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Summary

In the ever-evolving landscape of network security management, there’s a pro-
nounced shift from traditional manual systems to more advanced automated meth-
ods. This move isn’t just a trend; it’s a response to the complexities we face in
the modern cybersecurity environment. Automated systems provide the benefits of
faster responses, reducing the time window for potential breaches. They also offer
greater consistency, minimizing human errors, which are a main concern in today’s
detailed and intricate cybersecurity scenarios. As threats evolve, the reliability and
efficiency of these automated tools become increasingly essential. [1]

At the heart of this thesis is an exploration and extension of the VEREFOO
(VErified REFinement and Optimized Orchestrator) framework [2] [3]. VEREFOO
is designed to automate the daunting task of configuring packet filtering firewalls
within a virtualized network environment [4]. It does so by converting high-level
Network Security Requirements into optimized configurations. This is made pos-
sible by treating the challenge of firewall configuration as a MaxSMT problem,
integrating optimization with formal verification processes.

The main motivation behind this research was to harness Intrusion Detection
Systems alerts as real-time input for VEREFOO. In the face of a cyber attack, these
alerts would guide the system in reconfiguring the network to fortify its defenses.
A dedicated parser, developed as part of the research, stood at the forefront of
this endeavor. Its main function is to efficiently process alerts generating from
various Intrusion Detection Systems and transform them into Network Security
Requirements, in a format compatible with VEREFOO.

One of the most important stages in the research focused on the development
of a method that could seamlessly integrate new security requirements, drawn from
alerts, into the pre-existing Network Security Requirements. This innovation en-
sured that the system could swiftly adapt and respond to emerging cyber threats.
To execute these rapid adjustments in the real-world network, the integration of
the virtual network translator module into VEREFOO was essential. This module
interprets the Firewall Allocation Scheme generated by VEREFOO and translates
it into a series of actionable files. Once prepared, these files become the foundation
upon which the virtual network is initialized. The approach makes sure that the
most current security measures are in place while also ensuring the operational
continuity of the network.

Towards the end of this research, emphasis was placed on refining the auto-
mated response process to cyber threats. The thesis introduced a pivotal change
by integrating React-VEREFOO into the established system. This adaptation was
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significant; while the standard VEREFOO necessitates generating a Firewall Allo-
cation Scheme from the ground up every time there’s a change, React-VEREFOO
offers a more agile approach. It capitalizes on existing configurations, allowing the
network to be reconfigured with minimal redundancy, thereby conserving compu-
tational effort and enhancing efficiency.

The culmination of this study is the full automation of the response to cyber
threats. The VEREFOO Log Integrator (vlogi) was developed to continuously
monitor logs from Intrusion Detection Systems. When an alert is logged, vlogi
coordinates with VEREFOO, React-VEREFOO, and VIP to initiate and deploy
an updated network configuration, thus addressing the threat.
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When the night has come

And the land is dark

And the moon is the only light we’ll see

No, I won’t be afraid

Oh, I won’t be afraid

Just as long as you stand

Stand by me

So darlin’, darlin’

Stand by me, oh, stand by me

Oh, stand, stand by me

Stand by me

If the sky that we look upon

Should tumble and fall

Or the mountain should crumble to the sea

I won’t cry, I won’t cry

No, I won’t shed a tear

Just as long as you stand

Stand by me

And darlin’, darlin’

Stand by me, oh, stand by me

Oh, stand now, stand by me

Stand by me

Darlin’, darlin’

Stand by me, oh, stand by me

Oh, stand now, stand by me

Stand by me

Whenever you’re in trouble

Won’t you stand by me?

Oh, stand by me

Won’t you stand now?

Oh, stand, stand by me
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Chapter 1

Introduction

Software-Defined Networking (SDN) has emerged as a transformative approach in
modern network design and management. Unlike traditional networking paradigms
which are constrained by static configurations and hardware limitations, SDN intro-
duces a more fluid architecture in which the network control is decoupled from the
forwarding plane, allowing centralized management. This promotes enhanced flex-
ibility, scalability, and adaptability to changing application requirements. Running
parallel to the evolution of SDN is the concept of Network Function Virtualization
(NFV). NFV decouples network functions from proprietary hardware appliances,
enabling them to run as software instances. Together, SDN and NFV work syn-
ergistically, with SDN providing the centralized control over networks and NFV
offering the ability to deploy and run network services more flexibly and efficiently.
[5]

As our reliance on digital systems grows, so does the importance of network
security. Intrusion Detection Systems (IDSs), vital components in the cybersecurity
world, continuously monitor network traffic for abnormal patterns. When such
patterns are identified, IDSs generate alerts to notify network administrators of
potential threats. This real-time surveillance system is essential for quick threat
detection and mitigation, especially given the intricate and evolving nature of cyber-
attacks.

The inherent dynamism of SDNs, amplified by the continuous stream of alerts
from IDSs, underscores the need for an adaptive security mechanism. The main
goal is to embed real-time network reconfiguration capabilities to counter detected
threats automatically. By automating this process, it’s possible to enhance response
times, reduce risks associated with human errors, and ensure the network’s resilience
against a variety of threats.

The use of SDN, NFV, and IDSs presents a promising direction for cybersecurity.
By centralizing control with SDN, virtualizing network functions through NFV,
and maintaining vigilant monitoring via IDSs, networks can be more adaptive,
responsive, and secure.

This research aims to establish a seamless method of integrating IDS alerts
with SDN configurations. By doing so, it aspires to create an automated and
real-time defense mechanism against cyber threats. A comprehensive breakdown
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Introduction

of objectives, thesis description, and contributions will be detailed in subsequent
chapters.

The approach is structured as follows:

❼ Firewall Allocation Scheme (FAS) generation: Using VEREFOO, a
Firewall Allocation Scheme (FAS) is generated from a file that encompasses
both the network topology and its Network Security Requirements (NSRs).

❼ Virtual network initiation: With the FAS at hand, the necessary files to
initiate a virtual network are generated.

❼ Attack simulation: An artificial cyber-attack is simulated to test the net-
work’s resilience.

❼ Extraction and merging of NSRs: Post-attack, the IDS (in this case,
Snort 3) generates the corresponding alerts. From these alerts, new NSRs are
extracted, which are then merged with the NSRs from the original file.

❼ Regeneration of FAS: With the combined file (topology + merged NSRs),
a new FAS is generated using VEREFOO.

❼ Virtual network update: Finally, the running virtual network is updated
using the files generated from the new FAS.

This research was conducted using Snort 3 and OSSEC 3.7 for intrusion de-
tection and Docker to deploy the virtual network. It’s essential to note certain
limitations:

❼ mergeRequirements algorithm: This algorithm is still in its developmen-
tal stages. Its operation might not yet be at peak efficiency, and it requires
further validation. Moreover, the algorithm currently makes specific assump-
tions about the network and the NSRs which may not be universally appli-
cable.

❼ Intrusion Detection Systems: At present, the approach has been tailored
specifically for Snort 3 and OSSEC 3.7, and adapting it for other IDSs may
require some modifications.

The chapters are organized as follows:

❼ Chapter 2: Background and related work
This chapter provides foundational knowledge of the key technologies and
methodologies applied in this research. Firstly, the concept of Intrusion De-
tection Systems is discussed in detail. Within this context, two specific IDSs,
Snort 3 and OSSEC 3.7, are introduced. An overview of both systems is
presented, detailing their functionalities and their relevance to this research.
A deep dive into VEREFOO provides insights into its various aspects, in-
cluding Service and Allocation graphs, and Network Security Requirements.
The latter part of this chapter offers a review of the existing literature and
methodologies concerning VEREFOO, introducing the virtual network trans-
lator module and React-VEREFOO.

15



Introduction

❼ Chapter 3: Thesis overview
Before plunging into the intricate details, this chapter presents a concise lay-
out of the entire thesis. It defines the objectives guiding the research and
underscores the contributions made through this work.

❼ Chapter 4: Approach
This chapter outlines the high-level procedure designed to automate our vir-
tual network’s response to cyber threats. It starts by detailing the modi-
fications made to the standard VEREFOO demo topology and proceeds to
guide on setting up the virtual network. The subsequent sections present a
cyclic methodology for handling cyber threats, from recognizing an attack
to automatically adjusting the network’s security settings and validating the
effectiveness of those adjustments. The closing section discusses the main
observations and key takeaways derived from this method.

❼ Chapter 5: Algorithm formulation
This chapter discusses the softwares developed or extended in the course of
this research, starting with the VEREFOO IDS/IPS Parser (VIP). The spot-
light then shifts to the virtual network translator algorithm and its integration
with VEREFOO. The chapter concludes with a description of modifications
made to React-VEREFOO, aimed at ensuring its compatibility with the de-
veloped attack response approach. Following these modifications, the chapter
presents the revised approach, which now incorporates React-VEREFOO.

❼ Chapter 6: Process automation
In this chapter, the mergeRequirements algorithm is explored, examining its
key stages: preprocessing, merging, and postprocessing. The discussion in-
cludes an analysis of the algorithm’s underlying assumptions and its limita-
tions. Following this, the chapter introduces the vlogi tool, which incorporates
the mergeRequirements algorithm and automates the entire attack response
workflow.

❼ Chapter 7: Demo validation
This chapter is dedicated to translating theory into practice. It demonstrates
the developed approach by guiding the reader through the entire process.
This includes generating the Firewall Allocation Scheme, launching the vir-
tual network, simulating attacks, employing response automation through the
vlogi tool, and verifying the updated NSRs.

❼ Chapter 8: Conclusions and future work
This chapter draws together the primary outcomes and significant findings of
the research. It underscores the achievements and simultaneously acknowl-
edges the limitations and challenges faced in the course of the study. The
latter part of the chapter suggests future research opportunities and poten-
tial enhancements based on the groundwork laid in this thesis.
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Chapter 2

Background and related work

2.1 Intrusion Detection Systems

The progression of modern cyber threats calls for ever-evolving countermeasures.
Central to these counteractive strategies are Intrusion Detection Systems, with a
specific spotlight on rule-based ones. Such systems monitor network activities based
on a well-defined set of rules to identify malicious or undesirable traffic.

Rules are built upon known patterns, signatures, or behaviors of potential cyber
threats. Each rule helps the IDS identify certain types of harmful activities or
unusual patterns in network traffic, offering a clear and organized way for the system
to monitor the data passing through the network. When incoming traffic matches
one of these rules, the IDS generates an alert, indicating a potential security breach
or malicious activity.

The effectiveness of a rule-based IDS largely depends on the quality and rel-
evance of its rules. Creating these rules requires an extensive understanding of
network protocols, potential vulnerabilities, and common attack vectors. A care-
fully defined rule ensures that the IDS accurately identifies genuine threats, thereby
reducing the number of false positives.

The cybersecurity domain is continuously changing, with new threats emerging
and old ones evolving. This dynamism necessitates regular updates to the rule sets
of IDSs to ensure they remain relevant and effective. Rule-based IDSs can adapt to
these changes by incorporating new rules that reflect the current threat landscape,
and by updating or removing outdated ones.

As previously mentioned, for this research, the role of Intrusion Detection Sys-
tems is fundamental, specifically the integration of Snort 3 and OSSEC 3.7. These
are open-source rule-based systems known for their reliability and effectiveness in
threat detection.

To bridge the gap between the IDS alerts from Snort 3 and OSSEC 3.7 and
the VEREFOO framework, the VEREFOO IDS/IPS Parser was developed. The
parser’s primary function is to extract Network Security Requirements from the
alerts generated by these IDSs. The ultimate objective is to leverage this informa-
tion to automate the response to potential threats in a software-defined network.
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Background and related work

The following subsections of this thesis will provide an in-depth look at Snort
3 and OSSEC 3.7, exploring their functionalities, unique features, and how they fit
into the broader research context.

2.1.1 Snort 3

Originating in the late 1990s, Snort has consistently been at the forefront of in-
trusion detection and prevention solutions. Over the decades, it has undergone
significant development, with Snort 3 being its most advanced version. Designed
with versatility in mind, Snort 3 is equipped to handle complex network architec-
tures and traffic patterns.

Snort 3 operates by analyzing network packets in real-time. Upon detecting
suspicious activity, it generates alerts to notify administrators. One of the standout
features of Snort 3 is its rule-driven architecture. This allows for customization and
fine-tuning, ensuring that the detection mechanisms are tailored to the unique needs
and nuances of individual network environments. This flexible, rule-based approach
allows users to specify the characteristics of potential threats, making the detection
process both precise and adaptable.

Several factors influenced the decision to integrate Snort 3. To begin with,
Snort 3 has cultivated a strong reputation in the cybersecurity community over the
years, known for its reliability and robustness. Furthermore, its open-source nature
allows for transparent examination of its functionalities, making it more accessible
and trustable. The simplicity of its design, combined with comprehensive documen-
tation, means it is not just user-friendly but also fosters a deeper understanding
of its inner workings. Its high customizability ensures that it can be tailored to
meet specific requirements, making it adaptable to a variety of scenarios. Addition-
ally, its capacity to easily interface with other systems enhances its applicability in
diverse environments.

In the specific context of this thesis, Snort 3 is utilized as an exemplary Network-
based Intrusion Detection System (NIDS) within our virtual network. Its imple-
mentation serves to demonstrate the applicability of our approach using a NIDS,
since the methodologies developed can effectively integrate with different types of
intrusion detection systems, including both network-based and host-based systems.

