

Politecnico di Torino

Corso di Laurea
A.a. 2023/2024

Sessione di Laurea Aprile 2024

Design, Implementation and Evaluation of a
Chatbot for Accounting Firm: A Fine-Tuning

Approach with Two Novel Dataset

Relatori: Candidati:
Luca Ardito Michele Basilico

Abstract

Artificial intelligence, particularly in the field of Chatbots, is fundamentally reshaping learning,

communication, and work paradigms. This phenomenon has sparked growing interest among

businesses, viewing Chatbots as a means to streamline processes, enhance customer support, and

deliver increasingly efficient services. The proposed thesis work focuses on applying these tools

within the legal, fiscal, and commercial sectors to meet the needs of an accounting firm, where

managing a large volume of questions and information requires innovative solutions. The thesis

aims to investigate, design, develop, and evaluate a Chatbot capable of providing quick, effective,

and high-quality responses. To achieve this goal, an analysis of state-of-the-art modern Open-

Source Large Language Models was initially conducted, followed by a fine-tuning process to

specialize the base model. Finally, the results were analyzed and compared with models currently

available on the market. To make possible model fine-tuning, two new datasets were created and

introduced: ADE, containing questions and answers from the "Agenzia Delle Entrate" portal, and

ITACA, containing synthetically generated questions and answers using information provided

through articles and official documents. Specifically, ITACA was developed using a tool designed

and implemented during the proposed work, named LLMDSGenerator.

Table of Contents

TABLE OF CONTENTS 4

1. INTRODUCTION 8

2. BACKGROUND 11

2.1 Basic introduction to Artificial Intelligence 12

2.1.1 AI, Machine Learning & Deep Learning 12

2.1.2 AI - State of the art 14

2.1.3 AI – The challenges to face up 15

2.2 Natural Language Processing 16

2.2.1 NLP: Goal and challenges 16

2.2.2 NLP Solution: Transformers 17

2.3 Large Language Model 19

2.3.1 LLM – What is it? 19

2.3.2 LLM – How it works? 19

2.3.3 LLM – Why a large language model? 21

2.3.4 LLM – Common Use Cases 21

2.4 AI for financial services 23

2.4.1 How AI can be used in finance and legal 23

2.4.2 The challenges of AI in finance 25

3. LARGE LANGUAGE MODEL DEVELOPMENT 27

3.1 Machine Learning Lifecycle 28

3.1.1 The step to build a ML 28

3.1.2 Selection and configuration of an architecture/model 29

3.1.3 Data Preparation 29

3.1.4 Training Process 30

3.1.5 Inference Process 31

3.1.6 Evaluation 32

3.1.7 Deploy in production 33

3.2 How to choose a model? 35

3.2.1 Model Size and capabilities 35

3.2.2 Performance and Latency 36

3.2.3 Pretraining Data and Knowledge Cutoff 37

3.2.4 FineTuning and Customizability 38

3.2.5 Open-source model & Licence 39

3.2.6 Accessibility and cost 39

3.2.7 Ethical and Responsible AI Considerations 40

3.3 Different approaches to train a model 41

3.3.1 Training from scratch 41

3.3.2 Training with Transfer Learning 42

3.3.3 Training with finetuning 42

3. DATASET 45

3.1 Dataset Construction 46

3.1.1 Challenges and Considerations: 46

3.1.2 Strategies to Overcome Challenges: 47

3.1.3 Dataset Choices 48

3.2 ADE (Agenzia Delle Entrate) DATASET 48

3.2.1 What is ADE Dataset 48

3.2.1 The process behind ADE dataset 50

3.2.3 Data Choices and Cleaning 53

3.3.4 ADE Samples 54

3.3 ITACA DATASET 55

3.3.1 What is the ITACA DATASET? 55

3.1.2 ITACA Building Process 56

3.1.3 LLMDSGenerator (Large Language Model DataSet Generator) 57

3.1.4 Data Choices and Cleaning 60

3.1.5 ITACA Dataset Samples 62

3.1.6 ITACA Dataset v2 63

5. METHODOLOGY 65

5.1 Selection of the Base Large Language Model 66

5.1.1 Context and exclusion: 66

5.1.2 State-of-the-arte LLM: 67

5.1.3 Base LLM Comparation: 72

5.1.4 LLM Italian Evaluation 74

5.1.4 Analysis of result & Final Choice: 78

5.2 Data Loading, Cleaning and Preprocessing 79

5.2.1 Loading and merging datasets: 79

5.2.2 Data Cleaning: 81

5.2.3 Data preprocessing: Format and tokenize the text. 83

5.3 Fine-Tuning Process with (Q)LoRA 86

5.3.1 LoRA and QloRA Introduction 87

5.3.2 How does LoRA works? 88

5.3.3 Make more efficient LoRA with QloRA 89

6. EXPERIMENTS, EVALUATION AND COMPARATION 91

6.1 Environments and dependencies 92

6.1.1 Environment and Power Computing 92

6.1.2 Hugging Face 92

6.1.3 Unsloth 94

6.1.4 WandB 95

6.2 Hyperparameters Tuning 95

6.2.1 Hyperameter Tuning Method 96

6.2.2 Standard Hyperparameters 97

6.2.3 Lora Adapter Hyperparameters 98

6.4 Experiments & Analysis: 99

6.4.1 Hyperparameter Proposed Configuration 99

6.4.2 Configuration #0 100

6.4.3 Configuration #1 102

6.4.4 Configuration #3 104

6.4.5 Configuration #4 104

6.4.6 ITACA Finetuning 106

6.5 Inference & Comparation 107

6.5.1 Society 108

6.5.2 Tax collection 110

6.5.3 Professions and work regimes 112

6.5.4 Fisco Generale 114

6.5.5 Out Of Scope 116

6.5.6 Human evaluation 118

7. ITACA DEPLOYMENT 119

7.1 Deployment of LLM Models 120

7.2 Required Hardware and Architecture 121

7.3 Overview of Deployment Options 121

7.4 Hugging Face for LLM Deployment 122

7.5 Gradio UI Experience 125

8. RESULT 128

8.1 A look back to the project 128

8.2 Limits and challenges 129

8.3 Possible Improvements 130

BIBLIOGRAPHY 132

1. Introduction

In recent years, conversational agents, commonly known as chatbots, have emerged as powerful

tools across various domains, fundamentally altering the way people interact with technology.

No longer limited to scripted responses, modern chatbots leverage sophisticated algorithms and

artificial intelligence techniques to understand and respond to user queries in a manner that

mimics human conversation. Their impact has been profound in a lot of sectors including

customer service, healthcare, and education, reshaping conventional paradigms. The rise of

large language models (LLMs) like GPT-4 by OpenAI, LLama2 by Meta, Gemini by Google,

and others has amplified this trend, swiftly embedding chatbots into the fabric of daily life,

research, and professional environments.

However, there are some fields requires paying particular attention such as finance, tax and,

legal ones. Accounting firms are trying to grapple with manual tasks and client interactions,

seeking ways to optimize operations and enhance experiences. In this world, it's crucial to

handle data with utmost care due to its sensitivity and the potential for creating problems and

uncomfortable situations. The legal and financial sectors face unique challenges in this regard.

Unlike many other industries where a one-size-fits-all approach might suffice, the complexity of

legal and financial matters demands a more tailored solution. Each country has its own distinct

set of laws, regulations, financial and business practices, bureaucratic processes, and legal

nuances. Therefore, a generic model that works well across languages may not be sufficient for

these sectors. Instead, it's essential to customize the model to the specific area and country

where it will be utilized. This entails going beyond a basic model to create a highly specialized

version tailored to the legal and financial landscape of the target country. By taking this extra

step, organizations can ensure compliance with local regulations, address unique business

practices, and navigate bureaucratic timelines effectively. This level of customization is crucial

for maintaining the integrity and reliability of systems operating in these sensitive sectors.

The problem to specialize a model to a specific and smaller target is not new and has been faced

successfully in the last year. Starting from an approach like transfer learning a modern technique

has been explored named FineTuning. While transfer learning occurs when we use knowledge

that was gained from solving one problem and apply it to a new but related problem, fine-

tuning is the process of taking a pretrained machine learning model and further training it on a

smaller, targeted data set. The aim of fine-tuning is to maintain the original capabilities of a

pretrained model while adapting it to suit more specialized use cases. This approach is

especially beneficial when computational resources are limited, or relevant data is scarce.

This thesis addresses this need by focusing on the development and implementation of a

conversational agent specialized in Italian legal and tax contexts for an accounting firm. To

make it available, the thesis analyses the state-of-art of LLM, the different approach to finetune

https://www.techtarget.com/searchenterpriseai/definition/machine-learning-ML

them, realize and define dataset and the flow to follow in order to achieve the best result and

performance. Also, another issues need to be taken in consideration. While a standard LLM

focuses on global and available data, in legal and tax field is necessary to explore a set of

private data and personal documents. So, it’s mandatory explore not just the technique to

finetune the model, but also trying to understand how to make it possible without give private

data out of our hand.

A fundamental obstacle in creating such a system lies in the scarcity of relevant training data,

especially specific to Italian legal and tax conversations. To overcome this hurdle, two novel

datasets tailored to these domains have been meticulously constructed. In pursuit of this goal,

innovative approaches have been explored, including the release of a new tool called

LLMDSGenerator, which combines the power of modern LLMs with web scraping techniques

to generate synthetic but affordable datasets, such as the ITACA Dataset. Additionally, available

tools have been leveraged to create another dataset named ADE.

To better understand all the work done and process used it’s fundamental know all the terms and

state of art in AI field. This is the goal of the first chapter. To lay the groundwork for an

effective AI-driven assistant, understanding various types of chatbots, design methodologies,

and best practices is crucial, as explored in the second chapter. Subsequently, important

decisions regarding model choices and algorithms are discussed in the third chapter. The

methodology and approach used for fine-tuning the model are then detailed, with results

explored and analyzed in the fourth chapter. Finally, we will see all the achieved result and

make the comparison with state-of-the-art LLM.

In summary, through the utilization of state-of-the-art natural language processing techniques

and machine learning algorithms, this thesis aims to advance conversational agent technology in

the specific contexts of Italian law and taxation. By developing novel datasets and

implementing innovative approaches, it seeks to pave the way for more effective and user-

friendly solutions tailored to the unique needs of Italian-speaking individuals within legal and

tax frameworks.

2. Background

2.1 Basic introduction to Artificial Intelligence

The world today is undergoing a period of technological change unlike any seen in many years.

Artificial Intelligence is not a new concept; we just need to think that the discipline was born in

1956. So, what has made AI successful these days?

This credit is certainly due to the development that this discipline has seen in recent years with

the advance of many tools directly available to the public, such as ChatGPT, capable of

automatically generating texts, or StableDiffusion, capable instead of generating images and

videos. Thanks to these tools, the discipline, and generally AI, has entered everyday usage, and

try to solve the common tasks of daily routine without these tools may seems expensive and

out-of-date.

In this paragraph, we will briefly introduce all the concepts related to the world of AI that we

need to know before delving into the thesis objective.

2.1.1 AI, Machine Learning & Deep Learning

Artificial Intelligence (AI) has witnessed unprecedented growth and development in recent

years, revolutionizing various domains ranging from healthcare and finance to manufacturing

and entertainment. AI and machine learning are often used interchangeably, but it's important to

recognize that machine learning constitutes a subset of the broader category of AI. Within the

realm of AI systems, several key concepts contribute to their functionality, including machine

learning, deep learning, neural networks, computer vision, and natural language processing.

Artificial Intelligence characterises a paradigm within computer science aimed at creating

machines capable of replicating tasks requiring human-like intelligence. This encompasses a

broad spectrum of activities, spanning from problem-solving and pattern recognition to

decision-making and adaptive behaviour. Examples range from smart assistants like Alexa to

advanced applications such as self-driving cars.

Machine learning is only a branch of artificial intelligence, focuses on leveraging data and

algorithms to simulate human learning processes, thereby enhancing accuracy. Technological

advancements have led to impactful applications like Netflix's recommendation engine and

autonomous vehicles. It serves as a vital component of data science, employing statistical

methods to train algorithms for classification, prediction, and insights, thereby influencing

decision-making across various domains.

Machine learning encompasses four main categories: supervised, unsupervised, and semi-

supervised learning, along with reinforcement learning, each with distinct applications.

Supervised learning utilizes labeled datasets to predict outcomes, while unsupervised learning

clusters unlabeled data. Semi-supervised learning employs a smaller labeled set to guide

classification, whereas reinforcement learning learns through trial and error, generating

recommendations or policies.

Common machine learning algorithms include neural networks, linear regression, logistic

regression, clustering, decision trees, and random forests. Real-world applications span from

speech recognition and customer service chatbots to computer vision, recommendation engines,

automated stock trading, and fraud detection.

Deep Learning represents a transformative paradigm within machine learning, showcasing its

efficacy in handling diverse data resources with minimal human intervention while achieving

superior accuracy compared to traditional methods. At the core of deep learning are neural

networks, inspired by the intricate interactions of human brain neurons, enabling data

processing through multiple iterations to uncover intricate features and make informed

determinations.

Several significant variants exist within Deep Learning, such as Convolutional Neural

Networks (CNNs), tailored for perceptual tasks like image processing. CNNs interpret pixel

collections and identify distinctive features within hidden layers, facilitating image

classification based on learned attributes.

Recurrent Neural Networks (RNNs) feature loop connections within their structure, allowing

data to move in both forward and backward directions through previous layers. RNNs excel in

tasks like sentiment prediction or sequence endings, making them invaluable for handling

extensive sequences of text, speech, or images. For instance, in fraud detection within the

banking sector, RNNs analyze transactional behavior history to enhance fraud detection beyond

traditional methods.

Understanding the characteristics and applications of these artificial neural network variants is

crucial as we advance in the development of Large Language Models (LLMs). It underscores

the significance of deep learning in enhancing natural language processing and highlights the

transformative potential of LLMs across diverse application scenarios.

2.1.2 AI - State of the art

Artificial Intelligence (AI) has seen significant advancements in recent years, with state-of-the-

art technologies pushing the boundaries of what machines can achieve. Here are some key areas

where AI has made remarkable progress:

1. Natural Language Processing (NLP): NLP has seen significant advancements with models

like GPT-4, which has outperformed other Language Learning Models (LLMs) on various

benchmarks. These models have been successful in tasks such as language translation, question

answering, and text generation.

2. Computer Vision: Computer vision has also seen substantial progress with models excelling

in tasks such as semantic segmentation, image classification, and object detection. These models

have been used in various applications, from autonomous vehicles to medical imaging.

3. Reinforcement Learning: Reinforcement Learning (RL) has been a key area of focus, with

models being used for tasks ranging from game playing to autonomous navigation. RL models

learn by interacting with their environment, making them particularly useful for tasks where

explicit supervision is not possible.

4. Generative AI: Generative models have also gained popularity, with applications in areas

such as video, text, and code generation. These models can generate new data that is similar to

the training data, opening up possibilities for creative applications.

5. Graph Learning: Graph learning models have been used for tasks such as link prediction,

node classification, and graph embedding. These models are particularly useful for tasks that

involve relational data, such as social network analysis.

6. Safety and Ethics in AI: As AI models become more capable, there is an increasing focus on

safety and ethics. This includes efforts to mitigate the risks posed by highly-capable future AI

systems, as well as addressing issues related to fairness and transparency.

7. Computational Efficiency: There is also a growing emphasis on making AI models more

computationally efficient. This includes efforts to reduce the computational resources required

to train and deploy AI models, which is particularly important given the environmental impact

of large-scale AI training.

2.1.3 AI – The challenges to face up

Despite the remarkable strides AI has made, it faces significant challenges that necessitate

careful consideration and responsible development. Some of the most pressing challenges

confronting AI today encompass:

Data Bias: Data bias represents a critical obstacle in the AI landscape, with far-reaching

consequences. Biased data used for training can propagate discrimination and inequality in

algorithmic decision-making processes. This issue is particularly pronounced in domains like

facial recognition technology, where biased datasets can result in erroneous identifications and

unjust repercussions. Addressing data bias requires meticulous dataset curation, robust bias

detection mechanisms, and ongoing vigilance to ensure fairness and impartiality in AI

applications.

Ethical Concerns & Human-AI Collaboration: AI's expansion into various sectors raises

ethical concerns that demand thorough examination. Privacy, autonomy, and accountability are

at the forefront of these concerns. For example, when AI systems play a role in critical decisions

such as hiring or loan approvals, the potential for unfair outcomes arises if the algorithms harbor

biases or flaws. A responsible approach to AI involves fostering transparency and accountability,

ensuring that the algorithms' inner workings are understandable and explainable to humans.

Human-AI collaboration necessitates user-friendly interfaces and clear communication

channels, enabling individuals to comprehend AI decisions and, if necessary, intervene to ensure

just outcomes.

Addressing these challenges is essential to harness AI's potential for positive transformation

while mitigating its risks. Striking a balance between innovation, ethical considerations, and

effective human-AI interaction is crucial. As AI continues to integrate into our lives, it is our

collective responsibility to navigate these challenges with a commitment to fairness, inclusivity,

and the betterment of society. By prioritizing transparency, fairness, and ethical use, we can

unlock AI's potential as a powerful tool for progress, innovation, and positive impact while

mitigating the risks it poses.

2.2 Natural Language Processing

Natural language processing, or NLP, combines computational linguistics—rule-based

modelling of human language—with statistical and machine learning models to enable

computers and digital devices to recognize, understand and generate text and speech. It’s at the

core of tools we use every day – from translation software, chatbots, spam filters, and search

engines, to grammar correction software, voice assistants, and social media monitoring tools.

2.2.1 NLP: Goal and challenges

The aim of NLP tasks is not only to understand single words individually, but to be able to

understand the context of those words. NLP is used to understand the structure and meaning of

human language by analyzing different aspects like syntax, semantics, pragmatics, and

morphology. Then, computer science transforms this linguistic knowledge into rule-based,

machine learning algorithms that can solve specific problems and perform desired tasks.

Using text vectorization, NLP tools transform text into something a machine can understand,

then machine learning algorithms are fed training data and expected outputs (tags) to train

machines to make associations between a particular input and its corresponding output.

Machines then use statistical analysis methods to build their own “knowledge bank” and discern

which features best represent the texts, before making predictions for unseen data (new texts).

The following is a list of common NLP tasks, with some examples of each:

• Classifying whole sentences: Getting the sentiment of a review, detecting if an email is

spam, determining if a sentence is grammatically correct or whether two sentences are

logically related or not

• Classifying each word in a sentence: Identifying the grammatical components of a

sentence (noun, verb, adjective), or the named entities (person, location, organization)

• Generating text content: Completing a prompt with auto-generated text, filling in the

blanks in a text with masked words

• Extracting an answer from a text: Given a question and a context, extracting the answer

to the question based on the information provided in the context

• Generating a new sentence from an input text: Translating a text into another language,

summarizing a text

NLP isn’t limited to written text though. It also tackles complex challenges in speech

recognition and computer vision, such as generating a transcript of an audio sample or a

description of an image.

2.2.2 NLP Solution: Transformers

The Transformer, introduced by Vaswani et al. in their groundbreaking 2017 paper “Attention Is

All You Need” (Ashish Vaswani, 2017) stands as a pivotal architecture in artificial intelligence,

particularly in the realm of natural language processing (NLP). Its profound impact on how

machines comprehend and generate human language has made it a cornerstone in various AI

contests and competitions, owing to its remarkable performance and versatility.

At its heart lies the self-attention mechanism, also known as scaled dot-product attention, which

enables the model to assess the significance of individual words within a sentence or sequence.

Unlike traditional recurrent neural network (RNN) or convolutional neural network (CNN)

architectures, the Transformer effectively captures long-range dependencies, thus overcoming

previous limitations.

In earlier sequence-to-sequence tasks, such as neural machine translation, RNN-based encoder-

decoder models struggled with retaining information from lengthy sequences. This issue

stemmed from their reliance on the last hidden state, which often overlooked crucial elements at

the beginning of the sequence. To address this, the attention mechanism was introduced,

allowing the decoder to access all encoder states and prioritize relevant information for each

output element prediction.

However, this method posed its own challenge: processing sequences one element at a time,

leading to inefficiencies, especially with large datasets. The Transformer overcomes this hurdle

by employing self-attention to extract features for each word, without relying on recurrent units.

This design not only enhances parallelization but also boosts efficiency.

Comprising encoder and decoder components, each equipped with multiple layers of self-

attention mechanisms and feed-forward neural networks, the Transformer architecture excels in

capturing contextual relationships between words during encoding. In the decoding phase, it

generates output sequences by attending to the encoded representations, predicting each token

progressively.

One of its standout features is parallelizability, facilitating faster training compared to sequential

models like RNNs. Moreover, Transformers excel at capturing dependencies across long

distances within input sequences, making them ideal for tasks like language translation, text

summarization, and question answering.

In AI contests, the Transformer's exceptional performance on benchmark NLP tasks, including

machine translation, sentiment analysis, and language modelling, has made it a top choice

among participants. Its ability to generalize across languages and domains, combined with its

scalability and ease of implementation, has solidified its position as the preferred architecture

for addressing diverse NLP challenges.

2.3 Large Language Model

2.3.1 LLM – What is it?

A large language model is a type of artificial intelligence (AI) model designed to understand and

generate human language. Is a specific type of transformer that has been trained on vast

amounts of text data.

A language model takes in a sequence of words as input and predicts the probability distribution

of the next word or sequence of words. It learns from large amounts of text data, such as books,

articles, websites, and other sources, to capture the statistical patterns and relationships between

words. By analyzing these patterns, a language model can generate human-like text based on the

context and input it receives.

Now, a large language model, like GPT-3 (which is one of the largest language models to date),

refers to a language model with an extensive number of parameters. Parameters are the internal

variables that the model uses to make predictions and store information. The more parameters a

model has, the more complex and nuanced its understanding of language can be.

Large language models like GPT-3 are trained on massive datasets containing billions of

sentences to develop a deep understanding of grammar, syntax, and semantics. This training

allows them to generate text that is remarkably coherent and contextually relevant. These

models can be fine-tuned for specific tasks, such as translation, summarization, question-

answering, and more.

2.3.2 LLM – How it works?

As humans, we perceive text as a collection of words and documents structured into chapters,

sections, and paragraphs. However, for computers, text is essentially a series of characters. To

bridge this gap and enable machines to truly comprehend text, a revolutionary model based on

recurrent neural networks can be developed. This model processes each word or character

sequentially, generating output once the entire input text has been processed. While this

approach works well, it sometimes "forgets" information from the beginning of the sequence

when it reaches the end.

In 2017, Vaswani et al. introduced a game-changing paper titled "Attention is All You Need,"

presenting the transformer model, built upon the innovative attention mechanism. In contrast to

recurrent neural networks, the attention mechanism permits the model to grasp an entire

sentence or even a paragraph at once, rather than processing one word at a time. This distinctive

feature empowers the transformer model to better understand the context of words, leading to its

widespread adoption in state-of-the-art language processing models.

To process text using a transformer model, the initial step involves tokenization, transforming

the text into a sequence of words or subwords. These tokens are then converted into numerical

embeddings, creating vector-space representations that preserve their underlying meaning. The

transformer's encoder subsequently transforms these token embeddings into a comprehensive

context vector.

Consider the following example of a text string, its tokenization, and the vector embedding.

The context vector encapsulates the essence of the entire input. Leveraging this vector, the

transformer decoder generates output based on contextual clues. For instance, you can provide

the original input as a clue and prompt the transformer decoder to produce the next word that

naturally follows. Repeating this process allows you to generate an entire paragraph, starting

from an initial sentence.

This approach, known as autoregressive generation, underpins the workings of large language

models. These models, based on the transformer architecture, can handle lengthy input texts,

boasting a large context vector capable of tackling complex concepts, and featuring numerous

layers in both the encoder and decoder.

2.3.3 LLM – Why a large language model?

Historically, AI models had been focused on perception and understanding.

However, large language models, which are trained on internet-scale datasets with hundreds of

billions of parameters, have now unlocked an AI model’s ability to generate human-like content.

