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Abstract

The protection of sensitive data is a paramount concern in a wide variety of fields,
making the use of cryptography crucial to ensure confidentiality and information
security. This is all the more needed after the advent of quantum computers. Their
much higher computational strength with respect to the classical ones allows them
to break many of the regularly used public-key protocols.
Post-quantum cryptography (PQC) researches have been investigating robust algo-
rithms that even quantum computer attacks cannot undermine.
The starting point of any cryptographic algorithm is an encryption key generation.
A weak random key would allow the attacker to easily decrypt data, exposing the
entire cryptosystem to high vulnerability, consequently devaluing the complexity
of the PQC algorythm.
While pseudo random number generators (PRNGs) are based on deterministic
algorithms, hence producing keys that can be predicted once known the algo-
rithm and the initial state, true random number generators (TRNGs) exploit the
inherent randomness of physical phenomena (thermal noise, power supply fluctu-
ations, temperature variations etc.) to generate true random samples that fulfill
the requirements needed by a robust key. A solid random key should be highly
unpredictable (non-deterministic), aperiodic and characterised by good statistical
properties. The National Institute of Standards and Technology (NIST) published
a set of recommendations and tests to design and validate a reliable Entropy Source
(ES) to be used in cryptographic Random Bit Generators (RGBs).
This work intends to provide a possible hardware implementation of a ring oscillator-
based TRNG, aiming to obtain the best trade-off in terms of area, throughput,
power and entropy. The original entropy source is also connected to an accelerator
implementing an optimized version of the Keccak security primitive, to have the
possibility of generating a random key with or without additional conditioning. The
whole system has been integrated as an external accelerator in the RISCV-based
X-HEEP microcontroller.
The proposed solution passes all the tests of the NIST statistical test suite and
shows promising results in terms of entropy, area and throughput, representing an
interesting starting point for an integrated RBG for cryptographic algorithms.

Keywords: Post-Quantum Cryptography, PQC Key Generation, True Random
Number Generators, Entropy, TRNG Hardware Design, TRNG integration
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Chapter 1

Introduction

Cryptography can be traced back thousands of years, when, mainly for military
reasons, ancient populations developed ciphers and encoding techniques to secretly
communicate. As time progressed, these techniques evolved deeply, but the core
idea is still the same: a secure exchange of information among the authorized
recipients so that the message will be unintelligible to all the external parties, i.e.
the adversaries.
With the spread of digital communication, the compelling need to protect sen-
sitive data led to the development of many cryptographic protocols, based on
cryptographic primitives. Primitives are low-level cryptographic algorithms, used
to compose higher-level algorithms. [1]
Classical cryptography algorithms are based on hard mathematical problems such
as the factorization of a large number (Rivest-Shamir-Adleman algorithm, RSA)
or the discretization of a logarithm (Elliptic-curve cryptography, ECC). For many
years, the robustness of these algorithms was enough to ensure data integrity, given
the huge computational cost required to solve them. However, this was no longer
true after the advent of quantum computers.
Quantum computers rely on quantum bits instead of the classical binary bits. The
state of a quantum bit (qubit) is a superposition of both 0 and 1 at the same time,
meaning that, with a series of qubits, more numbers can be simultaneously repre-
sented. This results in great computational strength and processing speed, making
the classical cryptographic algorithms vulnerable. Even though a great diffusion
of quantum computers has not yet occurred, this is still a big problem to manage.
For this reason, classical cryptography evolved in post-quantum cryptography
(PQC), whose focus is to find robust algorithms that even quantum computers
cannot crack. Examples might be lattice-based algorithms, where the problem is
finding a non-zero vector in a lattice, or multivariate polynomial algorithms, based
on multivariate quadratic equations.
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Regardless of the type of cryptographic algorithm, the generation of at least
one secret key is an essential step; keeping this key unintelligible to adversaries
is crucial to ensure security. Ideally, an attacker that knows everything about a
cryptographic system but the key is still not able to undermine the whole system. In
other words, the generation of a robust key is the foundation of a robust algorithm.
Conversely, a weak key would jeopardize the complexity of any algorithm: without
an effective key generation process, all the work invested in developing a solid PQC
algorithm would be completely vain.

1.1 Key generation in cryptographic systems
A robust cryptographic key needs to have specific statistical features, unpredictabil-
ity and aperiodicity being just two of them. Consequently, not all methods to
generate random numbers are suitable options, as they may lack some of these
properties.
There are three possibilities:

• Physical unclonable functions (PUFs): based on the physical properties
of the specific hardware component. They offer the maximum security level.