2.1.2 OSSEC 3.7

OSSEC, which stands for Open Source HIDS SECurity, is a comprehensive and
widely used host-based Intrusion Detection System. Being a host-based IDS means
it primarily focuses on analyzing the internal dynamics of a system rather than its
network traffic. It provides log analysis, file integrity checking, policy monitoring,
rootkit detection, and real-time alerting functionalities.

Over the years, OSSEC has witnessed multiple revisions and enhancements.
OSSEC 3.7, as of the time of this writing, represents the latest version of this
platform.
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In pursuit of the primary research objective to automate responses to cyber
threats based on alerts from Intrusion Detection Systems, the integration of di-
verse, robust systems was essential. Consequently, OSSEC has been incorporated
as a representative example of Host-based Intrusion Detection Systems during the
research phase. The selection of multiple IDSs emphasizes the research’s capability
to handle a variety of alert types and to apply the response mechanisms accordingly.
OSSEC contributes valuable host-based detection insights, enriching the data pool
for automated processing and response.

The integration of OSSEC is a practical step in this research. It wasn’t chosen
just to demonstrate the capabilities of the parser but to start building a system
that can work with various types of IDSs. The VEREFOO IDS/IPS Parser is
designed to handle alerts from different sources, including Snort 3 and OSSEC
3.7, paving the way for future updates that could allow for more complex threat
response strategies.

2.2 VEREFOO

2.2.1 Overview

Software-Defined Networking and Network Functions Virtualization are making
significant advancements, transforming network services by promising increased
flexibility. These emerging technologies aim to bring about a change where manual,
and often error-prone, configurations can be substituted with more dynamic and
automated processes.

SDN and NFV, as fresh advancements in the domain of networking, are envi-
sioned to revolutionize the way networking is approached. SDN enables the deter-
mination of traffic paths via software processes, while NFV offers the potential of
virtualized network functions, all residing on general-purpose servers. With these
technologies, service designers can conceptualize intended network services via Ser-
vice Graphs (SGs), which depict the service functions and their interconnections.

Given the rapid virtualization of networks, we’re witnessing an increasing fea-
sibility in security automation. This is primarily due to the agility intrinsic to a
virtualized setting, and the full control that software-based solutions provide over
each network component. However, the automation of security defenses is still in
its infancy. Among the numerous security tasks, the placement and configuration
of Network Security Functions (NSFs) stand out as particularly daunting. NSFs
are crucial as they are designed to meet Network Security Requirements, which
represent the security constraints that a network’s behavior should adhere to. The
introduction of an automatic approach to this task not only conserves human effort
but also assures optimal solutions that are provably correct.

VEREFOO emerges as a framework specifically crafted to function within these
modern networking paradigms, enhancing the overall network management experi-
ence. Designed as a comprehensive solution to these challenges, VEREFOO aims
to refine high-level NSRs, strategically allocate and configure selected NSFs [6], and
enable the placement of each virtual function of the Service Graph on dedicated
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servers within a physical substrate network. VEREFOO frames the problem in-
ternally as a partial weighted Maximum Satisfiability Modulo Theories (MaxSMT)
problem. By doing so, VEREFOO guarantees both the formal correctness of its
solutions and their optimality [7] [8].

To provide a clearer view, the following is a breakdown of VEREFOO’s archi-
tecture (refer to Figure 2.1) and its essential modules, categorized into user inputs
and processing modules.

Figure 2.1. VEREFOO architecture

User inputs

❼ Network Security Requirements: Through a user-friendly Policy GUI,
the service designer interacts with the framework to formulate security con-
straints. Depending on the expertise of the designer, these requirements can
be expressed in either high-level or medium-level language.

❼ Service Graph and Allocation Graph: The Service GUI serves as an
access point to the Network Functions Catalogue, offering the designer the
flexibility to allocate functions directly onto their graph. This GUI allows
either a Service Graph or an Allocation Graph to be input.
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Processing modules

❼ Policy ANalysis (PAN) module: The PAN initiates the processing phase.
It analyzes the NSRs for potential conflicts or errors. This module can either
yield a minimal set of essential constraints or produce a comprehensive conflict
report when automatic conflict resolution isn’t feasible.

❼ High-to-Medium (H2M) module: When NSRs are framed in high-level
language, the H2M module intervenes to refine these specifications into
medium-level requirements. These refined requirements encapsulate essen-
tial data for the subsequent automatic policy creation for the NSFs and their
respective configurations within the network.

❼ NF Selection (SE) module: This module identifies the requisite NSFs to
meet the NSRs. Using a pre-existing catalogue (identical to the one accessible
through the Service GUI), it selects the necessary functions [9].

❼ Allocation, Distribution and Placement (ADP) module: Undoubt-
edly, the ADP module is a fundamental part of VEREFOO’s architecture.
Tasked with the delivery of the final graph equipped with allocated and con-
figured NSFs, it uses the z3 theorem prover to handle the aforementioned
partial weighted MaxSMT problem. It’s worth noting that while NSRs are
treated as non-negotiable hard constraints, supplementary specifications and
optimizations are managed as weighted soft constraints.

2.2.2 Service Graph

Figure 2.2. Visual representation of an example Service Graph

The Service Graph (SG) holds a crucial role in the operation of the VEREFOO
framework, serving as a comprehensive representation of the network topology upon
which Network Security Requirements are based. [10] Fundamentally, the SG is
a logical topology of a virtual network, showcasing the interconnections between
various service functions and network nodes to form a complete end-to-end network
service.
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The Service Graph incorporates complex architectures with multiple traffic
paths, diverging from the linear arrangements found in Service Function Chains
(SFCs), and thus, represents a generalization of the SFC concept. By allowing a
varied arrangement of service functions and network nodes, the SG provides a com-
prehensive description of the network topology. This is achieved while assuming
the correct implementation of lower-level functions such as switches and routers,
which are crucial for directing incoming packets based on forwarding or routing
tables, even though they are not explicitly included in the SG.

The task of defining a Service Graph falls upon the network service designer,
who selects from a variety of Network Functions (NFs) to create the SG. These
NFs could range from web caching to load balancing, with an emphasis on their
forwarding behavior as opposed to their complete behavior. In simpler terms, the
primary concern is how a traffic flow is forwarded and altered by an NF, rather
than the minutiae of the function’s operations [11].

Figure 2.2 illustrates a condensed representation of the network topology dis-
cussed in this thesis. This layout features a cluster of web servers positioned behind
a load balancer. The load balancer is interconnected via a forwarder to a network
populated with web clients.

Now, let’s examine the XML representation of the aforementioned Service
Graph:

Listing 2.1. XML representation of an example Service Graph

<graph id="0" serviceGraph="true">

<node functional_type="WEBSERVER" name="130.10.0.1">

<neighbour name="130.10.0.4" />

<configuration description="e1" name="httpserver1">

<webserver>

<name>130.10.0.1</name>

</webserver>

</configuration>

</node>

<node functional_type="WEBSERVER" name="130.10.0.2">

<neighbour name="130.10.0.4" />

<configuration description="e2" name="httpserver2">

<webserver>

<name>130.10.0.2</name>

</webserver>

</configuration>

</node>

<node functional_type="WEBSERVER" name="130.10.0.3">

<neighbour name="130.10.0.4" />

<configuration description="e3" name="httpserver3">

<webserver>

<name>130.10.0.3</name>

</webserver>

</configuration>

</node>

<node functional_type="LOADBALANCER" name="130.10.0.4">

<neighbour name="130.10.0.1" />

<neighbour name="130.10.0.2" />

<neighbour name="130.10.0.3" />

<neighbour name="33.33.33.2" />
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<configuration description="s9" name="loadbalancer">

<loadbalancer>

<pool>130.10.0.1</pool>

<pool>130.10.0.2</pool>

<pool>130.10.0.3</pool>

</loadbalancer>

</configuration>

</node>

<node functional_type="FORWARDER" name="33.33.33.2">

<neighbour name="130.10.0.4" />

<neighbour name="40.40.41.-1" />

<configuration name="ForwardConf">

<forwarder>

<name>Forwarder</name>

</forwarder>

</configuration>

</node>

<node functional_type="WEBCLIENT" name="40.40.41.-1">

<neighbour name="33.33.33.2" />

<configuration description="e4" name="officeA">

<webclient nameWebServer="130.10.0.1" />

</configuration>

</node>

</graph>

❼ The graph element has a unique identifier and a boolean attribute called
serviceGraph. A true value indicates a Service Graph, while false denotes
an Allocation Graph (default), as both utilize the same representation.

❼ Each network entity is represented as a node. The unique identifier of a node
is its IP address, specified by the name attribute.

❼ Every node is associated with a specific role or function within the network,
denoted by the functional type attribute. This attribute defines the node’s
primary responsibility, such as serving web content (WEBSERVER), acting as a
loadbalancer (LOADBALANCER), forwarding packets (FORWARDER), or acting as
a web client (WEBCLIENT).

❼ A node’s immediate connections or neighbors are listed using the neighbour
elements, each containing a name attribute specifying the IP address of the
neighboring node. These relationships map out the network’s interconnec-
tions.

❼ The configuration element provides additional metadata about a node. Its
structure and contents can vary based on the node’s function. For instance, in
the case of the LOADBALANCER, the configuration element lists the IP addresses
of all servers in its balancing pool, fundamental for VEREFOO to correctly
and optimally generate firewall rules.
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2.2.3 Allocation Graph

Figure 2.3. Visual representation of an example Allocation Graph

If a Service Graph is provided, VEREFOO proceeds to transform it into an in-
ternal representation known as the Allocation Graph (AG). This process includes
the generation of Allocation Places (APs) for each link between network nodes or
functions, creating potential positions for firewall placement.

A seasoned service designer can directly build the AG, either by mandating the
placement of a firewall at a specific AP or by excluding certain APs as valid positions
for firewalls. This user input introduces a level of flexibility and can narrow down
the solution space that VEREFOO must explore, effectively reducing computation
times. However, it is important to acknowledge that this manual intervention could
also lead to issues, such as the inability to find a solution or the derivation of a
suboptimal solution, particularly if potentially optimal positions are disregarded
based on user specifications.

Now, let’s examine the XML representation of the aforementioned Allocation
Graph:

Listing 2.2. XML representation of an example Allocation Graph

<graph id="0">

<node functional_type="WEBSERVER" name="130.10.0.1">

<neighbour name="1.0.0.1" />

<configuration description="e1" name="httpserver1">

<webserver>

<name>130.10.0.1</name>

</webserver>

</configuration>

</node>

<node functional_type="WEBSERVER" name="130.10.0.2">

<neighbour name="1.0.0.2" />

<configuration description="e2" name="httpserver2">

<webserver>

<name>130.10.0.2</name>

</webserver>

</configuration>

</node>
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<node functional_type="WEBSERVER" name="130.10.0.3">

<neighbour name="1.0.0.3" />

<configuration description="e3" name="httpserver3">

<webserver>

<name>130.10.0.3</name>

</webserver>

</configuration>

</node>

<node name="1.0.0.1">

<neighbour name="130.10.0.1" />

<neighbour name="130.10.0.4" />

</node>

<node name="1.0.0.2">

<neighbour name="130.10.0.2" />

<neighbour name="130.10.0.4" />

</node>

<node name="1.0.0.3">

<neighbour name="130.10.0.3" />

<neighbour name="130.10.0.4" />

</node>

<node functional_type="LOADBALANCER" name="130.10.0.4">

<neighbour name="1.0.0.1" />

<neighbour name="1.0.0.2" />

<neighbour name="1.0.0.3" />

<neighbour name="1.0.0.4" />

<configuration description="s9" name="loadbalancer">

<loadbalancer>

<pool>130.10.0.1</pool>

<pool>130.10.0.2</pool>

<pool>130.10.0.3</pool>

</loadbalancer>

</configuration>

</node>

<node name="1.0.0.4">

<neighbour name="130.10.0.4" />

<neighbour name="33.33.33.2" />

</node>

<node functional_type="FORWARDER" name="33.33.33.2">

<neighbour name="1.0.0.4" />

<neighbour name="1.0.0.5" />

<configuration name="ForwardConf">

<forwarder>

<name>Forwarder</name>

</forwarder>

</configuration>

</node>

<node name="1.0.0.5">

<neighbour name="33.33.33.2" />

<neighbour name="40.40.41.-1" />

</node>

<node functional_type="WEBCLIENT" name="40.40.41.-1">

<neighbour name="1.0.0.5" />

<configuration description="e4" name="officeA">

<webclient nameWebServer="130.10.0.1" />

</configuration>

</node>

</graph>
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This Allocation Graph closely resembles the Service Graph we examined earlier.
However, it also incorporates Allocation Places, which are the node elements within
the 1.0.0.0/24 network that are missing both functional type and configuration.

2.2.4 Network Security Requirements

VEREFOO provides four distinct approaches to design Network Security Require-
ments:

❼ whitelisting : A conservative approach, whitelisting starts with a default be-
havior that blocks all traffic flows. The designer’s role is to specify which
traffic flows are permitted. This approach is most suitable for networks where
a minimal and specific set of communications need to be permitted.

❼ blacklisting : Contrary to whitelisting, the default behavior in this approach is
to allow all traffic flows. The designer’s role is to specify which traffic should
be denied access.

❼ specific: In this approach, users can explicitly define reachability and isolation
requirements. VEREFOO will then automatically decide whether to follow a
rule-oriented or a security-oriented strategy for all other cases not explicitly
addressed by the user:

– rule-oriented : This strategy aims to minimize the number of rules.

