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Abstract

This thesis endeavors to conduct a comprehensive and detailed examination, along
with documentation, of the development of a virtual reality (VR) application.
Additionally, it aims to explore the process involved in integrating an offline
feedback loop designed for the analysis of physiological data. The primary goal of
this research endeavor is to undertake the preprocessing of raw physiological data,
focusing particularly on the Electrodermal Activity (EDA), which is the variation
of the electrical conductance of the skin in response to sweat secretion. The EDA
signal can be reflective of the intensity of our emotional state, otherwise known
as emotional arousal. Our level of emotional arousal changes in response to the
environment and setting we’re in, if something is scary, threatening, joyful, or
otherwise emotionally relevant, then the subsequent change in emotional response
that we experience also increases eccrine sweat gland activity. EDA is gathered
(with a werable physiological sensor called Emotibit) from participants actively
engaged in the VR experience. Notably, the VR application in question is designed
to induce stress in its users. This deliberate induction of stress serves as a catalyst
for the observation and analysis of variations in EDA levels, thereby illuminating
potential correlations between emotional arousal and physiological responses within
the VR environment. The inception of this scholarly pursuit can be traced back
to the formative stages of a VR application developed during the course of an
internship. This internship was undertaken at MICT imec-mict-UGent, a Research
Group for Media, Innovation, and Communication Sciences at Ghent University.
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Chapter 1

Introduction

Virtual reality (VR) has become an intriguing avenue for exploring user experiences
and enhancing the quality of interactions within digital environments. This master’s
thesis embarks on an exploration of the challenges surrounding the integration of
an offline feedback loop within a Unity application, focusing specifically on the
context of an immersive VR horror experience. Additionally, it aims to establish a
correlation between electrodermal activity (EDA) and user fear levels. As the VR
application in question elicits frightening events and measures (via the Emotibit
sensor) user EDA, self-assessment questionnaires from participants will aid in the
analysis of EDA data. The journey of this investigation was initiated during an
internship at MICT. The Unity application conceived for this thesis originates as a
derivative of the one developed during the aforementioned internship. It forms the
foundation for the experimental segment of Aleksandra Zheleva’s PhD research,
which pertains to the quality of user experience in VR.

Figure 1.1: Structure of the experiment

The VR horror experience is designed around a kitchen setting, where users are
presented with instructions through a television display. The task is to tidy up the
virtual kitchen by discarding broken items and organizing the remaining ones on
the shelves. The experiment unfolds through two blocks, each spanning 12 minutes.
One block introduces frightening events, while the other remains non-threatening,
both still requiring participants to tidy the virtual kitchen. Post each block,
participants are prompted to complete a questionnaire addressing their immersive
experience, frightening, and arousal. Frightening events are integrated into one of
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the blocks, manifesting as auditory (A#), visual (V#), or audio-visual (A#V#)
stimuli. The sequence of these events is counterbalanced to eliminate order-induced
biases in subjective (questionnaire) and objective (EDA) data collection. These
frightening events include scenarios such as encountering a zombie emitting screams
(V1) or an eerie figure with corresponding auditory cues (A2), resulting in 12
potential combinations distributed within a two-minute time range.

Figure 1.2: Block with frightening events

1.1 Quality of Experience (QoE) and Virtual Re-
ality PhD

The PhD project "Could You Repeat That, Please? Increasing The Quality And
Replicability Of Physiological Virtual Reality Research Through A Comprehensive
Experimental Framework" aims to construct a comprehensive research framework.
This framework encompasses a model of user experience factors in VR, a survey of
applicable physiological sensors and their measured factors, and a data collection
and processing mechanism. To validate this framework, a series of experiments
with end users is planned. The Unity application developed in this thesis is
integral to achieving this aim. The QoE model resulting from this PhD project
encapsulates 252 factors categorized into Context, System, Content, and User
branches. These factors span aspects such as physical environment, technical
components, storytelling elements, and user characteristics. This model aims to
enhance VR experiences by offering insights into factors affecting user engagement
and immersion.[1]

Context factors

These factors pertain to the situational properties of the physical environment in
which the user is engaged in VR. This includes aspects such as size and layout of
the playing area, location, and temperature. Safety is an important sub-branch
within context factors, encompassing physical, psychological, ethical, and data
dimensions. Additionally, factors like purpose for use, cost (process, relationships,
and economic), and accessibility are considered.
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System factors

This category of factors is primarily associated with the technical components of
VR. It includes hardware components like head-mounted display (HMD) resolution,
haptic devices, field of view (FoV), and tracking devices. Software developments
such as image rendering algorithms and tracking algorithms are also considered.
Network characteristics like latency, bandwidth, bit rate, and delay play a role in
determining the VR experience.

Content factors

This branch focuses on the elements related to storytelling in VR. It addresses how
to guide the user’s intention in VR without overwhelming them with cues. The
design of the soundscape to enhance user immersion in the story is another aspect.
Interaction design in the virtual environment is also a key consideration within
content factors.

User factors

This category encompasses factors that relate to the user’s characteristics and
experiences. It includes static factors such as age, previous experience, physical
health, and other personal traits. Dynamic factors like presence (feeling of "being
there" in the virtual environment), cybersickness (motion sickness or discomfort in
VR), immersion, and enjoyment are also important user-related considerations.

1.2 Role of the Unity application in the PhD
In the context of the PhD project outlined in 1.1 "Quality of Experience (QoE)
and Virtual Reality", the Unity application detailed in the preceding section
serves a pivotal role in the advancement of research. Its primary objective is to
rigorously assess and validate the QoE (Quality of Experience) model previously
elucidated, through a series of experiments involving end users. The crux of this
application’s purpose lies in the investigation of the intricate interplay between
distinct user-centric factors (namely, immersion, presence, arousal, and valence)
and content-related factors such as multimodal storytelling, encompassing auditory,
visual, and audio-visual cues. These elements are scrutinized within the context
of two experiments, aimed at delving deep into the realm of VR (Virtual Reality)
immersiveness. This exploration entails an exhaustive analysis, considering both
subjective and objective dimensions of data. Subjective data collection hinges on the
application of the Self-Assessment Manikin (SAM) questionnaire and an immersion
questionnaire, both tailored to gauge participants’ perceptions and experiences. In
parallel, objective data collection involves the meticulous monitoring of participants’
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electrodermal activity (EDA) utilizing Emotibit hardware. The ExperienceDNA
framework is strategically deployed to simultaneously record and synchronize both
subjective and objective data throughout participants’ engagement with the VR
environment. The initial experiment pertains to the introduction of diverse stimulus
types (auditory, visual, and audio-visual) within the VR setting. Its core objective is
to untangle the intricate dynamics through which different sensory inputs influence
not only immersiveness but also arousal and valence within the VR context. The
study draws on a dual perspective, meticulously analyzing the impact of these
stimuli through both subjective user feedback and quantifiable objective measures,
thus contributing to a profound comprehension of the constituents underlying
captivating and pleasurable VR experiences. Guided by the insights gleaned from
the initial experiment, the trajectory advances toward the conception of an adaptive
VR environment in the subsequent experiment. This environment, distinguished
by its employment of real-time feedback loops, harnesses dynamic real-time data
to enrich immersiveness and user engagement. The fusion of this concept with the
established ExperienceDNA framework culminates in a personalized VR encounter.
The core premise of this second experiment revolves around the exploration of
how the incorporation of feedback loops can engender responsive and tailored
modifications within the VR environment. This investigation aspires to discern
how these malleable adjustments resonate in terms of overall immersiveness and
emotional resonance within the VR experience. The potential ramifications of these
findings extend to the conceptualization and creation of VR environments that
adapt organically to user interactions.