• Pseudo random number generators (PRNGs): based on deterministic
algorithms, hence easily predictable. They offer the lowest security level.

• True random number generators (TRNGs): based on the inherent ran-
domness of physical processes. They represent a compromise between PUFs
and PRNGs, producing robust keys. This thesis will focus on this type of
random number generator.

A brief description of the first two classes of generators will now follow. A deeper
examination of TRNGs will be then proposed in Chapter 2.

1.1.1 Physical unclonable functions (PUFs)
PUFs harness the manufacturing variability of each IC, which results in unique
physical characteristics (gate delays, power-on state of SRAM cells, threshold
voltages), from which the secret can be derived. [2]
Classical cryptography authentication relies on a secret key stored in non-volatile
memory. If the key applied by the user (challenge) is equal to the stored one, then
the authentication is successful (Figure 1.1, left). The main problem is that the
on-chip memory leaks current. Consequently, an attacker could register the power
consumption at each user request (for example, by using a small resistor in series
to the power supply), extract the leakage power, and trace the secret key. This
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issue can be prevented by using a PUF-based authentication scheme: each PUF is
unique, hence the same challenge will produce different responses depending on
the chip.
The authentication is composed of 3 steps (Figure 1.1, right):

1. Creation of a challenge-response pair (CRP) by user and storage in a
trusted environment. The CRP will depend on circuit variability.

2. Authentication request by applying a challenge, even in an untrusted environ-
ment. Authentication is successful if there is a match between the generated
response and the stored response.

3. CRP cleared from the database.

Figure 1.1: Classical (left) vs PUF-based (right) Authentication Schemes

Depending on their features, PUFs can be classified as:

• Weak PUFs: they provide a small number of CRP, the responses need
additional error-correcting circuits to be used as cryptographic keys, and, in
general, they are more vulnerable. Examples of weak PUFs are SRAM-based
PUFs.

• Strong PUFs: they provide a large number of CRP, the responses can be
directly used as cryptographic keys and they provide a higher level of security.
Examples of strong PUFs are arbiter-PUFs or ring oscillator-PUFs.

Since the key principles underlying the various PUF implementations are quite
similar to the ones of the TRNGs, refer to chapter 2 for any additional explanation.
[3]

1.1.2 Pseudo random number generators (PRNGs)
PRNGs are based on algorithms that, starting from an initial value (seed), produce
an apparently random sequence of numbers. As a matter of fact, the output is a

3
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deterministic function of the seed, hence predictable on some level. Therefore, it is
crucial that the seed is unknown to the attacker. This is why, usually, a PRNG is
coupled with a TRNG: the latter extracts a seed from physical processes and feeds
it to the former. This ensures a seed with sufficient entropy and, consequently, the
output of the PRNG can be used as a cryptographic key.
There are different types of possible PRNGs implementations: Lagged Fibonacci
generators, Blum Blum Shub (BBS), Mersenne Twister being just some of them.
The most commonly used PRNG is based on linear feedback shift registers
(LFSRs), i.e. on right-shifts and XOR operations (Figure 1.2). [4], [5]

Figure 1.2: Example of a simple 4-bit LFSR

An LFSR is represented by a polynomial (feedback polynomial), which defines
the mask or tap sequence, i.e. the bit positions that will affect the next state. For
example, the polynomial x4 + x + 1 corresponds to a mask equal to 10011. Since
the right-most bit is always equal to 1, the final binary mask is truncated and, in
this example, is then equal to 1001.
When considering PRNGs, the polynomial is chosen among the so-called primitive
polynomials, which ensure the maximum length period of shifting. The LFSR
derived from a primitive polynomial of degree n will have 2n − 1 different states,
so it will have 2n − 1 different outputs and, after this period, the sequence will be
repeated.
The position of the XOR-ed bits depends on the type of LFSR, an example can be
the Fibonacci LFSR, where taps are XOR-ed sequentially.
In summary, the LFSR is initialized by the seed, at each clock cycle a shift is
performed and the system is brought in one of the 2n − 1 possible states.
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1.2 Thesis structure
This thesis proposes a possible TRNG implementation and integration as an
external accelerator on a RISC-V based microcontroller. The main idea is to find a
tradeoff between the classical PPA analysis (power, performance and area) and the
statistical requirements of a robust cryptographic key.
After this initial introductory chapter 1, the thesis is structured as follows:

• chapter 2 introduces the true random number generators and their general
characteristics. Each section of the chapter focuses on one of the most
commonly used digital implementations: section 2.1 describes the ring oscillator
-based configurations, section 2.2 the PLL-based ones, section 2.3 includes
a brief discussion on digital clock manager-based and chaotic map-based
implementations.

