
POLITECNICO DI TORINO

Master’s Degree Course
in Computer Engineering

Master Degree Thesis

Micro Frontends, Server Components and how these
technologies can provide a paradigm shift with

architectural changes in modern enterprise web app
development

Supervisor Candidate
prof. Luca Ardito Davide Borello

Internship Tutor
Luca Corsilli

Accademic Year 2023-2024

Abstract

In the realm of modern web application development, the microservices architecture has
significantly transformed back-end systems, offering scalability and maintainability. Cor-
respondingly, the emergence of micro-frontends extends this paradigm to the front-end,
catering to the demands of enterprise-scale applications striving for seamless User Expe-
rience (UX) while handling extensive data.

React, a prominent JavaScript framework, introduces server-side rendering (SSR) and,
more recently, React server components (RSC), combining server-centric approaches with
client-centric interactivity.

The thesis conducts a thorough review of the current state of literature of Micro Fron-
tend Architecture and React Server Components, aiming to integrate these technologies
into an already-deployed enterprise web application. The purpose is to provide valuable
insights offering guidance for efficient and effective implementation in large-scale web ap-
plications.

The study begins from a comprehensive analysis of Micro Frontend architectural pat-
terns the work focused on the study of the concept of Module Federation. Module Federa-
tion is a key requirement for adopting Micro-Frontends, as it allows for seamless integration
and communication between different micro-frontends. To implement Module Federation,
the adoption of Vite.js and Webpack is necessary. These tools provide the infrastructure
and configuration to enable module sharing and dynamic micro-frontend loading.

Additionally, the thesis delves into the complexities of utilizing React Server Compo-
nents without native framework support, emphasizing the importance of frameworks like
Next.js, Remix.run, or Modern.js, which offer built-in mechanisms such as Server Side
Rendering.

The usage of Micro Frontend emerged as a useful solution for a gradual adoption of
server rendering practices, modularizing the application without the need for a complete
rewrite and reducing challenges and risks associated with a full-scale implementation.

The thesis illustrates a demo application implementing Micro Frontend Architecture
showing the most used patterns involving the usage of Vite bundler and its module federa-
tion plugin, exposing and sharing components between React micro-apps. Considerations
for styling using libraries like Carbon and Tailwind, as well as state management with
tools like Recoil, are discussed. Furthermore the demo shows how to integrate server
rendered components using the Remix framework.

Contents

List of Figures 5

1 Introduction 7
1.1 Context . 7
1.2 Objectives and purposes . 7
1.3 Thesis Structure . 8
1.4 The Company . 8

I Micro Frontend Architecture 9

2 Introduction to the concept 11
2.1 Web Architectures . 11

2.1.1 Monolithic Architecture . 11
2.1.2 Microservices in the Backend . 12
2.1.3 Micro Frontend Architecture . 13

2.2 Advantages and Challenges in Micro Frontend Architecture 13
2.2.1 Benefits of Micro Frontends . 13
2.2.2 Drawbacks of Micro Frontends . 15

3 Approaches and Tools for Development 17
3.1 Strategies and Usage Patterns . 17

3.1.1 Composition . 17
3.1.2 Tools and Patterns . 18

3.2 Exploring Technologies for Runtime Composition 20
3.2.1 Module Federation . 20
3.2.2 Webpack . 21
3.2.3 Webpack Dynamic Remotes . 23
3.2.4 Vite . 26
3.2.5 Vite Dynamic Remotes . 28
3.2.6 Frameworks . 29

3.3 Challenges and Solutions Encountered . 32
3.3.1 TypeScript . 32
3.3.2 CSS Styling . 33

2

3.3.3 State Management and Communication 33
3.3.4 Vite Dynamic Configuration . 35

II React Server Components 37

4 Introduction to the concept 39
4.1 Rendering . 39

4.1.1 Client-Side Rendering . 40
4.1.2 Static Site Generation . 41
4.1.3 Server Side Rendering . 41
4.1.4 Incremental Static Regeneration . 42
4.1.5 React Server Components . 42

4.2 The Problems RSCs Solve . 43
4.2.1 Data Fetching . 43
4.2.2 Composable Business Logic . 45
4.2.3 Bundle Sizes . 46

4.3 State of Literature . 46
4.3.1 React Canaries Releases . 47

5 Approaches and Tools for Development 49
5.1 Next.js . 49

5.1.1 Pages Router . 50
5.1.2 App Router . 51
5.1.3 Rendering and Server Components 52

5.2 Remix.run . 54
5.2.1 Routing . 54
5.2.2 Rendering and Server Components 55

5.3 Other Frameworks . 56
5.3.1 Modern.js . 56
5.3.2 Vue.js . 57

5.4 RSCs from Foundations . 57
5.4.1 Routing . 58
5.4.2 Component Rendering and Hydratation 58

III Integration in Enterprise Application 59

6 R&D Outcomes and Thesis Direction 61
6.1 Overview of Research Outcomes . 61

6.1.1 R&D Outcomes . 61
6.1.2 Challenges in Incorporating SSR 62
6.1.3 The gradual Adoption of SSR . 63

6.2 Selected Frameworks and Technologies . 63
6.2.1 Implementation . 64

3

7 Demonstration of Integration 65
7.1 Project Overview . 65

7.1.1 Introduction . 65
7.1.2 Technology Stack . 66

7.2 Project Structure . 66
7.2.1 config-app . 67
7.2.2 tables-app . 68
7.2.3 datatable-app . 69
7.2.4 host-app . 70

7.3 Demo Project Shortcomings . 71

8 Conclusions 73
8.1 Outcomes . 73

8.1.1 Micro Frontend Architecture . 73
8.1.2 Server Side Rendering . 73

8.2 Future Works . 74

4

List of Figures

1.1 aizoOn . 8
2.1 Monolith Architecture . 11
2.2 Microservices Architecture . 12
2.3 Micro Frontends Architecture . 13
3.1 Host App Configuration . 22
3.2 Remote App Configuration . 22
3.3 Webpack imports . 23
3.4 Configuration with environment variables 24
3.5 Configuration with Plugin . 24
3.6 Promise Based Configuration . 25
3.7 No Static Configuration . 26
3.8 Dynamic Configuration of Remote . 26
3.9 Host App Configuration . 27
3.10 Remote App Configuration . 27
3.11 Vite Imports . 27
3.12 Vite Lazy Import . 28
3.13 Vite Dynamic Configuration . 29
3.14 Vite Dynamic Usage . 29
4.1 Data Fetching with Waterfall . 44
4.2 Profile Component . 45
4.3 Feed Component . 45
6.1 R&D Outcomes . 62
7.1 configuration.json . 67
7.2 Home Page AizoOn Login . 70
7.3 Home Page Politecnico Login . 70

5

6

Chapter 1

Introduction

1.1 Context
In recent years, the microservices concept has revolutionised back-end web application
development, providing a scalable and maintainable solution for managing the growing
complexity of modern systems. In this context, the micro-frontends concept emerges as a
natural extension of the microservices architecture for the front-end side.

Enterprise-scale web applications are required to handle vast amounts of data while
maintaining high performance and providing a seamless User Experience (UX). React, one
of the most popular JavaScript frameworks, recently introduced React Server Components
(RSC), a technology designed to enhance page load speed and data handling efficiency
in large-scale applications that can be considered as a technical evolution of server-side
rendering (SSR).

This introduction sets the stage for a comprehensive exploration of Micro Frontends
and React Server Components and their integration to address the challenges of modern
web application development.

1.2 Objectives and purposes
The primary objective of this thesis is to analyze and study in depth the theoretical
foundations and practical aspects of two pivotal concepts: Micro Frontends and React
Server Components. By thoroughly analyzing their advantages and challenges, the aim
is to provide valuable insights into their implications for performance, data management,
and user experience. This research further seeks to establish a set of best practices for
designing and developing modular, scalable solutions in the front-end realm. As part of
this exploration, a critical focus will be placed on understanding the functionality of React
Server Components and examining their integration within widely adopted frameworks
such as Next.js and Remix.run. Simultaneously, Micro Frontends will be studied and
tested, exploring key implementation tools like the Module Federation plugin offered by
Webpack and Vite, enabling the creation of independent builds without interdependencies.

7

Introduction

1.3 Thesis Structure
To achieve a comprehensive understanding and effective application of these concepts, this
thesis work is structured into three main parts.

The first part provides an in-depth exploration of Micro Frontends, elucidating funda-
mental concepts, approaches, and practical examples of frameworks and supporting tools.
The second part is dedicated to React Server Components, offering insights into their
role within web application architectures and practical demonstrations within popular
frameworks. The third and final part bridges theory with application, studying an archi-
tectural solution capable of integrating Micro Frontends and React Server Components,
implementing a demonstration application to provide insights and guidance to adopt the
studied concepts within an already existing enterprise web application developed by the
AizoOn frontend developer team.

The subsequent chapters unfold this structure, providing a comprehensive journey
through theoretical foundations, practical examples, and real-world implementation, con-
tributing valuable knowledge to the field of large-scale web application development.

1.4 The Company
aizoOn is an independent, innovation technology consulting firm that operates globally by
adopting a digital-oriented operating model based on trans-disciplinary, agile and iterative,
collaborative and open logics, enabling applied innovation.

The thesis work was done by taking some company apps as reference so as to have
a practical view of the aspects studied, with the aim of providing guidance for actual
implementation in such applications. The adoption of these technologies and practices
in the corporate context can bring benefits in terms of performance and operation of the
applications developed by aizoOn. Some applications experience slow loading of certain
pages due to heavy data loading. This issue can be addressed by implementing appro-
priate rendering strategies, which are the subject of study in this thesis. Furthermore,
the modular design of certain applications, which provide separate or partially separate
functions, makes them suitable for implementing the Micro Frontends architecture, also
due to the existence of microservices in the backend.

Figure 1.1. aizoOn

8

Part I

Micro Frontend Architecture

9

Chapter 2

Introduction to the concept

2.1 Web Architectures

In the realm of web applications, evolution has traced a significant trajectory, transitioning
from monolithic architectures to more flexible and scalable solutions, a journey in which
the concept of Micro Frontends plays a crucial role. To grasp the full context of this
innovation, a thorough examination of diverse web architectures and their evolution is
essential. [7]

2.1.1 Monolithic Architecture

Initially, the predominant and widely adopted paradigm in web application development
was the monolithic architecture. This architecture involves developing, implementing,
and deploying the entire application as a cohesive unit. The primary advantage of this
approach lies in its simplicity, featuring a single source code, a unified database, and an
integrated structure where all functionalities and components are tightly integrated.

Figure 2.1. Monolith Architecture

11

Introduction to the concept

However, as web applications grew in size and complexity, the drawbacks of this mono-
lithic approach became increasingly apparent, rendering it inefficient. Managing and ex-
panding a monolithic application became challenging, leading to scalability issues and
potential unintended side effects or debugging problems. Consequently, the development
of web applications evolved toward more efficient solutions.

2.1.2 Microservices in the Backend
The microservices architecture emerged from the notion that, unlike desktop applications,
web applications are not constrained to distribute various components and functionalities
as a single entity. Since users receive only the final HTML (what is displayed on the page),
the origin that generated the page remains transparent to the user. Consequently, the
backend of an application can be divided into multiple fragments, each providing distinct
functionalities.

A microservice is an independently developed and deployable unit within the backend
architecture of an application. It operates as a standalone software component fulfilling a
specific function, based on the concept of separation of concern, which involves partition-
ing the functionalities of the web application into independent, separate, and specialized
modules. These modules can be managed and scaled independently, ensuring a high level
of resilience and reliability. Additionally, this approach prevents errors in one service from
compromising the entire application.

Figure 2.2. Microservices Architecture

Microservices communicate with each other through well-defined interfaces, typically
exposing an API. This allows the application to be composed of different programming
languages and frameworks, depending on the specific requirements.

Structuring the backend with microservices enables the delegation of implementation,
management, and maintenance tasks to independent teams, potentially characterized by
technological agnosticism. However, the microservices approach introduces challenges,
particularly in managing application complexity, requiring the implementation of coordi-
nation, monitoring, and traffic management tools to ensure seamless cooperation among
all services.

12

2.2 – Advantages and Challenges in Micro Frontend Architecture

2.1.3 Micro Frontend Architecture
Concurrently with the evolution in the backend, attention has shifted towards the fron-
tend component of applications, giving rise to the micro frontend architecture as a natural
extension of microservices. Similar to microservices, micro frontends are developed, dis-
tributed, and executed independently and isolated from the rest of the application.

In contrast to monolithic frontends, where a single team is responsible for the entire
frontend development, micro frontends allow for the division of the frontend into micro-
components under the responsibility of different independent development teams. This
division can also occur vertically, meaning it encompasses not only the frontend but also a
specific feature of the application. In this vertical approach, the responsible team handles
the entire structure and layers of that feature, reducing communication overhead between
teams and increasing efficiency.

Figure 2.3. Micro Frontends Architecture

The adoption of this architecture brings forth several advantages, yet it also introduces
certain challenges, which will be elaborated upon in detail later.

2.2 Advantages and Challenges in Micro Frontend
Architecture

In this section, we will elucidate the primary advantages and benefits derived from the
adoption of a Micro Frontend architecture, along with the operational complexities and
challenges that arise [4]. This analysis is the culmination of a study involving publications,
online articles, and evaluations from direct implementations.

2.2.1 Benefits of Micro Frontends
The incorporation of Micro Frontends yields a multitude of significant advantages that
revolutionize traditional approaches to web application development and design.

Separation of concerns

The separation of codebases, facilitated by decoupled codebases, promotes feature inde-
pendence. Development teams can work in isolation, allowing for incremental and isolated

13

Introduction to the concept

progress. This results in greater error isolation, ensuring robustness, it promotes mod-
ularity, maintainability, and easier code management. When combined with automated
processes, it accelerates development timelines.

Enhanced Scalability

Scalability becomes a more accessible goal with Micro Frontends, as they enable the man-
agement of growth and expansion without the constraints often associated with monolithic
architectures. Higher scalability is achieved by allowing independent scaling of specific
features or components as needed. This allows for better resource allocation and improved
performance under heavy load.

Flexibility in Design and Development

One of the key strengths lies in the flexibility that Micro Frontend approach provides
in both design and development. Allowing each development team to adopt diversified
approaches, without being constrained by a monolithic structure, fostering innovation and
adaptability, leads to a more framework agnostic approach, eventually characterized by
the use of different tools and frameworks in separated micro frontends.

Orientation Toward Native Browser APIs

Micro Frontends’ orientation towards native browser APIs, as opposed to custom APIs,
enhances adaptability and integration within the standard web environment. This ap-
proach not only ensures compatibility but also simplifies the integration of new features
and technologies.

