
POLITECNICO DI TORINO

Master’s Degree Course in Computer Engineering

Master’s Degree Thesis

Firmware Development and Certification
for IoT Devices

Supervisors

Prof. Luca ARDITO

Dr. Michele VALSESIA

Candidate

Giuseppe Marco BIANCO

April 2024

Abstract

The Internet of Things (IoT) presents itself as an innovative technology that
facilitates the interconnection of devices and physical systems via the Internet,
allowing the exchange of data and the execution of automated actions. This thesis
aims to examine the large number of challenges a developer faces when developing
firmware for IoT devices, as well as the essential criteria for their certification.

The introduction outlines the fundamental significance of IoT in the contemporary
technological landscape, highlighting its crucial role in establishing a digital ecosys-
tem in which everyday objects acquire intelligence and the ability to communicate
fluidly. We explore the evolution of IoT, from its embryonic phase to its practical
applications in various fields, with particular attention to its impact on smart home
environments.

From a developer’s perspective, developing firmware for IoT devices presents unique
challenges:

• Ensuring code robustness,

• Managing its complexity,

• Resolving security issues.

Therefore, ci-generate is introduced as a tool aimed at streamlining the process of
establishing Continuous Integration (CI) pipelines that perform:

• Code Formatting

• Code Linting

• Static Code Analysis

• Code Coverage Analysis

• Dependency Management

• Unsafe Code Checks

In addition, to ensure greater security of the binary running in a smart home, the
firmware developed for IoT devices must undergo a certification process. Which
requires a thorough analysis of the firmware binaries, starting from the identification
of basic information, such as found APIs and architectural details, up to the detailed
examination of specific characteristics, such as the generation of a syscall flow for
each API. To this end, we have introduced the manifest-producer, a tool designed
to extract the essential information needed for the certification process, culminating
in the production of a detailed JSON manifest that provides a representation of
the characteristics identified during the analysis.

The implementation of the ci-generate tool has reduced the effort to create a
Continuous Integration pipeline for the manifest-producer tool. Additionally, a
thorough analysis was conducted on the performance of the latter, including an
analysis on real projects. This assessment focused primarily on factors such as
execution speed and memory consumption, in order to ensure the efficiency and
effectiveness of the tool in practical contexts. It is worth noting that both tools
have been written in Rust, a language known for its performance and reliability.

ii

Acknowledgements

“Desidero esprimere la mia profonda gratitudine alla mia famiglia, una presenza
fondamentale nel mio percorso accademico. Vi ringrazio sinceramente per la vostra
comprensione profonda e discreta, per aver rispettato i miei spazi senza aggiungere
ulteriori pressioni al percorso della mia formazione. Il vostro sostegno è stato un

faro costante, illuminando le mie scelte e le mie sfide. La vostra presenza e
saggezza hanno arricchito straordinariamente questo viaggio, conferendogli un

valore unico e prezioso. Con immensa gratitudine, dedico questo traguardo a voi.”
Giuseppe

ii

Contents

List of Tables vi

List of Figures vii

1 Introduction 1

2 Introduction to the IoT 3
2.1 Definitions . 3

2.1.1 History and evolution . 4
2.1.2 IoT devices . 6

2.2 Smart Home integration . 8
2.2.1 Concept and features . 9
2.2.2 Impacts on daily life . 10

2.3 Development and Security in IoT Devices 13
2.3.1 Continuous Integration . 13
2.3.2 IoT Firmware . 14
2.3.3 Binary Analysis . 15

2.4 Final Remarks . 20

3 A tool for Continuous Integration 21
3.1 Introduction . 21

3.1.1 CI benefits . 21
3.2 ci-generate tool . 22

3.2.1 Rust language . 23
3.2.2 Features and purpose . 24
3.2.3 Workflow . 25

3.3 Code refactoring . 26
3.3.1 Objectives . 27
3.3.2 Path validation function . 30
3.3.3 Cargo feature . 32

iii

3.4 Tests implementation . 33
3.4.1 Unit tests . 34
3.4.2 Property testing . 36
3.4.3 Integration tests . 37
3.4.4 Observations . 39

3.5 Final Remarks . 41

4 A dummy firmware for IoT 42
4.1 Introduction . 42

4.1.1 Purpose of dummy firmware 43
4.1.2 Importance of different programming languages 44

4.2 Design and Structure . 44
4.2.1 Architecture . 45
4.2.2 Compilation and Deployment 47

4.3 Dummy Firmware Variants . 48
4.3.1 External dependencies management 49
4.3.2 Stripped binaries . 49
4.3.3 Non-compliant API behaviour 50

4.4 Final Remarks . 51

5 A tool for firmware certification 52
5.1 Introduction . 52

5.1.1 ELF binary analysis . 53
5.1.2 Preliminary approaches . 55
5.1.3 Definitive analysis . 57

5.2 How manifest-producer works . 58
5.2.1 API Detection . 58
5.2.2 Behavioural analysis . 59
5.2.3 Observations . 61

5.3 Manifest Generation . 62
5.3.1 Manifest for basic information 62
5.3.2 Manifest for syscall flow . 63
5.3.3 Manifest for features . 64

5.4 Structure . 65
5.4.1 Modular approach . 65
5.4.2 Continuous Integration . 66
5.4.3 Test Development . 67

5.5 Final Remarks . 68

6 Performance analysis 69
6.1 Introduction . 69

iv

6.2 Data Analysis . 71
6.2.1 Time Efficiency . 71
6.2.2 Memory Evaluation . 73
6.2.3 Programming language comparisons 77

6.3 Final Remarks . 80

7 Conclusions 81
7.1 Future developments . 82

Bibliography 83

v

List of Tables

6.1 Allocation and memory peak data of binaries written in C. 75
6.2 Allocation and Memory Peak data of binaries written in C++. . . . 76
6.3 Allocation and Memory Peak data of binaries written in Rust. . . . 77

vi

List of Figures

2.1 IoT ecosystem. 4
2.2 Smart Home environment. 9
2.3 Continuous Integration steps . 14

3.1 libdevice-C project with its build configuration files 25
3.2 Contents of the tests folder . 39
3.3 Comparison between different recorded versions of Yarn 40

4.1 A smart home IoT architecture system. 42
4.2 Example of dummy firmware workflow 50

5.1 Linux dominates the scene with 71.8% of users preferring it. 54
5.2 Example of function name extraction. 61

6.1 Comparison between binaries written in C. 71
6.2 Comparison between binaries written in C++. 72
6.3 Comparison between binaries written in Rust. 73
6.4 C binaries allocations. 74
6.5 C++ binaries allocations. 75
6.6 Rust binaries allocations. 76
6.7 Comparison between libdevice variants 78
6.8 Comparison between real programs 78
6.9 Memory usage comparison. 79

vii

Chapter 1

Introduction

In the context of firmware development for IoT devices, developers often face
complex challenges related to code robustness and system security. These challenges
may include managing code complexity, handling changes and versions, as well as
implementing effective testing procedures to ensure firmware stability and security.
To address these challenges, we introduce ci-generate: a tool designed to simplify
Continuous Integration in software development workflows. Ci-generate facilitates
code optimization and rapid error detection, thus helping to improve the overall
quality of the firmware.
Furthermore, the important role of firmware certification in ensuring safety and
reliability standards is highlighted. In this regard, the manifest-producer has
been developed, a tool designed to extract and encapsulate the fundamental
characteristics of the firmware, to simplify the certification process. In this context,
we delve into the role of binaries in the ELF format. These files represent an
essential element in the development and analysis process of firmware for IoT
devices, as they contain the executable instructions and data necessary to perform
a consistent and comprehensive certification.

The thesis is structured in the following chapters:

• Introduction to the Internet of Things: In this chapter, we explore the
current landscape of the Internet of Things, with a particular focus on the
evolution of technology within the smart home environment, as well as key
concepts related to the development and security of firmware for IoT devices.

• A tool for Continuous Integration: In this chapter, we explore the
paradigm of Continuous Integration as a fundamental approach to secure and
efficient software development. Specifically, we delve into the capabilities of
the ci-generate tool. Through the process of refactoring its code and adding a

1

Introduction

test suite, we examine in detail how ci-generate can contribute to improving
the quality and reliability of the developed software.

• A dummy firmware for IoT: In this chapter, we introduce a dummy
firmware implementation, designed to simulate the behaviours of IoT devices
and address challenges such as:

– Significance of developing firmware in multiple programming languages.

– Address challenges in firmware development and testing.

The chapter also describes the design and structure of the dummy firmware,
including its architecture, compilation and deployment processes for each
firmware variant. The main variants are implemented in C, C++ and Rust,
with each of them subject to both static and dynamic compilation. Additionally,
variants with and without debug symbols are generated. Finally, a specific
variant in C is designed to introduce APIs that do not conform to expected
behaviours, to examine as many scenarios as possible for analysis.

• A tool for firmware certification: In this chapter, we explore the approach
to certifying firmware for IoT devices through the development of the manifest-
producer tool. Specifically, we follow the path that led from preliminary
analyses of ELF binaries to the process of identifying parameters useful for
this certification.

• Performance analysis: In this chapter, we analyze the performance of the
manifest-producer tool in evaluating several ELF files, including FFmpeg,
OpenCV and xi-core. Each of the ELF files has been obtained from the
building of the projects considered. Hyperfine and Heaptrack have been used
to measure execution times and memory usage, offering a targeted overview
of the tool’s capabilities.

• Conclusions: In this final chapter, we summarize the key findings obtained
from our research and explore avenues for the development and future devel-
opments of IoT firmware certification through the manifest-producer tool.

2

Chapter 2

Introduction to the IoT

2.1 Definitions
The Internet of Things (IoT) [1] is an emerging technological paradigm based
on the interconnection of physical devices, objects and systems through Internet.
This interconnection facilitates the collection, exchange of data and execution of
automatic actions, helping to create a digital ecosystem (see Figure 2.1) in which
physical objects become intelligent and capable of communicating without direct
human intervention.

In this context, IoT is the key to creating an environment where every device, from
the intelligent light bulb to complex industrial sensors, is equipped with Internet
connectivity and data collection capabilities. This convergence paves the way
for several practical applications, including remote monitoring, home automation,
healthcare, smart agriculture and industry 4.0.

The key definition of IoT is based on extending connectivity and intelligence
to physical devices. This extension is made possible by advanced technologies such
as sensors, actuators, communication networks and cloud computing platforms,
providing sophisticated functionality and constant connectivity. Combining these
elements enables devices to gather data, communicate with each other, and use
that data to make decisions.

However, the objective and concrete aspect of IoT raises important challenges,
especially in terms of security, privacy and data management. Increasing
interconnectedness makes it crucial to address these issues to prevent unauthorized
access, cyber-attacks and privacy violations [2, 3].

3

Introduction to the IoT

Figure 2.1: IoT ecosystem.

To sum up, the Internet of Things represents a milestone in the digital transfor-
mation of the physical world, bringing with it a series of benefits and complex
challenges. Exploring this definition and its fundamental concept provides a solid
starting point for examining the history and development of IoT. It will be in-
teresting to analyze how this technological paradigm has taken shape over time,
with particular attention to the crucial phases that have shaped the current IoT
landscape.

2.1.1 History and evolution
The Internet of Things represents one of the most significant evolutions in the
digital technology field. This sector has deep roots in past technological innovations
and has undergone considerable evolution over the years. In this section, the history
and evolution of the Internet of Things (IoT) will be explored, analyzing the key
that contributed to its rapid diffusion and adoption as a technology.

The discourse surrounding the IoT took root earlier, notably in 1982, when the
concept of a network of intelligent devices was addressed. A noteworthy instance
occurred at Carnegie Mellon University, where a modified Coca-Cola vending
machine became the inaugural ARPANET-connected appliance [4]. Additionally,
the seminal paper on ubiquitous computing by Mark Weiser in 1991, titled The
Computer for the 21st Century, played a pivotal role in shaping the contemporary
vision of IoT [5].

4

Introduction to the IoT

In 1994, Reza Raji expounded upon the IoT concept in IEEE Spectrum, charac-
terizing it as the transmission of small data packets to an extensive network of
nodes, aiming to integrate and automate various facets ranging from household
appliances to entire industrial complexes [6]. However, the true genesis of IoT
can be attributed to the work of pioneers such as Kevin Ashton, who coined the
term Internet of Things in 1999 [7]. Ashton, a researcher at MIT, anticipated the
idea of connecting physical objects to the Internet to improve data collection and
management.

In the early 2000s, with the advancement of wireless networks and sensor tech-
nologies, experimental IoT designs and applications began to emerge. Using RFID
(Radio-Frequency Identification) and wearable sensors was a significant step towards
the practical realization of IoT [8, 9]. Projects such as Ambient Intelligence and
Smart Home began to demonstrate the potential of connecting everyday objects to
a network [10, 11].

The past decade has seen an impressive surge in the Internet of Things (IoT)
industry, with 2010 to 2020 being a particularly notable period. Thanks to the
drop in sensor expenses, the increase in computing capabilities, and the emergence
of specialized IoT networks, connecting more devices than ever has become a reality.
A wide range of sectors, such as healthcare [12, 13], agriculture [14], manufacturing
and logistics [15], have embraced IoT technology on a grand scale to optimize their
operational efficiency and streamline their data management.

As the Internet of Things (IoT) accelerates, significant security, privacy and inter-
operability challenges emerge. Security is the primary concern in the process of
adopting this technology, as there is anxiety that its rapid development will occur
without thoughtful consideration of the complex security challenges involved and
any necessary regulatory changes [16]. The rapid expansion of the IoT has facili-
tated the connection of billions of devices to the network, but has created security
challenges attributable to the vast number of connected devices and limitations
of communications security technology [17, 18]. The widespread diffusion of the
Internet of Things (IoT) has generated an urgent need for standardization to avoid
a stall and to aim at ensuring consistency in communication protocols and security
requirements [19, 20]. The evolution of the IoT, with the integration of emerging
technologies such as artificial intelligence and 5G, has outlined sophisticated appli-
cations such as smart cities and Industry 4.0, anticipating future expansion into new
sectors [19]. However, rapid development has raised concerns about safety and lack
of regulation, prompting standardization initiatives such as IoTSFW [19]. At the
same time, actors such as the Open Interconnect Consortium and the Connected
Home over IP group emerged, reflecting the need for a collaborative approach to
overcome fragmentation in IoT standards [21, 22].

5

Introduction to the IoT

To sum up, IoT has gone through a remarkable evolution from its conceptual roots
to its current omnipresence in digital society. Its history is marked by technological
advances, overcoming challenges and a continuous commitment to creating an
interconnected and intelligent ecosystem. In the future, IoT continues to represent
a dynamic field of research and development, with the potential to further transform
interactions between the digital and physical worlds.

2.1.2 IoT devices
As detailed by Sharu Bansal and Dilip Kumar in their article [23], the IoT ecosystem
fundamentally relies on crucial components known as IoT devices, which form the
cornerstone of its complex architecture. These devices play a fundamental role
in all layers of the IoT framework. Characterized by limited internal resources,
including storage, memory and computing capacity, IoT devices leverage various
types of memory technologies. The broad classification (Class 0, Class 1, and
Class 2) clarifies the different roles that these devices take on within the IoT
environment, ranging from basic sensing and actuation capabilities to the advanced
capabilities of the single-board computers that support artificial intelligence. The
following sections will delve into the classification and exemplification of these
devices, providing a comprehensive overview of their significance in shaping the
IoT ecosystem landscape.

Main categories

• Monitoring devices and sensors: This category of devices includes instru-
ments designed to collect environmental data or specific parameters, such as
temperature, humidity, atmospheric pressure and motion sensors. They play a
crucial role in applications such as smart agriculture, energy management and
environmental surveillance. These sensors, supported by academic research,
contribute significantly to the advancement of key sectors, providing essential
data for informed decisions and efficient implementations in contemporary
challenges related to sustainability and resource optimization [24, 25].

• Wearable devices: This category includes wearable devices such as smart-
watches, fitness trackers and smart glasses, which collect data on physical
activities, health and other personal parameters. This data collection plays a
fundamental role in monitoring individual well-being. The use of such devices
provides a detailed picture of daily habits, offering significant opportunities to
improve health management and promote an active lifestyle [26, 27].

• Smart Home devices: These devices, known as home automation devices,
are designed to optimize and simplify daily operations within homes. These

6

Introduction to the IoT

include smart thermostats, connected lamps, smart appliances and security
cameras. Their interconnection allows users to manage and monitor them re-
motely through dedicated applications or voice commands. This technological
integration not only increases energy efficiency and safety, but also represents
a significant step towards the implementation of smart homes, in tune with
the concept of the Internet of Things (IoT) [28, 29].

• Industrial IoT devices: Industries such as manufacturing, energy, and
transportation use IoT devices to optimize operations. Machine monitoring
sensors, logistics tracking devices and predictive maintenance systems fall into
this category, helping to improve efficiency and reduce operating costs [30, 31,
32].

• Connected Vehicles: Vehicles such as cars, drones and other forms of
transportation are increasingly integrating IoT technologies to enhance safety,
navigation, and the driving experience. Through the connection, these vehicles
can exchange data with each other and with the road infrastructure, optimizing
traffic flow and preventing accidents. This implementation of connected devices
not only promotes greater efficiency in the transportation sector but also offers
fertile ground for academic research in the field of intelligent vehicular networks
and the Internet of Things applied to mobility [33].

IoT Devices examples

• Smart thermostat:1 This device embodies the transformative potential of
smart home devices, showcasing how IoT enhances daily living experiences.
Its ability to autonomously adjust to user preferences represents a tangible
outcome of the interplay between connectivity, data analytics, and intelligent
decision-making – key elements that define the broader landscape of the
Internet of Things in smart homes.

• Activity and health tracker:2 This wearable device, belonging to the
category of connected objects, not only actively monitors physical activity,
sleep quality and other health-related parameters through advanced sensors
such as accelerometers and heart monitors, but also uses intelligent algorithms
to analyze the collected data. Thanks to wireless connectivity, users can syn-
chronize information on a dedicated app or cloud platform, obtaining detailed

1Smart thermostats are Wi-Fi thermostats responsible for controlling the heating, ventilation,
and air conditioning inside the home.

2An activity tracker involves the practice of measuring and collecting data on an individual’s
physical activity to keep track and maintain documentation regarding their health.

7

https://en.wikipedia.org/wiki/Smart_thermostat
https://en.wikipedia.org/wiki/Activity_tracker

Introduction to the IoT

analyses of their sleep habits and physical activity levels. Furthermore, the
device encourages active user engagement by providing personalized sugges-
tions to improve well-being, thus highlighting the active and interactive role
of wearables in promoting a healthy lifestyle.

• Smart agriculture sensors:3 These advanced devices allow detailed control
of soil conditions, optimizing irrigation practices and driving significant yield
increases in agricultural sectors. The ability to collect data in real time and
adapt agricultural practices to specific environmental conditions contributes
significantly to operational efficiency and sustainability in the agricultural
sector.

• Autonomous car:4 These vehicles use an advanced network of sensors and
cameras to perceive their surroundings, analyzing visual and audio data both
inside and outside the vehicle. The control system interprets this information
to understand the context and subsequently makes autonomous navigation
decisions, considering the route, road conditions, traffic signs and obstacles.

• Smart grid sensors: In the energy sector, they play a crucial role, constantly
monitoring the electricity grid. This constant surveillance not only allows for
more efficient management of energy resources but also the timely identification
and resolution of any faults. The integration of these sensors contributes
significantly to operational optimization, reflecting the broad scope of impact
of IoT in transforming key industries.

In summary, the Internet of Things (IoT) has rapidly transformed from a conceptual
idea to a ubiquitous reality, impacting diverse industries. The proliferation of IoT
devices, ranging from wearables to industrial sensors, highlights the versatility and
potential for optimizing daily activities. However, the accelerated growth of IoT
necessitates a proactive approach to address security, privacy, and interoperabil-
ity challenges, ensuring the continued success and widespread adoption of this
transformative technology.

2.2 Smart Home integration
Contextualization of the Smart Home is configured as the process of integration
and concrete application of the Internet of Things (IoT) within the domestic
environment, aimed at enhancing and optimizing the quality of users’ daily lives.

3Smart agriculture digitally collects, stores, analyzes, and shares electronic data and/or
information in agriculture.

4Autonomous car, is a car that is capable of operating with reduced or no human input.

8

https://en.wikipedia.org/wiki/Digital_agriculture
https://en.wikipedia.org/wiki/Self-driving_car

Introduction to the IoT

This technological convergence, characterized by the interconnection of devices
and systems, takes on a crucial role in transforming living spaces into intelligent
contexts that are responsive to the needs of the inhabitants.