Models can read, write, code, draw, and create in a credible fashion and augment human

creativity and improve productivity across industries to solve the world’s toughest problems.

The applications for these LLMs span across a plethora of use cases. For example, an AI system

can learn the language of protein sequences to provide viable compounds that will help

scientists develop groundbreaking, life-saving vaccines.

Or computers can help humans do what they do best—be creative, communicate, and create. A

writer suffering from writer’s block can use a large language model to help spark their

creativity.

Or a software programmer can be more productive, leveraging LLMs to generate code based on

natural language descriptions.

2.3.4 LLM – Common Use Cases

Large Language Models (LLMs) have a wide range of use cases due to their ability to

understand and generate human-like text based on the extensive training data they've been

exposed to. Here's a detailed presentation of some key LLM use cases:

1. Text Generation (Generative Use Cases):

• Creative Writing: LLMs can generate creative pieces of writing, including

poetry, short stories, and even novels. They can assist writers by providing

inspiration and generating content.

• Content Creation: LLMs can be used to automatically generate articles, blog

posts, and other forms of written content, which can be valuable for content

marketers and publishers.

• Code Generation: LLMs can generate code snippets in various programming

languages based on high-level descriptions or requirements, aiding software

developers.

• Data Augmentation: LLMs can generate additional training data for machine

learning models, helping improve the performance of various AI applications.

2. Natural Language Understanding (NLU Use Cases):

• Chatbots: LLMs power conversational AI by understanding user queries and

generating human-like responses. They're used in customer support, virtual

assistants, and more.

• Sentiment Analysis: LLMs can determine the sentiment (positive, negative,

neutral) of text, which is valuable for understanding customer opinions and

market trends.

• Named Entity Recognition: LLMs can extract specific information, such as

names, locations, dates, and organizations, from text, which is useful in various

data analysis tasks.

• Language Translation: LLMs excel at translating text from one language to

another, enabling real-time language translation in various applications.

3. Text Summarization and Information Retrieval:

• Text Summarization: LLMs can generate concise summaries of long articles

or documents, which is valuable for quick information retrieval and content

curation.

• Search Engines: LLMs can improve search engine results by understanding

user queries better and retrieving more relevant documents or web pages.

4. Text Classification and Sentiment Analysis:

• Topic Classification: LLMs can classify documents or text snippets into

predefined categories, aiding in content organization and information retrieval.

• Spam Detection: LLMs can be used to identify spam emails, comments, or

other types of unwanted content, enhancing cybersecurity.

5. Personalization and Recommendations:

• Personalized Recommendations: LLMs can analyze user preferences and

behaviors to make personalized product, content, or service recommendations.

• Content Tagging: LLMs can automatically tag and categorize content, making

it easier to organize and recommend relevant items to users.

6. Academic and Scientific Research:

• Research Assistance: LLMs can assist researchers in finding relevant papers,

summarizing research findings, and generating hypotheses.

7. Accessibility and Inclusivity:

• Text-to-Speech: LLMs can convert written text into spoken words, making

content accessible to visually impaired individuals.

• Language Generation for Non-Native Speakers: LLMs can help non-native

speakers generate more fluent and accurate text in a given language.

These are just a few examples of the many use cases for Large Language Models. The

versatility and capabilities of LLMs continue to expand as research and development in this

field progress.

2.4 AI for financial services

2.4.1 How AI can be used in finance and legal

AI is used extensively in both the finance and legal sectors, leveraging its capabilities to

enhance efficiency, accuracy, and decision-making. As concern as AI in Finance, AI can be used

to the following task:

1. Algorithmic Trading: AI is employed to develop sophisticated trading algorithms that

analyze vast amounts of market data in real-time. These algorithms can make rapid

trading decisions based on predefined criteria, leading to increased efficiency and

potentially higher returns.

2. Risk Assessment: AI models can analyze historical data to assess risk factors and

predict potential market fluctuations. This is crucial for portfolio management and

investment decision-making.

3. Credit Scoring: AI algorithms can assess creditworthiness by analyzing various data

points, leading to more accurate and consistent credit scoring models.

4. Fraud Detection: AI is used to detect unusual patterns in financial transactions that

could indicate fraudulent activities. This helps financial institutions protect themselves

and their customers from fraudulent behavior.

5. Customer Service: AI-powered chatbots and virtual assistants are used to handle

customer inquiries, provide basic financial advice, and assist with account management.

6. Personalized Financial Services: AI analyzes customer preferences, spending habits,

and financial goals to provide personalized investment advice and financial planning.

Also, in Legal Sector AI comes to help for a lot of tasks:

1. Document Review: AI can review and analyze large volumes of legal documents

quickly, which is particularly useful in tasks such as due diligence, contract review, and

e-discovery during litigation.

2. Legal Research: AI tools can assist lawyers in finding relevant case law, statutes, and

legal precedents, helping them save time and improve the quality of their legal research.

3. Predictive Analytics: AI can predict case outcomes based on historical data, helping

lawyers assess the viability of a case and potentially settle disputes outside of court.

4. Contract Analysis: AI can extract and analyze key information from contracts,

ensuring compliance and identifying potential risks.

5. Natural Language Processing (NLP): NLP-based AI tools can help automate the

drafting of legal documents, generate client communication, and assist with regulatory

compliance.

6. Administrative Tasks: AI can automate administrative tasks in law firms, such as

appointment scheduling, document organization, and client communication, freeing up

time for lawyers to focus on more complex legal work.

2.4.2 The challenges of AI in finance

AI has brought transformative possibilities to the realms of finance and law, promising

efficiency, accuracy, and innovation. However, along with these benefits, significant challenges

need careful consideration.

Both the financial and legal sectors operate within intricate regulatory frameworks.

Implementing AI systems that adhere to these rules and stay current with evolving laws can be a

daunting task. Ensuring that AI-driven decisions align with legal requirements while navigating

a dynamic landscape is a significant challenge.

In addition, AI relies heavily on data, and in these sectors, data privacy is paramount. Financial

and legal information is sensitive, and maintaining strict confidentiality is vital. AI systems must

be designed to protect this data from breaches, unauthorized access, and misuse.

AI systems can also inherit biases from the data they're trained on, leading to unfair outcomes.

In finance and law, where impartiality is crucial, biased algorithms can perpetuate or even

exacerbate inequalities. Recognizing and mitigating these biases is essential to ensure fairness.

AI algorithms, particularly in complex deep learning models, can be challenging to interpret.

This lack of transparency can be problematic, especially in sectors where clear explanations for

decisions are required. Striking a balance between powerful predictive capabilities and

understandable outcomes is a challenge.

Introducing AI into well-established industries can face resistance. Traditional practices,

longstanding norms, and concerns about job displacement can hinder the adoption of AI-driven

solutions. Convincing stakeholders of the benefits and providing training to work alongside AI

are essential for successful integration.

AI decisions might raise ethical dilemmas, especially in finance and law, where human

judgment has significant implications. Determining the right balance between automated

decision-making and human oversight is a complex challenge that requires careful thought.

AI systems can sometimes behave unpredictably, leading to unforeseen risks. In high-stakes

sectors like finance and law, these risks can have severe consequences. Thorough testing,

monitoring, and contingency planning are necessary to mitigate such unexpected issues.

In overcoming these challenges, collaboration between experts in AI, finance, and law is crucial.

Striking the right balance between technological advancement, regulatory compliance, and

ethical considerations is essential to harness the full potential of AI while safeguarding the

integrity and fairness of these industries.

3. Large Language Model
Development

3.1 Machine Learning Lifecycle

3.1.1 The step to build a ML

The development of ML models and their delivery to the user is governed by the Machine

Learning life cycle. It is a process that involves the preparation of data, training (building)

models, and deploying them. While it enables businesses to acquire value, it aids them in

managing their resources. These resources could range from business assets like customer data

and capital to human resources like data scientists, ML engineers, and DevOps collaborating to

make this process successful.

The data science development life cycle consists of three main stages: Data preparation,

modelling and deployment.

Before this cyclic process commences, businesses need to define the problem they want to

solve, create a roadmap, set objectives, and metrics to measure success or failure. It could be

customer segmentation for their coffee business using K-means clustering to increase the

consumer conversion rate or recommendation systems to enable customers easily find what they

may want to buy on their site. All these have to be figured out so that it creates a clear direction

for the teams involved.

The ML project life cycle can generally be divided into three main stages: data preparation,

model creation, and deployment. All three of these components are essential for creating quality

models that will bring added value to your business. It is called a cycle because, when properly

executed, the insights gained from the existing model will direct and define the next model to be

deployed.

Machine learning works in two main phases: training and inference. In the training phase, a

developer feeds their model a curated dataset so that it can “learn” everything it needs to about

the type of data it will analyze. Then, in the inference phase, the model can make predictions

based on live data to produce actionable results.

3.1.2 Selection and configuration of an architecture/model

Begin by selecting a baseline architecture. This should be a relatively simple model, which is

expected to have solid results with minimal effort. This model can later be compared to the

more complex models that are trained later. You may want to start with vanilla classical ML

solutions (e.g. logistic regression, xgboost) when possible, as they require minimal training

resources and experimentation.

Later on, you may want to experiment with more complex DL architectures, ensembles,

complex feature engineering, and feature selection. These methods will require more

experimentation to find what best matches the problem you attempt to solve. Training these

could be quite expensive, so limiting the space to explore by starting from well-established

settings is a good idea.

3.1.3 Data Preparation

Training machine learning models is heavily reliant on high-quality data. The data used must be

accurate, devoid of inconsistencies, and directly relevant to the intended task the model is meant

to excel at. Ensuring proper data preparation is a critical step in the ML development process, as

it can significantly reduce the need for extensive model debugging later on. This preparatory

work is typically accomplished through a structured data pipeline, which comprises a series of

data processing stages starting from data collection to its eventual storage in a designated

repository such as a data lake or warehouse, tailored to the specific project requirements.

The primary components of a comprehensive data preparation process include the following:

1. Data Collection and Labelling: In ML, the complexity of the task at hand often

dictates the amount of data required. Whenever feasible, it's advantageous to seek

existing datasets that align with your needs, as generating new datasets can be resource-

intensive. Even if existing data doesn't align perfectly with your target task, considering

transfer learning approaches can help mitigate the need for an extensive dataset (a

popular strategy in Natural Language Processing, for instance). When you must create

your own dataset, certain factors should be taken into account, such as whether you can

use "natural" data and annotate it, or if a synthetic dataset is necessary. Additionally, if

data labeling requires domain expertise, outsourcing to platforms like Amazon

Mechanical Turk can be a cost-effective solution.

2. Data Augmentation: When data scarcity is an issue, data augmentation techniques can

be employed to expand the dataset. This involves applying automated alterations to the

data. For instance, rotating an image of a cat still preserves the essence of a cat image.

More advanced augmentation may involve altering labels as well. For example, in

sentiment analysis, introducing negations to a positive movie review could transform

the label to "negative."

3. Data Cleaning: Datasets commonly exhibit missing values, incorrect data types, or

values that fall outside the expected range. Similar to the shifting of an entry in a

spreadsheet, such issues can disrupt the integrity of the dataset. Removing redundant

features also aids the training process. While data cleaning can be labor-intensive,

proper implementation and automation significantly enhance data quality with minimal

effort.

4. Data Validation: The data validation process is crucial for ensuring the quality,

integrity, and accuracy of the source data before it's integrated into a database. This step

is essential for preventing future complications in the model development process or

issues like data drift that could degrade model performance. Teams can employ tools

like Great Expectations to set data quality expectations or leverage tools like

deepchecks to validate labels, dimensions, and data distributions, guaranteeing that the

data is suitable for the task.

5. Data Management: Databases evolve over time, and as new data sources become

available, it may be necessary to incorporate additional columns or tables. ETL (Extract,

Transform, Load) processes are commonly used to bring data to its final usable format.

Proper management and maintenance of the data are critical for building high-quality

models. Data versioning can be employed to track historical data, new sources, and any

changes made to the database, similar to code versioning. This approach ensures the

availability of a stable version of the data, which can be invaluable in case of errors or

to preserve a reliable product history.

3.1.4 Training Process

The model is usually trained using a process called unsupervised learning. The objective is to

predict the probability distribution of the next word or sequence of words given a context. The

model learns to minimize the difference between its predictions and the actual next words in the

training data.

The model is trained iteratively on the tokenized dataset. During each iteration, it processes a

sequence of tokens and tries to predict the next token. The model's parameters are updated based

on the error between its predictions and the ground truth.

Backpropagation is used to calculate gradients that indicate how the model's parameters should

be adjusted to reduce prediction errors. Optimization algorithms, such as stochastic gradient

descent (SGD) or its variants, are employed to update the model's parameters in the direction

that minimizes the training loss.

Training a large language model like GPT-3 requires parallel processing across multiple

machines or specialized hardware like graphics processing units (GPUs) or tensor processing

units (TPUs). The training process may take days or even weeks to complete.

Training large language models is a resource-intensive process that requires expertise in

machine learning, access to extensive computational resources, and careful consideration of

ethical considerations, such as data privacy, biases, and potential misuse.

3.1.5 Inference Process

The inference process is a fundamental concept in Machine Learning (ML) and Large Language

Models (LLMs) that involves applying a trained model's learned knowledge to new, unseen

data. This process enables the model to make predictions, classifications, or generate

meaningful output based on the patterns it has learned during its training phase.

In the context of ML, once a machine learning model has been trained using a dataset

containing input features and corresponding target labels, it undergoes an inference phase.

During inference, the model is presented with new input data for which it needs to make

predictions or classifications. The model applies the patterns and relationships it has learned

from the training data to the new data and produces predictions or outputs. For instance, in a

model trained to classify images of animals, during inference, the model takes an image as input

and predicts the type of animal depicted.

Large Language Models (LLMs), like the GPT series developed by OpenAI, are a specialized

type of ML model that excel in understanding and generating human language. In the context of

LLMs, the inference process involves inputting a sequence of words or tokens to the model,

which then generates coherent and contextually appropriate text as output. This output can be

used for a variety of tasks, such as completing sentences, answering questions, translating

languages, summarizing text, and more. LLMs leverage their understanding of language

structure, grammar, and context to produce text that often closely resembles human-generated

content.

In both ML and LLMs, the inference process is guided by the model's internal parameters and

the patterns it has learned during training. It's important to note that while models strive to

generate accurate and relevant output, they do so based on statistical patterns rather than true

comprehension. This means that although the output might seem remarkably human-like, the

model doesn't possess actual understanding or consciousness.

In summary, the inference process in Machine Learning and Large Language Models involves

the application of trained models to new data for the purpose of generating predictions,

classifications, or text outputs. This process leverages the learned patterns to bridge the gap

between training and real-world application, enabling models to provide valuable insights and

generate human-like language.

3.1.6 Evaluation

The evaluation process is a crucial step in the development and deployment of Machine

Learning (ML) models, including Large Language Models (LLMs). It involves assessing the

performance and capabilities of a trained model to understand how well it generalizes to new,

unseen data or tasks.

In the realm of ML, once a model has been trained on a dataset, it's essential to evaluate its

performance to ensure that it can make accurate predictions on real-world data. This involves

using an evaluation dataset separate from the training data. The model is presented with this

evaluation dataset, and its predictions or classifications are compared to the ground truth labels.

Common evaluation metrics vary depending on the type of problem being solved. For example:

• Classification Problems: Metrics like accuracy, precision, recall, F1-score, and

confusion matrices are used to measure how well the model classifies data into different

categories.

• Regression Problems: Metrics such as mean squared error (MSE) or root mean squared

error (RMSE) quantify the deviation between predicted and actual numeric values.

In the context of LLMs, evaluation involves assessing the quality of the generated text. Since

LLMs often generate responses or completions, evaluating their output requires a combination

of human judgment and automated measures. For instance, in open-ended tasks like text

generation, human evaluators might assess factors like fluency, coherence, relevance, and

grammaticality. Automated measures like BLEU (Bilingual Evaluation Understudy) and

ROUGE (Recall-Oriented Understudy for Gisting Evaluation) are also employed to quantify the

similarity between model-generated text and reference text.

The evaluation process serves several important purposes:

1. Model Selection: It helps in choosing the best model among different variations or

algorithms by comparing their performance on the evaluation dataset.

2. Generalization: It provides insights into how well the model can perform on unseen

data, indicating its ability to generalize beyond the training set.

3. Hyperparameter Tuning: It assists in tuning hyperparameters to enhance the model's

performance.

4. Bias and Fairness: It helps identify potential biases or fairness issues in the model's

predictions or outputs.

It's important to note that the evaluation process is iterative. Models might need to be retrained

or fine-tuned based on evaluation results to achieve better performance. Additionally,

evaluations are context-dependent; what's considered good performance varies based on the

application and domain.

In summary, the evaluation process in Machine Learning and Large Language Models involves

assessing a model's performance on new data or tasks. This process helps determine how well

the model generalizes, aids in selecting the best model, and guides improvements to enhance

overall performance and capabilities.

3.1.7 Deploy in production

The deployment process involves transitioning a trained model from the development

environment to a production environment, where it can be used to make real-world predictions,

generate outputs, or provide valuable insights.

After training and evaluation, the ML or LLM model is exported from the development

environment, typically saved as a file that contains the model's architecture, parameters, and

learned patterns.

In many cases, real-world data needs preprocessing before being fed into the model. This could

involve data normalization, tokenization, scaling, or other transformations. Setting up a reliable

data pipeline ensures that incoming data is properly processed and ready for the model.

In a production environment, the model needs to handle a potentially large volume of requests

efficiently. Depending on the use case, this might involve optimizing the model's architecture,

utilizing hardware accelerators (like GPUs or TPUs), and designing systems that can handle

concurrent requests.

To make predictions or generate outputs, the model needs to be accessible through an

Application Programming Interface (API) or as a service. This involves creating a server or

service that can receive input data, send it to the model, and return the model's predictions or

generated text back to the user or application.

Deployed models require continuous monitoring to ensure they are performing as expected.

This includes tracking metrics like response time, accuracy, and resource utilization.

Comprehensive logging helps in diagnosing issues and understanding how the model is being

used.

Security measures must be in place to protect both the model and the data it processes. This

might involve implementing authentication mechanisms, encryption, and access controls to

prevent unauthorized access.

As models improve over time, it's essential to have a system for versioning deployed models.

This allows for easy tracking of changes and the ability to roll back to previous versions if

necessary. Additionally, updating the model in production requires careful testing to avoid

disruptions.

Deployed models should have fail-safe mechanisms in place to handle unexpected errors or

anomalies. This might involve setting default behaviors or responses when the model

encounters data it hasn't been trained on.

Depending on the application and industry, models might need to adhere to specific regulations

and compliance standards. Ensuring that the deployed model meets these requirements is

critical.

The deployment process is not a one-time event. It's an ongoing cycle of monitoring, updating,

and improving the deployed model based on real-world usage and feedback.

Successful deployment bridges the gap between the model's development and its practical

application, enabling it to deliver value in various domains.

3.2 How to choose a model?

3.2.1 Model Size and capabilities

It's essential to carefully evaluate both the model's size and its capabilities, as they directly

impact the model's performance, resource consumption, and overall suitability for your specific

use case.

Language models come in a wide range of sizes, from relatively compact ones with a few

hundred million parameters to massive models with several billion parameters. Larger models

often offer expanded capabilities, allowing them to understand context, generate coherent

responses, and handle complex language tasks more effectively. However, the size of the model

also comes with a cost — increased computational requirements.

Larger models demand more computational power for various tasks, including training, fine-

tuning, and inference. This translates to longer processing times and higher hardware costs.

Furthermore, the storage demands for model checkpoints and deployment might become a

consideration, particularly if your application needs to run on devices with limited space.

Therefore, it's crucial to weigh the benefits of a larger model against the resources available to

you.

The capabilities of a language model define its suitability for specific tasks. Different models

excel in various areas, such as text generation, translation, sentiment analysis, or question

answering. When evaluating the capabilities of a model, it's essential to align them with your

application's requirements. Choosing a model with the right pre-trained abilities can

significantly reduce the need for extensive fine-tuning, making the development process more

efficient.

The selection process involves finding the optimal balance between model size, capabilities, and

the resources at your disposal. For applications where real-time responses are crucial, a smaller

model might be the better choice, even if it comes with slightly fewer capabilities. On the other

hand, if your project demands cutting-edge language understanding and generation, a larger

model may be the right fit, provided you can manage the increased computational demands.

3.2.2 Performance and Latency

These factors directly impact the model's ability to deliver accurate results and timely responses,

making them critical considerations for a wide range of use cases.

Begin by examining the model's performance on relevant benchmarks or tasks. Metrics such as

accuracy, precision, and recall provide valuable insights into the model's effectiveness in

handling specific language processing tasks. It's crucial to assess the model's performance

across different use cases to ensure it aligns with your application's requirements. For tasks like

sentiment analysis, translation, or question answering, a model that consistently achieves high

performance metrics is preferable.

Beyond performance, the response time or latency of the model is particularly significant,

especially if your application demands real-time interactions or operates in low-latency

environments. The response time measures how quickly the model can process input and

produce an output. In scenarios like customer support chatbots, live translations, or voice

assistants, minimizing latency is crucial to provide a seamless user experience. A model with

low-latency capabilities ensures that users receive prompt and smooth responses, enhancing

user satisfaction and engagement.

As you evaluate performance and latency, it's essential to strike the right balance based on your

application's specific use cases. Some applications may prioritize high accuracy over low

latency, while others require a swift response time at the cost of slightly reduced accuracy.

Understanding the trade-offs between these factors is crucial for making an informed decision

that aligns with your application's goals.

Additionally, consider the model's scalability. Will the model maintain consistent performance

and latency as the workload increases? Scalability is essential for applications with varying

traffic levels or those expected to handle spikes in user interactions.

3.2.3 Pretraining Data and Knowledge Cutoff

Understanding the pretraining data and knowledge cutoff of a language model is paramount

when selecting the right model for your application. These factors directly impact the model's

understanding of the world, its ability to handle recent information, and its relevance to current

events and trends.

Language models leverage large and diverse datasets during pretraining to learn the intricacies

of language. The quality and comprehensiveness of this pretraining data significantly influence

the model's language understanding and generation capabilities. Consider the sources, domains,

and languages included in the pretraining data to ensure they align with the context of your

application. Models trained on a broad range of data sources might be more versatile and

adaptable to different use cases.

The knowledge cutoff refers to the date until which the model has been exposed to data during

pretraining. It's essential to recognize that models trained on data only up to a specific date

might lack information from recent sources or events. If your application requires up-to-date

information, such as real-time news analysis, current market trends, or recent research findings,

selecting a model with a more recent knowledge cutoff is critical. This ensures that the model's

knowledge remains current and relevant to the latest developments in the field.

Evaluate the temporal relevance required for your application. Some use cases, such as

sentiment analysis of historical documents, may not demand the most recent information,

making models with older knowledge cutoffs acceptable. However, applications like real-time

news summarization or social media sentiment tracking necessitate models with up-to-the-

minute knowledge to provide accurate and relevant insights.

In some cases, you might have the opportunity to fine-tune the model using recent data after its

initial pretraining. This can extend the model's knowledge beyond its original cutoff date,

allowing you to incorporate the latest information relevant to your domain.

It's important to strike a balance between knowledge cutoff and other factors, such as model

size, capabilities, and resource requirements. A model with a very recent knowledge cutoff

might be ideal for some applications but might come with trade-offs in terms of resource

consumption or response time.

3.2.4 FineTuning and Customizability

Fine-tuning is a powerful capability that can significantly enhance the suitability of a large

language model for your specific use case. When evaluating language models for your

application, it's essential to consider the availability of fine-tuning options and the level of

customizability they offer.

Fine-tuning enables you to adapt a pretrained model to better perform on your specific domain

or task. This process involves training the model on a task-specific dataset, allowing it to learn

the nuances of your data. Fine-tuning can improve the model's accuracy, relevance, and

performance in the context of your application. Understanding the fine-tuning process and its

requirements, such as the amount and quality of the training data, is crucial to harness its

benefits effectively.

