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Abstract

The increase in artificial intelligence integration across various industries underlines
its significant impact on promoting secure working spaces, especially in preventing
accidents and mitigating risks. With human-machine interaction (HMI), operators
are often tasked with performing complex duties, raising mental workload and
stress levels, potentially compromising their performance, and elevating the risk of
accidents.
Stress refers to the psychological and physiological responses elicited by perceived
demands exceeding an individual’s coping capacity, while cognitive workload denotes
the amount of mental effort and resources required to perform tasks effectively.
Existing literature shows a correlation between these cognitive states and the
physiological signals of the human body.
To investigate this relationship further, the eLions group at Politecnico di Torino
conducted a study involving 61 subjects. These participants underwent “N-Back”
and “Stroop” tests to induce cognitive load and stress state alteration, respectively.
Their physiological data was monitored and assessed throughout the tests.
N-Back tests are conducted with visual, auditory, or combined stimulation, with
three levels of difficulty, while the Stroop test had only one level. In total, four
datasets were obtained. This study aimed to develop an innovative model that
classifies stress and cognitive load levels based on machine learning algorithms
using multimodal physiological signals obtained previously. To achieve the specified
goal, an analysis of the state of the art was conducted as a starting point to find
procedures suitable for the task.
The initial supervised experiments focused on binary classification, distinguishing
samples into two states: rest and altered state. Across three datasets, results
showed a remarkable accuracy rate of 100%. In the Audio N-Back dataset, an
accuracy of 98% was achieved.
In analyzing the Stroop dataset, a classification accuracy of 75% was attained for
stress classification through a combination of LDA as dimensionality reduction
and then K-Nearest Neighbors as the classifier. Meanwhile, cognitive workload
classification for the Visual N-Back task yielded an accuracy of 78% using K-PCA
with LDA, while for the Audio N-Back task, it was 67% using PCA and LDA.
Additionally, the Dual N-Back task achieved an accuracy of 81% with the blend of
LDA and SVM.
In addressing the challenge of heavily imbalanced classes in the Stroop test and
Dual N-Back dataset, outliers were identified and removed, leading to a transition
to a 3-class classification. As a result, 80% and 85% accuracies were achieved for
the Stroop test and Dual N-Back tasks. Moreover, models have been created to
evaluate scenarios without one or more signals involved.
The project has resulted in the development of a comprehensive and versatile
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framework able to retrieve, manipulate, and accurately classify the differentiation
between a state of rest and an altered state based on an individual’s physiological
parameters. Furthermore, it can discern various degrees of cognitive workload and
stress severity, even when certain biological signals are absent. This framework
lays the groundwork for creating a safety device that analyses physiological signals
to assess the operator’s condition, especially during critical moments. It could
enhance safety by providing real-time evaluations of the operator’s state, thereby
reducing potential risks and ensuring safer operations.
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Chapter 1

Introduction

In recent decades, there has been a significant increase in research, development,
and application of artificial intelligence [1, 2, 3]. Safety in human workplaces is a
crucial application field of AI, aiming to enhance and maintain a secure working
environment for individuals. Integrating intelligent technologies in workplaces
delivers innovative solutions that contribute to accident prevention, risk mitigation,
and overall safety [4].
In the context of Human-Machine Interaction (HMI), security development is
crucial. Cooperation between humans and machines is widely spread in important
fields such as manufacturing and industrial automation, agriculture, healthcare,
process control systems, and automotive. The final goal of these interactions is to
perform multiple and complex tasks. However, on the other hand, they could lead
to an increase in mental workload and stress for the subjects involved [5]. Those
two factors can negatively influence the task and increase the risk of accidents, so
they should be further investigated.

Mental Workload concerns the cognitive capabilities and effort that an individ-
ual needs to dedicate to achieve one or multiple tasks, and the task’s complexity
influences it, the amount of information processed, and the individual’s cognitive
abilities. Stress results from preoccupation or mental tension arising from challeng-
ing situations, serving as a natural human response that forces us to confront and
navigate the challenges and threats in our lives.
Considering the importance of evaluating these cognitive conditions in the HMI
sector, the literature has primarily identified three methods for assessing mental
workload and stress: subjective questionnaires, behavioural analysis, and physio-
logical signal analysis [6].
Subjective questionnaires are a useful tool but lack real-time applicability. Be-
havioural analysis is a robust methodology but lacks scalability. The physiological
approach, especially with the growth of the biomedical market in recent years, is
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gaining increasing interest.
Presently, there isn’t a reliable and robust solution that effectively correlates stress
and Mental Workload (MWL) with the variations in physiological signals. This
gap underscores the need for further research efforts to bridge this connection.
The absence of a reliable solution for correlating stress and Mental Workload
(MWL) with physiological signals highlights the need for further research efforts to
bridge this gap.
This necessitates comprehensive analyses that consider all relevant physiological
signals through a multimodal approach, understanding the interplay between vari-
ous indicators and their combined impact on assessing stress and mental workload.
Additionally, statistical analysis alone has proven insufficient, emphasizing the
need to integrate Machine Learning (ML) methodologies. ML techniques offer the
potential to uncover patterns and relationships within physiological data that may
elude traditional statistical methods.
This study aims to explore the feasibility of creating an artificial intelligence system
capable of detecting and classifying different levels of stress and cognitive load levels.

The eLions group at the Politecnico di Torino conducted a collection of physio-
logical signals on 61 different individuals using specific tests: the Stroop test and
the N-Back test.
Those trials were chosen as they are established methods for inducing stress and
Mental Workload (MWL), respectively, as evidenced in the literature. They were
developed specifically to yield a significant amount of data for subsequent analyses,
as will be further elucidated. In Figure 1.1, there is a photograph depicting how
the tests were conducted.

The ability to identify the cognitive load and stress levels through signal analysis
could evolve into a technology that helps prevent or alleviate associated risks
during Human Machine Interaction (HMI) with the aid of appropriate sensors.
Consequently, this might trigger supplementary emergency systems to enhance
both operator safety and the overall surrounding environment.
One of the possible real-world applications of this research is in the aerospace sector.
Despite regulations requiring the presence of both a pilot and a co-pilot, in recent
years, there have been numerous studies regarding Single Pilot Operations (SPO).
This involves the possibility of using a single pilot with advanced safety systems
capable of real-time recognition of physical and psychological health conditions,
aiming to achieve an adequate level of safety even in the absence of a physically
present co-pilot.
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Figure 1.1: BiLoad test conducted by a volunteer.

In the initial phase of this project, the focus lies on data collection and prepro-
cessing. This involves gathering four different datasets containing a substantial
number of samples and features.
Once collected, the data undergoes thorough examination to identify and address
any quality issues such as missing values, outliers, or inconsistencies. Data cleaning
tasks, including normalization, and standardization, are carried out to ensure the
dataset’s integrity and suitability for analysis.
Following data preprocessing, statistical analysis techniques are employed to explore
correlations between features and the target variable to guide subsequent modelling
efforts.

Unsupervised algorithms are then employed to uncover patterns, structures, and
relationships within the data without the need for labelled outcomes.
Suitable machine learning algorithms are chosen based on the problem type and
dataset characteristics. The dataset is split into training, validation, and test sets
for model evaluation. Multiple models are trained and cross-validated using various
algorithms and hyperparameters to identify the most robust and highest-performing
ones.

This thesis is structured as follows. In chapter 2, we provide a comprehensive
review of existing literature and research relevant to the topic of our study. Chapter
3 details the materials and methods used in our research, including experimental
procedures and data collection techniques. In chapter 4, we present the findings
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obtained from our study, accompanied by analysis and interpretation. Finally, in
chapter 5, we draw conclusions based on our results and discuss their implications
for future research.

1.1 Objectives of the thesis project
Considering the information provided in the preceding section, to achieve the goal
of developing a robust, multimodal, and flexible Machine Learning framework, the
following objectives have been set:

• Perform a state-of-the-art analysis of machine learning models applied to the
multimodal analysis of physiological signals.

• Develop a data management system to process data acquired by the eLions
research group, to enhance flexibility and efficiency in subsequent project
phases.

• Evaluate the correlation between physiological parameters and the variation
in stress conditions and cognitive load, using statistical analysis.

• Conduct unsupervised research to analyze datasets and find patterns or
intrinsic structures within the data itself

• Implement intelligent models that classify physiological data into different
stress and cognitive load levels.

• Validate the performance of those models using ad hoc tests.
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Chapter 2

Background

This chapter thoroughly explores fundamental concepts relevant to our study,
establishing a strong basis for understanding the context and challenges. We will
begin by investigating the concept of mental workload (MWL) and then examine
the dimension of Stress, both of which are central to our research domain.
Subsequently, we will investigate the process of evaluating testing stress and MWL
levels, underscoring the intricate dynamics involved in this assessment.
We will then inquire into the current state of research in the field, highlighting key
studies and recent advancements that have shaped the existing landscape.
Moving forward, we will explore artificial intelligence algorithms, covering both
traditional Machine Learning (ML) approaches and emerging technologies such as
neural networks and ensemble learning.
In summary, this introductory chapter serves as a pivotal basis, providing a clear and
comprehensive overview of essential concepts and technologies relevant to our study.

2.1 Mental workload
Despite numerous studies conducted on this topic, there is no single definition,
universally accepted of mental workload, it largely depends on the specific research
context, based on which it will have its origins, mechanisms, implications and
measurements.
One of the earliest descriptions of cognitive load was first introduced in the 1940s
by Bornemann and then cited by Manzey [7], and its definition was: "Mental
workloads are classified as activations related to various performance functions
of the human information processing system, forming the basis for the subjective
feeling of strain when dealing with primarily cognitive performance requirements
(e.g., updating memory contents, problem-solving, monitoring complex systems).
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Subsequently, many definitions have been provided, such as mental workload refers
to the portion of operator information processing capacity or resources that is
actually required to meet system demands by Eggemeier et al.[8].
In scientific literature, various terms like cognitive workload or mental fatigue are
used to indicate mental workload. They do not have precise forms and are thus
employed as synonyms in this study, as explained by Luzzani et al.[6].

2.2 Stress
Similarly to mental workload, providing a single, unequivocal definition of stress is
highly complex, as it varies depending on the study and the field of application,
which could be psychological, physiological or behavioural [9].
One of the earliest definitions of stress comes from Hans Selye, who defines it
as a nonspecific response of the body to any demand placed upon it [10]. A
contemporary perspective on stress may be, according to George Fink [11] in 2016,
perception of threat, emotional tension, and difficulty in adjustment that occurs
when environmental demands exceed one’s perception of the ability to cope.

2.3 Stress and MWL relationship
As previously observed, it’s difficult to find a unique definition of Stress and MWL,
but it’s important to emphasize that the two conditions are different but closely
related. One possible understanding of this phenomenon is explained by Debie
et al.[12] which models the relationship of these factors into a multidimensional
schema with four different components.

Figure 2.1: Relationship between MWL and Stress

Task load is the amount of effort needed to complete an assigned task. Mental
load refers to the quantity of cognitive resources an individual possesses, which
can vary based on factors such as genetics, age, health, and experience. Depletion

6



Background

factors are additional elements that can be either positive or negative, such as
stress, fatigue, determination, and mindset. Performance represents the outcome
of this equation, reflecting how well the task is executed.

2.4 Statistical tests
Statistical tests are procedures used to make inferences about population parame-
ters from sample data through hypothesis testing. These tests involve comparing
sample statistics to population parameters and employing probability distributions
to assess the likelihood of observing the data under the null hypothesis, aiding in
determining whether there is sufficient evidence to reject or fail to reject a null
hypothesis.
The null hypothesis (H0) represents a specific claim or assumption about a popula-
tion parameter, such as a mean or proportion. Typically, it states that there is no
effect, difference, or relationship between variables.
Alternatively, the alternative hypothesis (Ha or H1) represents the opposite claim
and is often the focus of researchers’ interest.

2.4.1 Analysis of Variance (Anova) Test
Anova is a robust statistical tool used to evaluate whether there are statistically
significant differences among the means of three or more groups [13]. It relies on the
assumption that observations within each group are independently and identically
distributed (i.i.d.) with a common variance and that the group means are the sole
sources of variation. The null hypothesis suggests that there are no differences in
means across the groups, with any observed discrepancies attributed to random
variation.
Anova partitions the total variability in the data into two components: variability
between groups (explained variability) and variability within groups (unexplained
variability). This partitioning is achieved by estimating the group means and
assessing the extent to which the total variability can be ascribed to differences
between these means, relative to the residual variability within each group.
F-statistic is the statistic test in Anova, it is calculated as the ratio of explained
variability to unexplained variability. A larger F-value indicates that the observed
differences between group means are unlikely to have occurred by chance alone,
providing evidence against the null hypothesis. The statistical significance of the
F-statistic is typically evaluated using the p-value.
The p-value quantifies the probability of observing a test statistic as extreme as,
or more extreme than, the one computed from the data, assuming that the null
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hypothesis is true. A small p-value suggests strong evidence against the null hypoth-
esis, indicating that the observed differences in means are statistically significant.
Conversely, a large p-value suggests that the observed differences could plausibly
have arisen due to random variation alone, leading to failure to reject the null
hypothesis.

Figure 2.2: Boxplot of a feature statistically not significant

Figure 2.3: Boxplot of a feature statistically significant

Figure 2.2 illustrates the distribution of values across different classes for a
feature lacking statistical significance, contrasting with Figure 2.3, which depicts
the distribution for a feature that exhibits statistical significance.

2.4.2 Kruskal-wallis test
The Kruskal-Wallis test is a non-parametric method utilized to assess whether
significant differences exist among two or more independent groups [14]. It serves
as an extension of the Mann-Whitney U test[15], applicable when comparing more
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than two groups.
The Kruskal-Wallis test ranks all the data points from smallest to largest, regardless
of group membership. It then compares the average ranks among the groups to
determine if there are significant differences.
The test statistic, denoted by H, is calculated based on the ranks of the data. It
measures the amount of variability between the groups relative to the variability
within the groups.
Unlike Anova, which assumes data normality, the Kruskal-Wallis test is non-
parametric, making no assumptions about data distribution.
Another notable distinction from Anova lies in the focus of comparison: whereas
Anova examines mean differences, the Kruskal-Wallis test scrutinizes disparities in
population medians.

2.5 Artificial intelligence
According to Russell and Norvig [16] we can categorize various definitions of AI
into four areas based on two dimensions as illustrated in Figure 2.4.

Figure 2.4: Organized definition of Artificial Intelligence

The definitions of thought and reason are found in the top row, while the bottom
row pertains to behaviour. The columns differ based on purpose: whether the aim
is to faithfully replicate human performance or to strive towards an ideal behaviour
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called rationality.

In contemporary times, Artificial Intelligence (AI) has multiple branches, each
making a unique contribution to the development of new technologies, below, some
of them will be listed and briefly explained:

• Machine Learning (ML): ML is a subset of AI that focuses on developing
algorithms that enable computers to learn from and make predictions or
decisions based on data.

• Deep Learning (DL): Deep Learning, a subset of ML, involves neural networks
with many layers, capable of learning complex patterns in large amounts of
data.

• Natural Language Processing (NLP): NLP deals with the interaction between
computers and humans using natural language. Applications include sentiment
analysis, language translation, chatbots, and text summarization.

• Computer Vision (CV): CV focuses on enabling computers to interpret and
understand the visual world. Applications include object detection, image
classification, facial recognition, medical image analysis, and autonomous
drones.

• Generative Models: Generative models are AI algorithms capable of generating
new data samples similar to those in the training dataset. Applications include
image generation, text generation, and data augmentation for training other
models.

In the subsequent sections of this chapter, we will delve into the algorithms
employed in this study, starting with an examination of the difference between
supervised and unsupervised algorithms. Moreover, supervised algorithms can
be further categorized into subgroups, of which we will explore those specifically
applied in this project: classical machine learning algorithms, ensemble learning,
and deep learning.

2.6 Supervised vs Unsupervised Learning
Machine Learning can be categorized into two main branches: supervised and
unsupervised learning.

• Supervised learning refers to algorithms that learn from labelled data,
meaning they are trained with both feature data and corresponding target
labels. The objective is for the algorithms to understand the relationship
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between the input and output. With sufficient training data, they can then
classify unseen data accurately [16, 17].

• Unsupervised learning includes all those algorithms are trained without
labelled output categories. The goal of these algorithms is to construct
representations of the input data and uncover patterns, aiming to extract
meaningful insights or representations from the data [18].