During this analysis, some key sections of this contextualization will be explored,
focusing on the tangible impacts that the synergy between the Internet of Things
(IoT) and the home environment can generate on daily activities. In particular,
how this interconnection facilitates the efficient management of resources, housing
safety, and the personalization of experiences at home will be examined. From an
academic perspective, the dynamics underlying this emerging paradigm will be
outlined, highlighting how the Smart Home can become a significant fulcrum in
the evolution of the way of conceiving and experiencing domestic space.

Security
Cam

SmartLock
Sma

rt

Ove
n

Sma
rt

Frid
ge

Smart
Lamp

Smart
Lamp

Smart
Lamp

Smart
TV

Smart
Roller

Shutte
r

SmartThermostat

SmartRollerShutter

Figure 2.2: Smart Home environment.

2.2.1 Concept and features
The introduction of the Smart Home represents an evolved paradigm of the
domestic environment, consisting of an intricate ecosystem in which a variety
of household electronic devices interact synergistically. These devices are con-
nected and controlled across a network, often leveraging Internet of Things (IoT)
technologies.

9

Introduction to the IoT

The main objectives of this innovative residential configuration are the elevation
of efficiency, safety and comfort in the daily activities of the inhabitants. This
living scenario stands out for the use of advanced home automation systems that
coordinate the functionality of interconnected devices, simplifying and optimizing
home routines [34]. A fundamental element of the Smart Home are intelligent
devices, as they not only proactively respond to user needs, but also personalize
the home experience, creating an interactive and adaptive environment. The
foundations of this emerging configuration are supported by academic studies. For
example, research proposed an integrated model based on the technology acceptance
model, the diffusion of innovation theory and consumer-perceived innovativeness,
using Structural Equation Modeling to validate the model [34]. The findings of
this study highlight the importance of factors such as compatibility, perceived
usefulness, and perceived ease of use in the adoption of smart home technology.

Other insights [35] focus on the challenges of smart homes as a new living concept,
underlining the importance of understanding users’ needs and preferences to en-
courage acceptance of such changes in personal spaces. The authors connect users’
preferences to their lifestyles, proposing a redefinition of the concept of housing
that takes into account user-centred design and future lifestyles. Furthermore,
[35] presents a multidimensional classification framework of the Smart Home, inte-
grating Virtual Space, Intelligent Environmental Space and Physical Space. This
new concept of the domestic environment, in which these spaces are integrated, is
proposed as the key to better understanding the elements and spaces of this future
living environment.

In summary, the Smart Home is configured as a cutting-edge living context, where
the integration of intelligent devices, the personalization of experiences and the
synergy between physical and virtual elements define a new frontier in the evolution
of modern homes.

2.2.2 Impacts on daily life
The interconnection of devices in the Smart Home has profound impacts on daily
life. Some of these impacts include:

• Improved energy efficiency: The seamless connection between electronic
devices and energy efficiency is a crucial aspect of modern technology. Smart
homes enable optimized communication between various devices, resulting
in a more intelligent response to user needs [36]. Sophisticated sensors are
integrated to provide real-time monitoring of both internal and external
conditions. This feature not only enhances security by detecting and promptly
responding to any anomalies but also facilitates efficient management of
resources. [37].

10

Introduction to the IoT

Energy management is a fundamental pillar of the Smart Home and plays
a critical role in reducing unnecessary energy consumption. The intelligent
coordination of electronic devices in the smart home environment aims to
achieve this goal. The importance of smart home technology in optimizing
energy consumption in buildings is highlighted in [38], which thoroughly
analyzes specific applications, such as energy management systems.

To put it briefly, the Smart Home aims to offer comfort, safety, and sustainable
solutions through technological synergy and the intelligent integration of
innovative devices and systems. The multidimensionality of this environment
emerges in the joint analysis of the different papers, emphasizing its tangible
impact on daily life.

• Greater comfort and automation: Automating daily activities, such as
regulating the temperature and turning lights on/off, is crucial in offering
greater comfort and time savings in Smart Homes. In this context, various
academic research demonstrates how practical projects, such as the automatic
lighting system with Arduino [39], can significantly improve convenience and
energy efficiency. Using key components such as Arduino, a PIR sensor, and
a relay module, this project illustrates lighting automation based on human
presence. This concept is extendable to other scenarios, such as automatic
bathroom flush valves, highlighting the effectiveness of simple technologies,
such as the PIR sensor, in improving daily life [39].

From the analysis of the usage of IoT-based Smart Home technology in Malaysia
[40], six main uses emerge, including real-time remote control, surveillance,
home automation and entertainment. IoT-SHT (Internet of Things Smart
Home Technology) has proven to significantly contribute to saving time by
improving aspects such as safety, environmental conditions and home con-
venience. The implementation of IoT technologies in this context also has
positive consequences on a psychological level, improving image, company and
the sense of family belonging [40].

In the context of optimizing comfort and energy consumption in smart homes,
an innovative approach is presented in the work that proposes a bat algorithm
(BA) [41]. This algorithm considers three crucial parameters for occupant
comfort: temperature, lighting and indoor air quality. Introducing an exponen-
tially increasing inertia weight significantly improves performance, ensuring
optimal comfort with minimal energy consumption. The application of this
algorithm represents a significant contribution to achieving a more efficient
and comfortable smart home environment [41].

As demonstrated, these academic approaches offer innovative solutions to

11

Introduction to the IoT

improve daily life in Smart Homes, ensuring optimal comfort and maximizing
energy efficiency. Technologies such as lighting automation, IoT-SHT and opti-
mization algorithms represent significant steps towards a smart and connected
living future.

• Challenges and advances in Smart Home security: Platform fragmen-
tation and the lack of technical standards in the field of home automation
represent significant challenges, with the diversity of home automation devices
complicating the development of coherent applications across heterogeneous
technological ecosystems [42].

Security plays a crucial role in smart homes, where the interaction between
remote users and devices takes place through gateways. User authentication
is essential, but the vulnerability of schemes proposed over the years raises
significant concerns. Meeting these challenges requires a thorough evaluation
of existing approaches and the development of secure schemes [43].

In parallel, unauthorized operation in IoT-based Smart Home Systems (SHS)
presents additional security challenges. The review of advanced approaches
to ensure the operational security of such systems reflects the importance of
understanding security threats and taking appropriate measures [44].

Voice interface attacks are another critical area for consumer Internet of Things
(IoT) platforms for smart homes. Here, the need for effective countermeasures
becomes evident, and the introduction of a voice-liveness detection system is
an example of how research aims to protect privacy and improve the security
of smart homes [45].

Through an integrated approach, the cited studies contribute significantly to
the advancement of security in smart homes, addressing crucial challenges
related to authentication, operational security and privacy protection. An
in-depth analysis of these aspects provides a complete and comprehensive view
of the smart home security landscape, which is essential for ensuring a safe
and reliable smart home environment.

It is crucial to underline that these works represent only one segment of a vast
research, all committed to revealing the complex security issues related to the
Internet of Things (IoT) expansion in Smart Homes. Attention to and resolu-
tion of these issues is critical to drive the development of better solutions and
practices, ensuring user security and privacy in an increasingly interconnected
and intelligent environment. Continued research and collaboration between
industry sectors, academic communities and regulatory organizations remain
critical to proactively address emerging challenges in the Smart Home and
IoT landscape.

12

Introduction to the IoT

2.3 Development and Security in IoT Devices
In this section, the analysis is moved from the perspective of a consumer to that of
a developer, with a particular emphasis on the complex and fundamental domain
of software in Internet of Things (IoT) devices. The focus will be on understanding
how Continuous Integration (CI)5, when adopted effectively, can optimize the
management of the complexities related to the development of firmware for IoT
devices. This method aims to enhance code consistency, promptly identify errors,
and streamline frequent updates, ultimately enhancing software reliability and
security.

In parallel, the crucial role of binary analysis in revealing the correct functioning
of the firmware of an IoT device will be examined. Although intrinsically complex,
this methodology offers an in-depth analysis of the binary structure of the firmware,
identifying potential vulnerabilities and ensuring a high standard of quality and
security.

In summary, this section aims to offer an objective and academic approach to
understanding software development processes for IoT devices, emphasizing the
importance of continuous integration and binary analysis in the context of advanced
and secure development.

2.3.1 Continuous Integration
The software development process relies heavily on Continuous Integration (CI)
as a pivotal paradigm that bolsters efficiency and quality. Fowler and Foemmel first
presented CI in 2006 [46], encompassing ten key practices that have since gained
widespread acceptance across the industry. Empirical studies have attested to the
positive influence of these practices on software quality.

The Continuous Integration (CI) approach revolves around the principle of con-
stantly merging code alterations into the primary codebase, guaranteeing that the
software remains consistently operational, tested and prepared for release. The
objective is to expedite feedback mechanisms during the development phase, detect
any potential issues at an early stage, and foster better teamwork among the
development team.

A multi-centre analysis conducted on small to medium-sized companies investigated
the implementation of Continuous Integration (CI) practices in the context of
software development. Through a combined approach of in-depth interviews and

5Continuous Integration (CI) is the practice of automating the integration of code changes
from multiple contributors into a single software project.

13

https://en.wikipedia.org/wiki/Continuous_integration

Introduction to the IoT

Figure 2.3: Continuous Integration steps

analysis of activity logs, a varied picture emerged on the adoption of such practices.
The survey results indicated widespread adoption of CI practices within the com-
panies examined. However, it became clear that there is considerable variation
in how these practices are implemented. These divergences have been observed
concerning the benefits perceived by development teams, the specific context of
each project, and the specific CI tools used within organizations [47].

Furthermore, in the context of open-source development, detailed analysis has
shown that when a version of a software project fails all tests during CI, often only
small adjustments in pull requests are needed. This highlights the importance of
handling pull requests carefully, as their size can greatly influence their success. This
correlation highlights the need to adopt mature Continuous Integration practices
to improve the efficiency of this process in open-source environments [48].

To sum up, Continuous Integration (CI) is a fundamental approach that revolution-
izes the software development process, improving quality and accelerating delivery,
with academic research and case studies highlighting its application and impact in
diverse contexts.

2.3.2 IoT Firmware
IoT Firmware represents a fundamental component in Internet of Things (IoT)
devices, defining itself as the software incorporated directly into the hardware
device. Unlike other types of firmware that may be present in more generic devices,
IoT Firmware is specifically designed to enable and manage IoT devices’ connected
and intelligent features. This type of firmware is closely linked to the peculiarities

14

Introduction to the IoT

of the IoT environment, ranging from advanced sensors to network interconnections,
favouring the implementation of control logic and data collection.

The role of IoT Firmware is of utmost importance in the Internet of Things (IoT)
ecosystem. It not only oversees the fundamental functions of devices but also man-
ages data access and network communications. Since these devices often operate
in sensitive environments like smart homes (section 2.2), where a lot of data is
collected, ensuring the security of the firmware is crucial.
Vulnerabilities in firmware pose a significant threat to the security of the entire IoT
system, bringing with them risks such as unauthorized access, exposure of sensitive
data, and compromise of control functions. Effectively managing these vulnerabili-
ties becomes imperative to counteract potential threats, including malicious code
injection [49, 50] and communications interception [51, 52], that could compromise
data integrity [53, 54, 55].

IoT firmware security differs significantly from that of traditional computing devices,
where established standards such as UEFI 6 provide a stable foundation. In the
IoT context, firmware developers often lack security awareness, and frequently
connecting devices to the Internet increases the risk of exploiting vulnerabilities.
The diversity of architectures introduces additional challenges in standardizing
security solutions, while the limited resources of IoT devices require balanced
trade-offs between performance and security [55]. The situation is made even
more intricate due to the absence of standardized firmware update methods and
the common practice of using a single firmware image for multiple devices. This
intensifies the ongoing insecurity in the realm of IoT since vulnerabilities can be
leveraged across a broad spectrum of devices [55].

Current solutions for assessing IoT security face challenges related to legacy analysis
techniques and IoT-specific limitations, which hinder firmware reverse engineering
and vulnerability analysis procedures. In this panorama, binary firmware analysis
emerges as a crucial element to mitigate risks and ensure the safe operation of IoT
devices in the era of global interconnection.

2.3.3 Binary Analysis
• Executable binaries

Executable binaries are files that contain not only the code to be executed but
also a wealth of information necessary for the proper functioning of a program.

6Unified Extensible Firmware Interface is a specification that defines the architecture of the
platform firmware used for booting the computer hardware and its interface for interaction with
the operating system.

15

https://en.wikipedia.org/wiki/UEFI

Introduction to the IoT

These files encapsulate data, code, and additional management information,
including details about memory allocation, symbols, and dynamic linking for
libraries.

1. Data:

– Static/Dynamic Memory: Binaries include static and dynamic memory
usage information, specifying how memory is allocated and utilized
during program execution.

– Fixed/Preallocated Values: Certain values, whether fixed or preallo-
cated, are stored within the executable to maintain consistency during
runtime.

2. Code:

– The core instructions that define the program’s functionality are
stored in the binary. This section contains the machine code that the
processor executes to perform the desired operations.

3. Management Informations:

– Memory Allocation: Details about how the program’s memory is
allocated and managed are included in the binary, ensuring the proper
functioning of the application.

– Symbols: Symbols represent named entities such as functions, variables,
and libraries, providing a structured way to reference different elements
within the program.

– Dynamic Linking: Information related to dynamic linking enables the
program to load shared libraries during runtime, enhancing flexibility
but introducing additional complexity compared to static linking.

• ELF Format
The Executable and Linkable Format (ELF) is a standard file format for
executables, object code, shared libraries, and even core dumps on Unix-like
operating systems, particularly Linux. The ELF format features a header
table that provides information on how to create the memory image of the
program. This table is divided into segments, each containing specific details
about the executable.

– Symbols: ELF includes a symbol table, where symbols represent named
entities within the program, including functions, variables, and libraries.

– Dynamic Linking: ELF supports dynamic linking, allowing the resolution
of library dependencies during runtime.

16

Introduction to the IoT

• Binary Analysis Objectives

– Revealing Vulnerabilities
Analysis of binary firmware is a crucial technique for identifying latent
weaknesses in code, which is vital in mitigating risks and ensuring device
security. A vulnerability is a software flaw that, if exploited, can be used
by an attacker to infiltrate the system. These flaws can stem from a
variety of sources, including oversights in data management, programming
errors, or issues with the software’s design.
The primary goal is to detect and comprehend potential vulnerabilities
while preempting any hostile attacks. Binary analysis provides a means
of inspecting firmware at the machine code level, scrutinizing instructions
and data structures to pinpoint any potential weaknesses that may be
exploited. As a result, specialists can create preventive measures, rectify
vulnerabilities, and bolster the overall security of the firmware.

– Ensure Compliance
In addition to vulnerability disclosure, binary analysis of firmware plays a
crucial role in ensuring firmware compliance with security standards and
development policies. Standards and policies define the best practices
and guidelines that firmware should follow to ensure a secure and reliable
environment [56].
Binary analysis is a method used to objectively evaluate whether firmware
adheres to established standards. Through this process, any deviations
from these standards can be identified, which may potentially compromise
security. This process helps ensure that the firmware meets regulatory
requirements and security specifications, providing a solid foundation for
the reliable operation of IoT devices.
For effective and objective binary analysis, consulting specialized online
resources and communities of experts in the field of cybersecurity is
recommended. These resources provide valuable insights and expertise
to ensure accurate analysis and interpretation of firmware. Forums,
official documentation, and how-to guides can provide useful guidance for
addressing specific challenges during binary firmware analysis. Sharing
knowledge online is essential to stay up to date on new threats and
advanced analysis techniques. This way, the community can work together
to continually improve security practices and mitigate vulnerabilities across
the vast Internet of Things landscape.

• Methodologies and tools
Binary analysis can be a complex and detailed part of the security process for
IoT devices. This practice involves exploring the binary code derived from the

17

Introduction to the IoT

firmware compilation, offering a detailed view of the implemented structures
and functionality. Some of the methodologies for carrying out this type of
analysis will be presented below.

– Reverse Engineering

∗ Definition: Reverse engineering is the process of analyzing a system to
understand its operation or to identify the design and implementation
of an object without having access to its source code.

∗ Application: In the context of binaries, reverse engineering is often
used to examine the behaviour of a program or firmware, identify
vulnerabilities, or understand how an application works without access
to the source code.

– Control Flow Reconstruction

∗ Definition: Control flow analysis is a methodology focused on com-
prehending the sequence of instructions and execution paths within a
program.

∗ Application: Reconstructing the control flow is essential for under-
standing how the program executes instructions, identifying potential
vulnerabilities, and pinpointing critical points within the codebase.

– Disassembler

∗ Definition: A disassembler is a reverse engineering tool that statically
converts a program’s machine code into human-readable assembly code
without the need to execute the program.

∗ Application: It enables the examination of executable code at a lower
level, facilitating static analysis of a program’s behaviour, aiding in
vulnerability research, malware analysis, and understanding program
logic without running the code directly.

– Decompiler

∗ Definition: A decompiler is a reverse engineering tool that converts
machine code into a high-level programming language similar to the
source code.

∗ Application: Useful for obtaining a more understandable represen-
tation of the code, the decompiler helps to understand the logic of a
program without necessarily having to understand the assembly.

18

Introduction to the IoT

– Debugger

∗ Definition: A debugger or a debugging tool is a program that allows
developers to run a target program in a controlled mode, monitor-
ing various aspects of execution such as variables, instructions, and
execution flow.

∗ Application: Used to analyze program behaviour at run time, the
debugger is essential for finding and fixing errors.

– Tracing

∗ Definition: It is a sort of debugger, with the difference that it tries
to better understand the behaviour of the target in the least intrusive
way possible.

∗ Application: Tracing is useful for understanding the flow of program
execution, identifying any anomalies or unwanted behaviour, and
collecting statistical data. For instance, using a tool like strace on a
Unix-like system allows one to trace system calls made by a process,
helping to diagnose issues such as file access problems or network
communication errors.

Case Study

Analyzing the firmware binary in IoT devices is recognized as a critical practice
in ensuring the security and reliability of such devices, given their growing inte-
gration into various aspects of daily life [57, 58, 49, 59, 53]. The analyzed case
studies indicate how track analysis not only reveals hidden vulnerabilities but also
contributes to improving the understanding of the environment in which these
devices operate. Through the use of advanced methodologies, such as the attributed
control flow graph (ACFG) combined with graph-embedding algorithms and deep
neural networks [57], or hybrid analysis that combines machine learning techniques
with dynamic binary analysis [58], it is possible to identify potential threats and
ensure timely remediation. The challenges of patching IoT devices are addressed
with innovative approaches, such as PATCHECKO, a framework that leverages
hybrid analysis based on machine learning and dynamic analysis to check binary
executables for patches [58]. Dynamic solutions such as IoTCID, which uses con-
strained models and feedback-based fuzzing, demonstrate effectiveness in detecting
command injection vulnerabilities [49]. Furthermore, the need to address specific
challenges related to direct execution on IoT devices has led to the development
of tools such as AflIot, an on-device fuzzing framework that preserves peripheral
compatibility [59]. Finally, projects like PROLEPSIS focus on analytics optimized
for IoT platforms, identifying executable points at risk of control-flow hijacking

19

Introduction to the IoT

and applying targeted monitoring techniques [60]. These case studies highlight
how binary analysis not only identifies vulnerabilities but extends to verifying
the effectiveness of patches and mitigating threats, thus strengthening the overall
security of IoT devices.

2.4 Final Remarks
This first chapter explored in detail the complex and interconnected world of
Internet of Things (IoT) devices, focusing on two fundamental aspects: firmware
development and related security issues. The discussion on Continuous Integration
(CI) underscored its pivotal role in enhancing firmware development processes, aid-
ing in maintaining code consistency, promptly identifying errors, and streamlining
regular updates. Analysis of the firmware binary revealed its critical importance,
highlighting the need to understand the internal structure and identify potential
vulnerabilities that could compromise the security of the entire IoT system. These
considerations are crucial in ensuring greater reliability and security of the software
implemented in IoT devices.

20

Chapter 3

A tool for Continuous
Integration

3.1 Introduction
Continuous integration (CI) is a software development methodology focused on
enhancing efficiency and quality across the development lifecycle. CI entails the
frequent and automated integration of code changes into a shared repository, as
discussed in the 2.3.1 section. This practice ensures that any modification made by
a contributor is merged with the existing codebase and subjected to a battery of
automated tests to ascertain the overall integrity and functionality of the system.

3.1.1 CI benefits
The adoption of continuous integration yields some properties for software develop-
ment teams:

• Risk Reduction: The regular integration of code changes coupled with auto-
mated testing aids in reducing identification time and resolving compatibility
and integration issues, thereby mitigating the risk of software errors.

• Enhancement of Code Quality: Continuous integration fosters the cultiva-
tion of cleaner and more modular codebases, as team members are incentivized
to integrate their modifications frequently and uphold a stringent standard of
quality.

• Automation: Continuous integration practices allow organizations to release
software by integrating and rigorously testing changes in an automated manner.