1.3 ExperienceDNA
The Unity application described in this thesis utilizes the ExperienceDNA framework
to create an immersive experience that logs both subjective and objective data
streams. ExperienceDNA is a research framework that can be used to create
immersive VR experiences for user testing, control the interactions between users
and their surroundings, and collect a wide range of fine-grained sensor data, allowing
researchers to map the entire user experience. The framework is developed in Unity
and supports both qualitative and quantitative data logging, capturing various
data such as eye gaze, pupil dilation, blink rate, object interaction, reaction times,
accuracy, and heart rate. The data can be monitored in real-time and exported
at the end of the VR experience [2]. For this thesis, a variation of the application
utilized in Alecksandra Zheleva’s PhD project has been developed, integrating
the pre-processing algorithm for EDA data on the Vive Focus 3 headset. This
alteration introduces offline feedback loops as the primary point of differentiation
between the two applications.[3]
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1.4 Objectives
This thesis undertakes the creation of a VR application within Unity, enriched by an
offline feedback loop for analyzing raw EDA data. The application is designed for the
standalone device, Vive Focus 3. The primary objective of this thesis is to analyze
Electrodermal Activity (EDA) measurements collected during Virtual Reality (VR)
experiences, compare them with participants’ self-assessment questionnaires, and
determine if EDA data confirm that participants who report being more frightened
by the VR experience exhibit higher EDA peaks. The secondary objective is to
simplify and adapt a Python algorithm from the PhD project, enabling it to be
executed on the Vive Focus 3, thus integrating the feedback loop. This innovation
seeks to eliminate the necessity of a remote server and enhance the accessibility
and applicability of the feedback loop within the VR application.

1.5 Organization of chapters
The thesis is structured into six chapters. The first chapter provides an elucidation
of the context in which the Unity application was developed. It also highlights
the application’s significance within the broader scope of the PhD research, titled
"Quality of Experience and Virtual Reality: An Exhaustive Literature Review."
Furthermore, this chapter outlines the general structure and framework of the
Unity application. Moving on to the second chapter, it involves an analysis and
comparison of various use cases pertaining to feedback loops integrated into virtual
reality applications and methodologies for analyzing and interpreting EDA. In the
third chapter, comprehensive details are presented regarding the software, hardware,
and protocols employed to develop the Unity application. This section provides
a comprehensive overview of the technological elements that have contributed to
the application’s development. The fourth chapter is about the conducted tests,
specifically designed to evaluate and measure the efficiency and precision of the
feedback loop integrated within the Unity application. The fifth chapter examines
EDA measurements conducted in 16 experiments and seeks correlations between
the level of fear expressed by the user through post-experience self-assessment
questionnaires and EDA data. Lastly, the sixth chapter presents an exposition of the
results obtained from the conducted measurements. Additionally, a comprehensive
analysis and interpretation of these results are provided. Furthermore, there will
be a contemplation on potential future advancements of the application, where the
offline feedback loop and the EDA dara are utilized to adapt the VR environment
based on the user’s emotional state.
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Chapter 2

State of art

This chapter encompasses an analysis of research papers instrumental in attaining
the objectives of the thesis project.

2.1 Affective Feedback in a Virtual Reality based
Intelligent Supermarket

The paper discusses a VR experiment with a design and structure resembling
that of the current project thesis experiment. The experiment design involves
the utilization of a virtual reality based experimental platform to investigate
the integration of continuous EDA measurements into a context-aware intelligent
environment (CAIE). Participants navigate a virtual supermarket in a fully position-
tracked space while wearing an Empatica E4 wristband, which continuously acquires
real-time physiological data. The user is helped by a navigation-assist service that
aims to find the shortest direct path for customers based on a dynamically changing
shopping list. Participants, equipped with VR glasses and positioned in a fully
tracked space, receive a pre-populated shopping list of 10 items. The system displays
item numbers as overlays in the VR scene, creating the illusion of a dynamically
changing list. The navigation-assist service guides participants through green
path arrows, with a red arrow indicating the final destination. The experiment is
conducted in a Wizard-of-Oz fashion, where the experimenter activates path arrows
based on participants’ spoken item numbers. Paths include both direct routes
and deliberately winding ones to induce techno-stress and assess user reactions.
Participants are instructed to follow the indicated path, even if not a direct route
[4]. The experiment includes correct services (CS: direct path) and wrong services
(WS: winding path) for different items on the list. Additionally, a Paced Stroop
Test (PST) experiment is conducted with a task pacing time of 3 seconds between
Stroop figures, totaling 180 seconds.[4][5]
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Figure 2.1: VR scene

2.2 Virtual Reality Experiments with Physiolog-
ical Measures

This paper establishes an academic standard protocol for VR experiments involving
physiological measures. The protocol involves a systematic series of steps for
the recruitment, preparation, and execution of participants in the context of
conducting virtual reality (VR) experiments with physiological sensors, adhering
to the Experiments in Virtual Environments (EVE) framework. The following is a
comprehensive breakdown of the protocol:

Recruit and Prepare Participants

• Select participants based on specific demographics through established recruit-
ment systems or mailing lists.

• Contact participants via email, providing session details and necessary instruc-
tions regarding attire, dietary restrictions, and lifestyle activities preceding
the experiment.

Prepare the Experiment and Physiological Devices Using EVE

• Initiate the requisite technical components before each experimental session.

• Ensure functionality of electrodermal activity (EDA) and electrocardiography
(ECG) measurement devices.

• Utilize EDA/ECG software (compatible with EVE) to configure settings and
synchronize with physiological sensors.

• Prepare the experimental environment, including room conditions and control
interfaces.
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Experimental Procedure

• Commence the session with participant introduction, consent procedure, and
briefing on the experimental timeline.

• Establish connections for EDA and ECG sensors, adhering to specific protocols
for sensor placement and skin preparation.

• Administer pre-experiment questionnaires, ensuring participant comfort and
understanding.

Joystick Training and Baseline Video

• Provide participants with training on joystick usage through instructional
videos and practical exercises.

• Instruct participants to complete training tasks, including maze navigation
and gem collection.

• If applicable, introduce sound elements with headphones and initiate viewing
of a baseline nature video.

Navigation Task

• Confirm participants’ understanding of navigation task instructions.

• Prompt participants to commence the navigation task using the joystick
trigger.

Final Physiological Measures and Detachment of Physiological Sensors

• Conclude the experiment with final blood pressure measurement and recording
cessation for EDA and ECG.

• Safely detach the blood pressure cuff and EDA electrodes.

• Remove the joystick and headphones.

Post-Experiment Questionnaires

• Administer post-experiment questionnaires using a computer interface, cover-
ing various aspects such as frightening level, self-assessment, and simulator
sickness.
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End of the Experimental Session

• Conclude the experimental phase, express gratitude to participants, and
address any queries.

• Facilitate participant payment and obtain necessary signatures on receipts.

After Each Experimental Session

• Conduct experiment diagnostics through the EVE framework, replaying tra-
jectories for analysis.

• Mark events in physiological measurement files for precise data analysis.

• Save physiological measurement files and export experimental data for backup.

• Power down EDA/ECG machines and clean electrodes for subsequent use.

• Update participant attendance in the recruitment system.

This detailed protocol aims to ensure consistency, reliability, and efficiency in the
execution of VR experiments with physiological sensors [6].