2.7 Unsupervised Learning

We have previously observed that the defining characteristic of unsupervised
algorithms is the lack of labelled data. Now, let’s explore the strengths and
applications of this type of algorithm. According to Ankur Patel [19] unsupervised
algorithms excel in scenarios where data patterns are ill-defined or change over time.
Additionally, these algorithms are flexible and scalable, and they can be combined
with supervised techniques. They also offer benefits in addressing challenging
data science issues such as insufficient labelled data, overfitting, the curse of
dimensionality, data drift, outlier problems, and data visualization.

2.7.1 T-Distributed Stochastic Neighbor Embedding

t-Distributed Stochastic Neighbor Embedding is an unsupervised learning algorithm
invented in 2008 by van der Maaten and Hinton [20] that can high-dimensional
data by giving each datapoint a location in a two or three-dimensional space.
t-SNE can incorporate the implicit structure of all data by employing random
walks on neighbourhood graphs, thereby affecting the visualization of a subset of
the data.
It is particularly beneficial for handling very large datasets due to its ease of
optimization and ability to create visualizations that mitigate the tendency to
cluster points densely in the centre of the map, a drawback present in some other
algorithms.
However, it’s worth noting that t-SNE has some limitations. It can be computa-
tionally expensive, especially for large datasets, and the results can be sensitive to
the choice of parameters and random initialization.
Despite these limitations, t-SNE remains a powerful tool for visualizing and explor-
ing complex datasets in a lower-dimensional space.
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Figure 2.5: Example of t-SNE chosen from the original paper [20]

2.7.2 Density-Based Spatial Clustering of Applications with
Noise

Density-Based Spatial Clustering of Applications with Noise (DBSCAN) is an
unsupervised clustering algorithm introduced in 1996 by Ester, Kriegel, Sander e
Xu [21].
Different from other clustering algorithms, DBSCAN can identify clusters of arbi-
trary sizes and, simultaneously, is capable of detecting outliers.
The algorithm in question employs a density-based approach to estimate the density
surrounding individual data points. It accomplishes this by tallying the number of
points falling within a designated distance parameter, denoted as ϵ. Subsequently,
the algorithm utilizes specified thresholds termed minPts to discern three distinct
categories: "core," "border," and "noise" points within the dataset.
Core points are identified based on their density, with each point possessing a
sufficient number of neighbouring points within the designated ϵ range. These core
points are fundamental in the clustering process.
Upon identifying core points, the algorithm then proceeds to group them into
clusters if they satisfy the condition of being "density-reachable." This criterion
implies the existence of a contiguous chain of core points, with each consecutive
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point residing within the ϵ-neighborhood of the preceding one.
Border points, meanwhile, are points that do not meet the criteria to be considered
core points but are located within the vicinity of a core point.
These border points are subsequently assigned to the clusters formed by the core
points they are adjacent to.
Finally, the algorithm identifies noise points, which are data points that fail to
meet the density requirements for core or border point classification. These noise
points are typically treated as outliers within the dataset.
The selection of MinPts and ϵ parameters is critical for accurate clustering. To
address this, the elbow method could be employed to optimize these parameters[22].
This method involves plotting the distances to the k-th nearest neighbour against
the data points and identifying the point where there is a significant change in
slope. This point corresponds to the optimal epsilon value, which determines the
neighbourhood radius for density estimation in DBSCAN.

2.7.3 Principal component analysis
Principal Component Analysis (PCA) was invented in 1901 by Pearson during his
work on correlation coefficient [23] and then Harold Hotelling further developed
the method in 1933 [24], refining its concepts and applications to become more
aligned with its modern interpretation and usage.

Figure 2.6: Example of PCA applied to 2D data [25].

The primary objective of PCA is to reduce the dimensionality of high-dimensional
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data by transforming it into a new set of variables known as principal components.
These components capture the majority of the variance present in the data. This
algorithm could also be used for data visualization, noise reduction, and data
compression. In Figure 2.6, there is a visual example of the application of PCA.

2.8 Supervised Learning
Supervised learning is the predominant approach in machine learning, utilizing
labelled data to learn and predict new samples.
The two primary types of supervised learning tasks are regression, where the model
learns to predict continuous output values, and classification, where the model
learns to assign discrete labels or categories to input data [26]. In the following
subsections, we will analyze some of the most common supervised algorithms.

2.8.1 Linear Discriminant Analisys
Ronald A. Fisher, a British statistician and geneticist, introduced Linear Discrimi-
nant Analysis (LDA) as a technique to identify a linear combination of features
capable of distinguishing between two or more classes of objects or events [27].
Initially, Fisher developed LDA to classify different varieties of flowers based on
their measurements. The core principle of Linear Discriminant Analysis (LDA)
involves determining a linear combination of features that effectively distinguishes
between different classes in the dataset. This is accomplished by maximizing
the dispersion between classes while minimizing the dispersion within each class.
Essentially, LDA seeks to reduce the dimensionality of the data while retaining
the crucial discriminative details that distinguish one class from another. Linear
Discriminant Analysis (LDA) is designed to achieve two primary goals: reducing di-
mensionality by decreasing the number of features or variables under consideration
and serving as a classification algorithm. To classify it, it characterises each class’s
distribution using Gaussian distributions and computes the posterior probabilities
of class membership for new instances. Subsequently, LDA assigns class labels to
the instances based on these probabilities [26].

2.8.2 K-Nearest Neighbors
K-nearest neighbours algorithm (KNN) is a non-parametric supervised learning
method initially developed by Evelyn Fix and Joseph Hodges in 1951 [28]. Thomas
Cover and Peter Hart later expanded upon this method [29]. It is commonly
employed for both classification and regression tasks.
The central concept of KNN revolves around the similarity between neighbouring
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elements. When the algorithm predicts a new label or value, it computes the dis-
tance between the new point and all stored data points. Subsequently, it identifies
the K nearest neighbours and, through a voting scheme, predicts the label or value
for the new point [30].

Figure 2.7: An example taken from Prasath et al.[31] of KNN with K=3 as a
solid line and K=5 as a dashed line, we can observe that based on the K value the
new point could be classified in two different categories.

Selecting the appropriate value for K is crucial; a small value may increase sus-
ceptibility to noise, whereas a larger K may result in smoother decision boundaries
but lower local accuracy, an example of the importance of this choice can be found
in Figure 2.7.
Another significant consideration is properly scaling the features. The objective is
to mitigate the influence of varying scales on distance calculations.
Unlike traditional model-based approaches, KNN does not construct a model dur-
ing training. Instead, it adopts a memory-based approach, retaining all available
training data points along with their associated labels or values. Consequently,
the computational complexity of KNN grows linearly with the size of the training set.

2.8.3 Support Vector Machine
Support Vector Machine (SVM) was initially theorized by Vapnik and Chervonenkis
in 1964 [32] and later developed by Vapnik himself and other colleagues in the
1990s at the AT&T Bell laboratories [33]. SVM is a supervised learning algorithm
used in classification and regression tasks and it could be linear or not linear. In
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the case of linearly separable data, the SVM algorithm aims to find the optimal
hyperplane that effectively divides the two classes while maximizing the margin
between them. This optimization task involves solving a mathematical problem
to determine the best position and orientation of the hyperplane. The goal is to
achieve the widest possible margin, which increases the robustness of the classifier
and enhances its ability to generalize to new data points.

Figure 2.8: An example of linear hyperplane from Dustin Boswell’s paper[34]

The kernel trick becomes valuable when dealing with data that is not linearly
separable. This technique allows the SVM to effectively handle non-linear patterns
by mapping the input features into a higher-dimensional space using a kernel
function. By transforming the data into a space where linear separation is feasible,
the algorithm can create a linear boundary that effectively separates the classes.
This approach is advantageous because it avoids the explicit calculation of the
transformation into higher-dimensional spaces, thus maintaining computational
efficiency.

The most commonly used kernel functions include the polynomial kernel, Gaus-
sian (RBF) kernel, and sigmoidal kernel. Each of these functions offers different
properties and is suitable for different types of data and classification tasks.
Furthermore, the efficiency of SVM is enhanced by its ability to compute the
projection of feature vectors using dot products instead of explicitly calculating
the transformation into higher-dimensional spaces.
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Figure 2.9: An example of kernel trick from Dustin Boswell’s paper[34]

This computational strategy allows SVM to efficiently handle large datasets and
complex classification problems.
SVM, originally a binary classification algorithm, can be adapted to handle mul-
ticlass classification tasks using techniques such as one-vs-one and one-vs-all ap-
proaches.
In the one-vs-one approach, multiple binary classifiers are created, each trained
to distinguish between a pair of classes. During prediction, the class receiving the
most votes from these binary classifiers is selected as the final prediction.
Alternatively, in the one-vs-all approach, SVM trains a separate binary classifier
for each class, treating samples from that class as positive examples and samples
from all other classes as negative examples. The class with the highest decision
score among all classifiers is then assigned to the input sample.
These adaptations enable SVM to effectively address multiclass classification prob-
lems by extending its binary classification capabilities.

2.9 Ensemble Learning

Ensemble learning algorithms are a type of supervised learning method in which
multiple base learners are trained to address the same problem and then combined
to enhance overall performance.
The key distinction between ensemble learning algorithms and traditional machine
learning methods lies in their approach to hypothesis generation. Instead of seeking
the single best hypothesis, ensemble learning constructs a set of hypotheses and
assigns weights to each, effectively creating a classifier through a weighted voting
process.
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2.9.1 Random Forest
The origins of this ensemble learning algorithm are due to more than one researcher,
in particular, Tin Kam Ho [35], Leo Breiman [36, 37], and Adele Cutler[37]
contributed actively to the research and development in different stage and method-
ologies.
To properly understand how Random Forest works, it’s fundamental to first com-
prehend the mechanics of a decision tree. A decision tree is a classifier or regressor
that constructs a hierarchical partition of the instance space through recursive splits
[38]. Conceptually, it resembles a flowchart structure, where each node corresponds
to a decision based on a feature, and each leaf represents the final classification of
an instance. These trees are constructed by recursively partitioning the training
data into clusters based on the values of features, aiming to create branches that
maximize the uniformity of the target labels in each subset.

Figure 2.10: Visualization of a Random Forest model [39]

Random forest builds a multitude of decision trees that perform several predic-
tions or regressions, which are aggregated to choose the outcome. These decision
trees are all different and are trained only on a subgroup of randomly selected
features. This randomness helps to reduce overfitting compared to standalone
decision trees. Additionally, it improves the generalization and robustness of the
model, being able to leverage the influence of a more assorted set of features.

2.9.2 Adaptive boost
Adaptive Boosting, also known as AdaBoost, is an ensemble learning algorithm
designed for classification tasks. It was developed by Yoav Freund and Robert
Schapire in 1996 [40][41] .
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A weak learner is a model with limited predictive power that performs slightly
better than random guessing on a given task, typically they are small decision
trees. AdaBoost combines multiple weak learners to create a robust ensemble model
capable of effectively handling complex data distributions.

AdaBoost operates through a process that iteratively trains weak learners, each
subsequent learner focusing more on the instances misclassified by preceding weak
learners. Through this adaptive boosting mechanism, AdaBoost assigns higher
weights to misclassified instances, forcing subsequent weak learners to prioritize
their correct classification.
One of the key advantages of AdaBoost is its ability to build a strong ensemble
model by combining the outputs of these weak learners, effectively leveraging their
collective wisdom to overcome individual shortcomings. This ensemble approach
enhances predictive performance and improves generalization to unseen data

2.9.3 eXtreme Gradient Boost
Extreme Gradient Boosting (XGBoost) was developed by Tianqi Chen in 2014
[42] and gained considerable attention by winning numerous machine learning
competitions. It is available as open-source software in various frameworks.
Similarly to other ensemble learning algorithms, XGBoost combines multiple weak
learners (usually decision trees) sequentially to create a strong learner, but it
improves the predictive model by minimizing a loss function with a gradient-based
method. It is widely adopted due to its scalability and speed, thanks to highly
parallelizable computations. Furthermore, it implements regularization techniques
like L1 and L2 regularization to prevent overfitting and improve generalization.

2.10 Deep Learning
Deep Learning constitutes a subset of machine learning algorithms that heavily
rely on artificial neural networks. The term "deep" denotes the multiple layers of
interconnected nodes within these networks [43].
Artificial Neural Networks (ANNs) are composed of artificial neurons, mathematical
abstractions inspired by biological neurons. Similar to their biological counterparts,
artificial neurons receive input signals, process them, and generate output signals.
These neurons are organized into layers and interconnected within and across layers.
The learning process in ANNs mirrors that of biological systems, adjusting connec-
tion weights based on experiences to enhance performance. However, it’s crucial to
note that even the most complex ANNs are significantly simpler than the human
brain, which contains billions of neurons and trillions of synaptic connections [44].
Despite their relative simplicity compared to the brain, neural networks exhibit
remarkable flexibility and can be applied across various domains. They excel in
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tasks such as image and speech recognition, natural language processing, robotics,
and more.

2.10.1 Multi-Layer Perceptron
In 1957, Frank Rosenblatt introduced the perceptron, a type of single-layer neural
network capable of binary classification tasks [45]. The perceptron represented one
of the earliest practical implementations of neural network models. After years of
refinement and significant advancements, we arrived at the modern-day Multi-Layer
Perceptron (MLP) [46, 47, 48, 49].

Figure 2.11: Above: diagram depicting a Multi-Layer Perceptron (MLP) architec-
ture featuring four hidden layers. Below: An illustration depicting a fundamental
"neuron" model with n inputs, where a neuron is obtained by applying nonlinear
transformations to linear combinations of inputs [50].

MLPs are feedforward artificial neural networks composed of interconnected
artificial neurons with nonlinear activation functions. They are trained using
backpropagation algorithms, which adjust the weights between nodes to minimize
the error between predicted and actual outputs. This enables MLPs to effectively
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handle nonlinear patterns in data. Figure 2.11 provides a visual representation of
both an MLP schema and an artificial neuron.

2.11 State of the art
In this section, the state-of-the-art analysis will focus on the utilization of artificial
intelligence (AI) in studying stress and mental workload (MWL), particularly
through the analysis of physiological signals.

2.11.1 Biosignals for physiological mental workload and
stress evaluation

Extensive research was conducted on scientific papers that examined or suggested
methods for assessing mental workload and/or stress through the utilization of
physiological signals and artificial intelligence algorithms. Starting from a sample
of hundreds of articles, they were found, analyzed, and screened until a subset of
61 papers that dealt with the analysis of mental workload (MLW) and stress using
artificial intelligence algorithms on features generated from physiological signals.

Model Signals Author N
SVM ECG, EDA, EMG Zhang et al. [51] 9

ECG, EDA, EMG, RSP Katsis et al. [52] -
EDA Setz et al. [53] 62
ECG Wei et al. [54] 16
EDA Ghaderyan et al. [55] 35
EDA, HR, ST Romine et al. [56] 7
ECG, RSP, ST Ghaderi et al. [57] 7
ECG, EDA, ST Kim et al. [58] 50
BVP, EDA, EYE, ST,
SPC

Zhai et al. [59] 32

ECG, EDA, FE, RSP Katsis et al. [60] 10
BVP, EDA, EEG, HRV,
RR

Hosseini et al. [61] 15

EDA, SPC Kurniawan et al. [62] 10
PPG McDuff et al. [63] 10
EDA, EEG, ST, FE Sharma et al. [64] 13
EEG Hou et al. [65] 9
EEG, fNIRS Al-Shargie et al. [66] 22
PPG Maaoui et al. [67] 12
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Model Signals Author N
SVM PPG , FE Giannakakis et al. [68] 23

EEG Khosrowabadi et al.
[69]

26

ECG, PCG Cheema et al. [70] 30
ECG, EEG Xia et al. [71] 22
EDA, EYE Nourbakhsh et al.[72] 13
ECG, EDA, SPC Mijic et al.[73] 40
ECG, EDA, EEG, EYE,
RESP

Barua et al.[74] 66

ECG, EDA, ST Gjoreski et al.[75] 23
EDA, EEG, PPG Arsalan et al.[76] 28
ECG, EEG Pratiher et al.[77] 31

LDA EDA Setz et al. [53] 62
fNIRS Herff et al. [78] 10
ECG, EDA, EMG, RSP Healey et al. [79] 24
BVP Nhan et al. [80] 12
ECG, EDA, Motion Giakoumis et al. [81] 21
HRV Melillo et al. [82] 42
ECG, EDA, EEG, EMG Minguillon et al. [83] 10

KNN EDA, HR, ST Romine et al. [56] 7
EMG Karthikeyan et al. [84] 10
ECG, EDA, EMG, RSP Wijsman et al. [85] 30
EEG Hou et al. [65] 9
FE, PPG Giannakakis et al. [68] 23
ECG, EDA, ST Anusha et al. [86] 34
EEG Khosrowabadi et al.

