
Master of Science in Computer Engineering

Master Degree Thesis

Evaluation of a Heuristic
Algorithm for Firewall

Configuration

Supervisors
prof. Fulvio Valenza
prof. Riccardo Sisto

dott. Daniele Bringhenti

Candidate

David Di Marco

Academic Year 2023-2024

This work is subject to the Creative Commons Licence

Summary

In the ever-evolving landscape of network security and orchestration, the Network
Functions Virtualization (NFV) paradigm is a novel innovative paradigm revolu-
tionizing networking technology. NFV presents significant advantages over tradi-
tional networks by decoupling network functions from hardware appliances. This
innovation enables the deployment of software processes as service functions on
versatile general purpose servers. This approach introduces unparalleled flexibil-
ity and agility, enabling the creation of Service Graphs that generalize the Service
Function Chain (SFC) concept. These graphs describe the organization and con-
nection of network functions essential for end-to-end service delivery. However,
a notable challenge arises in this context. While service designers are typically
responsible for creating Service Graphs, security managers separately handle the
allocation and configuration of Network Security Functions (NSFs) like firewalls.
These manual operations are human error-prone and can result in latency when
adapting to evolving security requirements.

To address these challenges, this thesis contributes to the advancement of the
VEREFOO (VErified REFinement and Optimized Orchestration) framework, a
Java-based system designed to automatically determine the optimal placement and
configuration of network security mechanisms in a virtualized network, such as
firewalls and anti-spam filters given as input the network topology and a set of
Network Security Requirements (NSRs).

In prior studies, VEREFOO was explored through two distinct implementations.
The initial approach is based on the formulation of the problem for optimization
and verification and its execution using Z3, an advanced MaxSMT solving tool.
This intricate problem-solving approach aims to meet a set of rigid constraints that
are imperative for fulfillment. Simultaneously, it endeavors to attain the maximum
cumulative value of specific weights assigned to soft clauses. The primary goal is
to minimize the number of instances of NSFs for optimal resource utilization. Ad-
ditionally, there is a focus on optimally configuring the rules in order to enhance
the efficiency of filtering operations. Importantly, the formulation of the MaxSMT
problem extends beyond optimization; it also serves the purpose of formal verifica-
tion, ensuring the solution is formally correct using formal methods (correctness-
by-construction). However, this solution faces scalability problems. Despite the
optimal allocation of firewalls and rules, it still experiences significantly prolonged
resolution times, yet when dealing with networks of small to medium sizes.

To tackle the scalability challenges inherent in the initial MaxSMT-based so-
lution, an innovative heuristic algorithm has been introduced. In this context, a
heuristic algorithm denotes an approach that, while not ensuring optimality, strikes

3

a balance between achieving suboptimal results and enhancing scalability. This
strategic decision allows for the handling of considerably larger networks, although
the resultant solution may not be optimal as the one proposed by the MaxSMT
solver. It means that the solution given by the heuristic algorithm will result in a
higher number of allocated NSFs and configured rules. Nevertheless, the notewor-
thy advantage lies in the capability to effectively manage vastly expanded network
sizes, accompanied by substantially reduced resolution times when compared to the
MaxSMT-based approach.

The main goal of this thesis is to compare these two distinct approaches to
evaluate their performance in real-world scenarios and to improve the heuristic al-
gorithm where possible. This assessment was conducted through a series of tests
exploring feasibility, scalability, and optimality of both approaches. The aim is to
determine the circumstances in which using one approach is more advantageous
than the other, thus providing clear insights into optimal situations for the appli-
cation of each method.

4

Acknowledgments

Alla mia famiglia.

Contents

List of Figures 10

List of Tables 12

Listings 13

1 Introduction 15

1.1 Thesis objective . 15

1.2 Thesis description . 17

2 Software Defined Networking and Network Function Virtualiza-
tion 19

2.1 Limitations of traditional networks 19

2.2 Software-Defined Networks . 20

2.2.1 Essential Concepts in Software-Defined Networking (SDN) . 20

2.2.2 Architectural Framework for Software Defined Networking
(SDN) . 21

2.3 Network Functions Virtualization 22

2.3.1 Essential Concepts in Network Functions Virtualization . . . 22

2.3.2 Architectural Framework for Network Functions Virtualiza-
tions (NFV) . 23

3 VEREFOO 25

3.1 Foundation and Origins of VEREFOO 25

3.2 Service Graph . 26

3.3 Allocation Graph . 26

3.4 VEREFOO Architecture . 28

3.5 Network Security Requirements . 30

3.5.1 XML representation of the Network Security Requirements . 30

3.6 Traffic Flows Modeling . 31

6

3.6.1 Predicates . 32

3.6.2 Atomic Flows . 33

3.6.3 Maximal Flows . 34

4 The MaxSMT Problem 36

4.1 Maximum Satisfiability Modulo Theories 36

4.1.1 Boolean Satisfiability Problem (SAT) 36

4.1.2 Satisfiability Modulo Theories (SMT) 37

4.1.3 Maximum Satisfiability Modulo Theories (MaxSMT) 37

4.2 Z3 Theorem Prover . 38

4.2.1 Z3 Architecture . 39

4.2.2 Z3 Example . 40

5 Heuristics in VEREFOO 41

5.1 The Heuristic Approach . 41

5.2 Complete Heuristics . 42

5.2.1 Initialization . 43

5.2.2 Allocation . 47

5.2.3 Configuration . 48

5.3 Partial Heuristics . 49

5.4 Alternative idea for Heuristics . 50

6 Test Campaign Preparation: Code Interventions and New Topol-
ogy Design 52

6.1 VEREFOO Implementations . 52

6.2 Code Interventions . 53

6.2.1 Allocation Places List Sorting 53

6.2.2 Correction of Heuristics-related Code 56

6.3 Topologies . 57

6.4 Test Classes . 63

6.5 Network Security Requirements Generator 64

7 Test Campaign - First Phase 66

7.1 First Scenario - Fixed Number of Endpoints and Variable Number
of NSRs . 68

7.1.1 100% Isolation Requirements 68

7

7.1.2 50% Isolation Requirements and 50% Reachability Require-
ments . 70

7.2 Second Scenario - Variable Number of Endpoints and Variable Num-
ber of NSRs . 73

7.2.1 100% Isolation Requirements 73

7.2.2 50% Isolation Requirements and 50% Reachability Require-
ments . 75

7.3 Considerations . 77

8 Optimizing firewall Configuration for Minimal Rule Allocation 79

8.1 Eliminating Redundant Rule Configuration 79

8.1.1 Elements class . 80

8.2 Post Processing of Rules . 81

8.3 Check with Verigraph . 82

9 Test Campaign - Second Phase 84

9.1 100% Isolation Requirements . 85

9.1.1 Execution Times . 85

9.1.2 Number of Allocated Firewalls 87

9.1.3 Number of Configured Rules 89

9.2 50% Isolation Requirements and 50% Reachability Requirements . . 89

9.2.1 Execution Times . 89

9.2.2 Number of Allocated Firewalls 92

9.2.3 Number of Configured Rules 94

9.3 Evaluation of Differences Across Topologies 96

9.3.1 MaxSMT Version - 100% Isolation Requirements 96

9.3.2 MaxSMT Version - 50% Isolation Requirements and 50%
Reachability Requirements 99

9.3.3 Heuristics Version - 100% Isolation Requirements 102

9.3.4 Heuristics Version - 50% Isolation Requirements and 50%
Reachability Requirements 105

9.4 Considerations . 108

10 Test Campaign - Third Phase 109

10.1 Optimality Tests . 110

10.1.1 Geant Topology . 110

10.1.2 Internet2 Topology . 112

8

10.1.3 Considerations . 113

10.2 Time and Memory Limits in the Heuristic Approach 114

10.2.1 Geant Topology . 114

10.2.2 Internet2 Topology . 115

10.2.3 Considerations . 115

11 Conclusions 116

Bibliography 118

9

List of Figures

2.1 Architecture of an SDN-based network 21

2.2 Architecture of the ETSI Framework for NFV 24

3.1 Overall Architecture of VEREFOO 28

4.1 Overall system architecture of Z3 39

5.1 Example of list LA. The first row is the list of APs, with each of them
being associated with a corresponding weight listed in the second row 46

5.2 Example of ordered list LA . 47

5.3 Allocation Place a3 is extracted from list LA 47

5.4 Visual example of the Branch-and-Bound method 51

6.1 Example of a simple Service Graph 54

6.2 Outcome of the framework using the wrong sorting method 55

6.3 Outcome of the framework using the right sorting method 56

6.4 VPNConfB topology . 57

6.5 VPNConfB topology basic structures 58

6.6 Allocation Graph inspired by Geant network topology 59

6.7 Example of Geant topology adapted to VEREFOO 60

6.8 Allocation Graph inspired by Internet2 network topology 61

6.9 Example of Geant topology adapted to VEREFOO 62

7.1 Execution times . 68

7.2 Number of allocated Firewalls . 69

7.3 Number of configured rules . 70

7.4 Execution times . 71

7.5 Number of allocated Firewalls . 72

7.6 Number of configured rules . 72

7.7 Execution times . 73

10

7.8 Number of allocated Firewalls . 74

7.9 Number of configured rules . 75

7.10 Execution times . 75

7.11 Number of allocated Firewalls . 76

7.12 Number of configured rules . 77

9.1 Execution times comparison - GEANT 85

9.2 Execution times comparison - INTERNET2 86

9.3 Number of allocated firewalls - GEANT 87

9.4 Number of allocated firewalls - INTERNET2 88

9.5 Number of configured rules - GEANT and INTERNET2 89

9.6 Execution times comparison - GEANT 90

9.7 Execution times comparison - INTERNET2 91

9.8 Number of allocated firewalls - GEANT 92

9.9 Number of allocated firewalls - INTERNET2 93

9.10 Number of configured rules - GEANT 94

9.11 Number of configured rules - INTERNET2 95

9.12 Execution Times . 96

9.13 Number of Allocated Firewalls . 97

9.14 Number of Configured Rules . 98

9.15 Execution Times . 99

9.16 Number of Allocated Firewalls . 100

9.17 Number of Configured Rules . 101

9.18 Execution Times . 102

9.19 Execution Times . 103

9.20 Number of Configured Rules . 104

9.21 Execution Times . 105

9.22 Execution Times . 106

9.23 Number of Configured Rules . 107

10.1 . 110

10.2 . 111

10.3 . 111

10.4 . 112

10.5 . 112

10.6 . 113

10.7 Execution Time Limits . 114

10.8 Execution Time Limits . 115

11

List of Tables

6.1 Network Security Requirements of the example 54

6.2 Configuration of firewall 20.0.0.1 . 55

6.3 Configuration of firewall 20.0.0.2 . 55

6.4 Configuration of Firewall 20.0.0.4 56

12

Listings

3.1 XML representation of an Allocation Graph 31
4.1 Example of a MaxSMT problem expressed in Z3 language 40
4.2 Example of a SAT solution expressed in Z3 language 40
6.1 Sorting algorithm for Allocation Places list. 53
6.2 Fixed sorting order of Allocation Places’ list. 54
8.1 Check whether a rule already exists on the firewall or not. 80
8.2 Check whether a rule already exists on the firewall or not. 80
8.3 Algorithm for post processing of rules. 81

13

Chapter 1

Introduction

1.1 Thesis objective

In the ever-evolving landscape of network technologies, two prominent innovations
are reshaping the networking and security paradigms: Network Function Virtualiza-
tion (NFV) and Software Defined Networking (SDN). These cutting-edge advance-
ments represent transformative approaches to network architecture, with profound
implications for enhancing the security landscape, amplified by the continual devel-
opment of increasingly automated tools that can replace manual and error-prone
operations.

NFV involves the abstraction of network functionalities from traditional hard-
ware, enabling the creation of virtualized network instances on general-purpose
hardware appliances. This dynamic approach facilitates efficient resource utiliza-
tion and provides a flexible environment for deploying end to end connectivity, with
strong security mechanisms. For example, a security task that is often both time-
consuming and error-prone involves determining the placement and configuration
of Network Security Functions (NSFs), like firewalls. These functions are essential
for meeting specific Network Security Requirements (NSRs), which are essentially
security constraints through which a specific behavior of the network is enforced.
For instance, it could be required that a network node, that is compromised after
an attack, must be isolated from a portion of the network in which there are servers
that manage sensible informations. Alternatively, it may be necessary for a network
node to have access to a specific network segment. In order to satisfy these isola-
tion or reachability requirements, one or more NSFs must be properly placed and
configured. Performing this task manually takes time, is prone to errors and may
result in suboptimal outcomes. Automation, in this context, not only reduces the
burden on human effort but also ensures provably correct and optimal solutions.
The eventual formal correctness of the solution adds significant value, eliminating
the need for extensive manual verification. Users can place high confidence in a
solution generated through this automated approach. Optimal solutions contribute
to resource efficiency by minimizing computational requirements and maximizing
overall performance.

On the other hand, SDN introduces a paradigm shift by decoupling the con-
trol plane from the data plane. This separation allows for centralized control and

15

Introduction

programmability, empowering administrators to dynamically configure and manage
network behavior. The programmability inherent in SDN opens up new possibilities
for implementing and adapting security measures in real-time.

The integration of these technologies holds high potential for fortifying net-
work security. By abstracting network functions and centralizing control, security
mechanisms can be dynamically deployed, configured, and adapted to emerging
threats. This not only enhances the agility and responsiveness of security measures
but also introduces a level of flexibility and scalability crucial for modern network
environments.

The goal is to develop an automated tool capable of providing a dynamic and
optimal allocation and configuration of NSFs on specific nodes within a network,
based on the given logical topology and a set of NSRs. This tool aims to model
the real-time behavior of the network, with a focus on minimizing response times
to potential cyber attacks. While existing literature presents various approaches,
none of them offers a fully automated solution to effectively mitigate the risk of
human configuration errors. Some existing solutions are constrained to small-scale
networks, encountering scalability issues. Additionally, certain approaches lack
optimality and formal correctness.

VEREFOO (VErified REFinement and Optimized Orchestration) is a novel
framework developed in Politecnico di Torino that manages the creation, config-
uration and orchestration of a complete end-to-end network security service. It
was presented during the 2019 4th IEEE International Conference on Comput-
ing, Communications and Security (ICCCS) ([1]). The initial version of the sys-
tem was created with the aim of addressing and solving a Maximum Satisfiability
Modulo Theories (MaxSMT) problem using Z3, a theorem solver developed by
Microsoft Research, known for constructing solutions based on formal methods,
ensuring correctness-by-construction. This solution consistently achieves optimal-
ity in terms of the number of firewalls allocated in the network and the configured
rules. However, scalability concerns emerge when dealing with expansive networks,
as the resolution time experiences exponential growth with the increasing number
of endpoints in the network and the security requirements the framework must
fulfill.

To address this challenge, a second version was developed, employing a heuris-
tic algorithm. This alternative version excels in delivering faster resolutions, albeit
offering a more approximate solution with respect to the solution based on the
MaxSMT problem since it will result in a higher number of allocated NSFs and
configured rules. It strategically navigates a trade-off between optimization, com-
pleteness, accuracy, and execution speed.

This thesis aims to contribute to the ongoing evolution of this innovative frame-
work. The focus lies in empirically testing both approaches on real-world network
topologies. The objective is to discern the situations where one approach proves
more advantageous than the other, evaluating their performance across varying
numbers of the network endpoints and security requirements. Multiple criteria
will be considered to provide a comprehensive understanding of the framework’s
behavior in diverse scenarios, by means of scalability and performance tests.

16

Introduction

1.2 Thesis description

Chapter 1 provides a concise overview of the thesis goals and its description. The
subsequent sections are structured as follows:

• Chapter 2 provides a comprehensive exploration of SDN and NFV technolo-
gies. It offers insights into how these technologies operate, their functionali-
ties, and the transformative changes they bring about.

• Chapter 3 provides an in-depth description of VEREFOO, a Java-based
framework that this thesis aims to enhance. The focus of this chapter is to
describe the operational principle of VEREFOO, delineating the input ele-
ments and output, with a more comprehensive exploration of the two methods
employed for modeling traffic flows which are crucial for the tests that will
be conducted during this thesis work: Atomic Flows and Maximal Flows.

• Chapter 4 aims to delve into the understanding of what is a MaxSMT prob-
lem, providing an overview of its origins and detailing the process of modeling
NSRs in VEREFOO. Additionally, a section is dedicated to introducing the
Z3 solver, a powerful tool employed to address the MaxSMT prolem.

• Chapter 5 begins by describing what a heuristic algorithm is. It then goes
on to detail the heuristic algorithm implemented in VEREFOO, providing a
thorough examination of each step: initialization, allocation, and configura-
tion.

• Chapter 6 delineates corrective and preemptive actions taken prior to the
beginning of test campaigns. Specifically, it shows code corrections, tools
used, and topologies employed during testing.

• Chapter 7 broadly illustrates the differences between the MaxSMT-based
version and the heuristic-based version, as well as between the model us-
ing Atomic Predicates and the one utilizing Maximal Flows. Its focus is on
scalability, execution times and optimality.

• Chapter 8 elucidates the enhancements made to the heuristic algorithm. In
particular, given that the first test campaign revealed the heuristic allocating
significantly more rules than the solver for the same topology, the chapter
presents improvements made to optimize the number of rules configured by
the heuristic. Additionally, it demonstrates the validation process using Veri-
graph.

• Chapter 9 presents the results obtained from a second test campaign. This
time, the tests were conducted on two new topologies, primarily aimed at
showing the effectiveness of the new rule post-processing algorithm. Addi-
tionally, it highlights differences in the framework’s behavior across different
topologies.

17

Introduction

• Chapter 10 presents the results of the third and final test campaign. This
time, the primary focus shifts to optimality rather than scalability. Addition-
ally, it shows the maximum time limits that the heuristic algorithm can reach
before exhausting the test IDE’s memory.

• Chapter 11 concludes this thesis work by summarizing the accomplished
achievements and outlining potential future works.

18

Chapter 2

Software Defined Networking and
Network Function Virtualization

This chapter delves into the transformative impact of Software Defined Networking
(SDN) and Network Function Virtualization (NFV) on modern network architec-
ture and operations. SDN revolutionizes network management by separating the
control plane from the data plane, allowing for centralized control, programma-
bility, and dynamic configuration. NFV complements this by virtualizing network
functions, liberating them from hardware constraints and optimizing resource uti-
lization, scalability, and security.

The chapter explores the core principles of SDN, highlighting its benefits in
efficient resource management and orchestration. Similarly, NFV’s role in trans-
forming network functions into software-based entities is elucidated, emphasizing
its contributions to scalability, security, and rapid deployment of network services.

Furthermore, the chapter discusses how these technologies can be leveraged to
automate security aspects within networks, showcasing their combined potential in
overcoming limitations of traditional networking paradigms.