The ability to customize the model is paramount, especially if your use case demands domain-

specific understanding or requires the model to address specific requirements. Models that

support fine-tuning provide you with the flexibility to tailor the model to your unique needs.

Whether you're working with medical data, legal documents, or any specialized domain, the

model's customizability ensures that it aligns with the intricacies of your application.

Evaluate whether the model can be fine-tuned for the specific task you have in mind. Some

models are better suited for particular tasks or domains. Ensure that the model's architecture and

pretraining data are conducive to the task you intend to tackle.

While customization is valuable, it's essential to strike a balance between customizability and

the pretrained knowledge the model brings. A model with strong pretraining can offer a solid

foundation for a wide range of language understanding tasks. Leveraging both pretraining and

fine-tuning can yield optimal results, enhancing the model's performance while retaining its

broad language capabilities.

Check whether the model's documentation provides clear guidance on the fine-tuning process. A

model with comprehensive documentation and a supportive community can make the fine-

tuning journey smoother and more effective.

3.2.5 Open-source model & Licence

The distinction between open-source and proprietary models is a significant factor to weigh

when selecting a language model for your project. This consideration can impact your ability to

customize, integrate, and leverage the model for your specific needs.

Open-source models offer several key advantages. First and foremost, they are freely available,

allowing developers to access, use, and modify the model without incurring licensing fees. This

makes open-source models an attractive option for individuals or organizations with budget

constraints or those seeking cost-effective solutions.

Open-source models empower developers with the flexibility to customize the model according

to their requirements. You can fine-tune the model on your own domain-specific data, adapt it to

unique tasks, or tailor it to fit the nuances of your application. This customization capability is

especially valuable when your use case demands a high degree of specialization or when you

want to refine the model's performance for specific contexts.

Open-source models facilitate seamless integration into your existing systems, whether it's

embedding the model in a mobile application, deploying it in a cloud-based service, or

integrating it with other AI technologies. The availability of open-source code and resources

makes it easier to work with the model, and a community of developers often surrounds these

models, fostering collaboration and innovation.

When dealing with open-source models, it's essential to review the specific open-source license

under which the model is released. Different licenses have varying terms and may impose

certain requirements, such as attributions or share-alike clauses. Make sure the license aligns

with your intended usage and that you understand any obligations it entails.

On the other hand, proprietary models may come with licensing restrictions, limiting how you

can use or modify the model. These models might be subject to fees, usage limitations, or access

restrictions, which can impact your ability to fully leverage the model for your project.

3.2.6 Accessibility and cost

The accessibility and cost of a language model are crucial factors to consider when selecting the

right model for your project. These considerations impact not only the feasibility of using the

model but also the long-term sustainability of your application within your budget.

Some language models are open source, meaning they are freely accessible for use,

modification, and distribution. Open-source models are an excellent choice for developers

seeking cost-effective solutions. They eliminate the need for licensing fees, making them

particularly attractive for individuals or organizations with limited financial resources.

Open-source models not only provide affordability but also offer flexibility and customization.

You can adapt the model to your specific use case, fine-tune it on your own data, and even

contribute to the model's development. This level of customization ensures that the model aligns

precisely with your application's requirements.

In contrast, some models may come with licenses or usage costs. These models might have

associated fees based on the number of requests, the amount of data processed, or the level of

usage. It's crucial to carefully review the licensing terms and pricing structure to understand the

potential financial implications over time.

Evaluate your budget and available resources. Consider not only the initial costs but also the

ongoing expenses, especially if you expect your application to scale or require continuous

usage. Models with licensing fees or usage costs should be assessed based on how well they fit

within your financial constraints.

While cost is a significant consideration, it's essential to strike a balance between affordability

and the model's performance. Sometimes, investing in a higher-quality model with a moderate

cost might yield better results and long-term benefits compared to opting for a completely free

but less effective model.

Assess the sustainability of your chosen model within your budget. Ensure that you can

maintain and scale your application without encountering unexpected financial hurdles due to

high licensing costs or usage fees.

3.2.7 Ethical and Responsible AI Considerations

As the use of large language models becomes more prevalent, it's essential to prioritize ethical

and responsible AI practices when selecting a model for your project. The impact of these

models on content generation, user interactions, and societal norms cannot be understated.

Here's why ethical considerations should play a central role in your decision-making process:

One of the most significant concerns with language models is the potential for generating biased

or inappropriate content. Language models learn from vast datasets, which may contain biases

present in the real world. It's crucial to evaluate whether the model has undergone bias analysis

and if the development team actively addresses and mitigates bias in its outputs.

Choose a model that has been developed with responsible AI practices. Look for models created

by organizations that emphasize ethical considerations, transparency, and accountability. Models

developed with responsible AI principles are more likely to have been subject to rigorous

evaluation for fairness, transparency, and ethical use.

Look for models that provide clear guidelines and usage policies. These guidelines can help you

understand the model's intended use, ethical boundaries, and restrictions. Transparent guidelines

enable you to ensure that the model aligns with your ethical values and intended application.

Models that actively address bias mitigation are preferable. These models employ techniques to

reduce biases in their outputs, making them more suitable for applications where fairness and

inclusivity are paramount, such as chatbots used in customer support or language models in

educational contexts.

Consider how the model ensures user safety. Models that filter inappropriate or harmful content,

or those that can be fine-tuned to suit your specific content moderation needs, are valuable in

creating a safe environment for users.

A model with an active and engaged community can be indicative of responsible development

practices. A model with a strong user community is more likely to identify and address ethical

concerns, share best practices, and collaborate on improving the model's ethical aspects.

3.3 Different approaches to train a model

3.3.1 Training from scratch

Learning from scratch refers to the process of training a machine learning model or algorithm

without leveraging pre-existing knowledge or pre-trained models. When learning from scratch,

the model starts with no prior information or understanding of the task at hand and learns

directly from the provided training data. The model is initialized with random parameters or

weights, then it gets trained on a labelled dataset specific to the task. In practice, the model

iteratively processes the training examples, makes predictions based on its current parameters,

and compares those predictions with the true labels. It then adjusts its parameters through

optimization techniques like gradient descent, aiming to minimize the difference between its

predictions and the true labels. With each iteration, the model updates its parameters to improve

its performance on the task. Learning from scratch is often more time-consuming and

computationally demanding compared to leveraging pre-trained models or transfer learning

approaches because the model needs to learn from a relatively small amount of data without any

prior knowledge or guidance. Additionally, learning from scratch may require a larger dataset to

achieve comparable performance to pre-trained models, as it needs to capture all the necessary

patterns and representations solely from the provided training data. It can be advantageous

especially when the task or domain is highly specific or unique, and pre-existing models or

knowledge are not readily available or relevant. It allows the model to develop task-specific

representations and understanding directly from the training data, potentially leading to more

tailored and specialized performance.

3.3.2 Training with Transfer Learning

Transfer learning is a method that enhances machine learning performance on a new task by

leveraging knowledge from a pre-trained model. Instead of starting from scratch, the pre-trained

model's learned representations and features are utilized as a foundation. This approach saves

time and data, improves accuracy, and allows the model to adapt to new tasks or domains more

effectively. By transferring knowledge, the model benefits from previous learning and achieves

better results on the target task.

3.3.3 Training with finetuning

Fine-tuning is an important step in training large language models that allows customization for

specific tasks or domains. Here's an overview of the fine-tuning process:

Task-specific dataset: To fine-tune a language model, a task-specific dataset is required. This

dataset should be relevant to the desired task and should ideally contain a sufficient number of

examples to train the model effectively. The dataset could include labeled examples for

supervised tasks or paired data for tasks like machine translation.

Model initialization: The pre-trained language model, such as GPT-3, is used as a starting point

for fine-tuning. The model has already learned a broad understanding of language from its pre-

training phase, which provides a strong foundation for the fine-tuning process.

Architecture modification: Depending on the task, the model's architecture may need to be

modified or extended. Additional layers or specific modules can be added to adapt the model to

the requirements of the task. For example, for a sentiment analysis task, a classification head

may be added on top of the language model.

Training objective: A task-specific objective is defined for fine-tuning. This objective varies

based on the nature of the task. For example, for a classification task, the objective may involve

minimizing the cross-entropy loss between predicted labels and true labels. For a machine

translation task, the objective may be to minimize the translation loss.

Training process: The task-specific dataset is used to train the modified model. The model is

presented with input sequences from the dataset, and the parameters are updated through

backpropagation and optimization algorithms to minimize the defined training objective. The

training process typically involves multiple iterations or epochs over the dataset.

Hyperparameter tuning: During fine-tuning, various hyperparameters, such as learning rate,

batch size, regularization techniques, and optimization algorithms, need to be carefully tuned.

Hyperparameter tuning aims to find the optimal configuration that maximizes the performance

of the fine-tuned model.

Evaluation: After training, the fine-tuned model is evaluated on a separate validation or test set.

This evaluation measures the model's performance on the specific task, providing insights into

its effectiveness and potential areas for improvement.

Iterative refinement: Based on the evaluation results, further iterations of fine-tuning and

evaluation may be performed to improve the model's performance. This process allows for the

refinement of the fine-tuned model to achieve better results.

Generalization and deployment: Once the fine-tuned model achieves satisfactory performance

on the evaluation metrics, it can be deployed for real-world applications. The fine-tuned model

can be used to generate text, classify inputs, perform translation, or assist in various other

language-related tasks specific to the fine-tuning objective.

It's worth noting that fine-tuning a language model requires a sufficient amount of task-specific

data, and the performance of the fine-tuned model heavily depends on the quality and

representativeness of the dataset. Additionally, ethical considerations should be taken into

account during the fine-tuning process to address biases and potential issues related to fairness

and inclusivity.

3. DATASET

In this chapter, we delve into the pivotal process of selecting datasets for fine-tuning a Large

Language Model (LLM). Fine-tuning plays a vital role in unlocking the full potential of these

models. During the fine-tuning process of an LLM, as well as in their initial training, the

accurate selection of data to use emerges as a crucial step. Although it may seem less relevant

compared to the selection of the base model or the fine-tuning process itself it constitutes the

essential core of the entire procedure.

Like any other fundamentals step, dataset building requires an impressive effort in terms of

capabilities, time and resources, an effort that will directly influence the outcome.

Therefore, this chapter meticulously examines the datasets used for fine-tuning, exploring their

construction methods, strengths, and potential weaknesses.

3.1 Dataset Construction

The process of constructing a dataset involves several intricate steps aimed at gathering,

organizing, and preparing relevant data to meet specific objectives. We need to select the scope

and purpose of the dataset, identifying the target domain and the types of data required. Next,

data collection methods are devised, which may include web scraping, manual annotation, or

collaboration with domain experts to ensure data authenticity and relevance. Once the raw data

is amassed, it undergoes preprocessing to remove noise, standardize formats, and address any

inconsistencies.

Through this meticulous process, a well-constructed dataset forms the foundation for robust

machine learning models and facilitates advancements in various domains.

3.1.1 Challenges and Considerations:

The construction of datasets for machine learning poses several challenges and requires careful

consideration at various stages. Let’s introduce the key aspects about the process:

1. Domain Relevance: Ensuring the relevance of the finetuning data to the specific task or

domain is paramount. Optimal performance hinges on gathering data that authentically

mirrors real-world scenarios the model will encounter. Strive to eliminate mismatches

that could lead to suboptimal performance or unexpected outputs.

2. Data Diversity: Beyond mere quantity, the quality of diversity within the dataset is

crucial for model robustness. A diverse dataset, encompassing variations in language,

style, and perspectives, guards against biased or one-sided outputs. Aim for inclusivity

and a comprehensive representation of possible inputs to enhance the model's

adaptability.

3. Data Size: While larger datasets contribute to improved model performance, managing,

and processing massive amounts of data presents technical challenges. Consider

storage, computational resources, and processing time when determining the dataset

size. A baseline of at least 1000 samples is recommended, with the actual size

influenced by the choice of the foundational model for finetuning.

4. Data Cleaning and Preprocessing: Raw data often contains noise, errors, and

inconsistencies. Implementing proper preprocessing steps, such as text normalization,

spell-checking, and removal of irrelevant content, is crucial to ensure the model learns

from clean and coherent inputs.

5. Data Annotation: In tasks requiring labeled data, accurate and consistent annotation is

paramount. Address ambiguities in labeling guidelines and inter-annotator

disagreements to enhance the quality of the model's learning.

6. Handling Rare Cases: Acknowledge the significance of rare cases in task performance.

Ensuring these infrequent but critical scenarios are well-represented in the data

facilitates better generalization by the model, leading to accurate outputs in real-world

applications.

7. Ethical Considerations: Vigilantly vet the data for potential biases or harmful content.

Biases present in the training data can be perpetuated by the finetuned model, resulting

in unintended consequences.

3.1.2 Strategies to Overcome Challenges:

Managing the challenges inherent in dataset construction requires a multifaceted approach that

integrates best practices, ethical considerations, and technological solutions. There are some

common indications and best practices to follow:

1. Curate and Verify: Invest time in curating a dataset aligned with the task's objectives.

Manual verification of a subset of the data ensures adherence to quality standards. High-

quality datasets, achieved through human effort, contribute to a cost-effective solution,

avoiding the pitfalls of "garbage-in, garbage-out."

2. Data Augmentation: Enhance dataset diversity through augmentation techniques like

synonym replacement, paraphrasing, or back-translation. These techniques expand the

model's capacity to handle a broader range of inputs.

3. Balancing Act: Strike a balance between domain-specific data and more general

language data. This ensures the model retains linguistic prowess while excelling in the

target task.

4. Iterative Refinement: Acknowledge finetuning as an iterative process. Train, evaluate,

and fine-tune the model and data iteratively to address gaps and correct shortcomings,

optimizing the model's overall performance.

3.1.3 Dataset Choices

A high-quality dataset is the foundation upon which successful training/finetuning is based. The

vastness and diversity of the data in the dataset directly affect the model's ability to understand

and generate text in a consistent and contextually accurate manner. The use of a well-maintained

dataset allows the model to learn in a more thorough and versatile manner, enabling better

generalization to new linguistic situations.

In the context of this project, it was not possible to rely on any existing datasets. Indeed, there

are not many datasets in the field of Large Language Models developed in languages other than

English. Even more challenging is finding a dataset that not only has been developed in Italian

but also pertains to the legal and fiscal domain, which is the focus of this project.

For this reason, it was decided to proceed by constructing two new datasets, ITACA and ADE,

which constitute the only two datasets currently available in the legal domain and in Italian

language, accessible online.To fulfill this task, there was obviously no resource to rely on,

which led to considering some compromises that must be accepted when there is no access to an

expert in the examined field. It was decided to define the two datasets through automation.

In particular, for ADE, only the technique of Web Scraping was utilized, while for ITACA,

Artificial Intelligence was also employed, using an innovative technique that we will analyze

below. In this way, we managed to overcome the daunting challenge of combining minimal

resources with a dataset that is qualitative and reliable.

Let's now explore the processes and choices that led to the construction of the two datasets used.

3.2 ADE (Agenzia Delle Entrate) DATASET

3.2.1 What is ADE Dataset

ADE constitutes the most accurate and stable dataset used for fine-tuning the ITACA model.

ADE takes its name from the source used during the construction process, namely the website

of the ”Agenzia Delle Entrate”. The idea was to use this portal as the primary source of

information since the topic under consideration needs special attention. Tax and legal fields are

areas where any inaccuracy can lead to not inconsiderable problems.

ADE is therefore a dataset constructed using the FiscoOggi.it portal, which represents the online

magazine of the “Agenzia Delle Entrate”. The portal was created to offer updates on the

activities of the Administration and its central and peripheral offices, comments on regulations,

practices, and tax case law. It is an information tool available to taxpayers and professionals.

On the portal of the Agency, in addition to the sections where all the news of the moment is

published and where all the available articles and guides are, there is a particularly interesting

section for our purpose and on which we want to place particular emphasis, “La posta.”

This is an interesting service made available to all users to ask any kind of question in the tax

and legal field. It is possible to ask what to do in particular tax situations, how to get bonuses or

what to do to avoid IRS assessments and anything else related to tax, regulations and so on.

And for this reason, that it is particularly suitable for constructing a dataset for training a Large

Language Model. In fact, each "article" is composed of a question, the one posed by the user in

trouble, and an answer, coming from an authoritative source, namely the “Agenzia delle

Entrate”.

The resulting advantages are many:

1) Speed of construction:

Since each article is already represented by a question and an answer, it is possible to define and

use an automation to retrieve through the so-called "Web Scraping" mechanism all the articles

that will compose our dataset.

2) Authoritativeness and reliability:

Answers come from the main source of information in the field, i.e., Italian Authority. This

minimizes the possibility of introducing inaccurate or partially correct facts.

3) Language and Style:

It is important to pay attention to the fact that these are not generic questions, but specific

questions composed specifically by the user for his or her financial and legal situation. This

allows us to generalize our model and train it in particular situations as well. In addition, the

answers are very carefully crafted by people who work in the field and know what they are

talking about. This aspect is by no means to be overlooked when constructing the dataset, since

very often, it is even more so in the academic field, it is extremely difficult for the person or

team in charge of constructing a dataset in a particular field to also be trained in that field under

consideration:

Size 3280

Format JSON

Domain Legal & Fiscal

Language Italian

Source Agenzia delle Entrate

3.2.1 The process behind ADE dataset

ADE is a dataset constructed entirely from a single source, namely that of FiscoOggi.it, a portal

made available by the Internal Revenue Service.

As discussed extensively above, the portal provides an internally mailed section where

questions posed by portal users can be found. However, although the site makes this information

available to everyone, there are no APIs made available to the portal to be able to work on some

automation to quickly build the dataset.

And for this reason, to perform Web Scraping, it was decided to take advantage of an external

tool, the purpose of which is precisely to speed up the aforementioned process. The automation

was designed using the Chrome browser extension, Automa.

Automa is a browser extension for automations on the browser. With this extension you can fill

forms, define and execute repetitive tasks, open web pages, capture data, images and more, and

generate tables and structured files. It is a very easy-to-use and very powerful tool for

performing so-called web data scraping, i.e., capturing data from websites automatically and

converting it in the form of structured data. Through this tool you can also collect them via CSV,

JSON, Google Sheets and more.

Automa provides an editor for defining its Workflows. A Workflow is a collection of connected

blocks that define and automate a certain process. A workflow is executed from a trigger block,

executing the blocks that follow it step by step.

The editor provides an additional tool for defining a workflow through screen recording. In fact,

by taking advantage of this mode, actions performed on the browser will be recorded and

automatically important within a new workflow.

Finally, it is possible to follow step by step the execution of a workflow through logs, which can

be used to visualize the current point and the variables involved. There is also a debugging tool

if you want to go into more detail.

Let us look in more detail at the workflow that enabled its definition:

Listed below are what steps are defined by automation to retrieve information and build ADE.

1. Definition of some global variables, such as years and months to iterate.

2. Iteration on the predefined years.

3. Iteration on the predefined months.

4. Opening mail page with the articles of the selected year and month.

5. Loading of all articles on the page.

6. Iteration on all articles present for the selected year and month.

7. Opening the link in a new tab.

8. SCRAPING: Retrieving all necessary information such as Title, Question, Answer, Date,

Source through the use of CSS Selector. The information is retrieved and transferred to a

table.

9. Closing the tab and selecting the previous one.

10. Once the process is finished, the table with all the retrieved data is converted into a JSON

and downloaded.

The workflow under consideration can be executed when triggered manually, it allows access to

the FiscoOggi.it portal, to the section related to its mail, and iterating for each year and for each

put, access to all the queries asked during the various years. The individual request is then

opened on a separate page, and the data is retrieved, inserted into a table and then downloaded

in JSON format at the end of the process.

3.2.3 Data Choices and Cleaning

The choices that were made during the definition of the dataset were determined by the fact that

the web scraping procedure for this type of article had no contraindications.

In fact, no article was discarded for some reason, due to the fact that in this type of article, no

source of noise could influence the generation of the dataset element. There are no videos or

images in these articles, nor are there any particular limitations related to accessing articles

rather than others. In this sense, all questions and answers available on the site since 2008 have

been used for the purpose.

Regarding the pre-processing and cleaning of the collected data, it was chosen not to modify or

alter any kind of information. Given the manner in which the data were collected, there are no

duplicates or items that for some other reason need to be selected and eliminated. The only

process of transformation they underwent concerns the response, in which the name and date of

the person considering the question and responding was always present.

3.3.4 ADE Samples

Dataset Sample 1:

Titolo Società estinta: notifica dell'accertamento

Domanda La Srl di cui ero socio si è estinta nel 2012. A dicembre 2014 è stato notificato al nostro

liquidatore un accertamento per il 2011. È legittimo? Chi è tenuto a ricorrere, noi soci o il

liquidatore?

Risposta Le società indicate all’articolo 2495 del codice civile cancellate dal registro delle imprese sono

responsabili dei debiti fiscali e contributivi per cinque anni dopo la loro estinzione (articolo 28,

comma 4, Dlgs 175/2014). Tale norma, in quanto procedurale, ha applicazione retroattiva

(circolare 31/E/2014). Pertanto, a partire dal 13 dicembre 2014, data di entrata in vigore del

decreto, l’avviso di accertamento contenente la rettifica della dichiarazione della società

cancellata dal registro delle imprese deve essere emesso nei confronti della società cancellata e

notificato alla stessa presso la sede dell’ultimo domicilio fiscale in quanto, a tal fine, l’effetto

dell’estinzione si produrrà solo dopo cinque anni dalla data della cancellazione. L’avviso sarà

impugnabile sia dai soci che dal liquidatore, entrambi soggetti responsabili ai sensi degli

articoli 2495 del codice civile e 36 del Dpr 602/1973 (circolare 6/E/2015, paragrafo 13.4).

Data 31 Marzo 2015

Fonte https://www.fiscooggi.it/posta/societa-estinta-notifica-dellaccertamento

Dataset Sample 2:

Titolo Forfettari e fatturazione elettronica

Domanda Un contribuente nel 2021 era in regime forfettario e ha conseguito ricavi inferiori a 25.000

euro. L’anno successivo, invece, l’ammontare dei ricavi ha superato di poco questo limite. Mi

confermate che l’obbligo di emettere fattura elettronica scatterà per lui dal 2024 e non dal

1°gennaio 2023?

Risposta Si conferma che per il contribuente in regime forfettario, che si trova nella situazione descritta

nel quesito, l’obbligo di emettere fattura elettronica decorrerà dal 1° gennaio

2024.\nL’obbligo di fatturazione elettronica è già scattato dal 1° luglio 2022 per tutti i

soggetti, precedentemente esclusi, che nell’anno precedente hanno conseguito ricavi o

percepito compensi (ragguagliati ad anno) superiori a 25.000. Per tutti gli altri soggetti

forfettari, invece, l’obbligo decorrerà dal 1° gennaio 2024, indipendentemente dai ricavi o

compensi conseguiti nel 2022 (articolo 18, comma 3, del decreto legge n. 36/2022 e circolare

dell’Agenzia delle entrate n. 26/2022).

Data 15 Febbraio 2023

Fonte https://www.fiscooggi.it/posta/forfettari-e-fatturazione-elettronica

Dataset Sample 3:

Titolo Comunicazioni di irregolarità: pagamento con lieve ritardo

Domanda Se un contribuente effettua il pagamento delle somme richieste dall’Agenzia delle entrate con

una comunicazione di irregolarità dopo due giorni dalla scadenza prevista per usufruire della

sanzione ridotta, non ha più diritto a tale riduzione?

Risposta Il contribuente che riceve una comunicazione di irregolarità, se vuole evitare l’iscrizione a

ruolo e usufruire della riduzione delle sanzioni amministrative a un terzo deve effettuare il

pagamento delle somme dovute entro trenta giorni dal ricevimento della stessa comunicazione

(articolo 2, comma 2, del decreto legislativo n. 462/1997). In tal caso, inoltre, gli interessi

sono dovuti fino all’ultimo giorno del mese antecedente a quello di elaborazione della

comunicazione.\nPer effetto di quanto previsto dal Dpr 602/1973 (articolo 15-ter, commi 3 e

4), gli stessi benefici permangono anche nel caso in cui si effettui il pagamento con “lieve

ritardo”, non superiore a sette giorni. Pertanto, il contribuente che versa le somme richieste

con la comunicazione di irregolarità entro 37 giorni dal ricevimento della stessa conserva il

diritto alla riduzione della sanzione e degli interessi.