[69]
26

EDA, HR, ST Airij et al. [87] 35
ECG, EDA, EEG, EYE,
RESP

Barua et al.[74] 66

Neural Networks ST, HR, EDA Romine et al. [56] 7
EEG, EDA, ST, FE Sharma et al. [64] 13
Pupil, EDA Pedrotti et al. [88] 33
ECG, EDA, BVP Huysmans et al. [89] 12
EEG Yin et al.[90] 7
EDA,EEG,ECG,R Han et al.[91] 8
ECG,EDA,RSP Alic et al.[92] 77

MLP EEG,EDA,PPG Arsalan et al.[76] 28
EEG Asif et al. [93] 27
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Model Signals Author N
LSTM EEG, ECG, EDA, RSP,

HR
Huang et al.[94] 15

CNN EEG, ECG, EDA, RSP,
HR

Huang et al.[94] 15

Dynamic BN Heart, EYE, Skin, FE Liao et al. [95] 5
Graph NN EDA, ST, HR Lee et al. [96] 80
Fuzzy Network EDA, ST, HR Lee et al. [96] 80

Heart, EYE, Brain, RSP,
FE, Voice

Pongsakornsathien et
al. [97]

-

FE, ECG, EDA, RSP Katsis et al. [60] 10
HR, EDA, ST Airij et al. [87] 35

Elman NN BVP, HR, EEG, EDA,
PPG

Khalilzadeh et al. [98] 9

EEG, BVP, EDA, HRV,
RR

Hosseini et al. [61] 15

Probabilistic NN ST Karthikeyan et al. [99] 60
LR EDA, HR, ST Romine et al. [56] 7

EEG Asif et al. [93] 27
EDA, HR, ST Gjoreski et al.[75] 23

GenLR FE, PPG Giannakakis et al. [68] 23
Random Forest SPC Simantiraki et al. [100] 9

Brain McKendrick et al.
[101]

34

ST, HR, EDA Romine et al. [56] 7
Pupil, EDA Ren et al. [102] 30
ECG, EDA, RESP, EEG,
EYE

Barua et al.[74] 66

HR, EDA, ST Gjoreski et al.[75] 23
ECG, EEG Pratiher et al.[77] 31

Naive Bayes EDA, ST, HR Romine et al. [56] 7
Pupil, EDA Ren et al. [102] 30
PPG McDuff et al. [103] 10
PPG, FE Giannakakis et al. [68] 23
EDA,EYE Nourbakhsh et al.[72] 13
EEG,EDA,PPG Arsalan et al.[76] 28

Decision Tree ST, HR, EDA Romine et al. [56] 7
Pupil, FE Baltaci et al. [104] 11
SPC, EDA Kurniawan et al. [62] 10
HR, EDA, ST Gjoreski et al.[75] 23
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Model Signals Author N
Bayes classifier EDA, ECG, RSP, EMG Wijsman et al. [85] 30
ElasticNet Brain McKendrick et al.

[101]
34

FisherDA BVP, RR Nhan et al. [80] 12
ECG, EDA Vila et al. [105] 20
ECG, EDA, RSP, EMG Wijsman et al. [85] 30

QuadraticDA ECG, EDA, ST Anusha et al. [86] 34
AdaBoost ST, HR, EDA Romine et al. [56] 7
AdaBoost FE, EYE Baltaci et al. [104] 11
XGB ECG, PPG, RSP, ST Momeni et al.[106] 24
XGB ECG, EDA, EEG, RSP,

HR
Huang et al.[94] 15

GB ECG, EEG Pratiher et al.[77] 31
NCC EDA Setz et al. [53] 62
K-Means EDA, SPC Kurniawan et al. [62] 10
Clustering - Iqbal et al.[107] -
GMM EDA, SPC Kurniawan et al. [62] 10
HMM SPC Womack et al. [108] 11

SPC Zhou et al. [109] 16
SPC Shukla et al. [110] 15

GEE ECG, EDA, EMG, RSP Wijsman et al. [111] 30
GA EDA, EEG, FE, ST Sharma et al. [64] 13
SelfOrgMap BVP, ECG, EDA Huysmans et al. [89] 12

Table 2.1: Comparative Table of machine learning algorithms, signals, and paper
citations

In Table 2.11.1, are listed the sixty-one different papers that were collected. The
Table also includes the analyzed signals, authors, paper citations and the number
of samples treated. All abbreviations referenced in the Table are detailed within
the glossary.
Upon analysis of these publications, it is apparent that the physiological signals
showing a stronger correlation with variations in stress and mental workload include
heart activity, electrodermal activity, temperature, eye movement, brain activity,
respiration, facial and speech recognition.

In Figure 2.12, the distribution of different AI algorithms used for classifying
states of mental workload and stress is shown. The predominant usage in the
classification of stress and cognitive load from biological signals is Support Vector
Machine (SVM), followed by Deep Networks, KNN, Linear Discriminant Analysis
(LDA), and Bayesian classifiers, as indicated by the graph.
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Figure 2.12: Algorithms used for MWL and Stress classification

The aforementioned algorithms have been used to classify stress or cognitive work-
load, and some of them will be discussed for each of the two categories.
Regarding the CWL stand-alone, there are several ways multimodal classification
has been performed. For example, Nourbakhsh et al. [72] used features from
electrodermal activity (EDA) and eye blinks. They classified different levels of
Mental Workload during arithmetic tasks using SVM and Naive-Bayes algorithms
for both the binary and multiclass classification.
Another mixture of different biological signals was employed by Mijic et al. [73]
that used arithmetic tasks to induce cognitive load. This analysis integrated the
electrocardiogram (ECG) and electrodermal activity (EDA) with paralinguistic
speech features. They conducted evaluations on both individual signals and their
combined forms, utilizing SVM for classification.
One of the most heterogeneous studies in terms of signals and algorithms was
conducted by Barua et al. (2020) within the context of a car driving simulator.
They utilized classifiers such as k-nearest neighbour (KNN), support vector machine
(SVM), and random forest (RF), integrating data from electroencephalography
(EEG), electrooculography (EOG), ECG, respiration, and Galvanic Skin Response
(EDA). This data was combined with contextual information from the simulator,
including details about vehicles and the driving environment. The study aimed to
classify cognitive load ranges by employing various driving tasks, including 1-back
and 2-back tasks.
In this context, there was also a challenge proposed by Gjoreski et al [75] where
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participants were tasked with implementing a machine learning model capable of
binary classification of cognitive load presence in 23 subjects performing the N-Back
test, using multimodal features from heart, skin conductance, and skin temperature.
Thirteen models were proposed, with SVM and decision trees emerging as the
best-performing ones.
Several other examples can be referenced regarding the classification of CWL,
employing techniques of varying complexity [106, 90, 112, 91, 94].
Regarding stress assessment and classification, numerous studies can be found in
the literature. Sharma et al.[113] examined and reviewed the most reliable sensors
and significant features by comparing previous studies, identifying the Support
Vector Machine (SVM) as the most accurate classification algorithm.
Alic et al. in 2016 explored the use of more complex algorithms, such as neural
networks, to detect elevated stress levels in a sample of 77 individuals. They utilized
data from ECG signals, EDA, and respiration for their analysis.
Moreover, in 2019 Arsalan et al. [76] used electroencephalography (EEG), elec-
trodermal activity (EDA) and photoplethysmography (PPG) to classify perceived
human stress using SVM, the Naive Bayes classifier, and multi-layer perception
(MLP).
A study aiming to render classification more objective was carried out by Iqbal
et al.[107], who conducted an analysis comparing various types of unsupervised
algorithms to achieve stress level classifications without the use of subjective ques-
tionnaires.
One of the most recent and innovative studies was conducted by Pratiher et al. [77]
utilized VR gaming as a method to induce stress in patients, extracting multimodal
electrocardiogram (ECG) and electroencephalogram (EEG) signals to classify stress
induced by gaming difficulty.

As highlighted by the cited studies and past comparative research, there is no
single method for inducing and measuring stress and cognitive load, nor is there an
algorithm that behaves uniformly. Both of these aspects depend on the type of
tests, signals involved, and methodologies used.

2.12 Tests

In psychological and cognitive assessment, various tests are available to evaluate
variations in stress and mental workload, which are the two states investigated in
this study. The Stroop Color and Word Test were selected to induce and assess
stress, while the N-Back Test was chosen to evaluate mental workload.
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2.12.1 Stroop test

The Stroop Color and Word Test is a psychological assessment tool used to measure
cognitive processing speed and selective attention invented by John Ridley Stroop
in 1935 [114].

Figure 2.13: Incongruent ink colours used for Stroop test

During the test, participants are presented with a series of colour words, such as
’red,’ ’blue,’ or ’green,’ printed in incongruent ink colours, for example, the word
’red’ written in blue ink as shown in Figure 2.13. The participant’s objective is to
identify the colour of the ink while disregarding the written word itself.
According to Tulen et al.[115], the Stroop test is a test for the study of stress-
induced sympathetic effects, based on psychological, physiological, and biochemical
responses.

2.12.2 N-Back test

The N-Back Test is indeed utilized to modulate Mental Workload (MWL) by
altering cognitive demand levels. Widely acknowledged in the literature, this test
is adaptable across diverse sensory modalities, encompassing both auditory and
visual stimuli [116].
Its iterations involve participants in tasks necessitating the recollection of previously
presented items within a sequence. Irrespective of variations, the fundamental
objective remains consistent: to evaluate and strain working memory capacity by
tasking individuals with the accurate recall and identification of items encountered
at different stages of the sequence. Figure 2.14 depicts a sequence of letters arranged
horizontally, with some of them connected based on the corresponding N-Back.
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Figure 2.14: Different N-Back stages

2.13 BiLoad project
This study is originated from the BiLoad project of the eLions group at Politecnico di
Torino. In earlier stages, the group created a test that induced stress and cognitive
load based on the Stroop and N-Back tests. Sixty-one volunteers participated in
the study.

2.13.1 BiLoad test
The BiLoad test consists of a Stroop test and three different versions of the N-Back
task: visual, auditory, and dual, all performed at three different levels of complexity.
During test sessions, all participants were required to follow a standardized protocol
for recording various physiological signals while engaging in cognitive tasks.
Before each session, participants were briefed on the study’s objectives and asked
to provide informed consent.
Before the start of the experiment, participants were equipped with all sensors in-
cluded in the BiosignalPlux Professional KIT [117], which encompass electrodermal
activity (EDA), electrocardiogram (ECG), respiration, temperature, and FNIRS
sensors. Additionally, they wore Tobii Glasses 3 to assess eye movements [118].

Before the actual testing phase begins, the user could try two demos to become
familiar with the equipment and ensure comprehension of the test procedures. All
the tests were previously developed in MATLAB.
Figure 2.15 provides an example of how the Stroop and N-Back tests are displayed.
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Figure 2.15: Screenshots from Biload test[119]

The test begins with a resting phase called Rest 1, during which the user is
asked to remain silent and relaxed for 3 minutes. The first evaluation involves the
Stroop test, performed with three levels of difficulty:

• Stroop 1: Words and colours are congruent, and the positions of the buttons
remain unchanged.

• Stroop 2: Words and colours are incongruent, and the position of the buttons
varies with each response.

• Stroop 3: An auditory distractor is added, randomly pronouncing the names
of the colours involved.

Throughout both the Stroop and N-Back tests, a recognizable visual and auditory
stimulus is presented in case of correct or incorrect responses. Following the
completion of all Stroop tests, a subsequent rest phase (Rest 2) lasting 3 minutes
was implemented. Afterwards, the N-Back tests were conducted, also divided into
three levels of difficulty (1,2 e 3), each requiring the participant to recall the N
previous steps in three different methods:

• Visual N-Back: For each question, a square on a 3x3 grid is coloured, and if
the same position was highlighted in the previous N steps, the user must click
a "position" button.

• Audio N-Back: A letter is announced audibly, and if the same letter was
pronounced in the previous N steps, the user must press the "audio" button.

• Dual N-Back: Both previous stimuli are used simultaneously, requiring the
participant to memorize both the positions of the blocks and the letters
pronounced in the previous N steps. If either stimulus is repeated in the last
n steps, the user must press the correct button: "Audio" or "Position".
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Finally, another rest period of 40 seconds is observed (Rest 3). Following the
conclusion of both tests, individuals are required to respond to a questionnaire.
This questionnaire investigates the extent of difficulty felt by the user concerning
stress and cognitive load for each test and its levels of complexity, using a scale
comprising three different degrees.
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Chapter 3

Materials and Methods

Figure 3.1: Machine learning project workflow [120]

The illustration depicted in Figure 3.1 outlines the standard approach utilized in
applying machine learning for predictive modelling, which has been adopted during
development. This approach is segmented into four key components: pre-processing,
learning, evaluation, and prediction.

The following sections of this chapter will provide a detailed examination of the
approaches employed for each stage.
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3.1 Preprocessing
Preprocessing in a machine learning project refers to the steps taken to prepare
and clean the raw data before feeding it into the ML model.
It involves transforming the data into a format that is suitable for analysis and
training. It helps ensure the quality of the data and enhances the performance of
the model.

3.1.1 Datasets generation
Starting from the data obtained by the BiLoad project, a Python program was
developed to manage and create datasets. The records, stored in .csv files across
61 different folders, correspond to various users on whom tests were conducted.
Each user’s data includes entries for three different test levels, along with reference
values measured during REST 1. Furthermore, in the process of merging the data
related to a specific test, the subjective responses provided by the subjects in the
questionnaire were merged and used as labels.
These responses were also contained in a CSV file containing all the provided
subjective answers. At the end of this process, four datasets were obtained in
Pandas DataFrame format, each related to a test: Stroop, Visual N-Back, Audio
N-Back, and Dual N-Back. Each dataset contains four instances per subject (one
for the rest phase and one for each difficulty stage) resulting in 244 samples, each
containing 111 physiological features.

Population

The volunteer population cover ages from 19 to 41 years old, with a mean age of
23.51 years and a standard deviation of 3.19.
In terms of gender distribution, data was collected from 50.8% men and 49.2%
women.
The Figure depicted in 3.2 presents a balanced distribution of genders, with a
notable concentration of individuals aged between 20 and 29.

Class distribution

As can be seen by observing Figure 3.3, the datasets related to Visual N-Back
and Audio N-Back have balanced classes, while the Stroop test dataset exhibits
a deficiency in class number 3 and the dual N-Back dataset lacks samples for class 1.
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Figure 3.2: Age and gender distribution

Figure 3.3: Class Distribution
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3.1.2 Features
The features contained in the dataset were previously extracted during the develop-
ment of the BiLoad project. Each feature can be categorized based on the sensor
that detected the physiological signal.

Initially, there were six different categories present in the dataset:

• ECG [10 feature]: Electrocardiogram features related to the electrical activity
of the heart.

• EDA [8 feature]: Electrodermal activity, also known as Galvanic Skin Response
(GSR). It is a physiological measure that reflects the activity of the sweat
glands in the skin, influenced by the autonomic nervous system.

• TEMPERATURE [14 feature]: Body temperature, regulated by the body’s
thermoregulatory system, helps maintain the internal temperature within a
narrow range despite changes in external conditions.

• RESP [18 feature]: Respiration features, refer to the process of inhaling and
exhaling air, vital for exchanging oxygen and carbon dioxide in the body.

• EYE [38 feature]: Features extracted by Tobii glasses related to eye move-
ments.

• FNIRS [23 feature]: Stands for functional Near-Infrared Spectroscopy. It
is a non-invasive neuroimaging technique used to measure brain activity by
detecting changes in blood oxygenation levels in the brain.

Appendix A.1 contains a Table with all the features and their acronyms.

3.1.3 Feature scaling
Feature scaling in data analysis refers to the process of adjusting numerical values
within a dataset to a consistent scale. This ensures that all variables are comparable
and it helps in tasks like visualization and model training. It’s important to note
that it doesn’t alter the distribution of the original data, only its scale.