– security-oriented : This strategy focuses on permitting only essential
communications necessary to meet all the user’s specifications.

It’s crucial to note that for the specific approach, the user-provided NSRs should
be anomaly-free, meaning they shouldn’t have conflicts or suboptimizations. While
this might seem constraining, any anomalies can be addressed using established
anomaly analysis techniques [12] [13].

Each Network Security Requirement is articulated using a mid-level language
[14], enabling users to clearly define the specific IP 5-tuple of the allowed or disal-
lowed traffic flows. This translates to each NSR comprising six distinct attributes:

❼ ruleType: Specifies the nature of the security requirement. Possible values
are ReachabilityProperty or IsolationProperty.

❼ IPSrc: Defines the source IP address. A wildcard symbol (-1) may be used
to denote entire subnetworks.

❼ IPDst : Identical in functionality to IPSrc, but for the destination IP address.

❼ portSrc: Indicates the source port. The wildcard symbol can be employed to
signify all ports in the range 0-65535.

❼ portDst : Identical in functionality to portSrc, but for the destination port.
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❼ transportProto: Specifies the transport protocol. Permissible values include:

– TCP: Transmission Control Protocol.

– UDP: User Datagram Protocol.

– OTHER: Any transport protocol excluding TCP/UDP.

– ANY: Any transport protocol, inclusive of TCP/UDP.

Now, let’s analyze an example list of NSRs:

Listing 2.3. Example list of Network Security Requirements

<PropertyDefinition>

<!-- policy 1 -->

<Property name="ReachabilityProperty" graph="0" src="130.10.0.4"

dst="40.40.41.-1" lv4proto="ANY" />

<!-- policy 2 -->

<Property name="ReachabilityProperty" graph="0" src="40.40.41.-1"

dst="130.10.0.4" lv4proto="TCP" dst_port="80" />

<!-- policy 3 -->

<Property name="IsolationProperty" graph="0" src="40.40.41.-1"

dst="130.10.0.4" lv4proto="TCP" dst_port="0-79" />

<Property name="IsolationProperty" graph="0" src="40.40.41.-1"

dst="130.10.0.4" lv4proto="TCP" dst_port="81-65535" />

<!-- policy 4 -->

<Property name="IsolationProperty" graph="0" src="40.40.41.-1"

dst="130.10.0.4" lv4proto="UDP" />

<!-- policy 5 -->

<Property name="IsolationProperty" graph="0" src="40.40.41.-1"

dst="130.10.0.4" lv4proto="OTHER" />

<!-- Repeat policies for all servers within the loadbalancer’s pool -->

</PropertyDefinition>

In Listing 2.3, the specific approach is utilized to set up the policies. It blocks
all traffic from 40.40.41.0/24 to 130.10.0.0/24, except for the traffic on TCP
port 80. On the other hand, any traffic from 130.10.0.0/24 to 40.40.41.0/24 is
allowed. Following the security-oriented strategy, VEREFOO will block any other
traffic that is not required in this scenario, specifically all UDP and OTHER traffic
from 130.10.0.0/24 to 40.40.40.0/24. This setup ensures that the only possible
action in this network is for clients on the 40.40.41.0/24 network to access web
pages from the servers in the 130.10.0.0/24 network using TCP port 80.

2.3 Prior work in VEREFOO

2.3.1 The virtual network translator module

The virtual network translator [15] is a module specifically developed for VERE-
FOO to convert a Firewall Allocation Scheme into a functional virtual network.
This transformation involves converting the FAS into a series of actionable files
that can be directly used to instantiate and operate the virtual network. Before
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generating the virtual network files, this module processes VEREFOO’s output,
eliminating any superfluous Allocation Places and ensuring that only the neces-
sary network nodes are retained. This creates an optimized environment for the
subsequent translation process.

The responsibility of converting the refined FAS into actionable files – such as
Docker Compose configurations, assorted configuration files, and Dockerfiles for
various container types – falls to the VnetworkTranslator and IptablesVnetwork

classes. By supporting a diverse range of functional types, the virtual network
translator module allows users to design and implement intricate network configu-
rations.

Presently, the module is equipped to only generate iptables configuration files.
Moving forward, there are plans to enhance the module’s functionality to support
additional firewall software options, including EBPF and OpenvSwitch, aiming to
increase its versatility and extend its applicability.

2.3.2 React-VEREFOO

React-VEREFOO [16] [17] represents a modified version of the VEREFOO frame-
work, tailored to address specific limitations observed in the original implementa-
tion. In its existing form, VEREFOO necessitates a complete recomputation of
firewall configurations every time changes are made to the set of Network Security
Requirements. This process results in a substantial computational burden, with
the time required ranging from some seconds to several minutes, depending on the
complexity of the network.

React-VEREFOO emerges as a solution to this issue, aiming to significantly
reduce the computation time needed for network reconfiguration in response to
changes in NSRs. This tool is designed to generate a reconfigured version of the
current settings in the shortest time possible, ensuring that the modifications do
not disrupt the validity of existing NSRs.

Maintaining the formal approach of VEREFOO, React-VEREFOO guarantees
the correctness of the configuration by construction, ensuring that any changes
made do not compromise the integrity of the network’s security policies.

In the context of this thesis, VEREFOO was initially employed to develop an
approach capable of automatically responding to cyber threats through the re-
configuration of a virtual network. As highlighted earlier, VEREFOO operates by
generating configurations from the ground up, which can be computationally inten-
sive. To address this, React-VEREFOO was integrated into the system, resulting
in increased performance and efficiency.
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Thesis overview

3.1 Thesis objectives

The primary aim of this thesis centered around devising a strategy to effectively
utilize alerts from various Intrusion Detection Systems as a means to counteract
cyber threats.

A subsidiary objective emerged from this central goal, necessitating the develop-
ment of a parser capable of converting alerts generated by diverse IDSs into Network
Security Requirements that are compatible with the VEREFOO framework.

Further branching from this, it was essential to devise a method for integrating
the newly extracted requirements with the pre-existing set, ensuring a cohesive and
effective update process.

Building on these foundational objectives, the next logical step involved con-
ceptualizing a comprehensive methodology to serve as the framework for updating
a network’s security configuration in real-time, allowing for a swift and calculated
response to cyber attacks.

The integration of React-VEREFOO into the workflow emerged as a natural
progression to enhance the efficiency of the developed methodology. As highlighted
previously, VEREFOO operates by completely reevaluating and regenerating con-
figurations for any change in Network Security Requirements. In contrast, React-
VEREFOO brings a level of efficiency to the process, utilizing the existing Firewall
Allocation Scheme, which contains the old configurations. This allows for a more
rapid reconfiguration process, as the system only needs to adjust the necessary
components according to the updated Network Security Requirements.

Lastly, the development of the VEREFOO Log Integrator (vlogi) represents the
culmination of these objectives. vlogi acts as an orchestrator, using VEREFOO,
React-VEREFOO, and VIP to update the network’s configuration in response to
ongoing cyber attacks. This integration signifies the achievement of a fully auto-
mated, efficient, and responsive system for network security management.
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3.2 Contributions

The contributions of this thesis significantly enhance the capabilities of the VERE-
FOO framework, setting a foundation for future advancements in automated cyber
attack response:

❼ VEREFOO IDS/IPS Parser (VIP): This component is responsible for
translating alerts from various Intrusion Detection Systems into Network Se-
curity Requirements that can be interpreted by the VEREFOO framework.
While its current implementation is compatible with only two IDSs and two
alert formats, its design is modular and extensible, allowing for straightfor-
ward integration of additional formats and IDSs as needed.

❼ Integration of the virtual network translator module: This module
has been integrated into the VEREFOO framework and expanded to accom-
modate the translation of traffic monitor nodes, in addition to its existing
capabilities.

❼ mergeRequirements algorithm: An algorithm has been developed to com-
bine the initial requirements with those extracted by the VIP tool.

❼ Cyclical cyber attack response methodology: Drawing on the tools
and modules detailed above, a cyclical methodology was formulated to au-
tonomously respond to cyber threats by updating security configurations.
This methodology was subsequently implemented as a script, serving as a
tangible proof of concept within the VEREFOO framework.

❼ Integration of React-VEREFOO: To strengthen efficiency, React-
VEREFOO has been incorporated into the workflow, substantially reducing
the computational time necessary for reconfigurations.

❼ VEREFOO Log Integrator (vlogi): vlogi functions as a central orches-
trator within the network security framework. It continuously monitors logs
from various Intrusion Detection Systems. Upon identifying an alert, vlogi
coordinates the network’s response by engaging with VEREFOO, React-
VEREFOO, and VIP. It dynamically updates the network’s security con-
figurations in response to the detected threats, thereby ensuring a rapid and
precise defense mechanism. Similarly to the VIP tool, vlogi is designed with
modularity and extensibility in mind, facilitating the inclusion of prelimi-
nary log processing, support for various types of firewall software, and the
incorporation of new functionalities as needed.
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Chapter 4

Approach

4.1 Adapting the official demo topology

Figure 4.1. Network topology used in this thesis

This work employs VEREFOO’s demo network topology as a base, with specific
modifications tailored to our requirements.

The primary alteration involves reconfiguring the traffic monitor node. In the
original demo topology, this node was designated as a simple forwarder without ex-
plicit mention of the IDS software. The relevant section in the original configuration
was as follows:

Listing 4.1. Traffic monitor definition inside original network topology

<node functional_type="FORWARDER" name="33.33.33.3">

<neighbour name="1.0.0.7" />

<neighbour name="1.0.0.8" />

<neighbour name="1.0.0.9" />

<configuration name="ForwardConf">

<forwarder>

<name>Forwarder</name>

</forwarder>
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</configuration>

</node>

In our adapted topology, we redefine this node’s functional type to
TRAFFIC MONITOR and specify the IDS software within the inner configuration

node. The new configuration is:

Listing 4.2. Traffic monitor definition inside new network topology

<node functional_type="TRAFFIC_MONITOR" name="33.33.33.3">

<neighbour name="1.0.0.7" />

<neighbour name="1.0.0.8" />

<neighbour name="1.0.0.9" />

<configuration name="trafficmonitor1">

<traffic_monitor>

<name>snort3</name>

</traffic_monitor>

</configuration>

</node>

This adjustment necessitated a minor update to the virtual network translator
in order to incorporate support for traffic monitors.

As a prerequisite for testing our network against a cyber attack, it was essential
to implement one of Snort’s community rules. The chosen rule is designed to detect
a login attempt performed on a machine which was infected by the QAZ worm. The
rule is stated as follows:

Listing 4.3. Snort community rule

alert tcp ✩EXTERNAL_NET any -> ✩HOME_NET 7597 (

msg:"MALWARE-BACKDOOR QAZ Worm Client Login access";

flow:to_server,established; content:"qazwsx.hsq";

metadata:ruleset community; classtype:misc-activity; sid:108;

rev:12; )

This rule is particularly suitable for our purposes, as its activation requires
only a simple action: establishing a connection to TCP port 7597 and sending a
message that includes qazwsx.hsq.

We designated the host at 192.168.3.1 as the attacker and the 130.10.0.0/16
network as the victim.

The original demo topology prohibited traffic on TCP port 7597 from the
192.168.3.0/24 to the 130.10.0.0/24 network. To accommodate our test sce-
nario, we made necessary adjustments to policies 3, 4, and 5.

The original policies were as follows:

Listing 4.4. Original demo policies

<!-- policy 3 -->

<Property graph="0" name="ReachabilityProperty" src="192.168.3.-1"

dst="130.10.0.4" dst_port="80" lv4proto="TCP"/>

<!-- policy 4 -->

<Property graph="0" name="IsolationProperty" src="192.168.3.-1"

dst="130.10.0.4" dst_port="0-79" lv4proto="TCP" />
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<Property graph="0" name="IsolationProperty" src="192.168.3.-1"

dst="130.10.0.4" dst_port="81-65535" lv4proto="TCP"/>

<!-- policy 5 -->

<Property graph="0" name="IsolationProperty" src="192.168.3.-1"

dst="130.10.0.4" lv4proto="UDP" />

<!-- Repeat policies for all servers within the loadbalancer’s pool -->

Our modified policies are as follows:

Listing 4.5. New demo policies

<!-- policy 3 -->

<Property graph="0" name="ReachabilityProperty" src="192.168.3.-1"

dst="130.10.0.4" lv4proto="TCP" />

<!-- policy 4 -->

<Property graph="0" name="IsolationProperty" src="192.168.3.-1"

dst="130.10.0.4" lv4proto="UDP" />

<!-- policy 5 -->

<Property graph="0" name="IsolationProperty" src="192.168.3.-1"

dst="130.10.0.4" lv4proto="OTHER" />

<!-- Repeat policies for all servers within the loadbalancer’s pool -->

These changes enable all TCP traffic from 192.168.3.0/24 to reach
130.10.0.0/24, regardless of the destination port, while still blocking other types
of traffic.

4.2 Setup and demonstration

This section offers an overview of the approach outlined in Chapter 1, encompassing
the setup and execution of the demonstration.

4.2.1 Setting up and launching the virtual network

The initial phase involves providing VEREFOO with an XML file that delineates
our virtual network. This file is used to generate the Firewall Allocation Scheme.

Figure 4.2. Step 1 of 7
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Subsequently, we use the FAS to create the necessary files, such as docker-
compose and configuration scripts, for deploying our virtual network.

