
Politecnico di Torino

Computer Engineering

A.y. 2023/2024

April 2024 Graduation Session

Master’s Degree Thesis in

Developing an AI-Powered Voice Assistant

for an iOS Payment App

Supervisors:

Luigi De Russis

Andrea Loffredo

Candidate:

Mario Mastrandrea

Abstract

This thesis investigates the potential of an AI-powered voice assistant in simplifying
and securing financial transactions in a Peer-to-Peer (P2P) payments application,
integrating cutting-edge Machine Learning technologies on-device such as BERT
for text classification and a custom Dialogue State Tracking mechanism. Through
a meticulous design and development process, the study explores the integration
of voice commands into a real iOS app to facilitate in-app operations, prioritizing
user privacy through local data processing, and enhancing user interaction and
accessibility via an intuitive UI/UX design leveraging the novel SwiftUI framework.
The research conducts a thorough evaluation of the system’s performance, focusing
on user experience, security, and the accuracy of voice and language recognition
capabilities. The analysis reveals significant results in operational efficiency and
user satisfaction, highlighting the voice assistant’s role in advancing digital payment
solutions. The work concludes with a critical analysis of the findings, discussing the
implications for future AI applications and proposing avenues for further research
in voice-enabled technologies for financial services.

Table of Contents

Abstract i

List of Tables v

List of Figures vi

1 Introduction 1
1.1 Goal . 2
1.2 Method of Work . 3
1.3 Case Study: example of P2P Payment App 4
1.4 Overview of the document . 5

2 Background and State of the Art 7
2.1 Evolution of Voice Assistants . 7
2.2 Artificial Intelligence in Voice Assistants 9

2.2.1 Natural Language Processing 9
2.2.2 Speech Recognition . 10
2.2.3 Text Classification . 11
2.2.4 Speech Synthesis . 11
2.2.5 Text Generation . 12

2.3 Large Language Models revolution 13
2.3.1 Attention is All You Need 14
2.3.2 BERT . 17
2.3.3 GPT . 20

2.4 Dialogue State Tracking and Management 22
2.5 P2P payments applications . 23

2.5.1 Security and Privacy concerns 24
2.6 iOS development . 25

ii

2.6.1 SwiftUI framework . 25

3 Requirements Analysis 27
3.1 User Needs . 27
3.2 Functional Requirements . 28
3.3 Non-Functional Requirements . 29

4 System Design 31
4.1 Voice Assistant design . 31
4.2 UI/UX design . 34
4.3 Speech Recognizer design . 35
4.4 Text Classifier design . 35

4.4.1 Intent Classification . 37
4.4.2 Entity Extraction . 38

4.5 Dialogue State Tracker design . 39
4.5.1 Main States and Transitions 42

4.6 Response Generator design . 43
4.7 Speech Synthesizer design . 44
4.8 In-App Integration design . 44

4.8.1 App Delegate design . 45

5 Voice Assistant Implementation 47
5.1 BERT Text Classifier . 50

5.1.1 Dataset generation . 51
5.1.2 Machine Learning Model . 54
5.1.3 Model training and validation 57
5.1.4 Lightweight Model conversion 61
5.1.5 Model Quantization . 62
5.1.6 Model selection and evaluation 64
5.1.7 Model integration into iOS 66

5.2 BERT Preprocessor . 67
5.3 Dialogue State Tracker . 70

5.3.1 State Pattern . 71
5.3.2 Entity Matching . 73
5.3.3 Answer Generation . 74

5.4 Speech Recognizer . 75
5.4.1 Custom Language Model . 77

5.5 Speech Synthesizer . 79

iii

5.6 Conversation Manager . 80
5.7 Payments Voice Assistant . 80

5.7.1 Dependency Injection . 82
5.8 UI/UX . 83
5.9 Voice Assistant in-App Integration 86

5.9.1 SwiftUI compatibility . 88
5.9.2 App Context . 89
5.9.3 App Delegate . 90
5.9.4 Integration into a real P2P Payment App 91

6 Testing and Evaluation 94
6.1 Voice Assistant Test Application . 95

6.1.1 Test iOS App Release on TestFlight 97
6.2 Voice Assistant Evaluation . 99

6.2.1 Evaluation Form . 100
6.2.2 Evaluation Results . 101

7 Conclusion and Future Work 106
7.1 Discussion . 107
7.2 Possible improvements . 109
7.3 Conclusions . 111

Acronyms 113

Glossary 117

Appendix A: Evaluation Form Results 119

Bibliography 133

iv

List of Tables

4.1 Text Classifier supported intents and corresponding entities. 38
4.2 Text Classifier supported entities and corresponding format. 40

5.1 Designed intent labels for the artificial dataset. 51
5.2 Designed BIO entity labels for the artificial dataset. 52
5.3 Example of generated sentences in the artificial dataset, with their

associated intent labels. 52
5.4 Example of a generated sentence in the artificial dataset, with its

associated entity labels. 53
5.5 Best BERT models’ configurations validation results. 60
5.6 Sizes of the 3 candidate models converted into TFLite binary files. . 62
5.7 Candidate models sizes and inference times after TensorFlow Lite

quantized conversion. 63
5.8 Best BERT models’ configurations evaluation results. 64
5.9 Selected BERT Text Classifier model configuration and performance

metrics. 65
5.10 Some of the templates used to generate the Speech Recognizer

Custom Language Model. 78

v

List of Figures

1.1 Some of the main screens of the case study P2P payment app. . . . 5

2.1 The Transformer architecture. 15
2.2 BERT training phases: pre-training on the left and the fine-tuning

step on the right (in this example, for a question answering task) . 17
2.3 BERT input encodings: word embeddings + segment embeddings +

position embeddings . 19

4.1 Different components of a Voice Assistant interacting to accomplish
a user request. 33

4.2 Dialogue State Tracker: state machine simplified diagram. 41

5.1 Diagram of the Voice Assistant software system. 48
5.2 Diagram of the Text Classifier Keras model in TensorFlow. 55
5.3 UML class diagram of the State Pattern application for the DST. . 72
5.4 Example of the Voice Assistant start screen, for both white mode

and dark mode. 84
5.5 Example of Voice Assistant screens in various use cases. 85
5.6 Examples of the case study application’s screens showcasing the

Voice Assistant integration. 92

6.1 Main screens of the Test iOS Application. 96
6.2 TestFlight app details. 98
6.3 Test app icon. 98
6.4 Results for a question on usability and interaction. 102
6.5 Results for a question on functionality and effectiveness. 103
6.6 Results for a question on reliability and error handling. 103
6.7 Results for a question on security and privacy. 104
6.8 Results for questions on user experience and satisfaction. . . . 105

vi

Chapter 1

Introduction

In the digital age, mobile applications have become crucial tools, transforming
the way we communicate, work, and manage our daily lives. With the rise of
smartphones, the demand for increasingly sophisticated and user-friendly apps has
resulted in considerable advances in the mobile computing field.

With its revolutionary impact on industries and daily lives, the emergence of
Artificial Intelligence (AI) is marking another turning point in the history of
technology, characterizing an era of unprecedented innovation and transformation.
It includes a wide range of abilities from simple pattern recognition to intricate
decision-making processes, which have quickly evolved into a variety of practical
applications that are present in all aspects of our life. AI’s impact is extensive,
transforming businesses, improving efficiency, and facilitating novel interactions
between humans and technology, but its significance is amplified by its versatility
and adaptability, finding applications in diverse fields such as healthcare, education,
and entertainment, thereby establishing its role as a key aspect of contemporary
technological progress.

The combination of AI and mobile technology enhances the utility and the
effectiveness of applications, while also enabling the development of unique services
previously only seen in science fiction, therefore making a substantial difference in
the digital market for the uniqueness and the potential of a software product.

The Financial Technology (FinTech) sector, for example, is revolutionizing
financial transactions through the introduction of Peer-to-Peer (P2P) services,
a model enabling direct financial transactions between people, thus avoiding tra-
ditional intermediaries, usually by means of tailored mobile applications. P2P
payments are, in fact, significantly enhancing the speed, the effectiveness, and
the costs of the transactions. However, still some challenges exist, and Machine

1

1.1 Goal

Learning (and more in general Artificial Intelligence) technologies can be used to
address them. Specifically, AI can provide algorithms for high-quality anomaly
detection, ensuring higher security and more sophisticated fraud detection, and can
also make significant advances in privacy by better preserving user data confiden-
tiality. But more importantly, AI can also enhance User eXperience (UX) by
making interactions more intuitive, natural and customized to meet the individual
user’s needs, promoting increased engagement and involvement.

Therefore, integrating AI solutions into the P2P payments applications addresses
significant issues and provides new opportunities for advancement and expansion
in the field. It plays a crucial role in providing more effective and user-friendly
payment services by improving security, data privacy, and enhancing the user
experience.

1.1 Goal
As we approach this AI-driven revolution in mobile computing, it is crucial to fully
understand its potential to drive a progress that not only aligns with society’s
changing needs but also outlines and promotes positive usages, creating a future
where technology and human interaction merge harmoniously.

Indeed, the scope of this Thesis work is to provide a detailed overview of the
creation and integration of a specific AI product within a P2P payment application,
examining its impact on the app’s features and User eXperience. In particular, the
project deals with the creation of an AI-powered voice assistant, from design
to software integration, which converts user speech into actual in-app operations,
like sending some money or checking the last transactions, and processes all user
data on-device, with no need of network connection.

The main purpose is to improve user interactions through voice-activated
commands, thus enhancing the app’s accessibility and offering a more natural
way of human-machine interaction, which might be useful for example for users
with lower technological expertise. This is achieved without sacrificing the user
privacy, given that no data is sent on the network, and this is of utmost importance
since often a major limitation of Machine Learning applications is the need of
outsourcing the information due to resource constraints. The pursuit of this goal
implies exploring new frontiers of the Natural Language Processing (NLP)
technologies which are currently disrupting the Information Technology (IT) area,
understanding the foundation of ML models behind our current Search Engines
(like Google) and the new breakthrough Generative AI products (like ChatGPT),

2

1.2 Method of Work

offering not only an overview of the state-of-the-art technologies in the field but
also an example of practical usage for such innovative models.

The project focuses exclusively on the implementation for iOS devices, exploring
the capabilities of the new SwiftUI framework and leveraging crucial programming
tools offered by the iOS operative system for the Speech-to-Text (STT) and Text-
to-Speech (TTS) functionalities, which are fundamental blocks of a Voice Assistant.
This choice of the platform derives mainly by the technological context in which
the project was carried out by the author, which will be better described in the
next section.

1.2 Method of Work
This Thesis work was born in collaboration with Pay Reply, an IT consultancy
company based in Turin and Milan, and specialized in the deployment of Mobile
Applications in the Digital Payments sector. The project has been carried out
as a Research and Development (R&D) activity during an internship experience
in the company, during which I had the opportunity to work on a P2P Payment
Mobile Application as iOS developer.

The entire task was accomplished following a cyclic development process, each
round starting from the Machine Learning part first and then caring about its
in-app integration:

• the first round was characterized by a wide research in the Natural Language
Processing area and the state-of-the-art of Chatbots. In parallel, multiple
technologies have been investigated for the creation and training of such
ML models, as well as their integration into an iOS application. The final
model was built in a Python notebook on the Google Colab cloud platform,
leveraging TensorFlow and TensorFlow Lite frameworks. Thereafter, a set of
programming tools offered by the iOS platform in Swift have been studied
and tested for the Voice Assistant features on-device, like Speech-to-Text and
Text-to-Speech, and SwiftUI for the visual part;

• in the second round, after a careful design of the Voice Assistant functionalities,
the mentioned tools have been used all together to bring the system to life,
from the ML model to its employment inside the Dialogue State Tracker (DST)
in Swift, up to the UI implementation;

• a final step included an evaluation phase, with a pool of test users trying the
Voice Assistant through a test application released on TestFlight; and finally

3

1.3 Case Study: example of P2P Payment App

its integration into the actual P2P Payment app of the company, taken as a
case study for this Thesis work and better described in section 1.3.

The entire process was managed using Git Version Control System (VCS) and a
remote GitHub repository.

1.3 Case Study: example of P2P Payment App
This brief section will present the mobile payment application used as a case study
for this work, thus the actual app that inspired all the design choices described in
the following Chapters and into which the resulting Voice Assistant was integrated
to eventually fully test its functionality. Its name will not be disclosed in this work,
to protect the intellectual property of its owners.

The mentioned application constitutes an advanced Peer-to-Peer digital
payment system developed for a leading financial institution in the Extra-EU
market. It stands out for providing a smooth, safe, and exceptionally quick payment
processing experience, with transactions being finalized in a few seconds. The
platform facilitates payments not just for Peer-to-Peer transactions but also for
businesses, corporations, and government agencies, offering an exceptional digital
payment service 24/7.

The app’s main feature is its capability to process transactions just based on
the recipient’s mobile number or email, improving customer ease. In addition to
traditional money transfer functions, it offers advanced features like “request money”
and “split bills”, as well as QR code payment compatibility, which is especially
advantageous for businesses. Upcoming updates will provide new features such as
real-time direct debit, Electronic Direct Debit Authorization (EDDA), and fully
digitalized invoices.

The platform may be accessed via the mobile application, which is available on
both Google Play and App Store, making it convenient for users on different devices.
The app’s latest upgrades have concentrated on improving the user experience
through enhancements to the UI and bug fixes.

In figure 1.1 some examples of the app’s screens are reported, in different
scenarios. Image 1.1a shows the app’s home screen, where the user can visualize all
their registered bank accounts and the corresponding information (e.g. the balance).
In the Transactions tab (subfigure 1.1b) all the most recent user’s transaction are
shown, either incoming or outgoing. The third image (subfigure 1.1c) shows instead
a screen involved in the send money operation process, where the user can type

4

1.4 Overview of the document

(a) Home. (b) Transactions. (c) Send money.

Figure 1.1: Some of the main screens of the case study P2P payment app.

the right amount to be sent after having selected the recipient and the source bank
account.

1.4 Overview of the document

After this introduction, in Chapter 2 we are going to introduce the main theoretical
topics involved in the project, from the Artificial Intelligence state-of-the-art models
in the field, including the two foundational Language Models BERT and GPT,
to the Peer-to-Peer payments domain; Chapter 3 contains an analysis of the user
requirements at the foundation of the adopted technical choices, together with the
functional and non-functional requirements arising from them; Chapters 4 and 5
meticulously describe the design and the implementation of the Voice Assistant
module respectively, characterized by the composition of a multitude of software
components, each specialized in a specific sub-task (e.g. Speech Recognition, Text
Classification, Dialogue State Management, etc.), with an high focus on the custom
Machine Learning model created for text classification as well as on its incorporation

5

1.4 Overview of the document

into the iOS platform, and finally discuss the in-app integration process of the
proposed system module; Chapter 6 illustrates the test app release on TestFlight
and the evaluation phase carried out by means of an extensive testing based on an
online form; and in Chapter 7 a critical analysis of both the adopted process and
the resulting findings is carried out in the context of the relevant literature topics,
providing some insights for future improvements.

6

Chapter 2

Background and
State of the Art

This Chapter explores the complex development of Voice Assistants, tracing
their progression from basic voice commands to advanced AI-powered interfaces. It
delves into how Artificial Intelligence and Natural Language Processing played
a crucial part in improving voice assistant skills, resulting in the emergence of
Large Language Models that support their comprehension and interactivity. The
Chapter delves more into Dialogue State Management, which is essential for ensuring
consistent interactions. It also explores the adoption of these technologies in the
Peer-to-Peer Payments industry, emphasizing the obstacles and possibilities.
Finally, it discusses iOS development, highlighting the platform-specific factors
involved in implementing voice assistants in Apple’s ecosystem.

2.1 Evolution of Voice Assistants
A Voice Assistant is a software that interprets and responds to voice commands
to perform various digital tasks, leveraging technologies like Speech Recognition and
Natural Language Processing. The growth of voice assistants is closely connected
to the historical evolution of virtual assistants and conversational agents in general,
all of which rely on advancements in NLP and Natural Language Understanding
(NLU) approaches. Apart from rudimentary experiments in the early decades of
the 1900s involving voice-activated machines, the journey started with the ELIZA
experiment in the 1960s, the first real attempt to simulate human communication
using a computer, which established fundamental notions for conversational agents.

7

2.1 Evolution of Voice Assistants

ELIZA, however rudimentary, illustrated the possibility of machines imitating
human conversation [1]. This idea had been developed by the mathematician Alan
Turing in 1950, who invented a test (the Turing Test) which assesses a machine’s
capability to display intelligent behavior that is indistinguishable from a human’s
[2]. “Can machines think?” was the question raised by Turing, implicitly laying the
foundation of the Natural Language Processing and inspiring the next generations
of research in the field.

Advancements in technology led to the development of conversational interfaces,
progressing from basic text interfaces to complex Voice User Interfaces (VUIs),
which transformed the way humans engage with machines. This progression
resulted in the development of different virtual assistants, each representing a
significant advancement in technological capacities. For example, in the 1960s,
IBM’s Shoebox could recognize spoken numerals and mathematical orders [3]; while
in the 1970s, Carnegie Mellon University’s Harpy speech recognizer could interpret
over a thousand words [4].

As these technologies advanced, the difference between open-domain and
task-oriented conversational bots became more evident. Open-domain agents are
created for ongoing, unrestricted interactions like human conversation, while task-
oriented agents prioritize carrying out specified tasks according to user instructions.
The emergence of Conversational User Interfaces (CUIs) combined conversational
agents’ functionality with voice commands’ intuitiveness, improving user acces-
sibility and interaction with digital systems. However, the deployment of voice
assistants in different fields, including smart homes and healthcare, has revealed
various obstacles, such as providing responses that are contextually appropriate,
safeguarding user privacy, and addressing language and dialect differences.

Some significant advancements in the digital assistants were made from the 1990s
up to the present day, starting with IBM which introduced Speech Recognition (SR)
on their Personal Computers (PCs). But the era of modern voice assistants started
with Apple’s Siri [5], the first integrated into a smartphone, later followed by
Amazon’s Alexa [6] and Google Assistant [7], all leveraging advanced AI algorithms.
These assistants utilize Deep Learning and extensive datasets to comprehend and
analyze human speech more accurately, hence enhancing accessibility and conve-
nience in daily activities. Nonetheless, Voice Assistants still encounter technological
constraints in comprehending intricate queries, recognizing human emotions, and
delivering contextually suitable responses in all scenarios, despite their progress.
As these technologies advance, they are expected to increasingly blend human and
machine interaction, enhancing the accessibility and user-friendliness of digital

8

2.2 Artificial Intelligence in Voice Assistants

services worldwide.

2.2 Artificial Intelligence in Voice Assistants
Artificial Intelligence (AI) plays a key role in the voice assistant technology
evolution, especially in its area of Natural Language Processing (NLP). AI has
significantly improved virtual assistants by enabling them to better understand
and engage with people through methods that imitate cognitive abilities, especially
leveraging the advancements in the latest decades regarding Machine Learning
models and Deep Learning in particular.

Machine Learning (ML) is the subset of AI which enables machines to learn
from data and improve over time from the experience. Deep Learning (DL),
instead, is a ML approach involving complex Neural Networks and is at the core of
these developments thanks to the extremely high performances of those models. It
has greatly enhanced features including text classification, text production, Speech
Recognition, and Text-to-Speech conversion. The advancements have enhanced
voice assistants, making them more skilled, intuitive, and versatile tools that can
facilitate intricate human-machine interactions with exceptional ease and efficiency.

2.2.1 Natural Language Processing

Natural Language Processing (NLP) is an evolving discipline that combines
Linguistics and Computer Science to empower machines to comprehend and analyze
human discourse, thus focusing on the interaction between computers and humans
through natural language [8]. The advancement from basic rule-based algorithms
to complex Machine Learning and Deep Learning models is a notable technological
progression which happened at the end of the previous century and evolved in the
last years, thanks to the emerging Large Language Models (subsection 2.3). This
progress resulted in the rise of the Natural Language Understanding (NLU)
sub-area, which concentrates on understanding the context and purpose of the text
for a certain language.

NLP originally included just subfields like syntax analysis, semantic analysis, and
pragmatics, which focus on language structure, meaning, and use. The incorporation
of NLU in the last period has enabled more sophisticated analysis of language,
leading to progress in fields such as sentiment analysis, machine translation, question
answering, text summarization, intent classification, text generation and in general
voice-activated assistants capabilities, like Speech Recognition and Speech Synthesis

9

2.2 Artificial Intelligence in Voice Assistants

[9]. The following subsections will examine some important aspects of those
subfields, offering insights into relevant factors characterizing the structure of the
Voice Assistant in this project.

2.2.2 Speech Recognition
Speech Recognition, also known as Speech-to-Text, is a crucial element of human-
computer interaction that involves a computer system’s capacity to understand
human speech by processing and interpreting it, translating it into text [10]. The
speech is a sound wave, that is a time series of pressure values over time and
characterized by amplitude and frequency. In the case of a human speech, multiple
types of sound can be distinguished with respect of the specific language’s phonemes,
which can be hierarchically grouped in words, phrases and sentences, each with a
grammatical and syntactical meaning. A Speech Recognizer is a system capable of
capturing sound waves and identify all those groups, reconstructing the speaker
utterance.

The evolution of Deep Learning in speech processing has been marked by
several key models and architectures that have significantly advanced the field, like
Hidden Markov Models (HMMs), Recurrent Neural Networks (RNNs) and in general
different kind of Deep Neural Networks (DNNs). The newest solutions resort to
transformer-based models, encoder-decoder architectures which can produce an
output of different length than the input, and based on attention mechanisms (see
2.3.1).

There are some systems that require “training” (sometimes called “enrollment”),
in which a speaker reads text or specific words to the machine. This technology
utilizes the individual’s unique voice to enhance the accuracy of Speech Recognition,
and it is referred to as “speaker dependent”. Systems that operate without the
need for training are referred to as “speaker-independent” systems. They are
considered more advanced due to their increased versatility in assistant usage, but
they also pose security problems as their services can potentially be accessed by
anybody, including malicious users.

This field has revolutionized user-device interaction by allowing hands-free
control and assisting with activities like dictation and command execution in
applications like virtual assistants, customer service automation, and accessibility
solutions for individuals with physical disabilities. However, Speech Recognition
has also some limitations. Accents, dialects, and ambient noise might hinder
accuracy, resulting in misunderstandings and thus compromising the user experience.
Furthermore, the technology’s dependence on extensive data and computational

10

2.2 Artificial Intelligence in Voice Assistants

resources may lead to privacy and resource consumption issues. Despite obstacles,
the continuous progress in Deep Learning and Natural Language Processing is
improving systems’ performance, ensuring more smooth and comprehensive human-
computer interactions.

2.2.3 Text Classification
A key task in Natural Language Processing is text classification, which in
the context of Machine Learning refers to the process of classifying text into
predetermined groups or classes. This method is used in various applications,
including sentiment analysis, spam identification, subject labeling, and intent
classification. The latter is essential for comprehending user commands or requests
in conversational agents and voice assistants.

When describing text classification, it is crucial to differentiate between sequence-
to-sequence (seq2seq) models and sequence-to-vector (seq2vec) models. Seq2seq
models, like the ones employed in Named Entity Recognition (NER), function
at by converting a sequence of text into a different sequence, where each input
token (e.g., word or letter) corresponds to an output token and is accordingly
labeled. NER, also referred as Entity Extraction, is a NLP task aiming at isolate
and categorize specific entities inside a sentence falling into specific classes, like
people names, organizations, places, and so on, and it is usually accomplished with
seq2seq models classifying each single token. This is especially beneficial for tasks
that necessitate detailed annotation at the token level, including recognizing and
categorizing elements within a sentence.

Seq2vec models, commonly used in intent classification tasks, transform a
text sequence into a static vector that encapsulates the semantic essence of the
entire sequence. Subsequently, this vector is utilized to categorize the sequence
into one of multiple predetermined groups. In the case of intent classification,
each vector is associated to a specific intent the user expressed in the original
sentence. Seq2vec models consolidate information into a singular, comprehensive
representation, which is beneficial for tasks requiring the determination of the
general meaning or category of a sequence.

2.2.4 Speech Synthesis
Speech Synthesis, sometimes referred to as Text-to-Speech (TTS), is a process
that uses ML models and NLP techniques to convert written text into spoken
utterances [11]. It is therefore the opposite task of Speech Recognition. This

11

2.2 Artificial Intelligence in Voice Assistants

method enables a wide range of uses, including aiding visually impaired individuals,
providing voice guidance in navigation systems, generating automated customer
service replies, and enhancing the naturalness and engagement of interactions in
voice assistants and conversational agents.

Advanced Machine Learning models have significantly enhanced voice synthesis
systems, improving their naturalness and adaptability across many conditions
and languages. In particular, Deep Neural Networks and Transformer-based
models have improved speech creation by creating utterances that closely mimics
human intonation and emotion. Yet, they might have drawbacks such as occasional
artificial intonation or mispronunciations in intricate language situations.

The Voice Synthesis process is usually split in the following steps to transform
text into a spoken waveform:

• Text Normalization: it is the conversion of text into a format that can be
understood by machines, achieved by expanding abbreviations, numbers, and
symbols into their verbal forms;

• Phonetic Analysis: it entails transforming standardized text into phonetic or
phonemic forms to indicate pronunciation. This stage often involves using
phonetic dictionaries or rule-based algorithms to transform text into phonemes;

• Prosodic analysis: it examines linguistic features such as intonation, stress,
and rhythm in speech production to achieve natural-sounding speech;

• Waveform Synthesis: it is the process of creating sound output based on
phonetic and prosodic data. This can be achieved through many techniques
including concatenative synthesis, which merges recorded voice segments, or
parametric synthesis, which uses models to generate speech from scratch.

2.2.5 Text Generation
Text generation, known also as Natural Language Generation (NLG), is an
essential aspect of NLP that refers to the automated production of written infor-
mation by machines [12]. This method serves as the foundation for a wide range
of applications, including the automated production of news stories and reports,
the development of realistic discourse in conversational agents, the improvement
of virtual assistant user experiences, and even support for the process of creative
writing.

The Generative AI, a type of Artificial Intelligence oriented to producing new
data instances that mimic the training data, is fundamental to this discipline. This

12

2.3 Large Language Models revolution

includes not only text but also images, movies, and other media. Generative AI
algorithms acquire patterns, styles, and structures from extensive datasets to create
unique outputs that imitate the acquired formats.

Integrating Natural Language Understanding into text-generation systems is
essential for producing coherent and contextually appropriate documents. These
systems are able to comprehend the peculiarities of human language, such as syntax,
semantics, and even emotional tones. This results in outputs that are not just
grammatically accurate but also engaging and context-aware.

Significant milestones have characterized the development of models in the NLP
field for text generation. Initial attempts utilized rule-based systems and basic
statistical techniques, which later advanced to complex Machine Learning models
such as Hidden Markov Models and early Neural Networks. Sequence-to-sequence
models, attention mechanisms, and Recurrent Neural Networks have enhanced text
generation by providing more sophisticated and contextually sensitive capabilities.
A significant change occurred with the introduction of Large Language Models,
which have transformed the field of text generation, significantly improving the
quality, versatility, and applicability of generated text, as described in the next
section.

2.3 Large Language Models revolution
A Language Model (LM) in computational linguistics is a model that calculates
the likelihood of a sequence of words appearing in a language. In Machine Learning,
a Language Model is a probabilistic model which is aware of the words’ statistical
distribution in a specific language, thus simulating an understanding of language
patterns and giving the impression of being conscious about it. It uses preceding
words to anticipate and generate upcoming words, playing a crucial role in activities
such as text generation, Speech Recognition, and machine translation [13].

The first examples of Language Models have been the n-gram models, pure
statistical models which predict the next word of a sentence based on the previous
n − 1 ones. For example, a bi-gram model predicts the next word based on the
conditional probabilities with respect to the previous one. N-gram models have the
big limitation of increasing exponentially their size with respect of the vocabulary
and the parameter n. Yet, their restricted comprehension resulted in the advent of
neural based models, like Recurrent Neural Networks (RNNs), which provide
more extensive contextual understanding and overcome the problem of the curse
of dimensionality. RNNs were mostly used to solve sequence-to-sequence tasks,

13

2.3 Large Language Models revolution

and became more dominant especially with the advent of Long Short-Term
Memory networks (LSTMs), which solved the classic Neural Network problem
of the vanishing gradient and were also able to get bi-directional context in a
sentence. The major problems associated with these models were the complexity
in the architecture and the slowness in training, as well as the limits regarding the
comprehension of both the right and left context, which were considered separately
and just concatenated at the end.