Independent Deployment Approach

The ability for independent deployment allows different parts of the application to evolve
autonomously. This facilitates version management and promotes greater flexibility in
release strategies. Consequently, there is a reduction in compilation times, simplifying
maintenance and fostering the implementation of autonomous teams.

Code Reusability for Efficiency

Micro Frontends architecture facilitates code sharing and re-usage. Standard functionality
or components can be developed once and shared across multiple micro frontends, reducing
duplication of effort and improving overall development efficiency.

New technologies incremental adoption

Micro Frontends provides the flexibility to adopt new technologies incrementally. Different
micro frontends can be built using different technologies, allowing teams to experiment
with new frameworks, libraries, or programming languages without impacting the entire
application.

14

2.2 – Advantages and Challenges in Micro Frontend Architecture

2.2.2 Drawbacks of Micro Frontends
The implementation of Micro Frontends, despite the numerous advantages, is not free
from challenges and critical issues that require careful evaluation.

Operational Complexity

It emerges as one of the primary challenges. Effectively coordinating diverse components
can become intricate, necessitating meticulous planning and management.

User Experience Inconsistencies

The user experience may be susceptible to inconsistencies when different parts of the
application operate independently. It can be due to the usage of different technologies,
such as libraries or even frameworks, or simply to an incremental update of different
independent features. This has the potential to create fractures in the user interface,
impacting the overall user experience.

Communication Challenges

Communication, as well as state management, between various components may pose
challenges, resulting in response delays and difficulties in maintaining a harmonious data
flow. This can lead to performance overheads, as communication management, coupled
with fragmented user interfaces, may translate to longer loading times and increased
resource requirements.

Development and Testing Complexity

Coordinating Micro Frontends into a cohesive ecosystem introduces additional complexity
in development and testing. This complexity highlights concerns related to security and
maintainability, urging a thorough evaluation during the implementation phase.

15

16

Chapter 3

Approaches and Tools for
Development

3.1 Strategies and Usage Patterns
To implement a web application adopting a micro frontends architecture, various ap-
proaches are possible. The following sections illustrate the main implementation patterns
and the key frameworks and tools studied and used during the thesis work. [4]

3.1.1 Composition
Micro frontends composition can occur at different stages during the application’s life-
cycle, influencing overall design and performance. The composition process is crucial in
the functioning of a micro frontends system, therefore choosing a composition strategy
that best suits the needs, using appropriate tools, libraries, and development patterns, is
essential. Below, the main composition strategies are presented.

Server Side Composition

Micro frontends composition takes place on the server side before the page is sent to the
client. The server is responsible for composing the view, retrieving various micro fron-
tends, and organizing the page by creating a single response sent to the user’s browser.
Composing the main content on the server reduces initial loading times by avoiding dis-
playing a white screen to the user. However, this approach puts more load on the server,
which needs to handle the composition, and provides less flexibility during runtime.

Build Time Integration

Micro frontends composition occurs during the application’s build phase. Each micro
frontend is developed and deployed independently, but during the build process, mod-
ules are combined to form a single package. This approach reduces data transfer to the
browser during the build phase and improves distribution ease since the application is

17

Approaches and Tools for Development

delivered as a single unit. This leads to improved dependency and version management
during distribution but increases the difficulty in keeping the update pipelines of different
micro frontends separate, as it requires the reconstruction and redistribution of the entire
application.

Run Time Composition

Micro frontends composition occurs dynamically on the client side during the applica-
tion’s execution. Following the principle that all micro frontends must be delivered to
the browser independently, this provides maximum flexibility during runtime, allowing
dynamic updates and loading only when necessary. While this pattern results in longer
initial loading times and increased complexity in managing dependencies and interac-
tions between micro frontends, it offers maximum flexibility during execution, allowing
dynamic updates. Additionally, the system becomes highly scalable as micro frontends
can be distributed and updated independently.

3.1.2 Tools and Patterns
Choosing a composition strategy depends on the specific project requirements and tech-
nological constraints. Different strategies are linked to certain technologies, tools, and
patterns. During the thesis work, only some of the possible implementation solutions
were addressed, considering the known technological stack and prevalent patterns [19, 2];
there are actually multiple solutions and technology models, but the choice to focus on
the most diffused ones was made to provide consistency and more orientated outcomes.
The main technologies are presented below, maintaining the subdivision into different
composition strategies.

Server Side Composition

Opting for Server Side Composition often involves using NGINX to manage the compo-
sition of micro frontends on the server side.

NGINX is a high-performance, widely-use, open-source web server, reverse proxy
server, and load balancer. It is known for its efficiency in handling concurrent connections
and managing web traffic. This process involves the orchestration of different micro fron-
tends on the server before the final web page is delivered to the client’s browser, including
the following steps:

• Request Handling: a user makes a request to the application, NGINX intercepts and
handles the request on the server.

• Micro Frontend Retrieval: NGINX communicates with the backend or other rele-
vant services to fetch the necessary micro frontends corresponding to the requested
features or components.

• Composition: NGINX combines or composes the retrieved micro frontends into a
cohesive view. This can be based on predefined rules, user preferences, or the specific
requirements of the application.

18

3.1 – Strategies and Usage Patterns

• Single Response to Client: Once the composition is complete, NGINX sends a single,
fully composed response to the client’s browser. From the client’s perspective, it
receives a unified and fully rendered web page.

This approach provides several advantages such as reduced initial loading times, fewer
client-side requests and simplified initial rendering. These benefits need to be carefully
weighed against trade-off coming from an increased load on the server, as it takes on the
responsibility of composing and delivering fully-rendered pages, or from a reduction of
runtime flexibility.

Build Time Integration

Build Time Integration offers various strategies for incorporating micro frontends into an
application during the build phase. Let’s explore two primary solutions in detail and
discuss their practical implementation, advantages, and drawbacks.

• The first one is the Web Component Approach. Web Components are a set of web
platform APIs that allow for the creation of custom, reusable elements with encapsu-
lated functionality. Developers leverage frameworks like React to build independent
modules during the build phase. These modules can be either third-party compo-
nent libraries or custom components developed in-house. Additionally, tools like
Bit facilitate sharing and managing components across projects, allowing teams to
create, organize, and share components independently, thereby streamlining devel-
opment workflows. This provides modularity and reusability along with framework
agnosticism. Web Components are not without disadvantages, in fact although cross-
browser compatibility is offered, it potentially adds complexity to the development
process. Furthermore, seamless integration with certain frameworks may require
additional configuration and setup.

• The other solution is the Monorepo Approach. A monorepo is a single repository that
contains multiple projects or components, each managed separately and combined
during the build phase. In this approach, all micro frontend projects or compo-
nents reside within a single repository, allowing for centralized code management
and version control. During the build phase, these projects are combined to form
a cohesive application. Having all micro frontend projects in a single repository
simplifies code management, version control, and collaboration among developers.
Combining them during the build phase reduces complexity and dependencies, re-
sulting in faster build times and smoother deployment workflows. Moreover the
projects can leverage shared configurations, dependencies, and tooling, promoting
consistency and standardization. Nevertheless, as the application grows, managing
multiple projects within a single repository can lead to increased complexity in code
organization, dependency management, and build configurations. The centralization
of code management can limit the independence of individual micro frontends and
provide scaling challenges.

19

Approaches and Tools for Development

Run Time Composition

Run Time Composition stands out as the most commonly employed strategy, valued for
its flexibility and effectiveness, particularly in Single Page Applications (SPAs), which
dominate the contemporary web landscape.

• One prevalent approach involves integrating micro frontends using iFrames, HTML
documents that can be seamlessly embedded within another document using the
<iframe> tag. This method facilitates the creation of composite pages by combin-
ing independent components, ensuring a proper level of isolation in terms of global
variables and styling without interference. Communication between iFrames can be
established through appropriate event bus configuration, allowing different parts of
an application to communicate without being aware of which component is listen-
ing. Despite its historical use and acceptance, iFrames have notable limitations and
drawbacks, especially concerning routing, history, and complex navigation. However,
they have served as a traditional solution for micro frontends implementation until
the emergence of more modern technologies.

• A widely adopted pattern for runtime composition involves implementing the con-
cept of Module Federation. Module Federation is a technology enabling a JavaScript
web application to dynamically load code from another application with shared de-
pendencies. Shared modules across applications can range from simple components
to entire features, interpreted as dependencies by the receiving application. Module
Federation integrates seamlessly with the build process, organizing and optimizing
code bundles while managing module dependencies. Given its efficiency and the
provided advantages, this approach has been studied in depth and is explained in
detail in the following sections.

3.2 Exploring Technologies for Runtime Composition
As mentioned in the previous sections, among the various patterns and technologies avail-
able to implement the micro frontend architecture, only a subset of the illustrated tools
have been used, in relation to the known technology stack and the subsequent needs in
the company environment.

In particular, priority has been given to run-time composition, as it offers greater
flexibility and it currently is the most widely used strategy in the web applications area.

3.2.1 Module Federation
As it was previously anticipated, Module Federation is the main technology used to im-
plement Micro Frontend Architecture.

Module Federation is a cutting-edge technology that revolutionizes code sharing and
resource management in web development. It allows to seamlessly integrate multiple
JavaScript applications, or micro-frontends, by sharing code and resources dynamically
at runtime. This concept of decoupled and independent modules enhances modularity,
scalability, and maintainability in complex web projects.

20

3.2 – Exploring Technologies for Runtime Composition

The architecture of a project implementing Module Federation concept typically re-
volves around a main application, serving as the host and container application, used to
aggregate a set of remote independent micro-applications based on requirements. Each re-
mote application can share multiple modules that can include React components, custom
elements, library components, or API functions.

The concept of Module Federation was introduced with Webpack bundler and recently,
also Vite build tool started offering the possibility to incorporating this architectural
concept.

The following sections will illustrate the main tools used in implementations, referring
to a common technology stack that is based on Javascript (or TypeScript) and React
framework with related libraries.

3.2.2 Webpack

Webpack is a powerful and versatile module bundler, used in web development to manage
and bundle various assets such as JavaScript files, stylesheets, images, and more. It’s
fundamental for optimizing the delivery of web applications by efficiently bundling and
processing these assets for efficient loading and execution in the browser.

At its core, Webpack operates on the principle of dependency graph analysis. This
means it analyzes the relationships between different modules in the application and
bundles them together into a single output bundle. This process not only helps reduce
the number of HTTP requests required to load a webpage but also optimizes the loading
process by asynchronously loading modules when needed. [25]

Key features of Webpack include support for loaders and plugins. Loaders allow to
process different types of files, transforming them as needed before adding them to the
bundle. For example, loaders can compile TypeScript to JavaScript, convert SASS to
CSS, or optimize image files. On the other hand, plugins extend Webpack’s functionality
by performing tasks such as code splitting, minification, and scope hoisting, enabling
developers to customize the bundling process according to their specific requirements.

Module Federation was initially introduced with Webpack 5 in 2020. The idea of shar-
ing code between multiple applications was not a new one, but the new feature released
with Webpack 5 was a significant step forward in the evolution of code sharing in web
development. Initially limited to sharing modules between applications built with Web-
pack, newer versions expanded support to different module bundlers, as well as tools and
plugins to extend its capabilities, including the "Module Federation Plugin" for Next.js.
[10]

The implementation of Module Federation extends the Webpack module bundler to
support remote loading of modules, using a runtime called the Module Federation Runtime
to handle the loading and dependency resolution of remote modules.

Developers configure Webpack builds to expose and consume modules across applica-
tions through the webpack.config.js file, leveraging the ModuleFederationPlugin and
providing necessary configuration.

21

Approaches and Tools for Development

Configuration

After having imported it, the Module Federation plugin is added inside the array of plugins
and it needs some specific configuration, depending on whether it is the host or remote
configuration file.

Figure 3.1. Host App Configuration
Figure 3.2. Remote App Config-
uration

In both host and remote configuration, the first two properties are used to identify the
application after the bundling. The name specifies the unique name of the application and
the filename specifies the filename for the generated bundle; this file acts as the entry
point for remote modules.

As seen in the configuration of the host application on the left, figure 3.1, the prop-
erty remotes is used to specify the name of the remote applications to load and their
corresponding URLs from which to fetch the entry file. While on the right, figure 3.2,
for the configuration of a remote application is necessary to specify inside the exposes
property, the names, with the relative path to the files, of the modules to expose to others
applications.

In the shown example, the host application doesn’t expose any modules and the remote
one doesn’t take modules from other applications; but it’s important to consider that an
application can be configured to take on both the role of main application and the role of
federated micro-app, even at the same time.

Lastly, the shared object contains all the libraries and the relative dependencies that
are shared among the project, in order to prevent the creation of duplicate instance of the
same libraries when loading a remote application. It’s possible that a remote application

22

3.2 – Exploring Technologies for Runtime Composition

uses a different version of a library respect to the one used by the host application, this is
managed by the federation plugin and it won’t cause issue as long as there aren’t incom-
patibilities between newer and older features in a library, in this case it’s responsibility of
the developer to manually handle the shared libraries.

Usage

Figure 3.3. Webpack imports

After the proper configuration, the processes to consume the federated component is
straightforward. As shown in the code snippet above, figure 3.3, the modules are imported
as traditional imports using the name of the remote assigned in the configuration and the
name of the module. Then each module can be used without differences from locally
imported components.

In the example above the Counter element is imported from the remote and directly
used to render the component, similarly to what happen with elements of different types.

3.2.3 Webpack Dynamic Remotes
A more advanced approach allows to declare remotes in a more dynamic style, allowing for
a higher flexibility and customization of the whole project and there are several different
strategies available [14]:

• Environment variables: it’s the most elementary approach and it involves the sub-
stitution of localhost port (or other address used in production) from the remote
URL configuration with environment variables, enabling the possibility to define the
remote application’s URL as a local or hosted production deployment at build time,

23

Approaches and Tools for Development

as shown in figure 3.4. This provide flexibility without compromising the simplicity,
but it requires to build a new version for each environment to update the URLs.

Figure 3.4. Configuration with environment variables

• Webpack plugin external-remotes-plugin: Module Federation allows to load remote
containers dynamically and this can be done directly or using a plugin. The plugin
external-remotes-plugin, developed by one of the creators of Module Federation,
allows to resolve the URLs at runtime using templating. The URL can be defined
inside the window object within the application before loading any code from the
remote applications, as shown in figure 3.5. This provide the flexibility to define the
URLs however wanted, but still it doesn’t give complete control over the loading
lifecycle.