Figure 4.3. Step 2 of 7

4.2.2 Attack simulation

Once our network is operational, we conduct a simulated cyber attack. For this
scenario, we assume that our servers have been compromised by the QAZ worm,
which opens a backdoor on TCP port 7597. An unauthorized client (client7),
seeking to exploit this backdoor for a Denial-of-Service attack, sends a login re-
quest to loadbalancer1, which routes the request to one of the compromised
servers. Upon a successful login attempt through this backdoor, our traffic monitor
(trafficmonitor1) should identify this suspicious activity and generate an alert.

Figure 4.4. Step 3 of 7

4.2.3 Extracting new requirements and merging

The VIP tool evaluates the alert, extracts crucial information, and generates the
corresponding VEREFOO Property nodes. The extracted requirements are then
merged with those of the initial topology using the mergeRequirements script.
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Figure 4.5. Step 4 of 7

4.2.4 Updating the Firewall Allocation Scheme

With the new requirements, we generate an updated FAS, akin to the process in
Step 1 (Figure 4.2).

Figure 4.6. Step 5 of 7

Following that, we prepare the necessary files for deploying the new virtual
network, similar to Step 2 (Figure 4.3).
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Figure 4.7. Step 6 of 7

4.2.5 Redeploying and verifying

Finally, to test the effectiveness of our changes, we simulate the attack again,
following the same procedure as in Step 3 (Figure 4.4). If the attack is successfully
blocked, it indicates that our modifications have been effective.

Figure 4.8. Step 7 of 7

4.3 Results and observations

The approach establishes a network with an inherent defense mechanism against
cyber threats by utilizing the automated distribution of firewalls and rules provided
by VEREFOO. This automated system is capable of detecting and responding to
cyber threats without the need for manual intervention. Network configurations can
be updated in real-time through modifications to configuration files. This process
ensures that only specific components needing updates are affected, negating the
necessity for a complete network restart.
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Figure 4.9 shows the process cycle for network defense automation. The cycle
starts with the generation of the Firewall Allocation Scheme, proceeds with the
launch of the virtual network, and upon the detection of an attack, the system
extracts and integrates the new requirements, which then leads to the regeneration
of the FAS and redeployment of the virtual network.

Figure 4.9. Attack response cycle

37



Chapter 5

Algorithm formulation

5.1 VEREFOO IDS/IPS Parser

The VEREFOO IDS/IPS Parser (VIP) is a Spring Boot application featuring REST
APIs that are designed to parse alerts from potentially every IDS/IPS system.
It efficiently translates these alerts into input requirements compatible with the
VEREFOO framework, with a design that allows for easy expansion to accommo-
date additional IDS/IPS systems in the future.

The main goal of this section is to give a general overview of the architecture of
VIP. It describes the roles and functions of each component, highlights how they
work together, and provides guidance on how the software can be extended in the
future.

5.1.1 Motivation and need

The development of VIP was motivated by a key challenge: each Intrusion Detection
System generates alerts in its own unique format. These formats can vary widely,
from plain text files to CSV files, JSON documents, and beyond. Although different
IDSs can be configured to produce alerts in various formats, they all share common
critical information, such as source IP, destination IP, source port, destination port,
and protocol. Therefore, there was a clear need for a tool that could uniformly
process this diverse range of alert formats, extracting all relevant information.

VIP addresses this need by providing a flexible solution. When a user submits
a request, they specify the name of the IDS, its version, and the alert format in
the request URL, and include the alerts in the body of the request. Based on this
input, VIP selects the appropriate parser class to accurately extract the pertinent
information from the alerts. The output is a list of Property nodes, encapsulated
within a root PropertyDefinition node. In cases where the alert is malformed or
there are issues with the URL and related parameters, VIP is designed to return
an error message, ensuring clarity and accuracy in the parsing process.

This approach ensures that VIP can accommodate alerts from different IDS
systems, converting them into a standardized format compatible with VEREFOO,
thereby facilitating the subsequent stages of threat response.
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5.1.2 Architectural overview

Figure 5.1. Diagram of VIP’s main components and their interactions

Upon system startup, parsers derived from the AbstractParser class and strategies
derived from the AbstractParserStrategy class register themselves within the
ParserRegistry. This step is crucial for preparing the system to handle incoming
parsing tasks by ensuring that all necessary components are readily available.

The ParserRegistry is a central component that maintains a list of all sup-
ported parsers and strategies, as well as a map that associates each parser with
its compatible strategies. This structure is key to the system’s ability to efficiently
match parsing requests with the appropriate resources.

When a parsing request is received, the RequirementController’s
parseAlerts() method is invoked. This method uses the path variables idsName,
idsVersion, and alertMode to determine the correct parser and strategy to be used
for the request by calling the getParser() and getStrategy() methods from the
ParserRegistry.

The selected AbstractParser’s parse()method is then executed. This method
processes the input stream containing the alerts and applies the specified alert pri-
ority and graph ID to the parsing operation. If these parameters are not provided,
default values are used. The parse() method subsequently calls the chosen strat-
egy’s parse() method, providing it with the necessary parameters.

Parsing logic is contained within the AbstractParserStrategy’s parse()

method. This method uses the configuration settings specified in the
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application.properties file, which are retrieved through the ParserConfig

class.

Additionally, parsers based on the AbstractParser class are annotated with
@SupportedStrategies, indicating the strategies they support. This flexibility
allows strategies to be reused with different IDS versions as needed.

Exception handling is managed through a dedicated package that contains cus-
tom exceptions tailored for the system. The GlobalExceptionHandler class en-
sures that any standard exception is handled gracefully, maintaining the stability
and reliability of the system.

Example request

❼ POST /api/parser/snort/3/AlertFastV0?priority=2

❼ Request body:

Listing 5.1. Example request body with alerts generated by Snort 3

08/05-14:27:15.908164 [**] [1:2013504:6] ET TROJAN Observed

Malicious SSL Cert (Likely Malware CnC Domain Related)

[**] [Classification: A Network Trojan was Detected]

[Priority: 1] {TCP} 192.168.1.2:56340 ->

217.160.0.120:443

08/05-14:27:19.428771 [**] [1:2014819:5] ET SCAN Behavioral

Unusual Port 22 traffic Potential Scan or Inbound Attack

[**] [Classification: Detection of a Network Scan]

[Priority: 2] {TCP} 92.118.37.80:56834 -> 192.168.1.2:22

08/05-14:30:20.534654 [**] [1:2001219:20] ET POLICY PE EXE

or DLL Windows file download HTTP [**] [Classification:

Potentially Bad Traffic] [Priority: 2] {TCP}

192.168.1.2:56340 -> 104.20.1.85:80

08/05-14:32:45.835122 [**] [1:2010935:3] ET TROJAN ELF/Mirai

Variant User-Agent (Inbound) [**] [Classification: A

Network Trojan was Detected] [Priority: 1] {TCP}

192.168.1.2:56340 -> 217.160.0.120:443

❼ Return value:

Listing 5.2. Extracted VEREFOO requirements

<PropertyDefinition>

<Property graph="0" name="IsolationProperty" src="192.168.1.2"

dst="217.160.0.120" dst_port="443" lv4proto="TCP"/>

<Property graph="0" name="IsolationProperty" src="92.118.37.80"

dst="192.168.1.2" dst_port="22" lv4proto="TCP"/>

<Property graph="0" name="IsolationProperty" src="192.168.1.2"

dst="104.20.1.85" dst_port="80" lv4proto="TCP"/>

</PropertyDefinition>
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Custom exceptions

❼ 404 (Not Found)

– ParserNotFoundException: Occurs when the idsName and
idsVersion combination does not correspond to any existing parser.

– AlertModeNotFoundException: Triggered when the specified
alertMode in the request does not exist.

❼ 400 (Bad Request)

– MalformedAlertException: Raised when the alert lacks required
fields or has improper formatting, making information extraction im-
possible.

– ProtocolErrorException (Snort 3-specific): The alert contains Error
as its protocol.

– RequestPriorityException: Occurs when the priority level specified
in the request is outside the acceptable range for the chosen parser.

– AlertPriorityException: Applies when the priority level within the
alert itself falls outside the parser’s acceptable range.

– InvalidIPsException: Raised for source or destination IPs that are
invalid or not properly formatted (e.g., 192.168.1.256).

– InvalidPortNumbersException: Indicates that the alert includes
port numbers outside the valid range of 0 to 65535.

– UnexpectedPortsException: Triggered when port information is
supplied for a protocol that does not use ports.

– PortMismatchException: Occurs when one of the ports is provided
in the alert while the other is missing.

– SamePortTypeException: Indicates that both ports in the alert are
of the same type, either ephemeral or non-ephemeral.

– UnsupportedAlertModeException: Raised when the alertMode

specified does not match any supported mode for the given idsName

and idsVersion combination.

– ConstraintViolationException: Applies when any request parameter
does not adhere to the specified constraints.

❼ 500 (Internal Server Error)

– RequestStreamException: Indicates an error encountered while ob-
taining the input stream from the request.

– StreamProcessingException: Triggered by issues in reading from the
input stream.

– StrategyNotSetException: Occurs when the parser’s strategy has not
been set before calling the AbstractParserStrategy.parse() method.
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5.1.3 Main components

RequirementController

The RequirementController is responsible for managing the API endpoint POST

/api/parser/{idsName}/{idsVersion}/{alertMode}. Upon receiving a request,
the parseAlerts() method is called to process the request. It generates a
RequirementSet which is then automatically transformed into an XML response.
The response contains a PropertyDefinition root element that encapsulates all
the Property nodes extracted from the alerts.

AbstractParser

The AbstractParser provides a general representation of a parser. Its main features
include abstract methods that define the IDS name, version, and the range of pri-
ority levels it operates with. Each parser has a defaultPriority attribute, which
is set upon instantiation by its child classes. It is also designed to manage variable
priority level definitions, where the numeric value of the lowest priority may exceed
that of the highest. The shouldFilter method accounts for such variations during
alert processing. Furthermore, the parse() method, upon invocation, triggers the
parse() method of the AbstractParserStrategy passed to it, provided that the
strategy is not null.

AbstractParserStrategy

The AbstractParserStrategy encapsulates the generic logic needed to parse specific
alert modes, such as the alert fast mode in Snort. It maintains a reference to
the ParserConfig, which is utilized by various helper methods within the strategy.
These helper methods are responsible for validating the alert’s consistency, format-
ting, etc. The central parse() method within AbstractParserStrategy contains the
core parsing logic.

AbstractParserStrategy.ParsingContext

Located within the AbstractParserStrategy, the ParsingContext class stores de-
tails about the alert currently being processed. It acts as a central data repository,
enabling the passage of the context itself rather than multiple individual parameters
during the parsing process.

@SupportedStrategies

The @SupportedStrategies annotation is utilized on classes extending
AbstractParser. It specifies which strategies are supported by a given parser,
aiding in its configuration.
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ParserConfig

ParserConfig is a configuration class that provides access to the parameters defined
in the application.properties file under the vip prefix.

ParserRegistry

The ParserRegistry functions as a repository for all parsers and strategies. It main-
tains a list of available parsers, a list of strategies, and a map that links each parser
with its corresponding strategies. Registration of parsers and strategies is con-
ducted through the registerParser() and registerStrategy() methods. The
getParser() method is used to retrieve a specific parser by requiring both idsName

and idsVersion. Similarly, the getStrategy() method fetches a strategy given a
supported parser and the alert mode in question.

5.1.4 Extending VIP

To add support for new Intrusion Detection Systems and their alert modes in VIP,
simply follow the steps detailed below:

1. Create a new parser class

❼ Within the parser package, create a subclass of AbstractParser cor-
responding to the specific IDS intended for support.

❼ Annotate the newly created class with @Component to ensure it is rec-
ognized as a Spring-managed component.

❼ Implement all abstract methods, which entails:

– Defining a unique name and version for the parser.
This is essential because for POST requests to
/api/parser/{idsName}/{idsVersion}/{alertMode}, the
idsName and idsVersion path variables must correspond to
the parser’s name and version to correctly identify and utilize the
required parser class.

– Establishing the range for the lowest and highest priority levels that
the parser can handle.

– Specifying a default priority within the constructor, which will be
used in cases where no priority level is explicitly stated in the in-
coming request.

2. Create a new strategy class

❼ Create one or more subclasses of AbstractParserStrategy within the
strategy package, each corresponding to different alert modes of the
target IDS.

❼ Ensure that each new strategy class is given a distinct name to avoid
conflicts.
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❼ Annotate the strategy classes with @Component.

❼ Implement the parse() method. This method should utilize helper
methods for alert validation and manage a ParsingContext instance,
which should be updated as new information from the alerts is extracted
and processed.

3. Annotate the parser class with @SupportedStrategies, providing a list
of the strategies that the parser class supports, in the following manner:
@SupportedStrategies({"StrategyClass1", "StrategyClass2", ...}).

As previously noted, for POST requests made to
/api/parser/{idsName}/{idsVersion}/{alertMode}, the idsName and
idsVersion are intended to match the name and version of the parser class, while
alertMode should correspond to the name of the strategy class, with all matching
being case-insensitive.

In scenarios where parsers for the same IDS share common functionalities, such
as classes, attributes, or methods, it is advisable to consolidate these shared ele-
ments into a utility class. An example of this would be the SnortUtils class for
parsers related to Snort.