2.1 Limitations of traditional networks

Traditional networks face various limitations in terms of flexibility, scalability, and
efficient resource usage which are resolved by these new two technologies. Some of
them are listed below:

• Rigidity and Configuration Complexity: In traditional networks, con-
figuration and resource management can be complex and inflexible. SDN
separates traffic control from routing table management, enabling dynamic
and flexible network configuration.

• Limited Scalability: Traditional networks may struggle to efficiently han-
dle sudden increases in resource demand. SDN allows for centralized and
programmable network resource management, facilitating scalability through
automated network operations.

19

Software Defined Networking and Network Function Virtualization

• High Costs and Inefficient Resource Usage: Traditional networks often
require dedicated hardware for specific network functions. NFV consolidates
network functions into virtual machines running on standard servers, reducing
hardware costs and improving resource usage.

• Challenges in Security Policy Management: Traditional networks may
struggle to apply security policies flexibly and dynamically. SDN streamlines
security policy management by providing centralized control over network
traffic through a central controller.

• Low Automation: Traditional networks often rely on manual intervention
for configuration, monitoring, and optimization. SDN and NFV introduce
higher levels of automation, allowing networks to dynamically adapt to chang-
ing needs and traffic conditions without intensive manual management.

2.2 Software-Defined Networks

2.2.1 Essential Concepts in Software-Defined Networking
(SDN)

Software-Defined Networking (SDN), as described in [2], is a networking paradigm
that uses software-based controllers or APIs to communicate with underlying hard-
ware infrastructure and control traffic flow across a network. Unlike traditional
architectures relying on dedicated hardware devices like routers and switches, SDN
enables virtual network creation and management, as well as control over traditional
hardware, all through software-based mechanisms. This approach introduces a cen-
tralized server for routing data packets, marking a significant shift in network traffic
orchestration and management compared to traditional methods.

It id based on 4 main concepts:

• Data Plane: this layer manages the dynamic transmission and reception
of network traffic, including both physical infrastructure and virtual compo-
nents. Rules and forwarding tables guide the effective packet forwarding to
the desired destination.

• Control Plane: it makes decisions regarding the optimal route for network
traffic. It includes complex functions such as routing algorithms, switching
mechanisms, and network management strategies. The control plane commu-
nicates constantly with the data plane, providing precise instructions on how
to manage, route, and prioritize traffic.

• Separation of Data Plane and Control Plane: SDN introduces a sep-
aration between the data plane and the control plane, allowing a centralized
controller to manage the network strategy without directly handling data
forwarding.

20

Software Defined Networking and Network Function Virtualization

• APIs for Communication: Northbound and Southbound interfaces are the
connection points between the various layers of SDN. They enable communi-
cation between the control plane and the data plane, as well as between the
control plane and external applications. These APIs allow the controller to
communicate programmatically with network devices, providing instructions
on how to manage traffic, update forwarding tables, and adapt to evolving
network conditions.

2.2.2 Architectural Framework for Software Defined Net-
working (SDN)

Figure 2.1: Architecture of an SDN-based network

The Open Networking Foundation (ONF) [3] is a non-profit consortium ded-
icated to the development, standardization, and commercialization of SDN tech-
nology. It has proposed a reference model for SDN, as illustrated in Figure 2.1,
consisting of three distinct layers which are described below.

• Infrastructure Layer: it includes switching devices like switches and routers
in the data plane. These devices collect network status and process packets
based on rules from a central controller. SDN allows these devices to be
generic and efficient, unlike traditional vendor-specific hardware. Each switch

21

Software Defined Networking and Network Function Virtualization

has forwarding tables with rules and actions for packet handling, eliminating
complex configurations and promoting interoperability.

• Control Layer: it acts as a bridge between the application and infrastructure
layers, providing interfaces for controllers to access network capabilities and
for SDN applications to access network status and configure packet forward-
ing rules. It also enables communication among controllers for network-wide
coordination.

• Application Layer: it hosts SDN applications tailored to user needs, lever-
aging the programmable platform provided by the control layer. Examples
of SDN applications include dynamic access control, seamless mobility, server
load balancing, and network virtualization.

2.3 Network Functions Virtualization

2.3.1 Essential Concepts in Network Functions Virtualiza-
tion

The concept of Network Function Virtualization (NFV) constitutes a natural pro-
gression in the evolution of networking, representing a seamless extension of the
SDN paradigm described in Section 2.2. While SDN focuses on the centralization
and programmability of network control, NFV takes a step further by address-
ing the virtualization of network functions that were traditionally implemented on
dedicated hardware. Without NFV, the inherent limitations of the SDN paradigm
would be pronounced, as the hardware devices it interacts with lack dynamism and
adaptability. These devices are typically engineered for static execution of specific
functions. However, NFV introduces a transformative dimension by virtualizing
network functions that were traditionally bound to hardware, effectively turning
them into versatile software entities.

Through the synergy of NFV and SDN, these virtualized functions can seam-
lessly be deployed on generic hardware devices. This symbiotic relationship em-
powers a hardware device to dynamically alter its behavior in response to evolving
requirements, a capability unattainable in a static hardware-centric environment.
This dynamic adaptability is crucial in addressing the evolving needs and challenges
of modern networks, ensuring a more agile and responsive network infrastructure.

NFV is based on 4 principles:

• Virtualization: NFV uses advanced virtualization technologies to create vir-
tual versions of network functions. This innovative method frees software from
its hardware constraints, bringing about increased flexibility and resource ef-
ficiency in network architectures. This transformative approach marks a sig-
nificant shift in how networks operate, allowing for more adaptability and
efficient use of resources.

22

Software Defined Networking and Network Function Virtualization

• Abstraction: at the heart of NFV is the concept of abstraction, where
network functions are separated from the underlying hardware. This strategic
abstraction creates a clear divide, making it easier to manage and orchestrate
network services. It acts as a channel for smooth adaptability and smart use
of resources, simplifying the way networks are operated.

• Automation: NFV relies on automation to streamline tasks such as deploy-
ment, configuration, and management of network functions. This automated
approach contributes to operational efficiency by reducing manual interven-
tion, enabling quick and precise scaling, and optimizing resource allocation.
Automation in NFV ensures dynamic scaling, rapid deployment, and adapt-
ability to changing conditions, contributing to the overall effectiveness and
benefits of NFV in modern networking environments.

• Standardization: an essential principle in NFV is its strong focus on stan-
dardization, that is led by ETSI (European Telecommunications Standards
Institute) [4]. By promoting the use of standardized interfaces and protocols,
NFV creates an environment where different vendors and components can
seamlessly work together. This commitment to standardization ensures that
various vendors’ technologies can easily integrate and collaborate, making the
overall system more compatible and straightforward. It simplifies the incor-
poration of a diverse range of network functions into the NFV framework.

2.3.2 Architectural Framework for Network Functions Vir-
tualizations (NFV)

To implement these management roles and keep the system open and non-proprietary,
a framework must be defined for standardization. This standard framework should
ensure that the VNF deployed is not tied to specific hardware and does not need
to be especially tailored for any environment. It should offer vendors a reference
architecture that they can follow for consistency and uniformity in the deployment
methodologies of any VNF they implement.

ETSI proposed the framework illustrated in Figure 2.2.

The process of Function Virtualization is divided into three high-level blocks:

• Network Functions Virtualization Infrastructure (NFVI): This block
includes three main components: physical hardware resources divided into
computing, storage, and network categories; the virtualization layer, which
directly interacts with the hardware pool, making it accessible to VNFs as
virtual machines; and virtual resources that are made available to the upper
layer.

• Virtualized Network Functions (VNFs): The VNF layer is where the
virtualization of network functions takes place, consisting of the VNF-block
and its managing entity, the VNF-Manager (VNFM). The VNF-block is a
combination of VNF and Element Management (EM) blocks. In this layer,
a virtualized network function is designed to run on hardware with sufficient

23

Software Defined Networking and Network Function Virtualization

Figure 2.2: Architecture of the ETSI Framework for NFV

computing, storage, and network interfaces. However, the VNF is designed to
be oblivious to the details of the virtualized environment, running on generic
hardware that is essentially a virtual machine. The VNF is expected to behave
and present external interfaces identical to the physical implementation of the
network function and device it is virtualizing.

• Management and Orchestration (MANO): the MANO layer is estab-
lished as an independent block in the architecture, which interacts with both
the NFVI and VNF blocks. Within the framework, MANO is responsible
for managing all resources in the infrastructure layer. This involves tasks like
creating and deleting resources, as well as handling the allocation of resources
for the VNFs.

24

Chapter 3

VEREFOO

3.1 Foundation and Origins of VEREFOO

The increasing prominence of cybersecurity attacks underscores the criticality of
addressing misconfigurations in Network Security Functions like firewalls and VPN
terminators. Manual approaches by network administrators often result suboptimal
distribution of filtering or protection rules on NSFs, leading to inherent vulnerabil-
ities.

In response to this challenge, there is a growing imperative to introduce auto-
mated policy-based network security management tools. These tools aim to support
human operators in creating and configuring security services through an automatic
process. This process is responsible for establishing policies for each NSF, ensuring
adherence to specified security requirements or intents. The advantages of Secu-
rity Automation are evident, including the prevention of human errors, automatic
conflict analysis of policies, and formal verification of their correctness.

The advent of cutting-edge technologies such as SDN and NFV has brought
automation into a pivotal role within the realm of cybersecurity. Leveraging these
technologies allows for the comprehensive harnessing of automation, facilitating
the implementation of security mechanisms that are not only more robust but also
highly effective. Despite these promising prospects, the research in this domain is
still in its early stages. Nowdays, diverse approaches in leveraging these technolog-
ical advancements to enhance cybersecurity have been published in literature. For
example, [5] and [6] establish policy-based automated methodologies for configur-
ing firewalls to meet specific security requirements. However, these methodologies
often fall short in providing formal assurance of correctness. Moreover, their design
is tailored for traditional networks utilizing hardware appliances, neglecting adap-
tation to the dynamic environments of NFV. On the contrary, alternative works,
such as the one highlighted in [7], leverage automation and formal verification to fix
firewall misconfigurations. However, these approaches do not facilitate the creation
of firewall policies from scratch. Another notable work, as discussed in [8], has an
approach similar to the one developed in VEREFOO but does not focus on a larger
pool of network functions among which to choose for enforcing the security policies.

Before delving into the workings of VEREFOO, it is useful to understand the

25

VEREFOO

concepts of Service Graph (SG) and Allocation Graph (AG), as well as their differ-
ences. The first is showed in Section 3.2, while the second is explained in Section
3.3.

3.2 Service Graph

A Service Graph (SG) is a logical topology in networking that consists of a set of
interconnected Network Functions (NFs) including examples likes load balancing,
web-caching, NATs and forwarders. They are used by a service designer responsible
for defining a complete end-to-end network service. It can be considered as a
generalization of the Service Function Chain (SFC), an ordered set of abstract
service functions and constraints that must be applied on selected packets/flows.
The difference is that in the Service Graph, the functions do not need to be placed in
a linear combination, but they can be organized in a more complex graph structure
that allows for multiple paths between endpoints and can include loops.

In VEREFOO, we can represent the Service Graph as

GS = (NS, LS)

where:

1. NS is the set of all the nodes of the Service Graph like the end points and
the NFs. This expression can be represented as

NS = ES ∪ SS

where ES denotes the collection of endpoints directly associated with a ter-
minal or subnetwork in the substrate infrastructure where virtual instances
of functions are physically deployed. Conversely, SS represents the set of
service functions; these elements in SS are basic NFs that do not provide
security protection against cyberattacks but are solely utilized to establish an
end-to-end service.

2. LS is the set of edges representing the directed connections between the nodes,
i.e between a pair of elements of NS.

In this way, the SG provides an abstract view of the network including all the
possible paths a packet could follow. One thing to note is that in the SG, secu-
rity functions like firewalls are not involved, but the primary goal is to provide a
complete network service to the user.

3.3 Allocation Graph

An Allocation Graph (AG) is a logical topology which can either be generated
from scratch or derived from a SG. It shares the same set of NFs as the SG but
incorporates additional nodes known as Allocation Places (APs), which are placed

26

VEREFOO

on each link that connects two consecutive nodes. These places act as placeholders
where a NSF, like a firewall, might be allocated. The configuration of NSF in the
AG is automatically provided. If the decision is made not to allocate a NSF within
an AP, but the AP is part of the path for at least one input requirement, its position
will be occupied by a forwarder. This is because the forwarder’s function would be
to forward each received packet along the designated path.

Formally, the Allocation Graph is a directed graph that can be represented as

GA = (NA, LA)

where:

1. NA is the set of all the network nodes of the Allocation Graph.

2. LA is the set of edges representing the directed connections between the nodes,
i.e between a pair of elements of NA.

The difference with the SG lies in the definition of the set of nodes

NA

. Indeed, in an Allocation Graph, this set is modeled as

NA = EA ∪ SA ∪ PA

where:

1. EA is the set of end points of the topology. We can say that

EA = ES

2. SA is the set of service functions. Even in this case, we can say that

SA = SS

3. PA is the set of the Allocation Places that have been instanciated by the
transformation process from the SG to the AG.

One important thing to say is that, although the transformation process from
the SG to the AG is automatic, the service designer has the authority to impose
constraints on the generation process, either forcing the allocation of a NSF to a
specific AP or forbidding the placement of a new AP in a designated location. This
feature increases flexibility and decreases the computation time, since the space of
solutions is more restricted, but it can lead to unoptimized solutions.

27

VEREFOO

3.4 VEREFOO Architecture

As reported in [1], “VEREFOO manages the creation, configuration and orches-
tration of a complete end-to-end network security service following a modular ap-
proach, that is reflected by the design of the framework itself. VEREFOO au-
tomatically performs, on a provided Service Graph, an optimized allocation and
configuration of the Network Security Functions (NSFs) that are necessary to fulfil
an input set of Network Security Requirements (NSRs), which can be expressed by
the service designer by exploiting a high-level language”.

Figure 3.1 illustrates the overall architecture of VEREFOO, followed by a de-
scription of its modules.

Figure 3.1: Overall Architecture of VEREFOO

• The starting point is the set of NSRs that the framework must fulfill. These
requirements are provided by the user through the Policy GUI and can
be expressed in two different ways: HLP or MLP. The choice between these
formats depends on the user’s level of expertise. HLP refers to High-Level
Policies, articulated in a user-friendly and easily understandable language.
On the other hand, MLP stands for Medium-Level Policies, which are lower-
level requirements expressed in terms of ports and IP addresses, offering more
specificity and detail. The flexibility in choosing between these formats allows
users to adopt an approach that best aligns with their skills and needs.

28

VEREFOO

• If one chooses to express certain NSRs using the HLP language, these require-
ments are then translated into the MLP language by the High-To-Medium
Module (H2M). The MLP language encompasses all the necessary details
for the framework to subsequently create the corresponding network security
functions that will satisfy them.

• Once all requirements are expressed in the same language (MLP), they are
input into the Policy Analysis (PAN) module. It verifies the consistency
and absence of conflicts among the requirements, while also identifying any
errors. Upon successful verification, the module will return the minimum set
of requirements that must be satisfied. However, in cases where errors cannot
be resolved automatically, a detailed report describing them is generated.

• The next step is carried out by the NF Selection Module (SE), whose task
is to read the requirements and choose the most suitable NSFs to fulfill them.
They are selected from a pre-built catalogue (the NF catalogue) containing
all the functions that the framework can manage.

• At this point, the framework needs to determine where to allocate the NSFs.
To accomplish this, the user must provide a second input to the framework
through the Service GUI. Through this module, the user can define the
Service Graph (or directly the Allocation Graph) which outlines the network
topology that needs to include security functions to meet the previously ex-
pressed requirements. This module is also linked to the NF catalog, enabling
the user to select functions to be included in the graph.

• The core of the framework is theAllocation, Distribution and Placement
Module (ADP). It takes as input the medium-level NSRs, the list of selected
NSFs, and the original Service Graph. Its primary goal is to compute the final
Service Graph, incorporating the additional NSFs. To achieve this, the ADP
module uses a partial weighted MaxSMT problem solver, z3Opt (presented in
Chapter 4). The security requirements are introduced into the solver as non-
relaxable constraints that must be satisfied at all costs. Simultaneously, other
specifications can be introduced as weighted and optional soft constraints to
find the ideal and optimal allocation of NSFs within the network. While the
MaxSMT problem is NP-complete in terms of computational complexity, a
well-formulated problem and appropriate pruning techniques can potentially
reduce the complexity to polynomial time. In the next section of this chapter,
we will delve into a detailed discussion of the various types of constraints
applied in VEREFOO.

• At the end, the last module is the Medium-to-Low Module (M2L) which
takes a list of medium-level policy rules generated by the solver as input
and converts them into low-level language, which depends on the practical
implementation of the network functions..

29

VEREFOO

3.5 Network Security Requirements

In Section 3.4, we mentioned that one of the two inputs to be provided to the
framework consists of a set of Network Security Requirements that the framework
must fulfill by incorporating Network Security Functions in the Allocation Graph.
While various types of NSRs can be expressed, this thesis specifically focuses on
connectivity requirements, which manifest in two distinct types:

1. reachability property, when an end point must be able to reach another
one if at least one path between them exists;

2. isolation property, when an end point must not be able to reach another
one through all possible paths interconnecting them.

Moreover, VEREFOO provides the service designer with the option to specify
one of three potential general behaviors, described below. Each behavior is defined
by a default approach, outlining how the framework should handle all traffic flows
that lack explicitly formulated requirements.

1. Whitelisting, if all the communications for which no specific requirements
have been formulated should be blocked. In this case, by default all traffic is
blocked and the user only specifies reachability requirements;

2. Blacklisting, if all the communications for which no specific requirements
have been formulated should be allowed. In this case, by default all traffic is
allowed and the user only specifies isolation requirements;

3. Specific, if the service designer doesn’t care about the communications for
which no specific requirements have been formulated. In this case, the user
can specify both reachability and isolation requirements and the framework
autonomously decides how to handle the other traffic flows.

It’s important to note that when opting for the third approach, it is imperative
for the requirements to be conflict-free. This aspect is addressed by the PANmodule
in VEREFOO. In contrast, the other two approaches don’t need conflict resolution,
as all requirements would be either reachability or isolation, depending on the
chosen approach. In this thesis, we adopt the specific approach, assuming that
the service designer explicitly specifies which communications should be blocked or
allowed. Additionally, a second assumption is made that the input set of NSRs is
consistently conflict-free.

3.5.1 XML representation of the Network Security Require-
ments

The XML schema for the NSRs is defined through the PropertyDefinition element.
It comprises a list of Property elements, each corresponding to a single require-
ment. Each requirement is identified by a unique identifier associated with the cor-
responding Service Graph or Allocation Graph, along with some attributes which

30

VEREFOO

are described below. Listing 3.1 provides an example of a reachability requirement
and an isolation requirement.