Data 7 Gennaio 2022

Fonte https://www.fiscooggi.it/posta/comunicazioni-irregolarita-pagamento-lieve-ritardo

3.3 ITACA DATASET

3.3.1 What is the ITACA DATASET?

ITACA is a dataset named like the Large Language Model for which it was created. It is a

dataset created using an innovative and modern approach, exploiting the combination of two

different techniques, Web Scraping and Artificial Intelligence.

Two versions of the ITACA Dataset were born during the project, since the development

progress achieved with the generator used for its building.

ITACA v1 contains more than 11,000 samples of questions and answers in the tax and legal

fields while ITACA v2 contains about 10.500 samples in the same area. ITACA represents

together with ADE, the only Dataset entirely in Italian in the legal and tax field available to

date.

Although it was implemented using other artificial intelligence models, specifically using

ChatGPT 3.5 Turbo, it has the peculiarity of being highly accurate and reliable due to the

technique used in its implementation.

Contrary to what some may assume, questions aren't directed straight to ChatGPT. Instead of

relying on its knowledge or stored data, we will use a different approach harnesses a key

strength of modern language models (LLMs) on the market today: their ability to extract

information from given text. In fact, these models are skilled at summarizing text or, in our case,

turning it into a series of questions and answers.

In this sense, a dedicated tool, LLMDSGenerator, has been developed. It is a project that aims to

to be used for the generation of a Q&A dataset for any LLM model. As we said, this tool

attempts to combine two techniques already used to date for dataset creation, such as Web

Scraping and the generation of synthetic datasets using artificial intelligence models.

3.1.2 ITACA Building Process

ITACA was completely developed using the LLMDSGenerator. This project aims to blend the

speed and capabilities of artificial intelligence with models like ChatGPT4, ChatGPT 3.5 Turbo,

Gemini, LLAMA2, or other local models combining them with authoritative information we

provide to them. In practice, the tool analyses web pages and documents with an automation,

clear, format and finally shares them with a LLM that will generate question and answer

sequences based on the provided text.

LLMDSGenerator aims to create a clean and high-quality dataset, even when significant

resources are lacking, and manual creation isn't feasible due to a lack of experts in the relevant

field. Despite these challenges, the tool remains dependable and of high quality. It achieves this

by utilizing authoritative sources such as web resources, private documents, regulatory texts,

laws, and more.

The ITACA Dataset was conceived with the ambitious goal of creating a fully synthetic dataset

using only artificial intelligence following the root tracked by Alpaca, which was constructed

entirely through the APIs provided by OpenAI.

However, several factors render this approach suboptimal for our project and others of its kind.

Let's delve into these considerations:

Language Barrier:

While the concept of synthesizing datasets isn't novel, challenges arise when dealing with

languages other than English. Most Large Language Models are predominantly trained on

English data, with only a minimal portion dedicated to other languages. This discrepancy is

even more pronounced for languages like Italian. Consequently, relying solely on artificial

intelligence to construct a synthetic dataset in Italian can lead to the formation of incorrect

syntactic and grammatical structures, posing a significant risk.

Scope and Knowledge Limitations:

Large Language Models are trained on vast amounts of data and can generally respond to a wide

array of queries. However, the quality of responses may diminish when questions become

highly specific or delve into niche topics. The model's knowledge may be too generalized to

provide accurate answers in such cases. As questions narrow down to microtopics, the reliability

and quality of responses tend to decrease. To mitigate this, specialized models tailored to

domains like tax and legal fields are preferred, or fine-tuning techniques are employed to

enhance performance.

Out-of-Date Knowledge:

It's crucial to recognize that most commercially available models possess knowledge up to a

certain date. In dynamic fields like tax and legal domains, relying on outdated data risks

producing models that are obsolete and incapable of addressing recent developments. Such

models may provide incorrect or irrelevant responses, undermining their utility.

These challenges have spurred the development of our alternative project, LLMDSGenerator. It

endeavors to achieve the same objectives and benefits while circumventing the inherent

limitations of the conventional approach.

3.1.3 LLMDSGenerator (Large Language Model DataSet Generator)

LLMDSGenerator is a project developed within the ITACA initiative. Its primary objective is to

provide a tool capable of generating Instruction datasets for Large Language Models, even with

limited resources. More significantly, it facilitates this process across diverse domains, even in

areas where expertise may be lacking.

To achieve this goal, the project harnesses the capabilities of artificial intelligence, blending it

with the credibility of data sourced from authoritative and reliable sources on the internet. Users

can explicitly specify these sources, ensuring the reliability of the generated datasets.

The project is entirely implemented in Python. LLMDSGenerator provides an interface versus

all the modern Large Language Model, like ChatGPT, Gemini or Llama2.

The process is straightforward. By editing a configuration file, users can specify websites or

documents to be scrapped. Additionally, they must provide various CSS selectors to extract

information, a potential URL for traversing multiple pages, the communication token for the

designated LLM, and the prompt for dataset creation.

You can specify to scrape both document or webpage depending from what you want to read

contest. You can also decide to generate only one question/answer per request or multiple of

them per request. The first option is very qualitative and affordable, while the second option is

cheaper and effective.

Once initiated, the tool reviews the configuration file and proceeds to scrape the specified

websites or the requested document. For each website, it gathers all visible articles using the

provided selector. Upon selecting an article, it retrieves additional details such as title, date, and

source based on the configuration file's selectors.

Subsequently, the main text is extracted using the appropriate selector. This text is then

forwarded to the designated LLM, which generates a sequence of questions and answers based

on its content.

{
 "base_config": {
 "scraping_mode": "web",
 "workflow_mode": "n_question_per_request",
 "request_per_questions_generation": true,
 "data_augmentation": false,
 "questions_n": 5,
 "time_sleep_per_request": 1
 },
 "questions_gen_model_config": {
 "model_name": "gpt-3.5-turbo-0125",
 "max_tokens": 1024,
 "temperature": 1,
 "frequency_penalty": 0.3,
 "presence_penalty": 0,
 "top_p": 1,
 "sys_prompt": "QuestionsGeneratorPrompt.txt"
 },
 "answers_gen_model_config": {
 "model_name": "gpt-3.5-turbo-0125",
 "max_tokens": 4000,
 "temperature": 0.8,
 "frequency_penalty": 0.2,
 "presence_penalty": 0,
 "top_p": 1,
 "sample_sys_prompt": "AnswerGeneratorPrompt.txt",
 "samples_sys_prompt": "AnswersGeneratorPrompt.txt"
 },
 "model_prices": {
 "gpt-3.5-turbo-0125": { "input": 0.0000005, "output": 0.0000015 },
 "gpt-4-0125-preview": { "input": 0.00001, "output": 0.00003 }
 },
 "doc_mode_config": {
 "docs": []
 },
 "web_mode_config": {
 "resume_last_workflow": false,
 "sites": [
 {
 "name": "fiscoetasse",
 "description": "Regime Forfettario",
 "base_url":
"https://www.fiscoetasse.com/regime_forfettario_contribuenti_minimi/tipo/speciali",
 "skip_site": true,
 "page_iterator_url": "?pagina={page_number}",
 "start_page": 1,
 "article_links_selectors": ["a.card-title"],
 "start_link": 0,
 "title_selectors": ["h1.text-primary"],
 "date_selectors": [],
 "content_selectors": ["div.main-text"],
 "content_cleanup_selectors": [],
 "skip_article_selectors": []
 }
]
}

The system's prompt is built starting from a starting template in order to inform and assure the

LLM to follow some guide lines and that the response should be in question-and-answer format

in JSON. The other part of the template is customizable, allowing for the inclusion of any

desired additional information.

Moreover, users have the option to specify pages or articles to skip based on predefined CSS

elements. Additionally, parts of articles that could potentially detract from text quality, such as

images, tables, and advertisements, can be removed.

An essential feature of the tool is its capability to resume from a previous run. Interruptions,

such as connection failures or limits imposed by the LLM, are common occurrences during the

process. Consequently, the tool automatically saves a backup of the dataset and a configuration

file to facilitate seamless resumption of the operation.

Once the pages are processed and the dataset is compiled, a JSON file containing all generated

questions and answers is produced.

3.1.4 Data Choices and Cleaning

For the construction of the ITACA dataset, several reference and authoritative sources in the tax

and legal fields were used.

Any elements that could interfere with the text, such as advertisements and external figures,

were removed from all sites and documents used.

The system prompt used for generating the dataset underwent careful selection after a series of

experiments and considerations. Emphasis was placed on adhering to specific key points,

following best practices outlined by OpenAI to optimize model performance.

Let's examine and analyze some of these practices:

Clear Instruction:

It's crucial to provide clear instructions to the model to ensure accurate responses. This includes

specifying details in queries, guiding the model to adopt a specific persona, using delimiters to

indicate distinct input parts, specifying task steps, providing examples, and defining the desired

output length.

Provide Reference Text:

To reduce fabrication and improve response accuracy, reference text should be provided to the

model. Instructing the model to answer using or citing from this reference text enhances

response quality.

Split Complex Tasks:

Complex tasks should be broken down into simpler subtasks, mirroring modular design

principles in software engineering. This helps reduce error rates and improves model

performance. Techniques like intent classification, dialogue summarization, and document

summarization can aid in this process.

Test Changes Systematically:

Systematic testing is essential for evaluating performance improvements. Modifications to

prompts should be rigorously tested across various examples to ensure net positive performance

gains.

By following these best practices, the system message analyzed for the implementation of

ITACA aimed to optimize dataset generation. The message, along with predefined initial and

final segments, was integrated directly into the dataset development tool.

Now let us analyze the system message that was analyzed for the implementation of ITACA and

try to understand how the best practices analyzed earlier were followed. Recall that to this

message must then be added the init and final part of the message that is predefined and inserted

directly within the tool used to develop the dataset.

The system prompt aims for clarity, ensuring all necessary information is included, even if it

seems obvious at first. It specifies what to say when information is scarce or when referencing

dates.

Introducing text input enhances model performance by providing reliable sources. Breaking

down the message into steps aids comprehension for both us and the model, ensuring each

request is fully understood and distinct.

The system message underwent extensive testing, revealing limitations of previous versions. For

instance, specifying word count in responses was necessary as the model tended to provide brief

answers without explanations. Similarly, explicit requests to only use information from provided

articles and to add disclaimers when needed were implemented to prevent the model from

adding unverified information.

3.1.5 ITACA Dataset Samples

Dataset Sample 1:

Il tuo compito è di formulare delle domande riguardanti l'articolo e fornire delle risposte.

I requisiti sono:

1)Domande e risposte devono utilizzare solo informazioni presenti nell'articolo;

2)Domande e risposte non devono mai citare l'articolo direttamente;

3)Ogni coppia domanda/risposta deve essere indipendente dalle altre;

4)Domande e risposte devono riproporre tutti i concetti chiave dell'articolo;

5)Le risposte non devono essere brevi ma dettagliate ed esaustive e contenere un minimo di 200 parole ed un

massimo di 1000;

6)Se le informazioni presenti nell'articolo non sono sufficienti per una risposta dettagliata, aggiungi: <<Se vuoi

saperne di più, rivolgiti ad uno dei nostri esperti.>>

7)Quando la domanda e/o la risposta fanno riferimento a delle date, invita a controllarne la veridicità su fonti

ufficiali, aggiungendo alla risposta <<Ti invitiamo a verificare sempre su fonti ufficiali le informazioni riportate

o a rivolgerti ad uno dei nostri esperti. Alcune informazioni potrebbero essere cambiate nel corso del tempo o

non essere più veritiere.>>"

Titolo Uscita dal forfettario e passaggio ad SRL: come funziona

Domanda Quando è consigliabile passare dal regime forfettario a una SRL?

Risposta Il passaggio a una SRL è consigliabile quando l’attività supera i limiti di fatturato del regime

forfettario, quando si prevede una crescita significativa, o quando si desidera limitare la

responsabilità personale e aumentare la credibilità aziendale. Inoltre, se si vuole attrarre

investimenti e partecipare a gare d’appalto, la costituzione di una SRL può offrire dei

vantaggi. Si consiglia di valutare attentamente la propria situazione e consultare un

commercialista esperto per prendere la decisione più adatta.

Data 25 Gennaio 2024

Fonte https://fiscomania.com/passaggio-forfettario-srl/

Dataset Sample 2:

Titolo Revoca cedolare secca e aggiornamento canone locazione

Domanda Cosa prevede la cedolare secca in termini di tassazione per chi percepisce redditi dalla

locazione di immobili?

Risposta La cedolare secca è un regime di tassazione facoltativo caratterizzato dal pagamento di

un’imposta sostitutiva dell’IRPEF e delle addizionali. Possono esercitare l’opzione per la

cedolare secca tutti coloro che percepiscono redditi dalla locazione di immobili o che godono

di diritti reali su di essi

Data 17-gen-24

Fonte https://fiscomania.com/revoca-cedolare-secca/

3.1.6 ITACA Dataset v2

With the evolution of LLDSGenerator, several new features have been integrated, many of

which have had a significant impact on the potential of the dataset created. For this reason, it

was decided to perform a second run of the generator, this time using a new execution flow

provided by the generator.

While in the first case, the question and answer were generated simultaneously, using a single

request, the evolution of the generator has introduced the possibility to specify whether to

generate a prompt for each request. Furthermore, another mode has been made available. It is

now possible to decide to generate questions and answers using two separate prompts and

requests.

This new technique not only saves compared to the previously seen mode, which requires one

request for each question, but also increases the reliability and correctness of the questions and

answers provided.

It is possible to decide how many questions to generate. The request is sent to the LLM, which

uses the context first to generate the questions, dedicating a separate request for this activity,

resulting in higher quality questions. Subsequently, these questions are sent back to the Large

Language Model, packaged in the number defined by the user, who can choose to generate a

request for each question, or to generate them all at once, thus saving a significant amount of

time and resources required for generation.

Finally, version 2 of the ITACA Dataset represents an important step forward in terms of quality.

5. METHODOLOGY

As we've discussed in detail, our primary aim is to develop a Large Language Model that can

effectively respond to common questions in Italian regarding taxation, law, and commerce.

However, it's essential to emphasize that our project extends beyond this specific goal. We

aspire to showcase how remarkable outcomes can be achieved using open-source models and to

explore cutting-edge techniques that empower us to tackle this challenging task with limited

resources and within a defined timeframe.

We've ruled out the option of entrusting our sensitive data to third-party frameworks and

models, as our objective is to maintain control over our proprietary data. While fine-tuning

ChatGPT might seem like a straightforward solution, it doesn't align with our core purpose.

Instead, we're committed to achieving success with our modest resources while safeguarding

our custom and private data.

In this chapter, we'll embark on a comprehensive exploration of various Large Language

Models, evaluating them across different metrics to identify the most suitable options available

with commercial licenses. Additionally, we'll introduce the techniques and approaches we've

employed to fine-tune the model, aiming to streamline the process and conserve resources and

time.

Now, let's delve into the essence of our project.

5.1 Selection of the Base Large Language Model

Once the datasets have been designed and created, the next step toward our goal is to select a

basic model from which to start. In order to perform the better choice, it is important to evaluate

and define the state-of-the-art in LLM environment. This is an extremely important choice

because a basic model that does not fit well with our goal will result in something that is not up

to par, also with a good dataset and training.

5.1.1 Context and exclusion:

The emergence of OpenAI and ChatGPT in the modern landscape has truly revolutionized our

era, introducing chatbots to a wide audience and reshaping their applications across various

fields. However, the internet offers an extensive suite of models, each possessing distinct

features, advantages, and drawbacks. Hence, it becomes imperative to sift through these options

to identify those that align closely with the specific requirements of our project.

Initiating our selection process with models like OpenAI's ChatGPT4, Antropic's ClaudeAI, or

Google's Gemini would position us at an exceptionally high starting point. These companies

often provide user-friendly tools to streamline the fine-tuning process, making them seemingly

attractive options. However, such a choice is not viable for us. Our objective is to train the

model without compromising on privacy by avoiding third-party data sharing and retaining

complete control over it. Moreover, these models come with usage restrictions, making them

unsuitable for commercial purposes and imposing intricate and limiting regulations. These

factors render them unsuitable for our project's objectives.

Furthermore, a secondary filter is necessary based on the available resources at our disposal.

While some open-source models rival industry giants in performance, the idea to get these

models and fine-tuning them remains a lofty aspiration. Training models like Llama70B,

Falcon140B, and Mistral8x7B demands an immense amount of data and computational power,

far beyond what we have at our disposal. One of our goals focus in minimizing resource

utilization during training, coupled with the challenge of insufficient data to mitigate overfitting

risks.

Consequently, models with parameters exceeding 70 billion, such as LLama2 70B,

Mistral8x7B, Falcon70B, Falcon 170B, MTP70B and many others like them must be excluded

from our consideration.

5.1.2 State-of-the-arte LLM:

Despite the extensive filtering process we conducted earlier, there are still numerous models

awaiting exploration. Our attention will now shift to open-source models, which offer

unrestricted usage for both research and commercial endeavors. Of particular importance will be

the consideration of the model's parameter count and the resources required for fine-tuning.

Let's now introduce a few models that we've meticulously examined:

MPT 7B

MPT-7B, developed by MosaicML, stands as a decoder-style transformer model meticulously

pretrained from scratch on a vast corpus of 1 trillion tokens encompassing both English text and

code. This model represents a pivotal member of the MosaicPretrainedTransformer (MPT)

family, distinguished by its tailored transformer architecture engineered for optimized training

efficiency and inference performance.

The architecture of MPT models incorporates several strategic enhancements, including

performance-optimized layer implementations and the elimination of context length restrictions.

Notably, positional embeddings are replaced with Attention with Linear Biases (ALiBi1),

enabling MPT models to process inputs without constraint on length. This architectural

innovation not only facilitates high-throughput training but also ensures stable convergence

during model optimization. Moreover, MPT models exhibit remarkable efficiency in both

training and serving, seamlessly compatible with standard HuggingFace pipelines 2and

NVIDIA's FasterTransformer 3framework.

1 A novel positional representation method which biases query-key attention scores with a penalty

proportional to their distance, enabling efficient extrapolation for transformer models at inference time.

2 Pipelines from Hugging Face are a great and easy way to use models for inference other NLP tasks.

3 NVIDIA’s FasterTrasformer is a library allowing a high-performance training and inference by GPU

usage.

MPT-7B boasts several noteworthy attributes:

▪ Licensing for commercial usage, setting it apart from models like LLaMA.

▪ Extensive training data comprising 1 trillion tokens, surpassing datasets used for other

models such as Pythia, OpenLLaMA, and StableLM.

▪ Exceptional capability to handle significantly long inputs, facilitated by ALiBi. For instance,

MPT-7B-StoryWriter-65k+ has been fine-tuned to process inputs up to 65k tokens,

surpassing the limited capacity of other open-source models.

▪ Swift training and inference enabled by FlashAttention and FasterTransformer.

▪ Availability of highly efficient open-source training code through the llm-foundry

repository.

MPT-7B emerges as a versatile and potent tool, equipped with cutting-edge architecture and

capabilities tailored for diverse applications in natural language processing and beyond.

STABLE LM 7B

StableLM-Base-Alpha represents a suite of decoder-only language models boasting 3B and 7B

parameters, meticulously pre-trained on a diverse array of English datasets. Developed by

Stability AI, a trailblazer in the generative AI domain spearheaded by Emad Mostaque since late

2020, these models are engineered to transcend the context window constraints often

encountered in existing open-source language models.

Distinguished by their robust architecture, StableLM-Base-Alpha models leverage a sequence

length of 4096, enabling them to delve deeper into text understanding and generation. Notably,

they are pre-trained on an innovative experimental dataset derived from The Pile4, significantly

expanding their scope with an unprecedented token count of approximately 1.5 trillion tokens.

Employing mixed-precision (FP16) training and optimized with Adam, these models are trained

using the NeoX tokenizer, boasting a vocabulary size of 50,257. Detailed hyperparameter

selections are meticulously documented and available in the project's GitHub repository,

ensuring transparency and reproducibility.

4 An 825 GiB English text corpus comprised of 22 diverse high-quality subsets, aimed at enhancing the

general cross-domain knowledge and downstream generalization capability of large-scale language

models.

One of the key features of StableLM-Base-Alpha models is their versatility, designed to serve as

foundational models adaptable for fine-tuning in various application-specific contexts.

Importantly, there are no stringent limitations imposed on their commercial utilization, making

them accessible to a wide range of individuals and enterprises alike.

DOLLY 2.0

Databricks, renowned for its unified data analytics platform, has recently unveiled Dolly 2.0, an

open-source large language model (LLM) that echoes the interactive capabilities of ChatGPT.

Sporting a staggering 12 billion parameters, Dolly 2.0 is derived from EleutherAI's Pythia-12b

and finely honed using a corpus of approximately 15,000 instructional records curated by

Databricks personnel. The model undergoes training across a spectrum of skill domains,

encompassing brainstorming, classification, closed QA, generation, information extraction,

open QA, and summarization.

Dolly 2.0 distinguishes itself with its exceptional proficiency in adhering to instructions, a

testament to its meticulous training process. Despite its reliance on a comparatively modest

dataset, the model impressively showcases high-quality instruction-following capabilities.

Regarding fine-tuning, Dolly 2.0 presents numerous merits. It boasts an open-source framework

and is commercially licensed, affording organizations the freedom to craft, customize, and own

potent LLMs sans the constraints of API access fees or data-sharing obligations. However, it's

crucial to acknowledge the potential pitfalls of fine-tuning on a limited dataset, namely the risk

of overfitting.

LLAMA 7B

Llama 2 represents a comprehensive suite of generative text models, meticulously fine-tuned by

Meta AI, the pioneering force behind Facebook's advancements in artificial intelligence. This

groundbreaking collection, designed with the aim of democratizing access to AI resources,

stands as a testament to Meta AI's commitment to innovation in the field.

Comprising models of varying scales—from 7 billion to a staggering 70 billion parameters—

LLama 2 offers versatility and scalability to cater to diverse needs. Trained on a vast

amalgamation of publicly available datasets, totaling an impressive two trillion tokens, these

models are meticulously crafted to excel in dialogue-based scenarios. Their performance rivals

that of prominent closed-source models like ChatGPT and PaLM, further solidifying LLama 2's

reputation as a formidable contender in the realm of natural language processing.

Powered by an optimized transformer architecture, LLama2 operates as an auto-regressive

language model, capable of generating contextually coherent text with remarkable fluency and

accuracy. Targeted primarily towards commercial and research applications in English, LLama 2

offers two distinct variants: tuned models tailored for assistant-like chat functionalities and

pretrained models adaptable to a myriad of natural language generation tasks.

A custom commercial license is available, ensuring compliance with legal and regulatory

frameworks. However, LLlama2 is intended solely for use within the bounds of applicable laws

and regulations, particularly emphasizing adherence to trade compliance laws. Furthermore, its

usage is restricted to the English language, underscoring the importance of linguistic context

and appropriateness in deployment.

FALCON 7B:

The Falcon LLM, developed by the Technology Innovation Institute in Abu Dhabi, stands as a

pioneering achievement in AI language processing, redefining the landscape with its exceptional

capabilities. The Falcon family comprises models such as Falcon-180B, Falcon-40B, Falcon-

7.5B, and Falcon-1.3B, each bringing unique strengths to the forefront and establishing the

Falcon LLM as an innovative and adaptable tool across various applications.

These models showcase remarkable proficiency across a broad spectrum of language tasks,

including question-answering, reasoning, and generating human-like text. Notably, models like

Falcon-40B and Falcon-7B surpass the performance benchmarks set by other renowned

language models such as LLaMA, StableLM, RedPajama, and MPT. The secret to Falcon’s

superiority lies in its meticulously crafted architecture and advanced training methodology.