BiLoad feature scaling

During the project, two different methods of feature scaling have been utilized:
min-max normalization and standardization.
Across each dataset, both methods were applied intra-sample, covering every par-
ticipant’s four samples.
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Min-max normalization Min-max normalization scales data between 0 and 1
and is commonly used when the distribution of the data doesn’t follow a Gaussian
distribution. The formula for min-max normalization is:

Xnorm = X − Xmin

Xmax − Xmin

where X is the original value, Xnorm is the normalized value, Xmin and Xmin are
respectively the minimum and maximum value in the set.

Standardization Standardization or z-score normalization is a technique that
transforms features so they have a mean of 0 and a standard deviation of 1. The
formula for standardization is:

z = x − µ

σ

where z is the standardized value, x is the original value of the feature, µ is the
mean of the feature and σ is the standard deviation of the feature. Standardization
is especially resilient to outliers and is advised when the data distribution closely
approximates a Gaussian distribution.

3.1.4 Feature selection
Feature selection is the process of choosing a subset of pertinent features for
constructing models.
The goal of this method is to reduce training time, avoid the curse of dimensionality,
remove irrelevant features, and reduce noise.

BiLoad feature selection

In this project, two different tests have been used to evaluate feature importance:
the Anova test and the Kruskal-Wallis test. They are both statistical tests used to
calculate the p-values of the features.
The p-value, or probability value, is a measure used in statistical hypothesis testing
to determine the significance of an observed result. It quantifies the strength of
evidence against the null hypothesis.
In both cases, features were selected if they had a p-value lower than a threshold
of 0.05; otherwise, they were not included and were not used for model training
and evaluation.
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3.1.5 Dimensionality Reduction

Dimensionality reduction is a technique in machine learning employed to decrease
the number of features in a dataset while preserving essential information.
It is particularly useful when a dataset has a high number of features compared
to the number of samples. This process helps in simplifying models, improving
algorithm performance, and aiding data visualization.

BiLoad Dimensionality Reduction

In this work, two different approaches have been used: Principal Component Anal-
ysis and Linear Discriminant Analysis, both of which have already been introduced
in the background chapter (2). Although both can be used as dimensionality
reduction techniques, it is important to emphasize that PCA is an unsupervised
learning technique, while LDA is a supervised algorithm, meaning it can utilize
labels to perform its task.

Feature Selection vs Dimensionality Reduction

Feature selection and dimensionality reduction are two techniques for reducing
features, that aim to address the challenges posed by high-dimensional data, which
may appear similar. Still, they achieve this goal through different modalities.

Feature selection involves choosing a subset of relevant features while discarding
others, whereas dimensionality reduction aims to capture the property of the data
in a lower-dimensional space.

Dimensionality Reduc�on Feature Selec�on 

Figure 3.4: Dimensionality reduction and feature selection mapping
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3.2 Learning and evalutation
In the learning and evaluation phases, the model is first trained on pre-processed
data to learn patterns and relationships between input features and the target
variable. This involves selecting an appropriate algorithm, tuning hyperparameters,
and minimizing error between predicted and actual outcomes using a training
dataset. Subsequently, the model’s performance is evaluated using a separate
validation dataset to assess its ability to generalize to unseen data. Evaluation
metrics such as accuracy, precision, recall, or F1-score are employed to compare
the model’s performance against predefined criteria

3.2.1 Pipelines
Pipelines are a way to streamline and automate the process of applying a sequence
of data transformations followed by a model fitting.
They are especially valuable for organizing and simplifying machine learning work-
flows, particularly in situations with multiple preprocessing steps.

Figure 3.5: Diagram of the Machine Learning Pipeline used on training and test
[121].

Pipelines consist of two main components: transformers and estimators.
Transformers are responsible for preprocessing data before it is fed into an estima-
tor.
They handle tasks like scaling features, encoding categorical variables, or generating
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new features, effectively transforming the data from one representation to another.

In the training phase, each step in the pipeline, consisting of transformers, should
include a method called fit_transform(), which both fits the transformer to the data
and transforms it. On the other hand, estimators are the actual machine learning
models that are trained on the preprocessed data to make predictions. Estimators
have a fit() method used for training on the provided data, and a predict() method
for generating predictions on new, unseen data.
Figure 3.5 illustrates a schematic representation where the training phase is depicted
on the left side and the testing phase on the right. Pipelines have several advantages:
they are efficient, readable and easy to manage.

3.2.2 BiLoad Pipelines

During the development of this research, Scikit-learn pipelines have been utilized
[122]. They were chosen for the convenience of being able to employ pre-developed
algorithms from the same library, providing optimized and reliable off-the-shelf
solutions.
Typically, tasks have been accomplished using pipelines consisting of three stages:
feature selection, dimensionality reduction, and ultimately, the implementation of
the classification algorithm.

3.2.3 Grid Search

Grid search is a hyperparameter optimization technique commonly used in machine
learning to tune the parameters of a model.
It involves searching through a predefined grid of hyperparameters and evaluating
the model’s performance for each combination of hyperparameters. This process
helps identify the optimal set of hyperparameters that result in the best performance
for the given dataset and model architecture.

BiLoad grid search

Grid search is implemented in this project by utilizing the GridSearchCV class
provided by the Scikit-learn library[122]. This class combines both grid search and
cross-validation, making it a powerful tool for hyperparameter tuning.
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3.2.4 Cross-Validation
Cross-validation is a statistical technique employed to compare and choose a model
for a specific predictive modelling task. It is easy to understand, easy to implement,
and results in skill estimates that typically have a lower bias compared to alternative
methods.

Figure 3.6: An example of 5-fold cross-validation schema [122]

The steps for performing cross-validation will be listed below.

1. Dataset is partitioned into k equal-sized, each fold contains an approximately
equal number of samples and ideally represents the overall distribution of the
data.

2. The model is trained k times and for each iteration it uses a different fold as a
validation set and the remaining as a training set.

3. After each training iteration, the model’s performance is evaluated on the
validation set using a predefined metric, such as accuracy or F1-score.

4. After completing all iterations, the final performance estimate of the model is
determined by averaging the performance scores obtained from each iteration.
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Cross-validation aids in reducing the risk of overfitting by offering a more precise
assessment of a model’s performance on unseen data.
Additionally, it facilitates hyperparameter tuning and model selection by furnishing
a more dependable estimate of the model’s performance on new, unseen data.

Group-based cross-validation

Group-based cross-validation [123] is a methodology frequently employed in ma-
chine learning to assess model performance when working with data exhibiting
inherent grouping or clustering characteristics.
Unlike conventional cross-validation where data points are randomly partitioned
into training and testing sets, group-based cross-validation acknowledges the pres-
ence of groupings in the data, such as temporal or spatial dependencies. This
approach aims to prevent data leakage or biased evaluations that may arise from
random splitting.
In group-based cross-validation, data points within the same group are either
retained together in the training set or the testing set.
This ensures that the model does not inadvertently learn from future data when
making predictions on past observations, or vice versa. By maintaining the integrity
of group structures during cross-validation, the evaluation of model performance
becomes more reliable and reflective of real-world scenarios.

Biload cross-validation

There are several different cross-validation typologies, in our case, two different
strategies were adopted: a stratified k-fold cross-validation with k=5 and a leave-
one-group-out (LOGO) strategy.
Ideally, the strategy of training the model on all groups except one is theoretically
the best approach. However, this is only sustainable in the case of light algorithms,
in our case, it is used for binary classification, LDA, KNN and SVM.
Otherwise, when complex algorithms such as ensemble methods or neural networks
are employed the use of group-based k-fold has been preferred.

3.2.5 Datasets splits
Dataset split refers to the process of dividing a dataset into multiple subsets for
training, validation, and testing purposes.
In this project, our four datasets are divided using a stratified and group-based
strategy, allocating 20% to the test set and 80% to the training set. Subsequently,
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this split is further employed in a leave-one-group out validation process, where
each participant is held out as the validation set while the remaining groups are
used for training, allowing for comprehensive evaluation of the model’s performance
on diverse data subsets.
All these splits have been made in a group-based manner so that data from the
same patient cannot be separated during train and test, thus avoiding the risk of
data leakage.

3.2.6 Metrics
In machine learning, assessing the effectiveness of an algorithm requires careful
evaluation using various metrics such as accuracy, precision, recall, and the F1-
score.
Accuracy, the proportion of correctly classified instances among the total, is a
fundamental metric calculated by dividing the number of correct predictions by
the total number of predictions.

Accuracy = Number of correct predictions
Total number of predictions (3.1)

Precision, which focuses on the accuracy of positive predictions, is determined by
dividing true positive predictions by the total number of positive predictions made
by the classifier.

Precision = True Positives
True Positives + False Positives (3.2)

Recall, also known as sensitivity, measures the classifier’s ability to correctly identify
all positive instances by dividing true positive predictions by the total number of
actual positive instances.

Recall = True Positives
True Positives + False Negatives (3.3)

The F1 score, a harmonic mean of precision and recall, balances both metrics and
is particularly useful for datasets with class imbalance.

F1 Score = 2 × Precision × Recall
Precision + Recall (3.4)

BiLoad metrics

In Chapter 4, where the results of various experiments will be reported, performance
will be measured using both accuracy and F1-score.
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Accuracy is a straightforward and intuitive measure of the overall correctness of
the model and it is easily interpretable for stakeholders unfamiliar with technical
metrics.
The F1 score, meanwhile, is valuable for addressing class imbalances and provides
a balanced evaluation of classifier performance.

3.3 Experiments
Throughout the progression of this project, a variety of experiments and investiga-
tions were accomplished, which will be categorized into six different Sections and
presented in Chapter 4.
For each element of the list, the methods/algorithms used to solve the task are
specified within square brackets.

1. In Section 4.1, we conducted a thorough statistical analysis, employing various
techniques to characterize the datasets and the relationships between variables.
[Anova,Kruskal-Wallis]

2. Section 4.2 explores unsupervised analysis techniques, such as clustering and
dimensionality reduction, to reveal latent structures and groupings within the
data without the need for labelled outcomes. [t-SNE, DBSCAN]

3. Section 4.3 delves into supervised learning, where we tackle binary classification
tasks. [LDA, KNN]

4. Section 4.4 performs multiclass classification using a variety of algorithms and
evaluation metrics. We assess the performance and predictive capabilities of
our models in distinguishing between different classes present in the datasets.
[LDA, KNN, SVM, RF, ADABOOST, XGB, MLP]

5. In section 4.5, a new task is described where the less significant classes were
removed for the Stroop and Visual N-Back datasets, and new supervised
algorithms were developed for their classification. [LDA, KNN, SVM, RF]

6. In Section 4.6, additional research will be conducted on the performance of
feature combinations derived from the use of one or more sensors in numbers
fewer than the six studied previously. [LDA, KNN, SVM]
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Chapter 4

Results

This chapter reports the results of our thorough investigation. We used different
statistical methods and machine learning techniques to analyze our datasets.
Please refer to section 3.3 for general project frameworks and methodology regarding
the conducted experiments.

4.1 Statistical analysis
In this section, we perform statistical analysis utilizing Anova (Analysis of Variance)
and Kruskal-Wallis tests to assess the significance of features within our dataset.
Additional information on these two tests can be found in Section 2.4. Through this
analysis, we aim to enhance our understanding of the dataset and make informed
decisions based on robust statistical evidence.

4.1.1 Anova test
As mentioned in 2.4.1, Anova is a statistical method employed to identify significant
features and rank them accordingly.
In this project we used α=0.05 as a threshold for p-value, it is often chosen as a
standard threshold for statistical significance, providing a balance between the risk
of Type I errors (false positives) and the sensitivity of detecting true effects.
Below are Tables 4.1, 4.2, 4.3 and 4.4 containing the total number of features and
the number of significant features for each signal, using min-max normalization,
however, similar results can be achieved by utilizing standardization.

As we can see from the Tables, the Anova test identified 82 significant features
for the Stroop dataset, 86 for the Visual N-Back, 83 for the Audio N-Back, and 82
for the Dual N-Back.
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Stroop
Signal Significant features Total
ECG 9 10
EDA 3 8

TEMP 9 14
RESP 13 18
fNIRS 28 38
EYE 20 23
ALL 82 111

Table 4.1: Significant features for
Stroop dataset using Anova

NBack Visual
Signal Significant features Total
ECG 9 10
EDA 7 8

TEMP 6 14
RESP 17 18
fNIRS 28 38
EYE 19 23
ALL 86 111

Table 4.2: Significant features for
Visual N-Back dataset using Anova

NBack Audio
Signal Significant features Total
ECG 9 10
EDA 5 8

TEMP 8 14
RESP 17 18
fNIRS 30 38
EYE 14 23
ALL 83 111

Table 4.3: Significant features for
NBack Audio dataset using Anova

NBack Dual
Signal Significant features Total
ECG 9 10
EDA 5 8

TEMP 5 14
RESP 17 18
fNIRS 29 38
EYE 17 23
ALL 82 111

Table 4.4: Significant features for
NBack Dual dataset using Anova

Analyzing the relevant features for the various datasets, we can observe that 64 of
these are common to all datasets.
Meanwhile, 12 features were analyzed as statistically uncorrelated in all four
datasets.
All results and values obtained are presented in the Appendix, divided by signal,
and displayed in horizontal bar graphs. The y-axis contains the feature names,
while the x-axis represents the p-values, as shown in figure 4.1. Additionally, a
dashed vertical line indicating alpha=0.05 serves as the significance threshold.

4.1.2 Kruskal-Wallis test
The Kruskal-Wallis test serves as a non-parametric statistical method to determine
if there are significant differences among the medians of three or more independent
groups. Its primary utility lies in scenarios where the assumptions of Anova, such
as normal distribution and equal variances, are not fulfilled.
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Figure 4.1: Anova Test Results: P-values for Features in respiration Signals

When considering feature importance, particularly in the context of non-parametric
methods like decision trees or random forests, the Kruskal-Wallis test can be
valuable.
If the Kruskal-Wallis test yields a low p-value for a particular feature, it suggests
that the feature may significantly influence the target variable.
This implies that the feature contains valuable information for predicting the target
and should be considered important for modelling purposes.
Below are Tables containing the total number of features and the number of
significant features for each signal.
The Tables 4.5, 4.6, 4.7 and 4.8 illustrate both the total count of features and the
number of features identified as statistically significant for each signal with the
Kruskal-Wallis test.

The Kruskal-Wallis test revealed significant features across multiple datasets:
82 for the Stroop dataset, 86 for the Visual N-Back, 85 for the Audio N-Back, and
81 for the Dual N-Back.
Upon close examination of these features, it has been discovered that 65 are shared
among all datasets. Additionally, 12 features were statistically uncorrelated across
all four datasets.
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Stroop
Signal Significant features Total
ECG 9 10
EDA 3 8

T 9 14
RESP 13 18
fNIRS 28 38
EYE 20 23
ALL 82 111

Table 4.5: Significant Stroop dataset
features by Kruskal-Wallis

NBack Visual
Signal Significant features Total
ECG 9 10
EDA 7 8

T 6 14
RESP 17 18
fNIRS 28 38
EYE 19 23
ALL 86 111

Table 4.6: Significant Visual N-Back
dataset features by Kruskal-Wallis

NBack Audio
Signal Significant features Total
ECG 9 10
EDA 5 8

T 8 14
RESP 17 18
fNIRS 31 38
EYE 15 23
ALL 85 111

Table 4.7: Significant Audio N-Back
dataset features by Kruskal-Wallis

NBack Dual
Signal Significant features Total
ECG 9 10
EDA 5 8

T 5 14
RESP 17 18
fNIRS 29 38
EYE 16 23
ALL 81 111

Table 4.8: Significant Dual N-Back
dataset features by Kruskal-Wallis

4.1.3 Comparison between Anova and Kruskal-Wallis tests
Analyzing the features through Anova and Kruskal-Wallis tests, it can be observed
that 63 features are considered significant and correlated with the class membership
for both tests across all four datasets. Furthermore, it is noted that 11 of these
features were rejected by both tests across all datasets from the initial set of 111
features.
This evidence suggests consistency in selecting significant features across different
statistical testing methodologies, indicating that these 63 features may be particu-
larly relevant for predicting class membership in the considered datasets.
However, the rejection of 11 features across all datasets might suggest that these
characteristics may not be as informative or may be influenced by factors not
considered in the tests.