5.2 Integrating and adapting the virtual network

translator to support traffic monitors

The virtual network translator was initially designed to eliminate superfluous for-
warders from VEREFOO’s output and to append a description attribute to each
FIREWALL node. This attribute aids in the unique identification of FIREWALL nodes
by VEREFOO’s deployer, responsible for creating configuration files compatible
with various firewall software.

However, the translator had two main problems. Firstly, it prematurely re-
moved ”unnecessary” forwarders from the output. These forwarders, while deemed
unnecessary for immediate translation, are actually critical for React-VEREFOO.
They serve as potential Allocation Places for new firewalls, and their early removal
could hinder React-VEREFOO from finding optimal or viable reconfiguration so-
lutions. Therefore, a balance needed to be struck: keeping these forwarders for
React-VEREFOO while removing them for translation purposes. Secondly, its
translation process was not API-driven but was automatically initiated whenever
VEREFOO generated a Firewall Allocation Scheme.

To address these issues, the framework’s behavior was adjusted. Previously,
VEREFOO would transform unused Allocation Places into FORWARDER nodes. This
process was altered to convert these Allocation Places into VFORWARDER nodes
(VEREFOO FORWARDER), facilitating the identification and subsequent re-
moval of unnecessary forwarders prior to translation. The code responsible for
removing forwarders was then relocated to precede the translator invocation dur-
ing the API call. A more in-depth discussion on the introduction of VFORWARDER
nodes is presented in the next section.
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Additionally, a new API endpoint was created: POST

verefoo/adp/venvironment/generateFiles, with a mandatory request pa-
rameter, firewallType. This parameter specifies the firewall software to be used
by VEREFOO’s deployer. As of the current writing, firewallType can only be
IPTABLES.

Regarding traffic monitor adaptation, as previously mentioned, two different
types of Intrusion Detection Systems were taken into consideration: Network-based
IDSs and Host-based IDSs. From a forwarding perspective, NIDSs are analogous
to standard FORWARDER nodes, making their integration relatively straightforward.
The challenge lay in integrating HIDSs, which required a mechanism to denote the
presence of a specific IDS within a node. This was achieved by introducing a new
configuration element, monitor name, in both WEBSERVER and MAILSERVER nodes:

Listing 5.3. Definition of monitor name

<xsd:element name="monitor_name" type="xsd:string" nillable="true" />

The monitor name element within the node’s configuration specifies the IDS to
be installed:

Listing 5.4. Example usage of monitor name in server configuration

<node functional_type="WEBSERVER" name="130.10.0.1">

<neighbour name="1.0.0.1" />

<configuration description="e1" name="httpserver1">

<webserver>

<name>130.10.0.1</name>

<monitor_name>ossec3.7local</monitor_name>

</webserver>

</configuration>

</node>

Supporting traffic monitors also entailed developing Dockerfiles for both net-
work nodes with Snort 3 and servers with OSSEC 3.7 (local installation). This
development included code for generating docker-compose files with appropriate
start commands and volumes for log monitoring.

5.3 React-VEREFOO

React-VEREFOO is an enhancement of the original VEREFOO framework, de-
signed to accelerate the Firewall Allocation Scheme generation process. It achieves
this by utilizing results from previous runs to adapt the network according to new
Network Security Requirements, rather than recalculating everything anew.

It adopts the Atomic Flows model for representing traffic flows. This model
employs Atomic Predicates (APs), a concept introduced in 2015 as a solution for
the Network Reachability problem [18] and later integrated into VEREFOO by
prior research [19].
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5.3.1 Limitations

In React-VEREFOO, FORWARDER nodes are one of the functional types subject to
reconfiguration. However, this poses a challenge due to the dual nature of how
these nodes are included in network topologies. On one hand, forwarders might
be explicitly added by users in the input network topology, in which case they
are not meant to be modified. On the other hand, VEREFOO can automatically
insert FORWARDER nodes in place of unused Allocation Places. In these instances,
the forwarders are considered eligible for reconfiguration.

Another issue in React-VEREFOO is encountered when managing multiple re-
quirements based on several port ranges and protocols. This complexity leads to
a rapid growth in the number of Atomic Flows computed, which in turn substan-
tially increases the constraints input into the solver. This increase significantly
complicates the task of finding viable solutions, often making it difficult to solve
the problem within a reasonable timeframe.

5.3.2 Adapting React-VEREFOO to be used within the
proposed methodology

To address the issue of React-VEREFOO incorrectly reconfiguring FORWARDER

nodes added by users, a distinct functional type, VFORWARDER, was introduced.
React-VEREFOO now utilizes this type to replace unused Allocation Places in-
stead of standard FORWARDER nodes, ensuring that only these VFORWARDER nodes
are subject to reconfiguration. Concurrently, modifications were made to the vir-
tual network translator, enabling it to remove only VFORWARDER nodes during the
translation process.

Initially, unused forwarders in VEREFOO were tagged as unNeeded in their con-
figuration, simplifying their identification and removal during translation. However,
with the integration of React-VEREFOO, the introduction of the VFORWARDER type
became necessary to avoid disrupting existing tests and functionalities within the
system. This solution represented the most straightforward and least disruptive
modification required for the integration of React-VEREFOO within the approach.

5.3.3 Building new test networks

In response to the challenge of React-VEREFOO’s extended timeframes in gener-
ating new FASs, a simplification of the original test network (Figure 4.1) was nec-
essary. The network was reduced to its essential components while retaining key
functionalities, ensuring an effective demonstration of the attack response mecha-
nism.

As previously mentioned, our study focused on two distinct network configu-
rations. The first network used Snort 3 as a network-based IDS, and the second
employed OSSEC 3.7 as a host-based IDS, specifically installed on one of the servers.

For the network incorporating Snort 3 as a NIDS, the original topology was
streamlined by removing all non-essential subnetworks, as illustrated in Figure 5.2.
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Figure 5.2. Test network with Snort 3 as NIDS

For the network featuring OSSEC 3.7 as a HIDS, the load balancer and NAT
components were removed. This decision aimed at creating a simpler yet distinct
test network, as depicted in Figure 5.3.

Figure 5.3. Test network with OSSEC 3.7 HIDS on server1

5.3.4 The updated approach

With the introduction of React-VEREFOO, our methodology requires some adjust-
ments to accommodate this new element. This section revisits the steps outlined in
Chapter 4 and details the necessary modifications. Changes are highlighted in red
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for clarity. The fundamental structure remains largely unchanged, with adaptations
made specifically for React-VEREFOO compatibility.

The initial step now integrates VEREFOO with newly added support for VFOR-
WARDER nodes.

Figure 5.4. Step 1 of 7 (React-VEREFOO)

The second step involves a straightforward substitution of VEREFOO with
React-VEREFOO for network file generation.

Figure 5.5. Step 2 of 7 (React-VEREFOO)

The third step is the same as before, since it simply involves conducting an
attack.

Given that React-VEREFOO utilizes the existing FAS to reconfigure the net-
work, requirements extracted from IDS alerts are merged with the previously
generated FAS instead of the regular topology. The resulting requirements con-
sist of a PropertyDefinition element encompassing the merged NSRs and an
InitialProperty element containing the original NSRs.
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Figure 5.6. Step 4 of 7 (React-VEREFOO)

In the fifth step, the merged FAS is used to generate a new FAS through React-
VEREFOO.

Figure 5.7. Step 5 of 7 (React-VEREFOO)

The sixth step mirrors its counterpart from the previous chapter, with React-
VEREFOO replacing VEREFOO for network file generation.

Figure 5.8. Step 6 of 7 (React-VEREFOO)
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The final step, involving a repeated attack run to verify the effectiveness of the
new requirements, remains as previously described.

The updated approach starts with FAS generation using VEREFOO and transi-
tions to leveraging React-VEREFOO in subsequent steps for an optimized response.

Figure 5.9. Attack response cycle (React-VEREFOO)
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Chapter 6

Process automation

6.1 The mergeRequirements algorithm

6.1.1 Introduction

As described in prior chapters, our methodology necessitates integrating newly ex-
tracted Network Security Requirements with existing ones. To address this need,
the mergeRequirements algorithm was developed. Initially conceived as a stan-
dalone Python script, it was subsequently integrated into the vlogi tool to enable
automated processing.

The following sections will detail key aspects of the mergeRequirements algo-
rithm. We will explore each stage of the algorithm, starting from the preprocessing
steps, delving into the central merging process, and concluding with the postpro-
cessing phase. These sections aim to illustrate the purpose and mechanics of each
part of the algorithm.

Finally, we will address the assumptions at the core of the algorithm and ex-
amine its limitations in the context of current implementation. This discussion is
intended to provide a comprehensive understanding of the algorithm’s operational
scope and potential areas for future refinement.

6.1.2 Refinement of source and destination IPs

In the initial preprocessing stage of the algorithm, we focus on refining the source
and destination IP addresses within the extracted Network Security Requirements.
This process aims to align these IP addresses with the most specific corresponding
IP or subnet defined in our network topology.

For illustration, consider the network topology depicted in Figure 5.3. Suppose
we have extracted the following requirement from OSSEC’s alerts:

Listing 6.1. Example requirement extracted from OSSEC’s alert file

<PropertyDefinition>

<Property graph="0" name="IsolationProperty" src="192.168.3.1"

dst="130.10.0.1" lv4proto="TCP"/>

</PropertyDefinition>
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In this scenario, the IP address 192.168.3.1 would be adjusted to
192.168.3.-1. This change is necessitated by our network topology, which recog-
nizes the 192.168.3.-1 subnet but not individual endpoint IPs within this range.
OSSEC, in its operation, identifies the source IP from system files but lacks contex-
tual knowledge about its subnet association or the broader network topology that
VEREFOO processes.

Thus, this preprocessing step systematically replaces the src and dst IP ad-
dresses in each extracted Property node with the nearest identifiable IP address or
subnet present in the network topology. This refinement ensures that the require-
ments accurately align with the actual network structure.

Algorithm 1 Refine source and destination IPs to the most specific IP (or subnet)
within the topology

Require: extractedProperties, topologyGraph
1: for each eprop in extractedProperties do
2: for each position in {”src”, ”dst”} do
3: ip← octets from the current IP address
4: for i← length(ip)− 1 to 1 do
5: if node in topologyGraph matching the current subnet then
6: current IP ← current subnet
7: break
8: end if
9: ip[i]← ”− 1”

10: end for
11: end for
12: end for

6.1.3 Building NAT IP dictionary

The subsequent preprocessing step involves constructing a dictionary that asso-
ciates each public NAT IP found within the network topology to its corresponding
private IP addresses.

This mapping is essential for the algorithm’s processing of requirements that
involve public NAT IPs. Specifically, when such a requirement is encountered, the
algorithm uses this map to deduce the most probable private network that the
public NAT IP is representing. A more detailed explanation of this process will be
provided in Subsection 6.1.6.
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Algorithm 2 Build a dictionary to associate each NAT’s public IP with its corre-
sponding private IP addresses

Require: topologyGraph
1: nats← all NAT nodes in topologyGraph
2: natIPs← empty dictionary
3: for each nat in nats do
4: name← current NAT’s public IP
5: sources← all source elements within nat
6: sourceIPs← empty list
7: for each source in sources do
8: append IP from source to sourceIPs
9: end for

10: natIPs[name]← sourceIPs
11: end for

6.1.4 Building loadbalancer IP dictionary

The third preprocessing step entails creating a dictionary to associate each load-
balancer’s IP, as identified in the network topology, with the corresponding IPs in
its server pool.

This dictionary is essential for processing requirements involving a loadbalancer
IP. When such a requirement is extracted, the algorithm needs to apply the same
rule to each server in the loadbalancer’s pool. The dictionary facilitates quick
generation of these rules for all associated servers. A more detailed explanation of
this process will be provided in Subsection 6.1.7.

Algorithm 3 Build a dictionary to associate each loadbalancer’s IP with the IPs
in its pool

Require: topologyGraph
1: loadbalancers← all loadbalancer nodes in topologyGraph
2: lbIPs← empty dictionary
3: for each lb in loadbalancers do
4: name← current loadbalancer’s IP
5: pool← all pool elements within lb
6: poolIPs← empty list
7: for each poolIP in pool do
8: append IP from poolIP to poolIPs
9: end for

10: lbIPs[name]← poolIPs
11: end for

6.1.5 Setting default values for missing attributes

The purpose of this preprocessing step is to simplify subsequent processing by
ensuring consistency across all Property nodes. By assigning default values to
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any missing attributes, we eliminate discrepancies and achieve uniformity in the
attribute set of each Property.

Algorithm 4 Set missing attributes to null to simplify subsequent checks

1: procedure AddNullAttributes(prop)
2: if lv4proto attribute not present in prop then
3: add lv4proto attribute to prop with value null
4: end if
5: if src port attribute not present in prop then
6: add src port attribute to prop with value null
7: end if
8: if dst port attribute not present in prop then
9: add dst port attribute to prop with value null

10: end if
11: end procedure
12:

Require: extractedProperties, topologyProperties
13: for each eprop in extractedProperties do
14: AddNullAttributes(eprop)
15: end for
16: for each tprop in topologyProperties do
17: AddNullAttributes(tprop)
18: end for

6.1.6 Translating public NAT IPs to private networks

This preprocessing step is dedicated to translating public NAT IPs found within the
extracted requirements to the corresponding private network IP(s) that are most
likely to be the actual sources.