The current revolution came with the Transformer Neural Network architecture
in the last years, which brought to the advent of Large Language Models
(LLMs) like GPT and BERT. These new models are extremely powerful in
understanding sentences’ context and they are trained on huge datasets, vastly
outperforming predecessors in the comprehension and the generation of human-like
text, finding applications in multiple tasks like content creation, summarization,
machine translation and beyond, marking a significant evolution in NLP.

2.3.1 Attention is All You Need

The Transformer architecture, presented in the famous 2017 Google paper “Atten-
tion is All You Need”, revolutionized NLP by introducing the attention mechanisms
to capture overall dependencies in the text [14]. In the paper the architecture is
mainly presented for a Machine Translation task, showing significant advantages
in terms of performance and time to train. Furthermore, the Transformer allows
for parallel computations, which enhance efficiency compared to previous models
that processed data sequentially, and better leverages the current GPUs hardware
capabilities. The architecture is a massive Neural Network made of two distinct
parts: an encoder and a decoder. The encoder converts an input sequence of text
into continuous numerical representations, which are then utilized by the decoder
to produce an output sequence. The attention mechanism, used by both modules,
enables the model to assess the importance of various words in the sequence with
respect to the others, improving comprehension of context.

The overall architecture is summarized in figure 2.1, taken from the original
paper. The left part represents the encoder, while the right one represents the
decoder. In simple terms, this is the general process of inference:

1. an input text sentence enters the model as a sequence of tokens;

2. the encoder produces in parallel a context-aware numerical representation of
each token (embedding);

14

2.3 Large Language Models revolution

Figure 2.1: The Transformer architecture.

3. the decoder takes those embeddings, together with the output sequence gener-
ated up to that moment, and generates the next token of the sentence.

4. the decoder job is repeated, generating one token at a time, until the “end-of-
sentence” is reached.

Now follows a more detailed overview of the major operations happening in the
network [15]. Input sentences are usually processed in batches to both leverage
parallelization and reduce the training time, and each input sentence is split into
tokens, which are padded to a fixed sequence length specific to the architecture.
These tokens are then mapped to a numerical representation by means of a pre-
computed vocabulary, resulting in the actual input embeddings (red block in the
figure). Since all the tokens are processed in parallel, in order to preserve the
positional information a positional encoding is computed, using sin and cos formulas,
and added to the embeddings.

The core of the encoder operations is represented by the multi-head attention
block. In each “head”, is computed a distinct Scaled Dot-Product Attention

15

2.3 Large Language Models revolution

of the same input, as shown in the following formula:

Attention(Q, K, V) = softmax(QKT

√
dk

)V (2.1)

Q, K and V are matrices representing three different abstract aspects of the
input data, computed by an initial Feed Forward layer network [16]:

• Q is the Query matrix, indicating “What we are looking for”;

• K is the Key matrix, indicating “What we can offer”;

• V is the Value matrix, indicating “What we actually offer”.

dk is just the main dimension of K, and is used as a scaling factor to prevent
numerical operation instability. The resulting attention matrices of the multiple
heads are then concatenated, and after a layer normalization and another Feed
Forward layer processing, they produce a final tensor representation of the input
data which is very well context aware and represents the attention intensity of
each input token with respect to the others. In this encoder part, in fact, we talk
about a self-attention mechanism, since it is computed between two sequences
made of the exact same tokens.

The decoder part is made of similar foundation blocks. It receives as input the
output embeddings generated up to that moment and computes first a masked
multi-head attention, similarly to what described for the encoder. It is called
“masked” because an additional mask is applied before computing the softmax oper-
ation as in 2.1, in order to mask out the next tokens for the attention computation
of each token: in this way, we prevent the resulting prediction to depend on future
tokens, which would result into “cheating”. Next, an additional attention sub-layer
is adopted, which integrates the result of the encoder and establishes the actual
connection between the input language and the output language representations.
Indeed, here the Q matrix comes from the decoder part, while K and V comes
from the encoder embeddings, producing as result an attention matrix which very
effectively represents the relationships between the input words and the output ones.
A final linear layer maps these values into actual probabilities for each vocabulary
output token, and the most likely is picked up as the new generated token, thus
converting the attention numerical representations into human comprehensible
information.

The described Transformer model constitutes the foundation for all the sub-
sequent Large Language Models, which further explored the potential of the

16

2.3 Large Language Models revolution

attention mechanisms introducing new elements of innovation. In particular, this
architecture paved the way for advanced models like BERT, which excels in un-
derstanding context in Natural Language Understanding tasks, and GPT, known
for its generative capabilities.

2.3.2 BERT

The advent of the BERT model, which is the acronym for Bidirectional Encoder
Representations from Transformers, was a significant advancement in the field
of Natural Language Processing. This innovative model was introduced in 2018 in
the research paper “BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding”, by Jacob Devlin and his team at Google [17]. BERT
is based on the Transformer architecture: it is constituted by many Transformer
encoder blocks organized in a stack. This method allows for the execution of
numerous NLP tasks and is distinct from previous models that were unidirectional,
thereby limiting their understanding of linguistic context. Indeed, BERT’s archi-
tecture stands out due to its use of bidirectionality, which allows the model to
have a deeper understanding of linguistic context [18].

Figure 2.2: BERT training phases: pre-training on the left and the fine-tuning
step on the right (in this example, for a question answering task)

Another important BERT’s peculiarity is that its training process is divided in
two stages: pre-training and fine-tuning, as described in figure 2.2. During the pre-
training phase, the model carries out two simultaneous tasks using unlabeled data:
Next Sentence Prediction (NSP) and Masked Language Modeling (MLM). BERT

17

2.3 Large Language Models revolution

learns to anticipate if one sentence logically succeeds another in the NSP problem,
gaining a comprehension of sentence relationships. To accomplish this task, each
input is made of two sentences which are 50% of the times sequentially taken from
the same document, and 50% of the times chosen from different texts. These two
sentences are preceded by a special [CLS] token, which stands for “classification”,
and are divided by another special [SEP] token. The first output token perform
thus a binary task, predicting if the two input sentences are consecutive or not.
The MLM challenge, instead, requires randomly replacing words in the input text
with masks and predicting them using context from the other unmasked words in
the sequence. In particular, 15% of the input tokens are selected for this task and
each of them:

• is replaced with a [MASK] token with 80% of probability;

• is replaced with a random word with 10% of probability;

• is not replaced at all with 10% of probability.

Each output token corresponding to a mask is in charge of predicting the
masked word from the bi-directional linguistic context of the sentence. These two
pre-training techniques allow the model to develop a profound comprehension of
language syntax and semantics [19]. In the original paper, the model has been
trained on a huge unlabeled dataset deriving from a famous book corpora called
BooksCorpus and the English Wikipedia text passages.

Following pre-training, which is significantly more computationally expensive,
the model undergoes a fine-tuning process tailored for specific downstream tasks.
To do this, the final fully connected layer is replaced with a tailored one created for
the particular task, such text classification or question answering. While the new
layer is learned from scratch, the pre-trained parameters of the rest of the model are
only slightly adjusted. This makes the fine-tuning process very efficient and fast,
leading to outstanding performance in many tasks. Furthermore, Google publicly
released the pre-trained model as open-source, making it accessible as a TensorFlow
model at this GitHub repository (https://github.com/google-research/bert) [20].
They also published it in the major web platforms for Machine Learning models, like
Huggingface and Kaggle, and the main Machine Learning Software libraries started
providing and promoting their pre-trained implementation too. This makes very
straightforward to create a custom state-of-the-art model leveraging this pre-trained
version and fine-tuning it for a specific task, obtaining impressive results in a very
short time, and using very few computational resources.

18

https://github.com/google-research/bert

2.3 Large Language Models revolution

Figure 2.3: BERT input encodings: word embeddings + segment embeddings +
position embeddings

After examining BERT’s complex training stages, let’s focus on its crucial
input representation mechanism. BERT is characterized by a specific text input
representation, as shown in figure 2.3. The model employs the sum of three types
of embeddings: token embeddings, utilizing WordPiece tokenization (introduced
in [21]), segment embeddings, to distinguish between sentences in the input, and
position embeddings, indicating the position of each token in the sequence. The
token embeddings are thus obtained after a first tokenization process for the input
sentences, which splits them into words or sub-words using a 30k vocabulary,
and classifies unknown pieces with the special [UNK] token; and a second step
where these tokens are mapped to integer numbers. BERT’s comprehensive input
representation technique allows it to effectively handle many NLP tasks that need
understanding of either word-level and sentence-level context. The model output
embeddings are, instead, very meaningful numerical representations of the input
tokens, in the form of arrays of continuous values. Those tokens are in fact mapped
to a multidimensional space characteristic of the Language Model, where vectors
represents very context-aware word representations. This marks an important step
forward into the field of word embeddings, surpassing well-established techniques
like Word2vec [22] and GloVe [23], which produce just static embeddings without
capturing the different nuances of meaning that a word might have in multiple
contexts.

Two variants of BERT are featured in the original work: BERT Base and BERT
Large, differing in size and capacity. The BERT Base model consists of L=12
Transformer encoder layers, a hidden size of H=768, and A=12 attention heads,
for a total of 110 million of parameters. The BERT Large model consists of
L=24 Transformer encoder layers, a hidden size of H=1024, and A=16 attention

19

2.3 Large Language Models revolution

heads, comprising 340 million of parameters. The adjustments offer adaptability in
terms of computer resources and work complexity. For hidden size H is meant the
size of the numerical representation array for each input token, that is the output
encodings’ subspace dimensionality.

The NLP community has developed other models inspired by BERT’s archi-
tecture to achieve different objectives following the success of the original model.
These variations are mainly designed for environments with limited computational
resources to be more concise and efficient, like the BERT configurations intro-
duced by Google in 2019 in “Well-Read Students Learn Better: On the Importance
of Pre-training Compact Models”, like BERT-Tiny, BERT-Mini, BERT-Small,
and BERT-Medium [24]. Subsequent versions including ALBERT, MobileBERT,
RoBERTa, and DistilBERT have further expanded the scope of BERT-based mod-
els. Each version offers unique advantages suited to specific applications and
constraints. For example, ALBERT introduces parameter-reduction techniques
for improved scaling [25], MobileBERT is optimized for mobile environments [26],
RoBERTa modifies the pre-training procedure for improved performance [27], and
DistilBERT is a distilled version that retains most of its performance while being
significantly smaller [28].

Nowadays, BERT-like models are key elements behind every major Search Engine
queries, providing state-of-the-art Natural Language Understanding capabilities to
better answer to users’ needs.

2.3.3 GPT
OpenAI’s introduction of the Generative Pre-trained Transformer (GPT)
models represents a significant advancement in the field of Natural Language
Processing and AI in general. The GPT series originated with the initial model, as
described in the 2018 paper “Improving Language Understanding by Generative
Pre-Training” [29]. This model served as the basis for further versions such as
GPT-2, GPT-3, up to the current GPT-4. The models have significantly changed
the field of NLP by showcasing exceptional skills in producing text that resembles
human writing, comprehending context, and executing tasks without needing
unique training for each task.

The GPT architecture is derived from the Transformer paradigm, similarly
to BERT, with a specific emphasis on the decoder element. While BERT uses
the Transformer encoder for bidirectional context comprehension, GPT uses the
Transformer decoder to produce text. The model consists of stacked layers of
decoders that process input tokens sequentially to anticipate the next word in a

20

2.3 Large Language Models revolution

sentence by taking into account the words that come before it. GPT’s sequential
processing capacity allows it to produce cohesive and contextually relevant content
throughout long periods.

GPT models are trained in two basic stages too: unsupervised pre-training
and supervised fine-tuning. During pre-training, the model is trained on a large
amount of text data to predict the next word in a phrase based on the words that
come before it, without any task-specific training. This step enables the model to
develop a comprehensive understanding of language patterns, syntax, and context.
The model is then fine-tuned for certain purposes by training on a smaller dataset
tailored for that task. This method entails the pre-trained model’s weights to excel
in tasks like translation, question-answering, and text summarization, among others.
The fine-tuning stage, in addition, becomes essential for customizing the overall
linguistic abilities of GPT for specific applications, improving its performance on
tasks that demand specialized knowledge or context.

GPT models, similarly to BERT, also use a combination of token embeddings
and position embeddings to encode input text. Token embeddings transform
words into vector forms to capture semantic details, while position embeddings
indicate the sequence of words, allowing the model to comprehend sentence structure
and flow. GPT can process and generate text that is contextually accurate and
structurally cohesive due to this representation.

OpenAI developed more sophisticated iterations of the original model, such as
GPT-2 and GPT-3. Each successive model has been distinguished by a growth
in scale, encompassing the expansion of the pre-training data size and the so-
phistication of the model architecture, such as the increase in parameters, layers,
and attention heads. GPT-3 has attracted considerable interest because of its
large number of parameters (over 175 billion) and its capability to handle various
tasks with minimum task-specific data in a zero-shot or few-shot learning scenario.
Instead, the last two models details, GPT-3.5 and GPT-4, which are at the core
of the current ChatGPT software assistant, have not been disclosed by OpenAI,
but the size of the latter has been estimated in roughly 1.7 trillion of parameters
[30].

GPT models have been utilized in several applications, ranging from generating
creative content and providing writing assistance to more intricate activities such as
coding support, language translation, and participating in sophisticated human-like
discussions. These models are highly versatile and efficient, making them essential
in creating AI applications that demand a profound comprehension of language
and context.

21

2.4 Dialogue State Tracking and Management

The GPT series has facilitated continued study in developing more efficient,
powerful, and adaptive Language Models as the field progresses. This involves
addressing issues including computing efficiency, model interpretability, and ethical
problems associated with AI-generated content. But the major problem still
characterizing GPT-based models are hallucinations, when the model produces
text that is either factually inaccurate, incomprehensible, or irrelevant to the input
context. This issue arises due to the model’s complex design, which does not
possess a genuine “understanding” of the content comparable to that of humans.
It functions by using patterns acquired from its training data, resulting in cases
where it generates material with high confidence but that may be misleading or
entirely false.

2.4 Dialogue State Tracking and Management
Dialogue State Tracking (DST) and management are essential elements in the
creation and operation of Voice Assistants and conversational agents. These systems
attempt to replicate human-like interactions, emphasizing the need of maintaining
context and continuity. Dialogue State Tracking is the process of comprehending
and keeping track of the user’s intention along the progression of the conversation.
This guarantees that the agent can react suitably and logically throughout an
engagement, similar to how a human might in an ongoing conversation. Task-
oriented conversational agents, for example, created to perform particular activities
like booking tickets, making reminders, or giving information, frequently utilize
organized tactics to handle conversations and comprehend user intentions.

Ensuring context and continuity in user interactions is crucial for establishing a
smooth and authentic conversational flow. For instance, if a user inquires about
the current weather and then asks about the weather for the following day, the
system should recognize the connection between the two queries without the need
for the user to reiterate the initial context. Retaining and linking user inputs across
numerous conversation turns significantly improves the user experience. The two
major architectures used to accomplish this objective are:

• the frame-based architecture;

• and the dialogue-based architecture.

The frame-based architecture, introduced by the General Understanding
System (GUS) system, is an early approach in dialogue management, introduced in

22

2.5 P2P payments applications

1977 in “GUS, a frame-driven dialog system” [31]. A “frame” in this architecture is
a data structure that arranges the information needed for the agent to comprehend
and meet a user’s request. An instance of this would be seen in a travel booking
application, where a frame could correspond to the user’s intent of booking a new
trip, involving sections for the destination, travel dates, number of passengers, and
other relevant details. The agent aims to populate these slots with the information
provided by the user during the discussion.

Within the realm of improving dialogue management systems, the dialogue-
based architecture represented a notable progression from the frame-based
models first established by systems such as GUS. This design utilizes a Finite
State Machine (FSM) to handle the intricate conversation flow in a dynamic and
adaptive way. The FSM method enables a systematic and adaptable approach to
managing dialogues, where each state represents a distinct context or stage in the
discussion, and transitions are controlled by predetermined rules activated by user
inputs or system events. The dialogue-based architecture has been presented in
2002 in McTear’s “Spoken Dialogue Technology: Enabling the Conversational User
Interface” [32]. This design incorporates a complex interaction of different modules
that collaborate to analyze user inputs, manage dialogue states, and generate
system replies, rather than just switching between states. This advanced design
facilitates more organic and effective dialogues between users and conversational
agents, enabling voice assistants and other conversational interfaces to be seamlessly
incorporated into everyday tasks and interactions. To summarize, the dialogue-
based architecture prioritizes state management, adaptability, and the integration
of NLU and NLG components, marking a significant advancement in creating
really conversational user interfaces. More details about this architecture will be
presented in section 4.5, for the design part, and in 5.3 for the implementation,
since a lot of these concepts have been used for the Voice Assistant created in this
work project.

2.5 P2P payments applications
Peer-to-Peer (P2P) payment systems are becoming essential in contemporary
financial environments, providing a straightforward method for users to transfer
money directly to each other through digital platforms. Popular examples in Italy
include PayPal, BancomatPay, and Satispay, each equipped with its own mobile
application to enable quick and convenient transactions. The rise in P2P payment
adoption is mostly driven by the growing prevalence of smartphones and a societal

23

2.5 P2P payments applications

move towards cashless transactions, motivated by the need for fast, simple, and
efficient financial transactions.

However, the rapid expansion of P2P payments presents concerns. Security
issues are the most important ones because these platforms are easy targets for
hackers, which could expose users’ financial information. Meeting regulatory
compliance is another major challenge for these apps due to the intricate network
of financial laws and regulations that differ by location and are susceptible to
modifications. Furthermore, it is crucial to maintain user trust, particularly in
consideration of the rising occurrences of fraud and scams on P2P systems. Users’
trust in these systems is essential for their ongoing acceptance and usage. Therefore,
P2P payment providers need to allocate significant resources to implement strong
security measures, clear policies, and efficient customer assistance to handle disputes
and answer concerns. Achieving a balance between user ease and security is a
delicate task that demands providers to consistently come up with new ideas,
making sure that the ease they provide does not compromise user trust or financial
security. In the future, P2P payments are expected to advance through the use of
blockchain and Artificial Intelligence technologies to improve security and UI/UX.
For this reason, this work aims to explore and suggest innovative solutions to
integrate AI capabilities into these types of mobile applications.

2.5.1 Security and Privacy concerns
Integrating voice assistants into P2P payment platforms adds convenience but also
brings significant security and privacy issues. Ensuring the privacy of users’
financial information is crucial, as voice assistants have the ability to retrieve and
analyze sensitive data such as bank account information and transaction records.
Securing this data and preventing illegal access is a crucial task that requires
modern encryption techniques and strict access controls.

Furthermore, the dependability of voice-activated services in carrying out trans-
actions with precision and security is a major issue. The system needs to accurately
understand user commands that may vary in language and complexity and per-
form transactions precisely to avoid errors that could result in financial losses
or unwanted transfers. Accurately comprehending user intents is another critical
factor. Voice recognition technology need to be advanced to accurately interpret
the nuances of human speech, such as accents, colloquialisms, and indirect instruc-
tions. Incorrectly understanding commands can result in incorrect transactions or
violations of privacy, leading to the unintentional disclosure or misuse of personal
financial data.

24

2.6 iOS development

These problems highlight the necessity of strong security measures, sophisticated
data encryption, and ongoing enhancements in voice recognition technology to
guarantee the secure, confidential, and precise utilization of voice assistants in
Peer-to-Peer payment systems.

2.6 iOS development
When developing mobile applications for iOS platforms, the selection of the
programming language and development frameworks significantly influences the
capabilities and performance of the applications, as well as the programmer ex-
perience. Objective-C was the main language for iOS programming at first,
characterized by its dynamic runtime, object-oriented features and syntax inherited
from C. However, its verbose syntax and intricate memory management presented
difficulties, which led the development of a more modern language, called Swift
[33]. Apple introduced Swift in 2014 to provide a more efficient syntax, Automatic
Reference Counting (ARC) for simpler memory management, and features such as
optionals and generics to improve safety and performance, making it appealing to
contemporary iOS developers [34].

The iOS Software Development Kit (SDK) includes a wide range of
frameworks and APIs that help in creating iOS applications. For example, the Core
Data framework is essential for efficient data persistence and management, Grand
Central Dispatch (GCD) optimizes application performance through concurrent
programming, and UIKit components offer pre-designed elements for user interface
construction. Other useful frameworks in the context of this Thesis work are
CoreML, a framework to create, train and easily integrate Machine Learning
models into iOS applications; Speech, which provides the APIs to perform Speech
Recognition either via Apple’s remote services or on device (from iOS 13); and
AVFoundation, providing a high-level architecture for working with audio and
visual media, like recording, editing, analyzing, and playing back media content.

2.6.1 SwiftUI framework

Developers have the option to use either the programmatic UIKit or the declarative
SwiftUI framework to create the user interface of iOS applications. UIKit, an
imperative framework, is essential for iOS UI development. Developers must
precisely specify the layout and behavior of UI components through code, typically
using the Model-View-Controller (MVC) design pattern to organize applications.

25

2.6 iOS development

Developers have precise control over the application’s design and interactivity using
this method, although it may become uncomfortable for intricate user interfaces.

SwiftUI, a declarative UI toolkit launched with iOS 13, allows developers to
describe UI elements and their interactions in a more intuitive and less error-prone
way, marking a significant change in approach. SwiftUI simplifies the management
of rendering and state transitions by representing components based on their
desired states, utilizing the reactive programming model. This streamlines the
development process and promotes the use of modern architectural patterns such
as Model-View-ViewModel (MVVM) and Combine for managing data flow and
asynchronous activities, leading to more scalable and maintainable application
structures [35].

Opting using SwiftUI instead of UIKit for iOS app development offers some
notable benefits that address the contemporary developer’s requirement for code
that is more efficient, readable, and easier to maintain. The primary advantages
are:

• declarative syntax: SwiftUI employs a declarative programming paradigm
where developers specify the desired behavior of the UI rather than the step-by-
step instructions on how to achieve it. This method simplifies the construction
of intricate user interfaces, enhancing code readability and comprehension as
contrasted with the imperative approach of UIKit;

• less code: SwiftUI’s declarative approach allows for achieving the same UI
with less code compared to UIKit. Reducing the amount of code not only
accelerates the development process but also decreases the likelihood of defects
and errors, resulting in more stable apps;

• live preview: SwiftUI fully integrates with Xcode’s live preview functionality,
enabling developers to view real-time previews of their user interface while
coding. The instant feedback loop, along with hot reload features, boosts
productivity by removing the necessity to build and run the application after
each small modification;

• advanced animations and graphics: SwiftUI simplifies the creation of
complex animations and custom graphics with less code. Its powerful and intu-
itive APIs enable developers to add sophisticated visual effects and animations
that enhance the user experience.

26

Chapter 3

Requirements Analysis

The integration of AI-powered voice assistants in mobile applications is an impor-
tant innovation that improves user interaction and operational efficiency in the
continuously evolving mobile app industry. This Chapter focuses on the initial
stage of requirements analysis, which is crucial for tailoring the voice assistant’s
features to fit the specific needs of users in a P2P payment application context.
This analysis establishes the foundation for creating a Voice Assistant that not
only makes financial transactions easier but also prioritizes security and privacy by
carefully examining the expectations of the users. Functional and non-functional
requirements are meticulously explored, ensuring the voice assistant’s design is
not only user-centric but also robust and reliable. In the context of the case study
application, described in 1.3, it is relevant to consider that the proposed AI solution
is supposed to be an extension with respect to the current app functionalities.

This Chapter establishes the foundation for future design and implementation
choices, ensuring that they are based on a accurate understanding of consumers’
needs and preferences for a voice-activated financial assistant.

3.1 User Needs

As users explore the various features of a financial app, the possibility of interacting
to a voice assistant becomes more than a simple functionality, but rather a means
to satisfy the need for a more user-friendly and capturing digital experience.
From a user point of view, in fact, the simplicity of speaking basic voice commands to
carry out transactions or access in-app services goes beyond traditional navigation,
representing a more natural way of interaction, as well as a more accessible

27

3.2 Functional Requirements

form of communication for people with reduced haptic capabilities or with less
digital expertise. Furthermore, the ethical design of this interface is of extreme
importance. We require as humans that our machine interactions are conducted in
a respectful and transparent manner, reflecting the same trust and integrity we
expect in human interactions.

Within the domain of financial transactions, a primary user need lies on safeguard-
ing the confidentiality of personal information and ensuring data protection.
Every voice command implies a level of trust that user’s financial integrity is
protected with the highest level of accuracy.

These demands and expectations are not generated independently but rather
from a manifestation of users’ shared experiences, conversations within the financial
community, and my observations of developing technology trends. They represent
a collective agreement on the definition of effective user needs in the era of digital
technology.

3.2 Functional Requirements
Based on the user needs introduced in 3.1, a suitable set of system requirements
has been conceived, in order to identify the specific characteristics of the Voice
Assistant, either technical or not. A clear distinction between functional and non-
functional requirements is made: the former being more technical and functional
specifications, while the latter being more high-level and feature-agnostic properties.
For the implementation and integration of the aforementioned Voice Assistant
into a P2P Payment app, the following major functional requirements have been
identified:

• Financial Operation Assistance through Voice Commands: The system
will provide support to users in executing financial in-app transactions using
voice commands. This includes the functionality of allowing users to transfer
funds to their contacts, request money from their peers, and get their financial
data, such as checking their balances and transaction history. The voice
assistant will analyze the user’s spoken instructions and transform them into
executable commands within the application;

• Conversational Interaction for Information Gathering: The system will
engage in a dialogue with the user to obtain all the required information for
carrying out in-app actions. This process includes a step-by-step conversation
in which the voice assistant requests the user for precise information necessary

28

3.3 Non-Functional Requirements

for the task, such as the monetary value, recipient details for transactions,
and confirmation of the transaction information;

• Feedback and Confirmation Mechanisms: The assistant should promptly
and unambiguously offer feedback regarding user requests and confirmations
prior to carrying out delicate tasks, such as making payments. This guarantees
that the user stays well-informed and maintains control over the assistant’s
actions;

• Effective Error Handling: The system should possess the ability to profi-
ciently handle errors or misinterpretations in voice commands. The system
should provide clear instructions to assist the user in resolving issues or present
alternative recommendations, ensuring a seamless and effortless interaction;

• High-Quality Responses: The assistant has to offer answers that are not
only precise and pertinent but also presented in a straightforward and concise
manner. This guarantees that users obtain the necessary information in a
comprehensible layout, hence improving the user experience;

• High-Quality Voice: The assistant has to utilize a high-quality voice, which
enhances the user’s experience by creating a more authentic and engaging
conversation. The voice must possess clarity, pleasantness, and a suitable
level of human-like qualities, hence ensuring comfortable and user-friendly
interactions.

3.3 Non-Functional Requirements
Following the same principles introduced for the functional requirements, here a set
of non-functional requirements is presented, which has been identified to accomplish
the user needs mentioned in 3.1:

• Usability and Accessibility: The voice assistant should be intuitive, enabling
effortless navigation and operation within the app. This includes user-friendly
voice commands and responses that suit to individuals with different degrees
of technology expertise, thus enhancing accessibility, especially for those with
visual or physical disabilities;

• Effective UI/UX: The user interface should be designed to promote a
smooth and effortless interaction between the user and the voice assistant.

29

3.3 Non-Functional Requirements

This involves the effective communication of information through a well-
organized and visually pleasing structure, together with providing prompt and
tailored responses to user interactions, so ensuring a gratifying user experience;

• High Accuracy: The voice assistant must reveal outstanding precision in
accurately identifying the user’s speech, categorizing the user’s intention, and
extracting referenced things. This level of precision guarantees that commands
are comprehended accurately and that the assistant can precisely recognize
and handle the particular specifics of user requests, such as the amounts of
transactions or the names of recipients;

• Efficacy in Operations Execution: The assistant has to demonstrate
efficacy in operations execution by efficiently carrying out transactions and
effortlessly interacting with the payment app’s backend systems, in addition
to interpreting user commands. This includes the act of transferring money,
verifying available funds, and providing details on an account, all performed
with a notable level of reliability and precision;

• Low Latency: User commands must be quickly attended to by the assistant,
ensuring a smooth and rapid flow of interaction. The minimal delay in the
processing phase is essential for user satisfaction, as it guarantees that users
will not encounter substantial interruptions that may decrease the overall
effectiveness and user-friendliness of the application;

• Security and Privacy: The system must maintain the utmost levels of data
confidentiality and transaction security. This includes the encryption of data,
the secure management of sensitive information such as account details and
transaction records, and strong authentication measures to prevent unwanted
access;

• On-Device Processing: In order to improve privacy and speed, the voice
assistant’s main functions, such as recognizing the speech and understanding
user intentions, should be carried out directly on the user’s device. This
reduces the need for external servers and addresses privacy issues;

• Reusability: The design of the voice assistant should be modular, allowing
for effortless integration into various applications or platforms. This enables
the assistant to be used in a wider range of situations and sectors, and to be
easily expanded to do a wider variety of tasks.