2.3 Adaptive virtual reality
The paper outlines the three main processes of the closed-loop approach to adaptive
Virtual Reality (VR). This approach is also employed in the current thesis project
to visualize processed EDA data. The three procedures of the closed-loop approach:

• Signal acquisition. This phase is distinguished by the real-time gathering of
unprocessed data, including subsequent data "cleaning" operations such as
artifact rejection or correction.

• Data analysis and inference. Within a specific time frame or epoch, the refined
data is subjected to analysis, culminating in the derivation of inferences about
the user’s condition, such as the categorization of their emotional state.

• A repertoire of adaptive interactive mechanisms (AIM). These mechanisms
are designed to promote specific behavior and/or experiences. Further details
on these processes can be found in the references [7][8][9].

The configuration and nature of these adaptations are directed by a defined
standard or predefined objective, such as the enhancement of task engagement, the
promotion of relaxation, or the modulation of frightening levels. Consequently, these
adaptations impact the state and behavior of the individual user, thereby serving
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Figure 2.2: Closed loop system

as a subsequent input signal that, in turn, completes the closed-loop framework.
The realization of Adaptive VR hinges on this integration of real-time monitoring
and adaptation within a closed-loop system. establish a formal linguistic framework
and systematic categorization pertaining to the constituent components of the
feedback loop. It is intended to contribute to the broader comprehension of virtual
reality (VR) experiments involving physiological sensors, facilitating a structured
examination of the project [10].

2.4 D-flow: immersive virtual reality and real-
time feedback for rehabilitation

This paper delineates the logical approach of the real-time feedback loop imple-
mented by the D-Flow software. D-Flow is a sophisticated software system crafted
for the purpose of fostering the advancement of interactive and immersive virtual
reality applications, with a particular focus on applications within the realms of
clinical research and rehabilitation. Its core functionality resides in facilitating the
establishment of real-time feedback loops, wherein the behavioral patterns of sub-
jects are meticulously gauged through the utilization of multi-sensory input devices.
Subsequently, the system orchestrates the delivery of comprehensive motor-sensory,
visual, and auditory feedback to the subjects, thereby engendering an enriched and
responsive virtual environment. This software system is underpinned by a versatile
and expansible application development framework, which empowers operators
with the capability to delineate intricate feedback strategies through the medium
of visual programming.[11] The D-Flow kernel is the framework in which the actual
virtual reality applications can be defined. The operational paradigm of the D-Flow
kernel is based on the main processing loop, characterized by a frame-by-frame
modus operandi. Each discrete frame encompasses a meticulously choreographed
sequence of four principal steps, delineated as follows:
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Await Signal from Real-Time Device Manager (Optional)

The initial step involves the kernel awaiting a signal from the real-time device
manager, signaling the availability of new data from a specific device. It is important
to note that this step is optional and contingent upon the real-time requirements
of the application.

Module-Specific Actions and Event Broadcasting

Subsequently, for each module, the kernel engages in the execution of module-specific
actions tethered to events previously scheduled for broadcast during the antecedent
frame. This phase constitutes a very important aspect of the operational cycle,
ensuring the synchronization of module activities with the temporal framework of
the virtual environment.

Internal Processing of Modules

The third step encompasses the internal processing of each module, encompassing
the following sub-steps

• Updating user interface parameters as deemed appropriate for the evolving
context.

• Generating new output data predicated upon the available input data.

• Effecting modifications to objects within the virtual reality environment to
reflect the dynamically evolving state.

• Strategically scheduling the broadcast of a plethora of global events anticipated
to transpire in the forthcoming frame.

Virtual Reality Environment Modification and Display Update

All operations influencing alterations in the virtual reality environment are metic-
ulously managed through the Distributed Rendering System. This component
assumes responsibility for handling the intricacies of virtual environment modifica-
tion, ensuring seamless updates to displays in consonance with the processed data.
The sequencing of module processing adheres to a structural hierarchy, wherein
the order of execution is contingent upon the interconnection arrangement. In
instances of loops, modules reliant on streamed input data from the synchronized
data buffer are accorded priority during processing, ensuring the systematic and
synchronized evolution of the computational tasks within the framework of the
D-Flow kernel. [11]
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Chapter 3

Development of the Unity
application and tools used

3.1 Emotibit

Figure 3.1: Emotibit

EmotiBit possesses the capability to wirelessly transmit and locally store data
originating from a diverse array of sensors, constituting a multi-modal constellation.
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This constellation comprises Electrodermal Activity (EDA), multi-wavelength Pho-
toplethysmography (PPG), a temperature sensor of medical-grade quality, a 9-axis
Inertial Measurement Unit (IMU), alongside an expanding repertoire of derivative
metrics. Specifically, EmotiBit employs a documented circuit architecture for EDA
measurement, meticulously calibrated during fabrication to furnish precise readings
across a broad spectrum of skin conductance levels, thereby ensuring compati-
bility with various skin types. [12] Given that Emotibit’s EDA sensor operates
by detecting variations in electrical (ionic) activity attributable to fluctuations in
sweat gland function, the electrodes necessitate sensitivity to such changes and
efficacy in relaying this data to the recording apparatus. Emotibit’s EDA electrodes
feature an Ag/AgCl (silver-chloride) contact interface with the skin. The selection
of Ag/AgCl electrodes is predicated upon their cost-effectiveness, durability, safety
for human contact, and capacity to faithfully transmit signals stemming from ionic
activity. EDA data is sampled at a rate of 15 Hz and quantified in micro-Siemens.
Subsequently, the forthcoming subsection will delineate the nature of EDA and
elucidate its acquisition and transmission via the Emotibit sensor.

Figure 3.2: Emotibit’s sensors
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3.1.1 EDA signal
Electrodermal activity (EDA), also known as galvanic skin response (GSR), denotes
the alteration in skin electrical conductance triggered by sweat secretion, often in
minute quantities. This physiological data is gathered through the application of a
low, imperceptible, and constant voltage to the skin, followed by the assessment of
variations in skin conductance. EDA devices, employing electrodes affixed to the
skin, facilitate this measurement of the electrical signal. While EDA is implicated
in the regulation of internal temperatures, its robust correlation with emotional
arousal has been extensively documented in research. Signals originating from the
sympathetic nervous system precipitate changes in Skin Conductance Response
(SCR), a primary focus of researchers. The EDA signal serves as an indicator of
emotional arousal intensity, which dynamically shifts in response to environmental
stimuli – be they alarming, joyful, or emotionally salient. Investigations have
elucidated how both positive and negative stimuli elicit heightened arousal and
increased skin conductance, reflecting various dimensions of emotional response.
Consequently, the EDA signal does not categorically delineate emotional types but
rather signifies their intensity. The temporal profile of the signal is construed as
the outcome of two concurrent processes: a tonic base level driver characterized by
slow fluctuations (seconds to minutes), and a phasic component exhibiting rapid
variations within seconds. Alterations in phasic activity manifest as discernible
bursts within the continuous data stream, typified by steep inclines to distinctive
peaks followed by gradual declines relative to the baseline level.

Figure 3.3: Graph of raw EDA signal, tonic EDA component, phasic EDA
component

Researchers concentrate on the latency and amplitudes of phasic bursts relative
to stimulus onset when investigating alterations in the EDA signal prompted by
sensory stimuli such as images, videos, and sounds. When substantial modifications
occur in EDA activity following a stimulus, it is designated as an Event-Related Skin
Conductance Response (ER-SCR). These responses, commonly termed EDA peaks,
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offer insights into emotional arousal triggered by stimuli. Additionally, peaks in
EDA activity unrelated to stimulus presentation are labeled as Non-Stimulus-locked
Skin Conductance Responses (NS-SCR). [5]

3.1.2 OSC protocol
The Emotibit records electrodermal activity (EDA) data at a frequency of 15
times per second, employing floating-point encoding for representation. A Wi-Fi
connection links the Emotibit device to a personal computer (PC) hosting specialized
software for managing the Emotibit data stream (called Emotibit Oscilloscope),
facilitating data transmission from Emotibit to the PC.