Consider the network topology depicted in Figure 4.1. In this topology, the
traffic monitor, positioned centrally, can only see the public NAT IP in packets
coming from or going to private networks behind the NAT. If the traffic monitor
detects an attack and generates an alert containing a public NAT IP, this alert, once
processed into a VEREFOO requirement by the VIP tool, needs accurate interpre-
tation. Specifically, we need to identify which private network initiated the attack,
as blocking all traffic to every private network due to one compromised source is
impractical. Therefore, the algorithm assesses the current network requirements to
deduce the most likely originating private network(s).

To more fully comprehend, let’s analyze the relevant NSRs in our original topol-
ogy:

Listing 6.2. Relevant NSRs in original network topology

<PropertyDefinition>

<!-- policy 3 -->

<Property graph="0" name="ReachabilityProperty" src="192.168.3.-1"

dst="130.10.0.4" lv4proto="TCP" />

<!-- policy 4 -->
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<Property graph="0" name="IsolationProperty" src="192.168.3.-1"

dst="130.10.0.4" lv4proto="UDP" />

<!-- policy 5 -->

<Property graph="0" name="IsolationProperty" src="192.168.3.-1"

dst="130.10.0.4" lv4proto="OTHER" />

<!-- policy 6 -->

<Property graph="0" name="IsolationProperty" src="192.168.2.-1"

dst="130.10.0.4" />

<!-- policy 7 -->

<Property graph="0" name="ReachabilityProperty" src="130.10.0.4"

dst="192.168.3.-1" />

<!-- Repeat policies for all servers within the loadbalancer’s pool -->

<!-- Irrelevant policies have been omitted -->

</PropertyDefinition>

In this example, network 192.168.3.-1 can communicate with the loadbalancer
at 130.10.0.4 over TCP, and vice versa. However, the 192.168.2.-1 network is
prohibited from any communication with the loadbalancer.

Now, consider an extracted requirement indicating an attack:

Listing 6.3. Extracted requirement example involving public NAT IP

<PropertyDefinition>

<Property graph="0" name="IsolationProperty" src="220.124.30.1"

dst="130.10.0.4" dst_port="7597" lv4proto="TCP"/>

</PropertyDefinition>

Upon analysis, the algorithm infers that this requirement most likely refers
to the 192.168.3.-1 network. The rationale is that the 192.168.2.-1 network
cannot interact with the loadbalancer. Consequently, the algorithm modifies the
requirement to:

Listing 6.4. Translated requirement with public NAT IP replaced by
private network IP

<PropertyDefinition>

<Property graph="0" name="IsolationProperty" src="192.168.3.-1"

dst="130.10.0.4" dst_port="7597" lv4proto="TCP"/>

</PropertyDefinition>

Had there been multiple matching private networks, the algorithm would have
replicated the isolation rule for each applicable network.
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Algorithm 5 Translate public NAT IPs to corresponding private networks

Require: extractedProperties, topologyProperties, natIPs
1: natProperties← empty list
2: for each eprop in extractedProperties do
3: srcNat← true if current src IP is a public NAT IP in natIPs
4: dstNat← true if current dst IP is a public NAT IP in natIPs
5: if srcNat and not dstNat then
6: privateSrcs← private IP(s) deduced to be the actual source(s)
7: for each privateSrc in privateSrcs do
8: create a new property based on eprop but with privateSrc as src IP
9: append the new property to natProperties

10: end for
11: else if dstNat and not srcNat then
12: privateDsts← private IP(s) deduced to be the actual destination(s)
13: for each privateDst in privateDsts do
14: create a new property based on eprop but with privateDst as dst IP
15: append the new property to natProperties
16: end for
17: else if srcNat and dstNnat then
18: for each combination of privateSrc and privateDst do
19: for each tprop in topologyProperties do
20: if current property matches with tprop then
21: create a new property based on eprop but with privateSrc as

source IP and privateDst as destination IP
22: append the new property to natProperties
23: end if
24: end for
25: end for
26: end if
27: end for
28: Remove elements with public NAT IPs from extractedProperties
29: Append natProperties to extractedProperties

6.1.7 Expanding properties for loadbalancers

The last preprocessing step before merging the requirements involves handling
Property elements that reference a loadbalancer IP. In this step, for each Property

associated with a loadbalancer IP, new properties are created using the IP addresses
from the loadbalancer’s pool, while preserving the original Property.

This replication is essential to ensure that the set of requirements fed into
VEREFOO is complete. Without duplicating the Property for each server in the
pool, there could be gaps in the requirements, potentially leading to issues in the
generation of the FAS.
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Algorithm 6 For each Property referencing a loadbalancer, create new properties
using IPs from its pool, retaining the original Property

Require: extractedProperties, lbIPs
1: lbProperties← empty list
2: for each eprop in extractedProperties do
3: srcLb← true if current src IP is a loadbalancer IP in lbIPs
4: dstLb← true if current dst IP is a loadbalancer IP in lbIPs
5: if srcLb and not dstLb then
6: for each lbSrcIP matching the current src loadbalancer IP in lbIPs do
7: create a new property based on eprop but with lbSrcIP as src IP
8: append the new property to lbProperties
9: end for

10: else if dstLb and not srcLb then
11: for each lbDstIP matching the current dst loadbalancer IP in lbIPs do
12: create a new property based on eprop but with lbDstIP as dst IP
13: append the new property to lbProperties
14: end for
15: else if srcLb and dstLb then
16: for each combination of lbSrcIP and lbDstIP do
17: create a new property based on eprop but with lbSrcIP as src IP

and lbDstIP as dst IP
18: append the new property to lbProperties
19: end for
20: end if
21: end for
22: Append lbProperties to extractedProperties

6.1.8 Merging NSRs

The merging of NSRs constitutes the core functionality of the algorithm. Following
all preprocessing steps, the algorithm can now safely merge current requirements
with newly extracted ones.

The merging process involves two distinct scenarios:

1. Exact match: If an extracted isolation requirement exactly matches a cur-
rent reachability requirement, the reachability requirement is removed from
the final list, and the isolation requirement is added.

2. Loose match: If an extracted isolation requirement loosely matches a cur-
rent reachability requirement (i.e., the isolation requirement is a subset of the
reachability requirement), the reachability requirement is replaced by other
reachability requirements that allow the same traffic as the original, except for
the portion blocked by the isolation requirement. Subsequently, the isolation
requirement itself is added to the final list.

The DeriveReachabilityProperties function is responsible for generating
these new reachability requirements. To illustrate its functionality, consider the
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NSRs presented in Listing 6.2. Suppose a new requirement is extracted, as shown
in Listing 6.3.

After the necessary preprocessing steps, we obtain the output depicted in Listing
6.4. This output indicates a policy that blocks all TCP traffic on port 7597 from
192.168.3.-1 to 130.10.0.4. Since the original NSRs permitted all TCP traffic,
modifications are required to align with this new constraint. To achieve this, the
original NSRs are adapted as follows:

Listing 6.5. Merged requirements

<PropertyDefinition>

<Property graph="0" name="ReachabilityProperty" src="192.168.3.-1"

dst="130.10.0.4" lv4proto="TCP" dst_port="0-7596" />

<Property graph="0" name="ReachabilityProperty" src="192.168.3.-1"

dst="130.10.0.4" lv4proto="TCP" dst_port="7598-65535" />

<Property graph="0" name="IsolationProperty" src="192.168.3.-1"

dst="130.10.0.4" dst_port="7597" lv4proto="TCP" />

<!-- Repeat policies for all servers within the loadbalancer’s pool -->

<!-- Irrelevant policies have been omitted -->

</PropertyDefinition>

In this adaptation, the original NSR permitting all TCP traffic is split into two,
allowing traffic on ports 0-7596 and 7598-65535, effectively isolating only port 7597
as dictated by the new requirement.

Algorithm 7 Merge properties

Require: extractedProperties, topologyProperties
1: mergedPropertiesList← copy of topologyProperties
2: for each eprop in extractedProperties do
3: index← 0
4: while index < length(mergedPropertiesList) do
5: mprop← mergedPropertiesList[index]
6: if eprop exactly matches with mprop then
7: remove mprop from mergedPropertiesList
8: break
9: end if

10: if eprop loosely matches with mprop then
11: remove mprop from mergedPropertiesList
12: toAppend← DeriveReachabilityProperties(mprop, eprop)
13: for each ta in toAppend do
14: append ta to mergedPropertiesList if not duplicate
15: end for
16: break
17: end if
18: index← index+ 1
19: end while
20: append eprop to mergedPropertiesList if not duplicate
21: end for

58



Process automation

Algorithm 8 Derive reachability properties based on isolation constraints

1: function DeriveReachabilityProperties(mprop, eprop)
2: mproto← lv4proto from mprop
3: eproto← lv4proto from eprop
4: msrcPort← src port from mprop
5: esrcPort← src port from eprop
6: mdstPort← dst port from mprop
7: edstPort← dst port from eprop
8: properties← empty list
9:

10: if eproto is TCP and mproto is null then
11: for each p in [UDP, OTHER] do
12: append reachability property with protocol p to properties
13: end for
14: else if eproto is UDP and mproto is null then
15: for each p in [TCP, OTHER] do
16: append reachability property with protocol p to properties
17: end for
18: else if eproto is OTHER and mproto is null then
19: for each p in [TCP, UDP] do
20: append reachability property with protocol p to properties
21: end for
22: end if
23:

24: srcPortElements← empty list
25: dstPortElements← empty list
26:

27: if esrcPort is not null then
28: generate reachability properties for src port ranges not blocked by eprop
29: add them to srcPortElements
30: end if
31: if edstPort is not null then
32: generate reachability properties for dst port ranges not blocked by eprop
33: add them to dstPortElements
34: end if
35:

36: if no srcPortElements then
37: append dstPortElements to properties
38: else if no dstPortElements then
39: append srcPortElements to properties
40: else
41: combine srcPortElements with dstPortElements and append to

properties
42: end if
43:

44: return properties
45: end function
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6.1.9 Postprocessing

In the postprocessing phase of the algorithm, the initial task is to remove any null

attributes from the merged properties. These attributes, which were useful during
previous processing stages, are now redundant and can be safely discarded.

Following this cleanup, the next step involves preparing the data for output.
This is done by encapsulating the merged properties within a PropertyDefinition
element. Simultaneously, the original properties that were initially within the
PropertyDefinition element are relocated to a new InitialProperty element.
This enables React-VEREFOO to effectively analyze and compare the old and new
sets of network requirements to make decisions about the necessary network recon-
figurations.

6.1.10 Assumptions made by the algorithm

The initial set of requirements must be free of conflicts and suboptimal configura-
tions.

Each private network behind a NAT is unique within the network topology.
As detailed in Subsection 6.1.6, the algorithm translates public NAT IPs in the
extracted requirements to the most probable corresponding private network IP(s).
If two different networks behind different NATs share identical IPs, this could lead
to ambiguities in the Firewall Allocation Scheme generation.

The algorithm assumes there are no traffic monitors between the server pool
and the loadbalancer. Extracted requirements are presumed to reference the load-
balancer’s IP, not the IPs of individual servers in the pool. This assumption ensures
uniform treatment of servers within a pool, as explained in Subsection 6.1.7.

Initial requirements involving NATs should use private IP addresses, aligning
with the algorithm’s approach of translating public NAT IPs to private addresses.

Servers within a loadbalancer’s pool must be clearly defined as network nodes
to facilitate the duplication of requirements for each server in the pool.

Loadbalancers are not positioned behind NATs. The algorithm does not cover
this scenario because a loadbalancer itself functions similarly to a NAT, and ac-
commodating such a configuration would significantly increase the algorithm’s com-
plexity.

As mentioned in Subsection 6.1.8, the algorithm operates under the assumption
that isolation requirements either exactly match or are subsets of current reachabil-
ity requirements. For instance, a reachability requirement that permits TCP traffic
from a specific source to a destination cannot be merged with an isolation require-
ment that denies all traffic from that source to the destination. This assumption
stems from the fact that if specific traffic is explicitly allowed, then detected attacks
are expected to be related to that specific traffic or a subset thereof, not to traffic
that was never permitted initially.
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6.1.11 Limitations

The algorithm, while operational, is still in its early stages of development and
requires more comprehensive testing to ensure reliability in various scenarios.

At this stage, although it includes small optimizations and preprocessing steps to
enhance efficiency, there is ample scope for advancement. Enhancements are needed
to ensure the script can handle more complex cases efficiently and effectively, which
is essential for its broader applicability and robustness in diverse network settings.

6.2 VEREFOO Log Integrator

The VEREFOO Log Integrator (vlogi) is a command-line utility written in Python
and specifically developed to monitor logs from Intrusion Detection Systems in a
VEREFOO-based network environment. Its primary function is to detect new log
entries, which indicate potential security incidents. Once such an entry is identified,
vlogi automatically executes all necessary actions to enable a prompt and efficient
response to active attacks.

vlogi is designed to be compatible with alert modes and formats used by the VIP
tool. It supports processing of log files in both plaintext and JSON formats. This
includes the capability to handle logs generated using the AlertFastV0 strategy,
which outputs in plaintext, as well as those from the JsonOut strategy, where logs
are formatted in JSON.

A key feature of vlogi is its extensibility. The tool is structured to allow users to
easily add new IDS and alert mode combinations for monitoring. This is facilitated
through variables set in its configuration file. Moreover, vlogi is structured to
potentially interface with external programs, offering the flexibility to filter logs
before integrating them into the network’s security measures.