• chapter 3 presents the concepts of entropy and cryptographic key robustness.
Following the NIST recommendations, the most important features of an
efficient entropy source are described. Section 3.1 focuses on the different
components of an entropy source, whereas section 3.2 provides an overview on
the NIST tests to analyse the robustness of a given implementation.

• chapter 4 focuses on the hardware implementation of the TRNG. Firstly, in
section 4.1, the TRNG architecture is presented, each subsection centered on
one of the main components. In subsection 4.1.1, the noise source implementa-
tion description is also followed by a presentation of the design and simulation
methodologies. Secondly, section 4.2 presents the additional conditioning
component, i.e. the Keccak accelerator.

• chapter 5 concerns the integration of the TRNG component as an external
accelerator of the X-HEEP microcontroller. After a brief presentation of this
platform (section 5.1), sections 5.2 and 5.3 describe the actual integration
process of both the TRNG block alone and the TRNG block with Keccak
conditioning.

• chapter 6 reports the final results in terms of entropy, statistical proper-
ties and area, power and performance, both considering ASIC and FPGA
implementations. A comparison with the state-of-art results is also included,
along with a summary of the potential improvements to further develop the
proposed TRNG.

• chapter 7 presents the conclusion of this thesis.
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Chapter 2

True random number
generators

As previously mentioned, true random number generators exploit the inherent
randomness of physical sources to produce unpredictable outputs. Generally, a
combination of these sources is used to enhance randomness.
A TRNG can be:

• analog; sensors or voltage comparators are required for the digitization of the
output signals. Randomness is usually extracted by exploiting:

– thermal noise: resistors can be used for this purpose. Due to its small
amplitude, high-gain amplifiers are needed.

– chaotic circuits: they are a particular class of oscillatory circuits that
display a non-periodic behavior. An example is the Lorenz chaotic system.

• digital; in this case the most commonly used mechanisms to generate entropy
are:

– jitter: the presence of inherent semiconductor noise, temperature varia-
tions, power supply fluctuations, and cross-talk produces jitter phenomena
in clock signals. This means that the rising and falling edges of the sig-
nal suffer from lags or advances and thus can be considered as random
variables.

– metastability: in this case the randomness is obtained by forcing the
violation of setup and hold time of memory elements, consequently leading
to outputs in an unknown state. It is often used in combination with
jitter.

6
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– chaotic maps: they are peculiar mathematical functions (maps) dis-
playing a chaotic behavior, meaning that their output can largely vary
by slightly changing their initial state. This can be done by looping the
output back into the map.

The focus of the analysis will now be on fully digital noise sources, with classifi-
cation based on the most commonly used types of TRNG implementations.

2.1 Ring Oscillator-based TRNG
A ring oscillator is a circuit composed of an odd number of inverters, where the
output of the last inverter of the chain is connected to the input of the first one, as
shown in Figure 2.1.

Figure 2.1: Ring Oscillator with N = 5 inverters

Ideally, the output bit of the chain would oscillate with a period equal to

TRO = 2N · Tdelay (2.1)

where N is the number of inverters in the chain and Tdelay is the delay of a single
inverter. In the ideal case, each inverter introduces the same delay. In the real case,
the output signal of the ring oscillator will suffer a certain lag or advance (jitter)
due to physical phenomena such as power supply fluctuations, semiconductor noise,
temperature variations, and so on. These processes will affect each gate and each
internal signal of the RO in a different way, meaning that the real oscillation period
will be unpredictable. As a matter of fact, any internal signal of the RO could be
taken as the output of the circuit, i.e. as a random bit.
This phenomenon has been widely analyzed in literature ([6], [7], [8]).
The delay of a single gate can be written as:

di = Di + ∆di = Di + ∆dLi + ∆dGi (2.2)

where:

• Di is the nominal gate delay at the nominal supply voltage level and tempera-
ture;

• ∆di is the delay variation causing jitter; it in turn is constituted of:

7
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– ∆dLi: the component due to local physical events. It can be expressed as:

∆dLi = ∆dLGaussi + ∆dLDeti (2.3)

with ∆dLGaussi being the local Gaussian jitter component (mean value
µi = 0 and standard deviation σi) and ∆dLDeti the local deterministic
jitter due to local cross-talks.