21

A tool for Continuous Integration

• Feedback: Automated testing mechanisms identify errors and anomalies,
giving contributors feedback on their contributions to enable iteration and
refinement.

One instrumental tool employed to streamline the practice of continuous integration
is ci-generate. This tool automates the intricate processes of code generation
and dependency management within a software project. In essence, ci-generate
empowers development teams to economize on time and ensure the perpetuation
of source code consistency by automating repetitive tasks, such as the creation of
new components or the updating of project dependencies.

In summation, Continuous Integration stands as an indispensable practice in the
realm of software development, fostering heightened efficiency, bolstered quality,
and accelerated delivery cycles. The utilization of tools like ci-generate further
amplifies the efficacy of continuous integration workflows, thereby facilitating the
creation of robust and reliable software solutions.

3.2 ci-generate tool
In the context of software development, it is crucial to proactively identify and
resolve any issues present in both the source code and binary files. The establish-
ment of an efficient workflow for continuous integration, supported by specialized
tools capable of identifying specific problems during the coding and binary code
production phases, becomes an essential practice.

This workflow represents a synergy of different aspects of software maintainability
and security, with particular attention to static analysis1. This crucial process
carefully examines the source code for defects and maintainability issues, providing
crucial information to improve not only the overall quality of the code but also the
security itself.

Manually developing this process, however, can be laborious, distracting developers
from their primary coding responsibility. Simplifying and automating these essential
controls is the main function of the tool in question: ci-generate.

1In computer science, static program analysis (or static analysis) is the analysis of computer
programs performed without executing them, in contrast with dynamic program analysis, which
is performed on programs during their execution.

22

https://en.wikipedia.org/wiki/Static_program_analysis

A tool for Continuous Integration

3.2.1 Rust language
In software development, the choice of programming language is of enormous
importance, influencing both the functionality and security of the final product.
Rust2, a relatively new language, has emerged as an attractive option due to its
unique blend of security and performance.

• Prioritize safety: One of Rust’s defining features is its focus on security.
Unlike many other programming languages, Rust is designed from the ground
up to prevent common mistakes that can lead to security vulnerabilities. How
is this achieved? Rust’s type system and ownership model work together to
ensure memory safety, eliminating risks like buffer overflows and null pointer
dereferences that affect other languages, such as C/C++.
Rust keeps an eye on how memory is used in a program, preventing the kinds of
errors that hackers often exploit. This proactive approach to security sets Rust
apart and makes it an ideal choice for projects where security is paramount,
like ci-generate.

• Provide high performance: But Rust does not just stop at security; it also
focuses on performance. Conventional wisdom might suggest that prioritizing
security would come at the expense of speed, but Rust achieves both goals
through its innovative approach to concurrency and resource management.
In many programming languages, handling multiple tasks at the same time
(concurrency) can be complex and error-prone. Rust’s ownership model sim-
plifies this process, allowing developers to confidently write concurrent code.
Additionally, Rust’s zero-cost abstractions ensure that high-level code trans-
lates into efficient machine code, maximizing performance without sacrificing
security.

• Differences with other languages: When comparing Rust to more estab-
lished languages like C or C++, the differences become even more pronounced.
While C and C++ offer a high degree of control over system resources, they
also expose developers to several potential vulnerabilities, especially when it
comes to memory management. Rust, on the other hand, provides similar
control but with built-in protections to prevent common pitfalls.

By leveraging Rust’s innovative features, ci-generate ensures the reliability and secu-
rity of its code base and aims for good performance, demonstrating a commitment
to excellence in software engineering.

2Rust is a multi-paradigm, general-purpose programming language that emphasizes perfor-
mance, type safety, and concurrency.

23

https://en.wikipedia.org/wiki/Rust_(programming_language)

A tool for Continuous Integration

3.2.2 Features and purpose
Leveraging the power of templates and Continuous Integration (CI) [61] through
GitHub Actions3, ci-generate simplifies the intricate project creation process by
producing a range of must-have files, ranging from source code to build systems,
YAML files, shells and Dockerfiles. Crucially, this tool dynamically integrates
information provided by developers at runtime, completing project templates.

• Versatile support for projects and configurations: ci-generate boasts
support for a wide range of project types, each closely associated with a
core programming language, specific build tools and package managers. The
adaptability of its continuous integration system, orchestrated through GitHub
Actions, enables the orchestration of workflows perfectly tailored to the unique
requirements of individual projects. These workflows are developed to reduce
developer wait times and accelerate error detection through in-depth analysis
and testing phases.

• Toolchain and API integration overview: ci-generate takes a structured
approach to its toolchain, adapting to various build systems and programming
languages, such as Python, Rust, Java, etc. Additionally, the availability
of APIs enables developers to conveniently generate and tailor projects by
inputting project-specific details like name, license, and path. This systematic
approach ensures a streamlined and efficient setup process for users. Figure 3.1
provides a visual representation of a directory containing a generated project
example, with its build configuration files.

• Purpose and contextual meaning: The primary objective of ci-generate is
to reduce the cognitive load involved in setting up GitHub Actions projects
and workflows. This refers to the mental effort developers need to manually
configure these operations. Its ability to streamline project startup or enhance
existing ones with the integration of GitHub Actions highlights its role in
modern software development practices, allowing developers to focus their
attention on core development efforts.

Thus, ci-generate offers a complete solution for project initialization and continuous
integration configuration. By automating mundane tasks and providing flexible in-
frastructure, ci-generate enables developers to accelerate project setup and simplify
workflow integration. Its integration with GitHub Actions ensures a cohesive and
efficient development experience, affirming its status in modern software engineering
efforts.

3GitHub Actions is a continuous integration and continuous delivery (CI/CD) platform that
enables automation of the build, test, and deployment pipeline.

24

https://docs.github.com/en/actions/learn-github-actions/understanding-github-actions

A tool for Continuous Integration

Figure 3.1: libdevice-C project with its build configuration files

3.2.3 Workflow
The CI workflow of the ci-generate tool is designed to automate and orchestrate
the project development process, ensuring that every code change is verified and
integrated into the repository consistently and reliably.

The workflow is structured into different levels, each of which performs specific
tasks within the software development process. The levels are:

• Legal and Format Layer

• Builds and Docs Layer

• Code Coverage Layer

• Dependency Layer

• Unsafe Checks Level

The initial steps involve checking for legal compliance and formatting using tools
such as Clippy4 and Rustfmt5. Clippy analyzes the code, offering suggestions
for common errors, while Rustfmt formats the code according to style guidelines.
Subsequently, static code analysis is performed to detect potential quality and
security issues, employing the rust-code-analysis action. This is followed by the
steps of compiling the project and generating documentation, ensuring that the

4Clippy documentation
5GitHub repository

25

https://doc.rust-lang.org/clippy/
https://github.com/rust-lang/rustfmt

A tool for Continuous Integration

code is compileable and well-documented across different platforms.

The workflow proceeds with the computation of code coverage by executing tests,
employing grcov to gather and consolidate code coverage data from multiple
source files. This information is then uploaded to Codecov, providing insight
into which lines of code were executed by the test suite. Additionally, advanced
security checks and code analysis are conducted to identify potential vulnerabilities,
utilizing tools like Valgrind and Address Sanitizer. Valgrind is employed for memory
debugging, memory leak detection, and profiling, while Address Sanitizer detects
bugs manifested as undefined or suspicious behaviour.

To sum up, the CI workflow implemented with GitHub Actions for the ci-generate
tool offers a robust automation and verification infrastructure, ensuring code quality,
security and compliance at every stage of the development process. Due to GitHub
Actions, all this happens automatically and transparently, allowing developers
to focus on software development without worrying about manual and repetitive
processes.

3.3 Code refactoring
In the evolution of any software project, the refactoring process stands out as
a fundamental phase that transcends mere code restructuring. It represents a
strategic revisiting of the code base, not only to fix bugs or improve performance
but to substantially improve its architecture, usability and maintainability. In the
case of the ci-generate tool, refactoring serves as a transformation path to improve
its capabilities and developer experience.

Refactoring in software development is the process of restructuring existing code
without changing its external behaviour, aiming to enhance the design, structure,
and implementation of the software while maintaining its functionality. It’s not
just about cleaning up the code; it is a conscious effort to make the codebase
more readable, adaptable, and scalable. The process involves optimizing existing
structures, improving interfaces, and introducing new abstractions to improve the
overall quality of the software.

26

A tool for Continuous Integration

3.3.1 Objectives
The refactoring initiative for the ci-generate tool has been driven by a series of
multi-faceted goals aimed at making it more robust and easier to use:

1. Modular architecture for intuitive use: Library includes various modules,
such as error handling, command execution, and filters used in templates. By
maintaining a modular architecture, the refactoring initiative preserves the
logical organization of features, making it easier for developers to navigate and
understand the structure. This modular approach promotes code maintain-
ability and allows developers to selectively use or extend specific components
based on project requirements.

2. Efficient and clear execution flow: Restructuring efforts prioritize op-
timizing the execution flow, making it more efficient and transparent. The
library’s refined interface ensures that developers can seamlessly integrate CI
configurations and project templates into their workflows without unnecessary
complexity. The clearer execution flow contributes to a more consistent devel-
opment process and facilitates collaboration between team members working
on different aspects of a project.

3. Improving Error Handling: In the process of renovating the ci-generate
library, one of the key areas of focus was refining error handling. This section
explores not only the technical changes made but also the broader meaning of
custom error handling in the context of a Rust project.

• Understand the role of error handling: Effective error handling is a
critical aspect of reliable software development. Custom error handling
allows developers to express and handle errors to align with specific library
requirements.

• Meaning of custom error definitions: The library incorporates a
dedicated error module. This deliberate choice allows for the definition
of custom error types, as shown in the code 3.1), each of which conveys
specific details about potential problems that may occur when running the
library. These custom errors provide descriptive insights into the nature
of the errors, helping developers with rapid diagnostics and resolutions.

Listing 3.1: Custom code to handle directory not found error.
1 /// Unable to r e t r i e v e the home d i r e c t o r y
2 #[error ("Home d i r e c t o r y f a i l u r e ")]
3 HomeDir ,
4

27

A tool for Continuous Integration

• Using the Result〈T〉 type: Central to Rust’s error handling paradigm
is the Result〈T〉type. The Result〈T〉type explicitly communicates the
possibility of errors in specific operations, providing a clear and structured
way to handle potential errors. By using Result〈T〉, the library signals
developers that certain operations may cause errors, prompting them to
consider and address these scenarios in their code.

• Incorporation of external errors: A notable aspect of the error-
handling strategy is the inclusion of errors from other libraries. This
practice enriches the error structure with specific information, contribut-
ing to more informed diagnostics and simplified troubleshooting. By
encompassing a broader spectrum of potential failures, the library pro-
vides a comprehensive and detailed view of potential failure scenarios.

• Advantages of specialized error handling: The error-handling ap-
proach not only improves the readability and maintainability of the code
but also provides developers with significant information about potential
pitfalls. The use of specialized error types and the Result〈T〉type promotes
a structured and disciplined coding style, in line with Rust’s overall goal
of building reliable and secure software.

4. Increased flexibility with TemplateData: Before delving into the Tem-
plateData implementation, it is important to understand two fundamental
concepts in Rust: borrow and owned.

• Borrow: It refers to the temporary acquisition of a reference to a value.
It grants access to a value without assuming ownership, enabling passing
references to data without transferring ownership of the data itself.

• Owned: It refers to complete possession of a value. When a variable
owns a value, it manages its memory, including modifying the value or
deallocating it when necessary. Ownership grants full control over the
value’s lifetime and memory usage.

TemplateData is a strategic addition to the library, representing a data struc-
ture that consolidates essential parameters for project and CI configuration.
This includes information such as the project license, git branch, project name,
and project path. The structure was designed to accept various data, providing
developers with a versatile means of passing parameters.

28

A tool for Continuous Integration

• Importance of Cow〈’a, str〉: At the heart of the improvement is the
adoption of Cow〈’a, str〉for specific fields within TemplateData. This
choice makes sense in the context of Rust’s ownership model. Unlike
String, which implies ownership and requires memory allocation, Cow〈’a,
str〉(short for Clone On Write6) provides a flexible approach. Allows
the structure to handle both references (&str) and owned data (String)
without incurring unnecessary memory allocation costs.

• Handling &str and String: In Rust, &str represents a portion of
a string, a reference to a sequence of UTF-8 bytes, while String is an
expandable string, allocated on the heap, where the objects dynamically
allocated during program execution are stored. The distinction is fun-
damental for efficient memory management. By allowing TemplateData
to accept both types via Cow〈’a, str〉, the library gains the ability to
accommodate different inputs seamlessly. This is especially beneficial
when handling scenarios where the overhead of memory allocation for
String is undesirable.

• Implementation Details: The TemplateData structure comes with
methods like license, branch and name, each of which takes input that
implements Into〈Cow〈’a, str〉〉. This allows developers to provide a ref-
erence or property string, demonstrating the flexibility of the library to
adapt to the developer’s preferred data representation.

In essence, the introduction of TemplateData not only simplifies the interface
for developers but also addresses the complex challenge of efficiently managing
different string representations. The refactoring process emphasizes the impor-
tance of adaptability and resource-aware design, ensuring that the ci-generate
library can integrate seamlessly into a variety of project contexts.

5. ProjectOutput Structure: One of the fundamental architectural refine-
ments introduced during the refactoring process is the integration of the
ProjectOutput structure. This addition plays a pivotal role in the enhance-
ment of clarity, separation of concerns, and the extensibility of the ci-generate
library.

• Clarity and Separation of Concerns: The ProjectOutput structure
acts as a container for the output of the definition of a project model,
ensuring that it is encapsulated in a defined, and appropriately organized
structure given the presence of different elements that characterize it.

6Cow can encapsulate and offer immutable access to borrowed data, cloning the data only
when mutation or ownership is needed.

29

A tool for Continuous Integration

• Trait in Rust. Defining BuildTemplate for Extensibility: In
Rust, a trait [62] is a fundamental concept, akin to an interface in other
programming languages. It defines a set of methods that a type must
implement if it adopts the trait. Specifically, in the context of ci-generate,
the BuildTemplate trait outlines the methods required for building a
template. Traits are essential for creating flexible and reusable code
components, allowing types to conform to a shared interface.

• Understanding the BuildTemplate Trait: The BuildTemplate trait,
therefore, acts as a contract that any template builder within the ci-
generate library must adhere to. It declares methods responsible for
defining how templates are constructed, providing a consistent interface
for different template implementations. By adopting the trait, various
components within the library can interact seamlessly, ensuring that any
changes or additions to template-related functionalities will not disrupt
the overarching structure.

• Purpose of ProjectOutput within BuildTemplate: The ProjectOut-
put structure is intricately linked to the BuildTemplate trait. It represents
the standardized output that any template adhering to the trait should
produce. This clear definition of what constitutes the output of a template
enhances the readability and flexibility of the code. So, the ProjectOutput
structure acts as a concrete manifestation of the abstract template-building
process outlined by the BuildTemplate trait. In essence, the ProjectOut-
put structure, in tandem with the BuildTemplate trait, embodies the
principle of separation of concerns and lays the groundwork for a flexible
and extensible template-building framework within the ci-generate library.

To sum up, the refactoring is a deliberate and strategic effort to fortify the tool,
ensuring it aligns with the best practices of software development while pro-
viding a foundation for future enhancements. The benefits extend beyond the
confines of the codebase, positively impacting the entire development workflow.
As the specific changes made are examined, the depth and thoughtfulness of
the refactoring process will become more apparent.

3.3.2 Path validation function
In the context of the ci-generate tool, the path validation function is a crucial
component for ensuring the validity and consistency of project paths, being a
mandatory parameter to be included. The various features of the function will be
reviewed, with special emphasis on the rationale for the implementation choices.

• Accept directory only: The path_validation function is designed to accept

30

A tool for Continuous Integration

only directory paths and reject file paths. This choice is motivated by the fact
that the tool primarily handles the creation of projects organized in directories.
Avoiding the acceptance of file paths is critical since the generated project
must be placed in a directory.

• Verification of UTF-8 character correctness: Verifying the correctness
of UTF-8 characters is essential to avoid encoding problems at runtime. If a
path contains invalid UTF-8 characters, unexpected errors may occur during
path manipulation. Ensuring correct encoding contributes to greater stability
and predictability of the tool.

• Handling of the Special Case of the Point: It is important to resolve the
special case where the path is a dot, as users can enter ’.’ to indicate creation of
the project in the current directory. Handling this case is important to prevent
ambiguity and ensure that the tool behaves according to user expectations.

• Adaptability to Different Home Director Prefixes: The function is
designed with a wide adaptability to handle the different prefixes used in home
directors on various platforms. This is especially relevant when considering the
tilde symbol (~), which can be interpreted differently on Unix and Windows
systems. On Unix systems, the tilde (~) is commonly used to represent the
current user’s home directory. For example, if the user is user1, the path
~/Desktop will translate to /home/user1/Desktop. In this case, the function
is designed to recognize the tilde as the home directory reference symbol and
construct the full path accordingly. On Windows systems, the tilde character
may not be directly recognized as representing the user’s home directory. In
the past, Windows systems used the tilde to summarize long file or directory
names7. For example, the name TextFile.Mine.txt might be abbreviated to
TEXTFI 1.TXT. Therefore, the tilde does not have a specific function as in
Unix systems, creating potential ambiguities.
In this context, the function must be able to interpret the tilde and convert
it to the correct path. The flexibility of the function allows it to handle this
diversity in home director prefixes between operating systems.

• Path canonicalization: Path canonicalization is a key step in defining
a complete and correct path. In practical terms, canonicalization resolves
any relative paths and normalizes them. For example, if the path contains
references to parent directories (".."), canonicalization will replace them with
the names of the corresponding directories, thus obtaining the correct absolute
path. Next, the function takes care of the creation of any missing directories,

78.3 filename notation

31

https://en.wikipedia.org/wiki/8.3_filename

A tool for Continuous Integration

ensuring that the project structure is cohesive and complete.

Different approach

The different approach to the implementation of the path_validation function in
the context of the ci-generate tool reflects a process of continuous improvement
aimed at simplifying the code, improving maintainability and ensuring a greater
consistency between different implementations intended for different operating sys-
tems. This section will examine the modifications to the functionality, highlighting
the underlying reasons driving these changes.

• Code unification
One of the major changes was to unify the code for Windows and Unix/MacOS
operating systems into a single function. This approach eliminated code
duplication and made it much easier to manage differences between platforms.
Additionally, this unification made the code more consistent and easier to
understand, contributing to better maintainability in the long term.

• Use of cross-platform libraries
Another key point was using the home library to get the home directory on
all platforms. This change greatly simplified home directory management,
eliminating the need to use different libraries for different operating systems.
It also made the code more readable and contributed to greater consistency
across implementations.

• UTF-8 encoding
Simplifying the handling of UTF-8 encoding was another significant change.
In the previous version, there were additional checks to verify the correctness
of the UTF-8 encoding, while in the final version a simpler condition was used
for this purpose. This helped reduce the complexity of the code and make it
clearer and more concise.

In summary, the changes made to the path validation feature reflect an ongoing
effort to improve code quality and ensure a better development experience. Adopt-
ing simpler and more uniform approaches has contributed to greater coherence,
readability and maintainability of the code, preparing it for any future updates
and ensuring greater robustness in addressing challenges that may arise during
software development and maintenance.

3.3.3 Cargo feature
Before this approach, ci-generate could only create a cargo project with files
necessary for continuous integration. However, with the integration of a new

32

A tool for Continuous Integration

method following the cargo init command flow, it is possible to get a complete
Cargo project. This approach enables them to create both a library and an
executable. The functionality is accessible through the command line or the library
API.

Change of Perspective

Originally, the command evolution was centred around using cargo new to create
new Rust projects. However, a shift towards the more flexible cargo init command
was later embraced. This command allows initializing a Rust project within an
existing directory, facilitating integration into contexts with predefined project
structures. This flexibility proves beneficial for embedding Cargo build templates
into contexts with existing CI configuration files and vice versa.

Generation of library, binary, and CI workflow

The key component in implementing Cargo project generation is the cargo.rs file. It
defines a pre-defined project structure, including essential configuration files for CI,
Docker, and testing. The file introduces two options for the Cargo project structure:
creating projects for libraries or executables, both with Continuous Integration
files included. A check is implemented to prevent the simultaneous creation of
both types of projects, ensuring clarity and coherence in the development process.
Additionally, the inclusion of proptest.rs in the Cargo project marks an evolution
towards best practices and refined approaches for code validation.

Final considerations

The cargo.rs file is a central component in advancing Cargo project generation
within ci-generate. It provides a predefined project structure adaptable to various
project types. Its flexibility allows developers to tailor project generation to specific
needs, making it a key contributor to the creation of sophisticated Cargo projects
aligned with current quality standards and development methodologies.