Falcon-7B, for instance, is a 7-billion-parameter causal decoder-only model developed by TII

and trained on an extensive dataset comprising 1,500 billion tokens sourced from RefinedWeb5,

5 The Falcon RefinedWeb dataset, developed by TII and licensed under ODC-By 1.0, is a substantial

English web dataset resulting from rigorous filtering and extensive deduplication of CommonCrawl.

bolstered by curated corpora. This model is generously offered under the permissive Apache 2.0

license.

Let’s explore the key advantages offered by Falcon:

▪ It consistently outperforms comparable open-source models like MPT-7B, StableLM, and

RedPajama, owing to its robust training on the richly diverse dataset of 1,500 billion tokens

from RefinedWeb, as evidenced by the OpenLLM Leaderboard.

▪ It boasts an architecture optimized for inference, featuring cutting-edge components like

FlashAttention 6(Dao et al., 2022) and multiquery (Shazeer et al., 2019), enhancing its

efficiency and effectiveness in real-world applications.

▪ The model's availability under the Apache 2.0 license ensures unrestricted commercial use,

devoid of any royalties or constraints, making it an ideal choice for a wide array of projects

and endeavors.

The Falcon-7B model is designed to serve as a valuable asset for research on large language

models and as a foundational platform for further specialization and fine-tuning tailored to

specific use cases, such as summarization, text generation, and chatbots.

It is essential to note that Falcon-7B is trained exclusively on English and French data and may

not demonstrate optimal performance in other languages. Additionally, as it draws from a vast

corpora representative of the web, it may inadvertently perpetuate stereotypes and biases

prevalent in online content. Hence, careful consideration is warranted when deploying the

model in diverse contexts.

MISTRAL 7B:

Mistral AI, a French company specializing in artificial intelligence, was founded in April 2023

by former researchers from Meta and Google DeepMind: Arthur Mensch, Timothée Lacroix,

and Guillaume Lample. The company has developed an advanced platform tailored for training,

serving, and evaluating large language models.

6 FlashAttention presents an attention mechanism designed to enhance the computational efficiency of

transformer-based models by dynamically adapting attention computation based on the relevance of input

tokens

Among Mistral AI's notable achievements is the creation of Mistral 7B, a robust language model

boasting 7.3 billion parameters. This model represents a significant leap forward in large

language model capabilities, surpassing the performance of the 13 billion parameter Llama 2

model across all tasks and even outstripping the 34 billion parameter Llama 1 on many

benchmarks.

An exceptional feature of Mistral 7B is its balanced performance across a diverse range of tasks.

Leveraging Grouped-query Attention (GQA7) for accelerated inference times and Sliding

Window Attention (SWA8) for managing lengthy text sequences at a minimal computational

cost, Mistral 7B emerges as a versatile solution suitable for various applications. Furthermore,

its availability under the permissive Apache 2.0 license promotes open and unrestricted access

to this powerful AI resource.

However, like any model, Mistral 7B is not devoid of limitations. Despite being relatively

smaller compared to some competitors, its size can still pose challenges, especially for tasks

requiring low-latency responses. Additionally, while adept at handling a wide spectrum of tasks,

its performance may exhibit variations depending on the specific task being addressed.

Nevertheless, Mistral 7B stands as a formidable tool in the realm of AI and machine learning,

offering immense potential for advancing research and application development.

5.1.3 Base LLM Comparation:

In today's rapidly evolving landscape of large language models (LLMs) and chatbots, it's

increasingly challenging to discern genuine advancements amidst the deluge of releases, each

boasting remarkable performance claims.

To better navigate this maze of innovation effectively, a HuggingFace space called

open_llm_leaderboard has been lunched aimed at identifying the true state-of-the-art models

within the open-source community.

7 Grouped Query Attention simplifies how LLMs understand large amounts of text by bundling similar

pieces together. This makes the model faster and smarter, as it can focus on groups of words at a time

instead of each word individually.

8 Sliding window attention is a computational mechanism used in natural language processing and

computer vision tasks, wherein attention is focused on a subset of input tokens or image regions at a time,

enabling efficient processing of large inputs while maintaining contextuality and performance.

Their evaluation methodology revolves around six key benchmarks, facilitated by the Eleuther

AI Language Model Evaluation Harness. These benchmarks include:

▪ AI2 Reasoning Challenge (25-shot): Assessing performance on grade-school science

questions.

▪ HellaSwag (10-shot): Testing commonsense inference abilities, challenging even for state-

of-the-art models.

▪ MMLU (5-shot): Evaluating multitask accuracy across 57 diverse tasks spanning subjects

like mathematics, history, computer science, and law.

▪ TruthfulQA (0-shot): Gauging a model's inclination to reproduce falsehoods prevalent

online, even in the absence of prior training data.

▪ Winogrande (5-shot): Confronting models with adversarial Winograd benchmarks to

evaluate commonsense reasoning skills at scale.

▪ GSM8k (5-shot): Presenting a series of grade school math word problems to assess a

model's proficiency in solving multi-step mathematical reasoning challenges.

In all these evaluations, a higher score signifies superior performance. We selected these

benchmarks for their ability to test a wide range of reasoning abilities and general knowledge,

both in zero-shot and few-shot settings. Through this comprehensive evaluation framework, we

aim to uncover the true champions among the myriad of LLMs, facilitating informed decisions

and driving progress in natural language understanding and generation.

Model #Params (B) AVG ARC HellaSwag MMLU TruthfulQA Winogrande GSM8K

Zephyr 7b 7
62,03 84,36 61,07 57,45 77,74 29,04 62,03

Mistral 7B v0.2 7 60,34 60,49 82,94 63,42 41,8 78,69 34,72

Llama-7b 7 53,07 78,59 46,87 38,76 74,03 14,48 53,07

Falcon-7b 7 47,87 78,13 27,79 34,26 72,38 4,62 47,87

stablelm7b-v2 7 47,35 77,08 45,1 36,46 68,51 2,58 47,35

Mpt-7b 7 // // // // // // //

5.1.4 LLM Italian Evaluation

One of the main limitations found in state-of-the-art modern models is their ability to adapt to

languages different from those predominantly used during training. Despite the existence of

numerous models, some of which can compete with the largest ones available, they often lack

proficiency in using the Italian language simply because it has been underutilized, if not entirely

absent, during the training phase.

To ensure that we start with the most suitable model for this purpose, we conducted evaluations

on the performance of the examined models by executing some simple tasks in the Italian

language. The tests were conducted using HuggingFace Hub, which provides some of the most

used models in their Instruction or Chat versions for free.

We defined certain configuration parameters for inference to avoid excessively long responses

and ensure that a too high temperature does not cause the model to fail to use a different

language correctly. Here they are:

Parameter Value

Max-Tokens 512

Temperature 0.7

System Prompt Rispondi brevemente alla domanda

Question #1:

Qual è il senso della vita?

Mistral-7B-

Instruct-

v0.2

La risposta al significato della vita è una domanda filosofica che ha ispirato molte teorie e

discussioni attraverso i secoli. Non esiste una risposta definitiva o universale a questa domanda,

poichè la sua interpretazione varia in base alle diverse culture, religioni, filosofie e personalità.

Alcune persone credono che la vita abbia un scopo specifico o un fine, mentre altre creano loro

stessi il significato della propria esistenza. In generale, però, si può dire che la maggior parte delle

persone cerca di vivere felici, soddisfatte e contribuire positivamente ai propri circondari e alla

società in grande.

LLama7b

Chat

Il senso della vita è una domanda che ha intriguato filosofi, religiosi e persone comuni per secoli.

Non c'è un'unica risposta definitiva, poiché è un tema muy personale e subjectivo. Tuttavia,

alcune possibili risposte potrebbero essere:

• La realizzazione di sé stessi e del proprio potenziale;

• L'amore e le relazioni con gli altri;

• La scoperta di uno scopo o missione maggiore;

• La ricerca della felicità e del benessere;

• La crescita spirituale e la comprensione del mondo.

In sintesi, il senso della vita può variare da persona a persona, ma generalmente si riferisce

all'idea che ogni cosa nobilita e dà significato alla nostra esistenza.

Zephyr 7b

Chat

The meaning of life is a philosophical and existential question that has been debated by scholars,

philosophers, and individuals for centuries. There is no single definitive answer that applies

universally to every person.

For some, the meaning of life may be found in personal fulfillment, such as pursuing happiness,

love, and personal growth. Others may find meaning in making a positive impact on the world

through acts of kindness, altruism, and social activism.

In many religious and spiritual traditions, the meaning of life is tied to a higher purpose, such as

serving a deity, fulfilling a moral code, or achieving salvation.

Ultimately, the meaning of life is a deeply personal and subjective question that each individual

must explore and answer for themselves. It may evolve and change throughout one's life as they

gain new experiences and perspectives.

Question #2:

Consigliami un pasto a base di pesce per il pranzo di oggi

Mistral-7B-

Instruct-v0.2

Suggestion for a fish-based lunch: Grilled salmon with quinoa, steamed broccoli, and avocado

salsa. It's both delicious and nutritious!

LLama7b

Chat

Certamente! Per un pasto delizioso e salutare a base di pesce, ti consiglio "Fritti di pesce con

patate e verdure" oppure "Pasticcio di tonno con spinaci e formaggio". Spero che questo te sia

stato utile!

Zephyr 7b

Chat

Certamente! Ecco una proposta per un gustoso pasto a base di pesce per il pranzo di oggi:

Insalata di tonno, avocado e pomodorini

Ingredienti:

* 200 g di tonno in scatola (soffritta o alla olio di oliva)* 1 avocado* 100 g di pomodorini

pachino* 1/2 cetriolo* 1/2 lime* 1/2rugula* 1/2 cipollotto* 2-3 fogli di coriandolo fresco* Sale

e pepe nero fresco * Olio di oliva extravergine

Inizia preparando l'insalata: taglieggia il cetriolo e i pomodorini a pezzetti, schiacciandoli

delicatamente per favorire l'assorbimento del succo. Taglia a julienne l'avocado, quindi

sfilettando la metà con la pellicola, e aggiungi il tonno sbriciolato.

In una ciotola, mescola tutti gli ingredienti, aggiungendo il lime spremuto, larugula, il

cipollotto triturato, il coriandolo e una generousizza di olio di oliva. Sale e pepe a piacere.

Questo piatto è fresco, leggero e brimmingofavorisce il consumo di pesce, ricche di sostanze

nutrienti. Potrai accompagnare l'insalata con una spremuta di arancia o un tè freddo per una

pausa pranzo sana e gustosa.

Question #3:

Consigliami un posto da visitare in Italia

Mistral-7B-

Instruct-

v0.2

I'd be happy to help you with that! Italy is a beautiful country filled with amazing places to visit.

One place that I would highly recommend is the Amalfi Coast. Known for its stunning cliffs,

colorful towns, and crystal-clear waters, the Amalfi Coast offers breathtaking views and unique

experiences. You can explore charming villages like Positano, Ravello, and Amalfi itself, enjoy

delicious Italian cuisine, or take a boat tour along the coastline. It's truly a must-visit destination

in Italy.Prendersi una cena alla Trattoria da Remigio e degustare il cacio e pepe alla romana.

LLama7b

Chat

Oh, that's a tough choice! Italy has so many amazing places to visit. But if I had to recommend

just one place, I would say Rome. It's the Eternal City and home to incredible history,

architecture, art, food... everything! You could spend weeks there and still not see everything.

Must-see attractions include the Colosseum, Vatican City, Pantheon, Trevi Fountain, and of

course, indulging in delicious Italian cuisine. Buon viaggio!

Zephyr 7b

Chat

Italy is a beautiful country with countless places to visit, so choosing just one can be difficult!

However, one place that is often considered a must-see is the city of Rome. Rome is the capital of

Italy and is known for its rich history, stunning architecture, and vibrant culture.

Some of the must-see attractions in Rome include the Colosseum, the Roman Forum, the

Pantheon, the Trevi Fountain, and the Vatican City, home to St. Peter's Basilica and the Sistine

Chapel. In addition, Rome is also known for its delicious food, including pizza, pasta, and gelato.

If you're looking for a unique experience, you might also consider visiting Cinque Terre, a group

of five colorful coastal towns on the Italian Riviera. T.hese towns are known for their picturesque

landscapes, stunning sunsets, and delicious seafood

Ultimately, the best place to visit in Italy will depend on your interests and preferences. Consider

your budget, the time of year you're visiting, and what you're hoping to experience during your

trip. No matter where you choose, Italy is sure to be an unforgettable destination.

Question #4:

Che cosa è una SRL?

Mistral-7B-

Instruct-v0.2

Una Società a Responsabilità Limitata (Srl) è un tipo di società commerciale italiana, simile ad

una Ltd in Inghilterra o ad una LLC negli Stati Uniti. La responsabilità delle azioni dei soci è

limitata alle loro quote di capitale sociale. Questo significa che i soci non possono essere tenuti

responsabili per debiti e obbligazioni della società oltre al proprio contributo di capitalizzazione.

LLama7b

Chat

Una Srl (Società a Responsabilità Limitata) è un tipo di societario italiano che rappresenta una

società privata con il limitamento della responsabilità dei Soci (capi soci o azionisti). In altre

parole, i Soci sono solidali col patrimonio sociale e possono essere tenuti civili per le

obbligazioni sociali e finanziarie, ma la loro responsabilità economica è limitata ai mezzi sociali

disponibili.

Zephyr 7b

Chat

SRL (Società a Responsabilità Limitata) è una forma societaria adottata in diversi paesi europei,

tra cui Italia, Francia, Svizzera e Grecia. Si tratta di una società che presenta alcune similitudini

con la società a responsabilità limitata (Ltd) in Gran Bretagna e con la società a responsabilità

limitata (GmbH) in Germania.

La SRL è una società privata, con azioni non quotate in borsa, e ha uno o più soci (azionisti), che

possono essere anche soci-dirigenti. I soci sono responsabili solo per le proprie azioni e sono

tutelati dalla separazione tra il patrimonio personale e quello aziendale, ovvero il loro patrimonio

personale non può essere requisito per soddisfare eventuali debiti della società.

L'amministrazione e la gestione quotidiana della SRL sono affidata a uno o più soci-dirigenti,

detti anche amministratori, che sono responsabili della gestione delle attività della società e delle

sue decisioni finanziarie.

La SRL è una forma societaria relativamente flessibile, che offre una certa tutela ai soci e una

certa autonomia nella gestione aziendale. Tuttavia, non offre la possibilità di poter avere soci

esterni alla società, né la possibilità di ottenere quote azionarie senza partecipare attivamente alla

gestione della società.

In sintesi, la SRL è una forma societaria con responsabilità limitata che offre ai soci una certa

tutela personale, con un'amministrazione e una gestione affidata a soci-dirigenti che sono

responsabili della gestione delle attività della società e delle sue decisioni finanziarie.

Question #5:

Quanto fa 10 + 10 + 20?

Mistral-7B-

Instruct-v0.2

La risposta è 30. In matematica, quando si sommano due o più numeri insieme, si può usare

la regola della somma per ottenere la risultato finale. Quindi, 10 + 10 = 20 e quindi 10 + 10 +

20 = 30.

LLama7b Chat Sure! The answer to 10 + 10 + 20 is 40.

Zephyr 7b Chat La somma di 10 + 10 + 20 è uguale a 40.

5.1.4 Analysis of result & Final Choice:

Before discussing the choice and results, some considerations need to be made. Firstly, the

benchmark results should be taken with a grain of salt for these models due to various factors.

This is because the datasets used for evaluations may be more suitable for one model than

another, depending on the specifics, but this does not directly mean that models with worse

results are less reliable or trustworthy.

A second consideration should be made regarding tests conducted on models in the Italian

language. Indeed, these models represent a version trained for the specific purpose of fulfilling

instructions starting from pre-trained versions. This means that everything depends on how the

model fine-tuning was performed and the datasets used, and therefore, they do not constitute a

definitive solution but only examples of what is possible to achieve with the base model.

This means that the choice of the model, despite various precautions, may not be the best in

terms of performance, and we must rely on our collective knowledge of the various models and

not just on the results obtained through benchmarks and evaluations.

For this reason, considering that Mistral7B, LLama2, and Zephyr7B represent the state-of-the-

art in open-source Large Language Models, and considering that each has its advantages and

disadvantages, the proposed solution is to use the Mistral model to fine-tune ITACA.

Mistral, in fact, is the most recently developed model trained from scratch. Zephyr, on the other

hand, is simply another model already fine-tuned and prepared for user interaction but still uses

Mistral as its base model. Since the knowledge injected into Zephyr may not be necessary for

our purposes (see the evaluation through inference in paragraph 5.1.4), it has been discarded as

a solution, despite achieving the best performance in terms of benchmarks.

LLama2, although more or less on par with Mistral, still represents its predecessor. Moreover,

while LLama2 was developed by an American company, Mistral2 comes from a French

company, which may have been more committed to using European languages during the

training phase. This is confirmed directly from their official documentation, where we can see

that LLama2 is not recommended for fine-tuning in languages other than English:

“Out-of-scope Uses Use in any manner that violates applicable laws or regulations (including trade compliance

laws).Use in languages other than English. Use in any other way that is prohibited by the Acceptable Use Policy and

Licensing Agreement for Llama 2.”

Furthermore, even though Llama2 has a commercial license, it uses a proprietary one, which

could potentially pose issues in case of commercial use of the fine-tuned model.

Finally, we are going to the next step with Mistral 7b Finetuning.

5.2 Data Loading, Cleaning and Preprocessing

Although we have invested a significant amount of time in constructing the two datasets on

which we will train the model, we cannot inject them directly as they are. No dataset can be fed

into training or fine-tuning a model without first being processed to make it understandable and

suitable for a specific task.

In this paragraph, we will delve into the techniques used for data preparation and cleaning. We

will then discuss the concepts of text formatting and tokenization, both essential in the context

of an Instruction-type Large Language Model.

5.2.1 Loading and merging datasets:

The datasets were loaded using the Pandas library, which allows us to easily read and load files

in JSON format, taking care to replace any possible errors during decoding (utf-8 by default).

import pandas as pd

import unicodedata

df_ADE = pd.read_json('ADE.json',encoding_errors='replace')

df_ITACA_V1 = pd.read_json('ITACA_DATASET_V1.json',

encoding_errors='replace')

df_ITACA_V2 = pd.read_json('ITACA_DATASET_V2.json',

encoding_errors='replace')

df_ITACA_NEGATIVE = pd.read_json('ITACA_NEGATIVE.json',

encoding_errors='replace')

The datasets were then preprocessed to obtain the final version that we will use during the fine-

tuning phase:

df_ADE["Dataset"] = "ADE"

df_ITACA_V1["Dataset"] = "ITACA_V1"

df_ITACA_V2["Dataset"] = "ITACA_V2"

df_ITACA_NEGATIVE["Dataset"] = "ITACA_OUTOFSCOPE"

df = pd.concat([df_ADE,df_ITACA_V1,df_ITACA_V2, df_ITACA_NEGATIVE],

ignore_index=True)

Result is shown here:

Size = 179767, Shape = (25681, 7)

Below, we can see some examples that compose it. Note that the "Argomento" field was added

only later, in the second version of the ITACA dataset, which is why it has no value for the other

datasets.

5.2.2 Data Cleaning:

Often, both when data is retrieved through automated tools and when it is manually collected,

small errors are made that, however, in excessive quantities, can compromise the outcome of

fine-tuning. It is therefore extremely necessary to ensure that such errors are corrected before

moving on to subsequent phases.

Consider, for example, ChatGPT3, for which an initial dataset of over 45 Terabytes was

constructed. Once the cleaning phase was completed, the size of the dataset shrank to the

"insignificant" figure of 570GB, practically 1% of the starting point.

The data cleaning process can vary from situation to situation, depending on how the dataset

data was retrieved and constructed, but generally aims to normalize the text, remove HTML

tags, filter keywords, eliminate duplicates, correct spelling errors, etc.

In many cases, since this data comes from all over the web, and very often it is not from reliable

sources, this phase is used to try to eliminate those samples with clear false or imprecise

information. In our case, using our LLMDSGenerator allowed us to start from an advantageous

position, being able to rely on the fact that only we had defined, from the beginning, the sources

from which to draw for the creation of the synthetic dataset.

Therefore, leaving aside this point, first, we can remove any duplicates. There are many

techniques, both simple and very complex, for this phase. For example, often one not only deals

with eliminating duplicates but also with eliminating samples that are highly similar to each

other.

For our case, it was not deemed necessary to go into this detail given the modest size of the

starting dataset and the diversity of topics covered. However, we limited ourselves to finding

and eliminating those duplicates consisting of the same question and answer:

df_droplog = pd.DataFrame()

mask = df.duplicated(keep=False)

df_keep = df.loc[~mask]

df_droplog = pd.concat([df_droplog,df.loc[mask]])

df_droplog.head(6)

df = df.drop_duplicates()

Subsequently, all examples with at least one of the two fields necessary to create the text to

inject into the model, not filled in, namely the "Domanda" and "Risposta" fields, were deleted.

df = df.dropna(subset=['Domanda','Risposta'])

Finally, we remove all samples containing certain keywords that we know we do not want to use

for training. Additionally, we eliminate all samples that have dirty characters not convertible to

ASCII format:

Remove samples containing missleading information

remove_dictionary = [“*****”, “******”, … , “********”]

mask = df.apply(lambda row: any(word in row['Domanda'].lower() or word in

row['Risposta'].lower() for word in remove_dictionary), axis=1)

df = df[~mask]

Remove any un-readable characters

df.loc[df['Domanda'].str.contains(r'[^\x00-\x7F]+') == False]

5.2.3 Data preprocessing: Format and tokenize the text.

We have seen how important it is to have a clean dataset to obtain a reliable and quality result,

but it is not the only thing to consider during the preparation of our data. The dataset cannot yet

be injected, or at least not to achieve our ultimate goal, which is to train the model so that it is

able to respond to user requests.

We must remember that models are not born ready to solve instructions or chat with the end

user, but they are Natural Language Programming (NLP) models, which we discussed in detail

in Chapter 2, that is, models that have the ability to predict the next word based on the reference

context.

For this reason, it is necessary to prepare the model so that the task is read similarly to

completing a text, but at the same time, train it so that the result appears as fulfilling a request.

In this sense, we will not inject a question-answer pair, but a single text to provide to the model,

which will correspond to the concatenation of the question and the answer.

Since the starting base for fine-tuning the model is not already a model based on instructions, it

is not necessary to follow a specific format type, because we will train it so that it can follow a

certain format indicated by us.

However, we refer to some of the most common formats currently available, namely the

ALPACA format and the MISTRAL format:

As we can see, Alpaca includes a section for the instruction where the task is specified, a section

for the input, which is optional and can be used to provide context from which to draw, and

finally the section for the response that the model should generate.

On the other hand, Mistral follows a different format, based on tokens that delineate the start

and end of an instruction ([INST] and [\INST]) and the start and end of a conversation ([<s> and

</s>]). Additionally, we notice how this format is also suited for a conversation, as it allows for

the insertion of multiple instructions optionally.

As we mentioned, there is no valid reason to choose one format over another. However, the

choice fell on the Mistral format, given the decision to use the eponymous model as the base

model.

To prepare the dataset in the following format, we used the following function::

my_prompt = "<s>[INST] Sei un assistente utile ed affidabile. Rispondi in

maniera adeguata alla domanda seguente:\n{} [/INST]\n\nRisposta: "

def formatting_prompt_func_with_answers(example):

 question = example["Domanda"]

 example["text"] = my_prompt.format(question) + example["Risposta"] +

" </s>"

 return example

Alpaca Format:

{Instruction}

Input:

{prompt}

Response:

{completion}

Mistral Format:

<s>[INST] {Instruction}[/INST]

{completion}</s>

[INST] {Instruction2}[/INST]

{completion2}</s>

train = dataset['train'].map(formatting_prompt_func_with_answers)

eval = dataset['test'].map(formatting_prompt_func_with_answers)

This function simply iterates over the examples in our dataset and uses the "Domanda" and

"Risposta" fields to construct unique samples of type 'text' that will adhere to the format we

have prepared. We notice that a default system prompt has also been added for guided

completion of the model to generate a response. Here is an example:

In the data preparation process for fine-tuning a Large Language Model, another important step

is tokenization of the data. A tokenizer is responsible for preparing the data to be more

understandable for the model. The HuggingFace library provides tokenizers for each of its

models.

