_shared , zero) in

let km_for_pca = hkdf(new_shared , one) in

let ciph_ecies_for_pca = xor( aes_key_pca , ke_for_pca ) in

let tg_ecies_for_pca = hmac(km_for_pca , ciph_ecies_for_pca ) in

event pc_request_sent_from_its ();

let EncryptedData = ( hashId8 ( pca_cert ), ciph_aesccm_for_pca ,
tg_aesccm_for_pca , nonce_aes_ccm_for_pca , ciph_ecies_for_pca ,
tg_ecies_for_pca , eph_pk_for_pca ) in

out( channel_its_pca , (0, EncryptedData ) );

let computed_hash = hash (( hashId8 ( pca_cert ),
ciph_aesccm_for_pca , tg_aesccm_for_pca , nonce_aes_ccm_for_pca ,
ciph_ecies_for_pca , tg_ecies_for_pca , eph_pk_for_pca )) in

in( channel_its_pca , ( externaldata :nat , content : bitstring ));

if externaldata = 0 then (

let ( ciph_aesccm_from_pca : aead_bitstring ,
tg_aesccm_from_pca :tag_aead ,
nonce_aes_ccm_from_pca_to_its :nonce ,
ciph_ecies_from_pca :bitstring , tg_ecies_from_pca :bitstring ,
eph_pk_from_pca :point ) = content in

let response_shared = ec_mult ( eph_pk_from_pca , rek_sk ) in

let new_ke = hkdf( response_shared , zero) in

let new_km = hkdf( response_shared , one) in

let new_tag_ecies_computed = hmac(new_km , ciph_ecies_from_pca )
in
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if new_tag_ecies_computed = tg_ecies_from_pca then

let aes_key_recovered = xor( ciph_ecies_from_pca , new_ke ) in

let new_firma = aead_dec ( ciph_aesccm_from_pca ,
aes_key_recovered , nonce_aes_ccm_from_pca_to_its ) in

let new_tag_aesccm_computed =
compute_tag (new_firma , ciph_aesccm_from_pca , aes_key_recovered ,
nonce_aes_ccm_from_pca_to_its ) in

if new_tag_aesccm_computed = tg_aesccm_from_pca then

if checksign (new_firma , getpksign ( pca_cert )) = ok_signature ()
then

let new_message = getmess ( new_firma ) in

let (= computed_hash , response_code :nat , pc_cert : certificate ) =
new_message in

if response_code = 0 && checkcert (pc_cert , getpksign ( pca_cert ))
= ok() && gettypecert ( pc_cert ) = 1 then

event pc_received_from_pca ();

0
)else
0.

process

(**)
new rca_sign_sk : secretkey ;
let rca_sign_pk = ec_mult (G, rca_sign_sk ) in

new rca_enc_sk : secretkey ;
let rca_enc_pk = ec_mult (G, rca_enc_sk ) in

let rca_cert = issue_rootcertificate (0, 4, rca_sign_pk ,
rca_enc_pk , rca_sign_sk ) in

let rca_hashid8 = hashId8Root ( rca_cert ) in

(**)
new idpca: bitstring ;
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new pca_vsk : secretkey ;
let pca_vpk :point = ec_mult (G, pca_vsk ) in

new pca_esk : secretkey ;
let pca_epk :point = ec_mult (G, pca_esk ) in

let pca_cert = issue_certificate (1, rca_hashid8 , 2, idpca ,
pca_vpk , pca_epk , rca_sign_sk ) in

(**)
new idltca : bitstring ;

new ltca_vsk : secretkey ;
let ltca_vpk :point = ec_mult (G, ltca_vsk ) in

new ltca_esk : secretkey ;
let ltca_epk :point = ec_mult (G, ltca_esk ) in

let ltca_cert = issue_certificate (1, rca_hashid8 , 3, idltca ,
ltca_vpk , ltca_epk , rca_sign_sk ) in
let ltca_cert_id = hashId8 ( ltca_cert ) in

(**)
new ltc_vsk : secretkey ;
let ltc_vpk = ec_mult (G, ltc_vsk ) in

new ltc_esk : secretkey ;
let ltc_epk = ec_mult (G, ltc_esk ) in

let ltc_cert = issue_certificate (1, ltca_cert_id , 0, idltca ,
ltc_vpk , ltc_epk , ltca_vsk ) in

(PCA(ltca_cert ,pca_cert , pca_vpk , pca_vsk , pca_epk , pca_esk ,
rca_cert ) |

ITSSendPCRequest (ltc_esk , ltc_vsk , ltca_cert , pca_cert ,
rca_cert , ltc_cert ) |

LTCA(idltca , ltca_cert , ltca_esk , ltca_vsk , pca_cert , rca_cert ,
ltc_cert ) )
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