3.4 Tests implementation
Test suite, characterized by unit tests and integration tests, constitutes a pivotal
element in the software development lifecycle. Within the established paradigm of
software engineering, validation and verification emerge as essential, undertakings
crucial for the progression of the development process [63].
The early identification and rectification of errors through systematic testing signifi-
cantly contribute to efficient error management and heightened code maintainability.

33

A tool for Continuous Integration

This proactive approach mitigates the accumulation of defects, thereby streamlining
subsequent maintenance activities and augmenting the longevity of the software.
Moreover, the methodical execution of the test suite functions as a linchpin for en-
suring the overarching consistency and reliability of the entire system. By affirming
the accurate execution of functions within each module and meticulously validating
interactions between modules, the robustness and coherence of the application are
assured.

Furthermore, the strategic implementation of testing in the nascent stages of devel-
opment yields profound cost reductions. This preemptive measure facilitates the
timely detection and correction of defects, mitigating the expenses associated with
addressing more intricate and critical errors later in the developmental cycle. Con-
sequently, this practice contributes substantively to the optimization of resources
deployed throughout the process.

Code Coverage

Code coverage, measured as the percentage of code covered by a test suite, is a
critical metric. It is computed using profiling instruments that detect executed
code lines. Code coverage is associated with a traffic-light system model:

• Red: Code coverage below 60%, indicating insufficient coverage, leading to a
necessary workflow stop.

• Orange: Code coverage between 60% and 80%, considered acceptable but
not desirable.

• Green: Code coverage above 80%, signifying comprehensive test coverage.

This general approach aligns with the concept of code certification required, ensuring
reliability, security, and well-tested code. The adoption of thresholds as an integral
part of the workflow execution adds an active role to the code coverage percentage.

In essence, the incorporation of unit and integration tests, along with code coverage
analysis, reflects a commitment to quality assurance, minimizing defects, and
enhancing the overall stability and maintainability of the ci-generate tool. With
the addition of the tests explained in the following sections, the coverage achieved
for the tool is 98%.

3.4.1 Unit tests
As part of software testing, the unit tests for the path_validation function in the
ci-generate library examine the behaviour of this critical component. Unit tests
are designed to reproduce specific scenarios, revealing nuances in the function’s

34

A tool for Continuous Integration

behaviour. The tests created for the path_validation feature are no exception,
covering a spectrum of situations to ensure the works under different conditions.

• File path validation: The unit test test_invalid_path_file assesses the
behaviour of the path validation function when provided with a file path. This
test validates that the function correctly identifies and rejects file paths. This
verification reinforces the function’s role in enforcing strict path validation
policies, critical for maintaining the integrity of project structures.

• Directory path validation: Conversely, the test_valid_path_folder test
evaluates the function’s response to valid directory paths. By providing a valid
directory path, this test verifies that the function accepts such paths without
errors. This validation is essential in ensuring that the function behaves as
expected when presented with typical directory paths.

• Current directory shortcut: The unit test test_current_path examines
the behaviour of the function when presented with the special case of the
current directory shortcut (’.’). This test verifies that the function appropriately
handles this scenario by returning a successful result without any errors. By
validating this aspect, the test confirms the function’s ability to interpret and
process directory shortcuts accurately, contributing to its overall robustness
and versatility across various input scenarios.

• Windows-specific home directory: The test_invalid_home_directory
test evaluates the function’s behaviour concerning the representation of the
home directory on Windows systems. By providing a path with a tilde (’~’)
prefix, typical in Unix systems but potentially ambiguous on Windows, this
test ensures that the function correctly identifies and manage such cases.
Specifically, it validates that the function appropriately raises an error when
encountering an invalid home directory representation on Windows, thus
ensuring consistent behaviour across different operating environments.

• UTF-8 character encoding: The test_invalid_utf8_path test scrutinizes
the function’s capability to manage paths containing invalid UTF-8 characters.
By providing a path with malformed UTF-8 encoding, this test verifies that
the function accurately detects and rejects such paths, preventing potential
runtime errors stemming from incorrect character encoding. This validation
underscores the function’s robustness in maintaining data integrity and relia-
bility, particularly in diverse language environments where character encoding
may vary.

35

A tool for Continuous Integration

Test design pros and cons

Achieving a balanced approach between specificity and generality in testing is
essential for effective quality assurance. While comprehensive tests are necessary to
identify potential weaknesses in software, an overly detailed test suite may become
unmanageable and impede development progress. Therefore, the right balance
ensures that tests remain a valuable resource, providing meaningful feedback to
enhance software quality without causing undue burden on the development process.

3.4.2 Property testing
When it comes to validating the main APIs in the ci-generate library, such as
define_license, the approach taken leans towards using the proptest8 library. This
decision is motivated by the goal of conducting a comprehensive analysis of the
inputs of these functions, ensuring their correctness and robustness through property
testing.

Property testing allows developers to define fundamental software properties as
declarative rules. The library’s automatic input generator produces random data to
test specified properties. This methodology differs from the traditional unit tests as
it explores a large input space, revealing unexpected behaviour and potential errors
that might elude a conventional test suite. Applying proptest to these functions
aligns with the need to carefully examine various usage scenarios, including inputs
that go beyond standard use cases. This approach is particularly effective at
identifying critical limitations and potential edge case errors and maintaining the
overall consistency and reliability of the analyzed APIs.

define_license proptest

• Overview: The define_license function manages the definition of the license
associated with a project. It takes a string representing the license as an
input parameter and returns an object. The function ensures the correct
management of project license information, providing a robust mechanism for
defining and validating this information.

• Test operation: This property test explores and tests the behaviour of the
define_license function in response to various license-related inputs. The test
defines a static array, containing some default valid licenses. A LicenseTest

8Proptest is a property testing framework. This testing method enables specific property
verifications within the code for arbitrary inputs. In failure, it automatically identifies the minimal
test case necessary to reproduce the issue.

36

https://proptest-rs.github.io/proptest/intro.html

A tool for Continuous Integration

structure is defined with a field of type string, used as an input parameter
for the test. The test block contains assertions for different scenarios where
the define_license function might be called, covering cases where the license
string is empty, valid, or invalid.

These property tests, supported by proptest, play a critical role in ensuring the
correctness and robustness of the function. By covering a wide range of input cases,
they contribute significantly to the overall quality of the ci-generate tool.

Observations

Through unit tests, various scenarios were carefully examined to evaluate function
behaviour. Each test, designed to address specific situations, ensures the correctness
and reliability of the implementation, providing a complete overview of the feature
capabilities.

The adoption of the proptest library for property testing reflects a shift towards
a broader testing strategy aimed at conducting comprehensive analyses of inputs
to APIs such as define_license. These tests allow the declarative definition of
fundamental properties, exploring a large input space and revealing unexpected
behaviour and potential errors that conventional test suites might miss.

In summary, unit and property testing set the stage for a more comprehensive
evaluation of software behaviour in integrated scenarios. The subsequent transition
to integration testing marks a crucial phase in validation, significantly contributing
to the overall quality and robustness of the module under consideration.

3.4.3 Integration tests
In this context, integration tests take on a fundamental role, as they are dedicated
to ensuring the correct interoperability of all the different components of the system,
ensuring the efficient management of various scenarios and inputs. Unlike unit tests,
which focus on validating individual units of code, integration tests explore the
joint behaviour of multiple units, evaluating the cooperation and cohesion between
them. This section will explore the implementation of such tests, delimiting the
evolutionary path into two distinctive phases.

First Phase: Test with Fixed Output

In the initial phase of the implementation of integration tests, attention was focused
on defining specific scenarios in which a known input gave rise to a predefined
output. To illustrate this approach, the practical process of creating a Cargo project
within the context of ci-generate can be considered.

37

A tool for Continuous Integration

During this phase, the integration tests orchestrated the creation of a Cargo project
structure through the use of library functions, using predefined data (i.e. license,
name and branch defined by default). This procedure led to the generation of a set
of files intended for project configuration and continuous integration.
Subsequently, through the implementation of a specific function that allows the
use of the sha2 library, the computation of the hexadecimal string representing the
SHA-256 hash of each file within the aforementioned folder was carried out.

The verification process consisted of comparing the hexadecimal string of each
generated file with the corresponding SHA-256 hash previously saved in an array
containing all expected hashes. However, this approach was static as the analysis
was limited to fixed versions of the same project. Creating a new project with
different parameters would have resulted in the generation of a divergent hash since
the new hash produced would have had no correspondence with the expected hash
previously recorded in the array of expected hashes.

This static nature not only characterized the system but, through a simple compar-
ison of SHA-256 strings, made it impossible to discern specific differences between
files. As a result, the necessity to enhance integration tests to be dynamic and
adaptable has influenced the evolution of the testing methodology.

Second Phase: Adoption of Insta Tests

The second phase of the testing process represents a significant evolution compared
to the initial approach, abandoning the previously described solution in favour of
Insta9: a library for snapshot testing in Rust. Insta tests stand out for their ability
to detect content-level differences between two versions of the same file.
Inside the project, the folder called tests (figure 3.2) hosts the .rs files dedicated
to each generatable project (yarn, poetry, meson, maven and cargo). Each .rs file
contains the code relating to the definition of specific integration tests, aimed at
verifying distinct aspects of the project generation. In parallel, common folder
contains mod.rs file, designed to group parts of code used by all projects in the
comparison process. Another directory named repositories/snapshot is specifically
designated for storing the snapshots generated from the comparison operation,
preserving the original path provided by the user for each project.

The core of these integration tests is represented by the compare_template function.
Its main responsibility is to compare the snapshots dynamically generated during
the test execution with those stored previously. The primary objective of this

9Insta is a snapshot testing tool for Rust. Snapshot tests are tests that assert values against a
reference value (the snapshot).

38

https://insta.rs/

A tool for Continuous Integration

Figure 3.2: Contents of the tests folder

function is to ensure consistency between the expected results and those obtained
during the testing process.
To understand how compare_template works, the function inspects the files within
each directory of the specified path. It extracts the contents of each file and
compares it with the contents of the corresponding snapshots, which represent
stored versions of the files in repositories/snapshot folder.
The comparison between contents is done through the use of the assert_snapshot!
assertion. This assertion allows to make detailed comparisons between the current
contents of the file and the expected version, defined in the snapshots. Ultimately,
the compare_template function checks whether the contents of the files during the
test execution coincide exactly with those expected in the snapshots, thus ensuring
the integrity of the tested system.

This process leads to a comparative analysis between a new version of the snapshot,
dynamically generated during the current test execution, and the previous instance,
which represents the original, accepted version of the snapshot. Insta’s setup is
tailored appropriately to customize the storage location of the snapshots, providing
a structured organization. This adaptation constitutes a crucial element in ensuring
precise and orderly management of snapshots, facilitating the process of reviewing
and comparing the different recorded versions (see Figure 3.3).

3.4.4 Observations
Implementing a comprehensive testing strategy for ci-generate has brought signifi-
cant benefits to the quality and reliability of the software. Unit tests, focused on

39

A tool for Continuous Integration

Figure 3.3: Comparison between different recorded versions of Yarn

individual features, provided a solid foundation, identifying and fixing potential
errors in specific scenarios. The precision of these tests ensured that each critical
part of the code functions as intended, establishing fundamental confidence in the
correctness of the individual components.

The introduction of property tests with proptest has broadened this coverage,
allowing for deeper analysis of inputs provided to APIs, such as define_license. This
methodology led to the discovery of unexpected behaviours and critical constraints,
providing a more complete understanding of the capabilities and limitations of the
tested functions.

The integration tests represented a crucial step, especially with the adoption of
snapshot tests via the Insta library. This evolution not only revealed content-level
differences between file versions but also introduced flexibility in managing projects
with different parameters. The ability to dynamically recognize changes made the
testing process more adaptable and allowed better management of future software
evolutions.

Overall, the phased and complementary approach of unit, property, and integration
testing was a major contributor to ensuring the consistency, reliability, and overall
quality of the ci-generate tool. This testing strategy not only identified and corrected
errors but also provided a solid foundation for future development, improving the
maintainability and sustainability of the software under diverse usage scenarios.

40

A tool for Continuous Integration

3.5 Final Remarks
The second chapter of this work comprehensively outlined the various changes
of ci-generate tool library, focusing on the restructuring of its architecture and
the implementation of new features. The incorporation of new data structures,
error handling mechanisms, and the implementation of initialization functionality
for Cargo projects has significantly enhanced the overall organization of the code,
interface clarity, and flexibility of the entire library. Furthermore, a comprehensive
test suite has been established to guarantee the dependability and accuracy of the
library’s functionality.

41

Chapter 4

A dummy firmware for IoT

4.1 Introduction
In the era of the Internet of Things (IoT), where connectivity and digital inte-
gration increasingly permeate both our domestic and professional environments
(as discussed in 2.2.2), IoT devices play a crucial role in enhancing the efficiency,
security, and comfort of our lives. At the heart of these devices lies their firmware
(see Section 2.3.2), which acts as a focal point regulating and coordinating, the
various functions and interactions among the system’s components.

Figure 4.1: A smart home IoT architecture system.

42

A dummy firmware for IoT

As shown in Figure 4.1 in a typical home environment, the home gateway often
acts as the central hub of the home network, managing several actuators scattered
throughout the premises. These actuators include, among other components, smart
lamps, audio/video recording devices such as security cameras and speakers, as
well as temperature sensors. Each actuator requires dedicated firmware to govern
behaviour and interaction with the rest of the system to perform its functions.

4.1.1 Purpose of dummy firmware
In the context of IoT environments, the accuracy and reliability of the firmware
implementation are fundamental elements to ensure the correct functioning and
interoperability of IoT devices. However, firmware development and testing can
be complex and resource-intensive, often requiring access to physical devices for
experimentation and functionality verification.
A dummy firmware-device1 implementation has been devised to address these
challenges and advance research in this field. Within this implementation, several
library variants named libdevice have been created. From a general standpoint,
this library essentially comprises APIs that simulate the behaviour of IoT firmware.
Therefore, the concept of dummy firmware refers to the different binaries or
versions of firmware that emerge from compiling the variants of the libdevice
library within the dummy-firmware-device project. These binaries are termed
dummy firmware because they are simulated and do not correspond to real firmware
intended for actual IoT devices. However, they are useful for analysis and evaluation
during development, as in the case of the manifest-producer tool in Chapter 5.

To develop the dummy firmware, we opted for the C, C++, and Rust programming
languages. Each language has been chosen based on its specific advantages and
suitability for computer simulation firmware.

• C has been selected for its low-level functionalities, making it ideal for program-
ming embedded devices. It offers direct control over hardware and memory
management.

• Rust has been chosen for its robustness and safety features. Its advanced
memory management mechanisms and static type system help prevent common
errors during programming, ensuring more reliable code. See Section 3.2.1 for
further information.

• C++ provides a flexible and balanced approach compared to C and Rust.
It supports both imperative and object-oriented programming paradigms,

1GitHub repository: https://github.com/SoftengPoliTo/dummy-firmware-device

43

https://github.com/SoftengPoliTo/dummy-firmware-device

A dummy firmware for IoT

allowing for more complex and modular code then C, without the added
complexity of concepts introduced in Rust (for example borrow and owned
seen in section 4).

Each programming language contributes to developing variants of the libdevice
used in generating different dummy firmware.

4.1.2 Importance of different programming languages
The importance of developing this firmware in three different programming lan-
guages - C, C++, and Rust - lies in the need to comparatively evaluate the
performance and characteristics of these languages within the Internet of Things
(IoT) domain. Given the complexity and diversity of IoT applications, it is essential
to identify the most suitable programming language for developing efficient, secure,
and reliable firmware.

• Firstly, the choice of programming language can significantly impact firmware
performance in terms of execution speed, resource consumption, and system
responsiveness. Each language has its characteristics in terms of memory
management, code optimization, and low-level operations support which can
directly affect the performance of a device. So, developing firmware in different
languages allows for an empirical comparison of each language’s performance
and the identification of any advantages or limitations that may influence
design and implementation choices.

• Secondly, security is a critical factor in an IoT domain (a reference to the
Section 2.2.2), considering the growing concern for data protection and the
vulnerability of connected devices. Programming languages differ in their
ability to prevent common vulnerabilities such as buffer overflow, code injection
and other security threats. Developing firmware written in C, C++, and Rust
allows the evaluation of each language’s robustness and resilience to attacks,
providing valuable insights to enhance the security of IoT devices.

• Lastly, code scalability and maintainability are crucial factors in IoT
firmware development, considering the complexity and the rapid evolution
of applications and technologies. Each language offers different features
and programming paradigms that can influence ease of development, code
modularity, and long-term maintainability.

4.2 Design and Structure
The library variants have been written in C, C++ and Rust, they all share the same
set of APIs and core structures. This means that, despite the syntactic differences

44

A dummy firmware for IoT

between the languages, the features offered and the operations performed by the
APIs remain consistent across all variants of libdevice. The focus is therefore on
describing the goals and structure common to all libraries, rather than on the
implementation specifics of each programming language.

The architecture of the libdevice delineates a conceptual framework designed to
simulate the behaviour of an IoT device firmware. While not intended for practical
implementation, this simulated environment serves as a valuable tool for deriving
fictitious firmware behaviours within an IoT domain.

4.2.1 Architecture
This section elucidates the overarching structure of the project, shedding light on its
components and the role they play in facilitating simulated firmware functionalities.

Modules

The libdevice structure revolves around components and APIs that imitate the
expected functionality of an IoT firmware, specifically for use in a smart home
setting. These APIs are contained within files.

1. Features: APIs, outlined in the feature module, extend the capabilities of the
simulated firmware beyond basic device control. From writing data to drives
to accessing network resources and interacting with peripherals like webcams,
these APIs simulate a wide range of functionality commonly associated with
IoT devices, allowing the exploration of various scenarios and use cases.

2. Device: The device module contains the APIs that simulate device control,
for example, those dedicated to managing the lamps.

APIs Features

• Write on Drive: The write on drive function is an essential process in storing
data on permanent storage devices, such as hard drives or flash memory. This
operation is crucial in various contexts and use cases. When a user saves
a file on their computer, its content is recorded on the hard drive or an
equivalent permanent storage device. In a smart-home environment, a user
can set up a personal profile by entering details such as name, preferences,
and personalized settings, which then the IoT device stores and manages.
Whenever a new smart device is added to the IoT ecosystem, its data, such as
a unique identifier, configuration information, and access permissions, must be
saved to the permanent storage device to ensure consistency and persistence
of information over time.

45

A dummy firmware for IoT

• Network Access: In the implementation, the function simply makes a GET
request to an Internet page to get its content. While this action may seem
basic, it exemplifies the interaction that IoT devices could have with the
external environment through the network. The ability to access and retrieve
data from external resources is essential for the operation of IoT devices that
must dynamically adapt to surrounding conditions and user needs.

• Access to the Webcam: The simulation function for accessing the webcam
holds significant importance across a diverse spectrum of application scenarios
for IoT devices, encompassing surveillance systems and audiovisual communi-
cation devices. A notable use case emerges within the realm of home video
surveillance systems. Considering ownership of a security-focused IoT device
for home protection when away, accessing the webcam enables environmen-
tal monitoring. Specifically, the device can be programmed to monitor its
surroundings, detecting any suspicious movements or unauthorized activities
within the home. When such anomalies are detected, the device can send
push notifications to a smartphone, allowing the user to stay informed and
take timely action.

• Accessing the Audio Driver: This function aims to simulate the use of
an audio device, typically used to reproduce a wide range of auditory signals,
ranging from simple tones to more complex voice commands. In the context
of practical applications, a frequent use case is represented by the use of
acoustic signals to notify significant events, such as the receipt of messages or
system notifications, thus contributing to enriching the user experience and
facilitating interaction with the device.
Within the library, this feature provides a direct but effective method to
evaluate the device’s sound output capabilities through a computer’s speaker
system. This is achieved by generating a short and distinctive acoustic signal,
lasting a few seconds, to provide a perceptible feedback to the user.
This implementation underscores the significance of auditory feedback in
device interaction. Transmitting audio signals plays an important role in
enhancing engagement and enabling intuitive communication with the user.

• Turning a Lamp On and Off: These functions have been designed to
provide an intuitive and direct mechanism to manage the status of the lamp,
represented by on for activation and off for deactivation.

Binary

Within libdevice, there is an additional file dedicated to the creation of dummy
firmware. This file consolidates various APIs from previous libdevice modules,
producing an ELF binary that emulates the behaviours of an IoT device. Through

46

A dummy firmware for IoT

the orchestration of device behaviours and feature interactions, the fake-firmware
file offers an environment for experimentation and assessment of diverse firmware
implementations.

4.2.2 Compilation and Deployment
Compilation and deployment are fundamental processes in software development:

• Compilation transforms source code into an executable format.

• Deployment distributes an executable into an operating environment for use.