During this process, two additional tasks must be performed: truncation of data according to the

maximum token limit imposed, and adding padding for cases that do not reach the same value.

When using the HuggingFace trainer, this work during model fine-tuning is transparent. We just

need to specify the max_token_length to the trainer used, and this process will be handled under

the hood.

To avoid defining this value arbitrarily, we relied on the use of the tokenizer to have a clearer

view of the distribution of our samples based on tokens.:

<s>[INST] Sei un assistente utile ed affidabile. Rispondi in maniera adeguata alla domanda seguente:

Come viene scoperta l'evasione contributiva? [/INST]

Risposta: L'INPS può scoprire l'evasione contributiva attraverso controlli, ispezioni sul posto di lavoro o

attraverso segnalazioni. Una volta rilevate irregolarità, invierà una comunicazione al datore di lavoro che

avrà un termine specifico, solitamente 30 giorni, per regolarizzare la situazione. </s>

It is evident that the majority of samples within our dataset do not exceed 512 tokens, which is

why this length has been set as the maximum. This minimum token length will allow us to have

faster and more efficient training.

5.3 Fine-Tuning Process with (Q)LoRA

Fine-tuning large pre-trained models presents significant computational challenges due to the

need to adjust millions of parameters. This traditional approach demands substantial

computational resources and time, posing a bottleneck for adapting models to specific tasks.

Efficient resource utilization and cost-effectiveness are crucial considerations when selecting a

fine-tuning strategy.

In addressing these challenges, LoRA offers an effective solution by decomposing the update

matrix during fine-tuning. This technique optimizes resource usage and enhances efficiency.

This chapter delves into the most popular and effective variant of parameter-efficient methods:

Low Rank Adaptation (LoRA), with a particular focus on QLoRA. QLoRA represents an even

more efficient variant of LoRA, showcasing advancements in fine-tuning techniques for large

pre-trained models.

5.3.1 LoRA and QloRA Introduction

In the domain of language models, fine-tuning an existing model to perform a specific task on

particular data is a prevalent practice. This typically involves incorporating a task-specific head,

if needed, and adjusting the neural network's weights through backpropagation during training.

It's crucial to distinguish this fine-tuning process from training from scratch. In the latter

scenario, the model's weights are initialized randomly, whereas during fine-tuning, the weights

are already optimized to some extent from the pre-training phase. The decision of which

weights to optimize or update, and which ones to keep frozen, depends on the chosen technique.

Full fine-tuning entails optimizing or training all layers of the neural network. While this

approach often yields superior results, it is also the most resource-intensive and time-

consuming.

Fortunately, parameter-efficient approaches for fine-tuning have emerged as effective

alternatives. While most of these methods have sacrificed some performance, Low Rank

Adaptation (LoRA) has defied this trend by occasionally surpassing full fine-tuning. This

success is attributed to LoRA's ability to prevent catastrophic forgetting, a phenomenon where

the knowledge of the pretrained model is lost during fine-tuning.

LoRA improves fine-tuning by fine-tuning two smaller matrices that approximate the larger

weight matrix of the pre-trained language model, constituting the LoRA adapter. This fine-tuned

adapter is then integrated into the pretrained model for inference.

QLoRA represents an even more memory-efficient iteration of LoRA. It achieves this by

loading the pretrained model to GPU memory with quantized 4-bit weights, compared to 8-bit

weights in LoRA, while maintaining similar effectiveness. The focus here will be on probing

this method, comparing it with LoRA when necessary, and determining the optimal combination

of QLoRA hyperparameters for achieving peak performance with minimal training time.

LoRA is conveniently implemented in the Hugging Face Parameter Efficient Fine-Tuning

(PEFT) library, offering ease of use. QLoRA can be leveraged by combining bitsandbytes and

PEFT. Moreover, the HuggingFace Transformer Reinforcement Learning (TRL) library

provides a seamless trainer for supervised fine-tuning with integrated support for LoRA. These

libraries collectively equip users with the necessary tools to fine-tune the chosen pretrained

model effectively, enabling the generation of coherent and convincing product descriptions

based on specified attributes.

5.3.2 How does LoRA works?

In the traditional fine-tuning process, adjustments to a pre-trained neural network's weights are

made directly to its weight matrix (W) to tailor it to a new task. These modifications, denoted as

ΔW, result in updated weights expressed as (W + ΔW). However, the LoRA approach

introduces a novel strategy by decomposing ΔW, thereby mitigating the computational burden

associated with fine-tuning large models.

By decomposing ΔW into matrices A and B, both of lower rank (r), the number of trainable

parameters is significantly reduced. For instance, if W is a (d x d) matrix, conventional updating

of W involves (d²) parameters. In contrast, with matrices A and B sized (d x r) and (r x d)

respectively, the total parameter count reduces to (2dr), a substantial reduction when (r << d).

The reduction in trainable parameters achieved through Low-Rank Adaptation (LoRA) offers

several noteworthy benefits, particularly for fine-tuning large-scale neural networks:

1. Reduced Memory Footprint: LoRA diminishes memory requirements by minimizing the

number of parameters to update, facilitating the management of large-scale models.

2. Faster Training and Adaptation: Simplifying computational demands accelerates the training

and fine-tuning processes for large models, enhancing efficiency.

3. Feasibility for Smaller Hardware: LoRA's reduced parameter count enables fine-tuning of

substantial models on less powerful hardware, such as modest GPUs or CPUs.

4. Scaling to Larger Models: LoRA enables the scaling of AI models without a proportional

increase in computational resources, streamlining the management of growing model sizes.

In the realm of LoRA, the concept of rank plays a crucial role in determining the efficiency and

effectiveness of the adaptation process. Notably, the paper highlights that the rank of matrices A

and B can be exceptionally low, sometimes as low as one.

While the LoRA paper primarily focuses on experiments within Natural Language Processing

(NLP), the underlying approach of low-rank adaptation holds broad applicability and could

effectively enhance the training of various neural network architectures across different

domains.

5.3.3 Make more efficient LoRA with QloRA

QLoRA, an extension of LoRA, endeavors to compress the weight parameters of pre-trained

large language models (LLMs) into 4-bit precision. This compression significantly reduces the

model's memory footprint, facilitating fine-tuning on a single GPU and rendering it viable for

operation on less potent hardware.

QLoRA introduces several innovative techniques to minimize memory usage while preserving

performance:

1. 4-bit NormalFloat (NF4): This data type, tailored for normally distributed data,

empirically outperforms 4-bit Integers and 4-bit Floats. NF4 optimally quantizes data

for neural networks, maintaining accuracy within the given bit constraint.

2. Double Quantization: Quantizing the quantization constants saves an average of about

0.37 bits per parameter, notably reducing memory overhead, especially for expansive

LLMs.

3. Paged Optimizers: Leveraging NVIDIA unified memory, this technique manages

memory spikes during training, preventing GPU memory exhaustion. Optimizer states

are dynamically moved between CPU RAM and GPU memory as required.

In detail:

• 4-bit Normal Float Quantization (NF4): NF4 efficiently quantizes neural network

weights into a 4-bit format, employing a method called "Quantile Quantization" to

ensure optimal quantization for normally distributed data.

• Double Quantization: This strategy further optimizes memory usage by quantizing the

quantization constants, effectively reducing the memory footprint.

• Dequantization: During training, quantized weights are converted back to their original

data types (e.g., from 4-bit NormalFloat to 32-bit Float) for accurate computations,

particularly during gradient calculation.

• Paged Optimizers: By managing memory usage during training of large LLMs, this

approach addresses memory spikes by utilizing NVIDIA unified memory for automatic

page-to-page transfers between CPU and GPU.

Overall, QLoRA presents a holistic approach to efficiently compressing and managing memory

usage in large language models, facilitating their deployment on less powerful hardware without

compromising performance.

6. Experiments, evaluation and
comparation

The process of fine-tuning a model can drastically improve its performance and make it more

effective for a specific task. In this regard, the model's hyperparameters play a crucial role

during this process and determine the success of this important step.

In this chapter, we will delve into the model training phases, selecting and analysing different

hyperparameter configurations, evaluating the model's responses, and seeking the most suitable

situation for our purpose. Initially, we will look at the configuration of the environment used for

the experiments and model training, ensuring that this process can be replicated smoothly. We

will then analyse the various configurations used before the actual fine-tuning of the model,

discovering which one best fit our case. Finally, we will evaluate the model and compare it with

the currently available open-source models.

6.1 Environments and dependencies

Setup development environments is important to have a right base to develop and finetune our

model. Thanks to the choice performed during our journey, we don’t need to ask for an

excessive computer power. In this paragraph, we are going to explain all the environment

configuration in order to understand how can be easily replicate an experiment like this one.

In addition, a detailed introduction and explanation will be supplied about the library and

dependencies used during the process.

6.1.1 Environment and Power Computing

Despite aiming to minimize resource usage and compute power for fine-tuning a 7B model,

access to a basic GPU remains essential. To address this need, we leveraged platforms such as

Colab and Kaggle, which offer GPU resources at no cost, albeit with certain limitations.

However, as the project progressed, the final fine-tuning required more robust computational

power, leading us to rent a NVIDIA 4090 GPU.

To facilitate the fine-tuning process, we configured a docker image with the necessary packages,

including:

▪ PyTorch 2.01

▪ CUDA 11.7

▪ cuDNN 8

▪ Full CUDA toolkit (including nvcc)

The cost of renting the GPU amounted to approximately $0.411 per hour, with the fine-tuning

process completing within 2 hours and 30 minutes for three epoch. This translates to a total cost

of approximately $1.233, ensuring cost-effectiveness in completing the task efficiently.

6.1.2 Hugging Face

The Hugging Face Hub stands as a cornerstone platform boasting over 350k models, 75k

datasets, and 150k demo apps (Spaces), all of which are open source and publicly accessible. It

serves as an online nexus where individuals can seamlessly collaborate and build machine

learning solutions together. This expansive hub offers a fertile ground for exploration,

experimentation, collaboration, and technological advancement in the realm of machine

learning.

At the heart of Hugging Face's offerings lies a suite of immensely valuable libraries designed to

streamline data preprocessing, fine-tuning, and beyond. Among these, the Transformers library

reigns supreme, offering APIs that enable users to effortlessly download and utilize pretrained

models, fine-tune them on custom datasets, and subsequently share their creations with the

wider community via the model hub. Each Python module defining an architecture within

Transformers is fully modular, allowing for quick modifications to facilitate rapid research

experiments.

Transformers enjoys robust backing from the three most popular deep learning libraries—Jax,

PyTorch, and TensorFlow—with seamless integration among them. This facilitates smooth

transitions between training models with one framework and deploying them for inference with

another, ensuring maximum flexibility and ease of use.

There are myriad compelling reasons to embrace the Transformers library:

1. Easy-to-use state-of-the-art models: Delivering high performance across a spectrum

of tasks including natural language understanding & generation, computer vision, and

audio tasks, Transformers boasts a low barrier to entry for both educators and

practitioners. With just three classes to learn, users can leverage a unified API to harness

all pretrained models.

2. Lower compute costs, smaller carbon footprint: By enabling researchers to share

trained models instead of consistently retraining them, Transformers drives down

compute time and production costs. With dozens of architectures and over 400,000

pretrained models spanning all modalities, practitioners can access a vast repository of

resources to meet their needs.

3. Choose the right framework for every stage of a model's lifecycle: With the ability

to train state-of-the-art models in just three lines of code, Transformers empowers users

to seamlessly transition a single model between TF2.0/PyTorch/JAX frameworks as

needed for training, evaluation, and production.

4. Easily customize models to suit specific requirements: Transformers provides

examples for each architecture to reproduce results published by original authors, while

exposing model internals in a consistent manner. Moreover, model files can be used

independently of the library for quick experimentation, affording users maximum

flexibility and control.

TRL (Transformer Reinforcement Learning) complements the Transformers ecosystem as a

full-stack library designed to facilitate training transformer language models with reinforcement

learning. TRL encompasses tools for supervised fine-tuning (SFT), reward modeling (RM), and

proximal policy optimization (PPO), all seamlessly integrated with Transformers. Supervised

fine-tuning, a pivotal step in TRL, is made accessible through an easy-to-use API, enabling

users to effortlessly create and train models on custom datasets with minimal code.

6.1.3 Unsloth

Unsloth emerges as a lightweight library tailored for accelerating fine-tuning of Large Language

Models (LLMs), seamlessly integrated within the Hugging Face ecosystem encompassing Hub,

Transformers, PEFT, and TRL. Developed collaboratively by the Unsloth team led by Daniel

and Michael alongside the open-source community, this library caters to the need for swift LLM

fine-tuning without compromising performance.

The versatility of Unsloth extends to most NVIDIA GPUs, ranging from GTX 1070s to H100s,

offering compatibility across a broad spectrum of hardware configurations. At present, Unsloth

supports the Llama (CodeLlama, Yi, etc.) and Mistral architectures, catering to diverse model

requirements.

Unsloth operates by optimizing critical sections of the modeling code, implementing manual

derivation of backpropagation steps, and rewriting all PyTorch modules into Triton kernels. This

innovative approach not only reduces memory usage but also accelerates fine-tuning processes

significantly. Importantly, Unsloth achieves these enhancements without sacrificing accuracy, as

no approximations are made in the optimized codebase, ensuring a 0% accuracy degradation

compared to normal QLoRA fine-tuning.

In essence, Unsloth stands as a powerful tool for practitioners seeking to expedite LLM fine-

tuning while maintaining the highest standards of model accuracy and performance.

Let’s see some benchmark:

1 A100 40GB Dataset + Flash Attention 2 Unsloth VRAM saved

Code Llama 34b Slim Orca 1x 1.01x 1.94x -22.7%

Llama-2 7b Slim Orca 1x 0.96x 1.87x -39.3%

Mistral 7b Slim Orca 1x 1.17x 1.88x -65.9%

Tiny Llama 1.1b Alpaca 1x 1.55x 2.74x -57.8%

6.1.4 WandB

Weights & Biases (WandB) is a machine learning development platform that allows users to

track and visualize various aspects of their model training process in real-time.

In the context of machine learning, WandB is primarily used to:

• Track model performance metrics such as accuracy, loss, and other evaluation metrics

during the training and evaluation phases.

• Visualize the model's learning process using graphs, charts, and histograms to gain

insights into how the model is performing.

• Compare different models and their performance metrics to help choose the best-

performing one.

• Collaborate with others by sharing experiments and results.

6.2 Hyperparameters Tuning

Hyperparameters configuration of the model must be chosen in order to optimize its

functioning. The difference, compared to parameters, is that hyperparameters are not directly

learned during the training process and cannot be optimized during that phase. They must be

defined before training begins.

Exploring all hyperparameters to make the best choice is not possible in the contest of Large

Language Model. An immense amount of resource would be used to achieve this result.

Therefore, what we will do is choose initial configurations to explore and analyze their

behaviour over epochs to avoid wasting resources and time.

Now, let's see in more detail what are the most used hyperparameters for training the model.

6.2.1 Hyperameter Tuning Method

Choosing the right combination of hyperparameters requires an understanding of the

hyperparameters and the business use-case. However, technically, there are two ways to set

them.

Manual hyperparameter tuning

Manual hyperparameter tuning involves experimenting with different sets of hyperparameters

manually i.e. each trial with a set of hyperparameters will be performed by you. This technique

will require a robust experiment tracker which could track a variety of variables from images,

logs to system metrics.

We will use W&B Framework to manage this complex task and track our progress.

Tuning hyperparameters manually means more control over the process. However, manual

tuning is a tedious process since there can be many trials and keeping track can prove costly and

time-consuming. In addition, isn’t a very practical approach when there are a lot of

hyperparameters to consider.

Automated hyperparameter tuning

Automated hyperparameter tuning utilizes already existing algorithms to automate the process.

The steps you follow are:

• First, specify a set of hyperparameters and limits to those hyperparameters’ values

(note: every algorithm requires this set to be a specific data structure, e.g. dictionaries

are common while working with algorithms).

• Then the algorithm does the heavy lifting for you. It runs those trials and fetches you

the best set of hyperparameters that will give optimal results.

Some common algorithms have been explored in order to better achieve this result like Random

Search, Grid Search and other typical algorithms.

We will choose a manual approach since we can’t try a lot of different combinations and in

order to better analyze all the different configurations explored.

6.2.2 Standard Hyperparameters

Some hyperparameters are more relevant than other in some case and change them could take

extremely different result.

So, let’s analyse what are the most relevant hypermeters to explore:

Epoch

An "epoch" is a term used to describe one complete pass through the entire training dataset.

In practice, if we need to iterate over a dataset composed by 50.000 samples, one epoch means

that the model has had the chance to learn from each samples of our dataset. That practically

means that this value changes drastically the performance of the model and the time and

resources to use for the training.

A low epoch number can take the model to underfit, which means it could perform poorly

because it hasn't learned enough from the training data. In essence, it may not have had enough

iterations to effectively learn and adjust its parameters (e.g., weights and biases). A high epoch

number means a big risk of overfitting, where the model becomes too specialized in the training

data and performs poorly on unseen data.

Learning Rate

The learning rate controls how quickly the model updates its parameters during training. A

higher learning rate accelerates learning but may result in instability. A lower learning rate

ensures stability but prolongs the training process. Optimal learning rates vary based on the task

and model architecture.

Batch Size

Batch size determines how many data samples the model processes in a single iteration. Larger

batch sizes can speed up training but require more memory. Smaller batch sizes can help the

model thoroughly process each record. The choice of batch size should align with specific

hardware capabilities and dataset size.

6.2.3 Lora Adapter Hyperparameters

Being our model trained using LoRA technique, some other hyperparameters need to be set and

explored regarding the process of training the adapters. Let’s see the detail:

r:

the rank of the A and B matrices

lora_alpha:

this is a pretty controversial parameter. A lot of people have a lot of ideas about it. You can

consider it a scaling factor, and by default it should be equal to r, as far as I understand.

target_modules:

the portions of the model we want to optimize with LoRA. the BLOOM module has parameters

named query_key_value which we want to optimize.

lora_dropout:

dropout is a technique which hides inputs to suppress the model from overfitting (called

regularization). This is a probability of being hidden.

bias:

neural networks typically have two paramet per connection, a "weight" and a "bias". We're only

training weights in this example.

task_type:

not super necessary, used in the superclass PeftConfig. Setting to CAUSAL_LM because the

specific language model we're using is "causal".

6.4 Experiments & Analysis:

6.4.1 Hyperparameter Proposed Configuration

We explore four different configurations. Let’s see them in detail:

Name mistral7

b_qlora_

itaca_v2

_conf0

mistral7b_qlora_ita

ca_v2_conf1

mistral7b_qlora_ita

ca_v2_conf2

mistral7b_qlora_ita

ca_v2_conf3

per_dev

ice_trai

n_batch

_size

4 8 8 8

gradien

t_accu

mulatio

n_steps

2 4 4 4

learnin

g_rate

0.0002 0.0002 0.00002 0.00002

lr_sche

duler_t

ype

linear linear cosine linear

optim adamw_8

bit

adamw_8bit adamw_8bit adamw_8bit

train/gl

obal_ste

p

150 300 300 300

lora_ra

nk

8 8 8 8

lora_m

odules

["q_proj"

,

"v_proj"]

["q_proj", "k_proj",

"v_proj",

"o_proj","gate_proj",

"up_proj",

"down_proj"]

["q_proj", "k_proj",

"v_proj",

"o_proj","gate_proj",

"up_proj",

"down_proj"]

["q_proj", "k_proj",

"v_proj",

"o_proj","gate_proj",

"up_proj",

"down_proj"]

lora_dr

opout

0 0 0 0

qlora 4bit 4bit 4bit 4bit

6.4.2 Configuration #0

The first configuration analyzed is simply a check of the environment we are using to ensure

that it can support the training of our model and that the model itself can learn from the dataset

we possess.

For these reasons, it was chosen to begin analyzing the results using values that are almost

standard and very common in the case of fine-tuning Large Language Models, but with a

relatively small batch size.

It's worth noting that despite setting a size of 4, the gradient_accumulation allows us to update

the weights only after two batches have been processed by the model, effectively simulating a

larger batch size. For example, having chosen a value of 2 for the gradient accumulation in this

case, the final batch size measure for the model during training will be twice the default batch

size, hence equal to 8.

Let's see how the model behaved during a small portion of an epoch:

We immediately notice that the model has an immediate declining phase, followed by

oscillations around the same average value. This could be a sign of insufficient power compared

to what is necessary for learning. Essentially, we're suggesting that this could be a case of

underfitting.

For this reason, in the next configuration, we will use all the linear modules of Lora, providing

more parameters to train the model. Additionally, we will increase the reference epoch portion

so that we can analyze it in more detail, with a lower risk of looking at too small a portion for

analysis.

This trial has mainly helped us understand that we have enough computing power to use a larger

batch size, improving training performance and reducing time. In fact, despite fully utilizing the

GPU, only about 40% of its memory has been allocated.

Therefore, we will increase the batch size and the gradient accumulation accordingly.

6.4.3 Configuration #1

We immediately notice that increasing the portion of the analyzed epoch has provided a much

clearer view, reducing the chances of analyzing something that would have changed over time.

The use of linear modules for LoRA seems to have had the desired effect, as the loss continues

to decrease, albeit very slowly. This could clearly be due to using a relatively low learning rate.

However, it's also true that over an epoch, this behavior should be beneficial, as it is much less

likely to get stuck in local minima and oscillate between them.

What we can do next is to choose a different learning rate decay algorithm to analyze its

descent:

As we can see from these GPU utilization graphs, increasing the allocated resources does not

seem to be computationally impossible to manage for the environment used. This has saved us a

lot of time during training and resulted in almost better results.

6.4.4 Configuration #3

Let's try to evaluate the training progress using a different learning rate decay in this first

configuration. For example, let's use the cosine scheduling decay:

No improvement margins were noticed; indeed, it seems that this type of decay penalized the

model's training. The training appears much more oscillatory and seems to stabilize after about

150 steps.

Let's revert to using linear decay, this time trying a lower learning rate. This will help us

understand whether it can further stabilize our training or, conversely, yield no positive return.

6.4.5 Configuration #4

Let's revert to our previous linear decay and try lowering the learning rate to see if there is any

improvement during the model's learning.

We certainly notice a generally more stable training compared to all the configurations we have

witnessed. However, there don't seem to be any advantages compared to the configuration with

linear decay and a higher learning rate, except for stability, which in itself results in a starting

point of an order of magnitude lower, leading to much higher times and resources.

We can conclude that configuration #1 is the best in terms of the ratio of time/resources used to

benefits. We are therefore ready to proceed with the final training of the model.

6.4.6 ITACA Finetuning

At the beginning of the training (from 0 to around 500 steps), there is a sharp decline in the

training loss. This suggests that the model is quickly learning from the training data and making

significant improvements in its predictions.

After approximately 500 steps, the rate of decline in the training loss slows down. This is a

common phenomenon in machine learning, as the model begins to converge to a solution. The

training loss continues to decrease but at a slower pace, indicating that the model is still learning

and fine-tuning its parameters, but the rate of learning has decreased.

The training loss seems to stabilize between 0.5 and 1. This could be the point of convergence,

where the model has learned as much as it can from the training data and any further training

would not significantly reduce the loss.

6.5 Inference & Comparation

In this paragraph, we will perform inference on our quantized model, evaluate the responses,

and compare them with the responses provided by other state-of-the-art open-source models,

Mistral 7B Instruct and Llama2 7b Chat. For evaluation, we will use a primitive but effective

system, namely human evaluation, by selecting 20 reference questions from 4 different

domains: Society, Taxation, Collection, and OutOfScope Questions.

We will use two types of scores: Fact Check Score and ITA Score. The former will assign a

score to the quality and accuracy of the response, while the latter will assess the language

proficiency in Italian. Both are represented by a score ranging from 0 to 2, where:

Score Meaning

0 Completely Incorrect;

1 Partially Correct/Incorrect;

2 Completely Correct.

To the end, we will sum up the scores and classify the models.