<PropertyDefinition>

<Property graph="0" name="ReachabilityProperty" src="10.0.0.-1"

dst="20.0.0.3" dst_port="60" />

<Property graph="0" name="IsolationProperty" src="20.0.0.2"

dst="30.0.0.1" src_port="80" dst_port="[100-200]" />

</PropertyDefinition>

Listing 3.1: XML representation of an Allocation Graph

Each Property element is characterized by the following attributes:

• name is the kind of requirement, in our case it can be ReachabilityProperty
or IsolationProperty ;

• src is the IP address of the source node of the requirement;

• dst is the IP address of the destination node of the requirement;

• src port is the number or interval of numbers of the source port;

• dst port is the number or interval of numbers of the destination port;

• l4 proto is the type of layer 4 protocol (for example TCP or UDP).

It’s important to note that the source and destination ports are optional fields;
if left unspecified, the entire range of ports will be considered. In Listing 3.1,
two requirements are illustrated, each representing a different type. The first re-
quirement denotes a reachability condition for communications originating from
the subnet 10.0.0.0/24 (expressed using a wildcard, denoted by the value -1) to the
IP address 20.0.0.3 on port 60. Conversely, the second requirement is an isolation
condition for communications originating from node 20.0.0.2 and port 80, destined
for IP address 30.0.0.1, listening on a port range between 100 and 200.

3.6 Traffic Flows Modeling

To enable VEREFOO to achieve its goal, which is to satisfy the provided NSRs,
rquires selecting a model that is both efficient and high-performing for network
traffic. Specifically, this pertains to the traffic exchanged among nodes, which
serves as the foundational element for modeling NSRs. It is imperative to have a
formally correct representation that is simultaneously computationally efficient for
subsequent operations performed by the solver or by the heuristics.

Essentially, the primary objective is to establish a formal model that accurately
represents the journey of packets originating from a communication source. This
includes modeling how these packets are forwarded or modified within a network
until they reach their destination. This objective can be broken down into distinct
sub-goals, encompassing the modeling of packet traversal, potential paths within

31

VEREFOO

a network, and the transformations executed by network functions on packets in
transit.

In this section, the focus is on introducing two optimized traffic flow mod-
els, namely Atomic Flows and Maximal Flows, which were initially introduced in
VEREFOO by a previous work [9]. The significance of presenting these models
within the context of this thesis lies in their role in highlighting the differences be-
tween them. In fact, one of the objectives of this thesis is to examine and compare
these two models to discern their relative advantages and disadvantages both in
the solver and in the heuristic algorithm.

The traffic flow models play a crucial role in formal and automated security
management processes by representing, identifying, and consolidating categories
of network packets, commonly referred to as traffics. These models are used to
compute the routing and transformation of packets as they navigate through dif-
ferent network nodes. This knowledge is pivotal in determining the most effective
placement and setup of NSFs in alignment with user-specified NSRs.

3.6.1 Predicates

A packet is conceptualized within the model as a predicate derived from certain
fields, particularly segments of its header. Packets sharing identical characteristics
in these specified fields are classified into the same category and are denoted by a
common predicate. As a result, all nodes encountered in the network treat packets
within the same predicate in a uniform manner. Note that a predicate essentially
signifies what is referred to as network traffic. The decisions regarding packet
forwarding domains and transformation actions are exclusively determined by the
predicate to which the packet belongs.

Within the network model under consideration, each node possesses specific
properties that define the element allocated at that position.

• Access Control List (ACL): A node contains a collection of input and
output ports, each one governed by an ACL dictating whether a packet with
specific header attributes can traverse the port. This mechanism establishes
the node’s domain, characterized by two sets: λa, encompassing all packets
permitted to traverse the node, and λd, representing those packets that are
denied passage. In the absence of an ACL, the former set corresponds to the
entirety of possible packets, while the latter remains empty.

• Forwarding Table: after a packet enters a node, it undergoes the switching
operation and is forwarded to the appropriate output port based on the rules
outlined in the forwarding table, another integral characteristic of each node.

• Transformation Function τ : as previously mentioned, within a network
node, a packet may undergo various transformations. In addition to the
forwarding table and the domains λa and λd, each network node incorporates
another data structure responsible for determining whether a packet should
undergo transformation and, if so, specifying the nature of the transformation.
This functionality is captured by the transformation function τ , which is

32

VEREFOO

designed with one or more input domains, each corresponding to one or more
actions, and output domains.

Hence, it’s imperative to represent the rules within the ACLs of nodes, the
entries in the forwarding tables, and the domains of the transformation function
using predicates, employing the same model utilized for network traffic. This ap-
proach enables comparison between the predicate describing incoming packets and
the predicates characterizing each encountered node, facilitating decisions regard-
ing forwarding and transformation behavior based on matches with the rules or
domains of the node.

Different methods exist for modeling predicates, but for this thesis work, the
chosen representation was introduced by [9] and involves implementing Binary De-
cision Diagrams (BDDs) in Java. BDDs are acyclic, directed, rooted graph struc-
tures utilized for representing Boolean functions. The approach for representing
predicates introduced in [10] states that ”a predicate is the conjunction of sub-
predicates, one for each packet field considered, and this conjunction is denoted by
the tuple of its sub-predicates”. This means that, when dealing with IP packets,
they can be characterized as conditions defined over the IP quintuple – IP Source,
IP Destination, source port, destination port, and protocol type. Each component
in this set is further depicted by a sub-predicate describing the individual field.
The overall condition representing an IP packet is formed by combining all these
sub-conditions. It’s worth noting that each sub-condition can represent a single
value, a range of values, or even the entire range, denoted by the wildcard symbol
”*”.

3.6.2 Atomic Flows

The initial approach under consideration involves the usage of Atomic Predicates
(APs), a concept introduced in 2015 by researchers to address the Network Reach-
ability problem [11]. This concept has undergone modifications and adaptations to
suit the challenges of verifying the satisfiability of NSRs and refining the problem
within the VEREFOO framework, as proposed by [9].

In this solution, each intricate predicate is decomposed into a collection of sim-
pler and minimal, unique, and fully representative APs. Subsequently, this set of
is employed to generate a set of interesting flows within the network. These flows
may exclusively consist of elements from the computed set of APs, representing the
traffic between any two nodes.

Given a predicate P, the corresponding set of APs A({P}) is computed through
the following process:

A({P}) =

{︄
{true}, ifP = falseortrue

{P,¬P}, otherwise
(3.1)

The Atomic Flows (AFs) approach leverages APs to delineate the characteristics
of each traffic flow within the network. It involves configuring each firewall with
rules expressed exclusively through APs. The process begins by identifying what

33

VEREFOO

we term as ”interesting” predicates, which are predicates linked to nodes associated
with one of the given NSRs.

These ”interesting” predicates encompass those representing source traffic and
destination traffic for each requirement. Once the set of APs is computed, the
next step is to generate all possible AFs for each user requirement. Then they are
given in input to the MaxSMT solver or to the heuristic algorithm, depending on
the version of VEREFOO we are considering, to allocate and configure the needed
NSFs.

Using APs offers some advantages in network traffic modeling. Since predicates
are unique, they can be associated with integer identifiers, simplifying solver’s or
heuristic’s operations and improving performance. It is possible to work with inte-
gers as representations of traffic, leading to a more streamlined problem definition.
Operations involving intersections and unions are less complex with integer sets
compared to more intricate predicate representations.

Configuring NFs becomes easier with APs. Each configured rule is associated
with a specific input traffic, and since APs are inherently disjointed, configured
rules only affect specific portions of traffic without impacting others. However,
working with integers may result in the inability to merge multiple rules, leading
to a larger number of configured rules. Post-processing tasks can aggregate rules
by converting integer identifiers back to IP-quintuples.

While the approach using AFs may not yield the absolute smallest number of
configured rules, it achieves the smallest number of disjointed rules, representing
a practical trade-off. A notable disadvantage is the computational intensity of
the initial step, requiring the generation of APs from interesting predicates. This
involves processing each interesting predicate, computing its intersection with all
other APs, and adding it to the set, making the process time-consuming due to the
need for disjointed traffics.

3.6.3 Maximal Flows

The second model, known as Maximal Flows (MFs), is discussed in more details in
[12]. In contrast to the preceding solution, where the aim was to break down traffic
flows into smaller components, achieving the level of granularity but also a higher
count of flows, the MFs approach takes a different direction. Here, the objective is
to reduce the overall number of generated flows by consolidating various sub-flows
into a single MF. This aggregated flow remains representative of all the individual
sub-flows it encompasses.

In this method, multiple traffic flows that are merged into the same MF must
have an identical behavior as they traverse through different network nodes. This
consolidation results in a larger granularity and a reduced number of flows that
effectively represent the entire network. Similar to the previous case, traffic flows are
represented as a series of alternating nodes and predicates. However, unlike before,
the predicates used here are not atomic; rather, they articulate the combination
of multiple IP quintuples through disjunction. The set of MFs FM

r is defined as a
subset of Fr, containing only those flows which are not subflows of other flows in
Fr.

34

VEREFOO

All flows exhibiting similar behavior are grouped together into a single MF.
Following this, either the MaxSMT problem or a heuristic algorithm is formulated
using only the set FM

r . Despite its reduced size compared to Fr, F
M
r retains the

same level of expressiveness. The key benefit of this method lies in the considerably
faster computation of FM

r compared to the set of AFs. This efficiency is attributed
to the fact that, in contrast to the previous method, the algorithm for computing
MF does not require any initial computation time for traffic flow computation.

However, a notable disadvantage emerges in that the traffic exchanged between
nodes for each MF is neither disjointed nor unique. Consequently, it cannot be
associated with a simple integer identifier, as could be done with APs. The solver is
forced to operate with a representation of the predicate. This solution necessitates a
total of 13 fields: 4 integers for the source IP address, 4 integers for the destination
IP address, 2 integers for the range of source ports, 2 integers for the range of
destination ports, and finally, a string for the protocol type. The increased number
of variables provided as input to the solver significantly impacts the final resolution
performance.

35

Chapter 4

The MaxSMT Problem

This chapter explains the initial approach taken in shaping the VEREFOO frame-
work. It relies on a theorem prover, addressing the MaxSMT problem for an optimal
solution.

4.1 Maximum Satisfiability Modulo Theories

4.1.1 Boolean Satisfiability Problem (SAT)

In the realms of logic and computer science, the Boolean Satisfiability problem,
commonly known as SAT, poses a fundamental question: is there a valid inter-
pretation for a given Boolean formula? This intricate problem revolves around
determining whether it’s possible to substitute the variables in a given Boolean
formula with TRUE or FALSE values in such a way that the formula evaluates
to TRUE. When such a consistent assignment exists, the formula is said to be
satisfiable; otherwise, if no such assignment is possible, the formula is considered
unsatisfiable. It’s crucial to note that, in the context of SAT, the focus is not on
looking for the best solution, but it is sufficient to find a combination of variables
such that the formula is TRUE. The goal here is to detect if the given formula is
satisfiable or not.

For instance, consider the formula ”a AND NOT b.” This formula is satisfiable
because assigning the values a = TRUE and b = FALSE results in the formula
evaluating to TRUE. Conversely, the formula ”a AND NOT a” is unsatisfiable, as
no assignment of values exists that would make the formula TRUE for all possible
variable combinations.

The significance of SAT goes beyond its inherent complexity; it was the first
problem proven to be NP-complete, as established by the Cook–Levin theorem.
This classification implies that solving any problem within the complexity class
NP (nondeterministic polynomial time), which includes a wide range of natural
decision and optimization problems, is no more difficult than solving SAT. Despite
its importance, there is currently no known algorithm that efficiently solves all SAT
problems. The quest for such an algorithm remains a complex challenge, closely

36

The MaxSMT Problem

tied to the unresolved P versus NP problem, a prominent and open question in the
realm of computing theory.

4.1.2 Satisfiability Modulo Theories (SMT)

Satisfiability Modulo Theories, also known as SMT, is a generalization of SAT.
While the SAT problem’s formulas are expressed by means of the classic simple
boolean logic, the SMT problem uses more complex formulas involving real num-
bers, integers, and various data structures like lists, arrays, bit vectors, and strings.
The term ”modulo” signifies that these expressions are interpreted within a specific
formal theory in first-order logic, often without incorporating quantifiers.

SMT solvers, such as Z3 and cvc5, serve as instrumental tools designed to
solve the SMT problem for a practical subset of inputs. These solvers are used
as a building block for applications across diverse domains in computer science,
including automated theorem proving, program analysis, program verification, and
software testing.

Given that Boolean Satisfiability is already known to be NP-complete, the SMT
problem, thanks to its more complex language, leads to the creation of much more
intricate problems. In fact, a SMT problem is typically NP-hard, and in numerous
theories, it is undecidable. An undecidable problem is a decision problem for which
it is proved to be impossible to construct an algorithm that always leads to a correct
yes-or-no answer. Researchers delve into identifying theories or subsets of theories
leading to a decidable SMT problem and study the computational complexity of
such decidable cases. The resulting decision procedures are frequently implemented
directly in SMT solvers.

4.1.3 Maximum Satisfiability Modulo Theories (MaxSMT)

Maximum Satisfiability Modulo Theories, or MaxSMT, is itself a generalization
of SMT. It is essential in scenarios where finding the optimal assignment of truth
values is critical for decision-making processes. It is widely used in applications
such as formal verification of hardware and software systems, automated theorem
proving, and constraint optimization problems.

While SAT and SMT focus on determining the satisfiability of logical formulas,
MaxSMT goes a step further by aiming to find an assignment of truth values to
variables that maximize the number of satisfied clauses or constraints of which the
problem is composed. The fundamental components of the MaxSMT problem in-
clude a set of logical constraints and an objective function to be maximized. These
constraints typically represent real-world conditions, and the objective function
encapsulates the optimization goal. In essence, MaxSMT navigates the intricate
landscape of logical possibilities to identify the most favorable configuration that
simultaneously satisfies the specified constraints and maximizes the defined objec-
tive.

For example, the following conjunctive formula which is made by 2 variables
and the simple boolean operators AND, OR and NOT:

37

The MaxSMT Problem

(x0 ∨ x1) ∧ (x0 ∨ ¬x1) ∧ (¬x0 ∨ x1) ∧ (¬x0 ∨ ¬x1)

is inherently unsatisfiable. Regardless of the assigned truth values to its two
variables, at least one of its four clauses will inevitably evaluate to false. However,
when considering it as an instance of the MaxSMT problem, the goal is to maximize
the number of satisfied clauses. In this specific case, every truth assignment results
in three out of four clauses being true. Hence, the optimal solution to the MaxSMT
problem for this formula is three.

In order to make the formulation of a MaxMST problem more flexible, there
are some variants of it. The idea is that sometimes not all constraints of a problem
can be satisfied. To address this, the problem is categorized into two groups: hard
constraints (or clauses) that must be satisfied and soft constraints that are optional.
The input NSRs and additional constraints set by the service designer, such as
firewall placement or restrictions on service function allocation, are represented
using hard constraints. Conversely, soft constraints are employed for optimization
objectives. In this framework, the solver aims to select the solution that satisfies
all hard constraints while maximizing the total value of satisfied soft constraints.

When considering soft constraints, varying weights can be assigned to clauses
to represent the penalty incurred if a clause is falsified, reflecting the relative im-
portance of different constraints. By introducing weights to clauses, the instance
becomes weighted, and the classification into hard and soft clauses makes the in-
stance partial. For a given weighted partial MaxSMT instance the objective is
to identify an assignment that satisfies the hard clauses while minimizing the cumu-
lative weight of falsified clauses. This approach is used in VEREFOO to optimize
resource consumption, particularly in terms of the total number of allocated fire-
walls and configured rules, as shown in [13]. This weighted partial MaxSMT variant
enables automation, optimization, and formal correctness within VEREFOO, re-
quiring minimal human intervention beyond providing security policies. Moreover,
the approach is optimized, given that the soft constraints articulate the optimiza-
tion objectives, and formally correct, since the requirements are represented with
the hard constraints.

4.2 Z3 Theorem Prover

Researchers and practitioners often leverage advanced tools called solvers to ad-
dress MaxSMT problems efficiently. These solvers use sophisticated algorithms
and techniques to explore the solution space and their primary goal is to identify
the assignment that achieves the maximum satisfaction under the given constraints.
One notable example of such a solver is Z3, developed by Microsoft Research [14].
It is a software that has the ability to automatically solve satisfiability problems
and prove theorems in first-order logic.

One of the main features of Z3 is its ability to support various logics, making it
flexible and suitable for a wide range of applications. This includes logics such as
first-order logic, differential logic, array logic, and many others.

38

The MaxSMT Problem

4.2.1 Z3 Architecture

Figure 4.1 illustrates the main components of Z3.

Figure 4.1: Overall system architecture of Z3

• The top left summarizes the interfaces to Z3. One can interact with Z3 over
SMT-LIB2 scripts, which is the default input format for Z3. They can be
supplied as a text file or pipe to Z3, or using API calls from a high-level
programming language (in the case of VEREFOO, Java APIs are used) that
are proxies for calls over a C-based API.

• In contrast to solvers that ultimately check the satisfiability of a set of as-
sertions, tactics transform assertions to sets of assertions, in a way that a
proof-tree is comprised of nodes representing goals, and children represent-
ing subgoals. Many useful pre-processing steps can be formulated as tactics.
They take one goal and create a subgoal.

• Solvers maintain a set of formulas and supports satisfiability checking, and
scope management: Formulas that are added under one scope can be retracted
when the scope is popped.

• Z3 provides support for optimizing objective functions in addition to deter-
mining satisfiability. This feature is valuable in scenarios where retrieving
optimal models based on certain criteria is necessary. The optimization mod-
ule in Z3 can handle various objective functions by specifying whether to
maximize or minimize the values of a particular arithmetical term t. For in-
stance, using the objective maximize(t) instructs the solver to find solutions
that maximize the value of t. Alternatively, the weighted partial MaxSMT
approach, as explained in Section 4.1, offers another method to specify opti-
mization objectives.

39

The MaxSMT Problem

4.2.2 Z3 Example

The following is an example of how Z3 works. In particular, Listing 4.1 is the
description of the problem to solve, while Listing 4.2 illustrates the solution.