These processes are essential for delivering functional software.

The focus is now on compiling the different variants of the libdevice. Additionally,
the implementation of a GitHub workflow is explored to automate all steps of
building and deploying firmware. This systematic approach aims to manage the
firmware development cycle efficiently, simplifying the compilation and deployment
of libdevice using standardized tools and procedures.

Compilation of the libraries

The compilation of different variants begins with project configuration through a
script called autorun.sh.

• In C/C++ this script, once executed, starts the project configuration and
compilation process, making use of the Meson compilation tool in tandem
with the Clang compiler for the C language version, and Clang++ for the
C++ language version. Meson is a build system that reduces the difficulty in
setting build parameters and retrieving dependencies.

• Compiling the Rust version is simplified by using Cargo, which acts as both a
package manager and a compiler for Rust. The build command has been used
to compile the project, resulting in a version with and a respective version
without debug symbols, using the --release option. The release option, in
addition to removing some debug symbols, optimizes the final binary ensuring
a more efficient implementation than the simple debug compilation.

This compilation methodology provides a comprehensive and organized overview,
managing the dependencies and ensuring that each libdevice variant is correctly
configured and compiled according to a series of specifications, whether the language
is in C, C++, or Rust.

47

A dummy firmware for IoT

GitHub actions workflow

A GitHub workflow (introduced in this Section 3.2.2) has been established to
automate the compilation and distribution process for various variants of the
dummy firmware. This workflow is detailed in two YAML files: build.yml and
deploy.yml. Upon a push event, these files outline a sequence of operations to be
performed one after the other.

The build.yml workflow primarily focuses on verifying the correct compilation of
the main variants of the dummy firmware. It is divided into three distinct steps:
build-cpp, build-c, and build-rust. Each of these steps is responsible for compiling
the C++, C, and Rust variants of the libdevice, respectively. Each phase includes
standard operations:

1. Cloning the code from the repository.

2. Installing necessary dependencies, including the Meson compiler and support-
ing libraries.

3. Configuring and compiling the project by executing the language-specific
autorun.sh script.

In addition to the previously mentioned compilation steps, deploy.yml includes
operations to compile all remaining variants:

• Statically and dynamically linked external dependencies.

• Stripped binaries.

• Non-compliant API behaviour.

These steps precede a crucial phase within deploy.yml, where the results of the
previous compilations, namely the Elf binaries, are distributed and released on
GitHub.
In summary, the implementation of these workflows aims to simplify and automate
the compilation and deployment process of the various variants of the dummy
firmware.

4.3 Dummy Firmware Variants
The implementation of variants within firmware satisfies a wide range of needs
and usage contexts. These variants, which encompass the management of exter-
nal dependencies, the presence or absence of debug symbols, and non-compliant
behaviours in APIs, are useful for an analysis of possible use cases. Furthermore,

48

A dummy firmware for IoT

we will explore the importance of each of these variants and their impact on the
construction and operation of firmware.

4.3.1 External dependencies management
Two main variants have been developed: statically and dynamically linked.
This fundamental difference affects how external dependencies have been managed
during the compilation process.

• In contexts prioritizing portability and independence from external libraries,
such as embedded environments or self-contained software distributions, stati-
cally linked libraries are preferred. They integrate all dependencies directly
into the executable file during compilation, ensuring complete self-sufficiency.

• Conversely, in scenarios requiring flexible dependency management or reduc-
tion of executable file sizes, like resource-constrained systems or large-scale
application distributions, dynamically linked libraries offer a more suitable
alternative. They require access to external libraries during program execution,
providing flexibility and aiding in reducing the size of the executable file.

In the specific context of C and C++ variants, significant challenges have emerged
in producing a statically linked version, mainly caused by retrieving and compiling
dependencies during the building phase. In particular, difficulties have been
encountered with libraries involved in interfacing with audio devices and accessing
the Internet. These libraries presented only dynamic dependencies to internally used
libraries, making it impossible to obtain a static version of the dependencies during
compilation. As a result, we have reduced the implementation of static libdevice
variants written in C and C++, eliminating the use of those dependencies and
limiting the libraries to a minimalist variant. These contain only the features which
do not require compiling external dependencies: write on a drive and access the
webcam. Figure 4.2 illustrates the cases of static variants of libdevice implemented
in Rust and the dynamic case implemented in C.

4.3.2 Stripped binaries
During the compilation and deployment, another considered variant provides the
absence of debug symbols. Debug symbols are additional information embedded
into the source code during compilation for analysis and debugging. These include
variable names, function names, and code structure information. Obtaining versions
of the code without these symbols is crucial to emphasize their significance in
the analysis. Their absence renders detailed analysis of the binary impractical,
as compiled programs lose references essential for identifying and understanding
specific code segments during execution. Consequently, a stripped binary has

49

A dummy firmware for IoT

cargo

meson

libdevice-rust

libdevice-C

external
dependency

external
dependency

dummy-firmware-device Compilation Time

RUST
dummy firmware

C
dummy firmware

Execution Time

Static
Linking

Dynamic
Linking

Figure 4.2: Example of dummy firmware workflow

been produced, where debug symbols and non-essential information are removed.
This process notably reduces the size of the executable file, enhancing efficiency
and security. Eliminating this information helps safeguard sensitive data within the
source code, such as debug strings, access tokens, or authentication information,
which could be exploited if present in publicly distributed binaries.

On the other hand, retaining debug symbols, although it increases the size of
the binary, offers several significant advantages. This detailed information can be
leveraged when analyzing software for a better understanding of its structure and
internal workings. In this context, the DWARF format provides an organized
structure for storing useful data, such as variable names, data types, and other
program structure information. This format is used in the field of debugging to
represent detailed information in executable files.

4.3.3 Non-compliant API behaviour
A final variant of the firmware has been created to provide APIs that deviate from
the expected behaviours defined in the main variants. This branch focuses on
generating situations where functions, while executing their intended operations,
exhibit unexpected or undesirable behaviour. For instance, functions responsible
for file writing may initiate network operations, such as sending files to remote
platforms. Similarly, a webcam access function might redirect image streams to
unexpected network destinations. These scenarios may represent anomalies in the

50

A dummy firmware for IoT

API’s behaviour, potentially indicating vulnerabilities or programming errors.

4.4 Final Remarks
In conclusion, the development of the Dummy-Firmware-Device represents an
important element for the future analysis of IoT firmware. Its implementation,
through the definition of the libdevice, offers a reliable and accessible means of
replicating firmware behaviour across different platforms and satisfying specific
application needs. By creating variants of the libdevice in C, C++, and Rust, a
complete framework for IoT emulation has been established. Providing dummy
firmware variants with statically and dynamically linked libraries, along with
variants for including or removing debug symbols, improves versatility in analyzing
the resulting ELF binaries. Furthermore, the introduction of a variant that shows
non-compliant API behaviour highlights the importance of evaluating firmware in
potentially vulnerable scenarios.

51

Chapter 5

A tool for firmware
certification

5.1 Introduction
The landscape of IoT, despite its advantages in terms of efficiency and convenience,
is often plagued by concerns regarding the security and reliability of connected
devices and systems. Particularly, the lack of standardization represents a significant
gap in this context [19]. This deficit creates an environment where the security and
reliability of IoT products can be compromised, as there is no formal guarantee
regarding the quality and compliance of the firmware used.

Certifying firmware for IoT devices could address this issue, offering numerous
advantages.

• Firstly, certification would allow consumers to easily identify products that
meet certain security and reliability standards. This would help ensure greater
peace of mind for end-users, while simultaneously reducing the risk of vulner-
abilities and security breaches associated with uncertified firmware.

• Moreover, certification would positively impact the practice of IoT software
development. Developers would be encouraged to allocate more resources to
secure coding and code quality verification. This would enhance the robustness
and resilience of firmware, reducing the likelihood of critical errors or security
vulnerabilities.

52

A tool for firmware certification

• Lastly, firmware certification could contribute to promoting greater trans-
parency and accountability in the IoT ecosystem. Developers would be
required to accurately document the functionalities and behaviours of their
firmware, enabling better understanding and evaluation by end-users and
regulatory bodies.

In summary, firmware certification is crucial for creating a safer, more reliable,
and responsible IoT environment. The implementation of certified standards and
processes could improve the quality of IoT products.

5.1.1 ELF binary analysis
In the context of firmware certification for IoT devices, a important aspect is the
analysis of ELF (Executable and Linkable Format) binary, as previously explained
(see Section 2.3.3). This section aims at introducing such analysis, highlighting its
advantages and disadvantages, as well as the rationale behind its consideration.

As mentioned in the introductory chapter (see Section 2.3.2), IoT firmware rep-
resents a fundamental component for Internet of Things (IoT) devices, defining
itself as the software incorporated directly into the hardware device. This firmware,
closely linked to the peculiarities of the IoT environment, requires particular atten-
tion to ensure security and reliability, given the extensive interconnection and data
collection involved.

Motivations for analyzing ELF binary

Analyzing ELF binary files offers numerous advantages in the context of IoT
firmware certification.

• Firstly, this format is widely used in Unix-like operating systems, particularly
Linux, making it a natural choice given the widespread adoption of such
systems in the IoT ecosystem. Figure 5.11 shows the great dominance of the
Linux operating system as a preference in this context.

1Copyright (c)2018, Eclipse Foundation, Inc. | Made available under a Creative Commons
Attribution 4.0 International License (CC BY 4.0)

53

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

A tool for firmware certification

Figure 5.1: Linux dominates the scene with 71.8% of users preferring it.

• Additionally, ELF binary files contain detailed information about program
structures and functionality, providing a comprehensive overview of the
firmware and potential points to examine.

– Advantages: ELF binary analysis enables the examination of firmware at
a lower level, providing a detailed view of program instructions and data
structures. This approach allows for the identification of potential security
vulnerabilities, understanding firmware behaviour, and ensuring compli-
ance with security standards and development policies. Furthermore, ELF
binary analysis can facilitate the creation of preventive measures and
vulnerability correction, thereby improving the overall security of IoT
firmware.

– Disadvantages: However, ELF binary analysis may present some disad-
vantages, including the complexity of program structures and the need
for specialized skills to conduct a thorough analysis. Additionally, ELF
binary analysis may not reveal all vulnerabilities present in the firmware,
necessitating the adoption of complementary approaches to ensure a
comprehensive security assessment.

54

A tool for firmware certification

5.1.2 Preliminary approaches
The developmental trajectory of the manifest-producer tool started with a prelimi-
nary analysis aimed at probing the inherent challenges associated with analyzing
ELF binaries within the context of certifying firmware for IoT devices. In this phase,
the use of tools such as radare22 and objdump3, which enabled an exhaustive
analysis of the dummy firmware variants, was crucial. This preliminary analysis
method facilitated comprehension of the file structure, enabling the identification of
areas relevant to firmware certification. Specifically, the analysis, initiated through
code disassembly4(see Section 2.3.3), focused on system calls, deemed crucial
in clarifying the firmware’s authentic behaviour. Indeed, system calls allow user
programs to access functionality that requires access to operating system priv-
ileges, such as file and memory management, communication with I/O devices,
and many other operations. However, despite the granular control offered by the
analysis with the cited tools, the imperative need to adopt an automated solution
has emerged, given the laboriousness and impracticality associated with this ap-
proach. Furthermore, it is important to note that since Rust has been chosen as
the programming language for the development of the manifest-producer tool (for
reasons related to the characteristics of the language explained in Section 3.2.1),
the tools radare2 and objdump do not offer adequately supported crates for direct
integration within a Rust program. Consequently, it was not possible to implement
the manifest-producer directly using the workflow of these tools to obtain references
to the various system calls during the analysis of the binaries.
After a comprehensive preliminary analysis, two primary approaches for ELF binary
analysis have been delineated: static analysis and dynamic analysis.

Static analysis

Static analysis entailed the exploration of two distinct methodologies.

1. The first method conceived involved the use of hexadecimal patterns:
they make it possible to identify and compare particular byte sequences in
a hexadecimal representation, which is useful in this context for identifying
specific behaviour representing system call instructions. However, this strategy
was immediately recognized as complex and onerous in terms of computational
resources, as it required the generation and management of a large corpus

2Radare2 is a complete framework for reverse-engineering (ref.2.3.3) and analyzing binaries.
3objdump is a program for displaying various information about object files on Unix-like

operating systems.
4A disassembler is a computer program that translates machine language into assembly

language.

55

https://en.wikipedia.org/wiki/Radare2
https://en.wikipedia.org/wiki/Objdump
https://en.wikipedia.org/wiki/Disassembler

A tool for firmware certification

of hexadecimal models to cover the multiple architectures supported, as not
all share the same syscall patterns. Moreover, the requirement to keep these
models constantly updated, to adapt them to changing architectures, would
involve considerable effort. For example, considering the syscall write in
x86-64, we could identify a possible hexadecimal pattern as 0xB801 0F05,
where:

• B8 01 corresponds to mov eax, 0x01, where the assembly instruction
mov loads the syscall write, represented by the number 01, into the eax
register. By convention, the system associates a positive integer with each
syscall.

• 0F 05 represents the syscall instruction, which may differ depending on
the architecture.

However, recognition of this pattern alone may not be sufficient to reliably
identify the syscall, as there may be other instructions in the code between
the one that loads the syscall number into the appropriate register and the
one that invokes it, shown in the example above. Therefore, analysis based
on hexadecimal patterns requires careful consideration of context and may be
prone to errors if not implemented with attention and a thorough understanding
of the binary code.

2. The second method was to create a system call mapping table, which is a
systematic approach to correlate system call numbers with their respective
names. As explained in the previous point, by convention the operating system
uses positive integers as identifiers for the various syscalls. Pseudo-code 5.1
shows an example mapping table implementation.
This methodology inherently exploits the insights from the previous approach
by focusing on the .text section of the ELF file where the executable code is
contained. Through an analysis of this section, the mapping process establishes
a consistent association between the numerical identifiers of system calls and
their semantic representations. Compared with the use of hexadecimal patterns,
this approach significantly improves code readability and generalizability, as
it can be applied to different architectures (such as x86, x86-64, ARM, ...)

Listing 5.1: Pseudo-code that maps the syscall number to its name.
1 c r e a t e a new l i s t c a l l e d syscal l_names
2 add (" wr i t e " , 0x01) to the syscal l_names l i s t
3 add (" sendto " , 0x44) to the syscal l_names l i s t
4 add (" recvfrom " , 0x45) to the syscal l_names l i s t
5 // Add more system c a l l s
6

56

A tool for firmware certification

without requiring substantial modification or adaptation. However, despite
the inherent advantages, it is important to note that the possible absence of
a system call in the mapping table could result in incomplete categorization,
compromising the integrity of the analysis.

Dynamic analysis

Dynamic analysis is characterized by its ability to provide a probable and contex-
tualized representation of program behaviour by focusing on tracking system calls
during firmware execution using the strace tool5. However, the effectiveness of
this approach is closely related to the availability and functionality of strace in the
target system. The presence of strace and its ability to provide interpretable output
play a crucial role in determining the accuracy and usefulness of the dynamic
analysis.
Another significant aspect is that dynamic analysis records the execution flow of
a single firmware instance. Therefore, it omits consideration of every possible
alternative path that other instances might take in different contexts or with
different inputs. This implies that although dynamic analysis provides realistic
and immediate data, its coverage is inherently limited. To obtain a complete and
thorough understanding of firmware behaviour, it may be necessary to run many
instances to explore all possible combinations of scenarios and input configurations.

5.1.3 Definitive analysis
Preliminary analyses aimed at comprehending the structure of ELF files and
configuring an analysis to identify suitable parameters for certification highlighted
the necessity for a more precise and targeted methodology. In particular, greater
emphasis has been placed on the implementation of individual public APIs rather
than only relying on the entire firmware execution. This approach allows the
analysis to focus on specific code blocks, thereby enhancing the granularity and
precision of the evaluation, and enabling the division of firmware functionalities
among different APIs. Given their significant contribution to the analysis, they
have thus been recognized as important parameters for firmware certification.
This orientation of the analysis towards a more static view suggests not only the
identification of the main functions but also the identification of their memory
addresses, thus enabling the correct disassembly of the code and a detailed analysis
of system calls. Furthermore, in the context of dynamically compiled firmware (see
section 4.3.1), the importance of identifying library function calls has been also
recognised.

5strace is a diagnostic and debugging utility for Linux.

57

https://en.wikipedia.org/wiki/Strace

A tool for firmware certification

5.2 How manifest-producer works
The manifest-producer tool, developed in Rust, is therefore designed to perform the
firmware certification process through ELF binaries analysis. Its primary objective
is to ensure firmware integrity and compliance through two key steps:

1. API Detection: Firmware developers must provide the ELF binary together
with a list of public APIs used in it. This list forms the basis for the analysis,
as each API is independently examined to assess its adherence to the intended
behaviour.

2. Behavioral Analysis: Once the APIs provided by the developer are identified,
the tool disassembles its code and searches for system calls and external library
functions, evaluating whether the APIs align with the expected behaviour or
exhibit undesired characteristics.

Through this process, the manifest-producer tool enables validation of firmware
compliance with security, reliability, and performance standards. Ultimately, it
generates three distinct manifests in JSON format, which encapsulates the extracted
and processed information.

In essence, the manifest-producer serves as an instrument in binary firmware certi-
fication, offering a systematic approach to validate aspects of firmware behaviour
and foster a safer IoT ecosystem.

5.2.1 API Detection
The first point of the analysis aims to carefully examine the public APIs provided
by a firmware developer, in order to assess their adherence to specifications and
ensure their integrity and compliance. Initially, the tool checks for the presence of
the debug sections within the ELF file. The debug sections contain useful data for
analysis purposes, including symbols representing variables, functions and other
code entities. This information is essential for identifying and understanding the
structure of a firmware.

Once these sections have been confirmed, the tool proceeds to retrieve the list
of APIs provided by the firmware developer. This list, consisting of a set of
strings representing the names of the APIs, is essential for guiding the search
process within the symbol table6 of the ELF file. The symbol table in a binary
file contains information on variables, functions and other code entities, along

6symbol table holds information needed to locate and relocate a program’s symbolic definitions
and references.

58

https://refspecs.linuxbase.org/elf/gabi4+/ch4.symtab.html

A tool for firmware certification

with their memory addresses. This information is used by the operating system
to link program symbols to data and executable code during program execution.
Therefore, examining the symbol table makes it possible to identify functions and
variables in the firmware.

The tool then scans the symbol table, examining each symbol to determine whether
it represents a function and is associated with a valid code section. These criteria
are crucial for distinguishing valid functions within the firmware. For each symbol
that meets these criteria, the tool checks if the function name matches one in the
API list. If there is a match, it is an API to be analysed and then the tool obtains
the starting address and size of the associated code block.

At the end of this operation, an appropriate data structure contains the information
for each API in the list:

• Name

• Starting address

• End address

In addition, the structure provides the possibility of recording each system call
associated with an API, thus offering a broader context for evaluating the behaviour
and API usage in the context of a firmware.

In conclusion, the process above represents the first fundamental step in firmware
certification process, allowing the identification of public functions within the code,
and thus providing a solid base for the subsequent stages of firmware analysis.

5.2.2 Behavioural analysis
The analysis process continues using the previously collected information stored in
the dedicated data structure. This process is mainly divided into two phases:

1. Code Disassembly: During this phase, the process focuses on analyzing the
executed instructions to understand the operations performed by a function.
This step translates the machine code into readable and understandable
instructions, i.e. assembly code. This translation simplifies the analysis of the
program execution flow and facilitates the identification of system calls.

In particular, attention is focused on the identification of two specific instruc-
tions: call and lea.

• call instruction receives a single piece of information: the address of the
function to invoke. This can happen in two ways: either by directly
passing the address or by loading it into a register. For example, we can

59

A tool for firmware certification

express a call instruction as call 0x1352 or call rax, where the function’s
address is either directly specified (0x1352) or has been previously loaded
into the RAX register.

• lea instruction, short for load effective address, is used within the
code to load the address of a function which will be engraved by the
program into a specific register. For example, a lea statement might
have the following syntax: lea 0x6452(%rip), %rax. In this context, lea
instruction loads into the destination operand, the rax register, an offset
arithmetically added to the rip register.

These two instructions are fundamental in the analysis of the disassembled code,
since they allow to identify all system calls made by a function, providing
a fundamental overview of the operations performed by an API and its
interactions with system libraries and the operating system.

2. System Call Identification: During this phase of the analysis, system
calls occurring within a function are detected and logged. These calls are
significant for the analysis as they offer insights into the API’s behaviour. For
instance, the detection of the sendto system call implies potential involvement
in network operations, as sendto is typically used for transmitting data within
a network environment.