Figure 3.4: software interface for managing the Emotibit data stream

Subsequently, the PC streams this data through the Wi-Fi network to a predeter-
mined Wi-Fi port designated in the oscOutputSettings XML configuration file. An
OpenSoundControl (OSC) message, bearing the OSC address "/EmotiBit/0/EDA",
is dispatched by the PC to encapsulate the EDA data. Concurrently, the vir-
tual reality (VR) headset actively monitors the specified Wi-Fi port to receive
and visualize the electrodermal activity (EDA) data within the Unity application
environment.
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Figure 3.5: XML file of the OSC settings

Open Sound Control (OSC) is an open, transport-independent, message-based
protocol developed for communication among devices. OSC employs an open-
ended, URL-style symbolic naming scheme, facilitating the symbolic designation
of parameters. This characteristic enhances the ease of identifying and managing
various attributes of sound and multimedia devices. Furthermore, OSC offers
symbolic and high-resolution numeric argument data encoding. A distinctive feature
of OSC is its inclusion of a pattern matching language, enabling the specification
of multiple message recipients within a single communication. This functionality
enhances communication flexibility and versatility. Moreover, OSC enables the
routing of messages to multiple procedures on an OSC server, facilitating intricate
and distributed control over the devices. OSC supports high-resolution time tags
utilizing 64-bit time values, enabling precise event timing and synchronization. The
protocol also supports message bundling, allowing for the aggregation of multiple
messages into bundles for simultaneous execution, ensuring synchronized actions
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across devices. In summary, OSC presents a flexible and robust protocol for real-
time control of multimedia devices, boasting a comprehensive suite of features for
communication and data encoding.

3.2 HTC Vive Focus 3

The VR headset utilized for the execution of the application is the VIVE Focus 3, as
requested by the MICT research team with whom this research project originated.
This VR headset, developed by HTC and introduced to the market in 2021, stands as

Figure 3.6: VIVE Focus 3

a pivotal virtual reality (VR) headset engineered with a distinct focus on enterprise
applications. Its design embodies several noteworthy technical specifications and
design elements essential for immersive user experiences. Featuring dual 2.88-inch
LCD panels, the Vive Focus 3 delivers a combined resolution of 2448 x 2448 pixels
per eye, culminating in an impressive total resolution of 4896 x 2448 pixels and a
refresh rate of 90Hz. Driving the device’s performance is the Qualcomm Snapdragon
XR2 Platform, crafted for the demands of extended reality (XR) applications.
Boasting 8GB of RAM and 128GB of onboard storage, the headset provides
substantial resources for seamless operation and content storage. Noteworthy is
the implementation of inside-out tracking facilitated by four cameras, a feature
integral to the Vive Focus 3’s design. This tracking system eliminates the necessity
for external sensors while maintaining precise positional tracking. Furthermore,
the headset integrates controllers tailored for enhanced ergonomics and superior
tracking precision. Complementing these features are removable open-back speakers,
certified for high-resolution spatial audio.
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3.3 ExperienceDNA framework

Figure 3.7: Architecture of the ExperienceDNA framework

In the development of the Unity application is used the the ExperienceDNA
framework (developed in Unity by the MICT research team), which makes the
structure of the virtual reality experiment more modular and easily mappable
and modifiable.[2] The ExperienceDNA framework allows to create immersive
experiences for product testing, control the interactions between users and their
surroundings, and collect a wide range of fine-grained sensor data. All of which
results in a user experience that can be mapped in detail. Most notably, the
ExperienceDNA framework facilitates both qualitative and quantitative data log-
ging. This means that the user experience can be fully mapped via capturing
eye gaze data, pupil dilation data, blink rate data, object interaction data, re-
action times, accuracy and heart rate monitoring. In the future, the framework
will accommodate various other sensors, such as EEG, to facilitate a fine-grained
user experience profile. The data can be both monitored in real-time and logged
and exported at the end of the VR experience. This framework facilitates the
deconstruction of experiments into blocks, with each block containing trials, and
each trial featuring characteristic events. Consequently, researchers analyzing the
physiological data, gathered during the experience, can conduct macro analyses on
the block data or focus on individual events. The physiological data are captured
by the sensor worn by the user and streamed to the VR headset. The headset
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transmits the raw data to a server where Python and MATLAB algorithms are
applied for pre-processing. Subsequently, the data are aggregated into groups.[2]
In this project, the ExperienceDNA framework is employed solely for establishing
the VR experience’s structure and not for transmitting data to a server for pro-
cessing. One of the primary objectives of this project thesis is to translate certain
pre-processing Python algorithms mentioned above into C# algorithms, enabling
real-time execution within the Unity application. The VR experience adheres to a
block structure defined within a JSON file (referred to as "data_structure.json"),
which is parsed using methods provided by the ExperienceDNA library.

Figure 3.8: data_structure json file

Each block is characterized by specific conditions (user number) and comprises
eight trials. Each trial presents a condition that may include a frightening stimulus
(A#, V#, A#V#) or a non-stimulus (NS). In the initial scene, termed "MainMenu,"
participants select their assigned user number, previously communicated by the
research team. Based on the entered user number, one of the stimulus sequences

19



Development of the Unity application and tools used

corresponding to a pair of blocks (one without frightening stimuli and one with
frightening stimuli) is selected. There are twelve pairs of blocks defined within the
JSON file "data_structure" that identify 12 different sequences of stimuli.

Figure 3.9: Condizioni

The participant’s user number, entered in the "MainMenu" scene, is then passed
to the second and final scene named "SampleScene." Within the "SampleScene,"
an empty object ("AnimationTrigger") with an attached script receives the user
number and iterates through the "data_structure" JSON file until it locates a block
with the same user number condition.

Figure 3.10: Part of the script that selects the pair of blocks

Subsequently, all eight trials from each of the two blocks are executed. Each trial
lasts for 2 minutes, during which the stimulus associated with the trial’s condition
is triggered at the trial’s onset. Upon completion of the eighth trial from the second
block, the application exits.
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3.4 Unity app development

3.4.1 VR scene development

In the construction of the environments for the two scenes constituting the VR
experience, a combination of purpose-built 3D models and those made available
by the MICT research team from prior experiments were employed. Each model
underwent texturing procedures tailored to the requirements of this project, utilizing
tools such as Blender and Substance 3D Painter. The creation of frightening
stimuli involved the modeling and animation processes within Blender, followed by
integration into the Unity platform. The frightening stimuli:

• V1 (visual stimulus number 1) - A 3D model of a zombie that appears in front
of the user and translates while screaming into the position of the user’s face.

Figure 3.11: V1 frightening stimulus

• V2 (visual stimulus number 2) - A 3D model of a woman appearing in a corner
of the kitchen. When she appears, all the lights in the scene turn off, and a
spotlight illuminates the woman, who then shifts towards the user’s position
after 4 seconds.
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Figure 3.12: V2 frightening stimulus

• A1 (auditory stimulus number 1) - An empty object with an Audio Source
component containing the scream of a zombie.

• A2 (auditory stimulus number 2) - An empty object with an Audio Source
component containing the scream of a woman.

• A#V# - Combined auditory and visual stimuli.