(declare-const a Int)

(declare-const b Int)

(assert (= (+ a b) 20))

(assert (= (+ a (* 2 b)) 10))

(check-sat)

(get-model)

Listing 4.1: Example of a MaxSMT problem expressed in Z3 language

sat

(model

(define-fun b () Int

-10)

(define-fun a () Int

30)

)

Listing 4.2: Example of a SAT solution expressed in Z3 language

40

Chapter 5

Heuristics in VEREFOO

In its initial version, VEREFOO was developed using the MaxSMT problem ap-
proach, ensuring an optimal solution to the problem. This methodology aims to
configure the minimum number of firewalls in the input topology and implement
the minimum number of rules on them to meet the user-specified security require-
ments. However, since the MaxSMT problem is NP-complete, meaning there is
no efficient (polynomial) algorithm to solve the problem in general, the resolution
time increases non-linearly with the complexity of the input topology and the set of
requirements to be satisfied. From subsequent tests, which will be presented later,
it was discovered that the increase in time is not linear but rather exponential.
For this reason, a decision was made to develop a second version of the framework
based on a heuristic algorithm, which will be described in this chapter.

In VEREFOO, two different types of heuristic algorithms can be employed:

1. complete heuristic is a type of heuristic algorithm that terminates only
when all isolation requirements have been satisfied. It is described in Section
5.2;

2. partial heuristic instead is an algorithm that, rather than terminating the
heuristics when all the isolation requirements are satisfied, alternative termi-
nation conditions are introduced. In this case, only a part of them is satisfied.
It is described in Section 5.3.

However, before delving into these methods, Section 5.1 provides a description
of what heuristics entails.

5.1 The Heuristic Approach

The word ”heuristic” derives from the ancient Greek heuŕıskō, meaning ”to dis-
cover” or ”to find.” In a broader and more general sense, the term refers to ”that
part of epistemology and scientific method that aims to foster the search for new
theoretical developments, empirical discoveries, and technologies. It involves an

41

Heuristics in VEREFOO

approach to problem-solving that does not follow a clear path but relies on in-
tuition and the temporary state of the surroundings to generate new knowledge”
[15]. Heuristics can be seen as a way of proceeding ”outside the box.” Where rigid
and well-defined methodologies fail to lead to problem resolution or only solve it in
specific scenarios, heuristics suggest an alternative approach to the classical view.
However, this does not imply completely abandoning Galilean methodological rigor
or entirely discarding the widely employed scientific method up to now. Instead, it
adopts flexibility to seek alternative solutions to those previously employed.

The key to understand heuristic thinking lies in a specific point of the above
definition: ”that does not follow a clear path but relies on intuition and the tempo-
rary state.” This phrase should be understood as follows: when classic techniques
and methodologies do not yield useful results, the analysis and observation of the
studied phenomenon should serve as input for the intuition of alternative paths.
This provides a different perspective from the one adopted so far, aiming to quickly
offer a solution to the problem, given the temporary state on which heuristics is
based.

5.2 Complete Heuristics

The heuristic algorithm must balance various and often conflicting objectives.

• Our primary focus lies in achieving a delicate balance between minimizing
allocation costs and maximizing filtering performance. This entails
the objective of deploying the fewest number of firewalls with the least num-
ber of rules, mirroring the principles underlying the MaxSMT problem. It’s
important to note that, given the heuristic nature of the algorithm, we aim
for a high level of efficiency without necessarily achieving the same level of
optimality.

• Simultaneously, we want the maximization of network security and
throughput. To enhance security, our strategy involves blocking traffic as
close to the source as possible. However, this approach may potentially impact
allocation costs, as it might necessitate the deployment of multiple firewalls.

This challenge requires the implementation of an intelligent heuristic algorithm
that optimizes resource allocation, minimizing the number of firewalls and rules to
ensure robust defense and high operational efficiency.

Similar to the MaxSMT-based version, the heuristic algorithm-based approach
also requires two inputs: the Service Graph and a set of Network Security Require-
ments that need to be satisfied. However, in this case, a NSR r can be of 3 different
types:

1. isolation, if all the traffic flows satisfying r must be blocked;

2. complete reachability, if all the traffic flows satisfying r must not be
blocked;

42

Heuristics in VEREFOO

3. partial reachability, if there must exist at least a network path where all
the traffic flows satisfying r are not blocked.

The set R of all the NSRs is defined as:

R = Ri ∪Rcr ∪Rpr

where

• Ri is the set of all the isolation requirements;

• Rcr is the set of all the complete reachability requirements;

• Rpr is the set of all the partial reachability requirements.

The heuristic algorithm can be delineated into three primary steps.

1. Initialization: at this stage, which is better described in Subsection 5.2.1,
the algorithm goes through the initial setup and prepares for subsequent
phases. The fundamental steps of this phase include the computation of
weights and predicates. Weight calculation means assigning a weight to
each Allocation Place after transforming the Service Graph into the Alloca-
tion Graph. This weight is based on some criteria, like the number of flows
passing through it and the type of requirements associated with those flows.
The weights will be utilized in the subsequent phase. Additionally, during
this stage, predicate velues are computed using traffic flows models such as
Maximal Flows or Atomic Predicates, as described in Chapter 3.

2. Allocation: in this step, described in Subsection 5.2.2, leveraging the infor-
mation generated during the initialization phase, the algorithm determines
the appropriate allocation places to minimize the number of firewalls needed
to meet the requirements.

3. Configuration: after all the firewalls have been allocated in the allocation
stage, in this phase, described in Subsection 5.2.3 it is decided which rules
must be configured on each firewall.

5.2.1 Initialization

This phase begins after the input SG has been transformed into an AG. The pur-
pose of this stage is to assign a weight to each generated Allocation Place and then
create an ordered list where the Allocation Places are arranged in descending order
of weight. However, to assign the weights, given a set of NSRs R, it is necessary
to first calculate all the flows FR that satisfy those requirements. The algorithm
for Maximal Flows computation or the algorithm for the Atomic Predicates com-
putation can be used to populate the FR set. This algorithm allows to compute
several pieces of information (e.g., relationships between requirements and flows,
paths crossed by the flows), avoiding their computation in later stages.

In particular, some useful informations that are exploited in subsequent phases
can be retrieved after computing the traffic flows:

43

Heuristics in VEREFOO

1. π : FR → (NA)
∗ maps a flow f ∈ FR to the ordered list of nodes crossed by f ;

2. ρ : FR → R maps a flow f ∈ FR to the requirement r ∈ R whose conditions
are satisfied by f ;

3. ϕ : R → P(FR) maps a requirement r ∈ R to the set of flows that satisfy its
conditions;

4. Π : R → P((NA)
∗) maps a requirement r ∈ R to the set of paths crossed by

at least a flow f ∈ FR satisfying the conditions of r.

The heuristics is based on three main predicates:

1. blocked: FR → B maps a flow f ∈ FR to true if the flow is blocked before
reaching the destination, to false otherwise;

2. satisfied: R → B maps a requirement r ∈ R to true if its conditions are
satisfied, to false otherwise;

3. allocated: AA → B maps an AP a ∈ AA to true if a firewall is allocated in
a, to false otherwise.

Once they have been generated, they must be initialized, so we must provide
a value for each flow f ∈ FR, for each requirement r ∈ R and for each Allocation
Place a ∈ AA. In particular, in the initial situation we have that:

• no traffic flow is blocked, because no firewall is allocated in the network and
any packet can reach any destination starting from any source:

∀f ∈ FR.blocked(f) = false (5.1)

• all the isolation requirements are not satisfied because the related flows can
reach the destinations, while all the reachability requirements are satisfied
because their related flows are not blocked:

∀r ∈ R.satisfied(r) =

{︄
false if r ∈ Ri

true if r ∈ Rcr ∨ r ∈ Rpr
(5.2)

• no firewall is allocated in any Allocation Place:

∀a ∈ AA.allocated(a) = false (5.3)

Subsequently, the following step involves computing and assigning a weight wa

to each Allocation Place a ∈ AA. But, before doing this operation, it is needed
to perform the same operation for each flow. This is the step that encapsulates
the optimization criteria of the methodology. In the MaxSMT-based version of the
framework, this task was handled by incorporating soft clauses into the formulation
of the MaxSMT problem. Conversely, the heuristic algorithm employs an ordered
list where all Allocation Places are arranged in descending order based on their
weights.

The computation of wa must consider:

44

Heuristics in VEREFOO

1. the number of flows crossing a, and the type of requirements associated to
them;

2. the position of a in each path π(f) for each flow f crossing a.

Let π(f) represent the ordered list of nodes traversed by flow f , destination
included but not the source.

These factors should be possibly mediated, because not all requirements have
the same level of importance.

However, to compute the weights of the Allocation Places, it is first necessary
to calculate and assign a weight to each flow f ∈ FR. This is because there might
be flows in the network that are not relevant for meeting the requirements, thus
influencing the allocation places associated with them.

∀f ∈ FR.wf =

⎧⎪⎨⎪⎩
+1 if ρ(f) ∈ Ri

−1 if ρ(f) ∈ Rcr

− 1
|Π(ρ(f))| if ρ(f) ∈ Rpr

(5.4)

There are three cases, one for each type of requirement:

• Case 1: ρ(f) ∈ Ri

Each flow f such that ρ(f) ∈ Ri must be blocked to have isolation. Therefore,
the weight wf is positive and unitary because the level of ”importance” of the
flow is high since it is needed to allocate a firewall to satisfy the requirement.

• Case 2: ρ(f) ∈ Rcr

Each flow f such that ρ(f) ∈ Rcr must not be blocked to have complete
reachability. Therefore, the weight wf is negative and unitary because the
level of ”importance” of the flow is lower since the requirement is satisfied yet
and it is not needed to allocate a firewall for it.

• Case 3: ρ(f) ∈ Rpr

It is enough that all the flows crossing a path among the |Π(ρ(f))| paths are
not blocked to have partial reachability. Therefore, the weight wf is negative
and between 0 and 1. Its value is equal to − 1

|Π(ρ(f))| .

Now, each f ∈ FR has an associated weight wf . This parameter is used in
the subsequent step, to compute Allocation Places weights through the following
formula:

∀a ∈ AA.wa =

[︃ ∑︂
f∈FR|c1(f)

mfαwf]

]︃
+

[︃ ∑︂
f∈FR|c2(f)

mf (1− α)(1− iaf
|π(f)|

)

]︃
(5.5)

where:

45

Heuristics in VEREFOO

• iaf is an index weight that is computed for a pair a ∈ AA and f ∈ FR such
that a ∈ π(f). It identifies the position of a in π(f), with index starting from
0. For example, let’s consider the AP:

a8

and a path:

π(f) = [e2, a1, s5, a8, s11, a15, e6]

where ex is an end point, sx is a switch and ax is an AP. The index weight
for a8 is:

ia8f = 3

• α is a parameter that ranges from 0 to 1 included. If it is equal to 0, only
”max-security objective is considered”. If instead it is equal to 1, only ”min-
allocation” objective is considered. By modifying this parameter, we can
customize the behavior of the framework according to our needs.

• mf is a parameter that for now is set to 1, but it may be set to 0 later, when
a flow must not be considered anymore in the sum.

In the summations there are also two conditions:

• c1(f) = a ∈ π(f) : the AP a is part of the list of nodes π(f);

• c2(f) = a ∈ π(f)∧ ρ(f) ∈ Ri : as condition c1(f), but f must be involved by
an isolation requirement. It means that the second summation is considered
only for isolation requirements.

At this point, all the APs of the AA set have a weight associated and are
introduced in the LA list. An example is showed in Figure 5.1. Initially, there is
no ordering in LA, but this list is useful for the heuristic decision on which AP a
firewall should be allocated. When an AP will be removed from LA, it means that
a firewall is allocated in it.

Figure 5.1: Example of list LA. The first row is the list of APs, with each of them
being associated with a corresponding weight listed in the second row

46

Heuristics in VEREFOO

5.2.2 Allocation

At this point, the initialization step has produced an unordered list of APs. The
first step of the second phase, which is the Allocation step, involves sorting this list
in descending order of wa weight: the top positions will include all APs with higher
weights, while the lower positions will contain those with lower weights. Figure 5.2
depicts the same list shown in Figure 5.1 after the sorting process.

Figure 5.2: Example of ordered list LA

Then, the element a∗ having highest weight wa in the LA list is extracted. This
AP is decided to be a position where a firewall must be allocated.

Figure 5.3: Allocation Place a3 is extracted from list LA

In this stage of the algorithm, the firewall that is allocated is characterized only
by a DENY action. In fact, the primary objective is to have all the firewalls that
are really needed to enforce isolation requirements, which are the most important.
The impact of the reachability requirements is evaluated in a subsequent stage. It’s
important to note that this is only a temporary configuration: later in the process,
each allocated firewall may have a different default action and will be configured
so as to enforce all the requirements.

After the decision of allocating a firewall in a∗, the values that have been de-
scribed in Subsection 5.2.1 must be updated:

• the allocated predicate returns true when applied to a:

allocated(a∗) = true

47

Heuristics in VEREFOO

• all the traffic flows crossing a are blocked:

∀f ∈ FR.(a
∗ ∈ π(f) → blocked(f) = true) (5.6)

• a flow associated to an isolation requirement that is blocked must not be
considered anymore in the wa computation (because there is already a firewall
responsible for blocking it):

∀f ∈ FR.(a
∗ ∈ π(f) ∧ ρ(f) ∈ Ri → mf = 0) (5.7)

Additionally, all the flows blocked by a firewall allocated in a are stored in a set
identified by the Ba∗ symbol.

There are then some updates which are related to requirement satisfaction.

• An isolation requirement r ∈ Ri is satisfied if all the traffic flows satisfying r
are blocked:

∀r ∈ Ri.((∀f ∈ ϕ(r).blocked(f) = true) → satisfied(r) = true) (5.8)

• A complete reachability requirement r ∈ Rcr is not satisfied if there exists a
traffic flow satisfying r that is blocked:

∀r ∈ Rcr.((∃f ∈ ϕ(r).blocked(f) = true) → satisfied(r) = false) (5.9)

• A partial reachability requirement r ∈ Rpr is not satisfied if there exists not
a path where all the traffic flows satisfying r are allowed:

∀r ∈ Rpr.(.(∄l ∈ Π(r)(∀f ∈ ϕ(r).l = π(f).blocked(f) = false))

→ satisfied(r) = false)
(5.10)

The allocation algorithm concludes if all the isolation requirements are satisfied:

∀r ∈ Ri.(satisfied(r) = true) (5.11)

If this condition is false, the following steps are performed:

1. for each a ∈ AA that is still present in the LA list, the wa weight is recomputed,
in light of the updates related to the mf coefficients in Formula 5.5;

2. the procedure is repeated from the allocation step, when the list is re-ordered.

5.2.3 Configuration

Once condition 5.11 is satisfied, the algorithm enters its final phase, known as
the configuration phase. In the Allocation phase, firewalls are allocated to the
appropriate APs. However, all these firewalls are configured with a temporary
default deny rule, ensuring compliance with isolation requirements, but not with
the reachability ones.

Now, an analysis of the rules which should be defined in a firewall allocated in
the AP a ∈ AA is performed, as if it did not have a default action. This leads to
create two sets:

48

Heuristics in VEREFOO

1. FD
a is the set of the denying rules deriving from isolation requirements;

2. FA
a is the set of the allowing rules deriving from complete and partial reach-

ability requirements.

As mentioned earlier, the set Ba encompasses all the flows blocked by a firewall
assigned to the AP a. Given that, as of this stage, all the firewalls are configured
with a temporary default DENY rule. It means that the Ba set for each firewall
includes all flows traversing it. Subsequently, for each flow within the Ba set, a rule
is formulated. The determination of whether the rule is of type ALLOW or DENY
depends on the source of the flow. The preocess is explained blow.

• Considering each a ∈ AA such that allocated(a) = true, a denying rule is
computed for a firewall in a for each flow appearing in the corresponding Ba

set and deriving from an isolation requirement:

∀a ∈ AA|allocated(a) = true.∀f ∈ Ba|
ρ(f) ∈ Ri.((τ(f, a), deny) ∈ FD

a)
(5.12)

• Considering each a ∈ AA such that allocated(a) = true, an allowing rule is
computed for a firewall in a for each flow appearing in the corresponding Ba

set and deriving from an complete reachability requirement:

∀a ∈ AA|allocated(a) = true.∀f ∈ Ba|
ρ(f) ∈ Rcr.((τ(f, a), allow) ∈ FD

a)
(5.13)

• Considering each r ∈ Rpa such that satisfied(r) = false, among all the node
lists appearing in the Π(r) set, a list l∗ is selected as the list having the lowest
number of APs where firewalls are allocated and, with parity of value, having
the lowest overall length. For each a ∈ l∗ such that allocated(a) = true, an
allowing rule is computed for each flow deriving from r:

∀r ∈ Rpa.∀f ∈ ϕ(r)|π(f) = l∗.∀a ∈ AA|
allocated(a) = true.((τ(f, a), allow) ∈ FD

a)
(5.14)

5.3 Partial Heuristics

There are some cases in which, rather than having a complete heuristics, we would
like to have a partial heuristic.

The idea is that, especially when dealing with a network with limited resources
and not overly strict security constraints, instead of concluding the heuristics when
all isolation requirements are met, alternative termination conditions could be con-
sidered. For instance:

• only a certain percentage of requirements needs to be satisfied;

49

Heuristics in VEREFOO

• only a specific number of APs must be allocated.

Finally, VEREFOO is executed so that it can compute the allocation scheme
and configuration for the remaining APs. In case the execution fails, the last firewall
allocated is removed, and VEREFOO is re-executed with a new free AP.

Other possible optimizations conditions may be:

• remove all the APs that are not crossed by any flow related to unsatisfied
isolation requirements. This means to reduce the number of APs that are
considered during the weight computation, making the operation more ef-
ficient. This is possible because in the Allocation stage, the values of the
satisfied predicates were always updated;

• remove a certain number of APs having the lowest weights. The idea is similar
to fixing firewalls in APs with the highest weights. However, this could lead
to problem unfeasibility, since some requirements would remain unsatisfied.
In that case, VEREFOO may require to be re-executed after reintroducing
an AP at a time.

However, this thesis focuses on the complete heuristics, while the partial heuris-
tics might be an idea for a future work.

5.4 Alternative idea for Heuristics

The Configuration stage may be solved with a Branch-and-Bound method. This
method allows to reach the optimal solution by exploring the full solution space,
and this means there is not anymore a heuristic algorithm, but a solution more
similar to the resolution of the MaxSMT problem.

This solution may become heuristic by introducing some bounds in the explo-
ration. For example, a certain bound of the ratio

#allocatedfirewalls

sumoftheirweights

is estabilished and some branches are cut earlier than their end.

50

Heuristics in VEREFOO

Figure 5.4: Visual example of the Branch-and-Bound method

51

Chapter 6

Test Campaign Preparation: Code
Interventions and New Topology
Design

6.1 VEREFOO Implementations

The VEREFOO framework, whose code is publicly available on GitHub [16], has
evolved over time through various versions. This chapter focuses on four of these
versions, with two based on the MaxSMT problem discussed in Chapter 4 and
the other two on the heuristic algorithm described in Chapter 5. In fact, one
of the objectives of this thesis is to examine the performance and optimization
differences between the MaxSMT-based versions and those based on the heuristic
algorithm, as well as to evaluate the implementations for modeling traffic flows:
Atomic Predicates and Maximal Flows described in Chapter 3.