The primary objective of this section is to present a comprehensive overview
of vlogi’s architecture. It explains the roles and functionalities of each component
within vlogi, illustrates the interaction between these components, and provides
guidance on configuring and using the software, as well as on future enhancements
and expansions.

6.2.1 Motivation and need

The development of vlogi was driven by the need to automate the attack response
process within the VEREFOO framework. This automation represents a practi-
cal implementation of the process described in Subsection 5.3.4, streamlining the
response mechanism to potential security threats in the network.
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6.2.2 Architectural overview

Figure 6.1. Diagram of vlogi’s main components and their interactions

The above diagram provides a visual representation of the vlogi tool, outlining the
interconnections between its components and their respective roles.

Upon startup, vlogi retrieves command-line arguments alongside configuration
variables from the config.json file. Using the information from these two sources,
it determines the path to the alert file for the current session. Once this path
is established, vlogi creates an object called LogContext, which stores the com-
bined information from config.json, the command-line arguments, and the newly
determined alert file path.

Following this, vlogi instantiates a LogMonitor, providing it with the newly
created LogContext object. With the LogMonitor in place, vlogi is then ready
to begin the log monitoring process, which is initiated by invoking the start()

method of the LogMonitor.

Once a new alert is generated, the LogProcessor is activated through its
on modified() method. This activation captures the log entries, which can be fur-
ther refined by the LogFilter, updating the NSRs as a result. The subsequent steps
taken by vlogi depend on the auto confirm setting; it may either autonomously
apply the updates or request user verification. Following approval, vlogi generates
new configuration files, enforces the updates, and resumes log monitoring.
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The merge requirements module, housing the algorithm described in Section
6.1, is tasked with the critical function of merging the existing NSRs with those
extracted from log entries, ensuring that the network’s security policies are fortified
against ongoing threats.

Additionally, the utils module includes the get alert file path() function,
which, as previously mentioned, determines the alert log file path during the startup
phase. It also contains predefined constants and static paths to VEREFOO and
virtual network files, which are used by other modules within vlogi.

6.2.3 Configuration and usage

Prior to running vlogi, it is necessary to follow specific steps to ensure the tool
operates correctly:

❼ Confirm that the firewall-type variable in the config.json file is correctly
configured to reflect the particular firewall software to deploy.

❼ Adjust the current working directory to the root project folder, not the inner
vlogi folder. This is crucial to avoid any potential path errors.

❼ Launch VEREFOO and VIP, then generate the initial Firewall Allocation
Scheme along with the set of virtual network files.

❼ In the root project folder, create a subdirectory named
verefoo network files. Place the topology file and the FAS gener-
ated in the previous step into this subdirectory.

❼ Relocate the vnetwork folder, which contains the previously generated virtual
network files, to the root project folder.

To execute vlogi, follow these steps:

❼ Launch the tool using the command python3 vlogi and include the name of
the IDS to be monitored, its version, and the format in which the IDS reports
alerts.

❼ Depending on the specific IDS in use, it might be necessary to specify the
type of installation. This is done using the -i option, where the installation
type can be specified as server, agent, local, or hybrid.

❼ Use the -a flag to enable the auto confirm feature, allowing vlogi to integrate
new requirements without requiring manual user confirmation.

❼ Set the minimum priority level required for alert processing using the -p

option.

6.2.4 Extending vlogi

vlogi offers four key areas for potential extensions:
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Adding new modules

To incorporate a new module into vlogi:

❼ Create a new directory within the inner vlogi folder and name it after the
module.

❼ Develop the core logic of your module. You can distribute this logic over
several Python files if necessary.

❼ Include an init .py file in your module’s directory. This file determines
which components of your module are accessible to other parts of the appli-
cation.

Adding new IDS/alert mode combinations

To integrate new IDS/alert mode combinations:

❼ Ensure that the ids, version, and alert mode parameters in vlogi align with
those in the VIP tool.

❼ After incorporating a new IDS/alert mode into the VIP tool, the config.json
file in vlogi needs to be updated. This update involves adding the new com-
bination under the logfiles key.

Supporting additional firewall types

In regards to expanding firewall support:

❼ The necessary code to support additional firewall types has already been
included.

❼ Once support for a new firewall type is added to VEREFOO’s virtual network
translator, enable its integration with vlogi by uncommenting the relevant
sections in the utils/firewall types.py file.

Implementing the LogFilter class

Concerning the development of the LogFilter class:

❼ Currently, it includes two empty static methods: script filter() and
api filter().

❼ These methods are intended for preliminary filtering of logs before they un-
dergo full processing.
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6.2.5 Putting it all together

Building upon the foundation laid out in Subsection 5.3.4, we have successfully
automated the response process in vlogi. The initial steps remain manual, but as
we transition into the cyclic phase of the process illustrated in Figure 5.9, vlogi
takes the lead. It automatically responds to ongoing attacks by extracting new
requirements from alerts, merging these with the manually generated FAS, and
then producing and deploying the updated virtual network files.

Figure 6.2. Automated response process within vlogi

In essence, the workflow mirrors that presented in Figure 5.9, with the notable
distinction being the complete automation of the cyclic portion:

Figure 6.3. Attack response cycle (vlogi)
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Demo validation

This chapter provides a detailed hands-on demonstration. It starts with a VERE-
FOO topology file that depicts the network as shown in Figure 5.3. The process
involves generating a Firewall Allocation Scheme, using it to create a virtual net-
work and its corresponding configuration files, and then deploying the network.
Subsequently, the process includes starting vlogi, executing an attack, and observ-
ing how vlogi autonomously blocks the attack by reconfiguring the network.

7.1 Prerequisites

The network depicted in Figure 5.3 serves as the foundation for this demo. The
security requirements for this network, as defined in the initial topology file, are as
follows:

Listing 7.1. NSRs for network shown in Figure 5.3

<PropertyDefinition>

<!-- policy 1 -->

<Property graph="0" name="ReachabilityProperty" src="192.168.3.-1"

dst="130.10.0.1" lv4proto="TCP" />

<Property graph="0" name="ReachabilityProperty" src="192.168.3.-1"

dst="130.10.0.2" lv4proto="TCP" />

<Property graph="0" name="ReachabilityProperty" src="192.168.3.-1"

dst="130.10.0.3" lv4proto="TCP" />

<!-- policy 2 -->

<Property graph="0" name="IsolationProperty" src="192.168.3.-1"

dst="130.10.0.1" lv4proto="UDP" />

<Property graph="0" name="IsolationProperty" src="192.168.3.-1"

dst="130.10.0.2" lv4proto="UDP" />

<Property graph="0" name="IsolationProperty" src="192.168.3.-1"

dst="130.10.0.3" lv4proto="UDP" />

<!-- policy 3 -->

<Property graph="0" name="IsolationProperty" src="192.168.3.-1"

dst="130.10.0.1" lv4proto="OTHER" />

<Property graph="0" name="IsolationProperty" src="192.168.3.-1"

dst="130.10.0.2" lv4proto="OTHER" />

<Property graph="0" name="IsolationProperty" src="192.168.3.-1"

dst="130.10.0.3" lv4proto="OTHER" />

<!-- policy 4 -->
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<Property graph="0" name="ReachabilityProperty" src="130.10.0.1"

dst="192.168.3.-1" lv4proto="ANY" />

<Property graph="0" name="ReachabilityProperty" src="130.10.0.2"

dst="192.168.3.-1" lv4proto="ANY" />

<Property graph="0" name="ReachabilityProperty" src="130.10.0.3"

dst="192.168.3.-1" lv4proto="ANY" />

</PropertyDefinition>

The network consists of a straightforward setup: it includes three distinct
servers linked to an endpoint network through a forwarder, and one of these servers
(server1) is equipped with OSSEC 3.7. The security requirements are minimal,
allowing all TCP traffic between the endpoint network and the servers.

For the generation of the Firewall Allocation Scheme and to enable vlogi’s auto-
mated response to attacks, VEREFOO, React-VEREFOO, and VIP are required.
The initial FAS is produced using standard VEREFOO, while subsequent versions
are dynamically generated by vlogi employing React-VEREFOO and VIP. A crit-
ical aspect of this setup is running VEREFOO and React-VEREFOO on distinct
ports. This is necessary because they are both configured by default to use port
8085, which would lead to a conflict.

For the purpose of this demonstration, it is presumed that the working directory
is set to vlogi’s root project folder, in line with the guidelines provided in Subsection
6.2.3. Once the necessary .jar files are prepared, the following commands are used
to start VEREFOO on port 8086, React-VEREFOO on port 8085, and VIP on
port 8080:

Listing 7.2. Launch VEREFOO React-VEREFOO and VIP

java -jar path/to/verefoo.jar --server.port=8086

java -jar path/to/react-verefoo.jar

java -jar path/to/vip.jar

7.2 Generating the Firewall Allocation Scheme

With all preparations complete, the first step is to create the initial FAS. This is
achieved using the command below:

Listing 7.3. Generate the initial FAS

curl -X POST http://localhost:8086/verefoo/adp/simulations -H

"accept:␣application/xml" -H "Content-Type:␣application/xml"

-d @path/to/Topology.xml > path/to/FAS.xml

The generated FAS is identical to the original topology file, except for one
difference: the introduction of a firewall between the forwarder and the endpoint
network. In adherence to the NSRs specified in the topology file, this firewall is
configured to allow all TCP traffic while concurrently blocking everything else:

Listing 7.4. Firewall node within the initial FAS

<!-- [...] -->

67



Demo validation

<node name="1.0.0.4" functional_type="FIREWALL">

<neighbour name="33.33.33.2"/>

<neighbour name="192.168.3.-1"/>

<configuration name="AutoConf" description="1">

<firewall defaultAction="DENY">

<elements>

<action>ALLOW</action>

<source>-1.-1.-1.-1</source>

<destination>-1.-1.-1.-1</destination>

<protocol>TCP</protocol>

<src_port>*</src_port>

<dst_port>*</dst_port>

</elements>

</firewall>

</configuration>

</node>

<!-- [...] -->

Below is a visual representation of the FAS, showcasing the integration of the
firewall:

Figure 7.1. Visual representation of the initial FAS

Prior to advancing to the next step of the process, and as indicated in Subsection
6.2.3, a directory named verefoo network files needs to be created inside vlogi’s
root project folder. The purpose is to store the topology file and the FAS. The
following command illustrates how to create this directory and move the files:

Listing 7.5. Move topology and FAS files into vlogi/verefoo network files

mkdir verefoo_network_files

mv path/to/Topology.xml path/to/FAS.xml verefoo_network_files

7.3 Launching the virtual network

With the FAS in place, the next step is to generate the required files for the virtual
network and proceed with its launch. This demonstration involves deploying fire-
walls configured as iptables. Consequently, this choice is specified in the following
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request to ensure the correct firewall type is deployed:

Listing 7.6. Generate virtual network files

curl -X POST \

"http://localhost:8085/verefoo/adp/venvironment/"\

"generateFiles?firewallType=IPTABLES" \

-H "Content-Type:␣application/xml" \

-d @verefoo_network_files/FAS.xml

Executing this command results in the creation of a folder named vnetwork

inside vlogi’s root project folder, which houses all the essential files needed to
launch the network.

The final step before launching the network is to generate the firewall configu-
ration files. In this network configuration, only one firewall is present, requiring the
generation of a single configuration file. If the network included multiple firewalls,
a corresponding number of configuration files would need to be generated.

Before generating the configuration file, it is necessary to store the FAS within
React-VEREFOO:

Listing 7.7. Store FAS inside React-VEREFOO

curl -X POST http://localhost:8085/verefoo/fwd/nodes/addnfv -H

"accept:␣application/xml" -H "Content-Type:␣application/xml"

-d @verefoo_network_files/FAS.xml

Following this, the firewall configuration file is generated using the command
below:

Listing 7.8. Generate the firewall configuration file

curl -X GET \

http://localhost:8085/verefoo/fwd/deploy/getIptables/1 \

-H "accept:␣*/*" \

-o vnetwork/FirewallConfig/iptables/iptablesFirewall_1_1.sh

Prior to launching the virtual network, it is important to ensure that all script
files in the vnetwork folder are granted execute permissions:

Listing 7.9. Grant execute permissions to all script files inside vnetwork

find vnetwork -type f -name "*.sh" -exec chmod +x {} \;

With these preparations completed, the virtual network is ready to be activated.
It is important to specify the deployment of iptables firewalls when executing the
start script:

Listing 7.10. Start the virtual network

cd vnetwork && sudo ./startScript.sh iptables
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7.4 Running vlogi

The final manual action required is starting vlogi. Since iptables firewalls have
been deployed throughout the network, ensuring that the firewall-type key in
the config.json file is set to IPTABLES is essential. This setting informs vlogi about
the specific type of firewall in use, enabling it to generate the correct configuration
files.

With OSSEC 3.7 installed locally on server1, the command to start vlogi is as
follows:

Listing 7.11. Start vlogi

python3 vlogi ossec 3.7 jsonout -i local

Once started, vlogi will begin monitoring OSSEC’s alert file to detect and re-
spond to new security attacks.