– ∆dGi: the component due to global conditions, such as power supply and
temperature of the whole system.

∆dGi = Ki(∆D + ∆dGGauss + ∆dGDet) (2.4)

Ki is a coefficient indicating how much the global conditions affect the
single delay; ∆D represents the slow global variations; ∆dGGauss and
∆dGDet are the gaussian and deterministic jitter due to global sources.

The major source of randomness is represented by ∆dLGaussi, which can be
consequently considered as the most important contribution of the model. The
global deterministic jitter source ∆dGDet is also generally taken into account,
as it can be easily corrupted from the external, hence representing the principal
source of injection attacks ([9]): if frequencies are injected into the power supply,
the ROs composing the TRNG can experience phase-locking, meaning that they
can all be synchronized, resulting in a completely deterministic output.
It was previously stated that the effect of the variable delay contributions of the
single inverters is an unpredictable period of the clock generated by an RO. To
obtain a random bit, it is sufficient to sample this signal with another clock, that
may or not may be generated by another RO (Figure 2.2).

Figure 2.2: RO-based TRNG key principle

Many implementations working with this principle are present in literature.
([10], [11], [12]). In the following subsections, different variations of RO-based
TRNGs are briefly presented.

8
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2.1.1 Transition Effect Ring Oscillator (TERO)
The Transition Effect Ring Oscillator [13] is based on the so-called oscillatory
metastability. This phenomenon can be clarified by analyzing the implementation
in Figure 2.3. Table 2.1 displays a partial truth table of the circuit. Whenever
rst = 0 a feedback loop is formed and the transitions of the ctrl signal cause
oscillations (oscillatory metastability). The even number of inverting elements
in the loop makes sure that this metastable state will eventually become stable;
however, due to the inherent circuit noise, the number of oscillations needed for
this process is unpredictable. The final T flip-flops are used to determine whether
the number of oscillations is even or odd. In the first case the output is equal to 1,
in the second case it is equal to 0.

Figure 2.3: Transition Effect Ring Oscillator. XOR gates can also be replaced by
NANDs or NORs

rst ctrl and1 and2 xor1 xor2 STATE
1 0 0 0 1 1 stable
1 1 0 0 0 0 stable
0 0 → 1 xor1 xor2 xor2 xor1 metastable
0 1 → 0 xor1 xor2 NOT(xor2) NOT(xor1) metastable

Table 2.1: Partial truth table of TERO in Figure 2.3

2.1.2 Metastable Ring Oscillator (Meta-RO)
Metastable ROs [14] harness the metastable state of inverters, which occurs when-
ever the output of the inverter is short-circuited to its input. Referring to Figure
2.4, this corresponds to a low clock signal. When clk is high, the circuit is a RO
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and the final D flip-flop can sample a bit. The additional low amplitude noise of
the isolated metastable inverters is now amplified by the RO, which means that the
system is in an unknown state and the sampled bit will be random. The additional
delay line is inserted to tune the sampling instant in a precise way.

Figure 2.4: Metastable Ring Oscillator

2.1.3 Fibonacci (FiRO) and Galois Ring Oscillators (GaRO)

Fibonacci (FiRO) and Galois (GaRO) ring oscillators ([15]) are directly obtained
from Fibonacci and Galois LFSR configurations, where D flip-flops are replaced by
inverters (Figures 2.5 and 2.6). Due to noise causing variations in the inverters’
delay, the circuit will no longer evolve in a deterministic fashion.
In both cases, the switches are closed if the respective coefficient of the polyno-
mial describing the circuit is equal to 1 (as explained in Subsection 1.1.2). The
characteristic polynomials take the form:

P (x) =
nØ

i=0
fix

i with f0 = fn = 1 (2.5)

Figure 2.5: Fibonacci Ring Oscillator
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Figure 2.6: Galois Ring Oscillator

FiRO and GaRO can be combined together ([15], [16]) in a new structure
(FiGaRO), shown in Figure 2.7. N parallel FiROs and N parallel GaROs are
sampled at the output and the 2N resulting random bits are XORed to increase
the randomness. The higher the number of parallel ROs, the lower the probability
of phase-locking. Moreover, entropy can be further enhanced by introducing
metastability through the violation of the setup/hold times of the sampling flip-
flops.
To have a n-bit output, n parallel FiGaRO stages can be used.