Figure 3.5. Configuration with Plugin

• Promise Based Dynamic: Module Federation allows also to define the remote URLs
as promises instead of URL strings, it’s possible to use any promise as long as it fits
the get/init interface defined by Module Federation. However it’s required to have

24

3.2 – Exploring Technologies for Runtime Composition

the remote configuration in string format. Within the promise, a new script tag is
created and injected into the DOM to fetch the remote JavaScript file. The figure
3.6 shows an example of using this solution.

Figure 3.6. Promise Based Configuration

• Dynamic Remote Containers: the most flexible solution allows to load remote ap-
plications programmatically without needing to define any URLs in the Webpack
configuration. With this approach a remote module is fetched using a dynamic
script tag and then the remote container can be manually initialized. This enable
the possibility to add new remote without modifying the configuration on the host
application and to inject a module in the deployment of the application. Figure
3.7 shows that this approach does not require a static configuration at all, while an
example of dynamic usage is provided in figure 3.8

25

Approaches and Tools for Development

Figure 3.7. No Static Configuration Figure 3.8. Dynamic Configuration of Remote

3.2.4 Vite
Vite is a build tool that aims to provide a faster and leaner development experience for
modern web projects that uses modern JavaScript frameworks [22]. It consist of two major
parts:

• A local development server that provides rich feature enhancements over native ES
modules, such as extremely fast Hot Module Replacement (HMR), NPM Dependency
Resolving and Pre-Bundling, as well as TypeScript support.

• A build command that bundles the code with Rollup, pre-configured to output highly
optimized static assets for production. Rollup is a module bundler for JavaScript
which compiles small pieces of code into a larger and more complex block, such as
a library or application. The optimized output includes techniques such as mini-
fication, tree-shaking, and other optimizations to ensure that the final output is
lightweight and optimized for performance when deployed.

While Module Federation is not natively supported in Vite, there are third-party plugins
available that enables the use of it. In particular there is the vite-plugin-federation
from OriginJs [21] that enables Vite projects to utilize Module Federation, allowing for the
dynamic loading of remote modules and sharing of dependencies between independently
deployed applications. It is a Vite-Rollup plugin inspired by Webpack and also compatible
with Webpack.

The configuration of the plugin is similar to Webpack and it’s performed in the
vite.config.js file. In this case it’s necessary to manually install the plugin within
each project applications, using npm, yarn or other tools; then it can be imported as
@originjs/vite-plugin-federation.

Configuration

As stated before, the configuration does not have large differences from Webpack Module
Federation plugin. For the host application, figure 3.9, is necessary to provide the name
and add the remotes name specifying the remote name and the URL from which to load
its entry file. While for the remote application, figure 3.10, the property name specifies

26

3.2 – Exploring Technologies for Runtime Composition

Figure 3.9. Host App Configuration Figure 3.10. Remote App Configuration

the name of the application and the property filename specifies the name of the remote
entry; then the exposed modules are indicated inside exposes property, specifying the
name and the path to the file in the project.

Additionally, as in Webpack, inside the property shared are indicated the libraries
shared among the applications to avoid duplications.

Usage

Figure 3.11. Vite Imports

After having completed the configuration, the imports of remote modules inside the

27

Approaches and Tools for Development

host application is corresponding to Webpack. In fact, as shown in figure 3.11, static
imports follow the same syntax of traditional imports of components and the modules can
be used straight away.

3.2.5 Vite Dynamic Remotes

With the Module Federation plugin of Vite, there are two possibilities to implement
dynamic import and provide an higher degree of flexibility:

• The first possibility simply involves the usage of React Lazy, that is a feature of
React library that allows for dynamic code splitting, as shown in figure 3.12. With
React.lazy, components can be loaded asynchronously, improving the performance
of React applications by only loading the code for components when they are actually
needed. This helps reduce the initial bundle size of the application, leading to faster
load times and better user experience.

Figure 3.12. Vite Lazy Import

• The other solution provides a more dynamic and flexibile approach, similar to what
can be achieved in Webpack with Dynamic Remote Containers. Following this ap-
proach the remote is loaded programmatically without needing to provide a configu-
ration in the Vite configuration file. The image 3.13 shows a possible implementation
of this solution, providing a methods that uses parametric variables to configure
the remote and then retrieve the desired module, as well as handling possible er-
rors. For example if the desired remote doesn’t exists, a specific error component
is returned without affecting the operation of the application. As it can be seen
from the example, this solution involves using __federation_method_setRemote
and __federation_method_getRemote which respectively create and save the con-
figuration of the remote and retrieve the desired module from the remote. These
two methods are imported from __federation__, a virtual module that provides a
useful scheme for allowing build time information to be passed to the source files
using normal ESM import syntax.

In order to use a component with this solution, it must be wrapped inside React.Suspense
as shown in figure 3.14, that allows components to suspend rendering while waiting
for some asynchronous data to load.

28

3.2 – Exploring Technologies for Runtime Composition

Figure 3.13. Vite Dynamic Configuration

Figure 3.14. Vite Dynamic Usage

3.2.6 Frameworks
The examples shown above are implemented in React projects, given that the popularity
of the framework and its tools allows for large possibilities of usage. Additionally, Module
Federation can be implemented also using other frameworks.

During the study phase of federation, other frameworks were considered with the pur-
pose of testing the integration possibilities with the other main topic of the thesis: server
rendering.

Next.js

Next.js is a React framework for building full-stack web applications. It’s possible to
use React Components to build user interfaces, and Next.js for additional features and

29

Approaches and Tools for Development

optimizations [11].
The framework will be discussed in detail later, studying its functioning and perfor-

mance with server rendering. In this part, the focus is on the implementation of micro
frontends architecture and the usage of Module Federation. This can be done partially, in
fact Next.js relies on Webpack allowing for the usage of Webpack Module Federation Plu-
gin. The limitation is that, at the time of writing this thesis, the plugin doesn’t support
the latest version of the framework (Next.js v14) and in particular it has no support for
the App Router, but only for the Pages Router. The first one is a newer router that allows
to use React’s latest features while the latter is the original Next.js router, currently still
supported but not recommended as the default choice for new applications.

The usage in Next.js with Pages Router is exactly equivalent to what shown for React,
adding the opportunity to provide server side rendered pages and data for a federated
component from a remote application.

Remix.run

The other framework considered for implementing server rendering is Remix.run, a full
stack web framework built on top of React Router [17]. Also for this case, a complete
overview and technical explanation of the framework usage and implementations is pro-
vided in the following chapters. Now, it can be highlighted the non compatibility with
Webpack and the not yet stable support of Vite 1. Using Vite as an alternative compiler
allows for the integration of Vite Federation plugin but since it’s a new technology, the
implementation doesn’t provide support for server rendering for the remote applications,
removing the possible advantages of choosing Remix.run.

Vue

This framework, differently from the previous ones, is not React-based and it was consid-
ered due to its integration with Vite. The creator of Vite is also the author of Vue and
that is why they can be used together providing a seamless development experience; Vue
provides as well the integration of the Vite federation plugin.

Vue is a JavaScript framework for building user interfaces. It builds on top of stan-
dard HTML, CSS, and JavaScript and provides a declarative and component-based pro-
gramming model [23]. Its component-based architecture is one of the key features of
the framework, which promotes reusability and maintainability. Components encapsulate
both the structure and behavior of UI elements, allowing developers to create modular
and self-contained pieces of code. This is extremely useful due to the extreme diversity of
the web; in fact Vue is designed to be flexible and incrementally adoptable so it can be
used in different ways depending on the use case, such as:

• Standalone Script: Vue can be used as a standalone script file, without any build
step required. This is the easiest way to integrate Vite in case there is a backend

1Stable from Remix v.2.7.0, February 2024

30

3.2 – Exploring Technologies for Runtime Composition

framework already rendering most of the HTML, or the frontend logic is limited and
undemanding

• Embedded Web Components: Vue is used to build standard Web Components that
can be embedded in any HTML page, regardless of how they are rendered. This
option allows to leverage the framework in a completely consumer-agnostic fashion.

• Single-Page Application (SPA): Vue provides core libraries and comprehensive tool-
ing support with great developer experience for building modern SPAs, providing
rich interactivity, deep session depth, and non-trivial stateful logic on the frontend.
This approach allows to build applications where Vue not only controls the entire
page, but also handles data updates and navigation without having to reload the
page.

• Fullstack / SSR: Vue implement SSR providing APIs to render the app into HTLM
strings on the server, so that users can see already-rendered HTML while JavaScript
is being downloaded; then Vue manages the hydratation phase to make the screen
interactive. SSR can be implemented manually modifying the Vue configuration and
its server or by using the community plugin of Vite that abstracts away challenges
related to configuration.

• JAMStack / SSG: Static-Site Generation is a semplification of SSR that can be
implemented when the only data required are static. Hence it’s possibile to pre-
render an entire application into HTML and serve them as static files, improving
site performance and making deployment a lot simpler, since it’s no longer needed
to dynamically render pages on each request. Vue can still hydrate such applications
to provide rich interactivity on the client.

• Beyond the Web: Although Vue is primarily designed for building web applications,
it is not limited to just the browser. Actually it’s possible to build desktop or
mobile apps, WebGL experiences or even to build custom renderers, like those for
the terminal.

When compared to React, Vue shares some similarities but also has distinct differences.
Both frameworks employ a component-based architecture and utilize a virtual DOM for
efficient rendering. However, Vue is often praised for its simplicity and ease of learning,
thanks to its clear and concise API. While, in terms of performance Vue and React are
comparable, with both frameworks offering efficient rendering and updates. However,
Vue’s smaller size and simpler API may lead to faster development times and reduced
overhead in certain scenarios.

Regarding Micro Frontends architecture, given the perfect integration of Vue with Vite,
it’s possible to use the Module Federation plugin configuring it as previously seen inside
the vite.config.js file and the usage of remote modules doesn’t differ from what seen
with React. Potentially it is also feasible to integrate a Vue remote micro application
within a React-based project, using appropriate libraries. This possibility is explored
further as the demo project unfolds

31

Approaches and Tools for Development

3.3 Challenges and Solutions Encountered
In this section, the focus shifts to the challenges and solutions encountered during a more
practical phase of this thesis. As the transition from theoretical exploration to hands-on
implementation occurs, different approaches, frameworks, and tools are engaged.

Throughout this phase, a process of experimentation is undertaken, involving the im-
plementation of tutorial projects from documentations and the development of simple
demos to test various concepts. However, it is important to recognize that not all ap-
proaches have produced satisfactory results; also because of how recent some aspects
related to this technology are. In facts, the scarcity of comprehensive documentation or
practical examples often posed challenges, leading to the necessity for innovative solutions
and workarounds and despite efforts made, some problems remained unresolved, resulting
in limitations to implementations.

One significant aspect of this phase is the alignment of the study with practical con-
siderations, particularly regarding technology stacks. As shown, the usage of frameworks
like Next.js or Remix.run paired with micro frontend architecture is limited, given several
compatibility problems. To this end, the focus of implementations is primarily on Vite
and React, rather than traditional options like Webpack. This decision comes from align-
ing with the AizoOn’s technology stack, as the goal is to integrate these concepts into the
company’s existing applications to improve performance and other crucial aspects.

Thus, the subsequent sections delve into the specific challenges encountered, solutions
devised, and lessons learned during the practical application of Micro Frontend concepts,
with a particular emphasis on the utilization of Vite and React.

3.3.1 TypeScript
Most of the examples in the previous sections are taken from demo project implemented
with JavaScript, but the usage of TypeScript provide several benefits that can improve
development performances.

TypeScript is a statically typed superset of JavaScript that adds optional static typing
to the language, allowing to define types for variables, parameters, and return values.
Additionally TypeScript performs type checking at compile time, providing early detection
of potential errors; whereas JavaScript performs type checking at runtime, which may lead
to runtime errors. The combination of type system and compile time checking provides
type safety, leading to more robust code and reducing the likelihood of runtime errors.

TypeScript’s static typing enables better IDE support that lends also to better code
maintainability.

Having considered TypeScript’s advantages over JavaScript, it can be useful to use
it also in Micro Frontends projects. However, in this situation, the usage of TypeScript
can rise some errors and warnings. Furthermore the static typing may suffer from this,
without being able to infer types. In fact, the strict type safety can’t be granted when a
remote component is imported in the main application, both in case of static and dynamic
configuration of remotes (hence also with dynamic imports).

In certain situations, the developer can take responsibility for ensuring proper type
management by suppressing the warnings. TypeScript provides mechanisms to suppress

32

3.3 – Challenges and Solutions Encountered

errors or warnings using specific comment directives that tells the TypeScript compiler to
ignore any type checking errors or warnings within that specific code block or file.

If there is a need for a higher level of type safety or more robust code when using
remote modules, it is possible to take advantage of the very concept of module federation
by exporting as a remote component also a defined type or an interface used to define the
property types of another remote component.

3.3.2 CSS Styling
There are various approaches to styling in frontend development, including CSS, CSS
preprocessors like Sass, CSS-in-JS solutions, and utility-first frameworks like Tailwind
CSS. During the development of different projects implementing the Module Federation
pattern, certain challenges emerged, particularly related to the use of Tailwind CSS.

Tailwind CSS is a utility-first CSS framework that provides pre-designed utility classes
for styling elements. Rather than writing custom CSS rules, developers can apply these
utility classes directly to HTML elements to achieve the desired styles. Tailwind CSS
operates on static analysis of the source code during the compilation process, generating
a stylesheet containing only the necessary classes based on those actually used.

However, when using Module Federation plugins (both in Webpack and Vite), where
components are loaded dynamically and shared among modules, this loading mechanism
compromises Tailwind’s ability to detect and include requested styles. Consequently, this
behavior led to the incorrect display of Tailwind definitions for remote components when
loaded and rendered in the main host application.

Initially, basic solutions involved defining CSS rules for each element or passing Tail-
wind rules as parameters to the remote element when rendered from the host. However,
these workarounds were not acceptable in the context of developing more complex com-
ponents and rich and flexible UIs.

An effective solution emerged after an in-depth analysis of behavior and structures:
the utilization of PostCss and Autoprefixer.

PostCSS is a tool for transforming CSS with JavaScript plugins. It parses CSS and ap-
plies transformations specified by plugins, allowing developers to write CSS using modern
syntax and features that may not be supported by all browsers.

Autoprefixer, a popular PostCSS plugin, automatically adds vendor prefixes to CSS
rules based on the specified browser compatibility settings. It analyzes CSS and adds the
necessary prefixes to ensure that styles work correctly across different browsers.

By configuring these tools appropriately, consistent style processing through Webpack
(or Vite) modules was ensured, preserving Tailwind styles’ integrity when remote compo-
nents are loaded. This approach resolved the issue and facilitated the correct rendering
of styles for remote components within the main host application.