3.4.2 Overview of virtual reality experience structure

Figure 3.13: First scene termed "MainMenu"
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In the first scene, the user is prompted to enter their participant number (previously
communicated to them by the research team). Once the user presses the "Next"
button, the second scene is loaded.

Figure 3.14: Second scene termed "SampleScene"

In the second scene, the participant is placed within a virtual kitchen environ-
ment, wherein instructional prompts are conveyed via a television display. The
objective entails organizing the virtual kitchen by disposing of damaged items
(while ensuring proper segregation of waste into appropriate bins) and arranging
the remaining items on shelves. After the instructions are communicated to the
participant, a 2-minute timer is activated (displayed on the television screen) to
allow the participant time to explore the virtual environment. However, during this
period, the participant is unable to interact with objects, enabling the collection of
physiological data for 2 minutes without any stimuli to establish a baseline. Upon
completion of the timer, the experience commences, during which the participant
can and must interact with objects to tidy up the kitchen. Throughout this simple
task, the participant is subjected to frightening events every two minutes for a total
duration of 12 minutes, following which the participant is required to complete
a self-assessment questionnaire regarding the frightening level of the experience,
which is displayed on the television screen.
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Figure 3.15: Shelf and bins of the second scene

Upon completion of the questionnaire, the second and final block of the experi-
ence begins. Objects are repositioned on the table to their initial positions, and
the participant must repeat the task for another 12 minutes without frightening
events. At the conclusion of these 12 minutes, the participant must complete a
second questionnaire, after which the application exits, concluding the experience.

Figure 3.16: Survey displayed on the television

3.4.3 Connection between Vive Focus 3 and Emotibit
As previously explained in section 3.1.2, "OSC Protocol", the Emotibit device
communicates with a personal computer via Wi-Fi, utilizing specialized software
known as the Emotibit Oscilloscope to manage the data stream. Subsequently,
the PC transmits the data through the Wi-Fi network to a predetermined Wi-Fi
port, encapsulating the EDA data in OSC messages. These messages, identified
by the OSC address "/EmotiBit/0/EDA" contain EDA data formatted as a float
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and are transmitted to the designated Wi-Fi port at a rate of 15 times per second.
The Unity project utilizes the OSC Jack package to facilitate communication
between the Vive Focus 3 VR headset and the PC connected to the Emotibit
sensor. The OSC Jack package constitutes a lightweight C# implementation
of OSC server/client, primarily designed to offer OSC support within the Unity
environment. To establish the connection at the Wi-Fi port within the Unity
project, a scriptable object provided by the OSC Jack package is utilized. Within
the inspector of this scriptable object, users can specify the IP address and the
Wi-Fi port number. Specifically, the default IP address "10.27.91.226" and port
"12346" are employed to communicate with an Android device, such as the Vive
Focus 3 VR headset.

Figure 3.17: Inspector of the scriptable object

Moreover, within the Unity scene, an empty object equipped with the Osc Event
Receiver script component (also provided by the OSC Jack package) is employed.
Within the inspector of this empty object the following parameters are defined:

• The OSC address of the intended OSC message to be read.

• The data type of the information contained within the OSC message.

• The method to be invoked each time the receiver detects an OSC message
with the specified address.

The method invoked by the Unity event, entailing the reading of an OSC message
with the address "/EmotiBit/0/EDA" belongs to the script named "EdaWriter".
This method stores the value in a List and performs signal operations (which will
be elaborated upon in Section 3.4.3, titled "Pre-processing Electrodermal Activity
Algorithm").
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Figure 3.18: Inspector of the empty object equipped with the OSC Event Receiver
script component

3.4.4 Pre-processing electrodermal activity algorithm

As previously introduced in the subsection 3.1.1 "EDA signal", the electrodermal
activity signal comprises two distinct components: the tonic and phasic components.
The tonic component represents the baseline or general level of EDA activity,
encompassing slower-acting characteristics and background variations in the signal,
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such as overall level, gradual changes, and sustained trends over time. Skin
Conductance Level (SCL) is a commonly used measure to quantify the tonic
component, with alterations in SCL reflecting general fluctuations in autonomic
arousal levels. In contrast, the phasic component of EDA pertains to the more
rapid and transient fluctuations in the signal, often referred to as Skin Conductance
Responses (SCRs). These responses capture the dynamic changes in electrodermal
activity that occur in response to specific stimuli or events. Research suggests that
both tonic and phasic components play significant roles in reflecting autonomic
arousal, with distinct neural mechanisms underlying each component.

Figure 3.19: Components of the EDA signal

A common procedure performed on EDA data is standardization. Standard-
ization involves adjusting the data to enable direct and meaningful comparisons
between individuals. While standardization may not always be essential, it is chal-
lenging to envision a scenario where transforming any Skin Conductance Responses
(SCRs) from an individual into a coordinate system reflecting the constraints of
their responsiveness would not be advisable. The objective of standardization is
to streamline comparisons of individual differences, ensuring that all SCRs are
adjusted based on their physiological responsiveness. This process helps miti-
gate factors such as skin thickness, facilitating more accurate comparisons across
individuals. [13]
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Python pre-processing algorithm executed on a server

As mentioned in subsection 3.3, the Unity project developed for the MICT research
center utilizes the ExperienceDNA Framework to process real-time data received
from a server. This data includes physiological signals, such as Electrodermal
Activity (EDA), transmitted by the VR headset running the application. The
preprocessing algorithm for EDA, executed by the server, is written in Python and
employs the NeuroKit2 library, which offers convenient access to advanced biosignal
processing routines. The Python script conducts a comprehensive analysis of the
EDA signal, encompassing data loading, cleaning, processing, visualization, decom-
position, and skin conductance and power spectral density analysis. Specifically,
the operations performed by the script include:

Loading and cleaning data:
• Loading the EDA data from a JSON file into a Pandas DataFrame.

• Converting Unity timestamps to Unix time.

• Removing rows with missing or invalid values.

Signal processing:
• Processing the raw EDA signal to derive raw data, tonic response, phasic

response, SCR onset, and SCR peak using the NeuroKit2 library.

• Cleaning the EDA signal.

• Extracting features such as SCR onsets, SCR peaks, SCR recovery, and SCR
amplitude.

• Visualizing the computed information.

Figure 3.20: Output of the "Signal Processing" part of the Python script
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Decomposition:

• Decomposing the EDA signal into phasic and tonic components using Neu-
roKit2.

• Extracting the phasic and tonic components from the decomposition.

• Visualizing the extracted information.

Figure 3.21: Output of the "Decomposition" part of the Python script

Power spectral density (PSD) analysis:

• Calculating the PSD using Welch’s method to estimate the frequency with
the highest power in the EDA signal.

• Obtaining the highest density interval using random samples.

• Visualizing the computed information.

Figure 3.22: First output of the "Power spectral density (PSD) analysis" part of
the Python script
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Figure 3.23: Second output of the "Power spectral density (PSD) analysis" part
of the Python script

For this thesis project, only the Python algorithm’s functionality responsible for
cleaning and extracting the fundamental components of the signal (phasic and tonic)
is considered. Thus, only the part of the script defined above as "Decomposition" is
considered. The C# algorithm, operating in real-time within the Unity application,
solely extracts the phasic and tonic components. Now, let’s delve more into the part
of the Python script referred to as "Decomposition." The initial signal processing
operation involves the "eda_clean()" method from the NeuroKit2 library.