30

Chapter 4

System Design

In this Chapter an overview of the Voice Assistant design will be presented, describ-
ing first the overall structure of the created system, and then going into detail on
each of its components. The assistant has been conceived as an independent soft-
ware module containing all the necessary elements to accomplish the functional
and non-functional requirements introduced in Chapter 3: from the User Interface
to the Machine Learning modules performing Speech Recognition and classification,
as well as the entire business logic to manage the dialogue conversation state.
Decoupling the system implementation from its in-app integration, thus creating
a separate and generic iOS codebase, is fundamental to guarantee the Voice
Assistant flexibility, making it not only suitable for multiple applications, but
also easily testable and maintainable in a more effective way by the programmer.

In each paragraph the focus will be on a specific component of the Voice
Assistant module, carefully describing its design phase, the input and the output
characterizing its functionalities, and its interactions with the other parts of the
system. At the end of the Chapter will be also presented the design choices made
for the subsequent integration of the Voice Assistant module into an actual P2P
payment application.

4.1 Voice Assistant design

Designing a fully functional Voice Assistant, which seamlessly reproduces human-
like conversations and helps the user performing specific articulate operations,
is clearly an ambitious task. If we especially consider the mentioned system
requirements, expecting to deliver a system working entirely on-device to guarantee

31

4.1 Voice Assistant design

the maximum level of data confidentiality, privacy and security, it becomes even
more challenging. For this reason, in order to preserve the feasibility of the task,
some little simplifications have been made in the design of the system, which will
be gradually described in the corresponding sections of this document.

Inspired by the conversational agents literature discussed in section 2.1, I decided
to restrict my Voice Assistant capabilities to the ones of a Task-oriented agent.
The assistant will support the user in performing specific in-app operations, guiding
them step-by-step to the solution and eventually showing the resulting outcome.
The primary goal, in fact, is to effectively satisfy the user’s need to accomplish a
specific task, like sending some money or checking the status of their bank accounts.

Taking a cue from the Dialogue State Management elements described in 2.4,
where two different architectures are presented to create a proper conversational
agent, the proposed Voice Assistant has been designed with the same fundamental
principles in mind. In particular, key elements from both architectures has been
selected, creating a unique framework which is complex enough to effectively manage
all the possible conversation aspects in a state machine, as in the dialogue-based
architecture, but at the same time maintaining the simplicity given by pre-defined
frames, identifying user intents and key entities.

Then following the discussion introduced by the aforementioned “Spoken Dialogue
Technology: Enabling the Conversational User Interface” [32], the Voice Assistant
has been similarly split into multiple components. Each one is dedicated to a
very specific phase of the user’s speech processing, contributing to transform the
received information into a suitable format for the next element, up to the final
user who receives back a proper answer to their request. The schema 4.1 provides
a detailed overview of all the Voice Assistant components and their interactions,
but for a different task.

The image has been taken from the mentioned paper work [32], and shows an
example of how their system would work in a real conversation in the context of trip
reservations. Here the Voice Assistant is shown during the conversation passage
in which the user specifies the desired point of departure. The user speech, in the
form of an acoustic wave, is processed by the first module, which is in charge of the
Speech Recognition task. The most likely transcript is selected and then processed
by a Natural Language Understanding module, in charge of identifying the user’s
intent and the corresponding mentioned information (point of departure, in this
case). Those ones are then used by a Dialogue State Tracker, which keeps track
of the entire conversation history, and a dialogue policy is generated to respond
to the user’s request. This raw answer is then transformed into an actual textual

32

4.1 Voice Assistant design

Figure 4.1: Different components of a Voice Assistant interacting to accomplish a
user request.

representation by a Natural Language Generation module, and finally converted
again into audio by a Speech Synthesizer, letting the user listen to the answer.

Inspired by the mentioned schema, the following software components have
been identified for the Voice Assistant proposed in this work:

1. UI/UX: in charge of interacting with the user;

2. Speech Recognizer: performing the Speech-to-Text task;

3. Text Classifier: to deal with the NLU tasks;

4. Dialogue State Tracker: managing conversation state;

5. Response Generator: producing the actual response;

6. Speech Synthesizer: with Text-to-Speech capabilities.

These abstract components are subject to the same logic and the same interac-
tions described above. It’s important to highlight that each of these components
has been conceived to work locally on the user’s device, without sending any data

33

4.2 UI/UX design

over the network, to guarantee the required level of data privacy. The design choices
made and their capabilities are be presented in detail in the following paragraphs.

4.2 UI/UX design
The UI/UX design for the Voice Assistant prioritizes simplicity, intuitiveness,
and prompt user input. The User Interface is intentionally designed to be basic,
with a focus on showing the assistant’s responses in a central text box and a big
button at the bottom for users to hold and record their questions or commands.
This design employs a simple and direct approach to reduce the mental effort
required and directs the user’s attention onto the process of interacting with the
system and receiving feedback.

When a user activates the assistant by pressing the record button, the system
promptly starts accepting the input (user’s voice) and provides visual or audio
signals to indicate that the voice input is being processed. Possible options for
this may include incorporating an animated effect surrounding the button, altering
the color of the button, or implementing a basic haptic feedback mechanism.
Feedback is essential since it provides users with the assurance that the system has
acknowledged their input and is actively working on generating a response, hence
improving the overall User eXperience.

Once the user releases the record button, the system starts analyzing the
input and produces a response, which might be just textual or involving also a
more complex interaction with the app services, performing actual operations (e.g.
perform the transaction). Therefore, there might be a noticeable delay from when
the user stops talking to when the system returns an actual response. During this
waiting time the system is responsible for maintaining an engaging contact with
the user. This might be accomplished by including a visual loading animation
which promptly gives the impression to the user that the system is working.

After the assistant has processed the request, the generated answer is played, but
also more feedback is given to ensure continued involvement and effectively manage
expectations. This could be a textual message displaying on the screen and that
contains the same response given by the assistant, which may come gradually and
not instantly. The response, in fact, is designed to mimic its human-like generation,
as it happens for the spoken response. The objective is to provide the user with
regular updates on the state of the system, hence minimizing uncertainty and
potential frustration that may arise during periods of waiting.

The described UI/UX design for the Voice Assistant has been centered on the

34

4.3 Speech Recognizer design

ideas of clarity, efficiency, and constant user engagement. This aims to create a
smooth and gratifying connection between the user and the assistant.

4.3 Speech Recognizer design
The Speech Recognizer component of the Voice Assistant acts as the primary
interface between the user and the system core. It captures and converts the
user’s spoken requests into text for further processing. This component utilizes a
Machine Learning model to successfully perform the Speech-to-Text task, efficiently
transforming the user’s spoken words into a comprehensible written transcript.

Using the standard tools offered by the iOS Operative System for this purpose
simplifies the design by eliminating the need to create a tailored model for Speech
Recognition. iOS offers indeed a built-in support for SR tasks, which is the same
used by Siri’s underlying model to assist user’s requests for interactions with the
Operative System. Utilizing the capabilities of the iOS platform guarantees a
smooth integration and functioning of the Speech Recognizer, making it an essential
and efficient component of the voice assistant’s overall design. This strategy not only
takes use of the reliability and effectiveness of the platform’s built-in capabilities,
but also allows you to conform to the system’s requirements by prioritizing user
privacy and data security. This is achieved by ensuring that all data processing
takes place on the device itself, without any external communication, and this is
possible thanks to the libraries offered by iOS for this task.

The output of this software component is then a transcript of the interpreted
user’s speech, which can then be processed by the subsequent modules for data
processing, in particular by a text classifier capable of identifying the key elements
of the request.

4.4 Text Classifier design
Crucial to the thesis work, the Text Classifier component emerges as the Voice
Assistant’s main Machine Learning component. This component is responsible for
the complex task of text classification, which involves analyzing the user’s textual
input and understanding the underlying intent and relevant entities. The proposed
design includes the development of a separate ML model specifically designed
for this objective. This represents the core model of the Text Classifier, in charge of
reading the user’s text, determining the purpose of the text and extracting relevant
entities so that the Voice Assistant can respond appropriately.

35

4.4 Text Classifier design

In order to achieve state-of-the-art performance, the architecture has been de-
signed as an independently implementable module, which utilizes modern Machine
Learning tools and frameworks, with a specific focus on utilizing the BERT model.
The task at hand is well-suited for BERT due to its exceptional ability to com-
prehend contextual nuances in text, as described in section 2.3.2. The model,
which has been trained on huge amounts of linguistic data, will be subjected to
fine-tuning to be adapted to the specific requirements of the Voice Assistant. This
process will ensure that the model becomes proficient in accurately identifying the
different intentions and entities that are pertinent to the P2P Payments applica-
tion’s field. After a careful validation procedure, in which the model is fine-tuned
with different architectures and hyperparameters’ values, the best configuration is
selected, according to the results obtained over a proper test dataset.

Embedding the obtained ML module into an iOS application is another crucial
element of the design phase. This involves integrating the Machine Learning
model into the app, enabling it to operate smoothly within the iOS environment.
Thus, the Text Classifier becomes an essential module of the Voice Assistant app,
collaborating with other parts to receive input from the user and provide relevant
responses.

The designed Text Classifier is specifically built to simultaneously perform two
main functions:

• Intent classification: it includes discerning the user’s goal from their textual
input, regardless of whether it is a request for information, a command, or a
query;

• Entity extraction: it is the process of finding and isolating certain relevant
pieces of information inside the text, such as people names, amounts, or other
pertinent data, which is fundamental for completing the user’s request.

Essentially, the Text Classifier is designed as the key component of the Voice
Assistant. It has to utilize a BERT-based Machine Learning model that
has been first independently built and fine-tuned, and then incorporated into the
iOS software codebase, with the purpose of effectively manage intent classification
and entity extraction. This guarantees that the Voice Assistant can accurately
understand user inputs, resulting in a smooth and intelligent interaction experience
within the app.

36

4.4 Text Classifier design

4.4.1 Intent Classification
In order to maintain the feasibility of the task, a limited set of possible intents
has been designed, mostly based on and inspired by the features offered by the
case study application, described in 1.3: check balance, check transactions, send
money, request money, yes, no, none. Those will be the only capabilities actually
offered by the Voice Assistant, as well as the only in-app operations supported
to assist the final user.

The Text classifier is then in charge of analyzing the user’s transcript and classify
it into one of the following instances:

• Check Balance: it represents the user’s intent to check the current balance
of a specific bank account. It must be characterized by at least one of the
following entities:

– Currency: the currency of the desired bank account;
– Bank account: the name of the desired bank account itself;

• Check Transactions: it represents the user’s intent to check their made
last transactions, either as incoming or outgoing ones. This intent might be
characterized (or not) by the following entities:

– Bank account: the specific bank account name whose transactions the
user wants to check;

– User name: the specific user’s name involved in the transaction;

• Send money: it represents the user’s intent to perform a transaction, sending
some money to another user from a specific bank account. This intent must
be characterized by the following entities:

– Amount: the specific amount the user wants to send in the transaction;
– User name: the specific recipient’s name involved in the transaction;
– Bank account: the specific bank account name used as source for the

transaction.

• Request money: it represents the user’s intent to request some money to
another user using a specific bank account. This intent must be characterized
by the following entities:

– Amount: the specific amount the user wants to request;

37

4.4 Text Classifier design

– User name: the specific sender ’s name that will be involved in the
transaction;

– Bank account: the specific bank account name used as destination for
the transaction.

• Yes: it represents the user’s will to confirm a certain operation. It is not
characterized by specific entities.

• No: it represents the user’s will to deny a certain operation. It is not
characterized by specific entities.

• None: it represents the absence of any intent by the user. This is particularly
useful to still assign a valid ’intent’ when the user just mentions specific
entities and nothing else. It might be characterized (or not) by any of the
previously mentioned entities.

In the context of the frame-based architecture described in 2.4, the first four
mentioned intents (check balance, check transactions, send money, request money)
corresponds to specific frames for the Voice Assistant, embodying some slots to
be filled by specific entity values.

The designed intents and the corresponding entities are summarized in table 4.1
for better clarity.

Intent Entities Frame

check balance currency, bank account yes
check transactions bank account, user name yes

send money amount, user name, bank account yes
request money amount, user name, bank account yes

yes - no
no - no

none (any entity) no

Table 4.1: Text Classifier supported intents and corresponding entities.

4.4.2 Entity Extraction
In conjunction with the design of supported intents, a limited set of possible
entities has been defined, to let the Voice Assistant capture the most significant

38

4.5 Dialogue State Tracker design

information mentioned by the user. Indeed, the Text classifier is responsible not
only for the categorization of the user’s speech into an actual intent, but also for
the identification and extraction of the relevant data regarding the intent, which
are fundamental to perform the in-app operations supported by the assistant. For
example, if the user express the intent of sending a certain amount of money, it is
important to identify this intent, but it is also fundamental to extract the right
numerical amount together with its currency, formatting it properly and make this
information interpretable by the software.

Below is a list of the entities designed for the Text Classifier in order to accomplish
the described task, and a brief description of their expected format:

• Amount: it includes a currency, either as symbol or as a literal name, and a
sum, with or without the decimal part, either in a numerical or literal format

• Bank: it is either the name of a specific bank, or the indication of the
primary/default one (each user has defined a primary bank account);

• Currency: it is just the information about a currency, either as symbol or as
a literal name

• User: it represents a user’s name, in the form of full name, first name or
common name + first name (e.g. Sister Anne);

• None: it represents the absence of any entity (used as a fallback type).

The existence of both currency and amount (which contains a currency too)
lies in the decision of simplifying the capturing of those two entities, such that
the system will treat an amount as a whole element, instead of a composition
of multiple ones. A summary of the mentioned entities and their format is also
reported in table 4.2 for better reference.

4.5 Dialogue State Tracker design
When building the Dialogue State Tracker component for a conversational agent,
it is essential to take into account the interactive roles of both the user and the
assistant during the conversation. Within this particular work, which treats about
a task-oriented agent, the Voice Assistant has been designed as always initiating
discussions by asking questions to the user, who then replies providing additional
context and information to the conversation, thereby enabling well-organized and

39

4.5 Dialogue State Tracker design

Entity Format

Amount currency (symbol or literal) +
sum (literal or numerical)

Bank name or primary/default
Currency symbol or literal

User full name, first name or
common name + first name

None (any)

Table 4.2: Text Classifier supported entities and corresponding format.

structured interactions. In particular, the proposed architecture follows a State
Machine model, in which each state corresponds to a particular stage in the
conversation. This method directs the flow of the conversation based on the user’s
responses.

A State Machine is a well-known computational model in Computer Science that
is utilized to define the dynamic behavior of a system, which exists in multiple states
[36]. The system experiences a change from one condition to another as a result
of external events, specifically user interactions in this situation. This paradigm
is highly efficient in managing complex interactions in a predictable manner,
guaranteeing that the assistant can effectively handle various conversational paths
and user objectives.

The Dialogue State Tracker here has two main functions: it can either just
respond to the user with an answer including a query, or in alternative carry
out a specific task, such as conducting a financial transaction, according to the
user’s instructions, and provide its outcome at the end. The determination of the
output involves analyzing the current state, user input, and the context of the
conversation, ensuring the assistant’s responses are always relevant and accurate.
This component plays a crucial role in providing a smooth and easy-to-use User
eXperience. It allows the Voice Assistant to efficiently handle in-app operations
and gather relevant information within the P2P payment application.

40

4.5 Dialogue State Tracker design

Request Money Intent

Unsure Send
Money State

Unsure Request
Money State

Yes Intent

 Unsure Check
Transactions State

Yes Intent

Unsure Check
 Balance State

Send Money Intent

Send Money Intent
 (low confidence)

Check Transactions Intent
(low confidence)

Check Balance Intent
(low confidence) Check Balance Intent

(high confidence)

No State

(all entities have
been specified)

Check
Transactions

 Intent

Send Money State

Wait Amount
State

Wait Recipient
State

None Intent + Amount

Wait Bank
Account State

None Intent + User

Request Money Intent
(low confidence)

Check Transactions
Intent (high confidence)

Start

Send Money
Intent

(high confidence)

(all entities have
been specified)

Check
Balance
Intent

Check Transactions
Intent

Request Money State

Wait Amount
State

Wait Sender
 State

None Intent + Amount

Wait Bank
Account State

None Intent + User

Request Money
Intent

(high confidence)

Yes IntentYes Intent

None
Intent

Confirmation Send
Money State

None
Intent

Confirmation Request
Money State

No Intent No Intent Yes IntentYes Intent

perform
in-app operation

perform in-app
 operation

Check Transactions
State

None
Intent

Check Transactions Intent Check Balance
State

No Intent No IntentNone
Intent

Yes Intent Yes Intent

perform
in-app operation

perform
in-app operation

Check Balance Intent

Check Balance
Intent

Request
Money Intent

Send
Money Intent

Send Money Intent Request Money Intent

Figure 4.2: Dialogue State Tracker: state machine simplified diagram.

41

4.5 Dialogue State Tracker design

4.5.1 Main States and Transitions

For the purpose of this specific work, based on the already mentioned considerations
on the DST, a finite set of states and transitions have been defined to design the State
Machine model and manage all the possible conversation interactions. These states
specifically reflect the intents and the entities supported by the Text Classifier
and defined in 4.4, and in particular they follow the logic of a frame-based
architecture (see section 2.4), identifying a specific intent context mentioned by
the user (e.g. send money) and trying to manage the retrieval of all the possible
information related to that frame (e.g. amount, recipient, etc.).

The designed State Machine is summarized in figure 4.2, where the main states
and transitions are reported in a simplified diagram. The main states are the
ones corresponding to a conversation frame: Check Balance State, Check
Transactions State, Send Money State, and Request Money State. The
conversation flows to one of these states when the corresponding intent is expressed
by the user (e.g. Send Money Intent -> Send Money State). A default state is also
considered: the No State, which serves as fallback state both at the start of the
conversation and after an operation has been successfully requested by the user.
During the intermediate phases of the conversation, the State Machine “bounces”
between different sub-states related to a reference frame (e.g. send money) until
all the necessary information are captured in order to perform the specific in-app
operation. Each “piece” of information is specified by the user with a None intent,
expressing the name of the desired entity. To make an example, if the user says “I
want to perform a transaction of 3$”, the State Machine switch to a Send Money
State, in particular on the Wait Recipient State (since the amount information
is already filled), and it asks the user for the recipient of that money. The user
just expresses the name of the recipient, that will be interpreted as a None intent
by the Text Classifier, together with the extracted user entity (see section 4.4).
At this point the State Machine switches towards the Wait Bank Account State,
waiting for the remaining information to fill, and so on. Once the collected data are
enough to accomplish the user’s intent, the actual in-app operation is performed
(eventually after an additional confirmation stage), and the No State is restored.

It is important to mention that some confirmation strategies have also been
designed, in order to fulfill the requirement expressed in 3.3. In particular, when
the intent expressed by the user is identified with low confidence, the State Machine
has to fall into a temporary Unsure State, in which the user has to explicitly specify
if that was their intention or not. Furthermore, a confirmation mechanism is also
provided to perform delicate tasks, like a transaction or a money request: before

42

4.6 Response Generator design

executing the job, the State Machine pass by a temporary Confirmation State,
where the user is provided with a recap of all the information specified so far and
an explicit confirmation (Yes Intent) or denial (No Intent) is requested.

4.6 Response Generator design
The primary objective of this Thesis work is to create a Voice Assistant that can
provide realistic responses to user queries. This will be achieved by constructing a
component that works just on-device, without the need for cloud-based Generative
AI models. This decision is in accordance with the requirement for confidentiality,
protection, and autonomy from network accessibility, which are essential for a
voice assistant incorporated into a P2P payment application.

The Response Generator has then been designed as a component utilizing
prepared sentences and answer templates, taking into account these matters.
This method simplifies the production of replies and guarantees the reliability
and consistency of the system, particularly in the area of financial transactions
where accuracy and security are of utmost importance. The templates are carefully
designed to address a broad spectrum of user requests, ranging from transaction
queries to requests for account information. They are organized in a way that
allows them to be automatically filled with pertinent data obtained from the user’s
interaction context and the application’s current status.

An example of a template for confirming a transaction could be as follows:
“The transfer of [amount] to [recipient] has been completed successfully. Is there
anything else you would like to do?”. In this context, the placeholders [amount] and
[recipient] are substituted with exact information provided by the user, resulting
in a tailored and pertinent response, without requiring complex Natural Language
Generation algorithms.

The decision to not incorporate a more advanced Generative AI model for answer
generation was taken after a thorough evaluation of the project’s limitations in
terms of time and resources. Although these models have the potential to enable
more diverse and realistic interactions, they also present major obstacles in terms of
computational costs and integration complexity, especially for a system designed to
function only on a device. This decision highlights the project’s practical approach,
emphasizing an appropriate balance of functionality and feasibility within the
existing limitations. Indeed, the main goal is to provide quick and user-friendly
interactions by producing concise responses that are specifically matched to the
context of P2P payments.

43

4.7 Speech Synthesizer design

The mentioned design decisions demonstrates thus a careful balance between
desire for sophisticated AI functionalities and the realistic constraints of the project,
with the main goal of providing a helpful tool that improves the User eXperience
in the iOS payment application.

4.7 Speech Synthesizer design
The Speech Synthesizer component also plays an important role in the design of
the P2P Payment Voice Assistant, converting the Response Generator’s written
answer into audible speech. This transformation utilizes the underlying Machine
Learning models extensively examined in section 2.2.4 of the literature, which
serves as the theoretical basis for Speech Synthesis.

However, in order to comply to the design principle of simplicity and coherence
within the platform, the component leverages the built-in functionalities of
iOS, particularly those employed by the iOS VoiceOver feature. VoiceOver, an
assistive technology created to assist individuals with visual disabilities, utilizes the
powerful Text-to-Speech tools of iOS to audibly communicate what is displayed
on the screen. The Speech Synthesizer component achieves thus simplicity and
seamless integration inside the iOS environment by utilizing the available internal
frameworks.

The component functions in a direct and straightforward manner, accepting the
textual responses provided by the Response Generator as input and generating
spoken audio as output. The mentioned design decisions leverages the effectiveness
and reliability of iOS’s integrated features while also simplifying the development
process. This ensures that the component remains lightweight and prioritizes its
main goal of providing clear and understandable voice output to users.

4.8 In-App Integration design
It is important to highlight the decision to design the Voice Assistant as a separate
module that may use specific application data and actions to give responses
and carry out specified tasks. The modular architecture guarantees the seamless
integration of this software unit into different applications, allowing it to adapt to
their specific circumstances and requirements. The assistant can understand and
execute app-specific actions by injecting customized app data and functionalities
within its system, thereby adapting to the specific app environment it is integrated
with. By maintaining a clear separation of concerns, the Voice Assistant is able

44

4.8 In-App Integration design

to enhance its flexibility and usability: it focuses on understanding and processing
user requests, while leaving the execution of in-app operations to a dedicated
component within the host application.

This architectural design conforms to the principles of modularity and reusabil-
ity in the field of Software Engineering, which enables simpler maintenance, up-
grades, and scalability of the software. Additionally, the designed Voice Assistant
enables a more secure and efficient implementation by avoiding direct manipulation
of app data or operations. Instead, it communicates with a dedicated component
that is specifically designed for this purpose. This ensures that operations are
carried out within the app’s secure and optimized environment. Section 5.9.3 will
provide a more in-depth analysis of this design, explaining how custom app data and
actions are included into the Voice Assistant and how this design decision affects
the overall functioning and performance of the system within the app ecosystem.

4.8.1 App Delegate design

The component designed as a key intermediary between the Voice Assistant
and the hosting app is the App Delegate. It is logically positioned between the
Dialogue State Tracker and the Response Generator in the software architecture. It
is specifically responsible for executing the in-app operations as requested by the user.
Unlike other components in the assistant design, the App Delegate differentiates
itself since it is not inherently included as part of the Voice Assistant module.
Instead, it functions as an external unit that the conversational agent uses to
efficiently carry out user-requested tasks. This component is intentionally designed
to be abstract, requiring the application itself to define the exact implementation
details. This allows for a flexible and adaptable integration that is tailored to the
unique capabilities and user interactions of the app.

As illustrated in the State Machine diagram shown in figure 4.2, the App
Delegate’s function is triggered when all the necessary information for a certain
task is gathered from the user and verified. This guarantees that activities are
exclusively carried out upon a clear user consent, preventing unwanted actions and
improving the User eXperience by incorporating an additional level of verification
for user commands. This design consideration is crucial, particularly in apps that
handle sensitive processes like financial transactions or personal data management,
where precision and user permission are of utmost importance.

Essentially, the App Delegate component is a crucial design piece that allows
the Voice Assistant to expand its capabilities within the app’s context, executing

45

4.8 In-App Integration design

activities as instructed by the user. Its abstract design enables adaptable imple-
mentation, customized to meet the precise requirements and capabilities of the
host application, ensuring that the assistant can efficiently and seamlessly respond
to user requests inside the app’s environment.

46

Chapter 5

Voice Assistant
Implementation

This Chapter discusses the software implementation of the AI-powered Voice
Assistant and its integration into a P2P payment application, going into details of
each technical aspect. In contrast to the previous Chapters, here the implementation
phase follows a more chronological order, focusing on the specific steps necessary
to make the system operational. This systematic advancement is crucial for
comprehending the evolution process from ideation to implementation.

The core aspect of the system involves a set of different software components,
which have been carefully crafted to operate seamlessly within the iOS ecosystem,
as described by the diagram in figure 5.1. Here a brief overview of these components
is provided, introducing the implementation details extensively described in the
following sections.

• BERT Text Classifier : described in 5.1, is the core crucial component that
effectively utilizes the ML capabilities of intent classification and named entity
extraction, cleverly incorporating BERT into the iOS framework by means of
a TensorFlow Lite model;

• BERT Preprocessor : depicted in 5.2 section, is specifically designed for the
BERT model, which prepares text input to meet BERT’s requirements, hence
allowing the classification and the extraction tasks;

• Dialogue State Tracker: introduced in 5.3, serves as a multi-functional compo-
nent, responsible for both monitoring the conversation’s state and incorporating

47

Voice Assistant Implementation

iOS
Payment
App

App
Integration

Voice
Assistant

Conversation
Manager

UI/UX

Voice
Assistant
UI/UX

App Context +

App Delegate

BERT Text
Classifier

Speech
Recognizer

iOS P2P Payment App

Payments Voice Assistant

Conversation
Manager

Custom
Language

Model

Speech
Recognizer

Custom
Language

Model

Speech
Synthesizer

Speech
Synthesizer

Dialogue
State

Tracker

Dialogue State
Tracker

BERT
Text

Classifier

BERT
Preprocessor

BERT
TensorFlowLite

Classifier

BERT
Preprocessor

BERT
TensorFlow Lite

Classifier

Figure 5.1: Diagram of the Voice Assistant software system.

response production capabilities, thus simplifying the system architecture and
improving efficiency;

• Speech Recognizer : this component effectively manages Speech Recognition
by utilizing a Custom Language Model to enhance its comprehension and
precision, particularly tailored to the unique domain of the application, as
portrayed in section 5.4;

• Speech Synthesizer : reported instead in 5.5, translates system output into
speech, resulting in a user experience that feels authentic and seamless;

• Conversation Manager : is responsible for managing a specific conversation
with the Voice Assistant, utilizing the DST, the Speech Recognizer, the Speech
Synthesizer, and the App Delegate to handle inputs, produce meaningful
responses, and facilitating in-app operations as well (section 5.6);

• Payment Voice Assistant and UI/UX: respectively described in 5.7 and 5.8,
the former serves as the principal interaction point for the user, encapsulating

48

Voice Assistant Implementation

the system’s functionality and representing the façade of the Voice Assistant;
while the latter enhances user interaction with the assistant, making it more
intuitive and easily accessible.