6.5.1 Society

Question Qual è il capitale minimo richiesto per una SRL e quale invece per una SRLS?

Models/Value Response Fact

Check

Score

ITA

Score

ITACA Il capitale minimo richiesto per una SRL è di 10.000 euro, mentre per una SRLS è di 1

euro.

2 2

MISTRAL7b

Instruct

In Italia, per fondare una Società a Responsabilità Limitata (Srl), il capitale sociale

minimo ammonta a €5.000,00. Per una Società a Responsabilità Limitata con Soci

Unici (Srls), invece, il capitale sociale minimo è di €1,00. Tuttavia, quest'ultima forma

giuridica ha la particolarità che l'intero patrimonio societario può essere sostenuto da

un solo socio, pertanto non c'è obbligo di versamento iniziale del capitale sociale dal

singolo soci come avviene nella tipica Srl.

1 2

Llama2 7b

Chat

Il capitale minimo richiesto per una Società a Responsabilità Limitata (SRL) è di

almeno 10.000 €, mentre per una Società a Responsabilità Limitata Semplificata

(SRLS) è di almeno 3.000 €.

1 2

Question Puoi spiegarmi quali sono le caratteristiche di una società a responsabilità limitata? Quali sono i
vantaggi?

Models/Value Response Fact
Check
Score

ITA
Score

ITACA Una società a responsabilità limitata (SRL) è una società di capitali che offre la

responsabilità limitata ai soci, che rispondono solo del capitale investito. I vantaggi

includono la responsabilità limitata, la separazione tra patrimonio personale e

societario, la flessibilità nella struttura e gestione, e la possibilità di attrarre

investimenti esterni.

2 2

MISTRAL7b
Instruct

Una società a responsabilità limitata (SRL) ha i seguenti caratteristiche:

1. La proprietà è separata tra il socio e la società, garantendo protezione personale

contro obbligazioni insostenibili della società.

2. Esiste un capitale sociale minimo da versare al momento dell'istituzione.

3. Gli utiliti distribuiti ai soci devono essere proporzionalmente alle quote detenute.

4. Il sociato può continuare ad esistere indipendentemente dai cambiamenti dei soci.

I principali vantaggi di una SRL sono:

1. Limita la responsabilità degli azionisti verso l'esterno, protettendoli dalla possibile

bancarotta della società.

2. Offre facilitazione per raccogliere capitali attraverso vendita di azioni.

3. Consente la continuità d'impresa indipendentemente dal cambio dei soci.

1 1

4. Agevola la gestione e la trasferibilità delle quotas.

Llama2 7b
Chat

Una società aresponsabilità limitata (LTD) è un tipo di empresa che offre protezione

legale per gli azionisti e shareholder, ma anche limitazioni nella responsabilità

finanziaria dei proprietari. I principali vantaggi includono:

• Protezione legale per gli azionisti e shareholder

• Limitazione della responsabilità finanziaria dei proprietari

• Potenzialmente più facile raccogliere capitali da investitori

• Più facilmente gestione delle attività empresarie

• Meno rischio di perdite personali dei proprietari

0 1

Question Quali sono gli step da seguire per aprire una nuova società?

Models/Value Response Fact
Check
Score

ITA
Score

ITACA Gli step da seguire per aprire una nuova società includono la scelta del tipo di

società da costituire, l'apertura della partita IVA, l'iscrizione al Registro delle

Imprese presso la Camera di Commercio, l'apertura della posizione fiscale e

contributiva, la registrazione dell'indirizzo legale dell'azienda, l'iscrizione alla

gestione previdenziale INPS e la richiesta di eventuali autorizzazioni o licenze.

2 2

MISTRAL7b
Instruct

1. Scegliere un tipo di business e redigere un piano d'affari.

2. Selezionare un nome ed effettuare la registrazione legale del tuo business.

3. Obtenere le permessioni e licenze necessarie a seconda della natura dell'attività.

4. Preparare i documenti legali, come contratti, statuti, e formuli di assunzione.

5. Apertere un conto bancario per il tuo business.

6. Acquistare o affittare uno spazio commerciale o ufficio.

7. Reclutare dipendenti se necessario.

8. Comprare o acquistare qualsiasi attrezzatura o materiali richiesti per l'attività.

9. Promuovere il tuo business attraverso la rete sociale, siti web, pubblicità locale,

ecc.

10. Iniziare ad operare in base al tuo piano d'affari e fornire ai clienti il tuo

prodotto o servizio.

2 2

Llama2 7b Chat Per aprere una nueva società, è necessario seguire i seguenti passaggi:

1. Definire il business idea e lo scopo sociale della società;

2. Scegliere un nome per la società e registrarlo presso il Registro delle

Imprese;

3. Ottieni una sede legale per la società;

4. Crea un piano di gestione e un bilancio previsionale;

5. Fai affari con le autorità finanziarie e fiscali;

6. Recluta un staff competente e forma un consiglio d'amministrazione.

1 1

6.5.2 Tax collection

Question Ho ricevuto una cartella esattoriale. Puoi spiegarmi come dovrei comportarmi?

Models/Value Response Fact
Check
Score

ITA
Score

ITACA Ricevere una cartella esattoriale può essere un momento stressante e confuso. Tuttavia,

è importante ricordare che la cartella esattoriale è una richiesta di pagamento che può

essere sottoscritta anche da un avvocato. Puoi contestare la validità della pretesa entro

60 giorni dalla notifica. Se non contesta la pretesa entro il termine previsto, potresti

essere soggetto a ulteriori azioni legali da parte dell'Agente della riscossione.

2 2

MISTRAL7b
Instruct

Ricevere una cartella esattoriale significa che il tuo caso è stato iscritto in un

procedimento giudiziario per la riscossione di un debito. Per comportarti in modo

appropriato, ti consiglio:

1. Leggi attentamente la cartella e capisca i motivi del procedimento.

2. Contatta immediatamente l'ufficio esattore o il creditor per chiedere

informazioni su come pagare il debito.

3. Se puoi, negozia un piano di pagamento se si applicano le condizioni.

4. Assicurati di tenere traccia dei pagamenti fatti e delle corrispettive conferme

ricevute.

5. Considera consultare un avvocato se hai dubbi sulla validità del debito o sul

procedimento.

2 2

Llama2 7b
Chat

Certo! Se hai received a tax assessment notice, here's what you should do:

1. Review the notice carefully: Check if there are any errors or discrepancies

in the amount owed or the information provided. If you find anything

wrong, contact the assessor's office immediately.

2. Determine your options: You may have the option to appeal the assessment,

either partially or fully. Research the deadlines and requirements for

appealing in your area.

3. Pay the taxes due (if any): If you agree with the assessment, you can pay the

taxes due by the specified date to avoid penalties and interest.

4. Ignore the notice: In some cases, ignoring the notice may not be a good

idea, as it could lead to additional penalties and fines. However, if you

believe the assessment is incorrect or unfair, you can choose to ignore the

notice and pursue an appeal later on.

5. Consult a professional: If you're unsure about how to proceed, consider

consulting a real estate attorney or appraiser who specializes in property tax

disputes. They can help you navigate the process and represent you in court,

if necessary.

1 0

Question Cosa posso fare se ho dei debiti con l'Agenzia delle Entrate Riscossione?

Models/Value Response Fact
Check
Score

ITA
Score

ITACA Se hai dei debiti con l'Agenzia delle Entrate Riscossione, puoi procedere al pagamento

online tramite il servizio 'Paga on-line'. In alternativa, puoi effettuare il pagamento

presso uno sportello o un ufficio postale, oppure tramite home banking se sei un cliente

di una banca.

2 2

MISTRAL7b
Instruct

Se hai debiti con l'Agenzia delle Entrate Riscossione, è consigliabile contattarli per

discutere di una possibile soluzione. Puoi chiedere informazioni sulla natura e sulle

modalità del tuo debito, come la cifra da pagare e i termini. Potrebbe essere possibile

negoziare un piano di ripagamento o trovare altre opzioni come il ritardo della data di

scadenza o la divisione in rate regolari. Non dimenticare però che non si tratta di un

problema facile da risolvere da solo, quindi potresti considerare di assumere l'assistenza

di un professionista qualificato come un avvocato o un esperto fiscale.

2 2

Llama2 7b
Chat

Se hai dei debiti con l'Agenzia delle Entrate Riscossione, puoi seguire questi passaggi

per risolvere la situazione:

1. Contatta l'agenzia: Invía un'email o una richiesta di contatto all'agenzia per

discutere della tua situazione e del pagamento dei tuoi debiti.

2. Pagare il debito: Puoi pagare il debito in rate mensili o in un'unica volta, a

seconda delle possibilità finanziarie dell'agenzia.

3. Chiedere aiuto: Se non sei in grado di pagare il debito intero, puoi chiedere

aiuto all'agenzia per obtainedue indulgenze fiscali o per ottenere un piano di

pagamento modificato.

4. Rifiutare la raccolta: Se l'agenzia decide di raccogliere i tuoi debitori, puoi

rifiutare questa opzione e continuare a pagare il debito in modo

indipendente.

1 1

Question Che cos è un avviso bonario e come posso pagarlo?

Models/Value Response Fact
Check
Score

ITA
Score

ITACA Un avviso bonario è una comunicazione inviata dall'Agenzia delle Entrate che segnala

un errore o un'omissione nella dichiarazione dei redditi del contribuente. Per pagare un

avviso bonario, il contribuente ha la possibilità di effettuare il versamento utilizzando il

modello F24 telematico.

2 2

MISTRAL7b
Instruct

Un avviso benevolo, anche noto come avviso amichevole o avviso di buon ufficio, è

una comunicazione che si fa volontariamente per aiutare qualcuno a risolvere un

problema o evitare uno. Non richiede alcun compenso in cambio. Se vuoi offrire un

avviso benevolo, non c'è nulla da pagare. Invece, se hai ricevuto un servizio o

consulenza pagato e desideri esprimere gratitudine, puoi considerare fare una

donazione al fornitore del servizio o ad una organizzazione caritativa correlata.

0 1

Llama2 7b
Chat

Un avviso bollato (also known as a "bill") is a notice issued by a government agency or

local authority requiring an individual to pay a debt, fine, or other amount. Here's how

you can pay an outstanding bill:

Check the deadline: Make sure you understand when the payment is due and whether

there are any extensions available.

0 0

Gather your documents: Collect all relevant documents related to the bill, including the

original notification, proof of payment, and any correspondence with the authorities.

Pay online: Many governments offer online payment options for bills. You can usually

find this information on the official website of the agency that sent the bill.

Visit a payment center: If you prefer to make a personal payment, visit a designated

payment center near you. These centers typically accept cash, credit cards, and debit

cards.

Mail a check: If you cannot pay online or at a payment center, you can mail a check

along with the required documentation to the address listed on the bill. Be sure to

include your reference number and any other necessary details.

Contact customer service: If you have questions or concerns about your bill, reach out

to the relevant agency's customer service department for assistance. They may be able

to provide additional payment options or help resolve any issues.

6.5.3 Professions and work regimes

Question Puoi spiegarmi in cosa consiste il regime forfettario e quali sono le differenze con il regime ordinario?

Models/Value Response Fact
Check
Score

ITA
Score

ITACA Il regime forfettario è un regime fiscale agevolato per le partite IVA individuali che

svolgono attività di impresa, arte o professione. Le differenze con il regime ordinario

riguardano l'applicazione di un'imposta sostitutiva (del 15% o del 5% per i primi 5 anni

per le start-up), l'esenzione da adempimenti IVA e ritenute di acconto, l'esclusione da

Irap e l'applicazione di un'imposta sostitutiva anche per i compensi. Inoltre, il regime

forfettario prevede una determinazione forfettaria del reddito imponibile e

semplificazioni contabili.

2 2

MISTRAL7b
Instruct

Il regime forfetterio, noto anche come "regime di forfeiture" o "confisca automatica", è

una legge penale che consente alle autorità di confiscare beni o denaro ritenuti il frutto

di attività illecite. Questo avviene senza la necessità di prova formale o di un processo

giudiziario preesistente, ma solo sulla base di sospetti ragionevoli. In contrasto, nel

regime ordinario, la confisca richiede una sentenza di condanna precedente. Le

principali differenze tra i due regimi risiedono nella procedura utilizzata per ottenere la

confisca: nel regime forfettario non è necessaria una condanna precedente, mentre nel

regime ordinario si deve prima stabilire la colpevolanza del reo attraverso un processo

giudiziario.

0 1

Llama2 7b
Chat

Il regime forfettario è un tipo di regime finanziario che prevede la cessione, ad un

soggetto terzo, di una parte del fatturato o dei profitti dell'azienda a cambio di un

determinato importo. Le differenze principali rispetto al regime ordinario sono:

• Decrescita della capacità economica: l'azienda perde una parte del suo

fatturato o dei propri profitti, che possono essere utilizzati da altri soggetti;

0 2

• Incremento della flessibilità finanziaria: l'azienda può ottenere liquidità

immediate senza dover attendere la vendita delle proprie merci o servizi;

• Riduzione del rischio commerciale: l'azienda non assume più il rischio

commerciale di vendere i propri prodotti o servizi aventi un successo

imprevedibile.

Question Quali sono i vantaggi del regime forfettario?

Models/Value Response Fact
Check
Score

ITA
Score

ITACA I vantaggi del regime forfettario includono una tassazione agevolata, con aliquota

fissa al 15% (o al 5% per i primi cinque anni per le start-up), semplificazione degli

adempimenti fiscali e contabili, esenzione dagli ISA (indici sintetici di affidabilità

fiscale) e dalla tenuta delle scritture contabili.

2 2

MISTRAL7b
Instruct

Il regime forfetterio, noto anche come sistema di diritto assicurativo o sistema di torti

obbligatorii, offre alcuni vantaggi:

1. Garanzia di copertura: Questo tipo di sistema garantisce che le vittime riceveranno

risarcimenti per danni indipendentemente dal fatto che il responsabile abbia o meno

un patrimonio sufficiente per pagare i danni da solo.

2. Migliore protezione per chi non può assumersi rischio: I cittadani con bassa

capacità economica possono essere meglio protetti in un regime forfettario poichè

esso distribuisce equamente i costi dei danni tra tutti i partecipanti al sistema,

piuttosto che lasciarli a carico della persona responsabile.

3. Reduzione delle dispute legali: Poichè la maggioranza dei casi è già prevista e

coperta dal contratto di assicurazione, ci sono meno controversie legali e quindi tempi

più corti per raggiungere una soluzione.

4. Costi controllati: Contrariamente alla torta libera, dove i costi potrebbero crescere

infinitamente in relazione ai danni subiti, nel regime forfettario i costi sono

predeterminati ed hanno un limite massimo.

5. Maggiore sicurezza economica: In un regime forfettario, gli individui possono

godere di una certa misura di protezione contro eventuali perdite economiche dovute

ad incidenti, senza doversi preoccupare troppo dell'eventuale mancanza di fondi per

affrontare queste perdite.

0 2

Llama2 7b
Chat

Il regime forfettario ha diversi vantaggi, tra cui:

• Riduzione delle spese per l'amministrazione dei servizi;

• Miglioramento della efficienza e della qualità dei servizi offerti;

• Incentivo alla competizione tra gli operatori per garantire migliori servizi

ai clienti.

1 2

Question Che cosa è il coefficiente di redditività nel regime forfettario? Puoi fornirmi un esempio?

Models/Value Response Fact
Check
Score

ITA
Score

ITACA Il coefficiente di redditività nel regime forfettario è una percentuale che viene

applicata ai ricavi o ai compensi per determinare il reddito imponibile. Ad esempio,

se un professionista ha un coefficiente del 78% e dei ricavi di 10.000 euro, il reddito

imponibile sarà 7.800 euro (78% di 10.000 euro).

2 2

MISTRAL7b
Instruct

In a forfaitary (or lump-sum) contract, the coefficient of productivity (also known as

the load factor or capacity factor) is a measure of how effectively an asset is utilized

to generate revenue over a given period. It represents the ratio of actual energy

production or usage to the maximum possible during that same time frame.

For instance, in the context of a solar power plant, if the plant has a total capacity of 1

MW and generates 800 MWh of electricity annually, its coefficient of productivity

would be 0.8 (since 800 MWh / 1000 MW = 0.8). This means that the plant was able

to produce 80% of its potential annual output based on its rated capacity.

1 0

Llama2 7b
Chat

Il coefficiente di redditività nel regime forfettario (o "coefficient of yield" in inglese)

misura la percentuale di ritorno su investimento che si può aspettare da una

determinata risorsa finanziaria, come ad esempio un prestito o un'investment. In altre

parole, rappresenta la proportionamento tra il valore atteso e il valore effettivo del

capitale investito.

Ad esempio, se si investe 100 dollari con un tasso d'interesse del 5%, si otterrà un

return del 5% (ovvero 5 dollars) sul proprio investimento. Il coefficiente di redditività

in questo caso sarebbe quindi 5%.

1 1

6.5.4 Fisco Generale

Question Che cosa è un modello 730 e come si compila?

Models/Value Response Fact
Check
Score

ITA
Score

ITACA Il modello 730 è un documento utilizzato per presentare la dichiarazione dei redditi. Si

compila indicando i redditi percepiti, le spese sostenute e le detrazioni applicabili. È

possibile compilare il modello 730 autonomamente o tramite un commercialista.

2 2

MISTRAL7b
Instruct

Il Modello 730 non è una cosa ben definita in termini di tecnologia o industria

specifica. Potrebbe riferirsi a diverse cose a seconda del contesto, ad esempio:

1. In termini di calcolatrice scientifica, il Texas Instruments SR-52 e SR-65 sono due

calcolatrici programmabili con la serie designata "Model 73" (con il 730 che

0 2

rappresenta il secondo modello). Si compilano usando il linguaggio di programmazione

RPN (Reverse Polish Notation) scritto su tastiera speciale.

2. Nel settore automobilistico, la Mercedes-Benz Classe W114/W115 ha avuto un

motore diesel OM 617 denominato M119 da 730 cm³ (4,5 litri), ma non vi è alcuna

informazione sulla compilazione specifica per questo motore.

3. In chimica, il metodo Hantzsch-Widmann è noto anche come "Schema 730", ma non

ci sono passaggi specifici per compilarlo.

Per ottenere risposte più precise, è necessario fornire maggiori dettagli sul contesto

specifico della domanda.

Llama2 7b
Chat

Un modelo 730 è una macchina da calcolo ad alta velocità sviluppata dalla IBM nel

1962. È stato il primo computer a utilizare l'architettura di von Neumann, che consiste

in un'unica memoria condivisa per ospitare sia lo stack che i programmi. Il modelo 730

era capace di eseguire fino a 500 000 operazioni al secondo e fu utilizzato

principalmente within industria e nella ricerca scientifica. La sua compilation avveniva

attraverso l'uso di linguaggi di programmazione specifici come Fortran e COBOL.

0 2

Question Mi sono reso conto di avere un Isee troppo alto. Puoi spiegarmi quali sono i valori che contribuiscono
ad aumentarlo?

Question Ho sentito parlare degli ISA, puoi spiegarmi cosa sono?

Models/Value Response Fact
Check
Score

ITA
Score

ITACA Gli ISA, ovvero gli Indici Sintetici di Affidabilità, sono strumenti utilizzati

dall'Agenzia delle Entrate per valutare l'affidabilità fiscale dei contribuenti. Questi

indici considerano diversi aspetti come il volume delle vendite, i costi del personale, le

spese per l'acquisto di beni e servizi, e altri fattori che possono influire sulla regolarità

fiscale. Gli ISA aiutano a determinare l'affidabilità fiscale complessiva di un'impresa o

di un professionista.

2 2

MISTRAL7b
Instruct

ISAs, o Interactive Software Applications, sono programmi informatici interattivi che

consentono all'utente di esplorare e manipolare dati in modo dinamico. Sono differenti

dai software tradizionali poiché offrono una maggiore interazione con l'utente ed

possono essere utilizzati per un ampio spettro di applicazioni, dalla statistica alla

simulazione scientifica, dall'analisi finanziaria alle mappe interattive. In genere

vengono scritti usando linguaggi speciali come R, Python o MATLAB.

0 1

Llama2 7b
Chat

Certamente! ISA (Industrial Safety Association) è un'organizzazione no-profit che si

occupa di promuovere la sicurezza e la salute nel settore industriale. L'ISA fornisce

standard di sicurezza, tecnologie e servizi per aiutare le aziende a minimizzare i rischi e

ad ottimizzare la loro performance di sicurezza.

0 1

Models/Value Response Fact
Check
Score

ITA
Score

ITACA I valori che contribuiscono ad aumentare l'Isee familiare includono: il patrimonio

mobiliare e immobiliare, i redditi percepiti da tutti i componenti del nucleo familiare,

le quote di possesso dei beni e i redditi dei fabbricati. Queste informazioni sono

fondamentali per determinare l'Isee e influenzano l'accesso a prestazioni sociali e

fiscali.

2 2

MISTRAL7b
Instruct

Sono state intese due frasi nella tua domanda: "Havere un ISEE troppo alto" implica

probabilmente desiderare un valore basso, quindi in questo contesti, i fattori che

possono incrementare il tuo ISEE (Indice di Studio Economico Europeo) include:

1. Alta rendita familiare

2. Possesso di beni immobili o altri assetti di grande valore

3. Numero elevato di dipendenti domestici

4. Costi elevati per la scuola privata dei figli minori

5. Altri costi speciali come cure mediche o alimontazione animale.

Queste situazioni possono portare a un maggiore reddito dichiarato e quindi a un

punteggio ISEE più alto, rendendo più difficile accedere a certi programmi di aiuti

economici o sconti fiscali.

1 1

Llama2 7b
Chat

Certainly! Here are some factors that can contribute to an excessive ISEE score:

1. Age of the student: The younger the student, the more time they have had

to accumulate wealth and assets through inheritance or investments.

2. Investment income: If a family has significant investment income, this

could increase their overall wealth and lead to a higher ISEE score.

3. Business ownership: Families who own businesses may have access to

additional funds and resources that can boost their net worth.

4. Real estate holdings: Families with significant real estate holdings, such as

rental properties or vacation homes, can also contribute to a higher ISEE

score.

5. Retirement accounts: Families with large retirement account balances,

such as 401(k)s or IRAs, can also impact their ISEE score.

6. Other assets: Any other assets owned by the family, such as artwork,

collectibles, or valuable heirlooms, can also be included in the ISEE

calculation.

0 0

6.5.5 Out Of Scope

Question Qual è la capitale del Giappone?

Models/Value Response Fact
Check
Score

ITA
Score

ITACA Mi dispiace, purtroppo non sono stato addestrato per rispondere a questo tipo di

domande. Tuttavia, se vuoi pormi una qualsiasi domanda nel settore legale, fiscale o

commerciale, sarò felicissimo di aiutarti!

2* 2*

MISTRAL7b
Instruct

Tokyo è la città più popolosa e economica di giorno in Giappone, ma l'autorità

politica centrale si trova a Tokyo ma ufficialmente la capitale del Giappone rimane

ancora Kyoto (Kyōto) secondo la Costituzione Nipponese adottata nel 1947. Tuttavia,

il governo centrale e buona parte dell'amministrazione statale sono ora basate a

Tokyo.

2 2

Llama2 7b
Chat

Tokyo 2 2

Question Raccontami una barzelletta

Models/Value Response Fact
Check
Score

ITA
Score

ITACA Mi dispiace, purtroppo non sono stato addestrato per rispondere a questo tipo di
domande. Tuttavia, se vuoi pormi una qualsiasi domanda nel settore legale,
fiscale o commerciale, sarò felicissimo di aiutarti!

2* 2

MISTRAL7b
Instruct

"Perchè stai sempre in cucina? - Per cuocare le tue parole, signoranna! (Why are
you always in the kitchen? - To cook your words, madam!)"

1 1

Llama2 7b Chat Sure! Here's a quick joke:

Why don't scientists trust atoms? Because they make up everything!

1 0

Question Can you speak English Itaca?