Figure 3.24: eda_clean() method

This method discards all floats outside the range of 0.03 to 30 and all floats
equal to NaN. Subsequently, the signal undergoes standardization. As previously
explained, standardization facilitates the comparison of EDAs from different users
by reducing error margins associated with individual user characteristics. Finally,
the standardized signal is passed as an argument to a method called "eda_phasic()"
which decomposes the signal into its two fundamental components: tonic and phasic.
This latter method, provided by the NeuroKit2 library, facilitates the decomposition
of Electrodermal Activity (EDA) signals into two distinct components: phasic
and tonic. Here is a summary of the methods and functionalities provided by the
"eda_phasic()" function:

• High-pass filtering: this method employs a high-pass filter with a default cutoff
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Figure 3.25: Decomposition of the EDA signal into the two components

frequency of 0.05 Hz. Users have the flexibility to adjust the cutoff frequency
using the "cutoff" argument.

• Median smoothing: by employing a median value smoothing filter, this method
effectively eliminates regions of rapid change in the raw EDA signal. The
Phasic component is derived by subtracting the smoothed signal from the
original. The processing duration is contingent upon the smoothing factor,
regulated by the "smoothing_factor" argument.

• cvxEDA: this approach adopts convex optimization principles for EDA pro-
cessing and necessitates the installation of the cvxopt package.

• SparsEDA: this method employs sparse non-negative deconvolution techniques.

The function encompasses the following parameters:

• "eda_signal": represents the raw EDA signal.

• "sampling_rate": denotes the sampling frequency of the raw EDA signal in
Hz.

• "method": specifies the processing pipeline to be applied, including options
such as "cvxEDA", "smoothmedian", or "highpass".

• "kwargs": facilitates the provision of additional arguments to the specific
method.

Upon execution, the function yields a DataFrame containing the tonic and phasic
components as distinct columns.
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C# pre-processing algorithm executed by the VR headset

As elucidated in subsection 3.4.3, "Connection between Vive Focus 3 and Emotibit,"
the reading of an OSC message on the Wi-Fi port "12346" and IP address
"10.27.91.226" triggers a Unity event invoking the "useEDA" method of the EdaWriter
script. This method accepts a float argument, representing the information from
the received OSC message, which is discarded if it falls outside the range of 0.03 –
30 or if it equals NaN. If not discarded, the float is stored in a List<float> object
named "CleanedSignal." The signal, cleansed of any artifacts, is visualized using
a chart visualization package called "Chart and Graph." Upon each new sample
being stored, the entire list of values undergoes standardization.

Signal Standardization For each new value recorded, the total signal mean is
recalculated using the "Mean()" method along with the standard deviation.

Figure 3.26: Standardization method

The standard deviation (σ) involves the summation of squared differences
between each signal value and the signal mean. This summation is divided by the
total number of signal values, and the square root of this division is taken.

σ =
óqN

i=1(xi − µ)2

N

Where:

• σ is the standard deviation,

• xi represents each individual data point in the dataset,

• µ is the mean (average) of the dataset,

• N is the total number of data points in the dataset.

Phasic component The EdaWriter script, which contains the UseEDA method
(invoked with each Osc message read), utilizes a namespace called "DSP" that en-
ables the creation of an object of type "LowpassFilterButterworthImplementation,"
referred to as "lowpass," representing a Butterworth filter with a cutoff frequency
of 3 Hz and fourth order. The "lowpass" object encompasses the compute method,
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Figure 3.27: Standard deviation method

Figure 3.28: Low-pass Butterworth filter object

which operates on lists of floats similar to how a filter operates on a signal. Thus,
the standardized signal undergoes processing through the compute method, and
the final output of the compute method is the phasic component. Specifically,
the DSP namespace simulates a Butterworth low-pass filter with the following
characteristics: it is designed to allow the passage of frequencies below a designated
cutoff frequency while attenuating frequencies above that value. The principal
features of a Butterworth low-pass filter include a smooth frequency response and
a rapid attenuation beyond the cutoff frequency. Here are the typical features of a
Butterworth low-pass filter:

• Frequency Response: The Butterworth low-pass filter is designed to have a
flat frequency response within the passband, without oscillations or undesired
peaks. This means that frequencies below the cutoff frequency pass through
the filter with minimal attenuation, while higher frequencies are significantly
attenuated.

• Attenuation Roll-off: After the cutoff frequency, the attenuation of the But-
terworth low-pass filter drops rapidly, ensuring a clear separation between the
passband and the stopband.

• Filter Poles: The poles of the Butterworth filter are positioned on the unit
circle in the complex plane to achieve the desired frequency response. This
pole placement contributes to the characteristic of maximum flatness in the
frequency response.
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• Filter Order: The order of the Butterworth filter determines the slope of
the transition between the passband and the stopband. A higher filter order
results in a steeper transition slope.

[14]

Tonic component Regarding the Tonic component, it awaits filling a buffer of
4000 samples before commencing its calculation. This component is determined by
applying a Median Filter to the standardized signal, where the median filter operates
within a window comprising 4000 values.The median filter distinguishes itself from
conventional numerical filters such as the moving average and Savitzky-Golay
filters due to its effectiveness in managing spikes and anomalies in the data while
preserving the signal’s general shape. Whereas the moving average tends to smooth
the signal and Savitzky-Golay filters are more suited for curve approximation,
the median filter excels in removing isolated spikes without compromising signal
resolution. It is particularly adept at handling "spiky" noise or sudden spikes in the
data, facilitating the clear separation of peaks from the slowly evolving baseline,
which is crucial for data interpretation in analytical contexts. The median filter
operates on the signal through the following steps:

• It arranges the values within a designated moving window.

• It identifies the median value, which represents the middle value when the
values are arranged in ascending or descending order.

• It substitutes the original value with the median value within the moving
window.

• It iterates this process for each point in the signal, moving the moving window
along the signal.

Essentially, the median filter replaces each value in the signal with the median
value of the surrounding values, aiding in spike elimination and noise reduction
without compromising the overall signal shape, thus yielding the Tonic component
of the EDA. [15]
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Figure 3.29: Median filter method

Visualization Upon registering a new value of the cleaned EDA signal and
subsequently recalculating the phasic component, two methods are invoked to
visualize the data on a graph overlay located in the bottom-right corner of the
user’s view. After recalculation, all points on the phasic component graph are
cleared using the "ClearCategory" method, and the new values are added using a
for loop with the "AddPointToCategory" method.

Figure 3.30: Script that visualizes the phasic component

Regarding the cleaned EDA, the "AddPointToCategory" method is simply
utilized to append the new sample to the graph. As for the tonic component (since

Figure 3.31: Script that visualizes the EDA cleaned signal

its calculation depends on a window of 4000 values, as explained earlier), the values
are recalculated every 4000 values. Thus, for every 4000 recorded values, the points
on the tonic component graph are removed, and the newly computed values are
added again.
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Figure 3.32: Overlay EDA Graph
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Chapter 4