3.3.3 State Management and Communication
In the context of Micro Frontends architecture, state management and communication
between different Micro Apps emerge as critical aspects. Separating functionality into

33

Approaches and Tools for Development

distinct modules can present unique challenges in terms of consistency and synchronization
of information between various parts of the application.

It’s important to keep in mind that the concept of micro frontends revolves around
the fact of having separated modules as isolated as possible, to avoid increasing the level
of complexity, provide fault tolerance and prevent possible inconsistent usage of shared
data. Quoting single-spa documentations [20]: If two microfrontends are frequently passing
state between each other, consider merging them. The disadvantages of microfrontends are
enhanced when your microfrontends are not isolated modules.

However, certain situations require an implementation of communication mechanism
between different modules or components and this often relies on the state managed within
those modules. The main strategy [3] are illustrated below:

• Web Workers: Web Workers are scripts that run in the background, independently
of the main thread, enabling concurrent execution. They can be used to exchange
data for communication or synchronization in a separated thread allowing the main
(UI) thread to run without being blocked/slowed down. This can improve general
performances and fluidity of the entire application, especially when many remote
applications run together. Moreover, Web Workers are not used much with Micro
Frontends due to their complex configuration and API usage.

• Props and Callbacks: They are a fundamental mechanism for passing data and trig-
gering actions between components. It’s possible to pass state management variables
from a parent component of main app to a child element of a remote component and
even callback function to be invoked as a response to specific actions. This method
is intuitive and straightforward when components maintain a direct parent-child re-
lationship but it may become cumbersome in more complex scenarios involving deep
nesting or sibling components.

• Custom Events: This approach is highly scalable and aligns with event-driven ar-
chitectures common in microservices and it is used to allow components within a
micro frontends application to communicate asynchronously. Components can dis-
patch custom events, and other components can listen for these events and respond
accordingly. While this offers a robust solution for state sharing, it comes with a set
of challenges related to dependency on event subscription timing and coordination
overhead.

• Platform Storage APIs: localStorage, sessionStorage, or IndexedDB are examples of
platform storage APIs, this method allows micro frontends to set and read data inde-
pendently directly, minimizing dependency on the container app. It is versatile and
applicable in web and mobile contexts, with Local Storage for browsers and Async
Storage for mobile apps. Nevertheless it has some drawbacks as limited scalability,
debugging difficulty during development and security concern.

• Libraries: There are several libraries that can be used for state management in micro
frontends. These libraries are well-suited for complex applications, providing tools
for organizing, accessing, and updating state in a predictable and scalable manner.
Redux is a predictable state container for JavaScript applications that provides a

34

3.3 – Challenges and Solutions Encountered

centralized store and pure reducer functions for managing application state. Recoil
is a React-specific state management library that introduces atoms for decentralized
state management within components, offering a simpler API and optimized perfor-
mance. Redux follows a centralized approach with actions and reducers, whereas
Recoil introduces atoms for decentralized state management within components.
Redux can be more suitable for large-scale applications with complex state man-
agement needs, while Recoil offers a simpler and more intuitive API with optimized
performance for React applications.

3.3.4 Vite Dynamic Configuration
As seen in previous sections and images 3.8 and 3.13, with module federation it is possible
to programmatically configure a remote application in the host application code. With
Webpack plugin this implementation has been tested and used successfully, while with
Vite plugin some problems and errors emerged during development. In fact it has been
noted that the use of methods from the __federation__ virtual module, to set and get
the remote components, can generate errors at runtime, when using the application. This
situation occurs in a particular condition, specifically in the case in which the remote
application exposes multiple modules to be shared with the host application: the feder-
ation method used to retrieve one of the remote modules simply returns the component
as a plain object and it is not recognized as a module, causing the React Lazy to fail at
runtime since the component can not be parsed as a React module. After an analysis of
the internal representation and process behind the federation methods from the Vite plu-
gin, a workaround was found, although it cannot be considered as a permanent solution
since the problem lies in the plugin itself and will have to be resolved by the respon-
sible developers. The said workaround involves a straightforward additional step to be
performed after the federation method returns the remote module: the returned object
value should be enclosed in another object as value of a field named default. At runtime,
this is interpreted as a default export for the given component, allowing for the module
loading system implemented by the browser or the JavaScript engine to treat the object
as a module and consequently resolve the dynamic loading returning a React component.
Figure 3.13 already shows this solution.

As mentioned, this is an acceptable solution until the plugin is updated, even taking
into account that the dynamic features of this have only been introduced recently [26].

35

36

Part II

React Server Components

37

Chapter 4

Introduction to the concept

4.1 Rendering
Rendering, in the context of web development, refers to the process of generating and
displaying the final output of a web application or website to the user’s browser. It in-
volves taking raw data, typically stored in databases or received from external sources and
transforming it into a visual representation that users can interact with. This includes or-
ganizing the data into structured layouts, applying styles and formatting, and integrating
interactive elements.

Rendering is a fundamental aspect of web development, crucial for creating engaging
and user-friendly digital experiences across a wide range of devices and platforms. Dif-
ferent rendering strategies were introduced to improve performances and also different
frameworks contributed to provide alternative strategies.

In recent years, React has emerged as a prominent tool in modern web development.
However, the rendering strategies adopted by this framework have consistently sparked
concern and debate among developers, primarily due to issues such as slow data fetching,
large bundle sizes, and complex business logic.

To address these challenges, alternative rendering strategies have emerged and other
technologies as Angular, Vue.js, and Svelte also contribute to this ecosystem, each with
its own rendering approaches and considerations. Understanding the nuances of differ-
ent rendering strategies is essential to navigating the diverse landscape of modern web
development.

This chapter will delve into the complexities of rendering within React, the benefits
and tradeoffs of various approaches [1], and examine the role of React server components
in shaping the future of web application development, considering React as the core tech-
nology as well as other related frameworks such as Next.js, Remix.run, Modern.js and
RazzleJs.

Web Vitals Metrics

Web Vitals is a Google initiative to provide unified guidance for web page quality signals
that are essential to delivering a great user experience on the web [24].

39

Introduction to the concept

The most important metrics are called Core Web Vitals, a subset of Web Vitals that
apply to all web pages and they may evolve over time. The current set focuses on three
aspects of the user experience: loading, interactivity, and visual stability. The three
metrics are illustrated below and they will be used to provide a contextual comparison
between the different rendering techniques.

• Largest Contentful Paint (LCP): measures loading performance. It is used to
track the time it takes for the largest content element, such as an image or text
block, to become visible to the user. A fast LCP ensures that users perceive the
page as loading quickly and efficiently.

• First Input Delay (FID): measures interactivity. FID tracks the time between
when a user interacts with the page (for example, clicks a button or taps a link) and
when the browser responds to that interaction. A low FID ensures that users can
interact with the page smoothly without delays.

• Cumulative Layout Shift (CLS): measures visual stability. CLS tracks the amount
of unexpected layout shifts that occur during page load. A layout shift is possibly
disruptive, especially when elements move unexpectedly, causing users to click on
the wrong link or button. A low CLS ensures that the page remains visually stable
and predictable.

4.1.1 Client-Side Rendering
Client-Side rendering (CSR) is the simplest rendering in a traditional Single-Page Appli-
cation (SPA). The server delivers a minimal HTML shell to the client, and the content
is generated in his browser using JavaScript. Using React, an empty <div> element is
sent to the user’s browser along with a large bundle of JavaScript containing React and
the application code. Subsequently, the client is responsible for making data requests,
such as to a database, processing the user interface, and rendering the resulting HTML
interactively.

CSR is optimal for single-page applications and web applications that require a high
degree of interactivity and real-time updates, providing a seamless and dynamic user
experience. In several situations this can result in unacceptably slow websites due to
heavy work performed by the client, particularly for initial page loads, leading to high
LCP and FID values. Additionally, CLS can be variable, especially if content is loaded
asynchronously or if layout changes occur after initial render

In the case of the company with which this thesis work was conducted, having an
application that requires loading a large amount of data makes this aspect extremely
relevant. Moreover, in the commercial realm, Core Web Vitals for SPAs are also prone to
falling below standards, leading to poor SEO performance.

With the evolution of React over time, some improvements have been introduced,
and the framework has received significant contributions from its community to enhance
rendering performance. In particular, the core React team and engineers working on
frameworks like Gatsby and Next.js have devised solutions to render pages on the server,
aiming to reduce the client-side workload.

40

4.1 – Rendering

4.1.2 Static Site Generation
The first solution to improve rendering performance is Static Site Generation (SSG). In
this approach, all the website’s pages are generated at build time, when the application is
initially deployed to the server. During this process, routes and pages are pre-rendered on
the server, and the resulting static HTML is then sent to the client. This means that when
users access the pages, there is already have static content to view, thereby reducing the
initial loading time and consequently providing low LCP time, improving overall perfor-
mance. Page interactivity is subsequently added through client-side JavaScript execution,
resulting in acceptable and relatively low FID time. Since pages are pre-rendered with
stable layouts, values of CLS tend to be considerably low.

This approach is particularly well-suited for content-heavy websites, blogs, e-commerce
sites, and landing pages. However, SSG may not be ideal for websites with a vast number
of pages, as build times may take longer, impacting development efficiency. Additionally,
SSG is not suitable for websites with frequently changing content, especially if real-time
updates are a priority.

Considering this approach in relation to the corporate scope of the company, SSG can
bring benefits in the case of data-intensive pages that do not require frequent updates.

4.1.3 Server Side Rendering
Another approach is Server-Side Rendering (SSR), where routes are rendered at the time
of request. Unlike SSG, which pre-renders pages during compilation time, with SSR, the
server dynamically processes content each time a user requests a page. This means that
the client receives HTML already compiled directly from the server, ensuring that users
quickly see the content, resulting in a lower LCP time. Once again, interactivity is added
through client-side JavaScript execution with acceptable values of FID. Both SSG and
SSG aim to enhance overall performance and user experience but differ in when content
generation occurs.

SSR can be resource-intensive given that the server must regenerate the HTML for
each request, which can strain the server’s resources. Additionally, it may not be the
most suitable choice for content that rarely changes, as the benefits of pre-rendering may
not outweigh the server computation costs.

Streaming SSR

Streaming SSR is an extension of Server-Side Rendering. It allows the server to start
sending chunks of HTML to the client as soon as they are generated, rather than waiting
for the entire page to be processed. This enables the client to start rendering and display-
ing content progressively as it arrives, providing a smoother and faster user experience,
especially for pages with large amounts of data or complex layouts.

This approach improves SSR efficiency, in particular related to other important Web
Vitals metrics that are Time to First Byte (TTFB) and Time to Interactive (TTI). TTFB
measures the time it takes for the browser to receive the first byte of data from the server
after making a request, reflecting server’s responsiveness; while TTI measures the time

41

Introduction to the concept

it takes for a web page to become fully interactive, meaning that all content has loaded,
and the page is responsive to user input.

Therefore, sending content to the client in chunks as it becomes available can signifi-
cantly improve the overall time it takes to receive the first byte and, as a result, can result
in a faster and more responsive user experience.

Streaming SSR is not without disadvantages. In fact, it can introduce additional
complexity in the development process as well as requiring careful management of server-
side rendering and data streaming. Additionally, streaming SSR may have higher resource
requirements compared to traditional SSR, as it involves maintaining open connections
and managing data streams in real-time.

4.1.4 Incremental Static Regeneration
The Incremental Static Regeneration (ISR) strategy was recently introduced by Next.js,
it combines elements of both SSG and SSR. ISR bridges the gap between these two ap-
proaches by allowing specific pages or sections of pages to be regenerated on-demand,
combining the efficiency of static site generation with the flexibility of server-side render-
ing. The regeneration, or update, can be obtained specifying a revalidation time for each
page. This feature determines how often a page is regenerated and updated.

When a user visits a page, ISR checks the current time against the revalidation time
to decide whether to serve the cached static page or re-render it: in case the current time
exceeds the revalidation time for a specific page, ISR invalidates the cache for that page
and generates a fresh version of it.

LCP and FID performances can vary depending on the caching and regeneration set-
tings, but can typically still be optimized for freshness, speed and responsiveness. Also
CLS can be optimized depending on the caching and regeneration settings.

This approach ensures to always receive the most up-to-date content, maintaining a
balance between performance and real-time updates. On the other hand, it requires a more
complex configuration than SSR and SSG, potentially introducing complexity in managing
cache and revalidation, along with increased server load and resource consumption.

4.1.5 React Server Components
React Server Components (RSCs), or simply Server Components, represent the latest
technological innovation in web content pre-rendering, designed by the React team and
introduced as a stable feature in March 2023 [16]. They introduce a new mental model
to the framework, allowing the creation of components that span both the server and
client worlds. With RSCs, server-side rendering can occur at the component level without
waiting for an entire page to be rendered on the server; RSCs individually fetch data
and render entirely on the server, and the resulting HTML is streamed into the client-side
React component tree, interleaving with other Server and Client Components as necessary.
This contributes to obtain low values of LCP and FID as well as CLS, leading to a
smoother and more responsive user experience overall. As reported, Server Components
seamlessly integrate also with Client Components to provide a versatile blend of server-side
efficiency and dynamic client-side interactivity.

42

4.2 – The Problems RSCs Solve

RSCs can be considered as an improvement of SSR (as well as Streaming SSR), pro-
viding more granular control over server-side rendering and seamlessly integrating with
existing React workflows. Additionally RSCs provide a balance between server-side ren-
dering and client-side interactivity.

However, RSCs should be considered a newborn architectural approach, highly promis-
ing but, as shown in the following sections, with significant drawbacks and challenges still
to be resolved.

4.2 The Problems RSCs Solve
It is important to understand the reasons why using RSCs can be useful and beneficial.
Bearing in mind that it adds a certain degree of complexity to the code and implemen-
tation of the project, in case you have to start from the foundations, while it represents
a very complicated solution to implement in the case of refactoring an already existing
application. It is therefore necessary to underline the problems that are addressed and
resolved with this approach [13].

4.2.1 Data Fetching
One of the main issues addressed by React Server Components concerns data management
and one-directional data flow. In the early stages of the framework competition, React
gained success primarily due to its innovative idea of one-directional data flow, contrast-
ing with frameworks like Angular. This one-directional data flow implies that data is
passed only in one direction within the application (along the component tree). If there
are updates in the data, React will reconcile the entire component tree, re-rendering all
components with modified props and data and their respective children. With RSCs, the
one-directional flow now involves the server as well, allowing for server-side management
of changes without additional efforts to synchronize states.