The following versions are considered, using the names of their corresponding
branches on the GitHub repository:

• BudapestWithAP: This version addresses the MaxSMT problem, employ-
ing the Atomic Predicates algorithm for traffic flows modeling.

• MaximalFlowsZ3: similar to BudapestWithAP, this version tackles the
MaxSMT problem but uses the Maximal Flows algorithm for traffic flow mod-
eling.

• HelsinkiWithAP: this version adopts the heuristic algorithm, using Atomic
Predicates for traffic flow computation.

• HelsinkiWithMF: Also based on the heuristic algorithm, this version em-
ploys the Maximal Flows approach for traffic flow computation.

Before effectively starting the testing campaign aimed at highlighting the dif-
ferences between these versions, some modifications were made to the VEREFOO
code regarding the heuristics-based ones. These modifications have been detailed
in the following section.

52

Test Campaign Preparation: Code Interventions and New Topology Design

6.2 Code Interventions

6.2.1 Allocation Places List Sorting

The first correction made to the code pertains to the section within the heuristic
algorithm where the list of APs is sorted based on their assigned weight. Specifically,
the code related to this operation was as follows:

Collections.sort(allocationPlaces, new Comparator<AllocationNode>() {

@Override

public int compare(AllocationNode ap1, AllocationNode ap2) {

float ca1 = ap1.getAllocationWeight();

float ca2 = ap2.getAllocationWeight();

if (ca1 == ca2)

return 0;

else if (ca1 > ca2)

return 1;

else

return -1;

}

});

Listing 6.1: Sorting algorithm for Allocation Places list.

The code performs a classic sorting operation on a list of AllocationNode objects
(which are the APs) named allocationPlaces. It uses the Collections.sort() method
to sort the objects based on their allocation weight (allocationWeight).

The crucial part of the code is the definition of a new Comparator<AllocationNode>
object inside the sort() method. This object is used to compare two AllocationNode
objects and determine their relative order in the sorting.

The comparison logic is implemented in the compare() method. In this method,
the allocation weights (AllocationWeight) of the two objects ap1 and ap2 are com-
pared. If the weight of ap1 is less than that of ap2, then ap1 is considered ”lesser”
and will be positioned before ap2 in the sorting. If the allocation weights are equal,
the method returns 0, indicating that the objects are considered equivalent for sort-
ing purposes. If the weight of ap1 is greater than that of ap2, ap1 is considered
”greater” and will be positioned after ap2 in the sorting.

The bug consisted in the fact that in this way, the list of APs was sorted in
reverse order, i.e., in ascending order: APs with lower weights were placed at
the beginning of the list, while those with higher weights were placed at the end.
This meant that the first APs used to allocate the firewalls were the ones with the
lowest weights, and therefore the contribution given by these firewalls was marginal.
Despite this error, the framework still worked, but inevitably, a greater number of
firewalls was allocated, and a greater number of rules was configured.

To fix the bug, it was sufficient to simply reverse the list’s sorting order, as
shown in Listing

53

Test Campaign Preparation: Code Interventions and New Topology Design

if (ca1 == ca2)

return 0;

else if (ca1 > ca2)

return -1;

else

return 1;

}

});

Listing 6.2: Fixed sorting order of Allocation Places’ list.

Below is an example demonstrating the effects of the previous sorting method
and the current one. Let’s consider a very simple Service Graph, like the one shown
in Figure 6.1.

Figure 6.1: Example of a simple Service Graph

Then, Table 6.1 represents a set of NSRs that must be enforced.

Type IPSrc IPDst portSRC portDST
Isolation 10.0.0.2 40.0.0.1 * *
Isolation 40.0.0.1 10.0.0.1 * *

Reachability 10.0.0.1 10.0.0.2 * *
Reachability 40.0.0.1 10.0.0.2 * *

Table 6.1: Network Security Requirements of the example

Using the incorrect sorting method for the list of APs yields the result shown
in Figure 6.2.

It can be noted that 2 firewalls have been allocated by the framework.

Table 6.2 shows the configuration of the firewall whose IP address is 20.0.0.1.

54

Test Campaign Preparation: Code Interventions and New Topology Design

Figure 6.2: Outcome of the framework using the wrong sorting method

Number actionType IPSrc IPDst portSrc portDst
1 DENY 40.0.0.1 10.0.0.1 * *
2 ALLOW 10.0.0.1 10.0.0.1 * *

Table 6.2: Configuration of firewall 20.0.0.1

Instead, Table 6.3 shows the configuration of the firewall whose IP address is
20.0.0.2.

Number actionType IPSrc IPDst portSrc portDst
1 DENY 10.0.0.2 40.0.0.1 * *
2 ALLOW 10.0.0.1 10.0.0.2 * *
3 ALLOW 40.0.0.1 10.0.0.2 * *

Table 6.3: Configuration of firewall 20.0.0.2

In the end, a total of 2 firewalls have been allocated and a total of 5 rules have
been configured to enforce the NSRs showed in Table 6.1.

Now, the same SG showed in Figure 6.1 is considered, but it is used the right
version of the sorting method for the list of APs.

Figure 6.3 shows the outcome.

Finally, Table 6.4 shows the configuration of the single Firewall which has been
allocated.

55

Test Campaign Preparation: Code Interventions and New Topology Design

Figure 6.3: Outcome of the framework using the right sorting method

Number actionType IPSrc IPDst portSrc portDst
1 DENY 10.0.0.2 40.0.0.1 * *
2 DENY 40.0.0.1 10.0.0.1 * *
3 ALLOW 40.0.0.1 10.0.0.2 * *

Table 6.4: Configuration of Firewall 20.0.0.4

Considering the right sorting method, only 1 Firewall has been allocated and a
total of 3 rules have been configured to enforce the same NSRs.

In this example, a highly simplified topology was taken into account, and the
advantage resulted in the allocation of one less firewall and the configuration of
two fewer rules. However, in more intricate topologies involving more NSRs, the
advantage can be substantially greater, resulting in significant resource savings.

6.2.2 Correction of Heuristics-related Code

The second intervention made on the heuristics-related code involved removing
lines of code relevant to the solver. Since this version is based on the heuristics
directly derived from the one based on the MaxSMT problem, there were some
remnants left. Given that the focus of this thesis is to conduct performance and
optimality tests at a generic level and not with special components like NATs and
Load Balancers, the function related to forwarders, which are the components used
in the tests to connect all the various parts of the topologies used in the test
campaigns, has been corrected. However, this is an operation that must be carried
out for all other functions as well if in future works related to other functions will
also be involved.

Finally, in the configure() function of the heuristics, port handling was added

56

Test Campaign Preparation: Code Interventions and New Topology Design

to the security policies, a functionality not initially planned. During the test cam-
paign, in the initial phase, port intervals in the policies were not considered, so the
wildcard symbol ”*” was used to denote the entire port range. However, to make
the policies more complex and thus better stress the framework’s behavior, they
were taken into account during a second phase.

6.3 Topologies

As stated in Chapter 3, one of the two inputs required by the VEREFOO frame-
work is a network topology upon which Network Security Functions are to be
implemented to meet a set of specified requirements, which constitutes the second
input. Therefore, the first fundamental step before starting the test campaign is to
determine which topologies to use for testing purposes.

To conduct the tests, three distinct topologies were employed to evaluate the
framework’s behavior under various conditions. They are described as follows:

• VPNConfB : This is a topology that had already been utilized for other pur-
poses and was adapted to test the framework on networks involving the use
of VPNs. Image 6.4 illustrates the structure.

Figure 6.4: VPNConfB topology

The topology can be expanded and made more complex by adding additional
endpoints on both the client and server sides, incorporating the basic struc-
tures depicted in Figure 6.5 that will be attached to the central AP.

57

Test Campaign Preparation: Code Interventions and New Topology Design

Figure 6.5: VPNConfB topology basic structures

• Geant : this topology’s name comes from Geant [17], which is an international
organization that provides advanced computing and network resources for
scientific research. The Geant network is a high-speed pan-European network
connecting academic and research institutions in over 40 European countries,
enabling them to share data, computational resources, and collaborate on
research projects. Geant plays a crucial role in facilitating collaboration and
knowledge exchange among researchers and institutions across Europe and
beyond.

The topology used by the Geant network is highly complex and branching,
as depicted in Figure 6.6. However, the VEREFOO framework struggles
to handle cases where there are multiple possible paths between 2 or more
endpoints. Indeed, both algorithms for computing traffic flows, both Atomic
Predicates and Maximal Flows described in Chapter 3, particularly the former
which divides each flow into multiple sub-flows, must consider every single
path present in the network. This inevitably leads to an exponential increase
in total flows as the network size grows, quickly exhausting available memory.

For this reason, the Geant topology has been adapted so that it can be eval-
uated with VEREFOO. The adapted topology is shown in Figure 6.7.

58

Test Campaign Preparation: Code Interventions and New Topology Design

Figure 6.6: Allocation Graph inspired by Geant network topology

From Figure 6.7, it is apparent that the final topology consists of multiple
basic structures, each of which is composed of a variable number of Web
Clients, as determined by the user, connected to an AP via Forwarders. For
each basic structure, which has a star shape, there are also two additional
Forwarders connected to another AP, enabling traffic flow to and from other
basic structures. This latter AP is ultimately connected to a central For-
warder that facilitates communication among all the substructures present in
the topology.

When considering this topology, we can decide both the number of endpoints
and the number of APs that will constitute the final topology. In particular,

59

Test Campaign Preparation: Code Interventions and New Topology Design

Figure 6.7: Example of Geant topology adapted to VEREFOO

we can decide the total number of Web Clients (numberWebClients) and the
number of Web Clients for a single AP (numberWebClientsPerAP). The
formula for computing the number of APs is the following:

numberAP =

(︃
numberWebClients

numberWebClientsPerAP

)︃
×2 (6.1)

• Internet2 : the name of this topology comes from Internet2 [18], which is a
community of academic institutions, research organizations, industries, and
government agencies in the United States collaborating to develop and imple-
ment advanced network technologies and Internet applications. Founded in
1996, Internet2 aims to promote innovation and advancement in networking
and computer technologies to support scientific research, education, and the
development of new Internet applications.

Internet2 operates a high-performance research network, called the Internet2
Network, which provides higher bandwidth and performance compared to
commercial Internet. This network is used to support a wide range of re-
search and development projects in fields such as science, education, medicine,
engineering, and more.

60

Test Campaign Preparation: Code Interventions and New Topology Design

Internet2 network employs a less intricate network topology compared to
Geant and is more linear in nature, as depicted in Figure 6.8.

Figure 6.8: Allocation Graph inspired by Internet2 network topology

However, similar to the issue described for the Geant topology, this topology
has also been adapted for execution in VEREFOO. An example is depicted
in Figure 6.9.

This topology features base structures connected to a central forwarder, but
with a different configuration compared to Geant. Unlike Geant’s star-shaped
topology, here the structures do not follow a star shape but rather consist of

61

Test Campaign Preparation: Code Interventions and New Topology Design

Figure 6.9: Example of Geant topology adapted to VEREFOO

chains of Web Clients connected to a Forwarder. Each Web Client is directly
connected to a Forwarder, while Forwarders are interconnected via APs. This
means that, while in Geant’s topology the delivery of a packet destined to a
Web Client is immediate once it reaches the central AP of the base structure,
here the packet must traverse the entire chain of the base structure until it
reaches the recipient, thus requiring multiple steps.

Even for this topology we can decide the number of APs of the final topology.
In particular, we can decide the total number of Web Clients (numberWebClients)
and the number of Web Clients per chain (numberWebClientsPerChain).
The formula for the computation of the number of APs is the following:

numberAP = (numberWebClientsPerChain− 1)× numChains (6.2)

where numChains is:

numChains =
numberWebClients

numberWebClientsPerChain
(6.3)

62

Test Campaign Preparation: Code Interventions and New Topology Design

6.4 Test Classes

In the context of the thesis, the Java classes created to execute tests on a frame-
work can be described as entities that organize and manage code to perform specific
operations or tests within the framework environment. These executable classes
typically include a main() method serving as the entry point for program execu-
tion. Through the use of these classes, tests on the framework can be orchestrated
and conducted, allowing for the evaluation of its performance, functionality, and
behavior under various conditions.

Each topology to be tested is composed by two test classes:

• TestPerformanceScalability: This class handles all logistical aspects. For
instance, it defines the total number of endpoints that will constitute the
final topology, the number of APs if we want to feed the framework directly
with an Allocation Graph, and the number of NSRs we want to create and
implement on the final topology. During this work, a test case will be defined
as an Allocation Graph with a set of NSRs that need to be implemented on
it.

Once all these parameters are defined, the associated test case is created
through the described TestCaseGenerator class (which is described in more
details below). This test case is then fed into the framework. Upon completion
of the execution, this class also handles gathering results of interest, such as
the total execution time, the total number of configured firewalls, and the total
number of configured rules.

In addition to managing these parameters, this class also allows for the selec-
tion of the test execution mode:

– Creation of a single test case that will be processed only once by the
framework.

– Creation of a single test case that will be processed multiple times by
the framework. This scenario can be useful when seeking to obtain a
more precise and accurate result by averaging the outcomes.

– Creation of multiple different test cases with incrementally increasing
parameters. This scenario can be beneficial for testing the framework’s
behavior under varying complexities. For example, with each run of the
framework, the number of endpoints in the network can increase by a
certain number of units, or the number of NSRs, or a combination of
both. For each test case, it can be decided whether to run the framework
once or multiple times, as described in the previous cases.

Finally, through this class, it is also possible to establish a termination con-
dition for the tests. Examples can be:

– The number of NSRs exceeds a certain threshold;

– The number of endpoints exceeds a certain threshold;

63

Test Campaign Preparation: Code Interventions and New Topology Design

– The execution time exceeds a certain threshold;

and so on.

• TestCaseGenerator: this class is invoked by the TestPerformanceScalability
class, and is responsible for gathering parameters from it and using them to
create the actual topology, along with the NSRs to be implemented.

While the TestPerformanceScalability class is more or less the same for
all topologies, this one varies depending on the specific topology, as each
topology differs from the others.

Here’s an outline of the sequence of operations performed by a class of this
type. Note that this is a general list and may vary slightly from one topology
to another, depending on their specific structure.

– Creation of all the endpoints (they can be Web Clients, Web Servers,
other NFs or subnetworks);

– Creation of Allocation Places if we are considering an Allocation Graph;

– Creation of Forwarders that, based on the specific structure of each
topology, connect endpoints and APs in a certain manner;

– Creation of a set of NSRs taking into account the newly created end-
points. This point is better described in the next Section.

6.5 Network Security Requirements Generator

Given that the aim of this thesis is to test the performance of the various versions of
the framework as the complexity of the topology and the number of endpoints vary,
a custom Network Security Requirements generator has been developed. Specifi-
cally, this generator has the following characteristics:

• The generator offers the flexibility to select between two types of requirements:
isolation requirements and reachability requirements. Additionally, users can
specify the percentage of each type they desire. For instance, they may opt
for exclusively isolation requirements, solely reachability requirements, or a
blend of both types, such as 70% isolation and 30% reachability.

This capability allows for fine-tuning the generated requirements according
to specific testing needs and scenarios, enhancing the versatility of the testing
process.

• For each generated requirement, both the selection of the source node and
the destination node are randomly chosen. This deliberate randomness pre-
vents the generator from creating overly specific policies, ensuring that the
framework’s behavior is tested under a variety of conditions.

In real-world network scenarios, policies often need to accommodate endpoints
located at various distances from each other within the network. Therefore,

64

Test Campaign Preparation: Code Interventions and New Topology Design

by allowing random selection of nodes, the generator simulates a more realis-
tic and diverse network environment, enabling comprehensive testing of the
framework’s performance across different configurations.

• The generator also provides the option to include or exclude port intervals
when creating NSRs. In its simplest form, all policies use the wildcard symbol
”*” to represent the entire port range for both source and destination, making
the policy solely dependent on the source and destination IP addresses. But
this approach may pose limitations for small-scale networks, as only a very
limited number of policies can be created in this manner. This is because,
for the framework to execute correctly, the policies must be conflict-free;
otherwise, the result will be UNSAT.

However, for more realistic and intricate policies, the inclusion of ports can
be opted for. In this case, the generator randomly selects ports for both the
source and destination. These ports can either be singular (e.g., 80), a range
of ports (e.g., 100-200), or encompass the entire port range from 0 to 65535,
denoted by the symbol ”*”.

This added flexibility enables the generation of policies that better reflect real-
world scenarios, allowing for more comprehensive testing of the framework’s
performance under various conditions.

65

Chapter 7

Test Campaign - First Phase

This chapter and the following ones represent the true core of this thesis work, as
they present the results obtained from performance and scalability tests conducted
using the tools and methods described in Chapter 6.

In particular, this Chapter compiles the results derived from an initial test cam-
paign. The primary goal of this campaign was to understand the main differences
between the four versions of the framework described in Chapter 6, namely:

• MaxSMT with Atomic Predicates

• MaxSMT with Maximal Flows

• heuristics with Atomic Predicates

• heuristics with Maximal Flows

Therefore, the objectives of this initial phase were essentially twofold:

1. Determine the differences in terms of execution times and optimality between
the two main models used to model the framework: the approach using the
MaxSMT problem and the heuristic approach.

Specifically, we expected that the approach using the MaxSMT problem for-
mulation would yield longer execution times compared to the heuristic-based
approach. In fact, the MaxSMT problem is inherently complex, especially
if the number of constraints is high or if it involves complex theories. Even
the number of variables and constraints can significantly influence the time
required to find a solution. Problems with a large number of variables or
constraints, which in this case are represented by the number of endpoints
and the number of NSRs, take more time to solve.

However, we anticipated that the level of optimality, expressed in terms of the
number of allocated firewalls and rules, would be higher. This translates to a
lower total number of firewalls and rules compared to the heuristic approach.

66

Test Campaign - First Phase

2. Determine the differences in terms of execution times and optimality between
the two approaches considered for modeling traffic flows: Atomic Predicates
and Maximal Flows.

As described in Chapter 4, concerning the approach based on MaxSMT, we
anticipated that the solver would take more time using Maximal Flows be-
cause, as each Maximal Flow is not unique, it cannot be represented with a
simple integer, which heavily impacts the solver’s operation time. The algo-
rithm for Atomic Predicates, on the other hand, takes more time to compute
initially. However, once computed, the solver takes less time to handle them.