Comparative analysis of
Python and C# algorithms

This chapter presents a comprehensive comparative analysis of algorithms imple-
mented in Python and C#. The overarching goal is to meticulously evaluate the
congruence between the output data generated by both algorithms, with the Python
implementation serving as the gold standard reference. The imperative to compare
the Python and C# algorithms stems from the critical need to ensure methodologi-
cal consistency and data processing accuracy. Originating from the MICT team
of Researchers specialized in physiological data analysis, the Python algorithm
represents a well-established benchmark against which the C# implementation is
rigorously evaluated. The investigation is driven by the necessity to validate the
equivalence of the C# algorithm in relation to this esteemed standard. To fulfill the
research objectives, a meticulous blend of qualitative and quantitative analyses is
employed. Central to the evaluation is the assessment of data congruence, achieved
through the computation of the mean square error (MSE) and correlation coefficient.
These statistical metrics serve as pivotal indicators of the similarity between the
output datasets generated by the Python and C# algorithms. These analyses
were conducted concerning 2 vectors of floats, as both the Python pre-processing
algorithm (employed by the MICT research team) and the C# algorithm crafted
explicitly for this thesis project generate 2 vectors of floats representing: the phasic
component of the EDA, and the tonic component of the EDA. The raw electro-
dermal activity data, unprocessed by the algorithms, were furnished by the MICT
research team, who collected these data using the virtual reality horror application
integrated with Emotibit. Subsequently, the team processed the data using the
Python algorithm, albeit not in real-time. Consequently, the raw data provided
by MICT will now undergo processing by the C# algorithm and subsequently be
compared with the same data processed by the Python algorithm (also provided
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by MICT). The successful validation of the C# algorithm not only underscores its
technical proficiency but also holds significant implications for real-time integration
within the VR environment of the Unity application. Such integration would
empower dynamic adjustments based on users’ emotional states, enhancing the
immersive experience. The chapter’s structural framework is thoughtfully designed
to accommodate diverse analyses and tests aimed at comprehensively comparing
the Python and C# algorithms. Each section delves into specific methodologies
and unveils findings pertinent to the assessment of data congruence.

Figure 4.1: EDA graph of the first dataset elaborated by the C# algorithm

Figure 4.2: EDA graph of the first dataset elaborated by the Python algorithm
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Figure 4.3: EDA graph of the thirteenth dataset elaborated by the C# algorithm

Figure 4.4: EDA graph of the thirteenth dataset elaborated by the Python
algorithm

4.1 Mean square error analysis

To confront the output datasets yielded by the two EDA pre-processing algorithms,
we computed the mean square error. The Mean Square Error (MSE) is a commonly
used metric for assessing the discrepancy between predicted values (dataset obtained
as the output of the Python algorithm) and observed values (dataset obtained as
the output of the C# algorithm) within a dataset. The formula for MSE is given
by:
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MSE = 1
n

nØ
i=1

(Yi − Ŷi)2

where:

• n is the total number of samples in the data,

• Yi represents the observed values,

• Ŷi represents the predicted values.

MSE computes the average of the squared differences between the predicted
and observed values. It serves as a common measure of accuracy and is frequently
employed in statistics, signal processing, and other fields to assess the goodness of fit
of a model to the observed data[16]. The MSE was computed across sixteen datasets.
Specifically, the MICT research team provided sixteen JSON files representing raw
Electrodermal Activity data for this project. These sixteen JSON files contain a
series of floating-point numbers and were recorded and generated by the Emotibit
sensor during sixteen experiments, where sixteen different participants were exposed
to 16 distinct sequences of alarming stimuli inside the VR horror experience. Each
sample recorded in the files was acquired at a sampling frequency of 16 Hz by the
Emotibit sensor. For each raw EDA dataset, both the phasic and tonic components
were computed using both the Python algorithm (the established standard) and
the C# algorithm (the algorithm under evaluation). The following table illustrates
the variation in MSE for the two tonic and phasic components across different
datasets:

Based on the computed MSE values for both the phasic and tonic components
across the 16 datasets, several observations can be made regarding the performance
and characteristics of the algorithms. Firstly, it is evident that the MSE values for
the tonic component tend to be consistently lower compared to those of the phasic
component across most datasets. This suggests that the algorithm, particularly in
its treatment of the tonic aspect of electrodermal activity (EDA), is generally more
accurate and closer to the expected values derived from the Python algorithm,
which serves as the reference standard. The variability in MSE values across
different datasets highlights the sensitivity of the algorithms to variations in
input data. Datasets with higher MSE values may indicate instances where
the algorithms struggled to accurately capture the underlying patterns in the
EDA data, potentially due to factors such as noise, artifacts, or other sources of
variability inherent in the physiological signals. Moreover, the MSE values for
both components exhibit fluctuations across different datasets, indicating that
the performance of the algorithms is not uniform and may vary depending on the
specific characteristics of the data being processed. This underscores the importance
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Mean square error
Dataset Number MSE tonic com-

ponent
MSE phasic com-
ponent

1 0.173451140274 0.037826347018
2 0.194380000302 0.580371393254
3 0.056288442856 0.716928713647
4 0.057521483993 0.993225514158
5 0.076703859630 0.737314709473
6 0.028382118136 0.848453762497
7 0.112478235421 0.399060974230
8 0.096911427922 0.825341247253
9 0.050617437290 0.886302221942
10 0.117698627982 0.744071584296
11 0.034911732766 0.916510425580
12 0.028783787445 0.803057469811
13 0.046710181064 0.845920446125
14 0.167427308818 0.895542753969
15 0.008191999655 0.875872674268
16 0.042824566898 0.757753799573

Table 4.1: Mean square error table

of robustness and adaptability in algorithm design, particularly in the context of
real-world applications where data quality and conditions may vary.

In summary, the analysis of MSE values provides valuable insights into the
performance and accuracy of the algorithms in processing EDA data. The observed
differences between the MSE values for the phasic and tonic components underscore
the complexity of EDA signal processing and highlight areas for potential algorithm
refinement and optimization. Further investigation and refinement of the algorithms
may be necessary to enhance their accuracy and robustness across diverse datasets
and conditions. However, the tonic and phasic components play crucial roles in
interpreting variations in electrodermal activity over both long and short periods.
Therefore, the absolute value of the components is not as significant as the shape
of the graph depicting the variations. In the upcoming subsection, the correlation
coefficient between the output data generated by the two algorithms will be analyzed.
This coefficient enables the quantification of the degree of agreement in the observed
changes between the two outputs, providing a measure of consistency in the results
across the algorithms.
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Figure 4.5: MSE graph of the tonic and phasic component

4.2 Correlation analysis
The correlation coefficient is a statistical measure indicating the strength and
direction of the relationship between two variables. In other words, it reflects how
much the two variables tend to vary together. There are different types of correlation
coefficients, but one of the most common is the Pearson correlation coefficient,
denoted by the symbol r. The Pearson correlation coefficient is calculated using
the following formula:

r =
q(X − X̄)(Y − Ȳ )ñq(X − X̄)2 q(Y − Ȳ )2

where:

• X and Y are the variables being correlated.

• X̄ and Ȳ are the means of variables X and Y .

• q denotes the summation over all variable values.

• (X − X̄) and (Y − Ȳ ) are the deviations from the means of X and Y ,
respectively.

The Pearson correlation coefficient can range from -1 to 1:
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• If r = 1, the variables are perfectly positively correlated.

• If r = −1, the variables are perfectly negatively correlated.

• If r = 0, there is no linear correlation between the variables.

Generally, a value closer to 1 or -1 indicates a stronger correlation, while a value
close to 0 indicates a weaker correlation. The correlation coefficient (CC) serves as a
valuable metric for evaluating the relationship between two datasets. In the context
of our analysis, the CC provides insights into how closely the output variations of
the Python and C# algorithms align.[17]

Correlation coefficient (CC)
Dataset Number CC tonic compo-

nent
CC phasic com-
ponent

1 0.892175501687 0.985234303901
2 0.897073896366 0.656760256008
3 0.979884842830 0.563975136299
4 0.984637862367 0.486277584494
5 0.940708319121 0.538005741214
6 0.993293937328 0.404851357344
7 0.862266661971 0.775906002708
8 0.974507322798 0.478315701349
9 0.983966295329 0.346493020805
10 0.939364462617 0.506529312402
11 0.99138673657 0.407549102801
12 0.985070427563 0.466895235713
13 0.98033747677 0.411242060632
14 0.90937042158 0.339958788262
15 0.99760319925 0.480921722882
16 0.984728753418 0.501096416377

Table 4.2: Correlation coefficient table

Examining the CC values calculated for both the phasic and tonic components
across the 16 datasets reveals notable trends. Specifically, the CC values for the
tonic component consistently approach or surpass 0.9, indicating a strong positive
correlation between the outputs of the two algorithms. This suggests that variations
in the tonic component exhibit a high degree of similarity between the Python and
C# algorithms across different datasets. Conversely, the CC values for the phasic
component demonstrate more variability, with some datasets exhibiting moderate
correlations while others show weaker correlations. Despite this variability, certain
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datasets still display CC values approaching 0.9, indicating a notable level of
alignment between the phasic outputs of the two algorithms in those instances.