The last section (5.9) describes instead the integration process, and an example
of actual integration into the case study app introduced in section 1.3.

The entire system’s architecture is contained in an independent Swift frame-
work module. This decision was mainly due to compatibility problems with the
TensorflowLiteSwift library, which is not compatible with the Swift Package Man-
ager (SPM) at the moment, and would have been a better option in terms of
reusability and testability of the software. This decision highlights the need of
compatibility and stability when selecting development frameworks and tools.

A brief overview is needed to clarify the differences between Swift Package
Manager and conventional Swift framework modules. The Swift Package Manager
is a utility for managing the release of Swift code, facilitating the creation of
Swift packages, their distribution, and the management of dependencies. The
standardized framework it provides facilitates package development, adding to the
coherence and scalability of the Swift ecosystem. On the other hand, a classic Swift
framework module corresponds to a binary distribution that contains a collection
of Swift or Objective-C classes and resources. Basically, the SPM prioritizes high-
level package management and dependency resolution, while a traditional Swift
framework stresses the encapsulation and distribution of functionalities in binary
code. This highlights the contrasting approaches to code management and reuse
between the two.

Another important decision made throughout the system’s development was
the implementation of an interface that is exclusively in English. The decision
was influenced by the utilization of Machine Learning models, particularly the
Language Model BERT, which are mainly offered in a mono-language version.
Furthermore, this decision was motivated by the need to simplify the development
process and comply with time and resources limitations.

Overall, the Voice Assistant module, which includes the User Interface, logic,
and Machine Learning capabilities, demonstrates careful design and strategic
decision-making. This ensures that the system not only fulfills its functional
requirements but also aligns with the broader goals of User eXperience and system
maintainability.

49

5.1 BERT Text Classifier

5.1 BERT Text Classifier

The process of building the BERT Text Classifier component within the AI Voice
Assistant was the first step, and it was characterized by an organized and thoughtful
approach. Due to the complex nature of the text classification task and the
requirement for a sophisticated comprehension of user intent, it was decided to create
a custom independent model leveraging state-of-the-art technologies, which
would have been later integrated into the iOS codebase. Therefore, TensorFlow
and PyTorch have been the two main alternatives investigated. Indeed, these
frameworks constitute the top Python libraries for creating advanced Machine
Learning models, providing a multitude of tools and capabilities suitable for a
variety of AI applications.

The study of the two frameworks was not simply a technical activity, but a
conscious choice to ensure that the selected framework would perform effectively in
line with the project’s overall objectives. The goal was to create a personalized
model that could accurately classify user intent and effectively extract named
entities from user transcripts. This dual feature was considered crucial for the
Voice Assistant to smoothly handle the wide range of customer requests. The
decision to construct a customized model came from a desire for maximum
flexibility. In the fast advancing field of Machine Learning, the capacity to
customize models for specific applications is extremely valuable, enabling the
refinement and enhancement that pre-made solutions usually lack. This customized
design was crucial in guaranteeing that the Voice Assistant would comprehend
both the “what” behind customer queries and also the “who” and “how much” at
the same time, with equal effectiveness.

After an extensive evaluation, TensorFlow was chosen as the preferred frame-
work. Several crucial elements affected this decision. For example, the original
BERT models, which are fundamental to this project, were initially released in
TensorFlow by their authors. This established a strong base to construct upon,
guaranteeing compatibility and availability to a broad range of pre-existing re-
sources. Furthermore, the environment of TensorFlow provided the attractive
opportunity to make use of TensorFlow Lite. This tool aims to optimize the
deployment of TensorFlow ML models on edge devices, in accordance with the
project’s goal of developing a responsive and efficient AI Voice Assistant that can
function effectively in mobile environments.

50

5.1 BERT Text Classifier

5.1.1 Dataset generation
Creating an appropriate dataset to train the Text Classifier was a major obstacle
during the implementation process of the Voice Assistant software. The dataset
needed to be carefully designed to efficiently train the model to accurately compre-
hend and classify user requests. In order to address this issue, a novel method was
utilized, leveraging the Natural Language Generation capabilities of ChatGPT-4
(see 2.3.3) to produce a wide array of templates and entities linked to the differ-
ent intents the Voice Assistant was expected to manage. This method involved
systematically gathering and organizing a diverse range of phrases and sentences
that users may use to engage with the assistant, based on the Text Classifier design
strategies described in section 4.4, encompassing a wide range of functionalities
within the application.

Basically, the generative AI model produced a large set of plausible templates for
each designed intent (see table 4.1), based on a carefully crafted prompt provided;
similarly, for each designed entity listed in table 4.2, it generated a lot of possible
names and expressions (e.g. first names, bank names, etc.). Later on, Python
scripts were created to automatically generate sentences by cleverly merging
the retrieved templates and entities. By employing this combinatorial approach,
it became possible to simulate variations in natural language, resulting in a big
artificial dataset made of several authentic user requests. Every sentence that
was created was carefully labeled with the corresponding intent and entities, which
helped the model learn how to classify user intents and extract useful information
from the commands. This innovative method was, in fact, highly powerful, allowing
to rapidly build an adequate dataset saving time both in data gathering and sample
labeling operations.

Intent Label

none 0
check balance 1

check transactions 2
send money 3

request money 4
yes 5
no 6

Table 5.1: Designed intent labels for the artificial dataset.

51

5.1 BERT Text Classifier

BIO Entity Label

O 0
B-AMOUNT 1
I-AMOUNT 2

B-BANK 3
I-BANK 4

B-CURRENCY 5
I-CURRENCY 6

B-USER 7
I-USER 8

Table 5.2: Designed BIO entity labels for the artificial dataset.

Sentence Label Intent

Please display the most recent 2 check transactionspayments to Lucy Johnson
Kindly process a transaction of 324 3 send moneydirhams and one cent to Mila Diaz
How much do I have in my bank 1 check balanceaccount right now
Of course I do 5 yes
How do I manage app permissions 0 noneon my device
Request to receive some money to my 4 request moneyMaybank account from Sophie please
I’d have to say no 6 noI’m not convinced

Table 5.3: Example of generated sentences in the artificial dataset, with their
associated intent labels.

A total of around 30,000 phrases were generated, each with the corresponding
intent label and entity labels, creating a rich dataset that greatly improved the
model’s comprehension of user interactions. For the intent, the sentence is treated

52

5.1 BERT Text Classifier

as a whole, and is provided with a single label. On the other side, for the entities,
each sentence is split into multiple tokens (which might corresponds to words or
sub-words), and each one is provided with a label characterizing the presence (or
not) of a specific entity type.

The labels utilized in this process for intents and entities are reported in tables
5.1 and 5.2 respectively.

The labeling process made use of the Begin-Inside-Outside (BIO) approach
for Named Entity Recognition tasks. This scheme played a crucial role in detecting
and classifying entities within sentences. In this scheme:

• “B” represents the start of an entity

• “I” represents the continuation of an entity;

• “O” represents the absence of an entity, and is then assigned to tokens that
are not part of any entity.

Token Label Entity

kindly 0 O
process 0 O
a 0 O
transaction 0 O
of 0 O
324 1 B-AMOUNT
dir 2 I-AMOUNT
##ham 2 I-AMOUNT
##s 2 I-AMOUNT
and 2 I-AMOUNT
one 2 I-AMOUNT
cent 2 I-AMOUNT
to 0 O
mil 7 B-USER
##a 8 I-USER
diaz 8 I-USER

Table 5.4: Example of a generated sentence in the artificial dataset, with its
associated entity labels.

53

5.1 BERT Text Classifier

For instance, in the command “Send 50 dollars to Alice”, send money (3) would
be identified as the intent, the words “50 dollars” would be labeled as B-AMOUNT
(1) and I-AMOUNT (2) respectively, and the word “Alice” would be classified as
B-USER (7). This demonstrates a use case of the model’s capacity to recognize
and classify various elements of user requests.

For the sake of completeness, some examples of generated sentences are reported
in table 5.3, with their corresponding intent labels; while in table 5.4 is reported
an example of generated sentence with its entity labels. In the latter, a practical
example of sentence split into BERT tokens can be seen: some words are taken
as a whole, like “transaction”, while others are split into multiple tokens like the
plural currency “dirhams”, which is split into the three tokens “dir”, “##ham”
and “##s”. This mechanism is in charge of the BERT preprocessor, and it will be
better described in section 5.2.

5.1.2 Machine Learning Model
During the construction of the Machine Learning model for the Text Classifier,
the primary goal was to create an advanced model capable of directly processing
text inputs and producing accurate labels for both intent recognition and entity
extraction. The objective of this ambitious goal was to optimize the processing
pipeline by allowing a single component to manage the complete complexity
of the operation. Nevertheless, this method faced significant challenges when
adapting the model for use on mobile devices. The process of adapting the model
to meet the requirements of edge devices, particularly using CoreML for iOS devices
and TensorFlow Lite for compatibility with mobile applications in general, posed
unexpected challenges. As it will be better described in 5.1.4, the issues mainly
arose from the complex structure and processing operations of the original model
involving strings, which could not be easily converted into the optimal formats
needed for efficient deployment on mobile devices.

Given these challenges, the project’s approach was reconsidered, resulting in the
choice to divide the task into two distinct phases. This new strategy involved
creating a BERT preprocessor and a BERT Text Classifier, in charge of the two
separate sub-tasks. The BERT Preprocessor was directly implemented into the
Voice Assistant codebase using the Swift language, and its primary function is
to transform raw textual inputs into a format that is appropriate for the BERT
model, specifically into BERT encodings. This process and the role of the
preprocessor is better described by the 5.2 subsection. The input text sentences are
then transformed into three separate arrays: ’input_type_ids’, ’input_word_ids’,

54

5.1 BERT Text Classifier

BERT
Text Classifier

 model

 pooled_output
[H]

 encoder_output
[128, H]

(pre-trained)
BERT encoder

[128]

input_type_ids
(input layer)

[128]

input_word_ids
(input layer)

[128]

input_mask
(input layer)

[7]

Dense Linear Layer
7 neurons

(text classification)

Dense Linear Layer
9 neurons

(token classification)

dropout layer dropout layer

intent labels
(output layer)

entity labels
(output layer)

[128, 9]

Figure 5.2: Diagram of the Text Classifier Keras model in TensorFlow.

and ’input_mask’. Each array has a special purpose in preparing the text for
the upcoming inference stage. The second element of the new method involved
implementing a TensorFlow Lite model that was responsible for carrying out

55

5.1 BERT Text Classifier

the actual inference using the preprocessed BERT encodings. This model was
specifically created to identify the user’s intent behind a given text and extract
specific pieces of information (entities), accurately labeling the processed text.

The TensorFlow model was implemented in a Python Notebook on Google
Colab Pro due to its greater computing capacity and less restrictions on resource
utilization. The improved capabilities of Colab Pro assisted the construction and
training of the model, ensuring that the computing demands of the project were
satisfied without any resource limits.

The model was built using the Keras API, which is well-known for its easy
and modular approach to constructing Neural Networks. An overview of the
Text Classifier model is provided by the diagram in figure 5.2. Specifically, the
architecture was carefully designed to include:

1. a BERT encoder layer, obtained from a pre-trained model available on
Kaggle and accessible by means of TensorFlow Hub. This choice was made
due to BERT demonstrated efficacy in capturing the intricate contextual
relationships inside text;

2. a dropout layer (one for each subsequent layer, see next), which was imple-
mented to address the issue of overfitting by randomly excluding a fraction of
the neurons during training, thus improving the model’s capacity to generalize;

3. two distinct fresh linear (dense) layers specifically designed for the separate
tasks of recognizing intent and extracting entities. Each linear layer in
the model is responsible for transforming the high-dimensional representations
generated by the BERT encoder into a space that corresponds to the poten-
tial labels for each task. This transformation is achieved using a softmax
activation function, which provides probabilities for each label as the
output.

• The first linear layer has 7 neurons, as the number of designed intents, and
produces an array for each input sentence containing the 7 probabilities
associated to the different intents;

• The second linear layer is made of 9 neurons, same number as the
described BIO entity labels, and produces as output a matrix, having one
array of 9 probabilities for each input token.

The BERT encodings used as input for the model are of length 128, which is the
default sequence length for these models, therefore each input sentence is converted

56

5.1 BERT Text Classifier

into three arrays of 128 tokens. The BERT encoder layer generates an output
with dimensions of 128 × H, where H denotes the embedding size determined
by the selected BERT model version. This output provides a comprehensive and
concentrated representation of each input token. It utilizes the attention mechanism
to emphasize the importance of each token in relation to the complete input sequence
(see section 2.3.1). In the task of intent recognition, the corresponding dense
layer uses the ’pooled_output’, which is a vector representation of the complete
input sequence, obtained from the first token ([CLS]) output of the BERT encoder,
to predict the overall intent of the input sentence (see 2.3.2 for more details). On
the other hand, the process of extracting entities involved utilizing the complete
128 × H matrix of token embeddings. This allowed the other dense layer to classify
each token separately based on the established entity labels.

The design and implementation of this BERT model, which was divided into
preprocessing and inference components, played a crucial role in overcoming the
first obstacles encountered while adapting the model for mobile deployment. The
solution effectively addressed the limitations of mobile device deployment by using
a BERT preprocessor and a separate TensorFlow (Lite) model for inference. This
ensured that the Voice Assistant’s Machine Learning capabilities were both efficient
and suitable for use on mobile devices.

5.1.3 Model training and validation
The training and validation phase of the BERT Text Classifier for the Voice
Assistant was a rigorous and detailed process designed specifically to handle the
complex requirements of understanding and processing user commands. Using
a BERT Preprocessor from TF Hub, the dataset described in section 5.1.1 was
transformed systematically to match the input requirements of BERT models. As it
will be better described in 5.2, this involves tokenization, padding, segmentation, and
position encoding of the textual data, resulting in a more consistent representation
for training the subsequent models.

Therefore, the pre-processed dataset was divided into two parts: 75% was
used for training, which included model tuning and validation, and the remaining
25% was used as a test set to evaluate the model’s ability to generalize to new
data that it had not seen during training. This division was crucial in guaranteeing
the reliability and performance of the model in practical situations.

Then the Keras model described in 5.1.2 went through a meticulous training
process leveraging that training split, differently with respect to the various layers
composing the full Neural Network model depicted in figure 5.2. In particular, the

57

5.1 BERT Text Classifier

trainable model blocks are just the BERT encoder and the two dense linear layers:

• the BERT encoder is already a pre-trained Language Model, so its weights
will go through just a fine-tuning step, specific to the current downstream
tasks (intent classification and entity extraction);

• The two dense layers are instead newly created layers that will be trained
completely from scratch.

During the validation process, a range of different BERT encoder variants
were subjected to extensive testing across various architectural configurations and
hyperparameters. The main focus was given to the classic smaller BERT variations
[24], published by the authors in the official GitHub repository [20], which vary
in terms of the A, H and L parameters, as described in detail in section 2.3.2. In
particular, the variants taken into consideration for the validation phase were:

• BERT mini, with L = 4, H = 256, A = 4;

• BERT small, with L = 4, H = 512, A = 8;

• BERT medium, with L = 8, H = 512, A = 8.

These versions were chosen because they could provide a reasonable compromise
between resource consumption and performance efficiency, given the primary
objective of deploying the model into mobile devices. They are characterized by
fewer parameters and, therefore, less computational overhead when compared to
their larger counterparts introduced originally, like BERT base (L=12, H=768,
A=12) and BERT large (L=24, H=1024, A=16). The decision to prioritize these
variants was based on initial analyses that showed their strong performance for the
task, despite the existence of other models like MobileBERT or DistilBERT. These
models were not thoroughly investigated due to time limitations and their minimal
performance differences observed in preliminary evaluations. Other powerful BERT-
like models like ALBERT, instead, have not been deeply studied due to a different
encoding strategy adopted with respect to the classical BERT variants, based on
SentencePiece tokenization instead of WordPiece, and requiring thus a completing
different preprocessing phase.

The hyperparameter optimization technique was crucial, and it continuously
allocated a fixed 20% of the training data for validation, allowing for continuous
examination and adjustment of performance. The number of training iterations was

58

5.1 BERT Text Classifier

limited to 3 epochs in order to reduce the possibility of overfitting while yet pro-
viding enough exposure to the training data. On the contrary, the hyperparameters
that were tested and adjusted iteratively included:

• the dropout rate, which was set at 0.1, 0.2, and 0.3 (the same for both
dropout layers) to introduce regularization and reduce overfitting by randomly
omitting a proportion of neuron activations;

• the initial Learning Rate (LR), with values ranging from 2 × 10−5 to
5 × 10−5, to determine the appropriate step size for exploring parameter space
during gradient descent optimization;

• and the batch size, experimented at 16, 32, and 64 to find a balance between
computational efficiency and training stability.

An innovative approach was used by include warm-up steps, which made
up 10% of the initial training strategy. This method incrementally increased the
learning rate from a starting value close to zero to the desired one, which helped to
achieve a more seamless convergence and decreased the chances of experiencing
training instabilities. The “adamw” optimizer, a modified version of the classic
Adam optimizer that includes a weight decay component, was finally selected for its
ability to effectively navigate the intricate parameter landscapes of Deep Learning
models. This optimizer improves training efficiency and enhances the generalization
of the model by reducing overfitting tendency.

The Sparse Categorical Cross Entropy loss function was used to address
the tasks of intent recognition and entity extraction for both model outputs. This
loss function is designed for multi-class classification issues. It measures the
difference between the projected probability distribution and the true distribution.
It is an important tool for providing feedback to adjust the model. And finally,
the performance metric chosen was the Sparse Categorical Accuracy, which
provides a clear measurement of the model’s accuracy in making predictions, hence
making the evaluation process simpler.

The described complex training and validation framework, supported by a
careful choice of BERT architectures, precise hyperparameter optimization, and a
systematic training methodology, played a crucial role in developing an accurate
and efficient BERT-based Text Classifier.

Specifically, the entire validation process across all the different model configu-
rations and hyperparameters followed a systematic greedy approach. Each of
the 3 BERT variants identified has been tested separately, building and training

59

5.1 BERT Text Classifier

a Keras model with a default initial configuration. Then, the three mentioned
hyperparameters (dropout value, learning rate and batch size) have been varied
one at at time, maintaining the ones that previously offered the best model results
in terms of validation loss, and saving the validation results each time for the
current configuration. After an exhaustive variation of the three parameters, the
best model configuration has been selected for each BERT variant, that is the one
with the lowest validation loss. Table 5.5 synthesizes the best validation results
obtained for each BERT model variation using the analyzed configurations, and
offers also an estimate of the average training time spent for each configuration,
for the different models.

BERT train learn. batch dropout validation intent entity
time rate size value loss accuracy accuracy

mini ~15 min 5e-5 16 0.3 1.414e-3 0.99956 0.99987
small ~35 min 5e-5 16 0.2 8.494e-5 1.00000 0.99999

medium ~60 min 5e-5 16 0.2 3.949e-5 1.00000 1.00000

Table 5.5: Best BERT models’ configurations validation results.

The candidate models for the actual deployment into the Payment Voice
Assistant have, therefore:

• learning rate = 5 × 10−5, for all 3 BERT configurations;

• batch size = 16, for all 3 BERT configurations;

• dropout value = 0.2, for BERT small and medium, while a value of 0.3 for
the mini variation.

Additionally, it is noticeable that all the three mentioned configurations already
achieve outstanding results over the validation set in both intent recognition
and entity extraction tasks, reaching an accuracy level very close to perfection
(100%). For this reason, the choice of the final model was not only based on the
accuracy results, but also by the memory and time resources employed by the
different model variants, especially after their conversion into a suitable format for
in-app integration, as described in the next paragraphs.

60

5.1 BERT Text Classifier

5.1.4 Lightweight Model conversion

When trying to integrate the BERT Text Classifier into iOS applications, two
notable frameworks emerged as suitable options for converting the model: CoreML
and TensorFlow Lite (TFLite). CoreML is a Machine Learning framework
developed by Apple that is specifically tailored for iOS devices. It focuses on
improving efficiency and speed for apps that run their ML models directly on the
device. On the other hand, TensorFlow Lite is a compact solution inside the TF
ecosystem, designed to enable the use of Machine Learning models on mobile and
Internet of Things (IoT) devices with little consumption of resources.

Although CoreML offers great potential and integrates smoothly with iOS
development, the conversion procedure of the TensorFlow BERT model faced
unexpected issues. Surprisingly, even following the official guidelines for con-
verting TF to CoreML [37], it did not overcome these challenges. The problems
mostly originated from the sophisticated nature of BERT’s operations, including
its manipulation of strings and complex multidimensional arrays, which caused
difficulties in converting them to CoreML’s more limited range of operations.

Given these obstacles, TFLite was chosen as the alternative route. Nevertheless,
this decision was not without of its own difficulties. Like CoreML, TensorFlow
Lite faced difficulties in directly converting specific BERT operations, especially
those that included complex string manipulations and the model’s dependence on
dynamic array structures.

In the end, a solution was reached by making a strategic choice to simplify the
model by removing the BERT preprocessing procedures from the TensorFlow model
itself, as described in 5.1.2. This method required performing text tokenization
and encoding directly within the iOS application, simplifying the model by only
incorporating the essential BERT architecture. By simplifying the process, TFLite
became a feasible choice for converting models.

The conversion of the Text Classifier Keras model into the TensorFlow Lite
format begins after the completion of the training phase, once the model is ready for
inference. The TFLiteConverter object, offered by the Python TFLite framework,
is used to easily convert the Keras model into the .tflite format. The resulting
compact binary file contains both the trained weights and the essential low-
level instructions required for performing the model’s tasks on edge devices. The
TensorFlow Lite file, which has a considerably smaller size, is now ready for the
integration into iOS applications. This allows for on-device inference, providing
the advantages of efficient and private local processing. In subsection 5.1.7,
more detailed information will be provided on how this model can be integrated

61

5.1 BERT Text Classifier

into edge devices, and specifically into the iOS environment, with the help of the
TFLite SDK.

Leveraging therefore the mentioned approach, the 3 candidate TF models identi-
fied in 5.1.3 after the validation phase have been converted into TFLite format, in
order to analyze the performance and the resource consumption of their lightweight
versions. Table 5.6 reports the sizes of the .tflite binary files for the 3 converted
BERT models.

BERT candidate TFLite model size

mini ~45 MBs
small ~114 MBs

medium ~165 MBs

Table 5.6: Sizes of the 3 candidate models converted into TFLite binary files.

5.1.5 Model Quantization
During the development of the BERT Text Classifier for the iOS Payment App, an
important obstacle arose: the sizes of the converted .tflite models, as shown in
Table 5.6, were quite large to be used in a mobile application context. In order to
improve effectiveness and versatility in a mobile context, the focus has been placed
on utilizing TensorFlow Lite’s model quantization methods.

Model quantization is a technique developed to decrease the size and enhance
the inference time of Machine Learning models while maintaining their accuracy
at a high level. It accomplishes this by reducing the precision of the numbers
utilized for representing model parameters, thereby decreasing the size of the
model. TensorFlow Lite has multiple quantization techniques, however two main
methods has been specifically examined: Dynamic range quantization (the default
quantization) and float16 quantization [38].

• Dynamic range quantization implies the conversion of the model parame-
ters, which are originally represented as 32-bit floating-point numbers, into
8-bit integers. This method greatly decreases the size of the model and the
amount of computational resources needed, making it ideal for mobile apps
with limited resources. Nevertheless, this approach may sometimes end in a
decrease in accuracy, potentially impacting the model’s overall effectiveness.

62

5.1 BERT Text Classifier

• Float16 Quantization transforms 32-bit floating-point numbers into 16-bit
representations. Although this method may not achieve the same level of
reduction in model size as default quantization, it achieves a more favorable
trade-off between size reduction and performance preservation, making
it also an attractive option for the application.

In order to implement these quantization techniques on the BERT Text Classifier,
specific flags have to be configured on the TFLite interpreter while converting the
model. This ensured proper processing of quantization and compatibility of the
generated quantized models with TensorFlow Lite’s runtime environment.

After applying quantization to the Text Classifier Keras model using both the
default and float16 approaches, the performance and metrics of the resulting three
potential models have been thoroughly assessed. Surprisingly, even though the
size of the model was significantly reduced, the quantized models were able to
maintain substantially same levels of performance compared to their non-
quantized counterparts. The predictions remained consistent with no loss in
accuracy, highlighting the efficacy of TensorFlow Lite’s quantization techniques
in optimizing models for mobile deployment. In addition, the Dynamic range
quantization demonstrated an higher level of model size reduction compared to
the float16 one (respectively of 25% and 50%), and a simultaneous reduction in
speed execution on-device which was not significantly worse, given that memory
constraints for the target iOS app result significantly more impactful than the
inference time. For this reason, the default quantization strategy has been
selected as the best approach to convert the 3 candidate models. The sizes and the
inference times for the mentioned models are reported in Table 5.7, for the sake of
completeness.

To summarize, the utilization of model quantization, specifically employing

BERT TFLite quantized on-device
variant model size model size inference time

mini ~45 MB ~11 MB ~140 ms
small ~114 MB ~29 MB ~320 ms

medium ~165 MB ~42 MB ~600 ms

Table 5.7: Candidate models sizes and inference times after TensorFlow Lite
quantized conversion.

63

5.1 BERT Text Classifier

traditional and float16 techniques, has enabled to address the challenge of inte-
grating extensive Machine Learning models in the target Voice Assistant software
module. Through a significant reduction in the size of the BERT Text Classifier,
sophisticated AI capabilities have been successfully integrated into the iOS platform,
improving the functionality and the User eXperience of the P2P Payment App.

5.1.6 Model selection and evaluation

Out of the three quantized candidates for the BERT text classifier, the small
BERT encoder variation proved to be the best choice. The decision was based on
the significant balance between resource efficiency and performance. The small
BERT encoder variation, despite its little model size, demonstrated outstanding
results in terms of validation loss and accuracy for both intent recognition and
Named Entity Recognition tasks, as indicated by Tables 5.5 and 5.7. The most
notable aspect of this model is its capacity to consistently achieve high accuracy,
with a 100% rate of success in recognizing intents and an average accuracy of
99.999% in entity extraction. This is particularly impressive considering its
minimal computing requirements.

In addition, the model demonstrated a remarkably short average on-device
inference time, highlighting its suitability for real-world applications that require
prompt reaction. The balance between the size of the model, the speed at which
it can make predictions, and its accuracy is an important factor to consider
when choosing a model, especially for applications on mobile devices with limited
resources. The small BERT encoder type performs exceptionally well in this
aspect, providing an ideal combination of efficiency and efficacy.

Table 5.8 provides a comprehensive comparison of the evaluation results for
the selected model and the other candidates using the test set (~7500 sentences).

BERT test intent entity
variant loss accuracy accuracy

mini 7.357e-4 1.00000 0.99988
small 1.106e-4 1.00000 0.99998

medium 4.817e-5 1.00000 1.00000

Table 5.8: Best BERT models’ configurations evaluation results.

64

5.1 BERT Text Classifier

The selected model achieved excellent results in terms of accuracy measures still
maintaining a competitive inference time, providing more reason for its selection.

The evaluation of the test set further confirms that the small BERT encoder
variation is the most suitable model for the BERT Text Classifier in the appli-
cation. Due to its exceptional performance and its efficient design, this technology
is very suitable for incorporating powerful Natural Language Processing ca-
pabilities into limited-resource environments like mobile devices. The overall
configuration parameters, notable performance metrics and TFLite characteristics,
for the selected Text Classifier model are summarized in Table 5.9 for reference.

Encoder BERT small
Dropout value 0.2
Learning rate 5 × 10−5

Batch size 16
Validation split 0.2
Epochs 3
Train time ~35 min
Validation loss 8.494 × 10−5

Val. Intent 1.00000
accuracy

Val. Entity 0.99999
accuracy

Evaluation loss 1.106 × 10−4

Eval. Intent 1.00000
accuracy

Eval. Entity 0.99998
accuracy

Quantized ~29 MB
TFLite size

On-device ~320 ms
Inference time

Table 5.9: Selected BERT Text Classifier model configuration and performance
metrics.