7.5 Attack simulation

Figure 7.2. Port scan attack simulation

The next step is to simulate an attack, specifically a port scan, targeting server1

from client1. Port scans are commonly encountered in cyber attacks and are
relatively straightforward to detect. Being a host-based IDS, OSSEC typically does
not detect network-based attacks directly. To address this, server1 has been set
up with iptables to create logs, while OSSEC has been configured to analyze these
logs in order to identify port scans. The rules added to OSSEC’s local rules.xml

for detecting port scans are as follows:

Listing 7.12. Rules added to local rules.xml for detecting port scans

<rule id="100009" level="1">

<options>no_log</options>

<decoded_as>iptables</decoded_as>

<description>Individual TCP SYN request detected</description>
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</rule>

<rule id="100010" level="10" frequency="20" timeframe="60">

<if_matched_sid>100009</if_matched_sid>

<decoded_as>iptables</decoded_as>

<description>Possible TCP SYN port scan detected</description>

<same_source_ip />

</rule>

Rule 100009 is designed to match any TCP SYN request without logging it.
This rule assists rule 100010, which activates when at least 20 TCP SYN requests
from the same source IP are identified within 60 seconds, signaling a potential port
scan.

The attack simulation starts by accessing client1 via a shell:

Listing 7.13. Open a shell to client1

sudo docker exec -it client1 /bin/sh

The port scan is simulated through a simple command employing netcat. This
method is preferred over just using nmap to minimize the need for extra software
installations on endpoints. The specific command used for the attack simulation is:

Listing 7.14. Simulate a port scan

for port in ✩(seq 1 25); do nc 130.10.0.1 ✩port; done

This command sends 25 TCP SYN requests to server1, triggering the rule in
OSSEC and resulting in the following alert:

Listing 7.15. Alert generated by OSSEC

{
"rule": {
"level": 10,

"comment": "Possible TCP SYN port scan detected",

"sidid": 100010,

"frequency": 20,

// [...]

},
// [...]

"protocol": "TCP",

"srcip": "192.168.3.1",

"dstip": "130.10.0.1",

// [...]

"agent_name": "server1",

"timestamp": "2023 Dec 13 10:35:57",

"logfile": "/var/log/ulog/syslogemu.log"

}

vlogi then processes this alert, converting it into a VEREFOO NSR using the
VIP tool:
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Listing 7.16. OSSEC alert converted to VEREFOO NSR

<PropertyDefinition>

<Property graph="0" name="IsolationProperty" src="192.168.3.1"

dst="130.10.0.1" lv4proto="TCP"/>

</PropertyDefinition>

Subsequently, vlogi integrates this requirement with existing ones in the initial
FAS using the merge requirements module. This process results in two distinct
sets of NSRs: the merged NSRs, now located within the PropertyDefinition

node, and the original NSRs, retained within the InitialProperty node:

Listing 7.17. Merged network requirements

<PropertyDefinition>

<Property name="ReachabilityProperty" graph="0" src="192.168.3.-1"

dst="130.10.0.2" lv4proto="TCP" isSat="true" />

<Property name="ReachabilityProperty" graph="0" src="192.168.3.-1"

dst="130.10.0.3" lv4proto="TCP" isSat="true" />

<Property name="IsolationProperty" graph="0" src="192.168.3.-1"

dst="130.10.0.1" lv4proto="UDP" isSat="true" />

<Property name="IsolationProperty" graph="0" src="192.168.3.-1"

dst="130.10.0.2" lv4proto="UDP" isSat="true" />

<Property name="IsolationProperty" graph="0" src="192.168.3.-1"

dst="130.10.0.3" lv4proto="UDP" isSat="true" />

<Property name="IsolationProperty" graph="0" src="192.168.3.-1"

dst="130.10.0.1" lv4proto="OTHER" isSat="true" />

<Property name="IsolationProperty" graph="0" src="192.168.3.-1"

dst="130.10.0.2" lv4proto="OTHER" isSat="true" />

<Property name="IsolationProperty" graph="0" src="192.168.3.-1"

dst="130.10.0.3" lv4proto="OTHER" isSat="true" />

<Property name="ReachabilityProperty" graph="0" src="130.10.0.1"

dst="192.168.3.-1" lv4proto="ANY" isSat="true" />

<Property name="ReachabilityProperty" graph="0" src="130.10.0.2"

dst="192.168.3.-1" lv4proto="ANY" isSat="true" />

<Property name="ReachabilityProperty" graph="0" src="130.10.0.3"

dst="192.168.3.-1" lv4proto="ANY" isSat="true" />

<Property graph="0" name="IsolationProperty" src="192.168.3.-1"

dst="130.10.0.1" lv4proto="TCP" />

</PropertyDefinition>

<InitialProperty>

<!-- Same policies as before -->

</InitialProperty>

At this point, vlogi informs the user that it has detected an attack and re-
configured the network. It then asks the user if they wish to apply the changes.
This prompt occurs because the auto confirm flag was not set in the initial launch
parameters of vlogi. Had this flag been enabled, vlogi would have automatically
applied the changes without requiring confirmation. Upon user approval, vlogi
produces the updated FAS. In this revised version, firewall1 is configured to al-
low TCP traffic exclusively between server2, server3, and the endpoint network,
effectively isolating the endpoint network from server1:

Listing 7.18. New firewall rules

<node name="1.0.0.4" functional_type="FIREWALL">

<neighbour name="33.33.33.2"/>
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<neighbour name="192.168.3.-1"/>

<configuration name="AutoConf" description="1">

<firewall defaultAction="DENY">

<elements>

<action>ALLOW</action>

<source>130.10.0.-1</source>

<destination>192.168.3.-1</destination>

<protocol>ANY</protocol>

<src_port>*</src_port>

<dst_port>*</dst_port>

</elements>

<elements>

<action>ALLOW</action>

<source>192.168.3.-1</source>

<destination>130.10.0.3</destination>

<protocol>TCP</protocol>

<src_port>*</src_port>

<dst_port>*</dst_port>

</elements>

<elements>

<action>ALLOW</action>

<source>192.168.3.-1</source>

<destination>130.10.0.2</destination>

<protocol>TCP</protocol>

<src_port>*</src_port>

<dst_port>*</dst_port>

</elements>

</firewall>

</configuration>

</node>

7.6 Verifying the results

Following the automatic reconfiguration of the network by vlogi, the final step is to
confirm that the new setup effectively blocks a port scan from client1 to server1.
This verification can be accomplished by executing the command presented in List-
ing 7.14 again.

Figure 7.3. Port scan is blocked by the firewall
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Chapter 8

Conclusions and future work

8.1 Key achievements

This thesis focused on leveraging IDS alerts for automatically reconfiguring net-
works using the VEREFOO framework. The central challenge was to develop a
system, complete with all necessary components, capable of accomplishing this
task. A foundational step involved creating the VIP tool, designed to translate
various alerts from different IDSs into VEREFOO NSRs. This tool was developed
with a focus on modularity and ease of extensibility, simplifying the addition of
support for new alert modes and IDSs. Extensive testing has verified the reliability
of the VIP tool at this stage of research.

A pivotal aspect of this research was establishing a cyclic procedure to enable
continuous defense against cyber attacks. This approach demonstrated the feasi-
bility of an entirely automated system that can autonomously protect a network
from cyber threats.

Another significant part of this research was developing the mergeRequirements
algorithm. While still in its early stages, this algorithm plays a crucial role in
merging the existing requirements with those derived from IDS alerts. Given the
intricate nature of this task, the algorithm is designed to be both efficient and
comprehensive. While not yet optimal, the algorithm compensates by incorporating
various preprocessing steps and early exit strategies to enhance its efficiency. A
noteworthy feature of the algorithm is its ability to determine the corresponding
private networks for public NAT IP addresses inside extracted requirements. In
addition to that, the algorithm is also designed to address complex scenarios, such
as environments with NATs and loadbalancers, ensuring appropriate handling of
these network configurations.

The integration of the virtual network translator into VEREFOO was crucial for
actual network deployment or reconfiguration based on the initial and extracted re-
quirements. Introducing React-VEREFOO into the process aimed to accelerate the
reconfiguration procedure. However, React-VEREFOO’s initial tendency to recon-
figure every FORWARDER node, regardless of its origin, posed a challenge. This issue
was resolved by introducing a new VFORWARDER functional type, as detailed in
Subsection 5.3.2.

74



Conclusions and future work

The integration of all components into the vlogi tool marked a significant step to-
wards complete defense automation. vlogi automates the process, requiring manual
intervention only for the initial step of building the network topology file and gener-
ating initial configurations. The subsequent processes are managed autonomously
by vlogi.

Additionally, a demonstration script was developed to detail the complete pro-
cess. This script serves as a step-by-step guide for users, enhancing comprehension
and providing valuable insights for future project maintainers. It features two test
networks: the first employs Snort 3 as a network-based IDS, while the second uti-
lizes OSSEC 3.7, installed locally on a server, as a host-based IDS. This setup offers
a diverse and practical learning experience, showcasing the system’s adaptability
to different IDS configurations.

Alongside this, minor bugs in the virtual network translator were addressed,
and small enhancements were made, boosting its functionality and reliability.

8.2 Limitations of the current approach

Some limitations in the current approach lie within the foundational assumptions
of the mergeRequirements algorithm, as elaborated in Subsection 6.1.10. Being
in its nascent stage, the algorithm necessitates additional refinement, particularly
in terms of efficiency. Although it has undergone initial testing, more comprehen-
sive and diverse network configuration tests are necessary for its validation and
optimization.

Another limitation is vlogi’s assumption of only one IDS within the network
topology. While deploying multiple instances of vlogi is possible for networks with
more than one IDS, the lack of a synchronization mechanism among these instances
poses a challenge. Thus, it is currently advisable to operate with a single IDS and
one instance of vlogi per network.

The approach currently supports only Snort 3 and OSSEC 3.7 (local installa-
tion).

The virtual network translator, in its current state, lacks the generalization and
optimization necessary for use in production environments.

8.3 Next steps

Future work by maintainers should aim at enhancing the efficiency of the merg-
eRequirements algorithm. It is crucial to test it in a variety of network configura-
tions to ensure its adaptability and effectiveness.

Other enhancements should include extending vlogi to support multiple differ-
ent IDSs in one network. Multi-agent IDS setups can be achieved either natively, by
configuring multiple OSSEC agent installations to send data to a server installa-
tion, or alternatively, by integrating OSSEC with other IDSs such as Snort. In this
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latter approach, OSSEC would be configured to receive and act upon events gen-
erated by Snort. Another important improvement for vlogi is the implementation
of a fully functional preprocessing in the LogFilter module.

It is also recommended to expand the system’s compatibility with more IDSs like
Suricata and FortiGuard, including older versions of currently supported systems
for backward compatibility, and other alert modes.

The virtual network translator requires generalization and optimization for di-
verse network settings. Moreover, in its present form, the translator is limited to
supporting only iptables firewalls. This contrasts with the broader range of fire-
wall types supported by VEREFOO and vlogi, which include Open vSwitch and
EBPF among others. Future improvements should therefore focus on enhancing
the translator to align with the capabilities of VEREFOO and vlogi.
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Appendix A

Environment setup

This appendix provides guidance for future maintainers on setting up a develop-
ment environment for this thesis work. It includes system requirements, mandatory
dependencies, and optional dependencies that may be useful for future development
of the VEREFOO framework.

A.1 System requirements

The development and testing of the process and related components were conducted
on a VirtualBox VM configured as follows:

❼ Operating system: Ubuntu 20.04 LTS (64 bit)

❼ Processor: Intel Core i7-6700HQ CPU

❼ Storage: 50 GB HDD

❼ Memory: 4 GB RAM

❼ CPU cores: 4

A.2 Mandatory dependencies

The network created by the virtual network translator from a VEREFOO FAS
is Docker-based. Both VEREFOO and VIP require Java 1.8, and VEREFOO
additionally utilizes the z3 theorem prover. Manual API requests to VEREFOO
are made using curl, and vlogi requires Python’s watchdog and requests packages.
The following installations are necessary:

❼ Docker Engine - Follow the instructions provided at [20].

❼ Docker Compose - Install the standalone version as per instructions at [21].

❼ OpenJDK 1.8 - Installation command is:
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Listing A.1. Install OpenJDK 1.8

sudo apt install openjdk-8-jdk

❼ curl - Installation command is:

Listing A.2. Install curl

sudo apt install curl

❼ Python’s package manager - Ubuntu 20.04 includes Python 3.8 by default.
Install pip with:

Listing A.3. Install pip

sudo apt install python3-pip

❼ Z3 Prover - Download z3-4.8.15-x64-glibc-2.31.zip from [22]. Avoid
newer versions as they may not be compatible with VEREFOO. Extract the
archive, rename the folder to z3, and move it to /home. Then, add the
following lines to ⑦/.bashrc:

Listing A.4. Setting Z3’s environment variables

LD_LIBRARY_PATH=/home/z3/bin/

Z3=/home/z3/bin/

A.3 Optional dependencies

These dependencies, while not required by the process developed in this thesis,
could be valuable in the future. As some features of VEREFOO require Neo4j, and
the included version with VEREFOO is Windows-specific, the steps below guide
you in setting up Neo4j in the VM:

❼ Download and install cypher-shell 1.1.15 from [23] and neo4j 3.5.25

from [24]:

Listing A.5. Install Cypher Shell and Neo4j

sudo apt install ./cypher-shell_1.1.15_all.deb

sudo apt install ./neo4j_3.5.25_all.deb

If links are broken, find the .deb files in the neo4j-files directory of the
ids-demo branch of VEREFOO.

❼ Start Neo4j by running:

Listing A.6. Start Neo4j

sudo /usr/bin/neo4j console

❼ Access http://localhost:7474/, log in with username neo4j and password
neo4j, then change the password to costLess.
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