Figure 2.7: Fibonacci-Galois Ring Oscillator stage
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2.2 PLL-based TRNG

A Phase Locked Loop (PLL) is a circuit able to generate an output signal with
frequency and phase related to the ones of the input signal. A simplified schematic
of a digital PLL is depicted in Figure 2.8.

Figure 2.8: Phase Locked Loop (PLL) simplified schematic

Considering the notation of the figure, the formula describing the output fre-
quency of the system is:

fout = KM

KD

fin (2.6)

with KM and KD respectively the multiplication and division factors of the
PLL.
In the context of PLL applications for TRNGs ( [17], [18]), the objective is to
generate a clock signal with a higher frequency than the input signal, i.e. the
original clock. In fact, as in some of the previous RO-based cases, also in this case
the source of randomness is mainly the inherent jitter present at the output of the
PLL: the key idea is to sample the new generated signal. An example is proposed
by [18]; the architecture is shown in Figure 2.9. In this case, just one PLL is used,
but a second one can be inserted to obtain a different sampling clock than the
initial one.
Ideally, no jitter is present and the output of the flip-flop (the sampler) is periodic
with period TP = KDT0. Due to jitter, the sampling of clk1 will contain a certain
amount of entropy and the output of the flip-flop can be considered a random
variable. The decimator component has the simple function of collecting several
samples and reducing them to one output random bit, usually a simple XOR is
used.
The accurate choice of KM and KD is fundamental to obtain a TRNG with good
statistical properties. These two design parameters determine the delay ∆T be-
tween the two edges of the clock. The more this value is comparable to the entity
of the jitter, the more the entropy of the system is enhanced.
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Figure 2.9: PLL-based TRNG architecture

One of the main problems of the PLL-based TRNG architecture is the tradeoff
between the bit rate R and the sensitivity to jitter S:

R = fin

KD

S = 1
∆ = f1 · KD (2.7)

Both equations depend on KD, thus the choice of this parameter must be done
carefully: the sensitivity to the jitter must be high enough to ensure good statistical
properties, without compromising the bit rate. In [19] an accurate mathematical
analysis of the problem is proposed.

2.3 Other implementations
While the PLL and RO-based TRNG architectures are the most frequently used in
the current state of art, there are also other possibilities. A brief discussion on two
additional techniques will be now presented.

2.3.1 DCM-based TRNG
In the case of a purely FPGA implementation of the TRNG, Digital Clock
Managers (DCMs, also called Clock Managers in some FPGAs) can be used in
the same fashion as ROs and PLLs to exploit jitter or metastability phenomena.
DCMs are hardware primitives of some FPGAs, able to produce one or more clock
signals with a programmable frequency. They can be considered as more flexible
PLLs.
In the case of a TRNG implementation, two approaches are possible:

• frequency tuning ([20]). The frequencies of the output clocks from the
Dynamic Clock Manager (DCM) can be dynamically adjusted on-the-fly using
its Dynamic Reconfiguration Port (DRP). This adjustment can be made
without affecting other functionalities of the FPGA. The jitter, representing
the source of randomness, is contingent on the DCM design parameters, i.e.
the multiplication factor (M) and division factor (D), similar to the case
of PLLs. By modifying these parameters at runtime, the level of entropy
generated by the TRNG can be varied. This dynamic variation is facilitated
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through a tuning circuit that stores specific pairs of M and D values, which
are determined through mathematical analysis.

Figure 2.10: DCM-based TRNG - runtime frequency modulation

• dynamic phase shifting (DPS) ([21]). The dynamic variations of the DCM
parameters can lead to slow TRNGs, as a lot of clock cycles may be needed
for two consecutive samplings. This problem can be overcome by varying the
phases rather than the frequencies of the output clock signals, forcing the
rising or falling edges to occur in the setup or hold times of the sampling
flip-flop. Differently from the previous case, metastability is the source of
randomness, rather than jitter. The phase shift resolution would normally
depend on the voltage-controlled oscillator internal to the DCM, but can be
increased by adding tunable elements, like a carry chain primitive.
Post-processing circuitry is required to achieve a satisfying level of entropy.