As we can see from Table 4.9, the data concerning the Visual N-Back features
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Anova Kruskal Common Rejected
Stroop 82 82 81 28
Visual N-Back 86 86 86 24
Audio N-Back 83 85 83 26
Dual N-Back 82 81 81 28

Table 4.9: Anova vs Kruskal-Wallis feature significance

are the same for both tests, while the data relating to the other datasets show
slight differences. However, it was still useful to apply both tests to avoid assuming
the Gaussian distribution of the data.

4.2 Unsupervised Analysis
This analysis is fulfilled using unsupervised learning algorithms to study data
without knowing the outcome variable or specific labels beforehand.
Dissimilar to supervised learning, where algorithms are trained on labelled data to
make predictions, unsupervised learning algorithms work on unlabeled data to find
patterns, structures, or relationships within the data.

4.2.1 t-SNE
As previously addressed in Section 2.7.1, t-distributed stochastic neighbour embed-
ding is a popular dimensionality reduction technique commonly used for visualizing
high-dimensional data in a lower-dimensional space.
In our case, samples are composed of 111 features and offer a way to project this
complex data into a lower-dimensional space while preserving its inherent structure.
However, it’s important to consider some factors when applying t-SNE to our
dataset. Only the 65 features considered significant by both statistical tests across
all 4 datasets were utilized for algorithm execution. This approach will reduce
noise in visualization and increase efficiency.

Figure 4.2 shows a distinct separation of the rest class compared to the other
classes. Additionally, there is an aggregation in the lower part of the plane related
to low-level stress samples. The classes related to medium and high levels of stress
are instead mixed.
In Figure 4.3, the separation of the rest class is confirmed. However, it is important
to note that a 3D representation on a 2D support does not accurately convey
spatial relationships. Therefore, for the other datasets, only 2D Figures will be
presented, while the 3D ones can be viewed in the Appendix.
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Figure 4.2: 2D t-SNE Stroop dataset

Figure 4.3: 3D t-SNE Stroop dataset
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Figure 4.4: 2D t-SNE Visual N-Back dataset

Figure 4.5: 2D t-SNE Audio N-Back dataset
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Figure 4.6: 2D t-SNE Dual N-Back dataset

As we can again observe in Figures 4.4 and 4.6 related to Visual and Audio
N-Back, the rest class is completely separated from the samples belonging to the
classes of altered cognitive load.
Regarding the Audio dataset in Figure 4.6, all rest samples are completely sepa-
rated, except for two that are slightly close to the other samples.
Following this type of unsupervised analysis, we can anticipate that distinguishing
samples related to the resting state from the altered states will be straightforward
in future classification tasks.
However, classifying the three classes of altered states in a multiclass manner is
expected to be significantly more challenging.

4.2.2 DBSCAN
Following the discussion provided in Section 2.7.2, DBSCAN is an unsupervised
clustering algorithm. Optimizing the minPts and ϵ parameters is crucial to obtain
good results, and the elbow method, which is also employed in this project, is
a common approach for making informed choices. An example of knee-elbow
optimization is shown in Figure 4.11.

As depicted in Figure 4.7, for the Stroop dataset, the application of the DBSCAN
algorithm identifies only one cluster, while it classifies a group of closely spaced
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Figure 4.7: DBSCAN applied to Stroop dataset

Figure 4.8: DBSCAN applied to Visual N-Back dataset

samples as noise because they do not exceed the threshold of minimum points
within the epsilon radius.
Meanwhile, in Figure 4.8, about the Visual N-Back dataset, two clusters are
identified, and 5 points are classified as noise.
The same considerations can be made regarding the datasets related to the Audio
and Visual N-Back in Figures 4.9 and 4.10, where two clusters are identified, and a
handful of points are instead considered outliers.

Apart from the Stroop dataset, where only one cluster was identified by the
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Figure 4.9: DBSCAN applied to Audio N-Back dataset

Figure 4.10: DBSCAN applied to Dual N-Back dataset

algorithm but another could be idealized by grouping the noise points, all other
datasets have produced two clusters and some outliers.
Combining this information with that related to the t-SNE algorithm, we can
hypothesize that our datasets have an intrinsic structure formed by two categories
that we can assume to be the rest state and the altered state.
If this preliminary hypothesis were correct, future classification algorithms would
easily be able to separate the samples at rest from those in an altered state, but
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Figure 4.11: Knee-Elbow optimization

they would have more difficulty in identifying the various classes related to different
levels of stress and MWL.

4.3 Binary classification
For this preliminary experiment, algorithms will be developed to differentiate
between categories associated with rest and those associated with altered states of
stress and cognitive load.
To accomplish this objective, all categories related to low, medium, and high states
will be aggregated into a unified class.
A low number of algorithms were applied and investigated due to the excellent
performance obtained from the simpler algorithms used.
All results refer to precision and F1 score relative to the prediction of the test
dataset using the model with the combination of hyperparameters that achieved
the highest F1 score during cross-validation with the leave-one-group-out (LOGO)
method.
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4.3.1 Stroop binary dataset
The binary classification of this dataset involves the ability to differentiate between
a state of relaxation and a state of stress, irrespective of its level of severity.
The data was normalized in two different ways: Min-Max and standardized. Three
different feature selection possibilities were then used: Anova, Kruskal-Wallis,
and no selection. Additionally, two different dimensionality reduction algorithms
were applied: PCA and k-PCA (in their versions with Gaussian, polynomial, and
sigmoidal kernels). Finally, two different classification algorithms were employed:
LDA and KNN.

Table 4.10: Binary classification Stroop dataset

Method NoFs Anova Kruskal-Wallis
ACC (%) F1 (%) ACC (%) F1 (%) ACC (%) F1 (%)

PCA + LDA 100 100 100 100 100 100
k-PCA + LDA 100 100 100 100 100 100
PCA + KNN 100 100 100 100 100 100
k-PCA + KNN 100 100 100 100 100 100

In Figure 4.10, the results obtained by classifying the Stroop dataset in a binary
manner using min-max normalization are collected.
Despite the remarkable results, it is important to emphasize that this outcome
had already been predicted during the unsupervised analysis in section 4.2, where
the separability between the rest class and all other samples was perfectly noted.
For brevity, the Table related to standardization has been omitted as it contained
identical results.

4.3.2 Visual N-Back binary dataset
The binary classification of this dataset entails distinguishing between a state of
relaxation and a state of cognitive load induced through Visual N-Back, regardless
of severity level.

Once again, models capable of achieving 100% classification accuracy on samples
have been obtained. Certainly, the problem type and the approach used to perform
these tasks contribute to this type of classification success.
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Table 4.11: Binary classification Visual N-Back dataset

Method NoFs Anova Kruskal-Wallis
ACC (%) F1 (%) ACC (%) F1 (%) ACC (%) F1 (%)

PCA + LDA 100 100 100 100 100 100
k-PCA + LDA 100 100 100 100 100 100
PCA + KNN 100 100 100 100 100 100
k-PCA + KNN 100 100 100 100 100 100

4.3.3 Audio N-Back binary dataset
The binary classification of this dataset involves discerning between a state of
relaxation and a state of cognitive load induced auditorily via the N-Back task,
without consideration of severity level.

Table 4.12: Binary classification Audio N-Back dataset

Method NoFs Anova Kruskal-Wallis
ACC (%) F1 (%) ACC (%) F1 (%) ACC (%) F1 (%)

PCA + LDA 98.08 97.37 98.08 97.37 98.08 97.37
k-PCA + LDA 98.08 97.37 98.08 97.37 98.08 97.37
PCA + KNN 98.08 97.37 98.08 97.37 98.08 97.37
k-PCA + KNN 98.08 97.37 98.08 97.37 98.08 97.37

The obtained results, illustrated in Table 4.12, are nearly perfect; in fact, all
models fail to correctly classify a sample belonging to the rest class but are mis-
classified as belonging to the altered state class. This indicates how the N-Back
Audio dataset is the most complex to analyze and classify.

4.3.4 Dual N-Back binary dataset
The primary objective of this study involves distinguishing between states of re-
laxation and cognitive load induced by the N-Back task. This classification is
conducted using auditory and Visual stimuli while disregarding severity levels.

In Table 4.13, the results obtained for this dataset are indicated, which once
again, just like Stroop and Visual N-Back, are equal to 100%.
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Table 4.13: Binary classification Dual N-Back dataset

Method NoFs Anova Kruskal-Wallis
ACC (%) F1 (%) ACC (%) F1 (%) ACC (%) F1 (%)

PCA + LDA 100 100 100 100 100 100
k-PCA + LDA 100 100 100 100 100 100
PCA + KNN 100 100 100 100 100 100
k-PCA + KNN 100 100 100 100 100 100

4.4 Multiclass classification
This section will dig into the outcomes of multiclass classification.
To achieve this objective, categories representing low, medium, and high cognitive
states, obtained from subjective questionnaires will be delineated into distinct
classes, forming a multiclass classification task. Additionally, the class related to
rest will be included in the classification scheme.
Given the complexity of the task, a focused set of simpler and more complex
algorithms will be applied and evaluated.
The evaluation will be carried out on the test dataset using the model with hyper-
parameters optimized for the highest F1 score during cross-validation.
For cross-validation, the leave-one-group-out (LOGO) method will be exclusively
utilized for lighter algorithms such as LDA and KNN, while for heavier algorithms,
a grouped 5-fold strategy will be applied. Both techniques ensure the model’s
robustness and generalizability across different cognitive states.
The best results will be bolded and underlined to channel the reader’s attention.

4.4.1 Linear Discriminant Analysis

The results obtained using LDA preceded by dimensionality reduction through
PCA and k-PCA, with features selected through Anova and Kruskal-Wallis tests,
are presented in Tables, two for each dataset.
Each Table represents the chosen normalization for experimenting: min-max or
standardization.
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Stroop dataset

In Table 4.14 and 4.15, the results for the Stroop dataset are presented. The
best outcomes under both types of normalization are achieved using k-PCA and
Kruskal-Wallis as feature selection algorithms, yielding an accuracy rate of up to
73%. However, the corresponding F1 score falls below 60%.
It’s worth noting that the performance is slightly better when using Standardization.

Table 4.14: Stroop - LDA - Min-Max Normalization

Method NoFs Anova Kruskal-Wallis
ACC (%) F1 (%) ACC (%) F1 (%) ACC (%) F1 (%)

PCA + LDA 67.31 59.89 65.38 53.16 67.31 54.58
k-PCA + LDA 67.31 59.56 65.38 53.16 69.23 56.25

Table 4.15: Stroop - LDA - Standardization

Method NoFs Anova Kruskal-Wallis
ACC (%) F1 (%) ACC (%) F1 (%) ACC (%) F1 (%)

PCA + LDA 65.38 53.75 69.23 56.25 71.15 57.87
k-PCA + LDA 61.54 51.28 71.15 57.39 73.08 58.94

Visual N-Back dataset

In Table 4.16 and Table 4.17, the outcomes for the Visual N-Back dataset are
exhibited.
As observed with the Stroop dataset, performance related to Standardization is
better than min-max normalization. The best combination achieved almost 77% of
correctly predicted samples with an F1 score nearly equal to 74%.
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Table 4.16: Visual N-Back - LDA - Min-Max Normalization

Method NoFs Anova Kruskal-Wallis
ACC (%) F1 (%) ACC (%) F1 (%) ACC (%) F1 (%)

PCA + LDA 71.15 68.53 69.23 67.75 67.31 65.24
k-PCA + LDA 71.15 68.53 67.31 66.96 69.23 68.15

Table 4.17: Visual N-Back - LDA - Standardization

Method NoFs Anova Kruskal-Wallis
ACC (%) F1 (%) ACC (%) F1 (%) ACC (%) F1 (%)

PCA + LDA 71.15 69.58 73.08 67.78 75.0 72.37
k-PCA + LDA 71.15 65.94 76.92 73.98 73.08 69.93

Audio N-Back dataset

As previously hypothesized, the Audio N-Back dataset is the most complex to
classify.
In Figure 4.18 and 4.19, it can be observed that at most an accuracy and an F1
score lower than 66% are achieved.

Table 4.18: Audio N-Back - LDA - Min-Max Normalization

Method NoFs Anova Kruskal-Wallis
ACC (%) F1 (%) ACC (%) F1 (%) ACC (%) F1 (%)

PCA + LDA 63.46 63.01 63.46 60.82 59.62 58.76
k-PCA + LDA 65.38 64.21 61.54 58.95 59.62 58.76

Table 4.19: Audio N-Back - LDA - Standardization

Method NoFs Anova Kruskal-Wallis
ACC (%) F1 (%) ACC (%) F1 (%) ACC (%) F1 (%)

PCA + LDA 63.46 61.96 65.38 65.2 65.38 65.65
k-PCA + LDA 59.62 57.39 57.69 55.69 59.62 58.74
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Dual N-Back dataset

The Dual N-Back yields the best results among all datasets, achieving an accuracy
of 80% and a nearly equivalent F1 score, as depicted in Figures 4.20 and 4.21.
Once again, standardization outperforms min-max normalization.
The confusion matrix depicted in Figure 4.12 illustrates the performance of the
best model derived from this dataset.
While the model demonstrates good metrics, it is noteworthy that the matrix’s
effectiveness is compromised by a significant class imbalance.
Specifically, there is a pronounced disproportion towards the category associated
with high cognitive load, coupled with a scarcity of instances attributed to the low
class.

Table 4.20: Dual N-Back - LDA - Min-Max Normalization

Method NoFs Anova Kruskal-Wallis
ACC (%) F1 (%) ACC (%) F1 (%) ACC (%) F1 (%)

PCA + LDA 69.23 53.42 69.23 53.82 67.31 53.11
k-PCA + LDA 73.08 56.25 69.23 54.85 71.15 64.59

Table 4.21: Dual N-Back - LDA - Standardization

Method NoFs Anova Kruskal-Wallis
ACC (%) F1 (%) ACC (%) F1 (%) ACC (%) F1 (%)

PCA + LDA 75.0 57.75 80.77 77.46 78.85 76.44
k-PCA + LDA 73.08 55.54 73.08 56.65 75.0 57.94
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Figure 4.12: Confusion matrix for PCA + LDA with Kruskal-Wallis as feature
selection on Dual N-Back dataset

4.4.2 K-Nearest Neighbors

The outcomes derived from employing K-NN following dimensionality reduction
via PCA, k-PCA and LDA, utilizing features selected through Anova and Kruskal-
Wallis tests, are showcased in pairs of Tables for each dataset.
Each Table delineates the used normalization method for experimentation: either
min-max scaling or standardization.
The results are the benchmarks obtained on the test set by the best combination
of hyperparameters after cross-validation.

Stroop dataset

As can be observed in Tables 4.22 and 4.23, better results are obtained for the first
time using min-max normalization compared to standardization.
The best model achieves an accuracy of 75% and an F1 score of 70% in the combi-
nation utilizing LDA as dimensionality reduction and Anova as feature selector.
Those results are slightly inferior to the combinations obtained on the same dataset
by the LDA algorithm.
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Examining the confusion matrix depicted in Figure 4.13 for this algorithm is in-
teresting. It offers insights into the model’s proficiency in predicting rest and low
cognitive load accurately, while also highlighting challenges it faces in classifying
medium and high states.

Table 4.22: Stroop - KNN - Min-Max Normalization

Method NoFs Anova Kruskal-Wallis
ACC (%) F1 (%) ACC (%) F1 (%) ACC (%) F1 (%)

PCA + KNN 71.15 62.89 65.38 52.53 61.54 55.29
k-PCA + KNN 67.31 58.03 65.38 52.86 63.46 57.01
LDA + KNN 63.46 51.67 75.0 70.23 67.31 59.03

Table 4.23: Stroop - KNN - Standardization

Method NoFs Anova Kruskal-Wallis
ACC (%) F1 (%) ACC (%) F1 (%) ACC (%) F1 (%)

PCA + KNN 61.54 50.85 69.23 60.65 67.31 53.09
k-PCA + KNN 63.46 52.84 71.15 64.57 63.46 50.78
LDA + KNN 65.38 53.76 69.23 56.14 67.31 54.52
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Figure 4.13: Confusion matrix for LDA + KNN with Anova as feature selection
on Stroop dataset

Visual N-Back dataset

Using the K-NN algorithm and the aforementioned combinations of elements in
the pipelines, the results shown in Tables 4.24 and 4.25 are inferior compared to
those obtained previously, with accuracy peaks reaching only 70%.
Even the F1 score deviates significantly from the accuracy values, making the
models unattractive.