In this context, it is essential to acknowledge the potential scenario where
certain system calls are not identified. This could occur when API operations
are conducted within functions called from external libraries. Even in these
situations, the tool can obtain the name of the function associated with the
external library called by the API. Once the addresses have been obtained
from lea or call instructions, it becomes crucial to consider how the external
dependencies are managed a building process. This analysis highlights two
alternatives:

• For static linking, identifying the name of the called function associated
with the address is a relatively simple process. This is because, as
highlighted in section 4.3.1, the code of the functions is contained within
the .text section of the binary. This structure simplifies the access to
the various function allocations, allowing the tool to directly consult the
symbol table. From there, it is possible to retrieve the index corresponding
to the string table, providing the exact name of the function invoked by
an API. This process is clearly illustrated in Figure 5.2, which details its
operational flow.

• In the dynamic linking case, the process is theoretically more cum-
bersome. As described in section 4.3.1, during dynamic linking, not all

60

A tool for firmware certification

.text section

API code
block

Startingaddress

Symbol table

Index

String table

API name

Figure 5.2: Example of function name extraction.

addresses are resolved at compile time. This necessitates accessing the
Procedure Linkage Table (PLT)7 to retrieve the names of functions
from external libraries. These addresses are dynamically resolved at run-
time, making the process of identifying function names more intricate and
dynamic. To simplify this process, the tool adopts a different strategy.
First, identify the .plt section containing the PLT table. Next, it loads all
the addresses associated with their names into a hash table. This design
choice significantly speeds up the search because the tool can perform a
simple query against the hash table rather than performing more complex
operations in terms of time and number of operations.

5.2.3 Observations
The following observations emerge from the analysis of the different firmware
produced by the dummy-firmware variants (described in chapter 4).

• Compiler Interpretation Variants: Compiler behaviour varies significantly
depending on the programming language used to create the firmware. In
particular, a clear distinction in behaviour was noted between firmware written
in Rust and those in C/C++. In the case of Rust firmware, the compiler
tends to predominantly use the lea instruction for function calls. On the
other hand, in the case of C/C++ firmware, the compiler tends to perform
some optimizations, such as function inlining, that directly embed a function
address in the call instruction.

• External libraries functions: As previously discussed, programs often

7PLT is a table used to manage calls to functions present in dynamically linked libraries.

61

A tool for firmware certification

use functions from external libraries to accomplish specific tasks. While
the manifest-producer can detect these calls, the analysis primarily centres
on the names of the external library functions, without delving deeply into
their implementation to identify system calls. This limitation is driven by
the potential complexity that may arise from a detailed analysis of library
functions. For instance, these might call additional functions, leading to
increased analysis depth.

• Code Mangling: Code mangling is a technique used by compilers to distin-
guish between functions and variables with the same name within a program.
When a compiler encounters a function declaration, it generates a unique
name for that function incorporating information about the type and number
of function parameters, as well as the return type and other characteristics.
For example, in C++, the function name writeOnDrive could be changed
to _Z11writeOnDrivev, allowing a distinction between various writeOnDrive
functions. For analysis purposes, the APIs provided must not be mangled
to facilitate their identification. Additionally, the tool can demangle the
calls identified during code disassembly, enabling a clean flow of syscalls and
functions to be obtained.

5.3 Manifest Generation
The generation of JSON manifests represents the last phase in the binary analysis,
as it allows the essential information obtained from previous firmware analysis
steps to be represented in a structured way. These manifests provide an important
overview of the salient features of the analyzed ELF file and its interactions with
system calls and library functions.

5.3.1 Manifest for basic information
Manifest for basic information, is a starting point for understanding the firmware.
It provides general information about the ELF file, such as its file name, its
programming language used, its target architecture, and its dependency linking
type, static or dynamic. Additionally, it lists all public APIs identified in the code,
providing a preliminary indication of the functionalities offered by the firmware.
Figure 5.2 shows what base information has been reported within the manifest
during an analysis.

62

A tool for firmware certification

Listing 5.2: Some basic information obtained from the analysis.
1 {
2 "APIs found": [
3 " accessWebcam ",
4 " accessNetwork ",
5 " writeOnDrive ",
6 " turnLampOff ",
7 " turnLampOn "
8],
9 " architecture ": "x86-64",

10 " endianness ": " Little ",
11 " entry_point ": "0x1b0f0",
12 " file_name ": "fake -firmware -c- dynamic ",
13 " file_type ": " Dynamic Library ",
14 " header_size ": 64,
15 "link": " dynamically linked ",
16 " programming language ": "C99"
17 }
18

5.3.2 Manifest for syscall flow
Manifest for syscall flow, provides a detailed overview of the system calls and library
functions associated with each API identified in the firmware. This document
provides a structured sequence of the operations performed during the execution
of the various public functions. The peculiarity of this static analysis lies in its
ability to comprehensively capture the API interactions with the system libraries
and operating system, considering all possible execution paths that may not be
explored whether a single dynamic instance of the program is used.

By representing this information, this manifest contributes to a detailed and
comprehensive understanding of the API’s behaviour and its impact on the execution
environment. Such static analysis is essential for revealing dependencies and
interactions of the API with the underlying system, providing a solid base for
evaluating the security and performance of a firmware. Figure 5.3 shows which
system calls and functions have been identified in the code of accessNetwork API
during an analysis.

63

A tool for firmware certification

Listing 5.3: Call flow obtained for the accessNetwork function.
1 {
2 "name": " accessNetwork ",
3 " syscalls ": [
4 " curl_global_init ",
5 " curl_easy_init ",
6 " curl_easy_setopt ",
7 " curl_easy_perform ",
8 " curl_easy_strerror ",
9 " fprintf ",

10 " curl_easy_cleanup ",
11 " fprintf ",
12 " curl_global_cleanup "
13]
14 }
15

5.3.3 Manifest for features
Manifest for features, classifies APIs according to their functionality offering a
structured overview of firmware’s capabilities. This categorization occurs through a
systematic process that evaluates the system calls and library functions associated
with each API, identifying the tasks performed and grouping them into meaningful
categories.

The categorization process is based on a predefined set of functional categories,
such as file manipulation, network access, device management, encryption. Each
category is associated with a set of keywords or substrates that indicate the presence
of specific functionality within system calls and library functions.

Once a match has been found, APIs are categorized based on their features. For
example, when an API contains file manipulation system calls, it will be categorized
under File Manipulation. This approach helps to categorize APIs based on what
they can do, giving a clear picture of the firmware’s main features. Figure 5.4
shows how APIs have been categorized during an analysis.

64

A tool for firmware certification

Listing 5.4: Categorizations for the various functions identified.
1 {
2 " accessNetwork ": [
3 " Network Access "
4],
5 " accessWebcam ": [
6 " Device Access "
7],
8 " writeOnDrive ": [
9 "File Manipulation ",

10 " Device Access "
11]
12 }

5.4 Structure
manifest-producer is the result of a development process aimed at ensuring the
robustness and scalability of the tool. Due to the use of the ci-generate, it was
possible to start the initial project configuration, with a modular structure that
made the code maintainable, with a built-in Continuous Integration flow.

5.4.1 Modular approach
The heart of the manifest-producer lies in its modular architecture, which divides
the system into independent components, each of which plays a specific role within
the ELF file analysis process. This approach allows for a separation of concerns8,
making it code understanding and changes. Furthermore, modularity promotes the
reusability of components, allowing new functions to be implemented with minimal
effort.

Each module is responsible for a set of features. The main modules include:

• manifest_creation: This module deals with manifest creation, i.e. a struc-
tured representation of the information extracted from the analysis of ELF files.
These manifests are essential to understand the behaviour and dependencies
of the analyzed software.

• api_detection: This module deals with the detection of APIs within the
analyzed ELF files. The identified APIs are fundamental to understand what

8Separation of Concerns is a software design principle that suggests dividing a system into
separate modules, each of which deals with a single responsibility.

65

A tool for firmware certification

are the features offered or used by the software.

• cleanup: This module manages data cleaning and analysis of system call
flows, thus helping to guarantee the correctness and integrity of the extracted
information.

• elf_utils: This module provides utility functions for manipulating ELF files,
such as reading and parsing its metadata.

• dwarf_analysis: This module deals with the analysis of DWARF data
within ELF files, which provides detailed information on software structure
and functionalities.

• code_section_handler: This module handles the extraction and disas-
sembly of API code sections within ELF files, taking care of both static and
dynamic linking.

• plt_mapping: This module returns a mapping of PLT function addresses to
their respective names.

In short, each module contains a series of components that work together to perform
specific tasks related to their specialized domain within the ELF file analysis process.
This modular approach allows for better organization and structure of the code,
facilitating the maintenance and scalability of the manifest-producer.

5.4.2 Continuous Integration
The manifest-producer project implements a Continuous Integration (CI) system
to evaluate the quality of software and facilitate collaborative development.

The CI process is triggered whenever there are pushes on the main branch or when
pull requests are opened. The system uses GitHub Actions to perform a series of
predefined steps, which include:

1. Static analysis of the code using Clippy and Rustfmt to ensure compliance
with formatting standards and catch common mistakes.

2. Compiling the code to verify that there are no compilation errors and generating
documentation to provide clear guidance on the use of the various software
components.

3. Running automated tests and measuring code coverage to identify untested
parts of the code and ensure good test coverage.

4. Verifying project dependencies for being up-to-date and secure, because de-
pendencies may be subject to change over time.

66

A tool for firmware certification

5. Using tools to detect and fix potential security problems such as memory leaks,
race conditions, and memory access errors.

Using a CI ensures software quality in a continuous and automated way, facilitating
the development process and reducing the risk of introducing errors within the
code. This process automatically runs a series of tests whenever changes are made
to the source code, ensuring that the software remains stable and functional.

5.4.3 Test Development
The manifest-producer project uses unit testing and snapshot testing as part of
the software development process. Unit tests check the behaviour of individual
units of code, while snapshot tests, which are a form of integration testing, test the
behaviour of the entire system by integrating and testing different units of code
together.

Using tests in manifest-producer, as we did for ci-generate (reference here 3.4),
proves extremely useful for several reasons:

• Ensure Software Correctness: Testing allows to identify and correct errors
in code promptly, ensuring that the software works as intended.

• Facilitate Refactoring: The presence of a complete set of tests allows to
make changes to the code with greater confidence, as it is possible to quickly
check whether the changes introduce errors or break existing functionality.

• Ensure Code Quality: Unit tests and snapshot tests provide immediate
feedback on code quality, encouraging high-quality development practices and
writing robust and maintainable code.

• Support Project Continuity: Due to testing, software reliability can be
maintained over time, enabling the integration of new features and enhance-
ments.

67

A tool for firmware certification

5.5 Final Remarks
The manifest-producer tool represents an alternative in the certification process of
firmware for IoT devices, offering a systematic approach to analyze ELF binaries
and generate comprehensive manifests which encapsulate information. Through
API detection and behavioural analysis, the tool ensures firmware integrity, and
identification of potential vulnerabilities. The modular architecture and continuous
integration process ensure code quality, maintainability, and reliability.

The analysis of ELF binaries and the generation of manifests provide valuable
insights into firmware functionality, system dependencies, and interactions with
the underlying environment.

68

Chapter 6

Performance analysis

6.1 Introduction
The performance analysis of the manifest-producer tool aims to evaluate its effec-
tiveness in analyzing a variety of ELF files. This evaluation has been conducted
by running the tool on a diverse selection of binaries, including dummy-firmware
variants (introduced in Chapter 4) and other known projects such as FFmpeg,
xi-core and OpenCV. The tools mentioned are open-source, meaning their source
code is publicly available, enabling access to APIs for analysis through the manifest-
producer.

• FFmpeg1 has been chosen for its broad utility in digital media manipulation.
The complexity of the source code, primarily written in C with some critical
parts optimized in assembly, provides an opportunity to assess the tool’s
performance in scenarios where complexity may impact the analysis of ELF
files, making it a relevant study subject to evaluate the performance of the
manifest-producer tool in practical contexts.

• OpenCV2 has been included in the analysis to examine the performance of the
manifest-producer on ELF files involving complex computational calculations
and intensive processing.

• The xi-core3 project, being the core of the Xi text editor, represents an
opportunity to evaluate the tool’s capabilities in analyzing ELF binaries from

1Github repository:https://github.com/FFmpeg/FFmpeg
2GitHub repository: https://github.com/opencv/opencv
3GitHub repository: https://github.com/xi-editor/xi-editor

69

https://github.com/FFmpeg/FFmpeg
https://github.com/opencv/opencv
https://github.com/xi-editor/xi-editor

Performance analysis

projects that require optimal performance and efficient management of system
resources.

As regards the binaries obtained from the dummy-firmware variants, the static and
dynamic versions of each of the programming languages used have been taken into
consideration:

• C-static and C-dynamic for the respective versions written in C

• Cpp-static and Cpp-dynamic for the respective versions written in C++

• rust-static and rust-dynamic for the respective versions written in Rust

This broad range of ELF binaries provides a comprehensive methodology for
evaluating the tool’s performance in real-world contexts, allowing for a detailed
understanding of its strengths and possible areas for improvement.

Selected tools

Two performance analysis tools, Hyperfine4 and Heaptrack5, have been used to
conduct a thorough analysis.

• Hyperfine, a benchmarking tool6, plays a role in analyzing the performance of
the manifest-producer. It measures the execution times of programs, providing
valuable insights into the duration of the analysis for each considered ELF
binary file. Hyperfine’s repeated benchmark runs offer an overview of the
manifest-producer tool’s performance, particularly regarding its speed and
responsiveness.
Hyperfine comes with a default configuration, including a warmup of 100
iterations followed by 1000 actual runs. This setup ensures a stable execution
environment, minimizing the impact of any initial performance variations due
to initialization processes or caching. Consequently, the data obtained through
Hyperfine offers a dependable understanding of the manifest-producer tool’s
performance, effectively eliminating disturbances and providing a solid base
for comparative analysis of execution times among different ELF binaries.

• Heaptrack is a performance analysis tool designed to provide an insight
into memory usage during program execution. This tool plays a role in the
performance analysis of the manifest-producer tool. It enables monitoring and

4GitHub repository: https://github.com/sharkdp/hyperfine
5GitHub repository: https://github.com/KDE/heaptrack
6A benchmark is a method used to evaluate the performance of a computer system or a

software.

70

https://github.com/sharkdp/hyperfine
https://github.com/KDE/heaptrack
https://en.wikipedia.org/wiki/Benchmark_(computing)

Performance analysis

evaluating memory allocation in the software under examination by recording
information about memory consumption peaks, temporary allocations, and
any memory leaks. This ability to identify memory management issues is
essential for accurately and thoroughly assessing the efficiency of memory
allocation in a software.

6.2 Data Analysis
Analysis of data collected from benchmarks using Hyperfine and memory allocation
statistics obtained via Heaptrack provides a basis for understanding the performance
and memory usage of the manifest-producer tool on considered binaries.

6.2.1 Time Efficiency
In analyzing the performance of the manifest producer tool, an investigation has
been conducted to explore the correlation between the size of the analyzed binaries
and the time required by the tool to process those binaries. This comparison
intends to provide a more comprehensive and detailed view of the tool’s behaviour in
response to binaries of various sizes, divided according to the different programming
languages used.

C Language

Figure 6.1: Comparison between binaries written in C.

As can be seen from the graph in Figure 6.1, a significant variation in file dimension

71

Performance analysis

can be observed when analysing ELF files written in C language. However, the
analysis of the data in the chart, with particular reference to FFmpeg and C-static,
reveals that file size does not necessarily determine a longer execution time. For
example, when comparing FFmpeg, which is 409.9 kB in size, with C-static, which
is 920.1 kB, we notice that FFmpeg takes almost twice as long to execute compared
to C-static, despite its smaller size. They are around 6.3ms for FFmpeg and
3.3ms for C-static. This behaviour can be attributed to several factors including,
for example, the complexity of the data structures present in the binary, which
require more in-depth analysis operations and therefore longer execution times by
the manifest-producer. On the other hand, despite its large size of 18.2MB, the
C-dynamic file demonstrates a relatively modest execution time, hovering around
16ms, as depicted in the graph.

C++ Language

Figure 6.2: Comparison between binaries written in C++.

In the context of C++ binaries, from the graph in Figure 6.2, a correlation between
file size and execution time is noted, albeit less pronounced than for C binaries.
The tool can process C++ binaries uniformly despite their size. However, it is
noteworthy that the OpenCV project, despite its small size likely attributed to
code optimization, exhibits a considerable execution time. This emphasizes the
importance of taking into account the practical circumstances or situations in which
the tool is used, rather than only focusing on theoretical or ideal conditions. Even
moderately sized binaries can require significant parsing time, especially if they
contain complex, optimized code.

72

Performance analysis

Rust Language

Figure 6.3: Comparison between binaries written in Rust.

In the context of analyzing Rust binaries, an interesting dynamic emerges between
file size and execution time. As can be seen from the graph in Figure 6.3, the
relationship does not follow a linear model, contrary to C/C++ observations.
Although Rust binaries have larger dimensions (all above 50MB), there is no direct
correlation between these and the average time required for the analysis. This
phenomenon is evident in the collected data, as Rust binaries do not show a
proportional increase in execution time relative to their size.

As an example, the results of the analysis of the rust-static and xi-core files are
particularly significant: despite the similar size of these two files, the execution
times are comparable. This consistency highlights the tool’s ability to manage
analysis operations efficiently, regardless of variations in the Rust binaries.

6.2.2 Memory Evaluation
In performance analysis, the evaluation of memory allocation offers an investigation
into the behaviour of the tool in different operational scenarios. Through the use
of tools like heaptrack, it is possible to capture relevant data on four key metrics:

• Allocations denotes the total number of memory allocations during pro-
gram execution. This measurement reveals the workload related to dynamic
memory management, providing insight into the complexity of allocation and
deallocation operations within the code.

73

Performance analysis

• Temporary allocations. These allocations are created and released during
program execution in a short amount of time. Monitoring this parameter
enables the identification of inefficiencies in temporary resource allocation,
highlighting potential memory waste or suboptimal practices.

• Peak heap memory consumption. The peak memory allocated to the
heap during program execution is a useful metric for evaluating a program
of maximum memory requirements. This information can help evaluate how
efficiently the program manages resources and adjusts to changing workload
demands.

• Peak RSS (Resident Set Size). It represents the maximum amount of
physical memory (RAM) used by the program during execution, including
data, stack and heap. This parameter provides a general assessment of how
much memory the program is using, helping to understand its overall impact
on available resources.

C Language

Permanent
72.4%

Temporary
27.6%

Permanent
77%

Temporary
23%

Permanent
64.9%

Temporary
35.1%

File name: C-dynamic
Total allocations: 1327

File name: FFmpeg
Total allocations: 4385

File name: C-static
Total allocations: 170

Figure 6.4: C binaries allocations.

In the realm of C programming language, a discernible variance in performance
becomes evident across the diverse files subjected to analysis, shown in Figure
6.4. Notably, the FFmpeg file exhibits a pronounced disparity in allocations,
registering a substantial total of 4385 allocations in contrast to 1327 for C-dynamic
and 170 for C-static. This data unveils a distinct footprint characterized by
pronounced resource utilization and memory management activities throughout
program execution. Additionally, the percentage of temporary allocations relative
to total allocations within FFmpeg stands notably higher at 35.1%, contrasting
with C-dynamic’s 23.0% and C-static’s 27.6%. Such a metric suggests a heightened

74

Performance analysis

frequency in the generation and release of temporary resources within the program’s
execution flow.

File Size Memory Peak Peak (RSS) Allocations Temporary Allocations
C-static 920.1 kB 1.1 MB 9.8 MB 170 47

C-dynamic 18.2 MB 19.1 MB 28.7 MB 1327 305
FFmpeg 409.9 kB 1.8 MB 11.7 MB 4385 1538

Table 6.1: Allocation and memory peak data of binaries written in C.

Regarding memory peak metrics, in Table 6.1 it is possible to observe a series of data
collected. FFmpeg exhibits the lowest peak at 1.8MB, despite its elevated allocation
count. This observation might indicate proficient memory management practices
in the program, despite the vigorous allocation activity. However, FFmpeg’s peak
RSS presents a notably higher figure, reaching 11.7MB, indicative of a more robust
utilization of system resources. In comparison, despite its relatively larger size,
C-static showcases lower memory and RSS peaks compared to FFmpeg, with
respective values of 1.1MB and 9.8MB. On the contrary, C-dynamic, the largest file
in the analyzed group, exhibits the highest peak memory and peak RSS, reaching
19.1MB and 28.7MB, respectively. This aligns with its file size of 18.2MB and the
number of allocations made (1327), indicating a significant utilization of system
resources during execution.

C++ Language

Permanent
70.2%

Temporary
29.8%

Permanent
72.2%

Temporary
27.8%

Permanent
76.5%

Temporary
23.5%

File name: Cpp-dynamic
Total allocations: 2708

File name: OpenCV
Total allocations: 1831

File name: Cpp-static
Total allocations: 868

Figure 6.5: C++ binaries allocations.