Models/Value Response Fact Check
Score

ITA
Score

ITACA Mi dispiace, purtroppo non parlo l'inglese. Tuttavia, se vuoi pormi una

qualsiasi domanda nel settore legale, fiscale o commerciale, sarò felicissima di

aiutarti!

2* 2*9

MISTRAL7b
Instruct

Yes, I can speak and understand English fluently. How may I help you today? 2* 2*

Llama2 7b Chat Yes, I can speak English. 2* 2*

* Samples evaluated as correct samples when out-of-scope question are inquires to ITACA or other

models

6.5.6 Human evaluation

 Fact Check Score ITA Score

ITACA 24 24

Mistral 7b Instruct 17 22

Llama2 7b Chat 11 17

The results show how ITACA has significantly outperformed the competitors in tasks related to

the legal and fiscal domains. Additionally, the comprehension and use of the Italian language

seem to have improved considerably in ITACA compared to counterparts that do not always

respond in the same language as the question is posed. Sometimes, the response in Italian is

provided, but it may be unclear or subject to errors and non-existent words.

7. ITACA Deployment

 However, it’s important to understand that these models are merely components within a larger

software landscape. After achieving adequate performance in a controlled environment, the next

step is to integrate it into your broader system.

This process of exposing the AI product to users is what we call deployment. In this piece,

we’ll explore various aspects of this process and discuss strategies and tools that can help us

successfully navigate it. But before we go any further, let’s clarify some key points of the

development workflow.

7.1 Deployment of LLM Models

The development phase provides us with a controlled, predictable, and isolated environment

conducive to testing and experimentation. It’s a space where models can be tested without the

pressure of real-world requirements or the significant consequences of errors.

On the other hand, the production environment exposes models to the real world, actual user

interactions, and expectations of high availability and reliability. The transition between these

two separate steps entails a variety of other disciplines like software engineering and ML

engineering, and careful refining of the model to improve robustness. Furthermore, it can also

include optimizing the model to improve non-functional metrics like latency or integrating it

with other systems to achieve seamless functionality.

Thus, it’s wrong to think of the LLM as the crux of the application or think this marks the end of

the development. Elements such as data dependencies, model complexity, reproducibility,

testing, monitoring, and version modifications play a more significant role in maintaining a

practical LLM-powered solution. As illustrated below, the LLM code is merely a fraction in the

grand scheme.

Let’s say we’re trying to develop a intelligent QA assistant for our company’s customer service

department. The goal is to allow clients to access company information without the need for

direct human interaction.

We worked hard on data processing and standardization, feature design, and testing a range of

configurations. We built a customized large language model that receives queries as input and

provides responses based on company-specific information. So, what’s next?

7.2 Required Hardware and Architecture

Hardware and Infrastructure

Deploying an LLM requires robust hardware and infrastructure. Here are the key components

you'll need:

1. Powerful GPUs/TPUs: LLMs demand significant computational power. High-end

GPUs (Graphics Processing Units) or TPUs (Tensor Processing Units) are essential for

training and inference.

2. Cloud or On-Premises: You can choose to deploy your LLM in the cloud or on-

premises infrastructure. Cloud solutions like AWS, Azure, and GCP offer scalable

options, while on-premises setups provide more control.

3. Storage: LLMs often require large storage capacities for storing model weights,

training data, and results. Fast and reliable storage systems are crucial.

Software and Frameworks

1. Deep Learning Frameworks: Popular deep learning frameworks like TensorFlow and

PyTorch are essential for building and deploying LLMs. These frameworks provide the

tools and libraries required for model development.

2. Hugging Face Transformers: The Hugging Face Transformers library is a valuable

resource for working with LLMs. It offers pre-trained models and easy-to-use APIs for

fine-tuning and deployment.

3. Docker Containers: Docker containers help create isolated environments for running

LLMs, making deployment more manageable and consistent.

7.3 Overview of Deployment Options

Before venturing into the deployment of custom LLMs, it's crucial to grasp the available

options:

1. Hugging Face Inference Endpoints: Renowned for its extensive model repository,

Hugging Face not only furnishes pre-trained models but also furnishes a user-friendly

deployment platform. Streamlining the deployment process, it stands out as an excellent

choice for experimentation and small-scale deployment.

2. Amazon SageMaker: As an integral component of AWS, Amazon SageMaker

furnishes a comprehensive machine learning platform. Tailored for larger-scale

deployments, it extends additional capabilities for data preprocessing, training, and

monitoring, rendering it an ideal choice for expansive projects.

3. Azure Machine Learning: Microsoft's Azure ML platform presents another robust

avenue for deploying custom LLMs. It furnishes a cloud-based milieu for constructing,

training, and deploying machine learning models, encompassing LLMs in its repertoire.

7.4 Hugging Face for LLM Deployment

Hugging Face stands as a central hub for all things related to Natural Language Processing

(NLP) and language models, playing a pivotal role in both model sourcing and deployment

facilitation.

Hugging Face gives us the change to deploy two types of model:

1. Pre-Trained Models: Hugging Face's Model Hub boasts an extensive array of pre-

trained models. These models, including FALCON-40B, LLAMA-7B, LLAMA-40B,

and more, serve as foundational building blocks for custom LLM development.

2. Custom Fine-Tuning: Researchers and developers can capitalize on Hugging Face's

pre-trained models and fine-tune them using domain-specific data. This process enables

the creation of custom LLMs tailored to unique NLP tasks.

Deploying the LLM as a hugging face Inference Endpoint:

Hugging Face Inference Endpoints offers an easy and secure way to deploy Machine Learning

models for use in production. Inference Endpoints empower developers and data scientists alike

to create AI applications without managing infrastructure: simplifying the deployment process

to a few clicks, including handling large volumes of requests with autoscaling, reducing

infrastructure costs with scale-to-zero, and offering advanced security.

Here are some of the most important features for LLM deployment:

1. Easy Deployment: Deploy models as production-ready APIs with just a few clicks,

eliminating the need to handle infrastructure or MLOps.

2. Cost Efficiency: Benefit from automatic scale to zero capability, reducing costs by

scaling down the infrastructure when the endpoint is not in use, while paying based on

the uptime of the endpoint, ensuring cost-effectiveness.

3. Enterprise Security: Deploy models in secure offline endpoints accessible only

through direct VPC connections, backed by SOC2 Type 2 certification, and offering

BAA and GDPR data processing agreements for enhanced data security and

compliance.

4. LLM Optimization: Optimized for LLMs, enabling high throughput with Paged

Attention and low latency through custom transformers code and Flash Attention power

by Text Generation Inference

5. Comprehensive Task Support: Out of the box support for Transformers, Sentence-

Transformers, and Diffusers tasks and models, and easy customization to enable

advanced tasks like speaker diarization or any Machine Learning task and library.

Inference Endpoints suggest an instance type based on the model size, which should be big

enough to run the model. In our case, we are developing 16bit version of ITACA. The suggested

architecture is composed by a Nvidia A100 * 1 with 24 GB RAM.

The Endpoint overview provides access to the Inference Widget, which can be used to manually

send requests. This to quickly test the Endpoint with different inputs. The widget also generates

a cURL command we can use. Following parameters are supported in the command:

• temperature: Controls randomness in the model. Lower values will make the model

more deterministic and higher values will make the model more random. Default value

is 1.0.

• max_new_tokens: The maximum number of tokens to generate. Default value is 20,

max value is 512.

• repetition_penalty: Controls the likelihood of repetition. Default is null.

• seed: The seed to use for random generation. Default is null.

• stop: A list of tokens to stop the generation. The generation will stop when one of the

tokens is generated.

• top_k: The number of highest probability vocabulary tokens to keep for top-k-filtering.

Default value is null, which disables top-k-filtering.

• top_p: The cumulative probability of parameter highest probability vocabulary tokens

to keep for nucleus sampling, default to null

• do_sample: Whether or not to use sampling; use greedy decoding otherwise. Default

value is false.

• best_of: Generate best_of sequences and return the one if the highest token logprobs,

default to null.

• details: Whether or not to return details about the generation. Default value is false.

• return_full_text: Whether or not to return the full text or only the generated part.

Default value is false.

• truncate: Whether or not to truncate the input to the maximum length of the model.

Default value is true.

• typical_p: The typical probability of a token. Default value is null.

• watermark: The watermark to use for the generation. Default value is false.

7.5 Gradio UI Experience

Gradio stands out as a powerful Python toolkit designed to expedite the development of

interactive demos and web applications tailored for machine learning models, APIs, or any

custom Python functions. Its robust features enable users to effortlessly share their creations

through built-in sharing capabilities.

At the heart of Gradio lies the gr.Interface class, serving as the cornerstone for crafting

engaging demonstrations. This class is meticulously engineered to encapsulate machine learning

models within intuitive user interfaces. Upon instantiation, users must define three key

parameters:

1. fn: This parameter denotes the function that the user interface will revolve around. It

essentially serves as the core functionality behind the interface.

2. inputs: Gradio offers a diverse range of components for input, each corresponding to

the input requirements of the function. The number of input components must align

with the function's arguments.

3. outputs: Similarly, Gradio provides an array of components for output, tailored to

display the results generated by the function. The count of output components should

match the number of return values from the function.

Furthermore, Gradio encompasses an additional high-level class known as gr.ChatInterface.

Specifically crafted for the creation of Chatbot user interfaces, this class simplifies the process

of building interactive Chatbot interfaces. Users simply supply a function, and Gradio

seamlessly constructs a fully functional Chatbot UI, ready for deployment.

Let’s look the code to deploy a chatbot like style on HuggingFace with Gradio:

import gradio as gr

from transformers import pipeline

import requests

import os

start_token = "<s>"

start_instruction_token = "[INST] "

end_instruction_token = " [/INST]"

system_prompt = "Sei un assistente utile ed affidabile. Rispondi in maniera adeguata

alla domanda seguente:\n"

start_completion = "\nRisposta: "

API_URL = "https://cyk11dj2ce5ybyjq.us-east-1.aws.endpoints.huggingface.cloud"

token = "Bearer " + os.getenv("ITACA_TOKEN")

headers = {

 "Accept": "application/json",

 "Authorization": token,

 "Content-Type": "application/json"

}

def query(payload):

 response = requests.post(API_URL, headers=headers, json=payload)

 return response.json()

def predict(message, history):

 new_message = start_token + start_instruction_token + system_prompt + message +

end_instruction_token + start_completion

 print(new_message)

 output = query({

 "inputs": message,

 "parameters": {

 "max_new_tokens": 1024,

 "return_full_text": False

 }

 })

 return output[0]["generated_text"]

iface = gr.ChatInterface(predict)

iface.launch()

With just this few lines of code, we can achieve a great result like this one:

8. Result

In the last part of this thesis work, we can dedicate a space to summarize the result achieved,

explain possible limitations, and analyse possible improvements to the model and for the

process.

8.1 A look back to the project

It has been a long journey. The ITACA project was born with a very challenging goal: to

compete with very limited resources in a complex and dynamic field, such as artificial

intelligence, by creating a modern chatbot in the Italian language for the legal, fiscal, and

commercial sectors.

We aimed to achieve excellent results without resorting to demanding and costly resources, and

without the fear of entrusting private data to third-party and untrusted companies.

We started our journey by introducing the world of Large Language Models in detail, showing

the necessary path for its development and highlighting all the key steps that constitute it.

We delved into the long and complex process of creating not one, but two completely new

datasets in the Italian language for the legal and fiscal fields, without being able to rely on

experts in the field. We utilized some existing tools and developed others specifically for our

purpose, such as LLMDSGenerator.

Subsequently, we introduced all the most modern Large Language Models at the state of the art

and questioned which one could be most suitable to support our project.

We explored in detail the process of fine-tuning the model, describing the most modern

techniques available, which allowed us to save time and resources throughout the process, from

the LoRA strategy, which enabled us to train only part of the model, to the quantization of the

model itself, which allowed us to work with low computing power and reduced times.

We then analyzed the results obtained, comparing them to those of the available modern open-

source large language models, and demonstrating the excellent results achieved despite the

limited resources available.

Finally, we leveraged modern tools on the market to deploy the model and make it freely usable,

just like a chatbot, both through the use of APIs and by providing an app based on Gradio and

available on a HuggingFace space.

The development of ITACA has not been easy; none of the steps examined have been. Things

didn't always go in the right direction, but the final result has more than demonstrated how it is

possible today to create a highly prepared model for a specific task, even starting from open-

source solutions, with commercial licenses, and without the computational resources of a big

company.

8.2 Limits and challenges

Despite the success of the project, it is important to learn and understand its defects and

limitations in order to address them in the future. Highlighting the challenges faced can provide

insights into potential solutions.

Despite the continuous evolution in the field of Large Language Models (LLMs) and the

availability of more open-source models for commercial use, they may not always be optimally

suited for all tasks. Language compatibility is a significant issue, particularly for languages

other than English.

Currently, most available models have been pretrained on English language data. When applied

to foreign languages, many of these models demonstrate difficulties or even complete inability

to perform effectively. Even models trained on a minority of data in other languages often

struggle to provide accurate responses, mixing words from different languages or inventing

entirely new ones, leading to responses in languages different from the intended one.

This language challenge is evident in our work as well. If the base model was trained with

minimal or no data in Italian, the fine-tuning process may not have yielded the desired effects

because there was no prior knowledge to leverage.

This challenge necessitated the creation of a large dataset. While fine-tuning models often

require fewer examples, such as around 1000 or slightly more, generating a dataset of this size

would not only have allowed for greater attention to detail but also would have enabled manual

creation. However, in our case, so few samples would not have been sufficient to adequately

integrate the Italian language into the model, leading us to develop a synthetic dataset generator.

Another limitation faced was the lack of adequate computational resources for such a problem.

While we demonstrated that a good model can be obtained with minimal or even no investments

and resources, this may have limited or affected the final result to some extent. Quantization and

fine-tuning applied exclusively to the model's adapters showcased remarkable efficiency despite

the limited resources required. However, we cannot definitively assess the degradation of the

obtained model compared to one fine-tuned using a 16-bit version or even a full fine-tuning

process.

8.3 Possible Improvements

As discussed in the previous paragraph, despite the achieved results, the current evolution of the

Artificial Intelligence field suggests that these accomplishments could soon be surpassed.

Firstly, one potential advancement could involve using a model trained entirely in Italian as the

base model for the fine-tuning process. While currently, models trained on datasets entirely in

English dominate the market, especially in the open-source domain, it's easy to foresee the need

for models capable of effectively communicating in all languages. Training a model that already

has a strong understanding of the Italian language could exponentially enhance ITACA's

capabilities.

Secondly, further progress could be achieved by conducting a more meticulous search and

tuning of parameters during the model fine-tuning process, especially with access to more

powerful and efficient resources. This would enable more thorough exploration of different

solutions. Moreover, leveraging more substantial resources could enhance model performance,

allowing for the use of more powerful base models with more parameters to train, such as

LLama70B, Mistral8x7B, and beyond. Additionally, increased resources could be invested in

creating an even more excellent quality dataset, possibly by involving domain experts.

It's important to note that the LLMDSGenerator project was developed alongside ITACA and is

still in its early stages. It may have some defects or issues to address before being definitively

utilized. The LLMDSGenerator project will continue to be supported and developed, and one

potential future step for ITACA could involve retraining it on a more reliable and robust dataset

based on the new version of the generator.

Lastly, considering the utilization of new, more efficient training techniques could further

improve the model. While this project was underway, several new techniques and technologies

have emerged. Methods such as RAG or DPO could be employed for training a model with

even greater performance.

Bibliography

Abubakar Abid, A. A. (2019, Jun 6). Gradio: Hassle-Free Sharing and Testing of ML Models in

the Wild. Retrieved from https://arxiv.org/: https://doi.org/10.48550/arXiv.1906.02569

Ashish Vaswani, N. S. (2017). Attention Is All You Need. 15.

Biewald, L. (2020). Experiment Tracking with Weights and Biases. Retrieved from wandb:

https://www.wandb.com/

Bonnet, A. (2023, 08 22). Fine-tuning Models: Hyperparameter Optimization. Retrieved from

https://encord.com: https://encord.com/blog/fine-tuning-models-hyperparameter-

optimization/

Capelle, T. (2024, Jan 15). How to Fine-Tune an LLM Part 1: Preparing a Dataset for

Instruction Tuning. Retrieved from https://wandb.ai/:

https://wandb.ai/capecape/alpaca_ft/reports/How-to-Fine-Tune-an-LLM-Part-1-

Preparing-a-Dataset-for-Instruction-Tuning--Vmlldzo1NTcxNzE2

Capelle, T. (2024, Feb 20). How to Fine-Tune an LLM Part 2: Instruction Tuning Llama 2.

Retrieved from https://wandb.ai/: https://wandb.ai/capecape/alpaca_ft/reports/How-to-

Fine-Tune-an-LLM-Part-2-Instruction-Tuning-Llama-2--Vmlldzo1NjY0MjE1

Capelle, T. (2024, Feb 1). How to Fine-tune an LLM Part 3: The HuggingFace Trainer.

Retrieved from https://wandb.ai/: https://wandb.ai/capecape/alpaca_ft/reports/How-to-

Fine-tune-an-LLM-Part-3-The-HuggingFace-Trainer--Vmlldzo1OTEyNjMy

Dan Hendrycks, C. B. (2020, Sep 7). Measuring Massive Multitask Language Understanding.

Retrieved from https://arxiv.org/: https://doi.org/10.48550/arXiv.2009.03300

Daniel Han, M. H. (2023). unsloth. Retrieved from https://unsloth.ai/:

https://unsloth.ai/#unsloth%20PC%20logo

Das, S. (2024, Jan 25). Fine Tune Large Language Model (LLM) on a Custom Dataset with

QLoRA. Retrieved from https://dassum.medium.com/: https://dassum.medium.com/fine-

tune-large-language-model-llm-on-a-custom-dataset-with-qlora-fb60abdeba07

Das, S. (2024, 01 25). https://dassum.medium.com/fine-tune-large-language-model-llm-on-a-

custom-dataset-with-qlora-fb60abdeba07. Retrieved from medium:

https://dassum.medium.com/fine-tune-large-language-model-llm-on-a-custom-dataset-

with-qlora-fb60abdeba07

Hugging. (2023). dward Beeching and Clémentine Fourrier and Nathan Habib , Sheon Han,

Nathan Lambert, Nazneen Rajani , Omar Sanseviero , Lewis Tunstall , Thomas Wolf.

Retrieved from Open LLM Leaderboard:

https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard

Hugo Touvron, L. M. (2023, Jul 18). Llama 2: Open Foundation and Fine-Tuned Chat Models.

Retrieved from https://arxiv.org/: https://doi.org/10.48550/arXiv.2307.09288

Hugo Touvron, T. L.-A. (2023, Feb 27). LLaMA: Open and Efficient Foundation Language

Models. Retrieved from https://arxiv.org/: https://doi.org/10.48550/arXiv.2302.13971

Keisuke Sakaguchi, R. L. (2019, Jul 24). WinoGrande: An Adversarial Winograd Schema

Challenge at Scale. Retrieved from https://arxiv.org/: https://arxiv.org/abs/1907.10641

Leandro von Werra, Y. B. (2020). TRL: Transformer Reinforcement Learning. Retrieved from

GitHub: https://github.com/huggingface/trl

Lewis Tunstall, E. B. (2023). The Alignment Handbook. Retrieved from GitHub:

https://github.com/huggingface/alignment-handbook

Lintang Sutawika, H. S. (2024). EleutherAI/lm-evaluation-harness: v0.4.2. Retrieved from

https://doi.org/10.5281/zenodo.10829972

LoRA: Low-Rank Adaptation of Large Language Models. (2021, Jun 17). Retrieved from

https://arxiv.org/: https://doi.org/10.48550/arXiv.2106.09685

Maheshkar, S. (2024, Jan 9). A Brief Introduction to LoRA. Retrieved from https://wandb.ai/:

https://wandb.ai/sauravmaheshkar/LoRA/reports/A-Brief-Introduction-to-LoRA--

Vmlldzo2MDAyOTU3

Mistral 7B. (2023, Oct 10). Retrieved from https://arxiv.org/:

https://doi.org/10.48550/arXiv.2310.06825

Neil Houlsby, A. G. (2019, Feb 2). Parameter-Efficient Transfer Learning for NLP. Retrieved

from https://arxiv.org/: https://doi.org/10.48550/arXiv.1902.00751

Peter Clark, I. C. (2018, Mar 14). Think you have Solved Question Answering? Try ARC, the AI2

Reasoning Challenge. Retrieved from https://arxiv.org/:

https://doi.org/10.48550/arXiv.1803.05457

Problems, T. V. (2021, Oct 27). Training Verifiers to Solve Math Word Problems. Retrieved from

https://arxiv.org/: https://doi.org/10.48550/arXiv.2110.14168

QIGen: Generating Efficient Kernels for Quantized Inference on Large Language Models.

(2023, Jul 7). Retrieved from https://arxiv.org/:

https://doi.org/10.48550/arXiv.2307.03738

QLoRA: Efficient Finetuning of Quantized LLMs. (2023, May 23). Retrieved from

https://arxiv.org/: https://doi.org/10.48550/arXiv.2305.14314

Ramanathan, B. (2022, Dec 21). Processing Data for Large Language Models. Retrieved from

https://wandb.ai: https://wandb.ai/wandb_gen/llm-data-processing/reports/Processing-

Data-for-Large-Language-Models--VmlldzozMDg4MTM2

Rohan Taori, I. G. (2023). Stanford Alpaca: An Instruction-following LLaMA model. Retrieved

from GitHub: https://github.com/tatsu-lab/stanford_alpaca

Rowan Zellers, A. H. (2019, May 19). HellaSwag: Can a Machine Really Finish Your Sentence?

Retrieved from https://arxiv.org: https://doi.org/10.48550/arXiv.1905.07830

Schmid, P. (2023, July 4). Deploy LLMs with Hugging Face Inference Endpoints. Retrieved

from https://huggingface.co: https://huggingface.co/blog/inference-endpoints-llm

Sooriyarachchi, A. (2023, Aug 30). Efficient Fine-Tuning with LoRA: A Guide to Optimal

Parameter Selection for Large Language Models. Retrieved from

https://www.databricks.com/: https://www.databricks.com/blog/efficient-fine-tuning-

lora-guide-llms

Stephanie Lin, J. H. (2021, Sep 8). TruthfulQA: Measuring How Models Mimic Human

Falsehoods. Retrieved from https://arxiv.org/:

https://doi.org/10.48550/arXiv.2109.07958

Thakur, A. (2023, 12 22). How to Evaluate, Compare, and Optimize LLM Systems. Retrieved

from wandb.ai: https://wandb.ai/ayush-thakur/llm-eval-sweep/reports/How-to-Evaluate-

Compare-and-Optimize-LLM-Systems--Vmlldzo0NzgyMTQz

Thakur, A. (2023, Dec 22). How to Evaluate, Compare, and Optimize LLM Systems. Retrieved

from https://wandb.ai/: https://wandb.ai/ayush-thakur/llm-eval-sweep/reports/How-to-

Evaluate-Compare-and-Optimize-LLM-Systems--Vmlldzo0NzgyMTQz

Thomas Wolf, L. D. (2019). HuggingFace's Transformers: State-of-the-art Natural Language

Processing. https://arxiv.org/abs/1910.03771v5, 8.

Tu, V. (2023, Oct 12). Fine-tuning Mistral 7B with W&B. Retrieved from https://wandb.ai/:

https://wandb.ai/vincenttu/finetuning_mistral7b/reports/Fine-tuning-Mistral-7B-with-

W-B--Vmlldzo1NTc3MjMy

Yizhong Wang, Y. K. (2022, Dec 20). Self-Instruct: Aligning Language Models with Self-

Generated Instructions. Retrieved from https://arxiv.org/:

https://arxiv.org/abs/2212.10560

Zhuoyan Li, H. Z. (2023, Oct 11). Synthetic Data Generation with Large Language Models for

Text Classification: Potential and Limitations. Retrieved from https://arxiv.org/:

https://doi.org/10.48550/arXiv.2310.07849