To better understand this concept, a classic example of data retrieval in React can be
considered. Having a root component, such as the structure of a social media app, with
typical elements like a post feed and a profile button, the problem arises when data need
to be retrieved, such as the profile, the feed, and other sidebar information. Traditionally,
this involves combining the usage of effect and state hooks, respectively useEffect and
useState. Data is fetched stored in state variables and then eventually passed down as
props from a shell element to the component that need it, as shown below in image 4.1.

The problem with this approach is that developers have to think and implement the
logic to trigger the fetch, how to handle the states and how to handle relative errors in
a disconnected way to the components, since this is performed at a higher level in the
component tree. This approach also introduces a "waterfall" where it’s necessary to wait
for the inner element, such as profile, to load before requesting related or outer elements,
as the feed, creating a noticeable delay for users, especially those far from the server.
A possible solution could be fetching all data in a single React Promise, avoiding the
waterfall problem when waiting for different elements data, but still providing a delay and
an initial waterfall waiting.

43

Introduction to the concept

Figure 4.1. Data Fetching with Waterfall

RSCs solve this problem by allowing data retrieval logic to be handled directly within
the components themselves, eliminating the need for complex client-side state manage-
ment. Each component (server or client) can receive data through props, allowing for
a more modular display and reducing the logic in the main component. This process
adds the server to the one-directional data flow, enabling data reloading and dynamic UI
updates without additional efforts in state synchronization, significantly improving per-
formance and user experience. In this way, each component can internally perform data
fetch operations using an asynchronous await to request the data and potentially pass it
to child components, as illustrated in the examples in images 4.2 and 4.3.

Additionally, the use of this technique within React components is possible thanks to
the presence of a "fallback" mechanism, implemented through <Suspense> component,
introduced in React 18, that enables developers to manage asynchronous operations in
a declarative and efficient manner. When a React component wrapped in <Suspense>
triggers an asynchronous operation, React suspends the rendering of that component and
its subtree, providing a fallback content (such as loading spinners or placeholders) while
the operation is in progress. Once the operation completes, React resumes the rendering
of the suspended component and replaces the fallback content with the actual content
returned.

This mechanism is integrated by default in frameworks that supports RSCs. This
means that while using frameworks like Next.js is not necessary to directly rely on the

44

4.2 – The Problems RSCs Solve

usage of suspendable components since Suspense is implemented internally and its mech-
anism is operated by the framework compiler.

Figure 4.2. Profile Component
Figure 4.3. Feed Component

4.2.2 Composable Business Logic
As explained above, it is possible to perform data retrieval directly within the compo-
nents without having to use effect hooks. However, this does not have an immediate
utility, considering that for some frameworks there are already similar solutions such as
getServerSideProps for Next.js, loaders from React Router, or .server files for Astro.

The problem with such solutions concerns how the requests are handled. No framework
natively addresses data loading based directly on components. Even with Remix’s nested
routing, developers are still forced to write non-composable route-based logic, which means
that data retrieval and revalidation can only occur based on routing path, not on the
component. Furthermore, it is not easy to reuse this logic by importing it from a *.jsx
file or from NPM.

This means that there is no framework-agnostic way to write business logic in a com-
posable manner in React, it is not possible to directly import a database query from the
file containing the logic. Additionally, the solutions present in frameworks often have to
use routing-based logic to obtain data in the application, which can lead to logic duplica-
tion, or they have to use nested routing, an excellent solution but one that still does not
support "composition" of logic in a modular way.

One of the key aspects of React Server Components is the ability to "componentize"
business logic so that it can be composed in different areas of the application without
having to copy/paste only certain parts of logic from a specific path.

A great example is implementing Stripe in an application to collect subscription rev-
enues. Before RSCs, it was necessary to consult the Stripe documentation, search for
React integrations, check if there were specific guides for the framework used, whether it
was Remix, Next.js, or Astro, etc., and finally deal directly with integrating with Stripe.
Now, thanks to RSCs allowing the distribution of React components whose logic is ex-
ecuted only on the server, a developer can publish a Stripe integration component to a

45

Introduction to the concept

private NPM registry, for example. This way, it becomes feasible to use and reuse server-
side business logic as you would with a UI library, allowing the entire team to use the
same logic to integrate with Stripe by simply importing the library.

4.2.3 Bundle Sizes

A significant benefit often mentioned by developers regarding RSCs is the lack of impact
on bundle sizes. The bundle size refers to the total size of all the JavaScript files that are
required to run the application in the browser. This includes not only the written code,
but also any third-party libraries or dependencies that the application relies on. Bundle
size is an important metric to consider because larger bundle sizes can lead to slower load
times for your application, especially on slower internet connections or devices.

Actually, it is important to note that RSCs themselves do not have zero bundle sizes.
Even if a static server component such as a simple div, is sended, React and ReactDOM
would still be sent to the client, making the bundle size not zero.

What is meant by "0 impact on bundle sizes" is that the libraries and dependencies
used by the server components will not be shipped to the browser.

For example, in case of having an element that does not rely on interactivity, thus
server-renderable, even though itself has other libraries dependencies, it is possible to
send it to the browser as if it had no dependencies, without impacting the bundle size at
all. This proves to be very useful as it reduces the bandwidth used by the application,
since less JavaScript is sent over the network, and leads to faster loading times, since fewer
bytes are sent in the client-side bundle.

4.3 State of Literature

Given all the advantages and benefits illustrated in the previous sections, it would be
natural to ask why RSCs are not the most used technology currently and are not adopted
by default by the main frameworks in the world of web development.

As stated in the official React documentations [16], currently the only framework that
implements RSCs is Next.js. This framework showcases a deep integration of a router that
really buys into RSC as a primitive, but it’s not the only way to build a RSC-compatible
router and framework, even if integration with other tools an libraries is limited. In fact,
reporting the React documentation again:

We generally recommend using an existing framework [...] Building your own RSC-
compatible framework is not as easy as we’d like it to be, mainly due to the deep bundler
integration needed.

The reason behind this statement and the present situation is that RSCs are not stably
supported in the current version of React (18), probably they’ll be included as part of
the mainline, stable release in React 19, even if the React development team has not
yet released information on when exactly it will arrive. Actually, the only method to
implement RSCs outside Next.js is using React Canaries.

46

4.3 – State of Literature

4.3.1 React Canaries Releases
The Canary channel is a prerelease channel that tracks the main branch of the React
repository. This allows to start using individual new React features before they land in
the semver-stable releases (the released versions considered stable for production use).

Canaries differ from Experimental releases, because experimental APIs can undergo
significant breaking changes on their way to stabilization, or can even be removed entirely.
While Canaries can also contain errors, any significant breaking changes is planned and
announced in the React Canary blog. So the usage of Canary workflow must be careful,
it’s important to always pin the exact version of the Canary in use.

As said Canary can be used to implement RSCs, since the React team established
that React Server Components conventions have been finalized and they re ready to be
adopted by frameworks while still having issues with some related features that come in
the way and prevent the release of React Server component support in a stable version
of React [15]. This is mainly due to he deep integration with the bundler required for
operation. The current generation of bundlers are great for client use, but they were not
designed for primary support that involves splitting a single module graph between server
and client. For this reason the React team is currently working directly with bundler
developers to get primitives for RSCs integrated directly. Therefore a technological leap
can be expected in the near future, facilitating increased integration and subsequently
wider dissemination of this technology.

During the thesis work, a study was carried out on how it was possible to implement
RSCs without the support of a framework like Next.js. The main outcome is that imple-
menting a Canary version of React to use RSCs is not a feasible solution in an enterprise
context. Basing the architecture of a corporate project on characteristics that are not yet
stable requires a cumbersome and complex configuration, not suitable in an environment
that requires a high level of security and reliability, as well as flexibility in configuration
to ensure code maintainability and clear separation of concerns.

In the next chapter the study carried out on the different frameworks is illustrated,
also in relation to React Canary and it is explained in depth why the RSCs technology
is, to date, still at a too experimental level to be implemented.

47

48

Chapter 5

Approaches and Tools for
Development

This chapter presents the main frameworks for implementing server rendering as well as
RSCs. These technologies were explored through an initial documentation phase, followed
by the practical creation of demo applications to test and validate the concepts.

5.1 Next.js
Next.js is a React framework for building full-stack web applications [12]. It automati-
cally abstracts and configures the tools needed for React, such as bundling, compilation,
and others, allowing to focus on building the application instead of spending time on
configuration.
The main features of this framework includes:

• Routing: A file-system based router built on top of Server Components that supports
functionalities such as nested routing, layouts, loading states, error handling.

• Rendering: Client and Server Components that provides Client-side and Server-side
Rendering, further optimized with Static and Dynamic Rendering on the server with
Next.js, Streaming on Edge and Node.js runtimes.

• Data Fetching: Simplified data fetching with async/await mechanisms in Server
Components, and an extended fetch API for request memoization, data caching and
re-validation.

• TypeScript: Improved support for TypeScript, with better type checking and more
efficient compilation, as well as custom TypeScript Plugin and type checker.

• Styling: Support for different styling methods, including CSS Modules, Tailwind
CSS, and CSS-in-JS.

• Optimizations: Image, Fonts, and Script Optimizations to improve the application’s
Core Web Vitals and User Experience.

49

Approaches and Tools for Development

Routing is a critical aspect of web applications that enables navigation between various
pages, allowing users to access different parts of an application. Next.js offers two different
routers, to implement a different routing system.

5.1.1 Pages Router
It is the original Next.js router. The Pages Router has a file-system based router built on
concepts of pages. When a file is added to the pages directory it’s automatically available
as a route and the page element is treated as a React Component.

For example, a file named info is routed to /info route; while files named index are
always routed to the root directory. This mechanism supports nested files, allowing for
the creation of nested folder structures.

pages/index.js → /
pages/info.js → /info
pages/blog/index.js → /blog
pages/blog/first-post.js → /blog/first-post

With this system it is possible to create not only static but also dynamic routes,
following the convention of placing the filename between square brakets, for example
[name]. It allows to create routes from dynamic data, Dynamic Segments are filled in at
request time or prerendered at build time and the dynamic value of the segment can be
accessed from useRouter.

pages/users/[name].js → /users/John params: {name: ’John’}
pages/users/[name].js → /users/Marc params: {name: ’Marc’}

Others more advanced patterns are available such as Catch-All Segments or Optional
Catch-all Segments. They are an extension of Dynamic Segments, the first one allows to
catch-all subsequent segments by adding an ellipsis inside the brackets [...segmentName];
the latter make the catch-all optional by including the parameter in double square brack-
ets: [[...segmentName]].

pages/shop/[...id].js → /shop/a params: {id: [’a’]}
pages/shop/[...id].js → /shop/a/b params: {id: [’a’,’b’]}
pages/shop/[[...id]].js → /shop params: { id: [] }

Additionally, it allows the reuse of components between pages, implementing layout
patterns.

This routing system provides automatic code-splitting, each page is a separate bundle,
thus improving loading times.

It is therefore an ideal solution for simple projects, its structure works right from
creation without any need for configuration, creating less complexity in navigation and
page creation. It is also suitable for situations where speed is preferred to flexibility, those

50

5.1 – Next.js

cases that require rapid development and implementation with a minimal configuration;
suitable for websites and applications with simple navigation and no need for complex
routing scenarios.

In the case of more complex projects, this approach has some disadvantages, as flexi-
bility and support for shared layouts and nested routing are limited. Additionally, with
large applications, maintenance can be complex and additional configuration steps may
be required to handle complex routing needs. Furthermore, the advantage brought by
code-splitting and separation into separate bundles can turn into a disadvantage as it is
more difficult to share components between different pages.

5.1.2 App Router
Modern routing system, designed to overcome the limitations imposed by the Pages direc-
tory approach using the latest React features. The App Router works in a new directory
named app that operates alongside the pages directory to allow for incremental adoption,
with the App Router taking priority over the Pages Router.

By default the components inside the directory are RSCs. The reason behind this
choice is a performance optimization and a strategy to allow developers to easily adopt
them. Additionally is possible to use Client Components.

This routing system implements a hierarchical structure that can be visualized as a
tree, in which the root represents the app directory. Nested directory can be represented as
subtree, a portion of the main three, with each root element serving as a layout component
for its corresponding route.

Within this structure, folders are utilized to define routes. A route is essentially a single
path of nested folders, mirroring the file-system hierarchy from the root folder down to a
terminal leaf folder that includes a page.js file. These page.js files define the content
to be rendered for each specific route.

app/dashboard/settings/page.js → /dashboard/settings

Also with App Router is possible to define dynamic routes using the same convention
implemented with Pages Router, as well as Catch-all Segments and Optional Catch-all
Segments.

app/users/[name]/page.js → /users/John params: {name: ’John’}
app/shop/[...id]/page.js → /shop/a params: {id: [’a’]}
app/shop/[[...id]]/page.js → /shop params: { id: [] }

As said, nested folders are normally mapped to URL paths. However, it is possible to
mark a folder as a Route Group to prevent the folder from being included in the route’s
URL path. This allows to organize route segments and project files into logical groups
without affecting the URL path structure. A route group can be created by wrapping a
folder’s name in parenthesis.

app/(shop)/account/page.js → /account

51

Approaches and Tools for Development

Additionally it is possible to intercept routes. This feature allows to load a route from
another part of the application within the current layout. This routing paradigm can be
useful when you want to display the content of a route without the user switching to a
different context. Intercepting routes can be defined with the (..) convention, which
is similar to relative path convention ../ but for segments. This approach also allows
to define special files at leaf level by naming them with specific names. For example it’s
possible to define a layout by default exporting a React component from a layout.js
file, so that every segment (or subtree) can have a custom layout. Other special files are
loading.js, that helps creating meaningful Loading UI with React Suspense, error.js,
which allows to gracefully handle unexpected runtime errors in nested routes using React
Error Boundary.

This hierarchical approach offers, along with the related features, flexibility and scal-
ability, allowing for the organization of routes in a logical and intuitive manner. It also
enables the creation of complex routing structures that can accommodate various naviga-
tion scenarios within the application. So it is more suitable for large applications and for
scenarios in which more control over the routing logic is needed.

5.1.3 Rendering and Server Components
By default, Next.js uses Server Components within App Router. This allows to automat-
ically implement server rendering with no additional configuration.

Server Components do not support client-side actions, such as click events, and React
hooks, but a Server Component can be converted into a Client Component marking it
with the "use client" directive at the beginning of the file.

Client Components are used to write interactive UI that is pre-rendered on the server
and can use client JavaScript to run in the browser. In fact, doing the rendering work on
the client allows Client Components to use state, effects, and event listeners, as well as
have access to browser APIs, like geolocation or localStorage.