65

5.1 BERT Text Classifier

5.1.7 Model integration into iOS

For the creation of the AI-driven Voice Assistant for the Payments app on iOS,
TensorFlow Lite was used to incorporate a pre-trained BERT-based text classifier
model. This model was originally built using TensorFlow, and out of the two main
choices for model integration on iOS, CoreML and TFLite, the latter was chosen
due to its flexibility and effectiveness. The integration process was facilitated by
the TensorFlowLiteSwift SDK, a powerful framework that provides Swift-based
APIs for loading TFLite models, performing inferences, and retrieving outputs in
an iOS context. Although TensorFlowLiteSwift does not have native support for
Swift Package Manager, it has been successfully integrated into the project using
Cocoapods, a dependency manager that effectively manages external libraries in
iOS apps, and for this reason the Voice Assistant module has been implemented as
a standard Swift package, as introduced in this Chapter introduction.

In order to use the BERT model in the Voice Assistant module, the quantized
.tflite model file has been incorporated into the iOS application bundle. Next,
the TensorFlowLiteSwift SDK has been employed to create an Interpreter object,
which is responsible for interacting with the underlying TFLite model. This involved
allocating tensors for the inputs and outputs of the model, which are essential for
carrying out the model’s inference process. Preprocessing the input text involved
transforming user utterances into a format that could be used by the model, using
the BERT Preprocessor component that will be described in 5.2, and this step
was crucial before making any inferences. This involved the process of tokenizing
the text and generating the necessary input tensors such as ’input_type_ids’,
’input_word_ids’, and ’input_mask’, which are the three input arrays of the BERT
model, as depicted in Figure 5.2.

Once the TFLite Interpreter is successfully initialized, and the input sentence
has been properly preprocessed, here are the key steps to perform an inference
with the underlying ML model:

1. The input tensors are copied into the Interpreter input buffers as raw data
(in this case they represent all 128-length Float32 arrays);

2. after that, the actual inference is launched, predicting the probabilities for
the classification task(s);

3. finally, the raw byte tensors are retrieved from the output buffers, as result
of the inference phase (in this case, they represent a 7-length Float32 array

66

5.2 BERT Preprocessor

for the intent recognition task, and a 9x128 Float32 matrix for the Named
Entity Recognition).

To provide a smooth application integration, a Swift wrapper class called
BertTFLiteIntentAndEntitiesClassifier has been created. This class simpli-
fies the process of interacting with the model directly and offers a user-friendly
interface for the classification tasks. In addition, a comprehensive component called
BertTextClassifier was created to encompass the full inference pipeline, which
includes the BERT Preprocessor, the TFLite model, and a labeling mechanism.
This component is crucial for processing input string sentences and generating
useful information, particularly in identifying user intents and extracting relevant
entities.

Indeed, after the inference process, the model’s output raw probabilities are
analyzed to obtain precise classification results for both intents and entities. For
each task, the labels with the highest probability are chosen, therefore just one
intent label is assigned to the entire input sentence (among the 7 possible), and
one entity BIO label is assigned to each sentence’s token (among the 9 possible).
However, only the predictions which exceed a confidence level of 0.5 are evaluated,
guaranteeing their reliability. When the model’s level of certainty drops below this
specific threshold, fallback labels are given to indicate that there is no clear intent
or entity; specifically, the 0 label is assigned in this case for both cases, representing
either the none intent or the absence of entity. This safe method of assigning
labels highlights the dedication to accuracy and reliability in the voice assistant’s
performance. It guarantees that the system only responds to commands it is
extremely confident about, therefore improving the user experience and favoring
trust in the Voice Assistant within the app.

5.2 BERT Preprocessor
This section highlights the crucial requirement of building a BERT Preprocessor
in Swift to efficiently address the aforementioned difficulties related to model con-
version in TensorFlow Lite. This method not only eliminates the restrictions faced
during the conversion process, but also improves the effectiveness and integration
of the BERT Text Classifier within the iOS ecosystem. The Text Classifier has
been divided into two separate components: the in-app BERT Preprocessor
and the ML BERT classifier, the latter being constructed and trained using
TensorFlow. This division revealed to be a strategic solution to overcome the
problems encountered.

67

5.2 BERT Preprocessor

The incorporation of the BERT Tokenizer implementation, which was essential
for the Preprocessor, has been based on an TensorFlow Lite project example titled
“BERT QA iOS application”, available on the official TensorFlow GitHub repository
[39]. This implementation, based on the official BERT Python version found on
the BERT GitHub repository [20], is crucial for running the tokenizer directly on
iOS devices.

The BERT Tokenizer follows a methodical procedure to split a sentence into
tokens, which can be summarized in the following steps:

1. Text normalization: this includes standardizing space characters, changing
the text to lowercase (for uncased BERT versions, as the one used in this
project), and eliminating accent markers;

2. Punctuation splitting: punctuation characters are separated from the rest
of the text on both sides;

3. WordPiece tokenization: this stage involves utilizing a textual vocabulary
file that contains tokens (one per line), which are formed by either using
complete words or by dividing them into sub-words. When a word is separated
into multiple tokens, all the tokens after the first one are prefixed with ’##’.

The English BERT encoder, as the one used in this project, requires the
utilization of an English vocabulary file that is the same as the one utilized by the
official TensorFlow BERT models. This vocabulary file consists of around 30,000
unique tokens. This tokenizer subsequently converts the resulting string tokens
into integer IDs using the predetermined vocabulary mapping, where each token
corresponds to its integer line index.

BERT relies also on special tokens to function effectively. Among these tokens
there are:

• [PAD], which is assigned the value 0 and is used for padding to ensure
consistent input length (128, in this case);

• [UNK], assigned the value 100, represents unknown tokens with respect to
the used vocabulary;

• [CLS], assigned the value 101, is placed at the start of each sentence;

• [SEP], assigned the value 102, is used to separate sentences, particularly in
tasks involving multiple sentences, like Question and Answer; or, as in this
case, it is used to mark the end of a sentence.

68

5.2 BERT Preprocessor

A BertTextClassifier class has been created to both encapsulate the function-
ality of the BERT Tokenizer and simplify the process of generating input encodings
needed for the BERT encoder. This class, in fact, not only contains the adapted
version of BERT Tokenizer from the mentioned TensorFlow Lite example, but also
incorporates the functionality for generating input BERT encodings. These
encodings consist of 3 arrays of the same length as the encoder sequence length
hyperparameter:

• input_word_ids: represent the numerical tokens themselves, with possi-
ble padding to reach a length of sequence_length (128, in this case);

• input_type_ids: indicate the sentence to which each token belongs with
either 0 or 1, as BERT can handle up to two sentences at a time (in this case
they will be all zeros, since always one input sentence is provided);

• input_mask: distinguishes tokens derived from actual sentences (1) from
those that are padding (0).

For greater clarity, a practical example of preprocessing is provided using the
sentence ’How much is in my Credit Mutuel account in AED’, taken from the
artificial dataset described in 5.1.1. Here are the chronological steps performed by
the BERT Preprocessor on this input sentence:

1. First, the input string is split into textual tokens using the BERT Tokenizer.
The result is: [“how”, “much”, “is”, “in”, “my”, “credit”, “mu” , “##tu”,
“##el”, “account”, “in”, “ae”, “##d”];

2. Then, just a maximum of 126 (128-2) tokens are kept (to respect the max
sequence length of 128), and the two special tokens are added at the beginning
and at the end of the sentence: [“[CLS]”, “how”, “much”, “is”, “in”, “my”,
“credit”, “mu” , “##tu”, “##el”, “account”, “in”, “ae”, “##d”, “[SEP]”];

3. After that, the three BERT encodings arrays are created:

• input_word_ids, mapping the tokens to numerical IDs and eventually
padding up to 128: [101, 2129, 2172, 2003, 1999, 2026, 4923, 14163, 8525,
2884, 4070, 1999, 29347, 2094, 102, 0, ..., 0];

• input_word_ids, array of just zeros, since all tokens belong to the same
sentence: [0, 0, 0, ..., 0];

69

5.3 Dialogue State Tracker

• input_mask, marking all sentence tokens with 1, and the padding ones
with 0: [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, ..., 0].

The represented complex design and implementation of the BERT Preprocessor
and Text Classifier in Swift not only solve the difficulties of converting TensorFlow
Lite models but also greatly enhance the usefulness and integration of the Text
Classifier on the iOS platform.

5.3 Dialogue State Tracker
The Dialogue State Tracker (DST) for the Voice Assistant module has been
carefully developed as a State Machine, following the design principles outlined
in section 4.5. The stateful architecture is essential for effectively handling the
constant evolution of user interactions, guaranteeing a consistent and contextually
aware flow of communication, and it has been implemented leveraging the State
Pattern, as it will be better described in 5.3.1.

The core of the DST is a sophisticated Intent and Entities Extractor, which
is driven by the BERT Text Classifier. This advanced component is highly skilled
at interpreting the user’s spoken input, determining the underlying intent, and
extracting relevant entities. This procedure entails not only comprehending the
spoken words but also interpreting the user’s goals within the context of the
given app-specific information, such as the user’s contacts list and their bank
account details. The DST utilizes contextual comprehension to interpret the user’s
requests in a personalized and appropriate manner.

The Dialogue State Tracker dynamically switches between states by considering
the ongoing conversation context, as well as the recognized intent and entities. The
dynamic state transition, as depicted in Figure 4.2, is an essential characteristic
of the DST, allowing it to adjust and accommodate the changing dynamics of
the conversation. The state changes are carefully designed to reflect the logical
progression of a discussion, guaranteeing a seamless and intuitive User eXperience.

The Dialogue State Tracker component has also the ability to generate a specific
application response for each user input sentence, that can be classified into five
distinct categories:

• appError : returned when a software problem caused unexpected issues, noti-
fying the user of an error occurring within the application;

• justAnswer : offers a concise and explicit written reply to the user’s query;

70

5.3 Dialogue State Tracker

• askToChooseContact: triggered when there are multiple potential contacts to
choose from, prompting the user to select one (more details can be found in
section 5.3.2);

• askToChooseBankAccount: this option is similar to the contact selection, but
it is used when there are many bank accounts to choose from;

• performInAppOperation: triggered once all the required information is col-
lected, resulting in the execution of an operation within the application by
the Voice Assistant;

The responses created by the DST are carefully crafted to incorporate both
textual information and pertinent application data, guaranteeing a smooth and
informative experience. This response system with dual characteristics enhances
the UX by offering precise and practical information along with the essential data
required for app operations, as will be treated in paragraph 5.3.3. Therefore, this
method not only improves user engagement but also simplifies the execution of app
tasks through voice commands, so making the Voice Assistant an effective tool for
navigating and utilizing a P2P payment app.

5.3.1 State Pattern
The State Pattern, an important design pattern introduced by the “Gang
of Four” in their popular book “Design Patterns: Elements of Reusable Object-
Oriented Software”, is essential in the implementation of the Dialogue State Tracker
for the Voice Assistant component. This pattern plays a key role in handling
the complex states and transitions that take place when users interact with the
conversational agent.

The State Pattern allows an object to easily modify its behavior when its
internal state changes [based on external inputs], giving the illusion that the object
has changed its class [40]. This is particularly important in the context of a Voice
Assistant, as the system has to customize its responses to user inputs and its
actions based on the current context or status of the conversation. For instance, the
assistant’s reply to a question concerning transaction history can differ considerably
depending on whether the user is now in the process of authorizing a payment or
asking about their account balance.

The implementation of the Dialogue State Tracker using the State Pattern
required the definition of a DstState protocol that has methods corresponding
to the different actions that the user can do during the conversation. Concrete

71

5.3 Dialogue State Tracker

state classes implement this interface to encapsulate the specific Voice Assistant
behaviours related to a particular stage of the discussion. These states can include
greeting, requesting payment details, completing a transaction, or resolving mis-
understandings. The DST states and transitions implemented for this particular
solution are the same ones summarized in the design diagram 4.2.

DstState

+ userExpressedNoneIntent(Entities, StateChanger): VoiceAssistantResponse

+ userExpressedCheckBalanceIntent(Entities, StateChanger): VoiceAssistantResponse

+ userExpressedCheckTransactionsIntent(Entities, StateChanger): VoiceAssistantResponse

+ userExpressedSendMoneyIntent(Entities, StateChanger): VoiceAssistantResponse

+ userExpressedRequestMoneyIntent(Entities, StateChanger): VoiceAssistantResponse

+ userExpressedYesIntent(StateChanger): VoiceAssistantResponse

+ userExpressedNoIntent(StateChanger): VoiceAssistantResponse

+ userSelected(Contact, StateChanger): VoiceAssistantResponse

+ userSelected(BankAccount, StateChanger): VoiceAssistantResponse

CheckBalanceDstState

+ bankAccount: BankAccount

+ context: AppContext

+ ... : VoiceAssistantResponse

+ ...

CheckTransactionsDstState

+ bankAccount: BankAccount

+ contact: Contact

+ context: AppContext

+ ... : VoiceAssistantResponse

+ ...

SendMoneyDstState

+ amount: Amount

+ recipient: Contact

+ bankAccount: BankAccount

+ context: AppContext

+ ... : VoiceAssistantResponse

+ ...

VoiceAssistantDst

+ extractor: BertIntentAndEntitiesExtractor

+ context: AppContext

+ currentState: DstState

+ request(String): VoiceAssistantResponse

+ select(Contact): VoiceAssistantResponse

+ select(BankAccount): VoiceAssistantResponse

StateChanger

+ changeDstState(DstState): void currentState = newState

RequestMoneyDstState

+ amount: Amount

+ sender: Contact

+ bankAccount: BankAccount

+ context: AppContext

+ ... : VoiceAssistantResponse

+ ...

NoDstState

+ context: AppContext

+ ... : VoiceAssistantResponse

+ ...

Figure 5.3: UML class diagram of the State Pattern application for the DST.

The class representing the State Machine itself, namely the VoiceAssistantDst
in this case, stores a reference to the current state of the Voice Assistant and
passes user inputs to the corresponding state object. This abstraction not only
simplifies the codebase and makes it easier to maintain, but also improves the
system’s adaptability, enabling simple additions or adjustments of states as the
assistant’s capabilities evolve. In Figure 5.3 a simple UML class diagram exemplifies
the relationships between the State Machine class (VoiceAssistantDst) and some

72

5.3 Dialogue State Tracker

of the concrete State classes, showing the possible transitions.
Through the application of the State Pattern, the Dialogue State Tracker

effectively manages the course of a discussion, guaranteeing that the Voice Assistant
continues to use a meaningful and appropriate language with the user in every
situation. This method significantly improves not only the code maintainability
but also the UX, by making interactions with the assistant more intuitive, natural,
and in line with the user’s expectations in the application context.

5.3.2 Entity Matching
This paragraph highlights the importance of the Named Entities matching
method in the Dialogue State Tracker of the Voice Assistant, a crucial mechanism
for understanding the intricate relationship between different components. The
Entity Matching mechanism starts by utilizing the raw entities collected by the
BERT Intent and Entity Extractor. This technique has been optimized to analyze
entities within the user’s statements and reconstructing relevant textual entities
from the tokens provided by the BERT Text Classifier. An example that clearly
demonstrates this may be observed in the sentence supplied in Table 5.4. In
this situation, the method would reconstructs two important entities: an amount,
represented as “324 dirhams and one cent”, and a user, identified as “mila diaz”.

After the entities are extracted and reconstructed, the Dialogue State Tracker
uses these string entities in the context provided by the application. This context
contains an array of user-specific data, including bank account details and
contacts information, as it will be better described in subsection 5.9.2. The DST
carefully extracts pertinent information from the app context, such as identifying a
particular contact in the user’s phone book, and formats it in a suitable manner for
application use. For example, in the case of the aforementioned entities, it converts
the amount entity into a numerical floating-point representation for transactional
purposes, which is “324.01” in this case (currency is omitted here), and select the
proper contact from the user’s phone book; for instance, in a phone book made of
just the three contacts “John Doe”, “Lauren Scott” and “Myla Diaz”, the latter
would be selected.

Some coding strategies are utilized to ensure a seamless congruence between
the entities indicated by the user and the contextual information of the program,
such as user contacts and bank accounts. These algorithms perform well at
extracting numerical data from the user’s speech in multiple formats, for example
recognizing the placement of currencies, and distinguishing between numerical and
literal representations of values, including the analysis of cents. A feature of this

73

5.3 Dialogue State Tracker

mechanism present in the currency reconstruction, is to take into consideration
exclusively the currencies associated to the user’s bank accounts, supporting various
literal and symbolic representations.

The Entity Matching technique utilizes also a simplified yet efficient algorithm
for bank accounts and contact names. This algorithm computes the fraction of
characters that correspond between the user’s utterance and the app’s contextual
information. It selects matches that exceed pre-established ’matching thresholds’
- 0.4 for bank accounts and 0.75 for contact names - obtained after a careful tuning
phase.

When the algorithm detects multiple possible matches for contacts or bank
accounts, it organizes them in descending order according to the “match” metric,
and the DST produces an appropriate response, either “askToChooseContact” or
“askToChooseBankAccount”, which prompts the user to clearly select one from the
available options (see 5.8 for better details on the UI/UX part). On the other hand,
if only one match is detected, the DST will continue as usual, following the natural
flow of conversation.

Finally, it is crucial to recognize also the Dialogue State Tracker’s smart han-
dling of entities and intents that have low confidence, which is determined by
a probability threshold of 0.8. During these situations, the DST assumes a “un-
certain” state and requires further confirmation from the user before making any
modifications to its current status. This meticulous technique guarantees a level of
verification, especially crucial when the user refers to numerous entities of the same
category, such as two distinct amounts or bank accounts, which requires asking
clarification or a new query from the user.

5.3.3 Answer Generation
The implementation of the Voice Assistant for the iOS Payment App has merged
the Answer Generation component into the Dialogue State Tracker, which is
different from the standard approach of having a separate module as shown in the
design diagram (Figure 4.1). The integration was carefully chosen to simplify the
system’s structure and reduce the challenges and limitations usually encountered
when deploying individual Machine Learning components for generating answers,
especially if they have to run locally on-device, as in this case.

The Dialogue State Tracker, which has been enhanced with Answer Generation
capabilities, is specifically designed to generate responses by taking into account
the current context of the conversation. This is achieved by utilizing a set of
predefined templates which depends on the current state. The templates

74

5.4 Speech Recognizer

are filled with user-specific information and application context, such as
transaction amounts, names, currencies, and other relevant data. This ensures
that the responses are both accurate to the app context and customized to the
individual user’s requirements.

This implementation choice is crucial for multiple reasons. Firstly, it greatly de-
creases the system’s dependency on additional resource-intensive Machine Learning
components, including Generative AI models, that are typically used to generate
rich textual responses. To ensure smooth integration and optimal performance in
mobile apps, the system prioritizes simplicity and efficiency, while still admitting
the limitations of the adopted choice, which might reduce the naturalness of the
conversational agent answers.

The output produced by the DST, referred to as VoiceAssistantResponse,
includes not only the generated text but also other related application data. This
data includes crucial information required for carrying out in-app tasks, such as
initiating transactions or requesting balance information. This response structure
increases the utility of the Voice Assistant, allowing it to work not just as a
conversational interface but also as a a task-oriented agent, which becomes an
essential part of the app’s operation. It both guides the user through actions and
provides valuable information, enriching the User eXperience.

Essentially, incorporating the Answer Generation feature into the Dialogue
State Tracker was an intentional design choice with the goal of maximizing the
efficiency and practical usefulness of the Voice Assistant, not only addressing the
difficulties caused by complexity and limited resources, but also facilitating smooth
interactions inside the app.

5.4 Speech Recognizer
The Speech Recognizer component of the Voice Assistant has been implemented
using an homonymous class aiming to handle the complex process of converting
speech to text, thus simplifying the interface with other components in the sys-
tem illustrated in Figure 5.1. By using the SFSpeechRecognizer class and the
AVFoundation framework to capture sounds from the device’s microphone, this
class serves as a mediator, abstracting the complexities of the native iOS Speech
framework.

Prior to starting the Speech Recognition procedure, the application must obtain
user permission for both microphone usage and Speech Recognition. This require-
ment adheres to Apple’s guidelines, which require the inclusion of descriptive and

75

5.4 Speech Recognizer

meaningful explanations within the “Info.plist” file of the program. The Info.plist
file in iOS serves as an essential configuration file, storing key-value pairs for
many app settings, including permissions related to privacy. In order to enable
Speech Recognition and microphone access, it is necessary to add particular keys
together with user-friendly explanations to tell users about the utilization of their
data.

After obtaining authorization, the Speech Recognizer utilizes the AVFoundation
APIs to enable the microphone on the device, collecting the user’s speech as
audio input. The SFSpeechRecognizer processes the audio and turns the spoken
words into text. The conversion process is affected by the given locale, which
sets the language and dialect that the Speech framework should expect during
recognition. The locale option is crucial for precise Speech-to-Text translation since
it synchronizes the recognition process with the user’s language preferences, which
are established in the iOS system settings. Nevertheless, the whole process has
some limitations, specifically in its language compatibility. At the moment, the
system is specifically designed to efficiently identify and understand only English
sentences and names, and this may not be suitable for a wide range of users with
different linguistic backgrounds.

iOS 13 and subsequent versions include on-device Speech Recognition,
which improves privacy and speed by processing data directly on the user’s device
[41]. For this reason, the deployment target of the Voice Assistant module has been
set to this version of the Operative System. However, this feature can only work
if the user’s system settings match the permitted locales. This means that the
intended language needs to be included in the system choices for local processing.

iOS 17 introduces even newer APIs for Custom Language Models, which
enable the customization of the Speech Recognition process to better fit certain
application domains [42]. By utilizing these APIs, the Voice Assistant can improve
its comprehension of specialized vocabulary and user intents, so significantly
improving the accuracy and efficiency of converting speech into written text.
Within the implementation of the current Voice Assistant, this innovative feature
has also been leveraged by creating a Custom Language Model specifically designed
for the host application domain. This model includes specialized terminology
and widely used terms and expressions in requesting payment transactions. A
more detailed explanation of this feature may be found in paragraph 5.4.1. This
adjustment guarantees enhanced precision and pertinence in Speech-to-Text for
users utilizing iOS 17 or subsequent versions. On devices that have older versions
of iOS, the system will use the regular voice recognition capability instead of the

76

5.4 Speech Recognizer

specialized Language Model.
Essentially, the Speech Recognizer component plays a crucial role in the Voice

Assistant by enabling the transformation of spoken words into written text using
a combination of the built-in iOS Speech and AVFoundation frameworks. The
adopted solution focuses on making the assistant easy to use, ensuring privacy,
and achieving high accuracy. It also emphasizes the ability to enhance innovative
capabilities by utilizing a Custom Language Model in the latest iOS versions.

5.4.1 Custom Language Model
In this section, the creation of a customized Language Model is explored,
specifically designed for the Speech Recognizer component in the iOS environment.
Taking advantage of the new features introduced by iOS 17 in September 2023,
the method involves a process of model fine-tuning for the Speech Recognizer that
is done on-device, an innovative approach made possible by the latest iOS updates
[42].

Essentially, this strategy requires providing a dataset that includes statements
relevant to the specific field of the application. The purpose of such phrases is to
accurately represent common user requests in the host Peer-to-Peer payment appli-
cation. This will help the Speech Recognizer prioritize and accurately transcribe
these specific types of utterances, improving the performance of the Voice Assistant
within the application.

The fine-tuning process occurs through a series of carefully organized steps:

1. First, a Custom LM data object is created, including custom sentences
that represent the common user queries and commands that are expected
in the context of the P2P payment application. This object functions as a
container for domain-specific language structures and terminology, providing
the foundation for later building a more sophisticated and contextually aware
Language Model.

2. Subsequently, the data object is subjected to an export process, resulting in
the creation of a specific binary file containing all the necessary information
for the actual build of the Custom LM.

3. The next stage is importing the binary model, which actually launch the
creation and compilation of the Custom Language Model. This stage is crucial
as it converts the unprocessed linguistic data into a well-organized model that
the iOS Speech Recognizer can efficiently employ. After the compilation is

77

5.4 Speech Recognizer

successful, a Custom LM configuration object is created, containing all
the parameters and characteristics of the newly created Language Model.

4. Finally, the configuration object is incorporated into the Speech Recognizer
instance, giving it the capacity to accurately understand and prioritize utter-
ances relevant to the specified domain. This integration is the final stage of
the refinement process, enhancing the recognizer’s ability to understand and
respond to user commands within the P2P payment application context.

A key element of this precise procedure is the two-step process that includes
exporting and then importing the Custom LM data. This split provides a level of
flexibility, enabling the creation of a stable LM configuration at a certain moment,
which can then be imported and used at runtime without the need for generating
the model in real-time. This method is especially beneficial in situations when the
Language Model does not need to be flexibly adjusted to different user settings or
application states.

Within the particular context of the Voice Assistant for the P2P payment ap-
plication described in this Thesis work, instead, the Custom Language Model is
generated in real-time every time the host app is opened. This dynamic generation
relies on the immediate supply of user-specific data, such as bank account infor-
mation and phone book contacts, which are essential for tailoring the Language
Model. The sentences used to construct the LM are obtained from predetermined
templates, derived from the same artificial dataset used to fine-tune the BERT
Text Classifier and outlined in section 5.1.1. In Table 5.10 some examples of such
sentence templates are reported.

Templates

What are the latest transactions with <name> <surname>
Display my <bank> account balance
Initiate a wire transfer to <name> from <bank> please
I don’t think so
Could you assist in receiving 334 dirhams and 32 cents from <name>
I want to send some money from <bank> to <name> <surname>

Table 5.10: Some of the templates used to generate the Speech Recognizer Custom
Language Model.

78

5.5 Speech Synthesizer

The templates are subsequently filled with personalized user information,
including names and bank account details, resulting in a collection of around
90,000 final sentences. This large set of data serves as the basis for the Custom
Language Model, guaranteeing that the Speech Recognizer is carefully adjusted to
the user’s individual and financial environment, hence improving the effectiveness
and significance of voice-activated interactions within the application.

5.5 Speech Synthesizer

The Speech Synthesizer is a crucial element in the implementation of the Voice
Assistant. This component works as a simple yet effective interface, utilizing the
built-in iOS AVSpeechSynthesizer to simplify the use of the system’s Text-to-
Speech capabilities. Its main function is, in fact, to convert the written responses
of the Dialogue State Tracker into audible speech, thereby enabling a user-friendly
and easy-to-understand experience, utilizing a voice that is based on the US-English
locale to articulate the responses.

The Speech Synthesizer’s design is intentionally basic, prioritizing reliability
and ease of use within the app’s ecosystem. This approach not only improves the
efficiency of development but also guarantees smooth integration with the overall
Voice Assistant software architecture depicted in Figure 5.1. The wrapping of
the built-in Speech Synthesizer encapsulates its complexity, offering a high-level
interface that simplifies the initiation, voice selection, and playback controls. This
allows other components of the Voice Assistant to easily invoke it.

Nevertheless, opting for pure on-device operation causes particular limitations
on this component. Indeed, it mainly depends on the voices that are present on
the user’s device, which are also used by the VoiceOver feature. Although this
guarantees quick compatibility and accessibility, it also implies that the quality of
the synthetic speech is limited by the predefined system voices. While the voices
are clear and understandable, they may not possess the same level of richness and
natural cadence as more sophisticated cloud-based TTS services. Users who
desire a more realistic speech experience have the option to manually download
voices of better quality via the iOS settings, although this will result in an explicit
user action, besides using up more storage space.

79

5.6 Conversation Manager

5.6 Conversation Manager
The Conversation Manager component serves as the primary operational
interface for enabling interaction between the user and the Voice Assistant core
functionalities in the host P2P payments application, as illustrated in the software
diagram 5.1. It utilizes its primary features to manage an individual conversation
with the user, effectively controlling the flow of communication. It is implemented as
a class of the same name offering the essential Application Programming Interfaces
for the starting conversation with the user, handling spoken input, and generating
auditory responses.

This component is very dependent on the Dialogue State Tracker to accurately
monitor the context and progression of the conversation. The system interacts with
the Speech Recognizer to convert spoken user input into written text, and with the
Speech Synthesizer to convert written responses into spoken words, allowing for a
smooth and natural interaction. In addition, the Conversation Manager interacts
with an App Delegate, which is a component provided by the host application,
and responsible for carrying out in-app operations, such as transactions or
queries, based on user requests, as it will better described in subsection 5.9.3.