Table 4.24: Visual N-Back - KNN - Min-Max Normalization

Method NoFs Anova Kruskal-Wallis
ACC (%) F1 (%) ACC (%) F1 (%) ACC (%) F1 (%)

PCA + KNN 55.77 51.94 65.38 59.46 63.46 60.44
k-PCA + KNN 61.54 56.34 61.54 56.39 69.23 62.53
LDA + KNN 65.38 63.53 63.46 62.36 61.54 58.7
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Table 4.25: Visual N-Back - KNN - Standardization

Method NoFs Anova Kruskal-Wallis
ACC (%) F1 (%) ACC (%) F1 (%) ACC (%) F1 (%)

PCA + KNN 57.69 53.72 71.15 63.87 63.46 57.35
k-PCA + KNN 65.38 61.97 57.69 55.52 67.31 63.02
LDA + KNN 57.69 54.22 65.38 65.02 67.31 65.4

Audio N-Back dataset

Similar to the Visual N-Back, the performance for this dataset does not improve
compared to the previous results; in some combinations, there are poor outcomes,
as shown in Tables 4.26 and 4.27.
It seems probable that this algorithm encounters challenges in modelling this
particular type of problem.

Table 4.26: Audio N-Back - KNN - Min-Max Normalization

Method NoFs Anova Kruskal-Wallis
ACC (%) F1 (%) ACC (%) F1 (%) ACC (%) F1 (%)

PCA + KNN 44.23 43.1 55.77 54.81 53.85 51.37
k-PCA + KNN 40.38 39.69 57.69 50.87 55.77 54.99
LDA + KNN 65.38 64.68 57.69 56.9 63.46 61.79

Table 4.27: Audio N-Back - KNN - Standardization

Method NoFs Anova Kruskal-Wallis
ACC (%) F1 (%) ACC (%) F1 (%) ACC (%) F1 (%)

PCA + KNN 53.85 52.75 55.77 54.75 53.85 50.76
k-PCA + KNN 51.92 50.56 55.77 54.05 55.77 55.27
LDA + KNN 53.85 52.94 63.46 63.67 63.46 63.67

Dual N-Back dataset

As can be seen from Tables 4.28 and 4.29, once again, the performance is not
superior to that achieved previously, although the combination of results obtained
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through PCA + KNN with feature selection via Anova presents interesting results,
achieving 80.77% accuracy and 75.43% in F1 score.
Another time, the results obtained through min-max normalization are superior to
those obtained with standardization.

Table 4.28: Dual N-Back - KNN - Min-Max Normalization

Method NoFs Anova Kruskal-Wallis
ACC (%) F1 (%) ACC (%) F1 (%) ACC (%) F1 (%)

PCA + KNN 69.23 52.65 80.77 75.43 73.08 56.33
k-PCA + KNN 71.15 54.54 75.0 56.0 63.46 50.91
LDA + KNN 69.23 61.53 75.0 64.98 76.92 59.2

Table 4.29: Dual N-Back - KNN - Standardization

Method NoFs Anova Kruskal-Wallis
ACC (%) F1 (%) ACC (%) F1 (%) ACC (%) F1 (%)

PCA + KNN 75.0 72.67 67.31 50.98 69.23 53.0
k-PCA + KNN 76.92 74.52 75.0 56.61 71.15 70.55
LDA + KNN 69.23 55.3 73.08 55.96 71.15 53.28

4.4.3 Support Vector Machine - One vs All
The experimental setup involved applying SVM post-dimensionality reduction
through PCA, k-PCA, and LDA, incorporating features selected via Anova and
Kruskal-Wallis tests.
As previously explained in subsection 3, SVM is a binary classification algorithm
that can be extended to multiclass using two methods: One-Vs-One and One-Vs-All.
In this subsection, the outcomes achieved via the One-vs-All approach will be delin-
eated and scrutinized for their superior accuracy and adaptability, while outcomes
arising from the One-vs-One method will be reported in the Appendix C.2.1.
The outcomes are presented in pairs of Tables for each dataset, illustrating the
chosen normalization technique for experimentation: either min-max scaling or
standardization.
The presented results represent the performance benchmarks achieved on the test
set by the optimal combination of hyperparameters determined through cross-
validation.
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Stroop dataset

As shown in Tabels 4.30 and 4.31, the performances concerning the two normal-
izations are similar, but the best model is obtained using LDA as dimensionality
reduction and without the use of feature selection.
Despite this model achieving 71% accuracy and almost 67% F1 score, it does not
improve the performance of the models analyzed previously for this dataset.

Table 4.30: Stroop - One vs All - Min-Max Normalization

Method NoFs Anova Kruskal-Wallis
ACC (%) F1 (%) ACC (%) F1 (%) ACC (%) F1 (%)

PCA + SVM 63.46 57.37 69.23 61.45 67.31 59.65
k-PCA + SVM 71.15 57.85 61.54 55.24 71.15 57.87
LDA + SVM 69.23 63.6 71.15 57.28 69.23 62.93

Table 4.31: Stroop - One vs All - Standardization

Method NoFs Anova Kruskal-Wallis
ACC (%) F1 (%) ACC (%) F1 (%) ACC (%) F1 (%)

PCA + SVM 65.38 54.82 67.31 64.64 63.46 58.23
k-PCA + SVM 67.31 64.26 63.46 56.52 69.23 64.68
LDA + SVM 71.15 66.93 61.54 51.73 69.23 62.19

Visual N-Back dataset

The results are presented in Tables 4.32 and 4.33.
Through the combination of kernel-PCA and Anova feature selection, a result is
achieved where the accuracy reaches nearly 79% and the F1 score reaches 76%.
Once again, upon analyzing the confusion matrix, it can be noted that the major
issue concerns the classification of the class related to high levels of cognitive load.
Positively, these results represent the best outcomes obtained for the Visual dataset
up to this point, enabling the correct classification of 3 out of 4 samples.
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Table 4.32: Visual N-Back - One vs All - Min-Max Normalization

Method NoFs Anova Kruskal-Wallis
ACC (%) F1 (%) ACC (%) F1 (%) ACC (%) F1 (%)

PCA + SVM 71.15 68.78 75.0 72.52 73.08 66.79
k-PCA + SVM 69.23 66.8 75.0 71.79 71.15 68.99
LDA + SVM 63.46 61.75 59.62 54.87 63.46 60.22

Table 4.33: Visual N-Back - One vs All - Standardization

Method NoFs Anova Kruskal-Wallis
ACC (%) F1 (%) ACC (%) F1 (%) ACC (%) F1 (%)

PCA + SVM 71.15 68.99 71.15 66.51 75.0 71.53
k-PCA + SVM 69.23 67.09 78.85 76.19 76.92 72.88
LDA + SVM 15.38 6.67 65.38 64.21 67.31 66.31

Audio N-Back dataset

The performance shown in Tables 4.34 and 4.35 particularly underlines the difficulty
that SVM faces when the dimensionality is reduced via LDA. However, through
Kruskal-Wallis and k-PCA, results are obtained that approach 68% in both metrics,
the best model achieved for this dataset so far.
This model has obtained the confusion matrix shown in Figure 5, where can be
observed the correctness of the classification of the rest class and the issues related
to the classes of altered cognitive load.

Table 4.34: Audio N-Back - One vs All - Min-Max Normalization

Method NoFs Anova Kruskal-Wallis
ACC (%) F1 (%) ACC (%) F1 (%) ACC (%) F1 (%)

PCA + SVM 59.62 59.0 63.46 63.55 61.54 62.13
k-PCA + SVM 63.46 64.12 57.69 58.51 57.69 58.22
LDA + SVM 63.46 63.69 61.54 61.19 65.38 63.23
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Table 4.35: Audio N-Back - One vs All - Standardization

Method NoFs Anova Kruskal-Wallis
ACC (%) F1 (%) ACC (%) F1 (%) ACC (%) F1 (%)

PCA + SVM 55.77 55.64 67.31 67.3 59.62 59.95
k-PCA + SVM 59.62 59.54 65.38 65.78 67.31 67.97
LDA + SVM 25.0 10.0 50.0 48.91 55.77 53.98

Figure 4.14: Confusion matrix for k-PCA + SVM with Kruskal-Wallis as feature
selection on Audio N-Back dataset

Dual N-Back dataset

The results shown in Tables 4.36 and 4.37 for the Dual N-Back dataset are quite
disappointing, not even remotely reaching the performance previously achieved in
accuracy and F1 score.
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Table 4.36: Dual N-Back - One vs All - Min-Max Normalization

Method NoFs Anova Kruskal-Wallis
ACC (%) F1 (%) ACC (%) F1 (%) ACC (%) F1 (%)

PCA + SVM 63.46 56.88 69.23 61.14 71.15 63.38
k-PCA + SVM 63.46 49.25 69.23 60.45 65.38 55.94
LDA + SVM 71.15 56.57 78.85 61.28 71.15 55.87

Table 4.37: Dual N-Back - One vs All - Standardization

Method NoFs Anova Kruskal-Wallis
ACC (%) F1 (%) ACC (%) F1 (%) ACC (%) F1 (%)

PCA + SVM 73.08 56.71 69.23 55.38 75.0 66.42
k-PCA + SVM 63.46 57.5 67.31 60.21 65.38 57.77
LDA + SVM 67.31 51.4 67.31 60.76 71.15 65.67

4.4.4 Ensemble learning introduction
Ensemble learning is a popular approach in machine learning that involves com-
bining multiple base learners to improve prediction accuracy and robustness as
already explained in Section 2.9.
These techniques, such as bagging, boosting, and stacking, harness the diversity of
individual models to collectively enhance overall performance.
In this study, for brevity and clarity of presentation, only the Tables corresponding
to the normalization method yielding the best results are showcased.
However, it’s important to note that all experimental outcomes, including those
with alternative normalization techniques, are fully documented in the Appendix
C.2.2.
This ensures a concise yet thorough exploration of the ensemble learning strategies
employed and their comparative effectiveness.

Random Forest

In Subsection 2.9.1, we discussed random forest, which is a popular machine learn-
ing technique used for both classification and regression tasks. A random forest is
an ensemble learning method that operates by constructing a multitude of decision
trees during training.
Each tree in the forest is built using a random subset of the training data and a
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random subset of features, which helps to reduce overfitting and improve general-
ization performance.

In this algorithm, there isn’t a dominant normalization method over the others.
As shown in Table 4.38, the Stroop dataset achieves a 73% accuracy, which is a
commendable result but loses significance when combined with the 59% of the F1
score.
Similarly, the other datasets presented in Tables 4.39, 4.40 and 4.41 yield results
comparable to those of the best-performing models but show no potential for
improvement in either accuracy or F1 score.
It’s intriguing to note that for datasets utilizing standardization (Stroop and Audio
N-Back), PCA performs better as a dimensionality reduction technique, whereas
for datasets employing Min-Max normalization (Visual and Dual N-Back), k-PCA
achieves superior results.

Table 4.38: Stroop - Random forest - Standardization

Method NoFs Anova Kruskal-Wallis
ACC (%) F1 (%) ACC (%) F1 (%) ACC (%) F1 (%)

PCA + RF 67.31 59.05 73.08 58.99 67.31 60.56
k-PCA + RF 69.23 54.98 69.23 55.43 65.38 58.45

Table 4.39: Visual N-Back - Random forest - Min-Max Normalization

Method NoFs Anova Kruskal-Wallis
ACC (%) F1 (%) ACC (%) F1 (%) ACC (%) F1 (%)

PCA + RF 69.23 61.35 67.31 59.99 59.62 55.69
k-PCA + RF 69.23 65.73 75.0 69.14 61.54 58.54

Table 4.40: Audio N-Back - Random forest - Standardization

Method NoFs Anova Kruskal-Wallis
ACC (%) F1 (%) ACC (%) F1 (%) ACC (%) F1 (%)

PCA + RF 53.85 52.47 65.38 64.1 61.54 61.14
k-PCA + RF 51.92 49.3 57.69 58.26 50.0 45.44
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Table 4.41: Dual N-Back - Random forest - Min-Max Normalization

Method NoFs Anova Kruskal-Wallis
ACC (%) F1 (%) ACC (%) F1 (%) ACC (%) F1 (%)

PCA + RF 75.0 51.25 65.38 48.5 76.92 57.14
k-PCA + RF 75.0 55.81 71.15 67.33 78.85 75.11

Adaptive Boosting

Adaptive boosting, also known as AdaBoost, is a machine learning algorithm
primarily used for classification tasks.
It works by iteratively training weak classifiers on subsets of the data and adjusting
the weights of misclassified samples to prioritize them in subsequent iterations.
For further details on AdaBoost, please refer to Subsection 2.9.2 for a more in-depth
exploration.

Before analyzing these results, it is worth noting that the best results were
consistently achieved using Min-Max scaling for all datasets using AdaBoost.
In the context of Table 4.42, we see that, much like Random Forest, the Stroop test
delivers positive accuracy results without commensurate F1 score performance.
A similar observation can be made for the results obtained on the Visual N-Back
dataset in Table 4.45.
Regarding the Visual and Dual N-Back datasets, represented in Tables 4.43 and
4.44, both achieve matched values of accuracy and F1 score. However, these do
not improve upon the performance previously achieved on these datasets.

Table 4.42: Stroop - Adaptive Boosting - Min-Max Normalization

Method NoFs Anova Kruskal-Wallis
ACC (%) F1 (%) ACC (%) F1 (%) ACC (%) F1 (%)

PCA + AB 73.08 58.9 63.46 58.0 65.38 57.95
k-PCA + AB 67.31 54.32 65.38 60.52 67.31 53.9
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Table 4.43: Visual N-Back - Adaptive Boosting - Min-Max Normalization

Method NoFs Anova Kruskal-Wallis
ACC (%) F1 (%) ACC (%) F1 (%) ACC (%) F1 (%)

PCA + AB 59.62 54.45 71.15 68.41 59.62 50.43
k-PCA + AB 61.54 54.16 63.46 55.09 65.38 59.35

Table 4.44: Audio N-Back - Adaptive Boosting - Min-Max Normalization

Method NoFs Anova Kruskal-Wallis
ACC (%) F1 (%) ACC (%) F1 (%) ACC (%) F1 (%)

PCA + AB 50.0 44.33 59.62 61.75 53.85 54.51
k-PCA + AB 57.69 53.58 53.85 54.14 59.62 57.24

Table 4.45: Dual N-Back - Adaptive Boosting - Min-Max Normalization

Method NoFs Anova Kruskal-Wallis
ACC (%) F1 (%) ACC (%) F1 (%) ACC (%) F1 (%)

PCA + AB 75.0 51.25 73.08 64.58 65.38 51.31
k-PCA + AB 57.69 47.35 71.15 49.53 78.85 59.66
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eXtreme Gradient Boosting

eXtreme Gradient Boosting (XGB) is a powerful machine learning algorithm known
for its efficiency and effectiveness in solving regression, classification, and ranking
problems, to know more details about it, please refer to Subsection 2.9.3.

Despite the algorithm’s touted advantages such as enhanced performance and
regularization, our empirical analysis across multiple datasets failed to demonstrate
significant improvements over alternative ensemble learning methods.
In fact, the algorithm’s performance often proved comparable or even inferior to
these alternatives, as evidenced by the results presented in Tables 4.46, 4.47, 4.48,
and 4.49.

Table 4.46: Stroop - XG Boosting - Standardization

Method NoFs Anova Kruskal-Wallis
ACC (%) F1 (%) ACC (%) F1 (%) ACC (%) F1 (%)

PCA + XGB 69.23 65.25 65.38 59.54 65.38 58.64
k-PCA + XGB 65.38 56.44 63.46 52.42 57.69 51.69

Table 4.47: Visual N-Back - XG Boosting - Min-Max Normalization

Method NoFs Anova Kruskal-Wallis
ACC (%) F1 (%) ACC (%) F1 (%) ACC (%) F1 (%)

PCA + XGB 59.62 54.95 69.23 61.86 69.23 67.0
k-PCA + XGB 65.38 61.43 71.15 66.71 61.54 58.05

Table 4.48: Audio N-Back - XG Boosting - Standardization

Method NoFs Anova Kruskal-Wallis
ACC (%) F1 (%) ACC (%) F1 (%) ACC (%) F1 (%)

PCA + XGB 51.92 46.78 63.46 63.58 53.85 53.98
k-PCA + XGB 57.69 53.23 61.54 62.06 46.15 46.06
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Table 4.49: Dual N-Back - XG Boosting - Standardization

Method NoFs Anova Kruskal-Wallis
ACC (%) F1 (%) ACC (%) F1 (%) ACC (%) F1 (%)

PCA + XGB 78.85 60.41 65.38 50.0 73.08 55.54
k-PCA + XGB 67.31 49.56 75.0 56.73 76.92 59.08

4.4.5 Multi-Layer Perceptron
The Multilayer Perceptron (MLP) is a type of artificial neural network characterized
by multiple layers of neurons.
Each neuron in a layer is connected to every neuron in the subsequent layer, forming
a densely connected network. These connections are associated with weights that
determine the strength of the connections and influence the signal transmission.
An in-depth analysis of this algorithm could be found in the background subsection
2.10.1.