Server Components are therefore ideal for use when it is necessary to perform a data
fetch process, access backend resources directly, maintain sensitive information (such as
tokens or keys) on the server, maintain large dependencies on the server by reducing
the size of the JavaScript code sent to the client. While Client Components are used
there is the need to add interactivity, event listeners, handle hooks and integrate React
components.

On the server, Next.js utilizes React’s APIs to handle rendering. The rendering work
is divided into chunks that are rendered in two steps: React renders the server compo-
nents into a special data format known as the React Server Component Payload (RSC
Payload). Next.js then utilizes the RSC Payload and the JavaScript instructions of any
Client Components for rendering HTML on the server. At this point, on the client-side,
the HTML is used to immediately display a non-interactive preview of the route (this
occurs only during the initial page load); the RSC Payload is used to reconcile the tree of
Client and Server components and update the DOM. Finally, the JavaScript instructions
are used for the process of hydrating the Client Components and making the application
interactive. Rendering on the server can be done by following three different possible
strategies.

52

5.1 – Next.js

Static Rendering (Default)

With static rendering, route rendering occurs at build time, or in the background if the
data has been re-validated. The result is cached and can be sent to a Content Delivery
Network. This optimization allows the result of the rendering process to be shared between
user and server requests. This type of rendering is useful when a route contains data that
is not personalized to the user and known at build time, such as a product page in an
e-commerce site or a post in a static blog.

Dynamic Rendering

With dynamic rendering, routes are rendered for each user request at request time. this
strategy is useful when the route contains data personalized for the user or information
known only at request time, such as cookies or search parameters in the URL.

It is important to note that in most websites, routes are not fully static or fully dy-
namic. For example, an e-commerce page may use cached product data that’s re-validated
at an interval, but also has uncached, personalized customer data. Next.js allows having
dynamically rendered routes that have both cached and uncached data. This is because
the RSC Payload and data are cached separately, allowing to opt into dynamic render-
ing without worrying about the impact on performance by fetching all data at request
time. During rendering, Next automatically switches from static to dynamic rendering
if dynamic functions (functions that rely on information known only at request time) or
non-cached data are detected.

Developers don’t have to choose between static and dynamic rendering as Next.js will
automatically choose the best rendering strategy for each route based on the features and
APIs used. Instead, it is possible to choose when to cache or re-validate specific data,
specifying cache properties within data fetches and selecting data re-validadion strategy.

Streaming

The streaming technique enables to progressively load the UI from the server, implement-
ing the Streaming SSR pattern explained before. The rendering process is divided into
chunks and each portion is sent to the client as soon as it is ready, without waiting for
all the components of the page to be ready. This allows the user to see parts of the page
immediately, before the entire content is rendered. The approach works well with React’s
component model because each component can be considered a chunk.

Streaming is implemented by default within the App Router structure and this im-
proves the performance of both the initial loading of the pages (reducing the Time To First
Byte) and the UI which depends on slower data retrieval, which would otherwise block
the entire route. For example in the case of reviews on a product page on an e-commerce
site.

53

Approaches and Tools for Development

5.2 Remix.run
Remix represents a solid evolution in the landscape of full-stack web frameworks. Built
upon the power of React, it offers a fast, smooth, and resilient user experience. Since its
official launch in October 2021, Remix has gained significant popularity, establishing itself
as one of the reference frameworks for the React community. The widespread adoption
of this framework is driven by the numerous advantages it offers, which, despite being
relatively recent and continuously expanding, make it reliable and high-performing [18].

Remix is characterized by its extremely fast bundling achieved through esbuild, a
JavaScript/CSS bundler and minifier, ensuring efficient code compilation. Recently, with
the release in February 2024, is it possible to use Vite instead, providing all the advantages
that come with this tool.

On the server side, it adopts a progressive enhancement approach by sending only the
necessary resources—JavaScript, JSON, and CSS to the browser, thus ensuring faster ini-
tial loading and improved performance. Moreover, server-side dynamic rendering, similar
to Next.js, allows the server to render React components and send pre-rendered markup
to the client, enhancing SEO, reducing Time To First Paint, and improving overall user
experience. Automatic data re-fetching, when modified or updated, is handled by the
framework, eliminating the need for manual re-validation. Furthermore, Remix integrates
key tools such as React Router, a production server, and backend optimizations, providing
a comprehensive solution without the need for separate configurations and integrations.

5.2.1 Routing
As mentioned, routing is built on top of React Router, since React Router is developed
by the Remix team itself. Remix adopt the file-based routing system, similar to Next.js
Pages Router routing system with more advanced features.

Routes are associated with individual files in the project structure, this means that
when a file is introduces in the routes folder, Remix inherently understands it as a route.
Nested routing can be implemented, other than with basic file-based hierarchy, separating
route segments with dots within the file name.

app/routes/profile.tsx → /profile
app/routes/profile.settings.tsx → /profile/settings

This modular design supports also dynamic segments to match segments of non-static
URL and use that value in the code. The convention requires prefixing the file name with
the symbol $. This can be combined, similarly to Next.js, with Optional Segments by
wrapping a route segment in parenthesis. This capability enables developers to handle
optional parameters within the URL structure, accommodating various use cases without
the need for complex routing configurations.

app/routes/users.$name.tsx → /users/John
app/routes/($lang).$category.tsx → /en/technology
app/routes/($lang).$category.tsx → /technology

54

5.2 – Remix.run

The filename maps to the route’s URL pathname except for _index.tsx file that is
used as the entry point for the corresponding segment. The index route is essential for the
root route, it define the root layout shared among the application. Additionally is possible
to define an index route for each route segment, providing nested layouts to obtain higher
modularity.

This approach enables the ability for several routes in the nested route tree to match
a single URL. This granularity ensures that each route is primarily focused on its spe-
cific URL segment and related slice of UI. This approach champions the principles of
modularity and separation of concerns, ensuring each route remains focused on its core
responsibilities.

Thus Remix’s routing system not only simplifies the organization of project files but
also enhances modularity and code maintainability. By associating routes with individ-
ual files, developers can easily locate and manage different sections of the application,
promoting a clear separation of concerns, as each route remains focused on its specific
functionality, allowing for the creation of user-friendly navigation experiences while en-
suring consistency and scalability across the application.

Remix also offers other features that simplify the development of a web application, such
as simplified state management, which reduces the need for tools like Redux and React
Context and providing a large and fast data flow, easily transmitting information between
frontend and backend, leveraging the full-stack architecture to seamlessly synchronize
state between the client and server. This ensure consistency and enable developers to
easily share data between components and routes, reducing the need for complex data
sharing mechanisms. It also facilitates the creation of smooth transitions between pages
with the use of Optimistic UI, providing instant feedback to users while asynchronously
processing data updates in the background. This approach enhances user experience by
reducing perceived latency and improving responsiveness. As for error handling, it is built
in natively, allowing each route to define an error handling function.

5.2.2 Rendering and Server Components

Remix, unlike Next, does not implement React Server Components. This does not mean
that what we have seen so far is not inherent to the topic that guided the development of
this thesis. Indeed the approach of Remix, although the first versions in 2018 implement
experimental versions of RSCs, is to fully exploit the functionality of technologies such
as Suspense, RSCs, and SSR Streaming through a "Full-Stack Framework" structure that
emphasizes and maximize the functionality of these existing technologies. In this way you
benefit from co-locality of the code, which from the developer’s point of view, allows you
to consider the route modules as server components.

This means that the operation is very similar to what happens in Next or internally
to the RSCs. This is possible thanks to Fullstack Data Flow, a set of features that allows
to automatically keep the UI synchronized with the persistent state of the server. This
process unfolds in three stages:

55

Approaches and Tools for Development

• Route Loader: The route loader provides data to the UI, specifically the route com-
ponent. This function executes automatically when a user navigates to a particular
route. Then, after loading the data, rendering takes place.

• Action Routes: If the route component involves data that can be modified, such as via
a form submission, the corresponding action route, a server function, is responsible
for managing mutations and the resulting actions. These functions are defined as
HTTP requests (GET, POST, PUT, DELETE or PATCH) as required, following the
same loader structure. This setup enables co-location of a data set within a route
module where data reading, component rendering, and data writing occur in the same
location. While there are alternative methods to respond to data modifications, such
as event listeners or file loading, actions form the foundational mechanism.

• Page Loader Revalidation: Following any data modification, the page loader is au-
tomatically re-validated, ensuring that updated values are seamlessly reflected.

In addition, studies have shown that the current server rendering performance of Remix is
comparable to, if not better than, the results obtained by using frameworks such as Next
through the use of RSCs [5].

Remix developers express confidence that when RSCs become viable for integration
into Remix, migration will be as straightforward as renaming a file for a route. This indi-
cates a forward-looking approach, anticipating future advancements in React’s ecosystem
and their seamless integration into the Remix framework.

5.3 Other Frameworks
During the development of this thesis work, other frameworks were studied to explore the
implications of Server Components in the current state of literature.

The frameworks shown in this section have been considered less thoroughly due to
their recent introduction and evolution, as well as the technologies they implement, which
deviate from the enterprise application stack. However, it is important to have a complete
overview of the frameworks and tools that can be used to implement server rendering and
in particular RSCs.

5.3.1 Modern.js
Modern.js is a progressive web framework based on React from ByteDance [9].

This framework supports all configurations and tools needed by React applications and
has built-in additional features and optimizations. Developers can use React to build the
UI of the application, and then gradually adopt the features of Modern.js to solve common
application requirements, such as routing, data acquisition, and state management.

Modern.js is based on Webpack and provides out-of-the-box Rspack support, a high
performance JavaScript bundler based on Rust.

Modern.js was heavily inspired by Remix.js in routing and SSR and, at the same time,
Modern.js’ routing solution is based on react-router, which is created by the Remix team.

56

5.4 – RSCs from Foundations

Additionally it implements React 18 to build user interfaces and it can be used with any
community state management library, such as Redux or Recoil.

Modern.js also provides Micro Frontends support through the use of the Garfish tool,
but this approach is still in the early stages of development and cannot be integrated with
other technologies, such as Module Federation discussed above.

As for rendering strategies, Modern.js provides support for Client Side Rendering,
Server Side Rendering, and Static Site Generation, allowing developers to choose the
rendering mode they need. The benefits of using SSR in Modern.js are ease of use,
developers do not have to write complex configurations or server side logic, nor do they
have to worry about the operation and maintenance of SSR. Additionally, it implements
a complete SSR downgrade strategy to ensure that the page can run safely and a built-in
caching system to solve the problem of high server side load.

Thanks to these aspects, Modern.js can be considered a valid alternative to a framework
like Remix.run, although it is relatively recent and still in the expansion phase. Therefore
we are not yet inclined towards its use in a corporate environment.

5.3.2 Vue.js
Vue framework was previously illustrated in section 3.2.6 and as said, it is not a React-
based framas well as its potential for integration with React. Regarding server rendering
concepts, it is interesting since it is possible to directly implement the server request
handler through the declaration of a Node.js server for basic solutions, but even more so
thanks to the built-in support for Vue Server Side Rendering provided by Vite. Vite offer
vite-plugin-ssr that abstracts away the challenging of configuring the server responsible
for handling server rendering requests.

Additionally from Vue also came Nuxt, a higher-level framework built on top of the
Vue ecosystem which provides a streamlined development experience for writing universal
Vue applications. This framework has built-in SSR capabilities by default, that do not
require a manual server configuration.

Although this framework’s approach is interesting, it has not been explored in depth
as it does not fit into the main technology stack. However, given its compatibility with
Module Federation plugin, it should be possible to integrate it within a React project,
leaning on additional libraries to perform the implementation.

5.4 RSCs from Foundations
An important feature of React Server Components is the opportunity to use them without
the need of framework support or external systems and technologies for deployment and
use. As mentioned above, this approach is discouraged by the developer team behind
RSCs. Therefore the following is the result of a study and research phase for educational
purposes rather than an implementation of production-ready tools. In fact, this phase
served to understand more in depth the functioning of the RSCs, rather than to understand
how to use them.

57

Approaches and Tools for Development

The study starts from a tutorial [6] showing how to construct React server components
from scratch using TypeScript mimicking Next.js App Router structure and mechanisms.
This can be considered as a cornerstone for understanding the mechanism behind React’s
component lifecycle, state management, and data fetching primitives.

This approach involves manually configuring and setting up a server using Express, a
popular Node.js web application framework, used to define routes and handle requests for
the React application.

Express server is configured using the express.static middleware to serve static files
from the directory that contains the bundled JavaScript files generated by the React build
process (the server-side and client-side code, as well as any other static assets required by
the application).

5.4.1 Routing
The server defines routes to handle different types of requests and implements route han-
dling in a manner similar to Next.js by dynamically importing React components based
on the requested route. For example, the route handler for /:page dynamically imports
the appropriate page component based on the requested page name. Additionally, the
route handler for /:dir/:email demonstrates handling dynamic routes with multiple
parameters.

5.4.2 Component Rendering and Hydratation
One of the core features of the server configuration is its ability to render React compo-
nents on both the server and client sides. This process involves rendering React compo-
nents into HTML markup on the server and then hydrating them on the client side to
attach event handlers and state.

When a request is made to the server, the server dynamically imports the appropriate
React component based on the requested route. The createReactTree function asyn-
chronously constructs the React component tree. It supports rendering both functional
and class-based components, allowing for a flexible and modular architecture.

The server then utilizes renderToString from react-dom/server package to convert the
React component tree into HTML markup. This HTML markup includes the initial server-
rendered content, ensuring that the user receives a fully populated HTML document upon
the initial request. This approach exploits the benefits of SSR by providing modularity
and componentization derived from RSCs.

After the initial HTML markup is delivered to the client, the client side code, typically
contained in index.tsx file, takes over the rendering process. The HTML markup re-
ceived from the server is hydrated using the hydrateRoot function from react-dom/client
package. Hydration makes the components interactive and responsive. During hydration,
React reconciles the server rendered HTML with the client side React components. It
compares the existing HTML structure with the React component tree, preserving any
client side state or user interactions that occurred on the server rendered page. This pro-
cess ensures a seamless transition from server rendered content to client side interactivity,
providing a consistent user experience.

58

Part III

Integration in Enterprise
Application

59

Chapter 6

R&D Outcomes and Thesis
Direction

6.1 Overview of Research Outcomes
6.1.1 R&D Outcomes
Based on the R&D activities, the research on adopting advanced enterprise patterns such
as Micro-Frontends and Server-Side-Rendering can be summarized as follows and with
the outcomes shown below, in figure 6.1.

Regarding micro frontends, the adoption of this architecture offers numerous benefits
and, as explained, the most suitable approach requires Module Federation through the
use of bundlers like Vite.js and Webpack.