In the context of C++ programming, Figure 6.5 shows a significant variation
in performance between the different analyzed files. In particular, Cpp-dynamic

75

Performance analysis

stands out for the highest number of allocations, totalling 2708, compared to 868 for
Cpp-static and 1831 for OpenCV. These data suggest marked memory management
activity and intense resource utilization during program execution. Furthermore,
both files, C-dynamic and OpenCV, show a significant percentage of temporary
allocations compared to the total, about 23% and 35.1% respectively. That denotes
a frequent cycle of generation and release of temporary resources in the analysis
execution.

File Size Memory Peak Peak (RSS) Allocations Temporary Allocations
Cpp-static 2.5 MB 3.0 MB 10.5 MB 868 259

Cpp-dynamic 7.3 MB 8.0 MB 17.9 MB 2708 753
OpenCV 177.3 kB 670.5 kB 10.7 MB 1831 406

Table 6.2: Allocation and Memory Peak data of binaries written in C++.

In Table 6.2 it is possible to observe data relating to memory peaks. Cpp-dynamic
file emerges with the highest peak at 8.0 MB, followed by Cpp-static at 3.0 MB
and OpenCV at 670.5 kB. This pattern may indicate a more aggressive approach
to memory management within Cpp-dynamic, likely due to its larger number of
allocations and relatively larger effective file size. However, it’s worth noting that
although the peak RSS of Cpp-dynamic is the highest at 17.9 MB, OpenCV exhibits
a peak RSS value of approximately 10.7 MB, which is significantly high relative
to its file size. This observation suggests a substantial consumption of system
resources during program execution.

Rust Language

Permanent
59.4%

Temporary
40.6%

Permanent
60.8%

Temporary
39.2%

Permanent
59.1%

Temporary
40.9%

File name: rust-dynamic
Total allocations: 1651

File name: xi-core
Total allocations: 728

File name: rust-static
Total allocations: 1013

Figure 6.6: Rust binaries allocations.

In the Rust language landscape, there is a significant trend towards generating
a large number of temporary allocations relative to total allocations, as visible
from the data provided by the chart in Figure 6.6. This inclination suggests a

76

Performance analysis

dynamic and security-oriented memory management model, which may require
a greater number of temporary allocations to guarantee program correctness.
In particular, rust-dynamic stands out for the highest percentage of temporary
allocations, followed by rust-static and xi-core.

File Size Memory Peak Peak (RSS) Allocations Temporary Allocations
rust-static 74.3 MB 76.4 MB 82.4 MB 1013 411

rust-dynamic 54.0 MB 55.3 MB 64.7 MB 1651 647
xi-core 74.6 MB 76.7 MB 85.9 MB 728 298

Table 6.3: Allocation and Memory Peak data of binaries written in Rust.

Among the Rust files considered, Table 6.3 highlights how rust-dynamic stands
out for the highest peak memory, recording a value of 55.3MB. Rust-static and
xi-core follow with memory peaks of 76.4MB and 76.7MB respectively. However, it
is interesting to note that rust-static and xi-core exhibit significantly higher RSS
peaks than rust-dynamic, reaching 82.4MB and 85.9MB respectively. According to
the data, Rust-Static and xi-Core seem to utilize system resources more intensively,
which could be attributed to the distinct management approach of the tool towards
statically linked programs.

6.2.3 Programming language comparisons
• In the direct comparison among different programming languages, the dy-

namically linked firmware of libdevice have been examined, as they exhibit
the same implemented features across all variants. The comparison between
rust-dynamic, C-dynamic, and Cpp-dynamic files reveals significant differences.
rust-dynamic shows the largest size at 54.0 MB, followed by C-dynamic at
18.2 MB and Cpp-dynamic at 7.3 MB. This variation may indicate differences
in code optimization among the programming languages. Regarding execution
times, Cpp-dynamic is the fastest at 10.7 ms, followed by C-dynamic at 15.8
ms and rust-dynamic at 43.6 ms. Interestingly, there is no direct correlation
between file size and execution times. While the file size-to-execution time
ratio in the case of the Cpp version may suggest increasing times with larger
file sizes, this is not confirmed in the versions written in C and Rust, which
exhibit accessible execution times despite their larger sizes. This suggests
that factors such as code complexity and resource management significantly
influence performance. Figure 6.7 shows the relationship between file size and
execution time just described.

77

Performance analysis

Figure 6.7: Comparison between libdevice variants

• The comparison between FFmpeg, OpenCV, and xi-core files aims to contrast
their different implementations and functionalities, along with their program-
ming languages. FFmpeg, with a file size of 409.9 kB, exhibits an execution
time of 6.3 ms, while OpenCV, with a smaller file size of 177.3 kB, shows
a faster execution time of 4.0 ms. In contrast, xi-core stands out with a
significantly larger file size of 74.6 MB, resulting in a longer execution time
of 34.7 ms. This disparity suggests that larger file sizes generally correspond

Figure 6.8: Comparison between real programs

78

Performance analysis

to longer execution times. However, it is interesting to note that, similar to
previous analyses, there is no significant increase in execution times as file
sizes increase, contrary to the trend observed for FFmpeg and OpenCV files.
The graph in Figure 6.8 shows this comparison.

• From the point of view of memory usage, it is interesting to note the trend
represented by the data collected through the memory peak and peak RSS
parameters. Despite the obvious differences in file sizes, a consistent pattern
emerges showing uniform growth ratios in both heap memory usage and
maximum physical memory usage. This trend is precisely illustrated in the
graph in Figure 6.9. For example, although FFmpeg and OpenCV are relatively
compact file sizes, their memory usage growth ratio is approximately equal to
that of the largest file size, xi-core. This suggests that, regardless of file size,
the tool tends to use memory consistently and predictably.

Figure 6.9: Memory usage comparison.

79

Performance analysis

6.3 Final Remarks
The performance analysis of the manifest-producer tool has provided a comprehen-
sive overview of its capabilities in analyzing a range of ELF files. The collected
data has demonstrated that file sizes are not the determining factor of program
execution times. For instance, in the case of files written in the C language, a
significant variability in execution times has been observed, which was not directly
proportional to file sizes.

Additionally, memory allocation analysis has revealed distinct resource utilisation
patterns among different types of ELF files. For example, when comparing files
written in C, C++, and Rust, it was observed that some exhibited a more efficient
resource management than others. However, it was interesting to note that de-
spite differences in programming languages and file sizes, the tool demonstrated
uniformity in performance across various contexts. This suggests a high level of
adaptability and robustness of the tool, capable of effectively handling various
types of ELF files regardless of their specific characteristics.

80

Chapter 7

Conclusions

This thesis has focused on the intricate challenges faced by developers in the realm
of IoT software development, with a particular emphasis on firmware for IoT devices.
It has examined the criteria necessary to ensure the security and reliability of such
software through certification processes.

A significant aspect highlighted by this research revolves around the paradigm of
Continuous Integration (CI) in software development. The introduction of the
ci-generate tool has shown new perspectives from developers’ point of view, offering
them the capabilities of automation, simplified configuration, and enhanced control
over their software projects.

Moreover, firmware certification assumes a role in validating the assertions made
by developers and guaranteeing the reliability of the software. It serves as a quality
assurance mechanism, verifying that the firmware operates as intended.

Central to this endeavour is the manifest-producer, which stands as an instrument
for conducting thorough evaluations of IoT firmware. A comprehensive analysis
of the essential characteristics embedded within binary files, enables us to ana-
lyze firmware components. Through the utilization of static analysis techniques
applied to ELF binaries, coupled with the generation of JSON format manifests,
the manifest-producer provides a clear and comprehensive representation of the
information required for firmware certification.

81

Conclusions

7.1 Future developments
To guide future work related to improving the manifest-producer tool, some signifi-
cant tasks can be defined:

• Integrate dynamic analysis with the current static analysis of the tool
to enrich the retrieved information and enhance the analysis’s accuracy. A
concrete example could be integrating strace functionalities to obtain the list
of syscalls belonging to a concrete instance of the binary being examined.

• To enhance the tool’s analytical capabilities, expanding its ability to under-
stand and analyse a broad spectrum of hardware architectures commonly
used in the context of IoT firmware is a possible way forward. This advance-
ment would allow the tool to also examine and interpret binaries compiled for
architectures other than those considered during its development, i.e. x86 and
x86-64, thus ensuring a more comprehensive coverage among IoT devices.

• The tool has been tested to analyse firmware mainly written in languages
such as C, C++, and Rust. However, it is important to note that there are
other programming languages used in the creation of firmware for IoT
devices, including Python, JavaScript, and Java. Therefore, to fully evaluate
the current capabilities of the tool and identify any gaps or limitations in the
handling of these languages, it is crucial to analyze firmware written in these
languages. This would enable further development of the tool, improving its
ability to analyse and understand a wider range of binaries, and thus making
it more effective in the IoT firmware certification process.

• Vulnerability analysis targeting specific threats identified in IoT devices is
a crucial approach to ensuring the security and resilience of such systems. This
type of analysis requires a special focus on potential vulnerabilities related to
firmware, which is one of the fundamental pillars of IoT devices. To develop
effective research in this direction, it is essential to fully understand the
common threats present in the IoT environment, as well as the risks associated
with firmware vulnerabilities. This approach will enrich the analysis conducted
by the manifest-producer tool, enabling the generation of a detailed report
highlighting the various vulnerabilities identified and their associated risks.

82

Bibliography

[1] What is Internet of Things (IoT)? url: https://www.techtarget.com/
iotagenda/definition/Internet-of-Things-IoT (cit. on p. 3).

[2] Basem Ibrahim Mukhtar, Mahmoud Said Elsayed, Anca D. Jurcut, and
Marianne A. Azer. «IoT Vulnerabilities and Attacks: SILEX Malware Case
Study». In: Symmetry 15.11 (2023). issn: 2073-8994. doi: 10.3390/sym1511
1978. url: https://www.mdpi.com/2073-8994/15/11/1978 (cit. on p. 3).

[3] Resul Das and Muhammed Gündüz. «Analysis of cyber-attacks in IoT-based
critical infrastructures». In: International Journal of Information Security 8
(Dec. 2019), pp. 122–133 (cit. on p. 3).

[4] The little-known story of the first IoT device. url: https://www.ibm.com/
blog/little-known-story-first-iot-device/ (cit. on p. 4).

[5] The Computer for the 21st Century. url: https://web.archive.org/web/
20150311220327/http://web.media.mit.edu/~anjchang/ti01/weiser-
sciam91-ubicomp.pdf (cit. on p. 4).

[6] R.S. Raji. Smart networks for control. eng. New York, 1994 (cit. on p. 5).
[7] That ‘Internet of Things’ Thing. url: https://www.rfidjournal.com/that-

internet-of-things-things (cit. on p. 5).
[8] Yvan Duroc. «From Identification to Sensing: RFID Is One of the Key

Technologies in the IoT Field». eng. In: Sensors (Basel, Switzerland) 22.19
(2022), pp. 7523–. issn: 1424-8220 (cit. on p. 5).

[9] Shivayogi Hiremath, Geng Yang, and Kunal Mankodiya. «Wearable Internet of
Things: Concept, architectural components and promises for person-centered
healthcare». eng. In: 2014 4th International Conference on Wireless Mobile
Communication and Healthcare - Transforming Healthcare Through Innova-
tions in Mobile and Wireless Technologies (MOBIHEALTH). ICST, 2014,
pp. 304–307. isbn: 9781631900143 (cit. on p. 5).

[10] Hakilo Sabit, Peter Han Joo Chong, and Jeff Kilby. «Ambient Intelligence for
Smart Home using The Internet of Things». eng. In: 2019 29th International
Telecommunication Networks and Applications Conference (ITNAC). IEEE,
2019, pp. 1–3. isbn: 1728136733 (cit. on p. 5).

83

https://www.techtarget.com/iotagenda/definition/Internet-of-Things-IoT
https://www.techtarget.com/iotagenda/definition/Internet-of-Things-IoT
https://doi.org/10.3390/sym15111978
https://doi.org/10.3390/sym15111978
https://www.mdpi.com/2073-8994/15/11/1978
https://www.ibm.com/blog/little-known-story-first-iot-device/
https://www.ibm.com/blog/little-known-story-first-iot-device/
https://web.archive.org/web/20150311220327/http://web.media.mit.edu/~anjchang/ti01/weiser-sciam91-ubicomp.pdf
https://web.archive.org/web/20150311220327/http://web.media.mit.edu/~anjchang/ti01/weiser-sciam91-ubicomp.pdf
https://web.archive.org/web/20150311220327/http://web.media.mit.edu/~anjchang/ti01/weiser-sciam91-ubicomp.pdf
https://www.rfidjournal.com/that-internet-of-things-things
https://www.rfidjournal.com/that-internet-of-things-things

BIBLIOGRAPHY

[11] David Camacho and Paulo Novais. «Innovations and practical applications of
intelligent systems in ambient intelligence and humanized computing». In:
Journal of Ambient Intelligence and Humanized Computing 8.2 (Apr. 2017),
pp. 155–156. issn: 1868-5145. doi: 10.1007/s12652- 017- 0454- z. url:
https://doi.org/10.1007/s12652-017-0454-z (cit. on p. 5).

[12] Mrinai M. Dhanvijay and Shailaja C. Patil. «Internet of Things: A survey of
enabling technologies in healthcare and its applications». eng. In: Computer
networks (Amsterdam, Netherlands : 1999) 153 (2019), pp. 113–131. issn:
1389-1286 (cit. on p. 5).

[13] Ravneet K. Sidhu. «An Overview of IoT for Smart Healthcare Technologies».
eng. In: 2023 International Conference on Computational Intelligence and
Sustainable Engineering Solutions (CISES). IEEE, 2023, pp. 1–7 (cit. on p. 5).

[14] Rahul Dagar, Subhranil Som, and Sunil Kumar Khatri. «Smart Farming –
IoT in Agriculture». In: 2018 International Conference on Inventive Research
in Computing Applications (ICIRCA). 2018, pp. 1052–1056. doi: 10.1109/
ICIRCA.2018.8597264 (cit. on p. 5).

[15] Ravi Ramakrishnan and Loveleen Gaur. Internet of things : approach and
applicability in manufacturing. eng. Boca Raton: Taylor & Francis, a CRC title,
part of the Taylor & Francis imprint, a member of the Taylor & Francis Group,
the academic division of T&F Informa, plc, 2019. Chap. Smart Manufacturing,
Logistics Optimization. isbn: 0-429-48659-6 (cit. on p. 5).

[16] Christopher Clearfield. Rethinking Security for the Internet of Things. url:
https://hbr.org/2013/06/rethinking-security-for-the-in (cit. on
p. 5).

[17] Warren Detres, Md Minhaz Chowdhury, and Nafiz Rifat. «IoT Security and
Privacy». In: 2022 IEEE International Conference on Electro Information
Technology (eIT). 2022, pp. 498–503. doi: 10.1109/eIT53891.2022.9813933
(cit. on p. 5).

[18] Maryam Farsi, Alireza Daneshkhah, Amin Hosseinian-Far, and Hamid Ja-
hankhani. «IoT Security, Privacy, Safety and Ethics». eng. In: Digital Twin
Technologies and Smart Cities. Internet of Things. Switzerland: Springer
International Publishing AG, 2020, pp. 123–149. isbn: 3030187314 (cit. on
p. 5).

[19] Jibran Saleem, Mohammad Hammoudeh, Umar Raza, Bamidele Adebisi, and
Ruth Ande. «IoT standardisation-Challenges, perspectives and solution». eng.
In: ACM International Conference Proceeding Series. 2018. isbn: 1450364284
(cit. on pp. 5, 52).

[20] Alex Wood. The internet of things is revolutionising our lives, but standards
are a must. 2015. url: https://www.theguardian.com/media-network/
2015/mar/31/the- internet- of- things- is- revolutionising- our-
lives-but-standards-are-a-must (cit. on p. 5).

84

https://doi.org/10.1007/s12652-017-0454-z
https://doi.org/10.1007/s12652-017-0454-z
https://doi.org/10.1109/ICIRCA.2018.8597264
https://doi.org/10.1109/ICIRCA.2018.8597264
https://hbr.org/2013/06/rethinking-security-for-the-in
https://doi.org/10.1109/eIT53891.2022.9813933
https://www.theguardian.com/media-network/2015/mar/31/the-internet-of-things-is-revolutionising-our-lives-but-standards-are-a-must
https://www.theguardian.com/media-network/2015/mar/31/the-internet-of-things-is-revolutionising-our-lives-but-standards-are-a-must
https://www.theguardian.com/media-network/2015/mar/31/the-internet-of-things-is-revolutionising-our-lives-but-standards-are-a-must

BIBLIOGRAPHY

[21] Aaron Ardiri. Will fragmentation of standards only hinder the true potential
of the IoT industry? 2014. url: https://web.archive.org/web/2021022
7182106/https://evothings.com/will-fragmentation-of-standards-
only-hinder-the-true-potential-of-the-iot-industry/ (cit. on p. 5).

[22] Carrie Mihalcik. Apple, Amazon, Google, and others want to create a new
standard for smart home tech. 2019. url: https://www.cnet.com/home/
smart-home/apple-amazon-google-and-others-want-to-create-a-
new-standard-for-smart-home-tech/ (cit. on p. 5).

[23] Sharu Bansal and Dilip Kumar. «IoT Ecosystem: A Survey on Devices,
Gateways, Operating Systems, Middleware and Communication». eng. In:
International journal of wireless information networks 27.3 (2020), pp. 340–
364. issn: 1068-9605 (cit. on p. 6).

[24] S. R. Prathibha, Anupama Hongal, and M. P. Jyothi. «IOT Based Monitoring
System in Smart Agriculture». eng. In: 2017 International Conference on
Recent Advances in Electronics and Communication Technology (ICRAECT).
IEEE, 2017, pp. 81–84. isbn: 9781509067015 (cit. on p. 6).

[25] Vangelis Marinakis and Haris Doukas. «An Advanced IoT-based System for
Intelligent Energy Management in Buildings». In: Sensors 18.2 (2018). issn:
1424-8220. doi: 10.3390/s18020610. url: https://www.mdpi.com/1424-
8220/18/2/610 (cit. on p. 6).

[26] Wang Huifeng, Seifedine Nimer Kadry, and Ebin Deni Raj. «Continuous health
monitoring of sportsperson using IoT devices based wearable technology».
eng. In: Computer communications 160 (2020), pp. 588–595. issn: 0140-3664
(cit. on p. 6).

[27] Baichen Li, R. Scott Downen, Quan Dong, Nam Tran, Maxine LeSaux,
Andrew C. Meltzer, and Zhenyu Li. «A Discreet Wearable IoT Sensor for
Continuous Transdermal Alcohol Monitoring-Challenges and Opportunities».
eng. In: IEEE sensors journal 21.4 (2021), pp. 5322–5330. issn: 1530-437X
(cit. on p. 6).

[28] Siying Qian. «IoT Application with Tortoise Smart Home». eng. In: 2021
IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf
on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data
Computing, Intl Conf on Cyber Science and Technology Congress (DASC/Pi-
Com/CBDCom/CyberSciTech). IEEE, 2021, pp. 541–547. isbn: 1665421746
(cit. on p. 7).

[29] Mustafa A. Omran, Bashar J. Hamza, and Wasan K. Saad. «The design and
fulfillment of a Smart Home (SH) material powered by the IoT using the Blynk
app». In: Materials Today: Proceedings 60 (2022). International Conference on
Latest Developments in Materials & Manufacturing, pp. 1199–1212. issn: 2214-
7853. doi: https://doi.org/10.1016/j.matpr.2021.08.038. url: https:

85

https://web.archive.org/web/20210227182106/https://evothings.com/will-fragmentation-of-standards-only-hinder-the-true-potential-of-the-iot-industry/
https://web.archive.org/web/20210227182106/https://evothings.com/will-fragmentation-of-standards-only-hinder-the-true-potential-of-the-iot-industry/
https://web.archive.org/web/20210227182106/https://evothings.com/will-fragmentation-of-standards-only-hinder-the-true-potential-of-the-iot-industry/
https://www.cnet.com/home/smart-home/apple-amazon-google-and-others-want-to-create-a-new-standard-for-smart-home-tech/
https://www.cnet.com/home/smart-home/apple-amazon-google-and-others-want-to-create-a-new-standard-for-smart-home-tech/
https://www.cnet.com/home/smart-home/apple-amazon-google-and-others-want-to-create-a-new-standard-for-smart-home-tech/
https://doi.org/10.3390/s18020610
https://www.mdpi.com/1424-8220/18/2/610
https://www.mdpi.com/1424-8220/18/2/610
https://doi.org/https://doi.org/10.1016/j.matpr.2021.08.038
https://www.sciencedirect.com/science/article/pii/S2214785321054663
https://www.sciencedirect.com/science/article/pii/S2214785321054663

BIBLIOGRAPHY

//www.sciencedirect.com/science/article/pii/S2214785321054663
(cit. on p. 7).