As evident from Tables 4.50 and 4.53, this type of algorithm did not perform
well on the Stroop dataset and the Dual N-Back dataset.
Conversely, in the Visual dataset (Table 4.51), it achieved almost 77% accuracy
with a 75% F1 score, while in the Audio N-Back dataset (Table 4.52), it achieved
67.3% accuracy and a 67.7% F1 score, both of which can be considered among the
best performances obtained in the project.
It is also worth considering that training deep learning algorithms requires a large
volume of data for proper performance, thus these results are by no means guaran-
teed.

Table 4.50: Stroop - Multi-layer perceptron - Min-Max Normalization

Method NoFs Anova Kruskal-Wallis
ACC (%) F1 (%) ACC (%) F1 (%) ACC (%) F1 (%)

PCA + MLP 67.31 59.03 65.38 65.61 55.77 54.05
k-PCA + MLP 71.15 62.62 61.54 59.11 55.77 45.47
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Table 4.51: Visual N-Back - Multi-layer perceptron - Standardization

Method NoFs Anova Kruskal-Wallis
ACC (%) F1 (%) ACC (%) F1 (%) ACC (%) F1 (%)

PCA + MLP 69.23 68.02 65.38 63.67 71.15 68.83
k-PCA + MLP 76.92 74.98 69.23 69.3 71.15 70.22

Table 4.52: Audio N-Back - Multi-layer perceptron - Standardization

Method NoFs Anova Kruskal-Wallis
ACC (%) F1 (%) ACC (%) F1 (%) ACC (%) F1 (%)

PCA + MLP 65.38 64.31 67.31 67.69 65.38 64.16
k-PCA + MLP 46.15 44.45 57.69 57.49 57.69 57.57

Table 4.53: Dual N-Back - Multi-layer perceptron - Standardization

Method NoFs Anova Kruskal-Wallis
ACC (%) F1 (%) ACC (%) F1 (%) ACC (%) F1 (%)

PCA + MLP 71.15 54.86 69.23 59.84 73.08 67.32
k-PCA + MLP 75.0 57.11 71.15 53.69 73.08 56.33
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4.4.6 Top performing pipelines
This section provides a concise overview of the top three performing machine
learning pipelines for each dataset considered in our study.
By analyzing the results obtained from various algorithms applied to different
datasets, we identify the most effective combinations of preprocessing steps and
model architectures.

Table 4.54: Stroop dataset - Top 3 pipelines

Scaling FS DR Algorithm Metrics
ACC (%) F1 (%)

Min-Max Anova LDA KNN 75.00 70.23
Standardization - k-PCA LDA 73.08 58.94
Standardization - LDA SVM (OvA) 71.15 66.93

Table 4.55: Visual N-Back dataset - Top 3 pipelines

Scaling FS DR Algorithm Metrics
ACC (%) F1 (%)

Standardization Anova k-PCA SVM (OvA) 78.85 76.19
Standardization - k-PCA MLP 76.92 74.98
Standardization Anova k-PCA LDA 76.92 73.98

Table 4.56: Audio N-Back dataset - Top 3 pipelines

Scaling FS DR Algorithm Metrics
ACC (%) F1 (%)

Standardization K-W k-PCA SVM (OvA) 67.31 67.97
Standardization Anova PCA MLP 67.31 67.69
Standardization K-W PCA LDA 65.38 65.65
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Table 4.57: Dual N-Back dataset - Top 3 pipelines

Scaling FS DR Algorithm Metrics
ACC (%) F1 (%)

Standardization Anova PCA LDA 80.77 77.46
Min-Max Anova PCA KNN 80.77 75.43
Min-Max K-W k-PCA RF 78.85 75.11

Hyperparameters In Tables 4.58, 4.59, 4.60 and 4.61, the hyperparameters
related to the best models for each dataset are reported. For brevity, the remaining
hyperparameters will be omitted.

Table 4.58: Hyperparameters for
Stroop’s top model

Hyperparameter Value
LDA_n_components 3

LDA_solver "svd"
KNN_n_neighbors 6

KNN_weights "uniform"

Table 4.59: Hyperparameters for
Visual N-Back’s top model

Hyperparameter Value
k-PCA_kernel "rbf"

k-PCA_n_components 9
SVM_df_shape "ovr"

SVM_kernel "linear"
SVM_C 10

SVM_class_weight "balanced"
SVM_gamma 0.001

Table 4.60: Hyperparameters for
Audio N-Back’s top model

Hyperparameter Value
k-PCA_kernel "poly"

k-PCA_n_components 6
SVM_df_shape "ova"

SVM_kernel "linear"
SVM_C 5

SVM_class_weight "balanced"
SVM_gamma 0.001

Table 4.61: Hyperparameters for
Dual N-Back’s top model

Hyperparameter Value
PCA_n_components 25
LDA_n_components 25

LDA_solver "svd"
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4.5 Reduced datasets
As previously introduced in Section 3.3, this chapter will present the results ob-
tained for the reduced datasets, with the transition from 4 to 3 classes, for both
Stroop and Dual N-Back tasks.

4.5.1 Stroop
Here are the results obtained for the multiclass classification after removing the
class related to high-stress load.
For the sake of conciseness, only the best pipelines for each model used are reported
in Tables 4.62 and 4.63, sorted by accuracy, with one Table dedicated to each
normalization technique.
Analyzing the two Tables, it can be observed that, on average, better results are
achieved using standardization. However, the best performance was obtained by
a pipeline composed of feature selection using Kruskal, PCA for dimensionality
reduction, and KNN as the classification algorithm. This pipeline achieved an ac-
curacy of 80% and an F1 score of 80.31%, representing a 5% and 10% improvement
in performance compared to the baseline.
As can be observed in the confusion matrix in Figure 4.15, the model successfully
classifies all samples related to the resting state while encountering more difficulty
in distinguishing between the other two classes. Specifically, it misclassifies some
samples from the medium class as belonging to the low class.

Table 4.62: Stroop dataset - Three classes - Min-Max Normalization - Best results

Method Metrics
ACC (%) F1 (%)

NoFS + LDA + KNN 64.44 65.45
NoFS + LDA + SVM (OvO) 64.44 65.45
Anova + LDA + SVM (OvR) 64.44 65.45
Anova + k-PCA + LDA 75.56 75.93
NoFS + PCA + SVM (OvR) 75.56 76.51
KRUSKAL + PCA + SVM (OvO) 75.56 76.88
Anova + PCA + RF 77.78 78.41
Anova + k-PCA + KNN 80.0 80.31
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Table 4.63: Stroop dataset - Three classes - Standardization - Best results

Method Metrics
ACC (%) F1 (%)

KRUSKAL + LDA + KNN 68.89 69.77
NoFS + LDA + SVM (OvO) 71.11 71.67
NoFS + LDA + SVM (OvR) 71.11 72.61
Anova + PCA + SVM (OvR) 75.56 76.88
NoFS + PCA + RF 77.78 76.91
KRUSKAL + PCA + LDA 77.78 77.78
Anova + k-PCA + SVM (OvO) 77.78 78.84
KRUSKAL + PCA + KNN 77.78 79.08

Figure 4.15: Confusion matrix - Stroop three class - k-PCA + KNN

4.5.2 Dual N-Back

In this section, the results obtained by removing the class related to low cognitive
load are presented, thus transforming the multiclass task into a 3-label classification.
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Contrary to the Stroop task, the best results are achieved with Min-Max normal-
ization.
Through the model composed of PCA and LDA, it achieves 85% accuracy and
81.7% F1 score, improving both performance metrics by 4% compared to the
baseline.
As can be observed in Figure 4.16, the issue with this algorithm lies in the massive
classification of samples into the high cognitive load class when they belong to the
medium cognitive load class. Once again, the samples belonging to the rest states
are all classified correctly.

Table 4.64: Dual N-Back dataset - Three classes - Min-Max Normalization -

Method Metrics
ACC (%) F1 (%)

NoFs + LDA + KNN 70.21 69.95
Anova + LDA + SVM (OvO) 70.21 69.95
NoFS + LDA + SVM (OvR) 74.47 59.52
KRUSKAL + PCA + SVM (OvR) 74.47 75.09
KRUSKAL + PCA + RF 75.56 75.93
KRUSKAL + k-PCA + KNN 80.85 71.47
Anova + k-PCA + SVM (OvO) 80.85 80.29
NoFS + PCA + LDA 85.11 81.7

Table 4.65: Dual N-Back dataset - Three classes - Standardization - Best results

Method Metrics
ACC (%) F1 (%)

Anova + LDA + KNN 65.96 65.66
Anova + LDA + SVM (OvR) 68.09 66.78
Anova + LDA + SVM (OvO) 68.09 67.15
Anova + PCA + RF 72.34 68.35
NoFS + PCA + LDA 76.6 71.24
Anova + k-PCA + KNN 78.72 77.6
NoFS + PCA + SVM (OvO) 80.85 78.09
NoFS + PCA + SVM (OvR) 80.85 79.33
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Figure 4.16: Confusion matrix - Dual N-Back three class - PCA + LDA

4.6 Subsets
In this section, the results of experiments related to subsets will be listed and
analyzed.
For each dataset, models were trained using only the features related to one or
more sensors and all their possible combinations.
The combinations of all possible signals using from 1 to 5 signals amount to 62.
For each of these combinations, 33 different pipelines were applied, each trained on
multiple hyperparameters.
Training a single dataset required more than ten days of training, carried out
stoically by a computer located at the Politecnico di Torino: PC- LSE-1856.

4.6.1 Stroop
As can be observed in Table 4.66, the best sensor subsets consist in a maximum of
three signals and they all include ocular sensor.
Despite the first two configurations having higher accuracy values, the most desirable
model remains the third, which achieves an F1-score of 78.89%.
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Table 4.66: Top performing subsets - Stroop

Sensors Method Metrics
ACC (%) F1 (%)

T - EYE Anova + PCA + SVM (OvO) 78.85 75.55
RESP - fNIRS - EYE Anova + PCA + KNN 78.85 73.25

ECG - EYE Kruskal + PCA + SVM (OvO) 76.92 78.89

4.6.2 Visual N-Back
Analyzing Table 4.67, it can be deduced that ECG and EDA are the sensors
providing the most exploited features by the subsets for the Visual N-Back dataset.
Additionally, it is interesting to note that all three pipelines are composed of PCA
for dimensionality reduction and LDA as the classifier.

Table 4.67: Top performing subsets - Visual N-Back

Sensors Method Metrics
ACC (%) F1 (%)

ECG - EDA - EYE Kruskal + PCA + LDA 80.77 80.3
ECG - EDA - T - FNIRS Anova + PCA + LDA 80.77 79.07

ECG - EDA - T - RESP - EYE Kruskal + PCA + LDA 80.77 79.07

4.6.3 Audio N-Back
In Table 4.68, the results for the Audio N-Back dataset are presented, where, once
again, ECG stands out as the most exploited sensor.
All three models utilize PCA for dimensionality reduction and SVM (different ones)
as classifiers. It is also noteworthy that these performances exceed those of the
best models using all six signals by more than 5%.
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Table 4.68: Top performing subsets - Audio N-Back

Sensors Method Metrics
ACC (%) F1 (%)

ECG - RESP Anova + PCA + SVM(OvR) 73.08 73.7
ECG - EDA - T - RESP Kruskal + PCA + SVM(OvO) 73.08 73.12

ECG - EDA - EYE Kruskal + PCA + SVM(OvR) 73.08 72.45

4.6.4 Dual N-Back
In the results presented in Table 4.69 for the Dual N-Back, there are no predominant
sensors or models. However, once again, the results are better compared to those
obtained with all six sensors.

Table 4.69: Top performing subsets - Dual N-Back

Sensors Method Metrics
ACC (%) F1 (%)

T - EYE Anova + LDA + SVM(OvR) 84.62 83.1
RESP - FNIRS Kruskal + PCA + LDA 82.69 85.81

ECG - RESP - FNIRS - EYE Kruskal + PCA + LDA 82.69 85.81

4.6.5 Insights and observations
The results obtained and presented in the subsections preceding this one may be
surprising.
The question arises: why do we achieve better results using fewer sensors and fewer
features compared to using all six signals?
One explanation for this phenomenon is that simplifying models and reducing noise
contributes to better generalization and training improvement. This is particularly
important in mitigating the curse of dimensionality, where high-dimensional and
sparse data make it difficult to identify significant patterns without substantial
amounts of data.
Additionally, reducing the number of features increases the relevance of the remain-
ing features, enabling the model to better comprehend and utilize them.
Reducing the number of sensors and features not only simplifies the models but
also enhances their ability to generalize and extract meaningful patterns from the
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data. This, in turn, leads to better performance on unseen data.
This experiment had significant practical and applicative implications because
allowed BiLoad to simplify the acquisition process removing sensors while main-
taining a high level of reliability in stress and mental workload prediction.
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Chapter 5

Conclusions

This research conducted with the eLions group at Politecnico di Torino has made
significant progress in understanding the relationship between physiological signals
and cognitive states such as stress and mental workload.
The study’s innovative approach, which involved the use of machine learning algo-
rithms to classify these states based on multimodal physiological signals, yielded
promising results.

The initial use of statistical tests such as ANOVA and Kruskal-Wallis has en-
abled identifying the most significant features closely correlated with states of stress
and cognitive load.
The development of unsupervised algorithms has facilitated a better understanding
of the intrinsic structure of various datasets and their visualization through projec-
tion into lower-dimensional spaces.

Models developed using supervised algorithms demonstrated high accuracy in
classifying samples into two states: "rest" and "altered state," achieving nearly 100%
accuracy across all four datasets.
Additionally, novel models were successfully constructed to classify samples into
four states: "rest" and three levels of cognitive load or stress. These models utilized
various algorithms and methodologies, achieving encouraging results.
Specifically, they surpassed 80% accuracy for the Dual N-Back dataset, exceeded
75% for the Visual N-Back and Stroop tests, and achieved slightly below 70% for
the Audio N-Back. Notably, these achievements were attained despite the challenge
of limited objective labeled data available for model training.

The study also addressed the challenge of heavily imbalanced classes in the
Stroop test and Dual N-Back dataset by identifying and removing outliers, leading
to a transition to a 3-class classification. This adjustment resulted in improved
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accuracy by 5% and 4% for the Stroop test and Dual N-Back tasks, respectively.

Furthermore, all possibilities for utilizing various subsets of signals have been
investigated so that future applications can be developed in an application-driven
manner based on the needs of different application domains. This includes address-
ing issues such as the absence of certain inconvenient sensors or making the system
more cost-effective by eliminating some.

The project’s outcome is a comprehensive and versatile framework capable of
accurately classifying the differentiation between a state of rest and an altered
state based on an individual’s physiological parameters.
It can discern various degrees of cognitive workload and stress severity, even when
certain biological signals are absent.
This framework lays the groundwork for creating a safety device that analyses
physiological signals to assess the operator’s condition, especially during critical
moments.
It could enhance safety by providing real-time evaluations of the operator’s state,
reducing potential risks and ensuring safer operations.

In conclusion, this research has made significant contributions to the field of
human-machine interaction by developing a robust, multimodal, and flexible ma-
chine learning framework that can accurately assess an operator’s cognitive state
based on physiological signals.
This work not only advances our understanding of the relationship between physio-
logical signals and cognitive states but also has practical implications for enhancing
safety in various industries where human-machine interaction is prevalent.