Its main responsibility is, in fact, to enable in-app operations using this delegate
object, particularly when the DST produces a response that necessitates such
an action, referred to as performInAppOperation. For instance, if the user wants
to check their account balance, the Conversation Manager will instruct the App
Delegate to retrieve this information from the backend of the application. In
addition, it enhances the text answers of the Dialogue State Tracker, such as the
success or error messages caused by operations, ensuring that they are clearly
presented to the user, both visually and vocally.

Essentially, the Conversation Manager plays a crucial role in facilitating user
talks with the Voice Assistant, serving as the primary vocal interface for interaction
within the P2P payments program. The system’s simplified structure guarantees
that the user’s requests are comprehended, executed, and answered efficiently
offering a smooth and user-friendly experience.

5.7 Payments Voice Assistant
This section focuses on the implementation of the Payments Voice Assistant
component, which is the main component of the system. Its purpose is to enable
the interaction between users and the voice-enabled payment operations thanks

80

5.7 Payments Voice Assistant

to the PaymentsVoiceAssistant class, which acts as the primary high-level
component to interact with, at the basis of the assistant module design depicted
in Figure 5.1.

When this component is created, it performs the important task of initializing
the assistant’s essential sub-components through Dependency Injection (DI), a
systematic methodology which will be better outlined in 5.7.1 and that ensures
each component receives the exact dependencies it needs to function efficiently.
The sub-components initialized in this process consist of the BERT Intent and
Entities Extractor, which includes its BERT Text Classifier ; additionally, there is
the Speech Recognizer, which may be enhanced with a Custom Language Model to
improve its comprehension of payment-specific terminologies; lastly, there is the
Speech Synthesizer, which converts text responses into speech, ensuring a smooth
conversational experience.

The Payments Voice Assistant offers the capability to dynamically generate
a fresh Conversation Manager for every user conversation. This is achieved
by creating and providing a specific Dialogue State Tracker (once again using
Dependency Injection) that carefully handles the state and context of the
ongoing conversation, guaranteeing a coherent and contextually appropriate flow
of dialogue, as well as providing all the necessary core sub-components.

The Payments Voice Assistant’s design is characterized by its close adherence
to the Singleton Pattern. This design pattern, also described in the famous
book “Design Patterns: Elements of Reusable Object-Oriented Software” [40],
guarantees the creation of a unique instance of the PaymentsVoiceAssistant
class, which is then reused throughout the entire program, eliminating the necessity
for redundant initializations. This method not only enhances the user’s experience
by greatly lowering the time it takes to start up after the first setup, but also
improves the overall effectiveness of the assistant by reusing its sub-components for
future interactions. The Singleton mechanism guarantees the existence of only one
instance of the assistant in the host application, which ensures a constant state
and behavior of the assistant across the application. This results in a reliable
and consistent user experience.

Overall, the implementation of the Payments Voice Assistant component demon-
strates strategic design and architecture choices, with the goal of creating a simpli-
fied, reliable, and user-centric interface for voice-activated commands, through the
implementation of Dependency Injection, dynamic conversation management, and
the Singleton Pattern.

81

5.7 Payments Voice Assistant

5.7.1 Dependency Injection
The Dependency Injection is an architectural principle that plays a key role in
establishing inversion of control in software systems, resulting as the concrete ap-
plication of the famous Dependency Inversion principle. It allows the responsibility
of creating dependencies to be transferred to an external entity, rather than being
handled by the classes that utilize them. This pattern is essential for organizing
software systems in a modular, testable, and maintainable manner.

Within the overall framework of this project, Dependency Injection is of utmost
importance at both the micro (low-level) and macro (high-level) levels. At the
lower level, the significance of DI is exemplified by specific components like the
Dialogue State Tracker. This component does not directly create instances of the
BERT Intent and Entity Extractor, or even the BERT TFLite model which uses.
Instead, it acquires these elements from an external source. This separation
guarantees that the DST is not strongly connected to particular implementations
of its dependencies, promoting a design that is more convenient to test and expand.

On a higher level, the Voice Assistant software module as a whole gains
advantages from Dependency Injection too. During integration, in fact, the
host application provides app-specific objects to the assistant module, such as
the App Delegate and the App Context, as it will be described in section 5.9.
This method guarantees that the Voice Assistant can function within any host
application without requiring knowledge of the program’s complex initialization
processes. Additionally, it enhances the adaptability of the Voice Assistant to
various situations, hence increasing its reusability for diverse projects.

The benefits of utilizing Dependency Injection, in general, are many and varied.
Its main purpose is to observe two of the famous SOLID design principles [43]
introduced by Robert Martin in 2000 “Design Principles and Design Patterns” :

• the Single Responsibility principle: it guarantees objects do not have multiple
reasons to change, thanks to separation of their concerns, and it is exemplified
here by separating the creation of objects from their utilization [44]. The act of
separating responsibilities in the system not only increases its modularity
but also improves its testability, as dependencies can be easily simulated or
substituted in tests;

• the Dependency Inversion principle: it affirms that high-level modules should
not depend on low-level modules but both should depend on abstractions;
and abstractions should not depend on details, but details should depend
on abstractions [45]. Indeed, Dependency Injection enhances the level of

82

5.8 UI/UX

abstraction in software design, enabling the development of more adaptable
and loosely connected systems. By utilizing abstractions, namely interfaces,
instead of specific implementations, the system has a higher level of adaptability
to changes in business needs or technological stacks.

Additional noteworthy advantages include enhanced code maintainability, as
the DI framework consolidates the setup of component dependencies, simplifying
their management and modification, and enables the use of regulated lifetimes
of dependencies, which enhances resource consumption and improves application
performance.

Overall, the implementation of Dependency Injection in this project has played
a crucial role in establishing a design that is both robust and adaptable, while
also facilitating seamless integration and future improvements. It serves as an
important example of the most effective methods in software engineering, making
a substantial contribution to the project’s success.

5.8 UI/UX
The SwiftUI framework, introduced by Apple, has been utilized in the development
of the Voice Assistant’s UI/UX. This modern UI framework, as it has been
widely explained in subsection 2.6.1, allows for the efficient and intuitive design
of User Interfaces across all Apple platforms. SwiftUI is widely recognized for
its declarative syntax, in which developers specify the desired behavior of the
User Interface, and the framework handles the underlying implementation. This
strategy greatly improves the speed of development and decreases the complexity
of UI programming.

An important characteristic of this implementation is its capacity to seamlessly
switch between white mode and dark mode, based on the user’s system settings.
This function guarantees a uniform User eXperience that corresponds to the
user’s overall system preferences, improving visual comfort in different lighting
conditions.

The complete User Interface of the Voice Assistant is contained within a single UI
component called PaymentsVoiceAssistantView. This component serves as the
primary interface for integrating the Voice Assistant module into the payment app,
as it will be better described in section 5.9. The Voice Assistant includes all the es-
sential UI logic for controlling the sequence of screens. When the Voice Assistant is
first launched in the app, it creates a new instance of the PaymentsVoiceAssistant

83

5.8 UI/UX

(a) White mode. (b) Black mode.

Figure 5.4: Example of the Voice Assistant start screen, for both white mode
and dark mode.

object, which plays a crucial role in handling the fundamental logic and functional-
ities of the Voice Assistant, guaranteeing a smooth integration and interaction flow
within the application.

The User Interface of the Voice Assistant prioritizes simplicity and effec-
tiveness, while also complying with accessibility requirements to meet the needs
of various users. It is organized around a central box that displays the Assistant’s
responses, as seen in the screenshots of the start screen in Figure 5.4. The content
enclosed in this container is displayed gradually, one character at a time, creating
an immersive and dynamic experience for the user. In addition, haptic feedback is
employed to improve the user’s involvement.

A noticeable characteristic of the interface is the primary button located at
the bottom of the screen, which users can push and hold in order to interact
with the Voice Assistant. Throughout this interaction, a prominent microphone
animation is shown (see subfigure 5.5b), indicating the Assistant’s listening to
the user’s voice requests. Visual feedback is essential for establishing a User
eXperience that seems natural and intuitive.

84

5.8 UI/UX

(a) Choose contact. (b) Rec. + send money. (c) Payment successful.

(d) Choose bank account. (e) Check balance. (f) Unsupported intent.

Figure 5.5: Example of Voice Assistant screens in various use cases.

85

5.9 Voice Assistant in-App Integration

When the Voice Assistant detects many possible options for a user’s request,
such as contacts or bank accounts, a scrollable list is displayed, enabling the user to
make a specific choice. The UI screenshots in subfigures 5.5a and 5.5d illustrate this
feature, demonstrating the Assistant’s ability to effectively manage disambiguation.
All the screens grouped in Figure 5.5 are taken from the test application built
specifically for the user evaluation phase, widely described in Chapter 6.

The Assistant is specifically built to handle a wide range of user intentions,
including commands that are not supported or not recognized. In these
situations, it provides the user with information regarding the variety of tasks
it is capable of executing, directing them towards a constructive interaction, as
shown in subfigure 5.5f. The screenshots also demonstrate the process of verifying
transaction details before carrying out a payment operation (subfigure 5.5b), as
well as displaying successful results (subfigure 5.5c), highlighting the Assistant’s
role in enabling secure and efficient transactions.

The UI/UX of the Voice Assistant is designed to be simple and efficient, also
allowing clients to customize it to some extent through a configuration file. This
feature enables customization of colors and default messages, ensuring that the
Assistant may be personalized to align with the branding and User eXperience
objectives of the host application.

5.9 Voice Assistant in-App Integration
In order to incorporate the Voice Assistant module into a P2P payment application,
it is crucial to note that the module is delivered as a standard Swift framework.
This framework is essentially a collection of pre-compiled code designed for reuse
in various Swift applications. Swift frameworks are libraries that contain both
executable code and the necessary resources, such as pictures and predefined strings,
for the program to work properly. By incorporating this file into a payment appli-
cation project, developers can leverage its features without the need to manually
change the source code. The integration process includes the following stages:

1. Inclusion of the Framework: The Voice Assistant Swift framework, which
is a compiled binary file, needs to be added anywhere to the project files of the
payment application in Xcode, Apple’s Integrated Development Environment
(IDE) for macOS.

2. Embedding the Framework: To incorporate the framework into the app,
it is necessary to mark it as an “Embedded Framework” in the project settings

86

5.9 Voice Assistant in-App Integration

on Xcode. This action guarantees that the framework is included with the ap-
plication’s executable file during the building process, enabling the application
to leverage the Voice Assistant’s capabilities at runtime.

3. Minimum iOS Version Requirement: The Voice Assistant module requires
SwiftUI and on-device Speech Recognition technologies, thus the host payment
application must be built for iOS 13 or newer versions. SwiftUI, in fact, is
a contemporary framework and it requires a minimum deployment target of
iOS 13.

4. Integration of Assistant Features: In order to incorporate the functional-
ities of the Voice Assistant into the payment application, it is necessary to
import the PaymentsVoiceAssistant module, and create an instance of the
PaymentsVoiceAssistantView. This object contains the whole contents of
the assistant module, comprising both the User Interface and the business
logic. Integration necessitates the incorporation of specific elements tailored
to the host application into the Voice Assistant View through Dependency
Injection:

• App Context: an object that includes user-specific data that is
relevant to the Peer-to-Peer payments domain. This context enables the
Voice Assistant to customize its features and replies according to the
user’s information and preferences. Further information regarding this
matter will be presented in subparagraph 5.9.2;

• App Delegate: A component utilized by the Voice Assistant to execute
payment operations on behalf of the user. The delegate serves as a
means of communication between the Voice Assistant and the payment
processing components of the host application, as detailed in subsection
5.9.3.

• Configuration Object (optional): An object that enables customiza-
tion of the Voice Assistant’s appearance to match the branding and UI
design preferences of the host application, for example specifying the title
of the Voice Assistant screen or the color of its main button.

5. Presenting the Assistant View: After instantiating the Payments Voice
Assistant View with the required context and configuration, it can be dis-
played within the payment application based on the app’s architectural and
navigational design. The integration method differs based on whether the

87

5.9 Voice Assistant in-App Integration

host application utilizes SwiftUI or UIKit, Apple’s older framework for UI
development, whose differences have already been discussed in section 2.6:

• Integrating the Voice Assistant View into apps created with SwiftUI is
simple because it can be immediately embedded within other SwiftUI
views;

• To integrate instead the SwiftUI-based assistant’s view into a UIKit
ViewController for applications utilizing UIKit, which follows the
Model-View-Controller architectural pattern, an extra step is necessary,
as it will be explained in detail in subsection 5.9.1. This step guarantees
compatibility between the two user interface frameworks and enables the
Voice Assistant to be displayed within a UIKit-based application interface.
The same methodology was used to include the assistant into the case
study application introduced in subsection 1.3, which uses extensively
the older framework as iOS architectural technology. A comprehensive
explanation of this process will be provided at the end of the section, in
5.9.4.

By adhering to the technological limits and needs described, the Voice Assistant
module can be seamlessly integrated into a real P2P payment application, improving
the UX with voice-driven features.

5.9.1 SwiftUI compatibility
Integrating the Voice Assistant module into a host payments app, particularly within
SwiftUI view hierarchies or a UIKit-based architecture as seen in the case study
application, is a simple and straightforward process. This is mostly given to the
simplicity provided by the UIHostingController, which is a UIViewController
introduced by UIKit that simplifies the integration of SwiftUI views into existing
UIKit view hierarchies, assuring compatibility and making the integration process
easier.

Specifically, in order to incorporate a SwiftUI view into a UIKit-based application,
developers can easily create a UIHostingController and provide the SwiftUI view
as an argument. This controller can be used in the same way as any other View
Controller in the UIKit ecosystem, whether it is presented modally, pushed into
a navigation stack, or embedded as a child View Controller. This approach not
only preserves the modularity and ability to be reused of the SwiftUI views, but
also takes advantage of the rich capabilities and familiarity of UIKit. This makes

88

5.9 Voice Assistant in-App Integration

it an excellent strategy for adding new SwiftUI-based features to existing legacy
applications.

In the case study of the P2P payment application, totally based on a UIKit
design architecture, the Voice Assistant module was incorporated using this iden-
tical method. By wrapping the PaymentsVoiceAssistantView in a UIHosting-
-Controller, the Voice Assistant has been easily integrated into the app, improving
the User eXperience without having to modify the existing UIKit-based design.

Although this is now a widely used and efficient approach for integrating SwiftUI
views into UIKit apps, it is important to acknowledge that as the new framework
progresses and develops, new patterns and methodologies may arise. Currently,
this is a very effective and widely accepted solution, because it provides an effective
strategy that takes advantage of the benefits of both frameworks.

5.9.2 App Context

When incorporating the Voice Assistant into the payment app, it is essential to
provide a specialized App Context object that customizes the assistant’s behavior
to match the specific requirements of the application. This context object includes
essential user data, such as contacts information and bank account details,
enabling the assistant to carry out customized tasks like financial transactions. In
order to simplify this process, in the Voice Assistant module special object types
has been created, to handle this data in a way that is independent of the specific
implementation details of the host application:

• The “Bank Account” type, is one of the mentioned Voice Assistant types,
and it is particularly relevant. It represents a user’s bank account within
the assistant’s ecosystem by encapsulating important information such as the
account ID, name, and currency details.

• The “Currency” aspect is enhanced with another specialized type that
includes both symbolic and literal representations, guaranteeing a complex
comprehension of monetary data.

• Furthermore, a new object for the “Contact” has been defined to represent
a user’s contact within the scope of the payment application. This type
is distinguished by a distinct identifier and personal characteristics such as
names, which serve to connect the user’s personal contacts with those who
are enrolled in the payment service.

89

5.9 Voice Assistant in-App Integration

• The last custom object is the “Transaction” type, specifically created to
incorporate the complex details of payment transactions within the assistant’s
architecture. The system distinguishes between incoming and ongoing trans-
actions based on the sign of the transaction amount. This type includes
characteristics such as the monetary value of the transaction, the individual
or entity participating in the transaction (in the form of a Contact), and the
Bank Account linked to the transaction. These features collectively offer a
comprehensive overview of the various aspects and details of a transaction.

In order to achieve a smooth integration of the Voice Assistant with the payment
application, it is essential to provide an App Context object that includes this
organized data. This integration also requires ways to transform these customized
items between the Voice Assistant’s internal representation and the specific formats
used by the app. This bidirectional conversion guarantees that the assistant
can seamlessly handle user commands while interacting with the app’s features,
ensuring a seamless and consistent User eXperience inside the payment application
ecosystem.

5.9.3 App Delegate
A bridge is required to connect the voice commands with the in-app actions,
in order to integrate the Payments Voice Assistant into the Peer-to-Peer payment
application. The App Delegate object acts as the concrete representation of
this bridge, playing a crucial role in facilitating the Voice Assistant’s ability to
carry out various in-app operations, including transactions, balance inquiries, and
money requests. The development of this object is therefore crucial for the smooth
functioning of the Voice Assistant within the application’s ecosystem.

The App Delegate object fundamentally implements a certain protocol, which
is an interface that defines the methods used by the Voice Assistant to interact
with the application. This protocol includes capabilities such as initiating transac-
tions, retrieving account balances, and requesting funds from other users inside the
application. The Delegate object serves as the executor of the orders, converting
voice instructions into executable operations.

The implementation phase involves the connection of the Voice Assistant’s
generic commands with the specific features of the application. When the Voice
Assistant is given the command to “send money”, the App Delegate interprets this
as a function call that carries out the transaction within the app, utilizing the
already established infrastructure for processing payments.

90

5.9 Voice Assistant in-App Integration

Moreover, the App Delegate plays an essential role in managing the context
of operations. It keeps a mapping system linking abstract representations of
entities, such as a user’s Contact, to specific application data, like a particular
enrolled account. This mapping guarantees that voice commands are interpreted
in the specific context of the app, enabling the Voice Assistant to function within
the user’s personalized app environment, resulting in a customized and efficient
experience.

The App Delegate typically enables interaction with the application’s backend
services. It interacts with the backend to carry out tasks such as processing
transactions and retrieving account details. This ensures that the actions initiated
using voice commands are accurately recorded in the user’s account and transaction
history. This interaction highlights the importance of the Delegate implementing
strong security mechanisms to protect user data and transactions during the entire
process.

Essentially, the App Delegate plays a crucial role in integrating the Payments
Voice Assistant into the host P2P payment application. The translation layer
translates voice-driven commands into precise, safe, and context-aware in-app
operations, creating a real and efficient UX for voice-driven financial transactions.
The following section, 5.9.4, will provide a more detailed analysis of the practical
aspects of this integration. It will explain the technical and operational factors
that has been considered in the incorporation of the Voice Assistant into the case
study application.

5.9.4 Integration into a real P2P Payment App
In order to assess the effectiveness of the Voice Assistant in a real-world context,
it has been seamlessly integrated into the P2P payment application described in
section 1.3. The integration was carried out by precisely following the instructions
specified in section 5.9. This ensured that the application’s underlying UIKit
architecture and Coordinator pattern were utilized to ensure smooth navigation
and feature management across different screens of the app. The Coordinator
pattern, a significant architectural style commonly employed in iOS mobile app
development, facilitated the integration by enabling a decoupled approach to
managing app workflows and navigation. This approach allowed for the seamless
addition of the Voice Assistant new feature without causing any disruption to the
existing app structure.

A specialized Coordinator object was specifically created for the Voice Assistant
feature, providing a dual function by also serving as the App Delegate. By making

91

5.9 Voice Assistant in-App Integration

(a) Home CTA. (b) Conversation start. (c) Biometric auth.

(d) Send money success. (e) Updated transactions. (f) In-app transaction.

Figure 5.6: Examples of the case study application’s screens showcasing the Voice
Assistant integration.

92

5.9 Voice Assistant in-App Integration

this strategic choice, the Coordinator was able to start the Voice Assistant feature
and manage its whole lifecycle within the app’s environment. When activated,
this Coordinator creates a PaymentsVoiceAssistantView. The view includes
important elements such as the user’s banking and contacts information, which are
stored within the App Context. Additionally, a configuration object is provided to
customize the UI of the Voice Assistant interface, including details like the title
and button colors.

The Voice Assistant’s interface was created using SwiftUI to take advantage
of its declarative syntax and state management capabilities. To seamlessly inte-
grate the PaymentsVoiceAssistantView into the UIKit-based app architecture, a
UIHostingController was used to encapsulate it, as described in 5.9.1.

As the App Delegate, the Coordinator also carries out crucial tasks to guarantee
safe and effective communication with the app’s payment infrastructure, as described
in 5.9.3. The system incorporates biometric authentication technologies, such as
FaceID or TouchID (depending on the used device model), to ensure the security
and privacy of transactions, emphasizing the commitment to user’s data protection.

The activation procedure for the Voice Assistant was elegantly incorporated
into the main screen of the app. Users can launch the assistant by pressing the
Home button, which acts as the Call To Action (CTA), for a short length of 0.75
seconds, as shown in subfigure 5.6a. This action triggers the Voice Assistant, as
displayed in subfigure 5.6b, which subsequently starts an interactive conversation
with the user, providing assistance for different in-app operations. In order to
familiarize users with this innovative function, a small pop-up message was added
on the main page. This message quietly informs users about the existence of the
Voice Assistant when the app is launched, as seen in subfigure 5.6a, disappearing
after a few seconds.

Figures 5.6d, 5.6e and 5.6f provide additional evidence of the assistant’s in-
tegration into the app’s transactional operations. These screenshots illustrate
a practical example of the Voice Assistant during the a $45 payment execution,
with the corresponding biometric authentication process, a subsequent assistant’s
response confirming the success of the send money operation, and an updated
transactions tab in the host application displaying the newly executed payment.
This demonstrates the assistant’s practical effectiveness and smooth integration
into the app’s ecosystem.

93

Chapter 6

Testing and Evaluation

Chapter 6 presents an extensive examination of the testing and evaluation stages
for the AI-Powered Voice Assistant discussed in this Thesis work, specifically
intended for a Peer-to-Peer payment application. This Chapter is an important
point in the development process, because it focuses on evaluating how effective
the assistant is in making user interactions more efficient, particularly in helping
users access P2P payment services within the host application.

Section 5.1.6 focused on assessing the TensorFlow BERT classifier alone,
however the narration of this Chapter continues by expanding on those preliminary
testing steps. The primary objective of this initial phase was to evaluate the
effectiveness of the core Machine Learning model only, which is responsible for
identifying the intents and extracting relevant entities from user speech, and served
as a foundation for conducting a more comprehensive evaluation of the Voice
Assistant capabilities.

In section 6.1, the systematic testing phase of the Voice Assistant module
is explored, covering the User Interface, AI capabilities, and the complex core
logic that supports its functioning. This step was carefully planned and executed
using a specifically designed test iOS application, created for properly assessing
the assistant’s effectiveness in a wide range of situations. The testing initiative
was supported by a varied group of people who willingly participated as tester
users, offering important opinions on the assistant’s practical usefulness and User
eXperience.

In section 6.2, the Chapter turns its attention to the careful assessment of the
results obtained during the testing phase. The review was mostly based on feedback
obtained from users using a standardized online form, in which they provided
their feedback and opinions of the Voice Assistant. This data collection was crucial

94

6.1 Voice Assistant Test Application

in comprehending the assistant’s impact on user engagement, its effectiveness in
facilitating Peer-to-Peer financial transactions, and its overall acceptance within
the user base.

In synthesis, the Chapter attempts to provide an extensive evaluation of the
AI-Powered Voice Assistant’s performance by employing an approach that includes
extensive testing and careful examination. The evaluation assesses the assistant’s
capacity to fulfill the user’s requirements outlined in chapter 3, with a specific
focus on improving the accessibility and user-friendliness of P2P payment services
within the application environment.

6.1 Voice Assistant Test Application
The creation of a dedicated iOS application for testing played a crucial role in
assessing the performance of the Voice Assistant in the P2P payment field. The
choice of having a specific test application was fully driven by the necessity of
having a complete software target to test the Voice Assistant module, especially
to test the UI/UX effectiveness. Therefore, it was not possible to evaluate the
module’s complete set of capabilities in isolation.

The test app was specifically created to replicate the basic functions of a Peer-
to-Peer payment application. It primarily focuses on voice-activated features,
including the ability to send money, request money, check an account balance, and
examine the most recent transactions, which are the main capabilities offered by
the Voice Assistant proposed in this project work.

This test application is provided with introductory screens, as depicted in
Figure 6.1. The purpose of these screens is to familiarize users with the app’s
objectives within the scope of this Thesis project and the Voice Assistant testing
phase (subfigure 6.1a). They also provide a concise description of the domain
context in which the Voice Assistant functions, i.e. a P2P payment application
where the user possesses bank accounts in multiple currencies, as depicted in the
screenshot shown in subfigure 6.1b. In order to create a more realistic experience,
the application incorporates a simulation of two fake bank accounts: one at “Top
Bank” in US dollars ($) and another at “Future Bank” in dirhams (AED). This
allows users to transfer or request money to/from their phone contacts as if they
were actual users of the application’s services. Indeed, when the Voice Assistant
feature is activated, the program requests permission to access the user’s contacts,
which is necessary for the assistant to work correctly.

Subfigure 6.1c displays the features supplied by the Voice Assistant, while

95

6.1 Voice Assistant Test Application

(a) Intro. (b) App context. (c) Assistant capabilities.

(d) Evaluation form link. (e) Start assistant. (f) Conversation start.

Figure 6.1: Main screens of the Test iOS Application.

96

6.1 Voice Assistant Test Application

subfigure 6.1d provides a link to the online form that should be utilized to provide
feedback on the Voice Assistant. Finally, Figure 6.1f depicts the Voice Assistant
initiating a discussion with the user, displaying the identical features and screens
as seen in Figure 5.5.

The User Interface of the test application was implemented using SwiftUI, which
made it easier to incorporate the Voice Assistant module. This aligns with the
methodology described in section 5.9 for the assistant module integration. In order
to replicate the behaviors of a host payment application, a simulated App Context
and an App Delegate mock were created. Such objects provided fake bank account
information and the list of user’s contacts, while also imitating the actual in-app
operations.

To acknowledge the significance of user feedback during the testing phase, the
test application was made accessible on TestFlight, a platform that facilitates apps’
public release and convenient accessibility for various kinds of users, as elaborated in
subsection 6.1.1. This method not only made it easier to spread the test application,
but also made the process of gathering important user feedback simpler. This
feedback is fundamental for analyzing and improving the functionality and User
eXperience of the Voice Assistant.

6.1.1 Test iOS App Release on TestFlight
The deployment of the iOS application on Apple’s TestFlight platform for the
purpose of testing was a fundamental stage in the evaluation process. This stage
required an extensive configuration of the App Store Connect platform, starting
with the creation of an Apple Developer Account. An Apple Developer Account
is important for anyone who intend to publish applications on the App Store or
distribute them for testing purposes [46]. It grants access to developer materials
and serves as a portal for submitting apps to Apple’s platforms.

In order to prepare the application for TestFlight distribution, a number of
elements were carefully configured. At first, a special Certificate has been created,
which functions as a digital signature to verify the app’s source and integrity.
This Certificate is essential for verifying the authenticity of the app’s creator and
guaranteeing that it has not been altered.

Subsequently, an App Identifier was generated, which is a distinctive string
that serves as a means of distinguishing the app from others available on the
App Store. The Identifier is essential for features such as Push Notifications and
app-specific preferences, but they are not included in the test application being
discussed.

97

6.1 Voice Assistant Test Application

In addition, a Provisioning Profile was established to link the app’s Identifier
with the development devices. This Profile allows the app to operate exclusively
on authorized devices and is crucial for testing the app prior to its public
distribution.

After completing these preparatory steps, the application was submitted to
TestFlight, thereby enabling external testers to access it by means of ad-hoc
invitations. The group of testers, consisting of 50 friends who volunteered for the
testing phase, offered valuable feedback on the app’s voice assistant capabilities.
Their thoughts were crucial in identifying the advantages and disadvantages in the
development process, and they suggested changes for any potential future work on
the project, as it will be better discussed in subsection 6.2.2.

Two figures are associated to this phase. Figure 6.2 displays a screenshot of the
iOS app’s information on TestFlight, providing details about the app’s version,
build number, and description specifically for testers. Figure 6.3 exhibits the app

Figure 6.2: TestFlight app details.

Figure 6.3: Test app icon.

98

6.2 Voice Assistant Evaluation

icon as it appears on an iOS device, serving as a visual indicator for testers to
readily identify and open the application.

The testing phase on TestFlight served as both a technical necessity and an
opportunity to collect user feedback. This data can be used to create future
improvements on the AI Voice Assistant, resulting in a more seamless and functional
app experience for all future users.