Regarding the heuristic approach, however, we expect that Maximal Flows
would perform better in terms of execution time because the algorithm for
caomputing them is faster compared to Atomic Predicates, yet without the
added complexity of the solver.

The tests were firstly conducted only on the topology VPNConfB considering
two different scenarios:

1. First scenario: fixed number of endpoints and variable number of NSRs.

2. Second scenario: Variable number of endpoints and variable number of
NSRs.

Regarding the requirements, initially, they do not include port considerations.
Therefore, each requirement has the wildcard symbol ”*” in both the src port and
dst port fields. It means that each requirement is only based on the source IP
address and on the destination IP address.

Two different cases were considered in each test to evaluate their effect on the
overall performance of the framework:

1. 100% Isolation Requirements

2. 50% Isolation Requirements and 50% Reachability Requirements

The following parameters have been evaluated:

• Execution time

• Total number of allocated firewalls

• Total number of configured rules

67

Test Campaign - First Phase

7.1 First Scenario - Fixed Number of Endpoints

and Variable Number of NSRs

In this scenario, a small network composed of a predefined number of endpoints
was considered, structured as follows:

• Number of web clients = 30

• Number of web servers = 15

• Number of APs = 30

• Number of clients per AP = 2

At each iteration, the number of NSRs was increased. Due to the structure of
the random requirement generator, the maximum limit for this network is 1980 =
(number of endpoints) * (number of endpoints - 1). Below are the results presented
through graphs.

7.1.1 100% Isolation Requirements

Execution Times

The first parameter considered during this testing phase is the execution time.
Specifically, a maximum execution time of 30 minutes was set as the limit, which
is equivalent to 1,800,000 milliseconds.

(a) MaxSMT (b) heuristics

Figure 7.1: Execution times

Figure 7.1a shows that, when using the MaxSMT problem, the execution times
with Atomic Predicates is not linear but rather resembles an increasing exponen-
tial trend, despite marked fluctuations in the data. Overall, a significant growth

68

Test Campaign - First Phase

trend is observed. Similarly, concerning Maximal Flows, we observe a clear upward
trend. Unlike the previous case, the trend is characterized by lower fluctuations
but overall higher execution times, as we expected. Again, the growth appears to
be exponential.

Figure 7.1b instead shows that, in the context of the heuristics,it is evident that
the trends of the two versions no longer follow an exponential model as noted in the
case of the solver. Instead, the trends appear to be much more linear, with reduced
variability in execution times. In contrast to the previous case, and as we expected,
the approach with Maximal Flows proves to be much more efficient compared to
the one based on Atomic Predicates.

As can be seen from the graph concerning the heuristics, the execution time
limit is well below half an hour, but it has simply been ”trimmed” to facilitate
comparison between the various versions of the framework. More exhaustive tests
on the execution time of the heuristics will be presented in the subsequent sections.

In general, we observe that the data related to the solver exhibit a significantly
higher growth rate compared to those of the heuristics. Furthermore, the fluctua-
tion in solver execution times is more pronounced, indicating a higher sensitivity
to increasing the number of NSRs.

On the other hand, considering the heuristics, we note that for the same number
of requirements, it is extremely faster compared to the solver. This gap is evident
from the significant difference in the orders of magnitude of execution times. While
the heuristics has execution times on the order of milliseconds or tenths of a second,
the solver requires times on the order of seconds or even minutes, especially when
using Maximal Flows.

Number of Allocated Firewalls

(a) MaxSMT (b) heuristics

Figure 7.2: Number of allocated Firewalls

As evident from Figures 7.2, the number of allocated firewalls is essentially
the same for all four versions, given an equal number of endpoints and policies.

69

Test Campaign - First Phase

Therefore, in terms of the number of allocated firewalls, the heuristics exhibits an
excellent level of optimality, comparable to that of the solver.

Number of Configured Rules

(a) MaxSMT (b) heuristics

Figure 7.3: Number of configured rules

From Figure 7.3, it can be noted that what differs significantly is instead the
number of configuration rules applied on the firewalls.

In the case where there are 100% isolation requirements, if we consider the
solver, a total of 0 rules is allocated, meaning that each firewall only has its default
rule, which in this case is DENY. This indicates a simple and minimal configuration
that satisfies the NSRs by configuring the least possible number of rules.

On the other hand, the heuristics adopts a different approach by allocating on
the firewalls a total number of rules equal to the number of NSRs.

From this perspective, therefore, the heuristics appears to be less efficient than
the solver in terms of rule configuration efficiency.

7.1.2 50% Isolation Requirements and 50% Reachability
Requirements

Now the same tests that have just been presented will be repeated, but with a
variation: instead of considering only isolation requirements, half isolation and half
reachability requirements will be considered. This choice has been made to evaluate
the framework’s behavior following the addition of complexity due to reachability
requirements, which puts more stress on the framework.

Execution Times

Observing Figure 7.4a, it is evident that in the version based on the MaxSMT
problem, the execution times increase drastically, especially when the number of

70

Test Campaign - First Phase

(a) MaxSMT (b) heuristics

Figure 7.4: Execution times

requirements exceeds a few tens of units, whereas in the previous case, it reached
a few thousand. The reason for this significant difference lies in the complexity of
firewall configuration, which is much higher when both reachability and isolation
requirements are present. In particular, the version utilizing Maximal Flows begins
to show a significant increase in execution times starting from around 40 NSRs,
while the version with Atomic Predicates reaches similar thresholds at around 120
NSRs.

On the other hand, observing Figure 7.4b, concerning the heuristics, we can no-
tice that there are no significant differences compared to the previous case where the
entire set of requirements was focused on isolation. In other words, the heuristics
maintains greater stability in execution times, regardless of the type of require-
ments.

In contexts where various types of requirements are present, the differences
between MaxSMT-based and heuristics-based approaches become more pronounced
and significant. Heuristics demonstrate remarkable adaptability, enabling efficient
handling of scenarios with thousands of NSRs. Meanwhile, solvers exhibit clear
limitations, as they can handle only a limited number of NSRs (typically just a
few dozen). Additionally, even with such a limited number of NSRs, solvers show
very high execution times, rendering them impractical for complex scenarios with
a wide range of requirements.

Number of Allocated Firewalls

Observing Figure 7.6a, it can be noted that, concerning the MaxSMT problem,
it is challenging to make a comparison between Atomic Predicates and Maximal
Flows regarding the number of allocated firewalls because the approach based on
Maximal Flows terminates ”too soon” compared to Atomic Predicates. However,
from the limited available data, it seems that, for the same network size and NSRs,
even when mixed requirements are present, there are no significant differences.

71

Test Campaign - First Phase

(a) MaxSMT (b) heuristics

Figure 7.5: Number of allocated Firewalls

Regarding the heuristics, however, from Figure 7.6b, it can be noticed that
the number of allocated firewalls does not differ between Atomic Predicates and
Maximal Flows, as in the case when there are 100% isolation requirements.

Number of Configured Rules

(a) MaxSMT (b) heuristics

Figure 7.6: Number of configured rules

The substantial difference, as in the previous case, lies in the number of config-
ured rules. Considering the heuristics, thus Figure 7.6b, it is noticeable how the use
of Atomic Predicates tends to allocate fewer rules compared to the use of Maximal
Flows. In fact, focusing on Maximal Flows, it can be observed that more rules
may be allocated than the number of requirements to be satisfied, which is quite
unusual. During the execution of the tests, it was noted that this version of the
framework, sometimes, tends to allocate the same rule on the same firewall. In par-
ticular, when there are multiple possible paths between the source and destination

72

Test Campaign - First Phase

of a NSR, this results in multiple rules being allocated in the firewall. If there is
only one path between the source and destination, a single rule is allocated in the
firewall. However, if there are two or more paths, the same rule will be allocated
multiple times in the firewall, one for each path.

7.2 Second Scenario - Variable Number of End-

points and Variable Number of NSRs

In this second scenario, the goal is to test the behavior of the framework not only as
the number of NSRs varies on a network of fixed dimensions but also on a network
that grows in the number of endpoints. At each iteration, the number of endpoints
in the network increases, and the ratio between the number of endpoints and the
number of NSRs remains constant at 1:3. This implies that for a network with X
endpoints, there will be 3X requirements, and so on.

7.2.1 100% Isolation Requirements

Execution Times

(a) MaxSMT (b) heuristics

Figure 7.7: Execution times

Observing Figure 7.7a related to the versions based on maxSMT, it’s evident
how the execution times increase exponentially with the growth of the network size
and the number of NSRs, with significant fluctuations in the data. Both approaches,
Atomic Predicates and Maximal Flows, show a very similar trend, but what emerges
clearly is that the Maximal Flows approach consistently has higher execution times
compared to the Atomic Predicates approach. This gap remains stable as the input
data increases, unlike the previous scenario where the difference in execution times
was not always stable.

73

Test Campaign - First Phase

For both approaches, the time limit is reached with a network composed of
approximately 300 endpoints and 900 requirements.

In the case of the heuristics, how it is shown in Figure 7.7b it’s evident that
the difference between the Atomic Predicates and Maximal Flows approaches is
significantly more pronounced compared to the previous scenario. Specifically, the
Atomic Predicates approach shows an exponential growth rate, while the Maxi-
mal Flows approach follows an exponential trend only when the network becomes
significantly larger.

This implies that with the heuristics, the Atomic Predicates approach tends to
reach the time limit with a network of around 1000 endpoints and 3000 requirements
due to its rapid increase in execution times, while the Maximal Flows approach
manages to handle larger problem sizes before exhibiting an exponential growth
rate in execution times.

In general, the heuristics-based approach demonstrates remarkable scalability,
being able to handle networks composed of thousands of endpoints and a high
number of NSRs. This means it can effectively and efficiently tackle large-scale
scenarios.

On the other hand, the MaxSMT-based approach shows significantly lower scal-
ability, being capable of handling only networks with a relatively limited number
of endpoints (a few hundred) and consequently, requirements before reaching the
time limit.

Number of Allocated Firewalls

(a) MaxSMT (b) heuristics

Figure 7.8: Number of allocated Firewalls

From Figure 7.9, it’s evident that the number of firewalls allocated by both the
solver and the heuristics, given an equal number of endpoints and requirements, is
essentially the same, as in the previous scenario.

74

Test Campaign - First Phase

Number of Configured Rules

(a) MaxSMT (b) heuristics

Figure 7.9: Number of configured rules

What significantly differs is the number of rules configured.

Indeed, as in the previous scenario, in the case of the solver, 0 rules are allocated
(meaning that each firewall has only the default rule), while the heuristics allocates
a number of rules equal to the number of requirements, and the same considerations
as before apply even in this case.

7.2.2 50% Isolation Requirements and 50% Reachability
Requirements

Execution Times

(a) MaxSMT (b) heuristics

Figure 7.10: Execution times

75

Test Campaign - First Phase

In this scenario, when concerning the Max-SMT approach (Figure 7.10a) we
observe that the execution times increase significantly and follow an exponential
trend, especially when the network size exceeds a few tens of endpoints. Similar to
what we’ve seen before, when dealing with a combination of different types of NSRs,
the time limit is reached much earlier due to the increased complexity required in
configuring the firewalls.

Specifically, the version usingg Maximal Flows reaches the time limit with a
network of approximately 20 endpoints and 60 NSRs, while the version with Atomic
Predicates exhibits a similar behavior, reaching the limits with a network of about
45 endpoints and 135 NSRs.

Regarding the heuristics (Figure 7.10b), we can observe that there are no signifi-
cant differences compared to the previous scenario where the entire set of NSRs was
isolation-oriented. In other words, even in this scenario, the heuristics maintains
greater stability in execution times, regardless of the type of NSRs.

In the context where various types of requirements are present, the differences
between the solver-based approach and the heuristics-based approach become more
evident and significant, even compared to the previous scenario. The heuristics
demonstrates remarkable adaptability, allowing it to efficiently handle scenarios
with thousands of endpoints and requirements, especially when using Maximal
Flows. The solver shows clear limitations, as it can only handle small networks (a
few tens of endpoints) and a limited number of requirements.

Number of Allocated Firewalls

(a) MaxSMT (b) heuristics

Figure 7.11: Number of allocated Firewalls

76

Test Campaign - First Phase

(a) MaxSMT (b) heuristics

Figure 7.12: Number of configured rules

Number of Configured Rules

Observing Figures 7.11 and 7.12, there are no particular differences compared to
the scenario where the set consisted solely of isolation requirements. Therefore, the
same considerations made previously apply.

7.3 Considerations

The execution of the tests presented in this chapter has brought to light the fol-
lowing results:

• Execution times : the heuristics is generally faster than the Z3 solver for both
Atomic Predicates and Maximal Flows.

• Number of allocated firewalls : both the heuristics and the solver allocate a
similar number of firewalls at an equal network size and set of NSRs.

• Number of configured rules : the solver tends to allocate a significantly lower
number of rules compared to the heuristics, both when there are only isolation
requirements and mixed requirements. This results in a more minimal and
simplified configuration of the firewalls.

• Atomic Predicates vs Maximal Flows : using MFs results in increased res-
olution times compared to APs when using the solver, while the heuristics
shows a drastic decrease in execution times when switching from APs to MFs.
This can be explained by the fact that if the solver is used, the majority of
the execution time is occupied by solving the MaxSMT problem, while the
calculation of MFs and APs, in comparison, is negligible. Additionally, the
solver takes much more time if MFs is used as input compared to APs, as
explained in Chapter 4. In contrast, the heuristics employs a non-exact but

77

Test Campaign - First Phase

significantly faster algorithm compared to the time it takes for the solver to
solve the MaxSMT problem. In this case, the majority of the execution time
is spent on calculating APs or MFs, while the time spent on the actual al-
gorithm is negligible in comparison. This results in a much faster execution
time using MFs compared to using APs, because computing MFs is much
quicker.

• Impact of mixed requirements : the use of both isolation and reachability
requirements introduces greater computational complexity when using the
Z3 solver, but there are no significant differences when using the heuristics,
demonstrating greater adaptability compared to the solver. The heuristics
are less affected by the combination of different types of NSRs compared to
the solver. This is evident in execution times, as the Z3 solver shows a drastic
increase in times when mixed requirements are present, while the heuristics
maintain more consistent execution times.

78

Chapter 8

Optimizing firewall Configuration
for Minimal Rule Allocation

The results of the performance and scalability tests in Chapter 7 highlight a signif-
icant disparity between the heuristics and the solver. While the heuristics stands
out for superior performance in terms of execution time, the solver and the heuris-
tics exhibit similar behavior regarding the number of allocated firewalls. However,
the main discrepancy lies in the number of configured rules. Specifically, when the
entire set of NSRs consists of isolation requirements, the heuristics tends to allo-
cate one rule for each requirement, while the solver utilizes a default DENY rule
for each firewall in order to configure 0 rules on each of them. Even in the case of
mixed requirements, the solver demonstrates a higher level of optimality, thanks to
the use of firewall’s default rules (in this case DENY or ALLOW), compared to
the heuristics.

Additionally, another critical issue of the heuristics emerged during the tests
conducted in Chapter 7: when there are multiple possible paths between the source
node and the destination node of a requirement, the same rule is assigned multiple
times to the same firewall, resulting in ineffective rule duplication.

This chapter aims to address these heuristics algorithm limitations, presenting a
series of improvements aimed at increasing the level of optimality in the number of
allocated rules and mitigating the inefficiency resulting from rule duplication. By
implementing new heuristics strategies and optimizing rule allocation procedures,
the goal is to achieve a more efficient firewall configuration that complies with
defined security requirements.

8.1 Eliminating Redundant Rule Configuration

The first intervention involved eliminating the duplication of rules across firewalls.
This enhancement was implemented within the configure() method of the heuristics,
as described in Chapter 3. Before detailing the modification, it’s essential to explain
what an object of type Elements is in VEREFOO.

79

Optimizing firewall Configuration for Minimal Rule Allocation

8.1.1 Elements class

In VEREFOO, the Elements class is a class that models a rule configured on a
firewall object. It consists of the following properties:

• action: action of the rule (DENY or ALLOW);

• source: source IP address of the rule;

• destination: destination IP address of the rule;

• protocol: layer 4 protocol of the packet class to which the rule applies;

• srcPort: port or port range of the source node;

• dstPort: port or port range of the destination node.

Through the process described in Chapter 5.1, specific rules are configured for
each requirement on every firewall allocated by the heuristics. Specifically, if it’s
an isolation requirement, a DENY rule is configured, whereas for a reachability
requirement, an ALLOW rule is configured. The intervention implemented involves
checking, before allocating a new rule to a firewall, whether an identical rule already
exists on that firewall. If not, the new rule is allocated; otherwise, it is skipped.
Listing 8.1 shows the code for an isolation requirement, but it is the same for a
reachability requirement.

if(srType == PName.ISOLATION_PROPERTY) {

Elements element = new Elements();

element.setAction(ActionTypes.DENY);

element.setSource(IPSS);

element.setDestination(IPDS);

element.setSrcPort(pSS);

element.setDstPort(pDS);

Boolean flag = false;

for (Elements e : fw.getElements()) {

if (isEqual(element, e)) {

flag = true;

}

}

if (flag == false)

fw.getElements().add(element);

}

Listing 8.1: Check whether a rule already exists on the firewall or not.

The isEqual(Elements e1, Elements e2) method is shown in Listings 8.2.

public boolean isEqual(Elements e1, Elements e2) {

if (e1.getAction() == e2.getAction() &&

e1.getSource().equals(e2.getSource()) &&

e1.getDestination().equals(e2.getDestination()) &&

e1.getSrcPort().equals(e2.getSrcPort()) &&

e1.getDstPort().equals(e2.getDstPort())) {

80

Optimizing firewall Configuration for Minimal Rule Allocation

return true;

}

else {

return false;

}

}

Listing 8.2: Check whether a rule already exists on the firewall or not.

8.2 Post Processing of Rules

Another improvement made for each firewall allocated and configured by the heuris-
tics was to replace one of the two sets of rules (all DENY rules or all ALLOW rules)
with a default rule, thereby saving the configuration of a large number of rules. Be-
low is the approach which has been used.

Let’s denote:

1. AA as the set of all Allocation Places in the topology;

2. FD
a is the set of the denying rules deriving from isolation requirements;

3. FA
a is the set of the allowing rules deriving from complete and partial reach-

ability requirements.

For each a ∈ AA such that allocated(a) = true (it means that a firewall is
allocated in that a) the cardinalities of FD

a and FA
a are compared:

1. if FD
a ≥ FA

a , then the firewall in a is configured with DENY as default action
and the filtering rules of the FA

a set;

2. if FD
a < FA

a , then the firewall in a is configured with ALLOW as default action
and the filtering rules of the FD

a set.