5.1 Future work
Future research can leverage the findings from this study to further advance the
application of the developed machine learning framework in real-world settings.
One avenue for future exploration involves deploying the models in practical scenar-
ios to evaluate their effectiveness and reliability in assessing an operator’s cognitive
state in diverse contexts.
Furthermore, the adaptability of the framework opens up opportunities for cus-
tomization and refinement to suit specific industry requirements and operational
environments.
Upcoming investigations may emphasize tailoring machine learning algorithms
to address the distinct challenges and complexities encountered within different
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industries, including aviation, healthcare, manufacturing, and transportation.
Another fundamental task will be implementing these models in real-time, address-
ing the issues concerning acquisition, processing, and classification, potentially
leveraging microchips or alternative hardware solutions.
In addition to refining the existing models, future research could also explore the
integration of additional modalities or features to enhance the robustness and
accuracy of cognitive state assessment. For example, incorporating contextual
information, environmental factors, or behavioural cues alongside physiological
signals could provide a more comprehensive understanding of human-machine
interaction dynamics.

Future research efforts should focus on bridging the gap between theory and
practice by translating the insights gained from this study into tangible applications
that enhance safety, efficiency, and overall human-machine interaction across diverse
industries.
By building upon these foundations, researchers can continue to push the boundaries
of human-centred technology and contribute to the advancement of human-machine
collaboration in the digital age.
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Appendix A

Dataset analysis

A.1 Features by signal

Category Feature
ECG mean_bpm
ECG std_bpm
ECG median_bpm
ECG pnn50
ECG mean_ecg_plf
ECG std_ecg_plf
ECG mean_ecg_phf
ECG std_ecg_phf
ECG mean_ecg_plf_phf
ECG std_ecg_plf_phf
EDA mean_eda_scl
EDA std_eda_scl
EDA slope_eda_scl
EDA mean_amplitude_eda_scr
EDA std_amplitude_eda_scr
EDA mean_rise_time_eda_scr
EDA std_rise_time_eda_scr
EDA average_peaks_number_eda_scr
T initial_temperature
T final_temperature
T delta_temperature
T mean_temperature
T std_temperature
T delta_over_time_temperature
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Dataset analysis

Category Feature
T interpolated_slope_temperature
T initial_first_derivative_temperature
T final_first_derivative_temperature
T delta_derivative_temperature
T mean_first_derivative_temperature
T std_first_derivative_temperature
T delta_first_derivative_over_time_temperature
T interpolated_slope_first_derivative_temperature
RESP mean_breath_rate_respiration
RESP std_breath_rate_respiration
RESP mean_inspiratory_time_respiration
RESP std_inspiratory_time_respiration
RESP mean_expiratory_time_respiration
RESP std_expiratory_time_respiration
RESP mean_timing_ratio_respiration
RESP std_timing_ratio_respiration
RESP mean_amplitude_respiration
RESP std_amplitude_respiration
RESP mean_minute_ventilation
RESP std_minute_ventilation
RESP mean_plf_respiration
RESP std_plf_respiration
RESP mean_phf_respiration
RESP std_phf_respiration
RESP mean_plf_phf_ratio_respiration
RESP std_plf_phf_ratio_respiration
FNIRS min_fnirs_oxy
FNIRS max_fnirs_oxy
FNIRS mean_fnirs_oxy
FNIRS variance_fnirs_oxy
FNIRS std_fnirs_oxy
FNIRS skewness_fnirs_oxy
FNIRS kurtosis_fnirs_oxy
FNIRS power_band_fnirs_oxy
FNIRS max_frequency_fnirs_oxy
FNIRS median_frequency_fnirs_oxy
FNIRS spectral_entropy_fnirs_oxy
FNIRS mean_difference_fnirs_oxy
FNIRS peak_to_peak_fnirs_oxy
FNIRS slope_fnirs_oxy
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Dataset analysis

Category Feature
FNIRS zero_crossing_fnirs_oxy
FNIRS polarity_fnirs_oxy
FNIRS entropy_fnirs_oxy
FNIRS auc_fnirs_oxy
FNIRS te_fnirs_oxy
FNIRS min_fnirs_deoxy
FNIRS max_fnirs_deoxy
FNIRS mean_fnirs_deoxy
FNIRS variance_fnirs_deoxy
FNIRS std_fnirs_deoxy
FNIRS skewness_fnirs_deoxy
FNIRS kurtosis_fnirs_deoxy
FNIRS power_band_fnirs_deoxy
FNIRS max_frequency_fnirs_deoxy
FNIRS median_frequency_fnirs_deoxy
FNIRS spectral_entropy_fnirs_deoxy
FNIRS mean_difference_fnirs_deoxy
FNIRS peak_to_peak_fnirs_deoxy
FNIRS slope_fnirs_deoxy
FNIRS zero_crossing_fnirs_deoxy
FNIRS polarity_fnirs_deoxy
FNIRS entropy_fnirs_deoxy
FNIRS auc_fnirs_deoxy
FNIRS te_fnirs_deoxy
EYE eye_duration_blinking
EYE eye_frequency_blinking
EYE eye_interval_blinking
EYE eye_duration_saccade
EYE eye_frequency_saccade
EYE eye_velocity_x_saccade
EYE eye_velocity_y_saccade
EYE eye_duration_fixation
EYE eye_frequency_fixation
EYE eye_value_si
EYE eye_velocity_si
EYE eye_duration_si
EYE eye_frequency_si
EYE eye_velocity_single_si
EYE eye_velocity_over_duration_phase_si
EYE eye_relative_diameter_left
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Dataset analysis

Category Feature
EYE eye_relative_diameter_right
EYE eye_phf_x
EYE eye_plf_x
EYE eye_plf_phf_ratio_x
EYE eye_phf_y
EYE eye_plf_y
EYE eye_plf_phf_ratio_y
RT reaction_time

Table A.1: Features and categories
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Appendix B

Statistical tests

B.1 Stroop dataset
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Statistical tests

Figure B.1: Anova vs Kruskal-Wallis comparison for different signals on Stroop
Dataset
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Statistical tests

B.2 Visual n-back dataset

Figure B.2: Anova vs Kruskal-Wallis comparison for different signals on visual
n-back dataset
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Statistical tests

B.3 Audio n-back dataset

Figure B.3: Anova vs Kruskal-Wallis comparison for different signals on audio
n-back dataset
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Statistical tests

B.4 Dual n-back dataset

Figure B.4: Anova vs Kruskal-Wallis comparison for different signals on dual
n-back Dataset
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Appendix C

Unsupervised algorithms

C.1 3D t-sne graphs

Figure C.1: 3D t-sne for Stroop dataset
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Unsupervised algorithms

Figure C.2: 3D t-sne for visual n-back dataset

Figure C.3: 3D t-sne for audio n-back dataset
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Unsupervised algorithms

Figure C.4: 3D t-sne for dual n-back dataset

C.2 Multiclass classification
C.2.1 Support Vector Machine - One vs One

Table C.1: Stroop - One vs One - Min-Max Normalization

Method NoFs Anova Kruskal-Wallis
ACC (%) F1 (%) ACC (%) F1 (%) ACC (%) F1 (%)

PCA + SVM 59.62 53.65 63.46 58.09 65.38 59.62
k-PCA + SVM 57.69 51.1 65.38 60.1 61.54 54.76
LDA + SVM 67.31 65.44 69.23 62.04 69.23 62.78
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Unsupervised algorithms

Table C.2: Stroop - One vs One - Standardization

Method NoFs Anova Kruskal-Wallis
ACC (%) F1 (%) ACC (%) F1 (%) ACC (%) F1 (%)

PCA + SVM 63.46 61.07 59.62 54.04 65.38 61.55
k-PCA + SVM 61.54 58.54 63.46 60.58 67.31 64.02
LDA + SVM 53.85 54.01 65.38 59.76 63.46 58.13

Table C.3: Visual N-Back - One vs One - Min-Max Normalization

Method NoFs Anova Kruskal-Wallis
ACC (%) F1 (%) ACC (%) F1 (%) ACC (%) F1 (%)

PCA + SVM 59.62 58.77 73.08 67.78 75.0 68.72
k-PCA + SVM 67.31 65.52 75.0 68.59 76.92 72.88
LDA + SVM 67.31 65.15 59.62 58.07 61.54 60.12

Table C.4: Visual N-Back - One vs One - Standardization

Method NoFs Anova Kruskal-Wallis
ACC (%) F1 (%) ACC (%) F1 (%) ACC (%) F1 (%)

PCA + SVM 71.15 63.74 73.08 69.44 73.08 71.19
k-PCA + SVM 63.46 59.62 75.0 69.12 75.0 69.17
LDA + SVM 51.92 51.54 71.15 70.66 65.38 64.5

Table C.5: Audio N-Back - One vs One - Min-Max Normalization

Method NoFs Anova Kruskal-Wallis
ACC (%) F1 (%) ACC (%) F1 (%) ACC (%) F1 (%)

PCA + SVM 63.46 64.24 57.69 58.14 57.69 58.28
k-PCA + SVM 61.54 61.38 59.62 59.52 65.38 65.78
LDA + SVM 59.62 58.88 63.46 62.37 63.46 62.07
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Unsupervised algorithms

Table C.6: Audio N-Back - One vs One - Standardization

Method NoFs Anova Kruskal-Wallis
ACC (%) F1 (%) ACC (%) F1 (%) ACC (%) F1 (%)

PCA + SVM 55.77 55.29 61.54 61.57 61.54 62.17
k-PCA + SVM 57.69 57.04 65.38 66.17 59.62 58.56
LDA + SVM 51.92 51.66 59.62 59.66 59.62 59.88

Table C.7: Dual N-Back - One vs One - Min-Max Normalization

Method NoFs Anova Kruskal-Wallis
ACC (%) F1 (%) ACC (%) F1 (%) ACC (%) F1 (%)

PCA + SVM 67.31 51.7 65.38 50.94 67.31 62.98
k-PCA + SVM 55.77 48.33 67.31 53.9 69.23 60.97
LDA + SVM 63.46 47.12 76.92 70.93 75.0 58.43

Table C.8: Dual N-Back - One vs One - Standardization

Method NoFs Anova Kruskal-Wallis
ACC (%) F1 (%) ACC (%) F1 (%) ACC (%) F1 (%)

PCA + SVM 69.23 65.61 63.46 55.29 65.38 57.44
k-PCA + SVM 63.46 59.54 65.38 58.16 65.38 57.48
LDA + SVM 65.38 52.22 67.31 60.66 73.08 66.61
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Unsupervised algorithms

C.2.2 Ensemble learning - alternatives normalization

Table C.9: Stroop - Random forest - Min-Max Normalization

Method NoFs Anova Kruskal-Wallis
ACC (%) F1 (%) ACC (%) F1 (%) ACC (%) F1 (%)

PCA + RF 67.31 59.05 61.54 55.46 67.31 54.52
k-PCA + RF 57.69 53.96 61.54 55.56 65.38 57.53

Table C.10: Visual N-Back - Random forest - Standardization

Method NoFs Anova Kruskal-Wallis
ACC (%) F1 (%) ACC (%) F1 (%) ACC (%) F1 (%)

PCA + RF 67.31 60.44 59.62 57.36 69.23 64.69
k-PCA + RF 67.31 60.56 65.38 60.97 69.23 64.25

Table C.11: Audio N-Back - Random forest - Min-Max Normalization

Method NoFs Anova Kruskal-Wallis
ACC (%) F1 (%) ACC (%) F1 (%) ACC (%) F1 (%)

PCA + RF 50.00 45.24 59.62 53.13 59.62 58.22
k-PCA + RF 59.62 57.45 55.77 51.84 50.00 48.67

Table C.12: Dual N-Back - Random forest - Standardization

Method NoFs Anova Kruskal-Wallis
ACC (%) F1 (%) ACC (%) F1 (%) ACC (%) F1 (%)

PCA + RF 75.0 58.04 73.08 53.61 73.08 53.61
k-PCA + RF 69.23 52.65 73.08 54.74 76.92 58.46
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Unsupervised algorithms

Table C.13: Stroop - Adaptive boost - Standardization

Method NoFs Anova Kruskal-Wallis
ACC (%) F1 (%) ACC (%) F1 (%) ACC (%) F1 (%)

PCA + AB 73.08 64.41 57.69 48.12 65.38 52.53
k-PCA + AB 65.38 53.79 61.54 57.54 65.38 52.86

Table C.14: Visual N-Back - Adaptive boost - Standardization

Method NoFs Anova Kruskal-Wallis
ACC (%) F1 (%) ACC (%) F1 (%) ACC (%) F1 (%)

PCA + AB 59.62 57.68 65.38 62.36 71.15 65.32
k-PCA + AB 63.46 60.92 71.15 66.98 69.23 65.36

Table C.15: Audio N-Back - Adaptive boost - Standardization

Method NoFs Anova Kruskal-Wallis
ACC (%) F1 (%) ACC (%) F1 (%) ACC (%) F1 (%)

PCA + AB 55.77 51.36 53.85 52.92 53.85 54.95
k-PCA + AB 50.0 43.04 53.85 52.39 59.62 57.24

Table C.16: Dual N-Back - Adaptive boost - Standardization

Method NoFs Anova Kruskal-Wallis
ACC (%) F1 (%) ACC (%) F1 (%) ACC (%) F1 (%)

PCA + AB 71.15 49.56 65.38 60.66 65.38 42.5
k-PCA + AB 73.08 53.75 73.08 53.9 71.15 53.69

Table C.17: Stroop - XG boost - Min-Max Normalization

Method NoFs Anova Kruskal-Wallis
ACC (%) F1 (%) ACC (%) F1 (%) ACC (%) F1 (%)

PCA + XGB 67.31 60.13 59.62 49.76 67.31 60.88
k-PCA + XGB 53.85 50.27 59.62 54.5 65.38 58.45
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Unsupervised algorithms

Table C.18: Visual N-Back - XG boost - Standardization

Method NoFs Anova Kruskal-Wallis
ACC (%) F1 (%) ACC (%) F1 (%) ACC (%) F1 (%)

PCA + XGB 67.31 62.7 69.23 64.71 63.46 60.34
k-PCA + XGB 71.15 66.46 65.38 64.19 67.31 62.94

Table C.19: Audio N-Back - XG boost - Min-Max Normalization

Method NoFs Anova Kruskal-Wallis
ACC (%) F1 (%) ACC (%) F1 (%) ACC (%) F1 (%)

PCA + XGB 59.62 57.59 55.77 56.77 61.54 63.11
k-PCA + XGB 46.15 45.16 59.62 57.37 61.54 63.11

Table C.20: Dual N-Back - XG boost - Min-Max Normalization

Method NoFs Anova Kruskal-Wallis
ACC (%) F1 (%) ACC (%) F1 (%) ACC (%) F1 (%)

PCA + XGB 71.15 47.29 67.31 49.41 71.15 53.69
k-PCA + XGB 63.46 45.2 69.23 50.68 73.08 52.19

Table C.21: Stroop - Multi-layer perceptron - Standardization

Method NoFs Anova Kruskal-Wallis
ACC (%) F1 (%) ACC (%) F1 (%) ACC (%) F1 (%)

PCA + MLP 67.31 59.6 59.62 49.49 59.62 43.23
k-PCA + MLP 57.69 48.62 69.23 57.15 65.38 58.79

Table C.22: Visual N-Back - Multi-layer perceptron - Min-Max Normalization

Method NoFs Anova Kruskal-Wallis
ACC (%) F1 (%) ACC (%) F1 (%) ACC (%) F1 (%)

PCA + MLP 69.23 67.07 63.46 62.01 69.23 64.48
k-PCA + MLP 63.46 60.14 67.31 61.37 61.54 59.07
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Unsupervised algorithms

Table C.23: Audio N-Back - Multi-layer perceptron - Min-Max Normalization

Method NoFs Anova Kruskal-Wallis
ACC (%) F1 (%) ACC (%) F1 (%) ACC (%) F1 (%)

PCA + MLP 63.46 62.65 61.54 62.19 59.62 58.33
k-PCA + MLP 26.92 10.61 57.69 57.57 57.69 57.57

Table C.24: Dual N-Back - Multi-layer perceptron - Min-Max Normalization

Method NoFs Anova Kruskal-Wallis
ACC (%) F1 (%) ACC (%) F1 (%) ACC (%) F1 (%)

PCA + MLP 59.62 46.31 71.15 70.63 67.31 64.53
k-PCA + MLP 67.31 52.74 71.15 64.76 69.23 63.0
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