On the other hand, RSCs has emerged as a promising technology, yet still in its nascent
stages and undergoing rapid expansion. Consequently, the focus of the server rendering
approach shifted towards SSR techniques. This strategic shift was driven by the need
for stability and widespread support within existing frameworks, such as Remix, Next.js
and Modern.js, particularly in the context of enterprise application development, with
SSR providing several performance improvements. Notably, some frameworks like Next.js
have begun integrating RSCs directly into their architecture, offering a glimpse into the
future potential of this technology.

However, successful implementation of SSR depends on fulfilling framework require-
ments, such as Module Federation for micro frontends integration. Overall, the research
underscores the importance of carefully selecting and integrating frameworks to leverage
the benefits of micro frontends architecture and SSR effectively.

The initial finding of the research phase is that incorporating Server-Side Rendering (SSR)
practices into an already-deployed Enterprise Web Application, without the need for
a complete rewrite, may depend on adopting Micro-Frontends. Hydrating the applica-
tion with SSR requires significant maintenance and development efforts, which may be

61

R&D Outcomes and Thesis Direction

Figure 6.1. R&D Outcomes

challenging for a standard team. Therefore, it is recommended to consider adopting a
framework (as suggested by the React development team) that provides a pre-packaged
architecture and meets the requirements. However, adopting a framework typically in-
volves a complete rewrite of the application. Alternatively, a more effective strategy could
be to modularize the application and gradually adopt SSR as needed, with the assistance
of external frameworks.

6.1.2 Challenges in Incorporating SSR
While incorporating Server-Side Rendering practices into an already-deployed Enterprise
Web Application can bring significant benefits, there are also some challenges to consider:

• Maintenance and Development Efforts: Implementing SSR requires ongoing
maintenance and development efforts. It involves managing server-side rendering

62

6.2 – Selected Frameworks and Technologies

configurations, ensuring compatibility with different libraries, and addressing po-
tential performance bottlenecks. These tasks may require additional resources and
expertise.

• Learning Curve: Adopting SSR often involves learning new concepts and tech-
nologies. Teams may need to familiarize themselves with optimizing rendering per-
formance and troubleshoot any issues arising during the implementation process.

6.1.3 The gradual Adoption of SSR
To overcome the challenges mentioned above in incorporating Server-Side Rendering, one
effective approach is to leverage the benefits of micro-frontends. By adopting a micro-
frontends architecture in modularized applications, teams can gradually introduce SSR to
specific pages or components (modules). This allows for a more controlled and manageable
adoption of SSR without the need for a complete rewrite of the application. It reduces
the challenges and risks associated with a full-scale implementation and allows teams
to gradually incorporate SSR practices as needed. By modularizing the application and
introducing SSR to specific pages or components, teams can incrementally enhance their
application’s performance and user experience while minimizing the maintenance and
development efforts required.

6.2 Selected Frameworks and Technologies
Module Federation is a key requirement for adopting Micro-Frontends, as it allows for
seamless integration and communication between different micro-frontends. To implement
Module Federation, the adoption of Vite.js and Webpack is necessary. These tools provide
the infrastructure and configuration to enable module sharing and dynamic micro-frontend
loading.

Regarding Server-Side Rendering, several frameworks are available that support this
approach. Remix, Next.js, and Modern.js are frameworks that provide built-in support for
SSR. These frameworks offer the necessary tools and libraries to implement SSR effectively,
including handling server-side rendering configurations, optimizing rendering performance,
and enhancing interactivity.

The choice of frameworks for adopting Micro-Frontends and Server-Side Rendering
depends on the bundler used in the project. If Vite.js is utilized as the bundler, it is
recommended to consider using Remix for Server-Side Rendering. Remix is a framework
that provides built-in support for Server-Side Rendering and offers the necessary tools
and libraries to implement SSR effectively. On the other hand, if Webpack is the pre-
ferred bundler, Modern.js should be considered. Modern.js is another framework that
supports Server-Side Rendering and provides the required features to optimize rendering
performance and enhance interactivity. Selecting the appropriate framework based on the
bundler used ensures compatibility and seamless integration within the project’s develop-
ment environment. Next.js is not a suitable solution, due to limited compatibility with
the concept of module federation, only with Pages Router is it possible to exploit the
Webpack plugin.

63

R&D Outcomes and Thesis Direction

As previously mentioned, is it possible to adopt Vite Module Federation Plugin through
the usage of Vue framework and a research was conducted about the possibilities of inte-
grating remote Vue applications within the main React Project. Although this is possible,
it presents some limitations related to the mandatory use of external libraries to provide
correct handling of Vue components within React. It turns out that the support of Mod-
ule Federation for these libraries is limited and it was not explored further during the
development of the final project.

6.2.1 Implementation
The following chapter concludes the thesis work by presenting a demo project created
to explain the best strategies and the approach to integrate the concepts studied into
a business application. This demo was demonstrated within the company to begin the
process of gradually adopting the technologies in an application already in use by several
customers, in order to bring sustainable benefits that improve its performance.

64

Chapter 7

Demonstration of Integration

This chapter illustrates a demonstration application, designed to blend the concepts cov-
ered during the thesis project and provide the business development team with a solid
representation of the work that can be done thanks to this research.

7.1 Project Overview

7.1.1 Introduction
The project is centered around a main React application acting as host application. React
is utilized without additional frameworks to align closely with the current initial situation
of the company application.

In fact, this allows to gradually restructure the central application already distributed.
This is done by modularizing the main application via micro frontends and consist of
moving the modules considered at least semi-independent within separate remote appli-
cations. The process can be done one step at a time for each module, keeping the main
application running; actually, it is sufficient to configure the remote modules at the same
time as they are moved and import them in the main application.

The Benefit of Modularization

The approach is especially useful, given that the web application is sold to different cus-
tomers (other companies), who may only need certain features offered by that application.

A monolithic application would require an effort on the part of developers to modify
the code according to customer needs, increasing the complexity of project management.
In fact, it would be necessary to maintain separate repositories and codebases for each
customer, leading to possible problems of inconsistency, dependency management or errors
related to incorrect code modifications. Instead, this would not be a problem with micro
frontends, as the development team would only need to adjust the configuration of remote
modules from the host application and remove remote apps that implement unwanted or
unnecessary functionality.

65

Demonstration of Integration

7.1.2 Technology Stack
This section provides an overview of the main technologies and libraries used in the project,
including:

• Typescript: A statically typed superset of JavaScript that enhances code maintain-
ability and scalability.

• Vite Bundler : A next-generation frontend tooling that leverages native ES module
support to provide fast build times.

• Vite Module Federation Plugin: A plugin from Vite that enables module federa-
tion, facilitating the integration and communication of micro frontends within the
application architecture.

• React: JavaScript library for building user interfaces, used as the foundation for the
host and remote applications.

• Carbon Design System for React: A React implementation of the Carbon Design
System, providing consistent UI components for the application.

• Recoil: A state management library for React applications, used for managing ap-
plication state across components.

• Sass: A CSS preprocessor that extends CSS with features like variables, mixins, and
nesting, used for styling the application.

• Tailwind: A utility-first CSS framework that provides pre-built styles and encourages
composing designs using small, single-purpose classes.

• PostCSS : A tool for transforming CSS with JavaScript plugins, enabling various
tasks like autoprefixing, minification, and syntax enhancements.

• Autoprefixer : A PostCSS plugin that automatically adds vendor prefixes to CSS
rules, ensuring compatibility across different browsers.

The decision to utilise these tools was based on the technology stack employed within
aizoOn applications, with the aim of aligning with the actual use case.

7.2 Project Structure
The overall structure consists of four separate applications. As mentioned, there is a main
application, host, while the other remote micro-apps offer different features that are used
within the host application.

The different applications are illustrated below, starting with config-app, an ap-
plication that offers configuration functionality for the entire project. Afterwards, the
main host-app application and the various remote micro-apps are presented, tables-app,
datatable-app, which offer simple functions to demonstrate the functioning of concepts,
methodologies and tools designed to be useful for application in the company.

66

7.2 – Project Structure

An important aspect is how these remote applications are imported and integrated in
the host app. As discussed, it is possible to perform static and dynamic imports with
Vite Module Federation Plugin and in this project both strategies are implemented to
illustrate the differences.

7.2.1 config-app
It’s a React application, bundled using Vite. Through module federation the application
exposes elements for authentication and configuration. Below are presented the modules
exposed by this remote application.

configuration

It contains a method named getCompanyConfiguration which reads and returns the
content of the configuration file accordingly to the company name provided (defined with
login). This file, called configuration.json, provides information about customer com-
panies using the application; in particular it specifies, for each company, which remote
applications and which modules within the remote they have access to. The information
about each remote app concerns remote name, remote entry point file name, name of the
different modules of that remote that the given company has access to (in fact a remote
app can expose multiple modules and a company may have access only to a sub set of
them), lastly also the address from which to load the entry point file is provided. The
figure 7.1 shows an example of the file contents.

Figure 7.1. configuration.json

It is important to note that this approach is implemented only to show in a simple way
how this method allows a dynamic and flexible configuration of remotes: the developer

67

Demonstration of Integration

team can modify this file by adding or removing remote applications and exposed modules
without needing to manipulate the code. When this is integrated into the company project,
a better solution will be implemented than using a JSON file that takes into account the
security and organization aspects that have not been the subject of in-depth studies in
this demo.

Remote

This is a file declaring a custom Typescript type used to provide type safety when manip-
ulating data coming from configuration method. In fact, the content of the file shown
in figure 7.1 can be described as a collection of keys representing companies name whose
associated value is an array of Remote objects.

LoginComponent

This module is a React element that provide an interface, implemented using components
from Carbon library, to perform authentication by selecting the company and the user
role. As said selecting a company allows to have access to different modules according to
the configuration file. Additionally also selecting the type of user role(for example Admin,
User) allows to perform different actions inside the project.

Also for this case the authentication process is simplified, no password or verification
system is implemented as it is not fundamental for the study conducted.

The interesting feature implemented in this component is that it receives as props two
methods that respectively takes the values of the selected company and user role; so the
logic for providing the authentication in the entire project is handled outside the remote
component within the main application, providing flexibility in the implementation.

atoms and selectors

These two modules are two files containing, the first one the Recoil atoms for the company
name, the user role and the configuration, the latter a recoil selector that brings together
all the three atoms information and returns them. The company and role atoms are set
during login while the configuration value is the content of the configuration JSON file,
according to the selected company.

These modules are used to provide state management in the entire project, providing
consistency and up to date data.

Declaring and configuring atoms in the host app and share them to other remote appli-
cations could be seen as a more simple solution, but it may lead to inconsistency problems
or race conditions while accessing them. So the approach of declaring components in re-
mote micro-app, as implemented here, has emerged as more suitable and effective.

7.2.2 tables-app
This remote application provide modules with module federation that are implemented
to demonstrate the possibilities that this technology offers for sharing React components.

68

7.2 – Project Structure

DynamicTable

This module is a React Component, created to represent a table using elements from the
Carbon React library. It is a dynamic table in the sense that it receives as a parameter
a "data" object containing the data to be represented within the table whose structure
is composed of an array of objects of the same type not known a beforehand. In fact, it
reads the fields key and create the table header accordingly, allowing to represent different
types of data without modifying the code.

This is a simple case showcasing how it is possible to use a component from a remote
application to represent data coming from a different application.

DataTable

Similar to the previous, also this module is a React Component that uses Carbon Re-
act library to represent a table. In this case the values are fetched internally from an
asynchronous api within the remote application. So the remote application exposes this
module while keeping the logic for data loading, providing to the host application the
table element without the app being aware of the internal workings.

So differently from the previous case it demonstrates how it is possible to share a
completely independent element.

api

This module is a file containing an api function used to asynchronously fetch data. The
method creates and resolves a Promise to fetch data while handling errors and return the
data as a JSON object.

It demonstrates how it is possible to share methods other than React Components.
This function can be used in the host application providing an await mechanism as a
traditional asynchronous api.

It is possible to combine the use of data loaded from this api with the element provided
by the DynamicTable module.

7.2.3 datatable-app
This remote application is similar to the tables-app and it was created to demonstrate
how to use and share styling properties from a remote component.

DataTable

This module is the only one exposed by the application. Basically it is a React Component
copied from the DataTable component of the tables-app remote with the difference that
Tailwind styling has been added.

As explained in the theoretical part, in order to use Tailwind correctly in a remote
component shared with the main application, it is necessary to provide a configuration
for PostCss and Autoprefixer. The advantage of this is that it is not necessary to share
also the library and the host application, as in this case, may not even use it. In fact the

69

Demonstration of Integration

host app doesn’t have Tailwind among its dependencies but the remote component, when
imported in the host app, is correctly rendered with the applied CSS styles defined with
Tailwind.

7.2.4 host-app
The React host application acts as a container, connecting together the functionalities
provided by the other remote micro applications. The main features are the structure
provided by React Router for navigation and how the remote modules are actually im-
ported.

Routes and Navigation

Through the use of React Router it is possible to navigate between different pages and
interact with the application and all the remotes illustrated above.

• /: the route shows different pages depending on the authentication. If the user
is not authenticate it shows the login page, which imports the login component
interface from the remote and save the selected credentials inside localStorage just
for simplicity. If the user is authenticated it shows the home page. This page is a
simple landing page with a layout structure that is common to the page of other
routes. The layout consists of a top bar and a left bar menu. The top bar allows to
navigate to home page and perform logout, while the menu provides navigation to
the other routes.
The interesting aspect of this page is related to the left bar menu, which items
depends on the company credentials selected from the login process. In fact, after
login is performed the application knows, from the configuration file, which remotes
and modules the user has access to. So the navigation menu provides link items
accordingly to the content of the configuration file. The figures 7.2 and 7.3 below
show the differences within the menu for different companies.

Figure 7.2. Home Page AizoOn Login Figure 7.3. Home Page Politecnico Login

70

7.3 – Demo Project Shortcomings

• /tables/:module: this route is accessible only if the user is authenticated. In fact,
the user can navigate here by clicking on one of the items of the Tables drop down
menu in the left panel. The parameter module depends on the clicked link of the
menu and it is used to import and load the corresponding module that has to be
shown in the page.
So this route actually map the page to show all the remote tables exposed by
tables-app and datatable-app. It also handles eventual errors when loading the
remote modules without compromising the functioning of the application.

• /ssr: this route was implemented just to demonstrate the functionalities of React
Router V6, implementing the loader for the route. Here the remote api module
is loaded to fetch data inside the route loader; then the shown page imports the
DynamicTable component from the remote to render the fetched data.