The implementation in shown in Listing 8.3.

public static void postProcessDisjunctRules(List<Node> nodes) {

for (Node n: nodes) {

if (n.getFunctionalType() == FunctionalTypes.firewall) {

List<Elements> fRules =

n.getConfiguration().getfirewall().getElements();

List <Elements> dRules = fRules.stream().filter(r -> r.getAction()

== ActionTypes.DENY).collect(Collectors.toList());

List <Elements> aRules = fRules.stream().filter(r -> r.getAction()

== ActionTypes.ALLOW).collect(Collectors.toList());

Configuration confF = new Configuration();

confF.setName("confF");

81

Optimizing firewall Configuration for Minimal Rule Allocation

n.setConfiguration(confF);

firewall fw = new firewall();

if(aRules.size() > 0 && dRules.size() > 0) {

if(dRules.size() >= aRules.size()) {

fw.setDefaultAction(ActionTypes.DENY);

for(Elements e : aRules) {

e.setProtocol(L4ProtocolTypes.ANY);

fw.getElements().add(e);

}

}

else if (dRules.size() < aRules.size()) {

fw.setDefaultAction(ActionTypes.ALLOW);

for(Elements e : dRules) {

e.setProtocol(L4ProtocolTypes.ANY);

fw.getElements().add(e);

}

}

}

else if (aRules.size() == 0 && dRules.size() > 0) {

fw.setDefaultAction(ActionTypes.DENY);

}

else if (aRules.size() > 0 && dRules.size() == 0) {

fw.setDefaultAction(ActionTypes.ALLOW);

}

confF.setfirewall(fw);

n.getConfiguration().setfirewall(fw);

}

}

}

Listing 8.3: Algorithm for post processing of rules.

8.3 Check with Verigraph

To verify that the algorithm for post-processing rules works correctly, it is necessary
to test the produced output. Verigraph, a tool developed by the Netgroup working
group at Politecnico di Torino, is used for this purpose. Verigraph exploits Z3 to
define a formal model of a network, allowing for formal verification of the topology
provided as input. In our case, the process involves:

• running the heuristics on a specific topology to enforce a set of NSRs;

82

Optimizing firewall Configuration for Minimal Rule Allocation

• executing the post-processing algorithm described in section 8.2;

• taking the resulting XML schema and passing it as input to Verigraph;

• Verigraph will output ”SAT” if the Network Security Functions present in
the XML topology are good and sufficient to satisfy the defined NSRs, and
”UNSAT” otherwise.

83

Chapter 9

Test Campaign - Second Phase

This chapter aims to conduct performance and scalability tests, similar to Chapter
7, while also evaluating the enhancements introduced in Chapter 8. The primary
objective is to assess the degree of improvement in heuristics optimality resulting
from these changes, particularly focusing on the number of configured rules. The
tests were carried out based on the following criteria:

• Only two versions of the framework are considered in this chapter:

– MaxSMT with Atomic Predicates

– Heuristics with Maximal Flows

This selection was made based on the findings from Chapter 7, indicating
that the other two versions are less effective in terms of execution time.

• The Chapter includes testing on the two new topologies introduced in Chapter
6, namely the Geant topology and the Internet2 topology, to analyze the
framework’s behavior across diverse topologies. For the Geant topology, the
variable numberWebClientsPerAp was set to 2 for the MaxSMT and to 5
for the Heuristics (but to 2 when comparing it to the MaxSMT). Instead, for
the Internet2 topology the variable numberWebClientsPerChain was set to
2 for the MaxSMT and to 10 for the heuristics (but to 2 when comparing it
to the MaxSMT). The formulas for computing the number of APs for both
topologies was explained in Chapter 6.

• The tests specifically focus on scenarios where both the number of endpoints
and requirements increase proportionally at each iteration, maintaining a 1:3
ratio between endpoints and requirements. The time limit for these tests
remains set at 30 minutes (1,800,000 ms).

• Similar to Chapter 7, two test cases were considered:

– 100% isolation requirements

– 50% isolation requirements and 50% reachability requirements

84

Test Campaign - Second Phase

The evaluation criteria for these tests include execution time, total number
of allocated firewalls, total number of configured rules and total number of
rules configured after Post Processing (only for heuristics).

Next, the results will be presented through graphs divided into sections. We
first analyze execution times, comparing the solver and heuristic approaches. Then,
we shift the focus to the number of allocated firewalls and examine the configured
rules, completing the analysis.

9.1 100% Isolation Requirements

9.1.1 Execution Times

Geant Topology

(a) MaxSMT (b) Heuristics

(c) MaxSMT and Heuristics

Figure 9.1: Execution times comparison - GEANT

85

Test Campaign - Second Phase

The solver’s data shows a higher growth rate compared to the heuristics, reach-
ing time limits with a small network of 30 endpoints and about 90 NSRs. Up to
15 endpoints, the growth rate is quite linear. Beyond 15, it takes on an exponen-
tial connotation. On the other hand, considering the heuristics, we notice that it
is faster compared to the solver. In fact, it reaches the time limits with a much
larger network, consisting of approximately 25,000 endpoints and 75,000 NSRs.
The differences in orders of magnitude are as follows:

• Up to 6 endpoints: 2 orders of magnitude;

• From 7 to 10 endpoints: 3 orders of magnitude;

• From 11 to 22 endpoints: 4 orders of magnitude;

• From 22 endpoints onwards: more than 5 orders of magnitude.

Internet2 Topology

(a) MaxSMT (b) Heuristics

(c) MaxSMT and Heuristics

Figure 9.2: Execution times comparison - INTERNET2

86

Test Campaign - Second Phase

The solver exhibits a higher growth rate compared to the heuristics in this
topology too. It reaches time limits with a slightly larger network of about 30
endpoints and 90 requirements. Conversely, the heuristics handle a significantly
larger network of around 25,000 endpoints and 75,000 requirements, maintaining
faster execution times. The differences in orders of magnitude are the same as the
Geant topology.

9.1.2 Number of Allocated Firewalls

Geant Topology

(a) MaxSMT (b) Heuristics

(c) MaxSMT and Heuristics

Figure 9.3: Number of allocated firewalls - GEANT

87

Test Campaign - Second Phase

Internet2 Topology

(a) MaxSMT (b) Heuristics

(c) MaxSMT and Heuristics

Figure 9.4: Number of allocated firewalls - INTERNET2

Based on images 9.3 and 9.4, it can be observed that, similar to the tests
conducted earlier, there are no notable discrepancies between the heuristics and
the solver in terms of the number of allocated firewalls. Additionally, there are no
significant distinctions between the two types of topology.

88

Test Campaign - Second Phase

9.1.3 Number of Configured Rules

Geant and Internet2 Topologies

The results from the tests conducted on both topologies are combined into a single
graph due to their identical nature in this case.

(a) MaxSMT
(b) Heuristics before and after post pro-
cessing

Figure 9.5: Number of configured rules - GEANT and INTERNET2

The graph shown in Figure 9.5b clearly shows that the recent implementation of
post-processing rules algorithm has aligned the heuristics, in terms of the number
of configured rules, with the version based on maxSMT. Specifically, before the
implementation of this new algorithm, the heuristics allocated a number of rules
equal to the number of requirements when dealing with only isolation requirements.
However, after applying this new feature, the firewalls are configured with a single
default DENY rule, effectively allocating 0 rules (similar to the solver), thus saving
a significant amount of memory.

9.2 50% Isolation Requirements and 50% Reach-

ability Requirements

9.2.1 Execution Times

Geant Topology

In general, we notice that the solver’s data exhibits a faster growth rate compared
to that of the heuristics, reaching the time limits (around half an hour) with a
smaller network size than in the previous case where only isolation requirements
were present. This smaller network consisted of 16 endpoints and around 50 re-
quirements. Furthermore, it can be observed that the growth rate remains relatively

89

Test Campaign - Second Phase

(a) MaxSMT (b) Heuristics

(c) MaxSMT and Heuristics

Figure 9.6: Execution times comparison - GEANT

linear up to 10 endpoints. Beyond 10 endpoints, it transitions into an exponen-
tial pattern. This outcome highlights the challenges faced by the MaxSMT-based
approach when dealing with mixed requirements.

Upon observing the heuristics, it’s evident that introducing mixed requirements
doesn’t affect its performance significantly. The performance remains largely con-
sistent compared to the previous scenario that only included isolation requirements.

In this context, the differences in orders of magnitude are outlined as follows:

• Up to 4 endpoints: a difference of 2 orders of magnitude;

• From 5 to 7 endpoints: a difference of 3 orders of magnitude;

• From 8 to 11 endpoints: a difference of 4 orders of magnitude;

• 12 endpoints and beyond: a difference of 5 orders of magnitude.

90

Test Campaign - Second Phase

Internet2 Topology

(a) MaxSMT (b) Heuristics

(c) MaxSMT and Heuristics

Figure 9.7: Execution times comparison - INTERNET2

For this topology with mixed requirements, the threshold is reached with a
smaller setup of about 12 endpoints and 36 requirements. The increase in time is
consistently linear until 8 endpoints but experiences a sharp rise thereafter from 9
endpoints onward.

For the heuristics instead, we can make the same observations as in the previous
case. It reaches the time limits with a larger network, consisting of about 25,000
endpoints and 75,000 requirements, thus not being affected by the added complexity
of mixed requirements.

The difference in orders of magnitude is as follows:

• Up to 5 endpoints: 2 orders of magnitude;

• From 6 to 9 endpoints: 4 orders of magnitude;

• 10 to 11 endpoints: 5 orders of magnitude;

91

Test Campaign - Second Phase

• 12 endpoints and above: 6 orders of magnitude.

9.2.2 Number of Allocated Firewalls

Geant Topology

(a) MaxSMT (b) Heuristics

(c) MaxSMT and Heuristics

Figure 9.8: Number of allocated firewalls - GEANT

92

Test Campaign - Second Phase

Internet2 Topology

(a) MaxSMT (b) Heuristics

(c) MaxSMT and Heuristics

Figure 9.9: Number of allocated firewalls - INTERNET2

Even in this case when there are mixed requirements, there are not significant
differencies in terms on number of allocated firewalls.

93

Test Campaign - Second Phase

9.2.3 Number of Configured Rules

Geant Topology

(a) MaxSMT
(b) Heuristics before and after post pro-
cessing

(c) MaxSMT and heuristics before post
processing

(d) MaxSMT and heuristics after process-
ing

Figure 9.10: Number of configured rules - GEANT

In scenarios involving mixed requirements, including both isolation and reacha-
bility, the post-processing function has significantly reduced the number of assigned
rules by approximately two-thirds compared to the original configuration. As illus-
trated in Figure 9.10c, prior to implementing post-processing, the heuristics gen-
erated a higher number of rules compared to the solver: from an increase of 100%
in networks with few nodes to a 300% increase in networks with around twenty
nodes, showing a rising trend. However, with the implementation of this function,
it is evident how the heuristics is able to offset this difference by allocating approxi-
mately the same number of firewalls. Upon examining Figure 9.10d, an unexpected
observation is made: after the post-processing function is applied, the number of
rules allocated by the heuristics is actually lower than the number allocated by
the solver. This seems peculiar because the solver, which tackles the MaxSMT

94

Test Campaign - Second Phase

problem, typically finds the most optimized solution available. The reason behind
this lies in the fact that we used the version based on Atomic Predicates for the
solver and the version based on Maximal Flows for the heuristics. The differing
modeling approaches for traffic flows lead to the solver allocating slightly more
rules than the heuristics, given its reliance on Atomic Predicates (as discussed in
Chapter 4). However, further tests regarding this discrepancy will be conducted in
the subsequent chapter.

Internet2 Topology

(a) MaxSMT
(b) Heuristics before and after post pro-
cessing

(c) MaxSMT and heuristics before post
processing

(d) MaxSMT and heuristics after post
processing

Figure 9.11: Number of configured rules - INTERNET2

The observations made for the Geant topology hold true in this scenario as well,
where the new post-processing function for the heuristics has reduced the number
of allocated rules by approximately 2/3 compared to the original configuration.
Additionally, prior to implementing the post-processing function, the heuristics
generated a higher number of rules compared to the solver: ranging from a 100%

95

Test Campaign - Second Phase

increase to, in this case, a 200% increase, with a growing rate. However, the
application of this function clearly shows how the heuristics manages to compensate
for this difference by configuring a slightly lower number of rules than the solver,
while allocating approximately the same number of firewalls. The reason is the
same as before.

9.3 Evaluation of Differences Across Topologies

This section shifts its focus towards analyzing the performance and optimality
differences among the three examined topologies. The objective is to assess whether
there are variations in the framework’s execution based on the examined topology.

9.3.1 MaxSMT Version - 100% Isolation Requirements

Execution Times

(a) Geant (b) Internet2

(c) VPNConfB

Figure 9.12: Execution Times

96

Test Campaign - Second Phase

Number of Allocated Firewalls

(a) Geant (b) Internet2

(c) VPNConfB

Figure 9.13: Number of Allocated Firewalls

97

Test Campaign - Second Phase

Number of Configured Rules

(a) Geant (b) Internet2

(c) VPNConfB

Figure 9.14: Number of Configured Rules

The graphs provided indicate a similarity in performance between the Geant
and Internet2 topologies. There is a slight trend where Internet2 seems to exhibit
slightly better performance than Geant, although the difference is not substantial.

On the other hand, there is a significant difference observed with VPNConfB,
as this configuration reaches time limits with much larger networks, consisting of
approximately 300 endpoints and 900 policies (about ten times larger than the other
2 topologies). It is important to note that the tests for VPNConfB did not account
for ports in the policies. Consequently, the more complex the policies become, the
greater the challenge for the solver to process them.

When it comes to the number of allocated firewalls and rules, there are no
significant differences observed among the three different topologies.

98

Test Campaign - Second Phase

9.3.2 MaxSMT Version - 50% Isolation Requirements and
50% Reachability Requirements

Execution Times

(a) Geant (b) Internet2

(c) VPNConfB

Figure 9.15: Execution Times

99

Test Campaign - Second Phase

Number of Allocated Firewalls

(a) Geant (b) Internet2

(c) VPNConfB

Figure 9.16: Number of Allocated Firewalls

100

Test Campaign - Second Phase

Number of Configured Rules

(a) Geant (b) Internet2

(c) VPNConfB

Figure 9.17: Number of Configured Rules

Considering mixed requirements, we observe a convergence in differences among
the various topologies. Both the Geant and Internet2 topologies reach their limits
with slightly smaller networks compared to the previous case, comprising approxi-
mately 16 endpoints and 48 policies for Geant and 12 endpoints and 36 policies for
Internet2. However, Similarly, VPNConfB also reaches its limits but much earlier
than in the previous case, transitioning from 300 endpoints and 900 policies to
around 45 endpoints and 135 policies.

These findings underscore how the incorporation of reachability requirements,
alongside isolation requirements, markedly complicates the solver’s task in rule
configuration.

Similarly, in this case, there are no significant differences among the three dif-
ferent topologies regarding the number of firewalls and rules allocated.

101

Test Campaign - Second Phase

9.3.3 Heuristics Version - 100% Isolation Requirements

Execution Times

(a) Geant (b) Internet2

(c) VPNConfB

Figure 9.18: Execution Times

102

Test Campaign - Second Phase

Number of Allocated Firewalls

(a) Geant (b) Internet2

(c) VPNConfB

Figure 9.19: Execution Times

103

Test Campaign - Second Phase

Number of Configured Rules

(a) Geant (b) Internet2

(c) VPNConfB

Figure 9.20: Number of Configured Rules

Regarding the heuristics, the Geant and Internet2 topologies show essentially
the same execution times. In contrast, VPNConfB stands out for faster execution
times but reaches Java memory limits when dealing with networks of around 20,000
endpoints.

In terms of number of configured firewalls, there is a difference among the three
topologies: Geant allocates the most, followed by Internet2 which allocates almost
half of them and VPNConfB, which instead allocates about 1/5 of the firewalls
allocated in the Geant topology. For rules, however, all three topologies allocate
the same number under the same number of requirements.

104

Test Campaign - Second Phase

9.3.4 Heuristics Version - 50% Isolation Requirements and
50% Reachability Requirements

Execution Times

(a) Geant (b) Internet2

(c) VPNConfB

Figure 9.21: Execution Times

105

Test Campaign - Second Phase

Number of Allocated Firewalls

(a) Geant (b) Internet2

(c) VPNConfB

Figure 9.22: Execution Times

106

Test Campaign - Second Phase

Number of Configured Rules

(a) Geant (b) Internet2

(c) VPNConfB

Figure 9.23: Number of Configured Rules

In the case of the heuristics, both the Geant and Internet2 topologies demon-
strate similar execution times. On the other hand, VPNConfB topology exhibits
faster execution times but encounters memory limitations associated with Java
when handling networks comprising approximately 20,000 endpoints.

Concerning the number of configured firewalls, there is a distinction among
the three topologies: Geant has the highest number, followed by Internet2 and
VPNConfB like in the previous case. However, all three topologies allocate an
equal number of rules under similar requirements.

In the case of mixed requirements, there are no notable differences compared
to scenarios with solely isolation requirements. This outcome underscores that
unlike the solver, the heuristics doesn’t experience the heightened complexity from
reachability requirements, thus maintaining a consistent performance level even
when only isolation requirements are present.

107

Test Campaign - Second Phase

9.4 Considerations

In this second phase of testing, which was primarily aimed at evaluating the opti-
mization benefits stemming from the post-processing algorithm’s implementation
for the heuristics and discerning distinctions across different topologies, the follow-
ing results are achieved:

• Impact of the post-processing algorithm: The algorithm has notably
reduced the number of rules allocated by the heuristics. Specifically, when
the entire set of NSRs comprises isolation requirements, the algorithm ensures
that all firewall rules are replaced by a single default DENY rule. This aligns
the heuristic’s behavior more closely with that of the solver. However, in
cases involving mixed requirements (both isolation and reachability), one of
the rule sets is replaced by a default rule, resulting in about a two-thirds
reduction in the number of configured rules.

• Performance disparities: As noted in the initial testing in Chapter 7, there
are significant performance variations between the heuristics and the solver.
These differences range from a minimum of 2 orders of magnitude for very
small networks with a few endpoints to 5 orders of magnitude for networks
with tens of endpoints, with performance disparity increasing as network size
grows.

• Distinctions between topologies: Notably, when considering the solver
and factoring in ports in policies, there’s a substantial increase in computa-
tional complexity. The solver reaches its half-hour limit with networks approx-
imately one-tenth the size compared to scenarios where ports are excluded
from policies. Conversely, the heuristics can handle much larger networks, but
introducing ports in policies leads to roughly a threefold increase in execution
times. Regarding the number of configured rules, the graph trends exhibit a
relatively linear pattern, with no significant deviations observed among the
three topologies. Instead, there are differencies when considering the number
of allocated firewalls: Geant allocates the highest number of firewalls, fol-
lowed by Internet2 and VPNConfB. This depends by the morfology of the
topologies and by the number of Allocation Places that are present in them.