[30] Daniel Rodrigues, Paulo Carvalho, Solange Rito Lima, Emanuel Lima, and
Nuno Vasco Lopes. «An IoT platform for production monitoring in the
aerospace manufacturing industry». In: Journal of Cleaner Production 368
(2022), p. 133264. issn: 0959-6526. doi: https://doi.org/10.1016/j.
jclepro.2022.133264. url: https://www.sciencedirect.com/science/
article/pii/S0959652622028487 (cit. on p. 7).

[31] Wei Chen. «Intelligent manufacturing production line data monitoring system
for industrial internet of things». In: Computer Communications 151 (2020),
pp. 31–41. issn: 0140-3664. doi: https://doi.org/10.1016/j.comcom.
2019.12.035. url: https://www.sciencedirect.com/science/article/
pii/S0140366419315518 (cit. on p. 7).

[32] S. Sakena Benazer, M. Sheik Dawood, Sulochanan Karthick Ramanathan, and
G. Saranya. «Efficient model for IoT based railway crack detection system».
In: Materials Today: Proceedings 45 (2021). International Conference on
Advances in Materials Research - 2019, pp. 2789–2792. issn: 2214-7853.
doi: https://doi.org/10.1016/j.matpr.2020.11.743. url: https:
//www.sciencedirect.com/science/article/pii/S2214785320394190
(cit. on p. 7).

[33] Lubna, Naveed Mufti, Sadiq Ullah, Abubakar Sharif, Muhammad Waqas
Nawaz, Ahmed Alkhayyat, Muhammad Ali Imran, and Qammer H. Abbasi.
«IoT enabled vehicle recognition system using inkjet-printed windshield tag
and 5G cloud network». In: Internet of Things 23 (2023), p. 100873. issn: 2542-
6605. doi: https://doi.org/10.1016/j.iot.2023.100873. url: https:
//www.sciencedirect.com/science/article/pii/S2542660523001968
(cit. on p. 7).

[34] Shahrokh Nikou. «Factors driving the adoption of smart home technology: An
empirical assessment». In: Telematics and Informatics 45 (2019), p. 101283.
issn: 0736-5853. doi: https://doi.org/10.1016/j.tele.2019.101283.
url: https://www.sciencedirect.com/science/article/pii/S0736585
319307750 (cit. on p. 10).

[35] Erfaneh Allameh, Mohammadali Heidari Jozam, Bauke de Vries, Harry JP
Timmermans, and Jakob Beetz. «Smart Home as a smart real estate, A state
of the art review». eng. In: IDEAS Working Paper Series from RePEc (2011)
(cit. on p. 10).

[36] Ehsan Kamel and Ali M Memari. «State-of-the-Art Review of Energy Smart
Homes». eng. In: Journal of architectural engineering 25.1 (2019). issn: 1076-
0431 (cit. on p. 10).

86

https://www.sciencedirect.com/science/article/pii/S2214785321054663
https://www.sciencedirect.com/science/article/pii/S2214785321054663
https://www.sciencedirect.com/science/article/pii/S2214785321054663
https://doi.org/https://doi.org/10.1016/j.jclepro.2022.133264
https://doi.org/https://doi.org/10.1016/j.jclepro.2022.133264
https://www.sciencedirect.com/science/article/pii/S0959652622028487
https://www.sciencedirect.com/science/article/pii/S0959652622028487
https://doi.org/https://doi.org/10.1016/j.comcom.2019.12.035
https://doi.org/https://doi.org/10.1016/j.comcom.2019.12.035
https://www.sciencedirect.com/science/article/pii/S0140366419315518
https://www.sciencedirect.com/science/article/pii/S0140366419315518
https://doi.org/https://doi.org/10.1016/j.matpr.2020.11.743
https://www.sciencedirect.com/science/article/pii/S2214785320394190
https://www.sciencedirect.com/science/article/pii/S2214785320394190
https://doi.org/https://doi.org/10.1016/j.iot.2023.100873
https://www.sciencedirect.com/science/article/pii/S2542660523001968
https://www.sciencedirect.com/science/article/pii/S2542660523001968
https://doi.org/https://doi.org/10.1016/j.tele.2019.101283
https://www.sciencedirect.com/science/article/pii/S0736585319307750
https://www.sciencedirect.com/science/article/pii/S0736585319307750

BIBLIOGRAPHY

[37] T Serrenho and P Bertoldi. «Smart home and appliances: state of the art :
energy, communications, protocols, standards». eng. In: 29750 (2019). issn:
1831-9424 (cit. on p. 10).

[38] Mehmet Buyuk, Ercan Avşar, and Mustafa İnci. «Overview of smart home
concepts through energy management systems, numerical research, and future
perspective». eng. In: Energy sources. Part A, Recovery, utilization, and
environmental effects ahead-of-print.ahead-of-print (2022), pp. 1–26. issn:
1556-7036 (cit. on p. 11).

[39] Jyoti Neeli, Smithu B S, Ravi Teja S, and Layan N. «Comparative Study
Using IoT to Automate Your Home». In: 2023 7th International Conference
on Computation System and Information Technology for Sustainable Solutions
(CSITSS). 2023, pp. 1–7. doi: 10.1109/CSITSS60515.2023.10334211 (cit.
on p. 11).

[40] Leong Yee Rock, Farzana Parveen Tajudeen, and Yeong Wai Chung. «Usage
and impact of the internet-of-things-based smart home technology: a quality-
of-life perspective». In: Universal Access in the Information Society (Nov.
2022). issn: 1615-5297. doi: 10.1007/s10209-022-00937-0. url: https:
//doi.org/10.1007/s10209-022-00937-0 (cit. on p. 11).

[41] Mohamad Razwan Abdul Malek, Nor Azlina Ab. Aziz, Salem Alelyani, Mo-
hamed Mohana, Farah Nur Arina Baharudin, and Zuwairie Ibrahim. «Com-
fort and energy consumption optimization in smart homes using bat algo-
rithm with inertia weight». In: Journal of Building Engineering 47 (2022),
p. 103848. issn: 2352-7102. doi: https://doi.org/10.1016/j.jobe.2021.
103848. url: https://www.sciencedirect.com/science/article/pii/
S235271022101706X (cit. on p. 11).

[42] Brown Eric. Who Needs the Internet of Things? 2016. url: https://www.
linux.com/news/who-needs-internet-things/ (cit. on p. 12).

[43] Iqra Asghar, Muhammad Ayaz Khan, Tahir Ahmad, Subhan Ullah, Khwaja
Mansoor ul Hassan, and Attaullah Buriro. «Fortifying Smart Home Security:
A Robust and Efficient User-Authentication Scheme to Counter Node Capture
Attacks». eng. In: Sensors (Basel, Switzerland) 23.16 (2023), pp. 7268–. issn:
1424-8220 (cit. on p. 12).

[44] Noureddine Amraoui and Belhassen Zouari. «Securing the operation of Smart
Home Systems: a literature review». eng. In: Journal of reliable intelligent
environments 8.1 (2022), pp. 67–74. issn: 2199-4668 (cit. on p. 12).

[45] Yan Meng, Wei Zhang, Haojin Zhu, and Xuemin Sherman Shen. «Securing
Consumer IoT in the Smart Home: Architecture, Challenges, and Counter-
measures». eng. In: IEEE wireless communications 25.6 (2018), pp. 53–59.
issn: 1536-1284 (cit. on p. 12).

[46] Martin Fowler and Matthew Foemmel. Continuous integration. 2006 (cit. on
p. 13).

87

https://doi.org/10.1109/CSITSS60515.2023.10334211
https://doi.org/10.1007/s10209-022-00937-0
https://doi.org/10.1007/s10209-022-00937-0
https://doi.org/10.1007/s10209-022-00937-0
https://doi.org/https://doi.org/10.1016/j.jobe.2021.103848
https://doi.org/https://doi.org/10.1016/j.jobe.2021.103848
https://www.sciencedirect.com/science/article/pii/S235271022101706X
https://www.sciencedirect.com/science/article/pii/S235271022101706X
https://www.linux.com/news/who-needs-internet-things/
https://www.linux.com/news/who-needs-internet-things/

BIBLIOGRAPHY

[47] Omar Elazhary, Colin Werner, Ze Shi Li, Derek Lowlind, Neil A. Ernst, and
Margaret-Anne Storey. «Uncovering the Benefits and Challenges of Continu-
ous Integration Practices». In: IEEE Transactions on Software Engineering
48.7 (2022), pp. 2570–2583. doi: 10.1109/TSE.2021.3064953 (cit. on p. 14).

[48] Michal R. Wróbel, Jaroslaw Szymukowicz, and Pawel Weichbroth. «Using
Continuous Integration Techniques in Open Source Projects—An Exploratory
Study». In: IEEE Access 11 (2023), pp. 113848–113863. doi: 10.1109/
ACCESS.2023.3324536 (cit. on p. 14).

[49] Hao Chen, Jinxin Ma, Baojiang Cui, and Junsong Fu. «IoTCID: A Dynamic
Detection Technology for Command Injection Vulnerabilities in IoT Devices».
eng. In: International journal of advanced computer science & applications
13.10 (2022), pp. 7–14. issn: 2158-107X (cit. on pp. 15, 19).

[50] Haitham Ameen Noman and Osama M. F. Abu-Sharkh. «Code Injection
Attacks in Wireless-Based Internet of Things (IoT): A Comprehensive Review
and Practical Implementations». In: Sensors 23.13 (2023). issn: 1424-8220.
doi: 10.3390/s23136067. url: https://www.mdpi.com/1424-8220/23/
13/6067 (cit. on p. 15).

[51] James Jin Kang, Kiran Fahd, Sitalakshmi Venkatraman, Rolando Trujillo-
Rasua, and Paul Haskell-Dowland. «Hybrid Routing for Man-in-the-Middle
(MITM) Attack Detection in IoT Networks». In: 2019 29th International
Telecommunication Networks and Applications Conference (ITNAC). 2019,
pp. 1–6. doi: 10.1109/ITNAC46935.2019.9077977 (cit. on p. 15).

[52] Alessandra Alvarez Olazabal, Jasmeet Kaur, and Abel Yeboah-Ofori. «De-
ploying Man-In-the-Middle Attack on IoT Devices Connected to Long Range
Wide Area Networks (LoRaWAN)». In: 2022 IEEE International Smart Cities
Conference (ISC2). 2022, pp. 1–7. doi: 10.1109/ISC255366.2022.9922377
(cit. on p. 15).

[53] Wei Xie, Yikun Jiang, Yong Tang, Ning Ding, and Yuanming Gao. «Vulnerabil-
ity Detection in IoT Firmware: A Survey». In: 2017 IEEE 23rd International
Conference on Parallel and Distributed Systems (ICPADS). 2017, pp. 769–772.
doi: 10.1109/ICPADS.2017.00104 (cit. on pp. 15, 19).

[54] Xiaotao Feng, Xiaogang Zhu, Qing-Long Han, Wei Zhou, Sheng Wen, and
Yang Xiang. «Detecting Vulnerability on IoT Device Firmware: A Survey».
In: IEEE/CAA Journal of Automatica Sinica 10.1 (2023), pp. 25–41. doi:
10.1109/JAS.2022.105860 (cit. on p. 15).

[55] Ibrahim Nadir, Haroon Mahmood, and Ghalib Asadullah. «A taxonomy
of IoT firmware security and principal firmware analysis techniques». In:
International Journal of Critical Infrastructure Protection 38 (2022), p. 100552.
issn: 1874-5482. doi: https://doi.org/10.1016/j.ijcip.2022.100552.
url: https://www.sciencedirect.com/science/article/pii/S1874548
222000373 (cit. on p. 15).

88

https://doi.org/10.1109/TSE.2021.3064953
https://doi.org/10.1109/ACCESS.2023.3324536
https://doi.org/10.1109/ACCESS.2023.3324536
https://doi.org/10.3390/s23136067
https://www.mdpi.com/1424-8220/23/13/6067
https://www.mdpi.com/1424-8220/23/13/6067
https://doi.org/10.1109/ITNAC46935.2019.9077977
https://doi.org/10.1109/ISC255366.2022.9922377
https://doi.org/10.1109/ICPADS.2017.00104
https://doi.org/10.1109/JAS.2022.105860
https://doi.org/https://doi.org/10.1016/j.ijcip.2022.100552
https://www.sciencedirect.com/science/article/pii/S1874548222000373
https://www.sciencedirect.com/science/article/pii/S1874548222000373

BIBLIOGRAPHY

[56] «IEEE Standard for Intelligent Electronic Devices Cyber Security Capabilities
- Redline». In: IEEE Std 1686-2013 (Revision of IEEE Std 1686-2007) -
Redline (2014), pp. 1–49 (cit. on p. 17).

[57] Yuan Cheng, Baojiang Cui, Chen Chen, Thar Baker, and Tao Qi. «Static
vulnerability mining of IoT devices based on control flow graph construction
and graph embedding network». eng. In: Computer communications 197
(2023), pp. 267–275. issn: 0140-3664 (cit. on p. 19).

[58] Pengfei Sun, Luis Garcia, Gabriel Salles-Loustau, and Saman Zonouz. «Hybrid
Firmware Analysis for Known Mobile and IoT Security Vulnerabilities». In:
2020 50th Annual IEEEIFIP International Conference on Dependable Systems
and Networks (DSN). 2020, pp. 373–384. doi: 10.1109/DSN48063.2020.
00053 (cit. on p. 19).

[59] Xuechao Du, Andong Chen, Boyuan He, Hao Chen, Fan Zhang, and Yan Chen.
«AflIot: Fuzzing on linux-based IoT device with binary-level instrumentation».
In: Computers & Security 122 (2022), p. 102889. issn: 0167-4048. doi: https:
//doi.org/10.1016/j.cose.2022.102889. url: https://www.sciencedi
rect.com/science/article/pii/S0167404822002838 (cit. on p. 19).

[60] Valentina Forte, Nicolò Maunero, Paolo Prinetto, and Gianluca Roascio.
«PROLEPSIS: Binary Analysis and Instrumentation of IoT Software for
Control-Flow Integrity». In: 2021 International Conference on Electrical,
Computer, Communications and Mechatronics Engineering (ICECCME). 2021,
pp. 1–6. doi: 10.1109/ICECCME52200.2021.9591080 (cit. on p. 20).

[61] Continuous Integration. url: https://en.wikipedia.org/wiki/Continuo
us_integration#:~:text=In%20software%20engineering%2C%20continu
ous%20integration%20(CI)%20is%20the%20practice%20of%20merging%
20all % 20developers % 27 % 20working % 20copies % 20to % 20a % 20shared %
20mainline%20several%20times%20a%20day.%5B1%5D%20Nowadays%20it%
20is%20typically%20implemented%20in%20such%20a%20way%20that%
20it%20triggers%20an%20automated%20build%20with%20testing. (cit.
on p. 24).

[62] Traits: Defining Shared Behaviour. url: https://doc.rust-lang.org/
book/ch10-02-traits.html (cit. on p. 30).

[63] Atica Mohammed, Rasha Alsarraj, and Asmaa Albayati. «VERIFICATION
AND VALIDATION OF A SOFTWARE: A REVIEW OF THE LITERA-
TURE». In: Iraqi Journal for Computers and Informatics 46 (June 2020),
pp. 40–47. doi: 10.25195/ijci.v46i1.249 (cit. on p. 33).

89

https://doi.org/10.1109/DSN48063.2020.00053
https://doi.org/10.1109/DSN48063.2020.00053
https://doi.org/https://doi.org/10.1016/j.cose.2022.102889
https://doi.org/https://doi.org/10.1016/j.cose.2022.102889
https://www.sciencedirect.com/science/article/pii/S0167404822002838
https://www.sciencedirect.com/science/article/pii/S0167404822002838
https://doi.org/10.1109/ICECCME52200.2021.9591080
https://en.wikipedia.org/wiki/Continuous_integration#:~:text=In%20software%20engineering%2C%20continuous%20integration%20(CI)%20is%20the%20practice%20of%20merging%20all%20developers%27%20working%20copies%20to%20a%20shared%20mainline%20several%20times%20a%20day.%5B1%5D%20Nowadays%20it%20is%20typically%20implemented%20in%20such%20a%20way%20that%20it%20triggers%20an%20automated%20build%20with%20testing.
https://en.wikipedia.org/wiki/Continuous_integration#:~:text=In%20software%20engineering%2C%20continuous%20integration%20(CI)%20is%20the%20practice%20of%20merging%20all%20developers%27%20working%20copies%20to%20a%20shared%20mainline%20several%20times%20a%20day.%5B1%5D%20Nowadays%20it%20is%20typically%20implemented%20in%20such%20a%20way%20that%20it%20triggers%20an%20automated%20build%20with%20testing.
https://en.wikipedia.org/wiki/Continuous_integration#:~:text=In%20software%20engineering%2C%20continuous%20integration%20(CI)%20is%20the%20practice%20of%20merging%20all%20developers%27%20working%20copies%20to%20a%20shared%20mainline%20several%20times%20a%20day.%5B1%5D%20Nowadays%20it%20is%20typically%20implemented%20in%20such%20a%20way%20that%20it%20triggers%20an%20automated%20build%20with%20testing.
https://en.wikipedia.org/wiki/Continuous_integration#:~:text=In%20software%20engineering%2C%20continuous%20integration%20(CI)%20is%20the%20practice%20of%20merging%20all%20developers%27%20working%20copies%20to%20a%20shared%20mainline%20several%20times%20a%20day.%5B1%5D%20Nowadays%20it%20is%20typically%20implemented%20in%20such%20a%20way%20that%20it%20triggers%20an%20automated%20build%20with%20testing.
https://en.wikipedia.org/wiki/Continuous_integration#:~:text=In%20software%20engineering%2C%20continuous%20integration%20(CI)%20is%20the%20practice%20of%20merging%20all%20developers%27%20working%20copies%20to%20a%20shared%20mainline%20several%20times%20a%20day.%5B1%5D%20Nowadays%20it%20is%20typically%20implemented%20in%20such%20a%20way%20that%20it%20triggers%20an%20automated%20build%20with%20testing.
https://en.wikipedia.org/wiki/Continuous_integration#:~:text=In%20software%20engineering%2C%20continuous%20integration%20(CI)%20is%20the%20practice%20of%20merging%20all%20developers%27%20working%20copies%20to%20a%20shared%20mainline%20several%20times%20a%20day.%5B1%5D%20Nowadays%20it%20is%20typically%20implemented%20in%20such%20a%20way%20that%20it%20triggers%20an%20automated%20build%20with%20testing.
https://en.wikipedia.org/wiki/Continuous_integration#:~:text=In%20software%20engineering%2C%20continuous%20integration%20(CI)%20is%20the%20practice%20of%20merging%20all%20developers%27%20working%20copies%20to%20a%20shared%20mainline%20several%20times%20a%20day.%5B1%5D%20Nowadays%20it%20is%20typically%20implemented%20in%20such%20a%20way%20that%20it%20triggers%20an%20automated%20build%20with%20testing.
https://doc.rust-lang.org/book/ch10-02-traits.html
https://doc.rust-lang.org/book/ch10-02-traits.html
https://doi.org/10.25195/ijci.v46i1.249

	List of Tables
	List of Figures
	Introduction
	Introduction to the IoT
	Definitions
	History and evolution
	IoT devices

	Smart Home integration
	Concept and features
	Impacts on daily life

	Development and Security in IoT Devices
	Continuous Integration
	IoT Firmware
	Binary Analysis

	Final Remarks

	A tool for Continuous Integration
	Introduction
	CI benefits

	ci-generate tool
	Rust language
	Features and purpose
	Workflow

	Code refactoring
	Objectives
	Path validation function
	Cargo feature

	Tests implementation
	Unit tests
	Property testing
	Integration tests
	Observations

	Final Remarks

	A dummy firmware for IoT
	Introduction
	Purpose of dummy firmware
	Importance of different programming languages

	Design and Structure
	Architecture
	Compilation and Deployment

	Dummy Firmware Variants
	External dependencies management
	Stripped binaries
	Non-compliant API behaviour

	Final Remarks

	A tool for firmware certification
	Introduction
	ELF binary analysis
	Preliminary approaches
	Definitive analysis

	How manifest-producer works
	API Detection
	Behavioural analysis
	Observations

	Manifest Generation
	Manifest for basic information
	Manifest for syscall flow
	Manifest for features

	Structure
	Modular approach
	Continuous Integration
	Test Development

	Final Remarks

	Performance analysis
	Introduction
	Data Analysis
	Time Efficiency
	Memory Evaluation
	Programming language comparisons

	Final Remarks

	Conclusions
	Future developments

	Bibliography