Remotes Imports

Previously in section 3.2.5, it is explained how dynamic imports work and how to imple-
ment this approach for remote modules. In the presented demo project, dynamic imports
are an interesting concept. In fact following this approach allows to avoid writing the re-
motes configuration in the vite.config.js file of the host app: it is sufficient to modify
the configuration.json file in the configuration-app remote application.

Another important aspect is that the host application loads the remote entry point file
from a given address. During the development phase the applications run locally within
localhost, so each remote application can expose the remote entry file on different ports.
In a more complex scenario that involves multiple remote micro application, maintaining
all of them running at the same time may raise performance issues, even more problematic
when the project is bundled and distributed in production mode.

This aspect can be improved, thus avoiding having as many separate servers running
as there are remote applications, by moving the bundled folder generated in output from
the remote application build phase inside the one generated by the host application.
Additionally it is necessary to modify the address from which to load the remote entry
file to match the path.

As it is shown in the previous section, in figure 7.1 both approaches can be maintained
concurrently for different remote micro applications, specifying in the configuration file if
the remote application is running on a certain address exposing the entry file, or it can
be found in the bundled folder.

7.3 Demo Project Shortcomings
Some concepts studied during the initial phases of this thesis work were not implemented
within the demonstrative project. The main absence is related to a framework that pro-
vides server rendering.

The Remix framework was not integrated inside the project because, even if the im-
plementation of Vite and module federation is feasible, the aspect related to server side

71

Demonstration of Integration

rendering, such as the loader can not be shared within the exposed module. The main
problem is related to the fact that Vite Module Federation plugin works only from the
client side, so it is not compatible with the server rendering provided by the framework.

This emerged during the development phase and after some studies and insights an
alternative solution was thought of. A possible strategy is the one that uses Remix to
implement the main host application, with this approach is possible to provide server side
rendering from the main app while loading components from remote micro applications.
The drawback of this approach is that it requires a complete redesign of the current
application abandoning the modularization strategy, that is a fundamental aspect related
to micro frontends architecture implementation. Ultimately, this solution requires an
unsustainable effort and was therefore not considered valid.

The biggest limitation that emerged from the development of this study is related to
the incompatibility of the Module Federation plugin with server rendering. In fact, the
Vite plugin works at runtime, only on the client side. This means that __federation__
methods are not available server-side, so a remote component cannot be exposed with a
server rendering strategy. This limited even more the possibilities of integrating different
rendering strategies within a micro frontends architecture.

With the current state of offered services, more priority was given to the micro fron-
tend approach that can actively provide advantages to the development and usage of the
application.

Furthermore, the integration of other frameworks, such as Vue, was tested, but the
impossibility of integrating these frameworks in a "native" way emerged; it is necessary to
rely on libraries for the conversion of exported components, leading to lower performance
regarding loading and user experience.

72

Chapter 8

Conclusions

With the development of the demonstration project, this thesis work comes to an end.
But the creation of the demo is only the first step of a long term path that involves the
adoption of the explained concepts within company applications.

8.1 Outcomes
8.1.1 Micro Frontend Architecture
Among all the analyzed and studied approach, implementing Micro Frontend comes out
as a widespread solution that pairs well with the microservices backend architecture. It
is possible to follow different approaches and the use of Module Federation was found to
be the most suitable and closest to company needs and requirements.

The choice between Vite and Webpack plugins for Module Federation depends on
several factors, for our case the choice was guided by having to start from an already
existing application, which uses Vite as a bundling tool.

Although the Vite Module Federation plugin is newer and still waiting for some im-
provements and expansions compared to the plugin offered by Webpack, it can be utilized
in production ready application and the strategy of gradually redesign the company ap-
plication to implement the architecture is the optimal approach.

8.1.2 Server Side Rendering
The initial focus was on React Server Components as it seemed they could be a revolu-
tionary technology capable of revolutionizing the rendering paradigm. After an in-depth
study, however, it emerged that this technology is poorly developed and integrated and,
at present, not ready to be used in a corporate context.

The integration of frameworks that implements server rendering strategies turned out
to be cumbersome and complex, while leading to limitations issues and concerns with
modularity and scalability of applications. In particular, the integration of frameworks
such as Next and Remix within a micro frontend architecture did not bring satisfactory
results, thus leading to having to make a choice on which aspect to focus on. Thus giving

73

Conclusions

priority to the architectural aspect of micro frontend integration and the advantages that
this approach provides.

8.2 Future Works
As said, the conducted research culminated with the realization of the demonstration
project with the objective to show the features, the advantages and the drawbacks offered
by the micro frontend approach and by the different rendering techniques, in order to
proceed with the best strategy for the company application.

From this point, the work will continue by putting what has been studied into practice.
We will proceed with the modularization of an already deployed application and with the
gradual adoption of a micro frontend architecture.

At the same time, we stay up-to-date with advancements in server rendering tech-
nologies. We are particularly interested in the upcoming release of React 19 [8], which
may introduce significant improvements in the area of React Server Components, thus
providing a possibility of integrating this powerful tool at a later time.

74

Bibliography

[1] Gervais Yao Amoah. Exploring rendering strategies, 2023. URL https://dev.to/
gervaisamoah/exploring-rendering-strategies-csr-ssr-ssg-and-isr-p5a.

[2] Bhargav Bachina. 7 different ways to implement micro-frontends with
react, 2020. URL https://medium.com/bb-tutorials-and-thoughts/
7-different-ways-to-implement-micro-frontends-with-react-907b5e262230.

[3] Nitsan Cohen. How to share states between react micro-frontends
using module-federation?, 2023. URL https://blog.bitsrc.io/
how-to-share-state-between-react-micro-frontends-using-module-federation-f3762996c208.

[4] Hiren Dhaduk. Micro frontend architecture: The newest approach to
building scalable frontend, 2023. URL https://www.simform.com/blog/
micro-frontend-architecture/#:~:text=Micro-frontend%20architecture%
20is%20a%20strategy%20in%20which%20the,experience%20and%20is%20easy%
20to%20modify%20and%20scale.

[5] Ryan Florence. React server components and remix, 2021. URL https://remix.
run/blog/react-server-components.

[6] Tejas Kumar. React server components from scratch, 2023. URL https://github.
com/TejasQ/react-server-components-from-scratch/tree/main.

[7] Deepak Maheshwari. Introduction to micro frontend archi-
tecture, 2021. URL https://medium.com/nerd-for-tech/
introduction-to-micro-frontend-architecture-13f71f8333b.

[8] Meta. React 19.0.0, 2024. URL https://github.com/facebook/react/milestone/
40.

[9] Modern.js. Modern.js documentation, 2024. URL https://modernjs.dev/en/
guides/get-started/introduction.

[10] Module Federation. Webpack module federation documentation, 2023. URL https:
//module-federation.io/docs/en/mf-docs/0.2/getting-started/.

[11] Next.js. Next.js documentation, 2024. URL https://nextjs.org/docs.

75

https://dev.to/gervaisamoah/exploring-rendering-strategies-csr-ssr-ssg-and-isr-p5a
https://dev.to/gervaisamoah/exploring-rendering-strategies-csr-ssr-ssg-and-isr-p5a
https://medium.com/bb-tutorials-and-thoughts/7-different-ways-to-implement-micro-frontends-with-react-907b5e262230
https://medium.com/bb-tutorials-and-thoughts/7-different-ways-to-implement-micro-frontends-with-react-907b5e262230
https://blog.bitsrc.io/how-to-share-state-between-react-micro-frontends-using-module-federation-f3762996c208
https://blog.bitsrc.io/how-to-share-state-between-react-micro-frontends-using-module-federation-f3762996c208
https://www.simform.com/blog/micro-frontend-architecture/#:~:text=Micro-frontend%20architecture%20is%20a%20strategy%20in%20which%20the,experience%20and%20is%20easy%20to%20modify%20and%20scale
https://www.simform.com/blog/micro-frontend-architecture/#:~:text=Micro-frontend%20architecture%20is%20a%20strategy%20in%20which%20the,experience%20and%20is%20easy%20to%20modify%20and%20scale
https://www.simform.com/blog/micro-frontend-architecture/#:~:text=Micro-frontend%20architecture%20is%20a%20strategy%20in%20which%20the,experience%20and%20is%20easy%20to%20modify%20and%20scale
https://www.simform.com/blog/micro-frontend-architecture/#:~:text=Micro-frontend%20architecture%20is%20a%20strategy%20in%20which%20the,experience%20and%20is%20easy%20to%20modify%20and%20scale
https://remix.run/blog/react-server-components
https://remix.run/blog/react-server-components
https://github.com/TejasQ/react-server-components-from-scratch/tree/main
https://github.com/TejasQ/react-server-components-from-scratch/tree/main
https://medium.com/nerd-for-tech/introduction-to-micro-frontend-architecture-13f71f8333b
https://medium.com/nerd-for-tech/introduction-to-micro-frontend-architecture-13f71f8333b
https://github.com/facebook/react/milestone/40
https://github.com/facebook/react/milestone/40
https://modernjs.dev/en/guides/get-started/introduction
https://modernjs.dev/en/guides/get-started/introduction
https://module-federation.io/docs/en/mf-docs/0.2/getting-started/
https://module-federation.io/docs/en/mf-docs/0.2/getting-started/
https://nextjs.org/docs

BIBLIOGRAPHY

[12] Next.js. Next.js documentation, 2024. URL https://nextjs.org/docs.

[13] Ricardo Nunez. The problems that react server components solve, 2023. URL https:
//servercomponents.dev/the-problems-rscs-solve.

[14] Oskari. 4 ways to use dynamic remotes in module federation, 2022. URL https:
//oskari.io/blog/dynamic-remotes-module-federation.

[15] React Dev Team. React canaries: Enabling incremental feature roll-
out, 2023. URL https://react.dev/blog/2023/05/03/react-canaries#
example-react-server-components.

[16] React Dev Team. React server components, 2023. URL https://react.dev/
blog/2023/03/22/react-labs-what-we-have-been-working-on-march-2023#
react-server-components.

[17] Remix.run. Remix.run documentation, 2024. URL https://remix.run/docs/en/
main.

[18] Remix.run. Remix.run documentation, 2024. URL https://remix.run/docs/en/
main.

[19] Jonathan Saring. 4 practical ways to build micro frontends, 2020. URL https://
codeburst.io/4-practical-ways-to-build-micro-frontends-4dc4f0b8a921.

[20] Single-Spa. Single-spa documentation, 2024. URL https://single-spa.js.org/
docs/recommended-setup/#ui-state.

[21] Vite. Vite module federation documentation, 2023. URL https://github.com/
originjs/vite-plugin-federation.

[22] Vite. Vite documentation, 2024. URL https://vitejs.dev/guide/.

[23] Vue.js. Vue.js documentation, 2024. URL https://vuejs.org/guide/
introduction.html.

[24] Philip Walton. Web vitals, 2024. URL https://web.dev/articles/vitals.

[25] Webpack. Webpack documentation, 2024. URL https://webpack.js.org/
concepts/.

[26] Jiannan Zhang. Feat: dynamic loading of remote support and test demo, 2023. URL
https://github.com/originjs/vite-plugin-federation/pull/481.

76

https://nextjs.org/docs
https://servercomponents.dev/the-problems-rscs-solve
https://servercomponents.dev/the-problems-rscs-solve
https://oskari.io/blog/dynamic-remotes-module-federation
https://oskari.io/blog/dynamic-remotes-module-federation
https://react.dev/blog/2023/05/03/react-canaries#example-react-server-components
https://react.dev/blog/2023/05/03/react-canaries#example-react-server-components
https://react.dev/blog/2023/03/22/react-labs-what-we-have-been-working-on-march-2023#react-server-components
https://react.dev/blog/2023/03/22/react-labs-what-we-have-been-working-on-march-2023#react-server-components
https://react.dev/blog/2023/03/22/react-labs-what-we-have-been-working-on-march-2023#react-server-components
https://remix.run/docs/en/main
https://remix.run/docs/en/main
https://remix.run/docs/en/main
https://remix.run/docs/en/main
https://codeburst.io/4-practical-ways-to-build-micro-frontends-4dc4f0b8a921
https://codeburst.io/4-practical-ways-to-build-micro-frontends-4dc4f0b8a921
https://single-spa.js.org/docs/recommended-setup/#ui-state
https://single-spa.js.org/docs/recommended-setup/#ui-state
https://github.com/originjs/vite-plugin-federation
https://github.com/originjs/vite-plugin-federation
https://vitejs.dev/guide/
https://vuejs.org/guide/introduction.html
https://vuejs.org/guide/introduction.html
https://web.dev/articles/vitals
https://webpack.js.org/concepts/
https://webpack.js.org/concepts/
https://github.com/originjs/vite-plugin-federation/pull/481

	List of Figures
	Introduction
	Context
	Objectives and purposes
	Thesis Structure
	The Company

	I Micro Frontend Architecture
	Introduction to the concept
	Web Architectures
	Monolithic Architecture
	Microservices in the Backend
	Micro Frontend Architecture

	Advantages and Challenges in Micro Frontend Architecture
	Benefits of Micro Frontends
	Drawbacks of Micro Frontends

	Approaches and Tools for Development
	Strategies and Usage Patterns
	Composition
	Tools and Patterns

	Exploring Technologies for Runtime Composition
	Module Federation
	Webpack
	Webpack Dynamic Remotes
	Vite
	Vite Dynamic Remotes
	Frameworks

	Challenges and Solutions Encountered
	TypeScript
	CSS Styling
	State Management and Communication
	Vite Dynamic Configuration

	II React Server Components
	Introduction to the concept
	Rendering
	Client-Side Rendering
	Static Site Generation
	Server Side Rendering
	Incremental Static Regeneration
	React Server Components

	The Problems RSCs Solve
	Data Fetching
	Composable Business Logic
	Bundle Sizes

	State of Literature
	React Canaries Releases

	Approaches and Tools for Development
	Next.js
	Pages Router
	App Router
	Rendering and Server Components

	Remix.run
	Routing
	Rendering and Server Components

	Other Frameworks
	Modern.js
	Vue.js

	RSCs from Foundations
	Routing
	Component Rendering and Hydratation

	III Integration in Enterprise Application
	R&D Outcomes and Thesis Direction
	Overview of Research Outcomes
	R&D Outcomes
	Challenges in Incorporating SSR
	The gradual Adoption of SSR

	Selected Frameworks and Technologies
	Implementation

	Demonstration of Integration
	Project Overview
	Introduction
	Technology Stack

	Project Structure
	config-app
	tables-app
	datatable-app
	host-app

	Demo Project Shortcomings

	Conclusions
	Outcomes
	Micro Frontend Architecture
	Server Side Rendering

	Future Works