108

Chapter 10

Test Campaign - Third Phase

This final testing chapter focuses on evaluating the results obtained from perfor-
mance and optimality tests, with particular emphasis on two key parameters:

1. Degree of Optimality: the first section aims to precisely evaluate the dif-
ference in the number of allocated firewalls and configured rules among the
following versions of the framework:

• Heuristics based on Maximal Flows

• MaxSMT based on Maximal Flows

In Chapter 9, the discrepancy observed when considering the number of con-
figured rules stemmed from testing two different versions: the heuristic ver-
sion was built on Maximal Flows, whereas the MaxSMT version was based on
Atomic Predicates. Due to the Atomic Predicates approach resulting in con-
figuring a higher number of rules, it was evident that the MaxSMT version
configured more rules than the heuristics. Furthermore, the tested topolo-
gies, although matching in terms of endpoints and requirements numbers,
had random requirements. It means that the set of NSRs was not the same
for them. Consequently, the evaluation produced a general result rather than
a precise one. This section addresses this issue by testing identical topologies
with the same set of requirements across the two versions. The aim is to
primarily compare the heuristic version based on Maximal Flows with the
MaxSMT version, which is now also based on Maximal Flows rather than on
Atomic Predicates as in the previous chapter, to ensure the correct allocation
of firewalls and configured rules.

2. Limits of the Heuristics: furthermore, the limit that the heuristics can
reach in terms of network size and maximum number of requirements before
exhausting the memory of the IDE used for the tests, in this case Eclipse, has
also been tested.

In this context, the goal is to analyze and compare the performance and op-
timization capabilities of different framework implementations accurately, as well
as to determine the practical limits of the heuristics in terms of scalability and
memory management.

109

Test Campaign - Third Phase

10.1 Optimality Tests

During this testing phase, two specific topologies were considered:

1. Geant

2. Internet2

Additionally, three different scenarios were examined to assess the differences
in the distribution of requirements:

1. 25% Isolation Requirements and 75% Reachability Requirements

2. 50% Isolation Requirements and 50% Reachability Requirements

3. 75% Rsolation Requirements and 25% Reachability Requirements

For each scenario, both the number of allocated firewalls and the number of rules
configured by the framework (after the new implemented post-processing algorithm
for the heuristics) were evaluated. Specifically, a comparison was made between the
heuristics-based version (Maximal Flows) and the MaxSMT one (Maximal Flows).

10.1.1 Geant Topology

25% Isolation Requirements and 75% Reachability Requirements

(a) Number of Configured Rules (b) Number of Allocated Firewalls

Figure 10.1

From Figure 10.1a, it can be observed that the heuristic allocates a number of
rules greater than or at most equal to the solver. The average difference is approx-
imately 10% more rules allocated, with a maximum difference of 30%. However, in
Figure 10.1b, it is evident that the heuristics allocates an equal number of firewalls
compared to the MaxSMT.

110

Test Campaign - Third Phase

50% Isolation Requirements and 50% Reachability Requirements

(a) Number of Configured Rules (b) Number of Allocated Firewalls

Figure 10.2

In this case as well, the heuristic approach allocates an equal or higher number of
rules compared to the MaxSMT approach, but the difference is more pronounced.
In fact the average difference is approximately 16% more rules allocated with a
maximum difference of 66% (Figure 10.2a). Even the number of firewalls allocated
by the heuristics is equal or slightly higher than those allocated by the MaxSMT
this time, with an average difference of 5% more. (Figure 10.2b).

75% Isolation Requirements and 25% Reachability Requirements

(a) Number of Configured Rules (b) Number of Allocated Firewalls

Figure 10.3

In this scenario, the gap between the heuristic approach and the MaxSMT
approach narrows. The heuristic method allocates an average of 11% more rules,
with a maximum difference of 50% (Figure 10.3a). Similarly, regarding firewalls,

111

Test Campaign - Third Phase

the heuristic allocation remains equal or slightly higher than MaxSMT, with an
average difference of 7% more firewalls. (Figure

10.1.2 Internet2 Topology

25% Isolation Requirements and 75% Reachability Requirements

(a) Number of Configured Rules (b) Number of Allocated Firewalls

Figure 10.4

The heuristics allocates an equal or higher number of rules compared to the
MaxSMT, with an average difference of 11% more rules and a peak of 33% (Figure
10.4a). For the firewalls, the number allocated by both versions is equal (Figure
10.4b).

50% Isolation Requirements and 50% Reachability Requirements

(a) Number of Configured Rules (b) Number of Allocated Firewalls

Figure 10.5

112

Test Campaign - Third Phase

Just like in the Geant topology, in this scenario, the differences are more pro-
nounced. The heuristic approach allocates a higher or equal number of rules com-
pared to the MaxSMT approach, with an average difference of 23% more rules with
a maximum difference of 66% (Figure 10.5a). However, the number of firewalls
remains the same throughout (Figure 10.5b).

75% Isolation Requirements and 25% Reachability Requirements

(a) Number of Configured Rules (b) Number of Allocated Firewalls

Figure 10.6

Similar to the Geant topology, in this scenario, the differences between the
heuristics and MaxSMT become less pronounced. Specifically, the heuristics allo-
cates an equal number of rules to the MaxSMT or slightly more, with an average
difference of 10% more rules (Figure 10.6a). Additionally, for firewalls, the heuris-
tics allocates the same number of firewalls as the MaxSMT (Figure 10.6b).

10.1.3 Considerations

The previous optimality tests have essentially shown that, when considering the
same traffic flows model, in this case the Maximal Flows, the solver achieves a
higher level of optimality compared to the heuristics, as expected. Presumably,
this result holds true for the other model as well, namely the Atomic Predicates.
In particular, the largest difference between the solver and the heuristics occurs
when the set of NSRs is comprised of half isolation requirements and half reacha-
bility requirements. In this scenario, the average difference in rules allocated by the
heuristics is approximately 16% for the Geant topology and 23% for the Internet2
topology, with a maximum difference of 66% for both. However, when consider-
ing the other two cases (25% isolation and 75% reachability and vice versa), the
differences are less pronounced, with an average difference of about 10% for both
topologies. These differences between the heuristics and solver persist even after
implementing the new post-processing algorithm for rules. Without this algorithm,
the difference would have been much higher. In fact, as mentioned in Chapter 9, the

113

Test Campaign - Third Phase

algorithm has reduced the number of rules configured by the heuristics by approx-
imately 66% in the case of mixed requirements and 100% in the case of isolation
requirements only.

10.2 Time and Memory Limits in the Heuristic

Approach

This final phase of testing aimed to assess the maximum thresholds that the heuris-
tic approach can reach before exhausting the available memory in the Eclipse IDE
for Java. The testing included the following topologies:

1. Geant

2. Internet2

The following two scenarios were tested:

1. 100% Isolation Requirements

2. 50% Rsolation Requirements and 50% Reachability Requirements

During each iteration, the number of endpoints was increased by 2000, while
maintaining a ratio of 1:3 between the number of endpoints and the number of
NSRs.

10.2.1 Geant Topology

(a) 100% Isolation Requirements (b) 50% Isolation and 50% Reachability

Figure 10.7: Execution Time Limits

114

Test Campaign - Third Phase

(a) 100% Isolation Requirements (b) 50% Isolation and 50% Reachability

Figure 10.8: Execution Time Limits

10.2.2 Internet2 Topology

10.2.3 Considerations

From Figure 10.7, it can be observed that, considering the Geant topology, the
heuristics reaches its limit with networks consisting of more than 200,000 endpoints,
90,000 allocation places, and approximately 600,000 NSRs, with an execution time
of about 50 hours. These limits are reached in both scenarios, whether only isolation
requirements are considered or when half of the requirements are isolation and
half are reachability. The only difference is that the first scenario has slightly
higher execution times with networks consisting of around 150,000 endpoints. This
confirms that the heuristics is not affected by the added complexity of reachability
requirements.

On the other hand, Figure 10.8 shows the results obtained for the Internet2
topology. In this case, the limit is reached with networks consisting of approxi-
mately 140,000 endpoints, 130,000 allocation places, and 126,000 NSRs, with an
execution time of about 25 hours. Again, there are no significant differences be-
tween the two scenarios. The only noteworthy point is that in the scenario with
mixed requirements, the heuristics takes slightly longer execution times with large
networks.

Regarding the differences between the two topologies, it can be noted that
the Internet2 topology reaches its limits with networks formed by about 100,000
fewer endpoints. This can be explained by the fact that, even with the same
number of endpoints, the Internet2 topology has a greater number of Allocation
Places compared to the Geant topology, which implies more work for the heuristic
algorithm as explained in Chapter 5. In fact, the Internet2 topology reaches its
limit with a smaller network in terms of endpoint quantity but larger in terms of
Allocation Places (about 30,000 more than the Geant topology).

115

Chapter 11

Conclusions

VEREFOO (VErified REFinement and Optimized Orchestration) is a Java-based
framework specifically designed to automate the process of determining the optimal
placement and configuration of network security mechanisms within a virtualized
network. This framework proves to be particularly valuable in managing complex
networks where manual configuration is challenging and prone to human errors and
misconfigurations.

The initial version of the system uses the Z3 theorem solver to solve a MaxSMT
problem, ensuring correctness-by-construction and achieving optimality in terms of
allocated firewalls and configured rules. However, scalability issues arose with large
networks due to the NP-hard nature of the problem. To address this, a second
version was developed using a heuristic algorithm, offering faster resolutions but
potentially less precise results compared to the MaxSMT approach. This version
strategically balances optimization, completeness, accuracy, and execution speed,
striking a trade-off between these factors.

This thesis work aimed to test, evaluate and extend the new heuristic approach
and compare it with the framework version based on the MaxSMT problem to
understand their differences. While the heuristic algorithm is more efficient in
terms of execution time, it allocates more firewalls and configured rules compared
to the MaxSMT-based solution. Scalability and optimality tests were conducted
on real-world topologies, and differences between Atomic Predicates and Maximal
Flows in traffic modeling were also evaluated.

Firstly, the architecture of VEREFOO was described, briefly analyzing the func-
tioning of its modules. Then, the two approaches considered in this thesis for traffic
modeling, namely Atomic Predicates and Maximal Flows, were briefly described.
Additionally, an overview of what a MaxSMT problem is, how it is modeled, and
how it can be solved was provided. Subsequently, the new heuristic algorithm was
described in detail, conducting an in-depth analysis of its operational phases.

Before beginning the testing campaigns, preliminary operations were conducted
to enhance the subsequent tests. Specifically, some corrections were made to the
heuristics code, and the two new topologies Geant and Internet2, inspired to real-
world topologies, were designed and developed along with their Java-based gener-
ators. Additionally, operations were carried out to automate the classes used for

116

Conclusions

conducting tests, and a new random security requirements generator was developed,
including port management in the various generated requirements.

Subsequently, an initial testing campaign was conducted to broadly illustrate
the differences between the MaxSMT-based version and the heuristic-based version,
as well as between the model using Atomic Predicates and the one utilizing Maximal
Flows. The results revealed that the heuristic approach has inferior execution times
compared to the solver and is also much more scalable, capable of handling larger
networks and a greater number of Network Security Requirements. However, it falls
short in terms of the number of configured rules. The number of allocated firewalls,
on the other hand, remains similar. As a result, in a subsequent phase, the heuristic
algorithm was enriched by implementing a post-processing algorithm, aiming to
optimize the number of configured rules. Furthermore, the tests have shown that
Maximal Flows are more efficient than Atomic Predicates in the heuristics, but
instead are less efficient when considering the MaxSMT problem. Therefore, for
subsequent tests, the version based on the heuristics and Atomic Predicates and
the one based on MaxSMT and Maximal Flows have been discarded.

Finally, a second and third testing phase were conducted. The primary objective
of the first phase was to demonstrate the efficiency of the new post-processing
algorithm, while the second phase focused primarily on optimality and the number
of configured rules. The number of rules remains lower in the MaxSMT-based
version, but the differences with the heuristic approach have significantly decreased
compared to before.

Potential future work could involve implementing a new version of the heuris-
tic algorithm, such as the Branch-and-Bound method, and comparing it with the
current one to assess if it achieves better performance. Additionally, it could be
beneficial to evaluate the heuristic framework’s behavior by incorporating other
functions such as NAT (Network Address Translation) or Load Balancers, which
are already implemented in VEREFOO. Finally, it could be interesting to develop
a partial heuristic algorithm.

117

Bibliography

[1] D. Bringhenti, G. Marchetto, R. Sisto, F. Valenza, and J. Yusupov, “Towards
a fully automated and optimized network security functions orchestration,” in
2019 4th International Conference on Computing, Communications and Secu-
rity (ICCCS), 2019, pp. 1–7.

[2] W. Xia, Y. Wen, C. H. Foh, D. Niyato, and H. Xie, “A survey on software-
defined networking,” IEEE Communications Surveys Tutorials, vol. 17, no. 1,
pp. 27–51, 2015.

[3] “Open networking foundation,” https://opennetworking.org/.

[4] “European telecommunications standards institute,” https://www.etsi.org/.

[5] Y. Bartal, A. Mayer, K. Nissim, and A. Wool, “Firmato: A novel firewall man-
agement toolkit,” ACM Transactions on Computer Systems (TOCS), vol. 22,
no. 4, pp. 381–420, 2004.

[6] J. D. Guttman, “Filtering postures: Local enforcement for global policies,”
in Proceedings. 1997 IEEE Symposium on Security and Privacy (Cat. No.
97CB36097). IEEE, 1997, pp. 120–129.

[7] N. B. Y. B. Souayeh and A. Bouhoula, “A fully automatic approach for fixing
firewall misconfigurations,” in 2011 IEEE 11th International Conference on
Computer and Information Technology. IEEE, 2011, pp. 461–466.

[8] M. A. Rahman and E. Al-Shaer, “Automated synthesis of distributed network
access controls: A formal framework with refinement,” IEEE Transactions on
Parallel and Distributed Systems, vol. 28, no. 2, pp. 416–430, 2016.

[9] S. Bussa, R. Sisto, and F. Valenza, “Security automation using traffic flow
modeling,” pp. 486–491, 2022.

[10] D. Bringhenti, G. Marchetto, R. Sisto, S. Spinoso, F. Valenza, and J. Yusupov,
“Improving the formal verification of reachability policies in virtualized net-
works,” IEEE Transactions on Network and Service Management, vol. 18,
no. 1, pp. 713–728, 2021.

[11] H. Yang and S. S. Lam, “Real-time verification of network properties using
atomic predicates,” in 2013 21st IEEE International Conference on Network
Protocols (ICNP), 2013, pp. 1–11.

[12] D. Bringhenti, G. Marchetto, R. Sisto, F. Valenza, and J. Yusupov, “Au-
tomated firewall configuration in virtual networks,” IEEE Transactions on
Dependable and Secure Computing, vol. 20, no. 2, pp. 1559–1576, 2023.

[13] ——, “Automated optimal firewall orchestration and configuration in virtu-
alized networks,” in NOMS 2020 - 2020 IEEE/IFIP Network Operations and
Management Symposium, 2020, pp. 1–7.

[14] “Z3,” https://www.microsoft.com/en-us/research/project/z3-3/.

118

https://opennetworking.org/
https://www.etsi.org/
https://www.microsoft.com/en-us/research/project/z3-3/

Bibliography

[15] Wikipedia contributors, “Heuristic — Wikipedia, the free encyclopedia,”
https://en.wikipedia.org/w/index.php?title=Heuristic&oldid=1193914257,
2024.

[16] “Verefoo,” https://github.com/netgroup-polito/verefoo.
[17] “Geant,” https://network.geant.org/.
[18] “Internet2,” https://internet2.edu/.

119

https://en.wikipedia.org/w/index.php?title=Heuristic&oldid=1193914257
https://github.com/netgroup-polito/verefoo
https://network.geant.org/
https://internet2.edu/

	List of Figures
	List of Tables
	Listings
	Introduction
	Thesis objective
	Thesis description

	Software Defined Networking and Network Function Virtualization
	Limitations of traditional networks
	Software-Defined Networks
	Essential Concepts in Software-Defined Networking (SDN)
	Architectural Framework for Software Defined Networking (SDN)

	Network Functions Virtualization
	Essential Concepts in Network Functions Virtualization
	Architectural Framework for Network Functions Virtualizations (NFV)

	VEREFOO
	 Foundation and Origins of VEREFOO
	Service Graph
	Allocation Graph
	VEREFOO Architecture
	Network Security Requirements
	XML representation of the Network Security Requirements

	Traffic Flows Modeling
	Predicates
	Atomic Flows
	Maximal Flows

	The MaxSMT Problem
	Maximum Satisfiability Modulo Theories
	Boolean Satisfiability Problem (SAT)
	Satisfiability Modulo Theories (SMT)
	Maximum Satisfiability Modulo Theories (MaxSMT)

	Z3 Theorem Prover
	Z3 Architecture
	Z3 Example

	Heuristics in VEREFOO
	The Heuristic Approach
	Complete Heuristics
	Initialization
	Allocation
	Configuration

	Partial Heuristics
	Alternative idea for Heuristics

	Test Campaign Preparation: Code Interventions and New Topology Design
	VEREFOO Implementations
	Code Interventions
	Allocation Places List Sorting
	Correction of Heuristics-related Code

	Topologies
	Test Classes
	Network Security Requirements Generator

	Test Campaign - First Phase
	First Scenario - Fixed Number of Endpoints and Variable Number of NSRs
	100% Isolation Requirements
	50% Isolation Requirements and 50% Reachability Requirements

	Second Scenario - Variable Number of Endpoints and Variable Number of NSRs
	100% Isolation Requirements
	50% Isolation Requirements and 50% Reachability Requirements

	Considerations

	Optimizing firewall Configuration for Minimal Rule Allocation
	Eliminating Redundant Rule Configuration
	Elements class

	Post Processing of Rules
	Check with Verigraph

	Test Campaign - Second Phase
	100% Isolation Requirements
	Execution Times
	Number of Allocated Firewalls
	Number of Configured Rules

	50% Isolation Requirements and 50% Reachability Requirements
	Execution Times
	Number of Allocated Firewalls
	Number of Configured Rules

	Evaluation of Differences Across Topologies
	MaxSMT Version - 100% Isolation Requirements
	MaxSMT Version - 50% Isolation Requirements and 50% Reachability Requirements
	Heuristics Version - 100% Isolation Requirements
	Heuristics Version - 50% Isolation Requirements and 50% Reachability Requirements

	Considerations

	Test Campaign - Third Phase
	Optimality Tests
	Geant Topology
	Internet2 Topology
	Considerations

	Time and Memory Limits in the Heuristic Approach
	Geant Topology
	Internet2 Topology
	Considerations

	Conclusions
	Bibliography