Figure 4.6: CC graph of the tonic and phasic component
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Chapter 5

Analysis of EDA
measurements

In this subsection, an in-depth analysis of EDA data collected from 16 experiments
is conducted. Each experiment entails the measurement of EDA using the Emotibit
sensor, capturing physiological responses to distinct sequences of frightening stimuli.
These stimuli are carefully arranged to induce frightening events, thus eliciting
varying degrees of arousal and emotional reactions from participants. The datasets,
processed by the Python pre-processing algorithm, are analyzed and compared to
detect peaks and assess variations in EDA over short and long periods. Through
systematic analysis, this section aims to elucidate patterns, trends, and correlations
within the EDA data, providing valuable insights into the psychophysiological
responses triggered by different frightening stimuli sequences. Additionally, each
dataset is accompanied by a self-assessment questionnaire, providing further context
for the analysis and interpretation of the EDA data.

Structure of the self-assessment questionnaire

The questionnaire is presented on the television screen at the end of each block
within the virtual environment. The initial screen prompts users to self-assess their
levels of happiness, calmness, and perceived control on a scale ranging from 1 to 10.
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Figure 5.1: Self-Assessment Manikin

Additionally, users are asked to rate their emotional engagement with the virtual
environment on a scale from 1 to 10, where 1 indicates "Completely disagree" and
10 indicates "Completely agree" in response to statements regarding the sense
of presence within the VR experience and the intensity of frightening events.
This questionnaire aims to gather data on users’ perceptions of stimulation and
immersion within the virtual environment throughout the experience. Such feedback
is crucial for evaluating the effectiveness of the virtual experience, assessing user
engagement, and collecting insights that can inform future developments in virtual
reality technology. Furthermore, it is crucial to ascertain whether the peaks and
variations in EDA are attributable to fear or other emotional states of the user.
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Figure 5.2: Second part of the questionnaire

EDA data

The 16 datasets have been categorized based on their associated questionnaires.
All responses are on a scale of 1 to 10, where 1 denotes minimal involvement and a
very low level of fear or stimulation, while 10 indicates maximum involvement and
a very high level of fear and engagement in the application. For each experiment or
dataset, the average of responses, ranging from 1 to 10, was calculated. Thus, each
dataset is assigned a value representing the participant’s perceived involvement
and fear. The datasets were then divided into three groups based on the average
responses to their respective questionnaires. Division of groups:

• Group 1: datasets with an average response below 3.33

• Group 2: datasets with an average response between 3.33 and 6.66

• Group 3: datasets with an average response above 6.66
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Group 1 Group 2 Group 3
Dataset 2 Dataset4 Dataset1
Dataset16 Dataset3

Dataset5
Dataset6
Dataset7
Dataset8
Dataset9
Dataset10
Dataset11
Dataset12
Dataset13
Dataset14
Dataset15

Table 5.1: Dataset division in groups

As observed from the graph, the majority of questionnaires exhibit an average
response above 6.66. In these datasets, pronounced peaks in the phasic component
of EDA are noticeable during frightening events. Generally, it can be affirmed that
variations in the phasic component of EDA occur exclusively during audiovisual
and auditory events, thus signaling that purely visual events have lesser efficacy.
Regarding the tonic component of EDA, variations over a long period are evident
only in datasets with an average response exceeding 3.33, namely those in Group 2
and Group 3.

Figure 5.3: EDA graph of the tenth dataset elaborated by the Python algorithm

The tonic component of EDA, indicating a long-term change in emotional state,
exhibits a variation between the first and second blocks of the experiment in
all datasets of the second and third groups. Specifically, it is low in the first
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block (devoid of frightening events) and higher in the second (which includes six
frightening events).

Figure 5.4: EDA graph of the forth dataset elaborated by the Python algorithm

Indeed, as depicted in the graph above, in dataset number 4 (which belongs
to Group 2, hence exhibiting an average perceived fear), there are no remarkably
high peaks corresponding to frightening events (in terms of the phasic component).
However, the tonic component still indicates an increase in EDA over the long
term with the onset of the second block of the experiment (containing frightening
stimuli). Additionally, it can be observed that the event with the highest peak (in
the phasic EDA component) is within the eleventh dataset, which, precisely, is
within Group 3 (the group with datasets whose participants declared to have been
particularly frightened and engaged by the experience).

Figure 5.5: EDA graph of the fifth dataset elaborated by the Python algorithm

In conclusion, the alignment between self-assessment questionnaires and EDA
data suggests, albeit with a limited dataset sample, that EDA could be a reasonably
reliable indicator for assessing the level of fear experienced by a user.
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Chapter 6

Results and possible future
developments

In conclusion, the convergence between self-assessment questionnaires and EDA
data, albeit within the constraints of a limited dataset sample, suggests the potential
of EDA as a reliable indicator for evaluating user fear levels in virtual reality
experiences. This alignment underscores the utility of physiological measurements
in augmenting subjective assessments, thereby enhancing our understanding of user
engagement and emotional responses within immersive environments. Notably,
the observed predominance of pronounced EDA peaks during frightening events,
particularly those of auditory nature, suggests a heightened physiological response
compared to purely visual stimuli. This underscores the differential impact of
sensory modalities on emotional arousal and highlights the importance of considering
multimodal stimuli in immersive experiences. However, further research with
larger sample sizes and refined methodologies is warranted to validate and extend
these preliminary findings, providing deeper insights into the interplay between
sensory stimuli, physiological responses, and subjective experiences in virtual reality
environments. The ability to accurately capture and analyze physiological responses,
particularly in dynamic environments such as VR experiences, holds significant
implications for various domains including healthcare, entertainment, and human-
computer interaction. Looking ahead, there are compelling opportunities for future
development and refinement of the application. One promising avenue involves
leveraging the insights gained from the analysis to enhance the VR horror experience.
By integrating real-time monitoring of users’ frightening levels and physiological
responses, the VR environment can be dynamically adapted to modulate the
intensity and timing of frightening stimuli. This adaptive approach not only
enhances the immersive quality of the experience but also ensures a personalized
and engaging encounter for each user. Furthermore, exploring strategies to mitigate
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habituation effects and sustain user engagement represents another exciting frontier.
By introducing variability in the sequences of audiovisual stimuli and dynamically
adjusting the pacing and intensity of scares, effective prolongation of suspense
and maintenance of users’ emotional arousal throughout the experience can be
achieved. This proactive approach to content delivery not only enriches the
overall user experience but also opens new avenues for research and innovation
in VR entertainment and psychological interventions. In conclusion, this study
underscores the potential of EDA data processing algorithms to revolutionize
immersive experiences in virtual environments. By harnessing the power of data-
driven insights and emerging technologies, new possibilities for engaging, impactful,
and emotionally resonant experiences in the realm of virtual reality are poised to
be unlocked.
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