6.2 Voice Assistant Evaluation
The evaluation phase of the Voice Assistant was carefully designed to measure
the effectiveness and user satisfaction of the built solution. An essential element
of this phase involved developing an online Google form to get comprehensive
feedback from users who interacted with the Voice Assistant integrated within the
test application. This form played a crucial role in collecting valuable information
on the users’ experiences, their levels of satisfaction, and any difficulties they had
when using the Voice Assistant. The form consisted of a wide variety of questions,
such as rating scales to measure user satisfaction and open-ended questions to
gather specific feedback and suggestions for enhancement.

The aggregation of data via the Google form offered a systematic method
for understanding the effectiveness of the Voice Assistant from a user-oriented
perspective. Participants were requested to provide feedback on their interactions
with the assistant inside the test app, involving a set of specified tasks designed to
assess the functionality, accuracy, and user-friendliness of the Voice Assistant.

The evaluation phase is based entirely on user feedback regarding the usage
of the given test iOS application. The final integration of the Voice Assistant
into the case study P2P payment app (detailed in section 5.9.4) was limited to
a few manual testing. Because of confidentiality concerns, in fact, it was not
possible to carry out an extensive assessment of the Voice Assistant in the real
payment application. Nevertheless, this manual testing played an important role
in guaranteeing the smooth functioning of the Voice Assistant within the app’s
environment, validating its ability to improve user interactions in a safe and effective
way.

The remaining sections will provide a more in-depth analysis of the evaluation
process. Subsection 6.2.1 will provide a detailed description of the evaluation
form’s structure, including the logic behind the selected questions. Subsequently,
subsection 6.2.2 will provide a comprehensive examination of the findings derived
from the form, providing valuable observations on the users’ experiences, levels

99

6.2 Voice Assistant Evaluation

of satisfaction, and the overall efficacy of the Voice Assistant in supporting user
interactions inside the P2P payment application.

6.2.1 Evaluation Form

A carefully designed Google form was utilized to collect extensive user feedback
during the evaluation of the Voice Assistant. The form was methodically structured
into distinct sections, each designed to analyze various aspects of the user’s
interaction with the Voice Assistant, thereby offering an exhaustive evaluation of
its usability, functionality, and overall user satisfaction.

1. The first part of the form focused on Usability and Interaction. It included
questions that examined how easy it was to start and interact with the Voice
Assistant, how well it understood voice commands and queries, how natural
the interactions felt, and how quickly the Assistant responded. This part was
crucial in evaluating the inherent naturalness of the Voice Assistant and its
effectiveness in enabling user commands.

2. Following that, the survey focused on the Functionality and Effectiveness
of the Assistant, with tailored questions aimed at evaluating its ability in
performing specific tasks such as checking balances, reviewing recent trans-
actions, sending money, and more complex operations like comprehending
specified amounts and names. This portion was crucial in comprehending the
Assistant’s operating efficiency and its capacity to seamlessly manage financial
transactions.

3. The Reliability and Error Handling section went deeper into the Assistant’s
performance, specifically examining the frequency of misunderstandings or
providing inaccurate information, as well as the system’s ability to recover
from errors or assist users in resolving them. These aspects are crucial for
maintaining user trust and facilitating natural interactions.

4. The form also had a Security and Privacy section, with questions that
evaluated the clarity of instructions and answers regarding transaction autho-
rizations, as well as users’ trust in the security and privacy of their financial
transactions data when utilizing the Voice Assistant. This section highlighted
the importance of applying strong security and privacy measures in financial
applications for maintaining user trust.

100

6.2 Voice Assistant Evaluation

5. Finally, the User eXperience and Satisfaction part assessed the overall
user perception towards the Voice Assistant, including factors such as the pleas-
antness of the Assistant’s voice, the overall satisfaction with the experience,
and the probability of using the Voice Assistant for real future transactions.
This section aimed to evaluate the general impact of the Voice Assistant on
the User eXperience and its potential for future usage.

The form mainly consisted of Likert scale items [47], which let participants
to rate their experiences on a scale ranging from 1 to 10. Additionally, there
were open-ended questions that allowed users to submit specific complaints or
suggestions for improvement. The decision to use a 1 to 10 scale instead of a more
limited range was intentional in order to include a wider variety of user answers.
This allows for a more detailed review of the Voice Assistant’s effectiveness across
several parameters.

6.2.2 Evaluation Results

The analysis of the Google form responses gathered for the Voice Assistant eval-
uation reveals that the system demonstrates various degrees of performance in
different areas. A total of 50 replies offer a full assessment of its effectiveness and
highlight areas that require improvement. The full report with the form results
has been attached in Appendix A, for the sake of completeness.

• The Usability and Interaction capabilities of the Voice Assistant were
credited for their good feedback. Approximately 54% of users considered
the activation and interaction procedure to be uncomplicated and easy to
understand, rating it between 9 and 10, as shown in Figure 6.4. Another 32%
of users expressed a level of satisfaction with the user-friendliness, rating it
between 7 and 8. Nevertheless, comprehending voice commands and queries
with precision proved to be a more difficult task, as the majority of testers
only achieved satisfactory results, with success rates ranging from 6 to 8,
accounting for 64% of the responses. Additionally, 20% of the testers reported
accuracy concerns, with success ratings ranging from 4 to 5. This highlights the
necessity of improving the system’s voice recognition capabilities in order to
more effectively handle user commands. The users’ perception of the assistant’s
interactions being natural and the speed of its responses were moderately
positive, as 66% of users ranked the natural interaction flow between 7 and
9 on a scale of 1 to 10. However, a substantial 36% of users expected slower

101

6.2 Voice Assistant Evaluation

response times, indicating that the system’s processing speed may be enhanced
to provide a more seamless User eXperience. Users experienced challenges in
communicating their requests due to the system’s limited ability to reliably
identify certain words or phrases, particularly those that include non-English
terms. Additionally, the system’s sequential approach to processing queries
could be restrictive. These observations emphasize the need for the Voice
Assistant to embrace a more adaptable and contextually aware processing
strategy in order to better comprehend user intentions.

Figure 6.4: Results for a question on usability and interaction.

• Regarding the Functionality and Effectiveness, the assessment of the Voice
Assistant’s performance in tasks such as checking balances, accessing history
of transactions, handling money transfers, and processing money requests
produced excellent results. As illustrated in Figure 6.5, users expressed high
levels of satisfaction, particularly with high ratings (8-10) ranging from 55% to
75% in all four tasks. Nevertheless, there were occasions of misinterpretation,
particularly in identifying certain bank or contact names and handling intricate
inquiries, suggesting the need for enhancement in the system’s comprehension
of context and ability to recognize entities, particularly for names that are
not in English.

• In the Reliability and Error Handling section, the accuracy of the Voice
Assistant in comprehending requests exhibited a diverse distribution over the

102

6.2 Voice Assistant Evaluation

Figure 6.5: Results for a question on functionality and effectiveness.

Figure 6.6: Results for a question on reliability and error handling.

range of satisfaction (Figure 6.6). The system’s capacity to address errors and
guide users towards the correct solutions was well-received, as indicated by 52%
of respondents expressing high satisfaction rates (8-10). This suggests that the
system possesses a strong basis for addressing misunderstandings and offering
useful feedback, although there is still potential for further enhancements.

103

6.2 Voice Assistant Evaluation

• The system’s ability to ensure Security and Privacy in transactions was
highly appreciated, as seen by 74% of users expressing confidence in the
system’s management of their financial activities, rating it between 7 and 10,
as depicted in Figure 6.7.

Figure 6.7: Results for a question on security and privacy.

• Finally, from the UX perspective, the pleasantness of the voice (58%, rated
8-10) and the overall Satisfaction of users with the Voice Assistant were
also rather high, indicating a positive User eXperience. Approximately 60%
of the participants expressed a high level of satisfaction with the whole
experience, rating it between 8 and 10, as shown in Figure 6.8. Additionally,
over half of the respondents indicated a willingness to use the Voice Assistant
for future financial transactions in an actual application, with a rating between
7 and 10.

Proposed additions for the future include the addition of functionalities such as
manual backtracking, enhanced integration with other user interface components,
more advanced confirmation prompts, incorporating a more authentic voice,
and greater recognition of non-English names. These enhancements have the
potential to greatly boost user engagement and the general efficiency of the assistant.

In general, the Voice Assistant achieved satisfactory performance in enhancing
usability and User eXperience, with notable strengths in security, privacy,

104

6.2 Voice Assistant Evaluation

Figure 6.8: Results for questions on user experience and satisfaction.

and the effectiveness of interactions. Nevertheless, there are many aspects that
might be enhanced, particularly in improving the accuracy of entities recognition,
the speed of response, the naturalness of the voice, and the system’s flexibility in
handling complex or sequential requests. It is essential to address these limitations
in order to enhance the capabilities of the Voice Assistant and ensure that it
properly fulfills the needs of users.

105

Chapter 7

Conclusion and Future Work

In the final Chapter of this Thesis, a comprehensive analysis of the journey is
conducted, methodologies, results, and insights gained from the innovative project
of an AI-Powered Voice Assistant in a Peer-to-Peer payment application. This
project was not simply a theoretical exercise but an exploration into the field
of R&D, representing the starting point of what could potentially become a real
innovative product.

The discussion begins by examining the methodology used, which is based on
the earlier sections of the Thesis, specifically section 1.2. This reflection signifies
more than just looking back; it involves an in-depth analysis of the decisions,
processes, and novel approaches used to incorporate advanced AI technology into a
mobile application.

One of the primary goals of this chapter is to analyze the outcomes that were
acquired, namely the ones emphasized in section 6.2. The deployment of this
Voice Assistant represented not only a technological milestone, but also showcased
the concrete advantages that AI can offer in financial transactions, by improving
User eXperience, accessibility, and operational efficiency. These findings serve as
evidence of the voice assistant’s ability to simplify financial transactions, while
keeping the same level of privacy and security in the process, confirming the
hypothesis established at the beginning of this research.

It is crucial to recognize that this project was initiated as a Research and
Development activity, rather than a finished product. This differentiation is
crucial as it emphasizes the investigative character of the study and its inherent
potential for improvement and advancement. Although still in the experimental
phase, the project produced remarkable outcomes, demonstrating the effective-
ness of the AI Voice Assistant in a practical context of a payment application.

106

7.1 Discussion

This achievement sets the foundation for future initiatives that might transform
this first model into a complete and powerful product that has the potential to
transform the procedures by which financial transactions are carried out.

In this Chapter, the detailed adopted process will be examined in section
7.1, carefully evaluating the design, development, and integration of the voice
assistant in the P2P payment application, and an interpretation of the achieved
results will be presented in the context of the literature topics treated in the project.
This analysis will not only emphasize the accomplishments but also illuminate the
difficulties faced, providing significant perspectives for future research and growth.

Section 7.2 will provide a thorough examination of possible enhancements
to the Voice Assistant, based on user feedback and the knowledge gained during
the project. This section will provide an outline for improving the assistant’s
functionality, usability, and integration, assuring its development from an initial
prototype to a robust and flexible solution.

Finally, in section 7.3, an overview of the primary findings of the project will
be provided, including the fundamental ideas, accomplishments, and contributions
of this research to the fields of Artificial Intelligence, mobile applications, and
financial technology. This summary is not only a careful evaluation of the journey
done, but also serves as an inspiration for future studies in the field of AI-driven
financial solutions.

7.1 Discussion
The project of creating an AI-Powered Voice Assistant for a P2P payment app
on iOS devices involved exploring and developing various aspects of innovation,
integration issues, and the complex nature of user engagement with emerging
technologies in the financial sector. The goal of the project was to completely trans-
form the way users interact with the system by incorporating a voice-activated
interface, thus providing a more natural way of interaction with the app financial
services. This would improve accessibility and maintain privacy by processing data
locally. Nevertheless, the journey was characterized by a sequence of interesting
experiments, mistakes, and discoveries.

• The central focus of the project was the creation and refinement of a Ma-
chine Learning model specifically designed for accurately identifying and
comprehending spoken words (entities) and intentions within the application’s
framework. The objective was to create an exceptional and complete model

107

7.1 Discussion

that could easily carry out the complete inference process. This commitment,
although innovative, faced significant obstacles when confronted with the
inherent restrictions of the technologies used, specifically for the integration
into iOS devices, for their computational capabilities, and for the used ML li-
braries limitations on state-of-the-art models as the Large Language Models.
The desire for a comprehensive model had to be adjusted to a more modular
and resource-conscious approach, highlighting the careful balance between
ambition and practicality in technological progress.

• During the initial phase, which focused on studying advanced technologies
such as Large Language Models and specifically BERT models, it became
clear that there was an unintentional bias towards these models, which
prevailed over the potential benefits of other models and methodologies in the
development of voice assistants. This omission demonstrates the great impact
of the specialization in technological research and development, highlighting
the need for a more comprehensive and inclusive examination of the technology
landscape. The lessons from this design process emphasized the significance
of being flexible and prepared to changes in response to evolving discoveries,
requirements and constraints.

• A crucial element of the project involved comprehending and matching with
the requirements of the user. It became clear that doing more specific
surveys and actively involving different categories of users might have
greatly enhanced the design process, allowing for the customization of the voice
assistant’s functions to better meet the needs of a broader and more varied
group of users, particularly individuals with haptic or visual impairments or
limited technological proficiency. This reflection highlights the potential for
future improvements, emphasizing the importance of inclusive design and the
significant influence of technology in making financial services accessible to
everyone.

• The process of integrating the designed ML solution into the iOS environment
revealed the complex relationship between software advancements and
hardware constraints. The impracticality of a single, all-encompassing
model required a specific change in approach to utilize separate software
components and prioritize processing on the device, in order to guarantee
the feasibility of the solution. This stage of the project exemplified the
iterative process of technical advancement, in which each obstacle serves as
an opportunity for troubleshooting and innovation.

108

7.2 Possible improvements

The knowledge obtained from the project goes beyond the immediate range of
voice assistants in financial applications. It aligns with the wider conversation on
the incorporation of AI in mobile apps, emphasizing the crucial significance
of designing with the user in mind, offering a more natural human-machine inter-
action, exploring various technology options, and establishing a mutually beneficial
connection between software capabilities and hardware limitations. The project
establishes a foundation for future investigations in AI-driven applications, promot-
ing a well-balanced strategy that aligns user requirements, technology capabilities,
and device environments.

To summarize, the process of creating an AI-driven voice assistant for an
iOS P2P payment application provided valuable findings that go beyond the
specifics of the project. It highlighted the complex relationship between User
eXperience, technological advancement, and the practical constraints, demonstrating
opportunities for future projects in the field of AI-powered mobile applications.

7.2 Possible improvements
After assessing the results and gaining practical experience during the development
of the Voice Assistant, various opportunities for improvement have been identified.
These potential enhancements arise not only from the quantitative and qualitative
feedback collected through the evaluation form (Section 6.2.2) but also from
personal observations and practical knowledge obtained during the project.
The objective of these upgrades is to further improve the User eXperience, enhance
the functionality of the Voice Assistant, and assure its flexibility to a diverse range
of user needs and situations. The following are crucial areas indicated for future
progress:

• Multilingual Support: enabling multilingual support for the Voice Assistant
would greatly improve its accessibility and expand its user base. This task
encompasses not only the comprehension and the translation of instructions
and replies but also the adjustment of cultural and linguistic aspects to
guarantee seamless communication across different languages. It necessitates
the utilization of either multi-lingual Language Models or multiple models
tailored for different languages.

• Improved Named Entity Recognition: the precision of identifying entities
inside a specified application domain, especially for non-English names and
specialized terms like bank account names, can be significantly enhanced.

109

7.2 Possible improvements

Utilizing more sophisticated matching algorithms or integrating contextual
learning could reduce misunderstandings and improve the assistant’s reliability.

• Better Amount Identification: enhancing the technique for accurately
detecting transaction amounts, especially for particular terms, is of crucial
importance. By implementing advanced parsing algorithms and enhancing
contextual comprehension, it is possible to minimize errors in transactions
processing.

• Enhanced Context-Aware Conversation Flow: improving Conversation
State Management could enhance the intuitiveness and naturalness of the
conversational experience. The Voice Assistant can provide more relevant
responses and accurately predict user requests by comprehending the context
and maintaining the conversation’s flow.

• Separation of Response Generation: By decoupling the Response Gen-
eration component from the Dialogue State Tracker, an higher flexibility in
creating responses might be reached. This modular approach would enable
the seamless incorporation of several languages and enable the generation of
more dynamic and contextually suitable replies.

• UI/UX Innovation: The exploration and experimentation with various
kinds of User Interface and interaction models, such as the tap-to-talk feature
for the assistant’s main button (instead of holding it), might have the potential
to improve the User eXperience. Enhancing the interaction model improves
the accessibility and user-friendliness of the Voice Assistant.

• Distinct answer Management: Differentiating between the visual represen-
tation of an answer and its spoken pronunciation might help resolve problems
associated with the quality of Speech Synthesis. Adapting the pronunciation
to align with the desired tone and context can enhance the authenticity and
captivation of interactions.

• Expansion of Supported Intents: Expanding the range of supported
intents and, as a result, extending the supported conversational states in the
Dialogue State Management, will greatly increase the capabilities of the Voice
Assistant. By including a broader range of user instructions and queries, the
assistant is able to offer more extensive help and usefulness.

By implementing these upgrades, this experimental solution can be transformed
into a fully-functional and sophisticated AI Voice Assistant. However, it is

110

7.3 Conclusions

important to choose a well-balanced process that takes into account both the
technological feasibility and the potential influence on the UX. Continuous user
feedback and iterative development will play a crucial role in determining the order
of importance of these features to meet the changing needs of the users.

7.3 Conclusions
In conclusion, the creation of an AI-Powered Voice Assistant for a Peer-to-Peer
payment app for iOS platforms is a significant step in incorporating AI technol-
ogy, specifically Natural Language Processing, into mobile apps in the financial
services sector. This Thesis has effectively demonstrated the practical utilization of
advanced ML models, such as BERT, for text classification and unique Dialogue
State Tracking methods. These techniques enable the seamless execution of compli-
cated user interactions simply using voice commands. Integrating such an assistant
into a real P2P payment application not only improves the User eXperience by
allowing for intuitive, hands-free operation, but also gives priority to user privacy
by processing data on the device alone.

Nevertheless, this research also revealed limitations that are inherent in existing
AI technologies and their use in mobile environments. Notable issues include
overcoming the limitations of Large Language Models integration into mobile
devices, ensuring the security and privacy of sensitive financial transactions, and
obtaining high accuracy in Speech Recognition and Natural Language Understanding
in a variety of linguistic circumstances.

In the future, there are many opportunities for further research and advance-
ment in this particular subject. First, delving into more sophisticated NLP models
and methodologies could address the complex comprehension of user intent and
conversational context. Furthermore, the incorporation of multimodal Artificial
Intelligence, which combines auditory, visual, and textual inputs, presents a promis-
ing opportunity for developing software solutions that are more functional and
user-friendly. Lastly, it is essential to prioritize also the continuous advancement
of AI ethics and governance principles in order to effectively deal with societal
concerns regarding privacy, security, and inclusion in AI-driven applications.

By overcoming these limitations and pursuing new research opportunities, the in-
corporation of AI technologies into mobile applications, particularly in the financial
industry, will advance to the next level. This progress will provide more advanced,
secure, and user-focused solutions that respond to the various requirements of the
global user base.

111

Acronyms

AI Artificial Intelligence

ALBERT A Lite BERT

API Application Programming Interface

ARC Automatic Reference Counting

BERT Bidirectional Encoder Representations from Transformers

BIO Begin-Inside-Outside

CS Computer Science

CTA Call To Action

CUI Conversational User Interface

DI Dependency Injection

DistilBERT Distilled version of BERT

DL Deep Learning

DNN Deep Neural Network

DSM Dialogue State Management

DST Dialogue State Tracker

DST Dialogue State Tracking

EDDA Electronic Direct Debit Authorization

113

Acronyms

EU European Union

FinTech Financial Technology

FSM Finite State Machine

GCD Grand Central Dispatch

GPT Generative Pre-trained Transformer

GPU Graphical Processing Unit

GUS General Understanding System

HMM Hidden Markov Model

IDE Integrated Development Environment

IoT Internet of Things

IT Information Technology

LLM Large Language Model

LM Language Model

LR Learning Rate

LSTM Long Short-Term Memory network

MB Megabyte

ML Machine Learning

MLM Masked Language Modeling

ms millisecond

MVC Model-View-Controller

MVVM Model-View-ViewModel

NER Named Entity Recognition

114

Acronyms

NLG Natural Language Generation

NLP Natural Language Processing

NLU Natural Language Understanding

NN Neural Network

NSP Next Sentence Prediction

OS Operative System

P2P Peer-to-Peer

PC Personal Computer

R&D Research and Development

RNN Recurrent Neural Network

RoBERTa Robustly Optimized BERT pretraining Approach

seq2seq sequence-to-sequence

seq2vec sequence-to-vector

SDK Software Development Kit

SPM Swift Package Manager

STT Speech-to-Text

SR Speech Recognition

SS Speech Synthesis

TF TensorFlow

TFLite TensorFlow Lite

TTS Text-to-Speech

UI User Interface

UX User eXperience

115

Acronyms

VCS Version Control System

VUI Voice User Interface

116

Glossary

Cocoapods Dependency manager that manages external libraries in iOS applica-
tions

CoreML iOS framework to create, train and easily integrate Machine Learning
models into iOS applications

FaceID Biometric authentication method used in Apple devices based on user
face recognition

Git Major software used as distributed Version Control System to keep track and
manage file changes in a Software Development process

GitHub Cloud platform using Git and hosting remote repositories

Google Colab Cloud service offered by Google providing a web-based environment
to run Jupyter notebooks

iOS Apple iPhone and iPad Operative System

macOS Apple MacBooks’ Operative System

Swift Modern programming language used to create iOS applications

SwiftUI Apple’s Swift framework to create iOS User Interfaces using a declarative
paradigm

UI/UX The combination of User Interface and User eXperience areas

TestFlight Official online platform offered by Apple to distribute and test iOS
applications with final users

117

Glossary

TouchID Biometric authentication method used in Apple devices based on user
fingerprint recognition

UIKit iOS framework to create User Interface using a programmatic approach

UML Short for Unified Modeling Language, is a standardized modeling language
with different sets of diagrams to document artifacts of a software systems

Xcode Official Integrated Development Environment (IDE) software used to create
iOS applications

118

Usability and Interaction

How easy was it to activate and interact with the voice assistant?

50 responses

Was the voice assistant able to accurately understand your voice commands and
queries?

50 responses

Voice Assistant Evaluation Results

50 responses

1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

0 (0%)0 (0%)0 (0%) 0 (0%)0 (0%)0 (0%)
2 (4%)2 (4%)2 (4%)

0 (0%)0 (0%)0 (0%)
1 (2%)1 (2%)1 (2%) 4 (

8%)

7 (
14%)

9 (
18%) 8 (

16%)

19 (
38%)

1 2 3 4 5 6 7 8 9 10
0

5

10

15

0 (0%)0 (0%)0 (0%) 0 (0%)0 (0%)0 (0%) 0 (0%)0 (0%)0 (0%)

6 (
12%)

4 (
8%)

9 (
18%)

12 (
24%) 11 (

22%)

4 (
8%)

4 (
8%)

– Appendix A: Evaluation Form Results

119

How would you rate the naturalness of the interactions with the voice assistant?

50 responses

How would you rate the speed of the voice assistant's responses and actions? (if you
like it select 5-6)

50 responses

Did you experience any difficulties in communicating your requests to the voice
assistant? If so, please specify.

27 responses

It is difficult to recover from a wrong interpretation of the voice

The assistant doesn’t recognise easily the word ‘transaction’, sometimes.

Ciao Mario, secondo me l unico problema è relativo al fatto che procede sequenzialmente sulle
domande. Non puoi quindi chiedere tutto in un’unica frase, l assistente comunque ti forzerà a
procedeere per steps: prima l amount poi il contatto e poi il bank account. Sarebbe meglio
studiare un modo per estrarre tutti i token da una frase e se sono tutti presenti non chiedere
niente, se no se c’è qualcosa che manca, chiedere solo quello che manca.

1 2 3 4 5 6 7 8 9 10
0

5

10

15

0 (0%)0 (0%)0 (0%)
1 (2%)1 (2%)1 (2%)

2 (4%)2 (4%)2 (4%)
1 (2%)1 (2%)1 (2%) 3 (

6%)

4 (
8%)

10 (
20%)

13 (
26%)

10 (
20%)

6 (
12%)

1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

0 (0%)0 (0%)0 (0%) 0 (0%)0 (0%)0 (0%) 0 (0%)0 (0%)0 (0%) 0 (0%)0 (0%)0 (0%)

7 (
14%)

19 (
38%)

6 (
12%) 5 (

10%)

6 (
12%)

7 (
14%)

– Appendix A: Evaluation Form Results

120

È capitato che confondesse l’operazione di ricezione denaro con l’invio: dopo avermi chiesto
quanti soldi ricevere e la fase di selezione del contatto, mi ha chiesto di confermare
l’operazione di invio denaro piuttosto che ricezione

Sometimes catch just one piece of information when you say everything at once

The Assistant had problems understanding the names of the banks.

The voice assistant couldn't understand semantic meaning, e.g. "Send all of my money"

Yes she didn’t understand the bank name and I had trouble requesting money instead of
sending money

It didn’t understand “one dollar” and it had some difficulties with names

Un paio di volte non è riuscito a capire quale banca utilizzare e a chi inviare i soldi non
trovando quindi i contatti nella rubrica

When I used synonyms of “transactions” the assistant didn’t understand and helped me. I
would probably expand the vocabulary so I wouldn’t be tied to the exact terms.

I think it does not understand synonyms or related sentences that do not include exactly the
words that are pronounced by the assistant

I had two issues : I couldn’t check my bank account (I tried different ways to say it but it didn’t
work) and the voice assistant didn’t understand long or complicated contacts like « Grandmum
Lulu » for example

The assistant shows some difficulties in understanding my request when it contains additional,
irrelevant information (such as "I want to send x money to y for the private lessons received"),
and when the name of the person in the request (the recipient or sender of the money) consists
of only one word.

Yes, for instance when the assistant asks me from which bank I want to perform the action, in
any case, even if before I asked to request money from someone, the assistant changes my
request and only assumes that I want to send money.

The assistant had trouble understanding my request when I used a currency that it did not
know. It did not tell me to use another currency but kept on asking to repeat my request.

It didn't understand Italian names

It seems not to recognize the singular (one dollar: ko, one dollars: ok).

– Appendix A: Evaluation Form Results

121

Yes, when she asked if there was anything she could help me with further. I said no, but she
said she could not help me with that

I asked to check all information about both bank account but it did not work

it does not reject my requests it only works in affirmation

Occasionally it would not quite get all the details of my commands, but that could also be due
to the low volume of my voice compared to the surrounding noises.

The voice assistant has some difficulties understanding the names of the person I want to
send money to.

Si, l'assistente non riconosceva alcuni contatti e inoltre dava diversi problemi a riconoscere la
banca selezionata

it didn't really understand the names to which to send the money

Yes, they didn’t understand the amount i wanted to send and kept looping

It did not understand me sometimes, and said so, but it only once misunderstood (as in
thinking I was saying something I was not)

Functionality and Effectiveness

How effectively did the voice assistant assist you checking your balance? (if you have
not tried it, skip it)

39 responses

1 2 3 4 5 6 7 8 9 10
0

5

10

15

1 (2.6%)1 (2.6%)1 (2.6%)
0 (0%)0 (0%)0 (0%) 0 (0%)0 (0%)0 (0%)

1 (2.6%)1 (2.6%)1 (2.6%)
0 (0%)0 (0%)0 (0%)

1 (2.6%)1 (2.6%)1 (2.6%)

6 (15.
4%)

7 (17.
9%)

10 (
25.
6%)

13 (
33.
3%)

– Appendix A: Evaluation Form Results

122

How effectively did the voice assistant assist you checking your last transactions? (if
you have not tried it, skip it)

28 responses

How effectively did the voice assistant assist you sending some money? (if you have
not tried it, skip it)

46 responses

1 2 3 4 5 6 7 8 9 10
0.0

2.5

5.0

7.5

10.0

0 (0%)0 (0%)0 (0%) 0 (0%)0 (0%)0 (0%)
1 (3.6%)1 (3.6%)1 (3.6%)

0 (0%)0 (0%)0 (0%) 0 (0%)0 (0%)0 (0%)
1 (3.6%)1 (3.6%)1 (3.6%)

6 (21.
4%) 5 (17.

9%)
5 (17.
9%)

10 (
35.
7%)

1 2 3 4 5 6 7 8 9 10
0

5

10

15

0 (0%)0 (0%)0 (0%) 0 (0%)0 (0%)0 (0%)

2 (4.3%)2 (4.3%)2 (4.3%)
1 (2.2%)1 (2.2%)1 (2.2%) 3 (6.

5%)
3 (6.
5%)

7 (15.
2%)

11 (
23.
9%)

11 (
23.
9%)

8 (
17.
4%)

– Appendix A: Evaluation Form Results

123

How effectively did the voice assistant assist you requesting some money? (if you
have not tried it, skip it)

35 responses

How effectively did the voice assistant understand an amount you specified?

50 responses

1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

0 (0%)0 (0%)0 (0%)

1 (2.9%)1 (2.9%)1 (2.9%) 1 (2.9%)1 (2.9%)1 (2.9%) 2 (5.
7%)

4 (
11.
4%)

4 (
11.
4%)

4 (11.
4%)

8 (22.
9%)

5 (14.
3%)

6 (
17.
1%)

1 2 3 4 5 6 7 8 9 10
0

5

10

15

0 (0%)0 (0%)0 (0%) 0 (0%)0 (0%)0 (0%)
3 (

6%) 0 (0%)0 (0%)0 (0%)
1 (2%)1 (2%)1 (2%)

4 (
8%)

11 (
22%) 10 (

20%)
8 (

16%)

13 (
26%)

– Appendix A: Evaluation Form Results

124

How effectively did the voice assistant understand a name you specified?

50 responses

How effectively did the voice assistant understand a bank account you specified?

50 responses

How effectively did the voice assistant perform the requested operations in general?

50 responses

1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

2 (
4%)

3 (
6%)

4 (
8%)

3 (
6%)

5 (
10%)

7 (
14%)

8 (
16%)

4 (
8%)

6 (
12%)

8 (
16%)

1 2 3 4 5 6 7 8 9 10
0

5

10

15

0 (0%)0 (0%)0 (0%)
1 (2%)1 (2%)1 (2%)

0 (0%)0 (0%)0 (0%)

2 (4%)2 (4%)2 (4%)

7 (
14%)

5 (
10%)

5 (
10%)

8 (
16%)

11 (
22%)

11 (
22%)

1 2 3 4 5 6 7 8 9 10
0

5

10

15

0 (0%)0 (0%)0 (0%) 0 (0%)0 (0%)0 (0%) 0 (0%)0 (0%)0 (0%)

2 (4%)2 (4%)2 (4%) 2 (4%)2 (4%)2 (4%)

7 (
14%)

11 (
22%)

12 (
24%)

12 (
24%)

4 (
8%)

– Appendix A: Evaluation Form Results

125

Did you experience any specific difficulties in performing some operations? If so,
please specify.

19 responses

It is possible that it doesn’t reconignes some italian surname

Non riesce a comprendere bene i centesimi

Il problema principale sta nella selezione dei contatti con nomi italiani. Ad esempio,
selezionando un contagio chiamato “Alessio”, non ha riscontrato grandi problemi. Utilizzando
nomi più complessi nella mia rubrica, come Vincenza o Gianfranco, l’applicazione ha mostrato
risultati errati

Everything was ok, the problem was understanding the bank names.

She didn’t understand that I wanted to request money and the bank name took some time

Alcune volte non ha capito l’importo richiesto

Excepting my 2 issues, it worked good in general ! Sometimes I had to repeat but the voice
assistant got it the second time.

The assistant asked me to repeat the name multiple times, even though it was already included
in the initial request.

It seems “check info bank account” is not recognized if “balance” word is missing

Understanding the name I was saying was very difficult but that could be because of my Dutch
accent

Requesting money

Send money to a friend account, it had difficulties understanding names

Just some difficulties in specifying the names

it didn't quite understand the names and the amounts of money requested

Just a minor thing: when asking for Future Bank, the assistant didn't get the request (it still
presented all the associate bank accounts to choose from). Also, the assistant didn't get the
AED currency unless I specified the name (Dirham)

– Appendix A: Evaluation Form Results

126

The assistant didn’t understand currency

It didn’t exit when ask “ Is there anything else I can do for you?” and the answer is no

Most of the difficulty came from not understanding some names from my contacts,
specifically the swedish names. Tried to pronouce them with an english accent which
sometimes helped. It did get most of the names with similar pronounciation in swedish and
english

I encountered some difficulties asking to send money to a contact. In particular if I say “send
$100 to Mario Mastrandrea using Top Bank Account” it never worked. I tried multiple times and
I always received some misunderstanding from the vocal assistant

Reliability and Error Handling

How often did the voice assistant misunderstand your requests or provide incorrect
information?

50 responses

1 2 3 4 5 6 7 8 9 10
0

5

10

15

4 (
8%)

10 (
20%)

7 (
14%)

5 (
10%)

12 (
24%)

2 (4%)2 (4%)2 (4%)

8 (
16%)

1 (2%)1 (2%)1 (2%)
0 (0%)0 (0%)0 (0%)

1 (2%)1 (2%)1 (2%)

– Appendix A: Evaluation Form Results

127

Were you satisfied with the voice assistant's ability to recover from errors or guide you
on how to correct them?

50 responses

Security and Privacy

Were the voice assistant's prompts and responses clear in terms of any authorization
or confirmation needed for transactions?

50 responses

1 2 3 4 5 6 7 8 9 10
0

5

10

15

1 (2%)1 (2%)1 (2%)
0 (0%)0 (0%)0 (0%)

2 (4%)2 (4%)2 (4%)
3 (

6%)

4 (
8%)

6 (
12%)

8 (
16%)

11 (
22%)

8 (
16%) 7 (

14%)

1 2 3 4 5 6 7 8 9 10
0

10

20

30

0 (0%)0 (0%)0 (0%) 0 (0%)0 (0%)0 (0%) 0 (0%)0 (0%)0 (0%)
3 (6%)3 (6%)3 (6%)

0 (0%)0 (0%)0 (0%) 1 (2%)1 (2%)1 (2%) 2 (4%)2 (4%)2 (4%)

10 (
20%)

13 (
26%)

21 (
42%)

– Appendix A: Evaluation Form Results

128

How confident did you feel about the security and privacy of your financial
transactions while using the voice assistant?

50 responses

User Experience and Satisfaction

Was the voice assistant's voice pleasant and easy to understand?

50 responses

1 2 3 4 5 6 7 8 9 10
0

5

10

15

0 (0%)0 (0%)0 (0%) 0 (0%)0 (0%)0 (0%)
1 (2%)1 (2%)1 (2%)

2 (4%)2 (4%)2 (4%) 4 (
8%)

6 (
12%)

8 (
16%)

13 (
26%)

6 (
12%)

10 (
20%)

1 2 3 4 5 6 7 8 9 10
0

5

10

15

0 (0%)0 (0%)0 (0%) 0 (0%)0 (0%)0 (0%)
1 (2%)1 (2%)1 (2%)

0 (0%)0 (0%)0 (0%)

4 (
8%)

4 (
8%)

6 (
12%)

11 (
22%)

12 (
24%)

12 (
24%)

– Appendix A: Evaluation Form Results

129

How satisfied are you with the overall experience of using the Voice Assistant?

50 responses

How likely would you be to use the voice assistant for future money operations in a
real application?

50 responses

What features or capabilities would you like to see added to the voice assistant in the
future?

20 responses

I would like to see a back option to go to the previous question manually

More interaction with other bottons

Nel momento in cui ha compreso l’utente con il quale scambiare denaro, mi aspetterei una
richiesta di conferma dell’utente selezionato vocalmente e/o graficamente, e non la selezione
dell’account bancario

Paying pending requests, set predefined recurrent payments with some "IDs" so that you don't

1 2 3 4 5 6 7 8 9 10
0

5

10

15

0 (0%)0 (0%)0 (0%) 0 (0%)0 (0%)0 (0%)
1 (2%)1 (2%)1 (2%) 3 (

6%)

2 (4%)2 (4%)2 (4%)
5 (

10%)

9 (
18%)

11 (
22%)

13 (
26%)

6 (
12%)

1 2 3 4 5 6 7 8 9 10
0.0

2.5

5.0

7.5

10.0

3 (
6%) 1 (2%)1 (2%)1 (2%) 1 (2%)1 (2%)1 (2%)

3 (
6%)

5 (
10%)

8 (
16%)

10 (
20%)

7 (
14%)

7 (
14%)

5 (
10%)

– Appendix A: Evaluation Form Results

130

need to explain every time how much you want to send/request to/from who.

It would be great if it was able to pay an order on a website

When I made a mistake of giving the wrong bank name (future bank) when I was sending in
USD. It corrected me and told me the options according to currency. It would be good to have
the same suggestions for the currency (this can also helps understand how to say the name of
the currency in case people use a different name), also maybe for contacts, some suggestions
based on recent sent, or similar names.

La possibilità di pianificare le transazioni. Usare contemporaneamente entrambi i conti per una
transazione e quindi suddividere l’importo. Conoscere più accuratamente i movimenti dei conti
(es. Quanto ho speso il 5gennaio?)

Features for online purchases

Use any bank account and convert in the desired currency

Maybe the possibility to redo an operation could be great, or just send a reminder in case of
asking for money

- display the history of transactions in the last day/week/months
- transfer money form a bank account to an other

Maybe a bit more of a menu where you can choose easier

Split a expense between multiple people

Option to choose speech or not

To show whether this month the expenses were higher or lower than the previous month

Voice recognition for safety purposes

I would like for the assistant to also support other currencies (e.g. Euro) and to be able to
specify the amount in a smoother way (e.g. without pronouncing its sign)

Possibly calculations or splitting transactions

Understanding non-english names better

Instead of integrate the vocal assistant in the app, would be better to integrate the
corresponding functionalities into Siri, avoiding the user to open the app and making faster the
operations(e.g. Satispay)

– Appendix A: Evaluation Form Results

131

Do you have any other comments or suggestions to improve the voice assistant?

10 responses

As said, it should better guide you to the “right” answer.

Se possibile, una voce più naturale

Use a more natural voice

The “hold” to active button. I know it’s similar to WhatsApp, but with assistants I think it’s more
normal when you just press and it stays active, no need to hold. So maybe it stays active for
like 3 or 5 seconds and if I don’t say anything it just disconnects. And it could even
automatically activate after asking a question, that way I don’t need to be continually pressing
the button. (Not a big issue but could be useful when people are driving or doing something
else.)

I noticed that if the voice assistant understands a wrong amount for example, I had to redo
everything (saying my bank, my contact…), it could be great to just change the amount and
keep other informations

Very well done, Mario! Really impressive!

No

Keep it up

No other suggestions, overall it was an amazing tool that I would definitely use!

More answersprompts that say the same thing but are different. It’s frustrating to hear the
same answer over and over if something went wrong

– Appendix A: Evaluation Form Results

132

Bibliography

[1] Joseph Weizenbaum. «ELIZA—a computer program for the study of natural
language communication between man and machine». In: Commun. ACM
9.1 (Jan. 1966), pp. 36–45. issn: 0001-0782. doi: 10.1145/365153.365168.
url: https://doi.org/10.1145/365153.365168 (cit. on p. 8).

[2] Alan M. Turing. «Computing Machinery and Intelligence». In: Mind LIX.236
(Oct. 1950), pp. 433–460. issn: 0026-4423. doi: 10.1093/mind/lix.236.433.
url: https://doi.org/10.1093/mind/lix.236.433 (cit. on p. 8).

[3] IBM. (1961) Shoebox - IBM Archives (78-013). url: https://mediacenter.i
bm.com/media/(1961)+Shoebox+-+IBM+Archives+(78-013)/0_4m2ynnkk
(visited on 02/26/2024) (cit. on p. 8).

[4] Bruce T. Lowerre. «The Harpy speech recognition system». PhD thesis.
Carnegie Mellon University, Pennsylvania, Apr. 1976 (cit. on p. 8).

[5] Apple. Siri - Apple. url: https : / / www . apple . com / siri/ (visited on
02/26/2024) (cit. on p. 8).

[6] Amazon. Amazon Alexa Voice AI. url: https://developer.amazon.com/
en-US/alexa (visited on 02/26/2024) (cit. on p. 8).

[7] Google. Google Assistant, your own personal Google. url: https://assista
nt.google.com (visited on 02/26/2024) (cit. on p. 8).

[8] Wikipedia. Natural Language Processing - Wikipedia. url: https://en.wik
ipedia.org/wiki/Natural_language_processing (visited on 02/27/2024)
(cit. on p. 9).

[9] CodeEmporium - YouTube. Natural Language Processing | CodeEmporium -
YT playlist. url: https://www.youtube.com/watch?v=LIRwZDEMn2o&list=
PLTl9hO2Oobd_bzXUpzKMKA3liq2kj6LfE&pp=iAQB (visited on 02/27/2024)
(cit. on p. 10).

133

https://doi.org/10.1145/365153.365168
https://doi.org/10.1145/365153.365168
https://doi.org/10.1093/mind/lix.236.433
https://doi.org/10.1093/mind/lix.236.433
https://mediacenter.ibm.com/media/(1961)+Shoebox+-+IBM+Archives+(78-013)/0_4m2ynnkk
https://mediacenter.ibm.com/media/(1961)+Shoebox+-+IBM+Archives+(78-013)/0_4m2ynnkk
https://www.apple.com/siri/
https://developer.amazon.com/en-US/alexa
https://developer.amazon.com/en-US/alexa
https://assistant.google.com
https://assistant.google.com
https://en.wikipedia.org/wiki/Natural_language_processing
https://en.wikipedia.org/wiki/Natural_language_processing
https://www.youtube.com/watch?v=LIRwZDEMn2o&list=PLTl9hO2Oobd_bzXUpzKMKA3liq2kj6LfE&pp=iAQB
https://www.youtube.com/watch?v=LIRwZDEMn2o&list=PLTl9hO2Oobd_bzXUpzKMKA3liq2kj6LfE&pp=iAQB

BIBLIOGRAPHY

[10] Wikipedia. Speech recognition - Wikipedia. url: https://en.wikipedia.
org/wiki/Speech_recognition (visited on 02/27/2024) (cit. on p. 10).

[11] Wikipedia. Speech synthesis - Wikipedia. url: https://en.wikipedia.org/
wiki/Speech_synthesis (visited on 02/27/2024) (cit. on p. 11).

[12] Wikipedia. Natural language generation - Wikipedia. url: https://en.wiki
pedia.org/wiki/Natural_language_generation (visited on 02/27/2024)
(cit. on p. 12).

[13] Wikipedia. Language model - Wikipedia. url: https://en.wikipedia.org/
wiki/Language_model (visited on 03/01/2024) (cit. on p. 13).

[14] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. «Attention is All you
Need». In: Advances in Neural Information Processing Systems. Ed. by I.
Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,
and R. Garnett. Vol. 30. Red Hook, NY, USA: Curran Associates, Inc.,
2017, pp. 6000–6010. doi: 10. 5555/ 3295222. 3295349. url: https: //
proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547d
ee91fbd053c1c4a845aa-Paper.pdf (cit. on p. 14).

[15] Jay Alammar. The Illustrated Transformer. url: https://jalammar.github.
io/illustrated-transformer/ (visited on 03/02/2024) (cit. on p. 15).

[16] CodeEmporium. Self Attention in Transformer Neural Networks (with code) -
YouTube video. url: https://www.youtube.com/watch?v=QCJQG4DuHT0&t=
416s (visited on 03/02/2024) (cit. on p. 16).

[17] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. «BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding».
In: Proceedings of the 2019 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers). Ed. by Jill Burstein, Christy Doran,
and Thamar Solorio. Minneapolis, Minnesota: Association for Computational
Linguistics, June 2019, pp. 4171–4186. doi: 10.18653/v1/N19-1423. url:
https://aclanthology.org/N19-1423 (cit. on p. 17).

[18] CodeEmporium. BERT neural network - YouTube video. url: https://www.
youtube.com/watch?v=xI0HHN5XKDo (visited on 03/03/2024) (cit. on p. 17).

[19] Jay Alammar. The Illustrated BERT, ELMo, and co. (How NLP Cracked
Transfer Learning). url: https://jalammar.github.io/illustrated-
bert/ (visited on 03/03/2024) (cit. on p. 18).

134

https://en.wikipedia.org/wiki/Speech_recognition
https://en.wikipedia.org/wiki/Speech_recognition
https://en.wikipedia.org/wiki/Speech_synthesis
https://en.wikipedia.org/wiki/Speech_synthesis
https://en.wikipedia.org/wiki/Natural_language_generation
https://en.wikipedia.org/wiki/Natural_language_generation
https://en.wikipedia.org/wiki/Language_model
https://en.wikipedia.org/wiki/Language_model
https://doi.org/10.5555/3295222.3295349
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-transformer/
https://www.youtube.com/watch?v=QCJQG4DuHT0&t=416s
https://www.youtube.com/watch?v=QCJQG4DuHT0&t=416s
https://doi.org/10.18653/v1/N19-1423
https://aclanthology.org/N19-1423
https://www.youtube.com/watch?v=xI0HHN5XKDo
https://www.youtube.com/watch?v=xI0HHN5XKDo
https://jalammar.github.io/illustrated-bert/
https://jalammar.github.io/illustrated-bert/

BIBLIOGRAPHY

[20] Google. google-research/bert: TensorFlow code and pre-trained models for
BERT. url: https://github.com/google- research/bert (visited on
03/15/2024) (cit. on pp. 18, 58, 68).

[21] Yonghui Wu et al. «Google’s Neural Machine Translation System: Bridging
the Gap between Human and Machine Translation». In: (Sept. 2016). arXiv:
1609.08144 [cs.CL] (cit. on p. 19).

[22] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient Esti-
mation of Word Representations in Vector Space. 2013. arXiv: 1301.3781
[cs.CL] (cit. on p. 19).

[23] Jeffrey Pennington, Richard Socher, and Christopher Manning. «GloVe:
Global Vectors for Word Representation». In: Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language Processing (EMNLP).
Ed. by Alessandro Moschitti, Bo Pang, and Walter Daelemans. Doha, Qatar:
Association for Computational Linguistics, Oct. 2014, pp. 1532–1543. doi:
10.3115/v1/D14-1162. url: https://aclanthology.org/D14-1162 (cit.
on p. 19).

[24] Iulia Turc, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Well-Read
Students Learn Better: On the Importance of Pre-training Compact Models.
2019. arXiv: 1908.08962 [cs.CL] (cit. on pp. 20, 58).

[25] Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush
Sharma, and Radu Soricut. ALBERT: A Lite BERT for Self-supervised
Learning of Language Representations. 2020. arXiv: 1909.11942 [cs.CL]
(cit. on p. 20).

[26] Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu, Yiming Yang, and
Denny Zhou. MobileBERT: a Compact Task-Agnostic BERT for Resource-
Limited Devices. 2020. arXiv: 2004.02984 [cs.CL] (cit. on p. 20).

[27] Yinhan Liu et al. RoBERTa: A Robustly Optimized BERT Pretraining Ap-
proach. 2020. url: https://openreview.net/forum?id=SyxS0T4tvS (cit.
on p. 20).

[28] Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distil-
BERT, a distilled version of BERT: smaller, faster, cheaper and lighter. 2020.
arXiv: 1910.01108 [cs.CL] (cit. on p. 20).

[29] Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. «Im-
proving Language Understanding by Generative Pre-Training». In: 2018. url:
https://api.semanticscholar.org/CorpusID:49313245 (cit. on p. 20).

135

https://github.com/google-research/bert
https://arxiv.org/abs/1609.08144
https://arxiv.org/abs/1301.3781
https://arxiv.org/abs/1301.3781
https://doi.org/10.3115/v1/D14-1162
https://aclanthology.org/D14-1162
https://arxiv.org/abs/1908.08962
https://arxiv.org/abs/1909.11942
https://arxiv.org/abs/2004.02984
https://openreview.net/forum?id=SyxS0T4tvS
https://arxiv.org/abs/1910.01108
https://api.semanticscholar.org/CorpusID:49313245

BIBLIOGRAPHY

[30] Matthias Bastian. GPT-4 has more than a trillion parameters - Report. url:
https://the-decoder.com/gpt-4-has-a-trillion-parameters/ (visited
on 03/04/2024) (cit. on p. 21).

[31] Daniel G. Bobrow, Ronald M. Kaplan, Martin Kay, Donald A. Norman, Henry
Thompson, and Terry Winograd. «GUS, a frame-driven dialog system». In:
Artificial Intelligence 8.2 (1977), pp. 155–173. issn: 0004-3702. doi: https:
//doi.org/10.1016/0004-3702(77)90018-2. url: https://www.science
direct.com/science/article/pii/0004370277900182 (cit. on p. 23).

[32] Michael F. McTear. «Spoken dialogue technology: enabling the conversational
user interface». In: ACM Comput. Surv. 34.1 (Mar. 2002), pp. 90–169. issn:
0360-0300. doi: 10.1145/505282.505285. url: https://doi.org/10.
1145/505282.505285 (cit. on pp. 23, 32).

[33] Wikipedia. iOS - Wikipedia. url: https://en.wikipedia.org/wiki/IOS#
Development (visited on 03/05/2024) (cit. on p. 25).

[34] Apple. Swift - Apple Developer. url: https://developer.apple.com/
swift/ (visited on 03/05/2024) (cit. on p. 25).

[35] Apple. SwiftUI Overview - Xcode - Apple Developer. url: https://develop
er.apple.com/xcode/swiftui/ (visited on 03/05/2024) (cit. on p. 26).

[36] Wikipedia. Finite-state machine - Wikipedia. url: https://en.wikipedia.
org/wiki/Finite-state_machine (visited on 03/10/2024) (cit. on p. 40).

[37] Apple. Converting TensorFlow 2 BERT Transformer Models - Guide to
CoreML Tools. (Visited on 03/15/2024) (cit. on p. 61).

[38] Google. Model optimization | TensorFlow Lite. url: https://www.tensorfl
ow.org/lite/performance/model_optimization (visited on 03/15/2024)
(cit. on p. 62).

[39] Google. TensorFlow Lite - BERT QA iOS Example Application. url: https:
//github.com/tensorflow/examples/tree/master/lite/examples/
bert_qa/ios (visited on 03/16/2024) (cit. on p. 68).

[40] Erich Gamma, Richard Helm, Ralph Johnson, and John M. Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software. 1st ed. Addison-
Wesley Professional, 1994. isbn: 0201633612. url: http://www.amazon.com/
Design-Patterns-Elements-Reusable-Object-Oriented/dp/020163361
2/ref=ntt_at_ep_dpi_1 (cit. on pp. 71, 81).

136

https://the-decoder.com/gpt-4-has-a-trillion-parameters/
https://doi.org/https://doi.org/10.1016/0004-3702(77)90018-2
https://doi.org/https://doi.org/10.1016/0004-3702(77)90018-2
https://www.sciencedirect.com/science/article/pii/0004370277900182
https://www.sciencedirect.com/science/article/pii/0004370277900182
https://doi.org/10.1145/505282.505285
https://doi.org/10.1145/505282.505285
https://doi.org/10.1145/505282.505285
https://en.wikipedia.org/wiki/IOS#Development
https://en.wikipedia.org/wiki/IOS#Development
https://developer.apple.com/swift/
https://developer.apple.com/swift/
https://developer.apple.com/xcode/swiftui/
https://developer.apple.com/xcode/swiftui/
https://en.wikipedia.org/wiki/Finite-state_machine
https://en.wikipedia.org/wiki/Finite-state_machine
https://www.tensorflow.org/lite/performance/model_optimization
https://www.tensorflow.org/lite/performance/model_optimization
https://github.com/tensorflow/examples/tree/master/lite/examples/bert_qa/ios
https://github.com/tensorflow/examples/tree/master/lite/examples/bert_qa/ios
https://github.com/tensorflow/examples/tree/master/lite/examples/bert_qa/ios
http://www.amazon.com/Design-Patterns-Elements-Reusable-Object-Oriented/dp/0201633612/ref=ntt_at_ep_dpi_1
http://www.amazon.com/Design-Patterns-Elements-Reusable-Object-Oriented/dp/0201633612/ref=ntt_at_ep_dpi_1
http://www.amazon.com/Design-Patterns-Elements-Reusable-Object-Oriented/dp/0201633612/ref=ntt_at_ep_dpi_1

BIBLIOGRAPHY

[41] Anupam Chugh. iOS On-Device Speech Recognition | Medium blog. url:
https://betterprogramming.pub/ios-speech-recognition-on-device-
e9a54a4468b5 (visited on 03/17/2024) (cit. on p. 76).

[42] Apple. Customize on-device speech recognition - WWDC23 - Videos - Apple
Developer. url: https://developer.apple.com/videos/play/wwdc2023/
10101/ (visited on 03/17/2024) (cit. on pp. 76, 77).

[43] Wikipedia. SOLID - Wikipedia. url: https://en.wikipedia.org/wiki/
SOLID (visited on 03/18/2024) (cit. on p. 82).

[44] Robert C. Martin. Design Principles and Design Patterns. Object Mentor,
2000 (cit. on p. 82).

[45] Wikipedia. Dependency inversion principle - Wikipedia. url: https : / /
en.wikipedia.org/wiki/Dependency_inversion_principle (visited on
03/18/2024) (cit. on p. 82).

[46] Apple. Apple Developer. url: https://developer.apple.com (visited on
03/22/2024) (cit. on p. 97).

[47] Wikipedia. Likert scale - Wikipedia. url: https://en.wikipedia.org/
wiki/Likert_scale (visited on 03/22/2024) (cit. on p. 101).

137

https://betterprogramming.pub/ios-speech-recognition-on-device-e9a54a4468b5
https://betterprogramming.pub/ios-speech-recognition-on-device-e9a54a4468b5
https://developer.apple.com/videos/play/wwdc2023/10101/
https://developer.apple.com/videos/play/wwdc2023/10101/
https://en.wikipedia.org/wiki/SOLID
https://en.wikipedia.org/wiki/SOLID
https://en.wikipedia.org/wiki/Dependency_inversion_principle
https://en.wikipedia.org/wiki/Dependency_inversion_principle
https://developer.apple.com
https://en.wikipedia.org/wiki/Likert_scale
https://en.wikipedia.org/wiki/Likert_scale

	Abstract
	List of Tables
	List of Figures
	Introduction
	Goal
	Method of Work
	Case Study: example of P2P Payment App
	Overview of the document

	Background and State of the Art
	Evolution of Voice Assistants
	Artificial Intelligence in Voice Assistants
	Natural Language Processing
	Speech Recognition
	Text Classification
	Speech Synthesis
	Text Generation

	Large Language Models revolution
	Attention is All You Need
	BERT
	GPT

	Dialogue State Tracking and Management
	P2P payments applications
	Security and Privacy concerns

	iOS development
	SwiftUI framework

	Requirements Analysis
	User Needs
	Functional Requirements
	Non-Functional Requirements

	System Design
	Voice Assistant design
	UI/UX design
	Speech Recognizer design
	Text Classifier design
	Intent Classification
	Entity Extraction

	Dialogue State Tracker design
	Main States and Transitions

	Response Generator design
	Speech Synthesizer design
	In-App Integration design
	App Delegate design

	Voice Assistant Implementation
	BERT Text Classifier
	Dataset generation
	Machine Learning Model
	Model training and validation
	Lightweight Model conversion
	Model Quantization
	Model selection and evaluation
	Model integration into iOS

	BERT Preprocessor
	Dialogue State Tracker
	State Pattern
	Entity Matching
	Answer Generation

	Speech Recognizer
	Custom Language Model

	Speech Synthesizer
	Conversation Manager
	Payments Voice Assistant
	Dependency Injection

	UI/UX
	Voice Assistant in-App Integration
	SwiftUI compatibility
	App Context
	App Delegate
	Integration into a real P2P Payment App

	Testing and Evaluation
	Voice Assistant Test Application
	Test iOS App Release on TestFlight

	Voice Assistant Evaluation
	Evaluation Form
	Evaluation Results

	Conclusion and Future Work
	Discussion
	Possible improvements
	Conclusions

	Acronyms
	Glossary
	Appendix A: Evaluation Form Results
	Bibliography