Figure 2.11: DCM-based TRNG - DPS technique

2.3.2 Chaotic map-based TRNG
Chaotic maps are particular mathematical functions that exhibit, apparently,
unpredictable behavior. However, this is actually true only for a long but finite
period of time. The behavior of a chaotic map is actually dictated by its initial
conditions, making these types of functions more suitable for PRNGs applications
or TRNG additional conditioning circuits ([22]). Nevertheless, an investigation on
direct TRNG applications has also been carried out in literature ([23], [24]).
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Different types of maps can be used, with different degrees of complexity and period
lengths; examples may be the tent map or the Bernoulli map. In any case, the
analyses conducted on these implementations reveal that, even though the resulting
bit stream is unbiased and exhibits a uniform distribution in terms of 0s and 1s,
the resulting entropy is relatively low compared to other methods. This implies
that chaotic maps are indeed a much smarter choice for conditioning components
or PRNGs.
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Chapter 3

NIST recommendations and
tests

In the first chapter, it was emphasized the paramount importance of a solid key
to ensure the efficacy of a cryptographic algorithm. Consequently, concepts like
randomness, entropy and key robustness are important just as much as the PPA
parameters when talking about the design of a TRNG. For this purpose, NIST
provides a series of recommendations ([25]) and statistical tests ([26]) for a thorough
design and evaluation of the entropy source. NIST also published an additional
document in 2022, [27], which is more focused on the interfaces of a possible RBG
implementation and its access through firmware.

Entropy is the core mathematical concept that describes the randomness of
a system. It can be defined as a measure of uncertainty and unpredictability. In
other words, entropy is an assessment of how much a realization of an experiment
can be predicted by observing previous realizations of the same experiment. In
cryptography, min-entropy and Shannon entropy are the most used definitions:

Hmin = − log2(max
1≤i≤k

pi) HS = −
kØ

i=1
pi log2 pi (3.1)

with pi = Pr(X = xi) for i = 1, ..., k, where X is an independent discrete
random variable, all its possible values come from the set A = {x1, x2, ...xk}. The
maximum possible min-entropy of a random variable with k distinct values is equal
to log2k.
In TRNG applications, the aim is to obtain an output key characterized by
maximized entropy so that, ideally, it is impossible to predict. To achieve this
objective, NIST proposes an entropy source model and effective ways to test it. In
the following sections, an overview of both these aspects will be presented.
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3.1 Entropy source
The recommended entropy source model is depicted in Figure 3.1.

Figure 3.1: Entropy source model ([25])

The different possibilities for an effective noise source have been described in
the previous chapter. The focus will be now on the other two components: the
health tests and the conditioning.

3.1.1 Health tests
The noise source relies on physical aspects of the circuit, hence necessitating the
accurate monitoring of potential alterations in its output, particularly during rapid
shifts in operating conditions, such as sudden power supply fluctuations. The health
tests serve this purpose: they check on the run-time entropy source operations,
signaling any errors in the raw output bitstream of the noise source.
There are three types of health tests:

• start-up health tests: they check on the bitstream right after the power-on
or the reboot of the device. During these phases, the output of the noise
source should not be considered valid.

• continuous health tests: they are performed during the normal functioning
of the component to signal possible errors and anomalies in the bitstream.
Differently from the previous case, the tests are now conducted without
invalidating the output key.

• on-demand health tests: they are additional tests that may be requested
in specific moments, also depending on the chosen type of noise source. When
these tests are performed, the bitstream should be discarded and not used as
output.
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Besides a series of recommendations on the characterization of customized health
tests for an RBG, NIST also describes two approved continuous health tests, which
are sufficient to evaluate the run-time conditions of the output bitstream of the
noise source: the Repetition Count Test and the Adaptive Proportion Test.
Obviously, being statistical tests, they also have a false positive probability α,
i.e. a probability that a properly functioning noise source will fail the test on a
specific output. In many applications, this value is equal to 2−20.

Repetition Count Test

The Repetition Count Test determines whether the output of the noise source is
stuck, continuously producing only 0s or 1s.
The probability of a noise source of minimum entropy Hmin to produce n consecutive
equal samples is at most 2−Hmin(n−1). In order to have a correct output, without
critical repetitions, the false probability α must be greater than or equal to this
value. The minimum value of n that satisfies this condition, the cutoff value C,
is defined as follows:

C = 1 + ⌈−log2α

Hmin

⌉ (3.2)

Algorithm 1 contains the pseudo-code describing how the test works.

Algorithm 1 Repetition Count Test
A = next_sample
B = 1
while continous_samples do

X = next_sample
if X = A then

B = B + 1
if B ≥ C then error
end if

else
A = X
B = 1

end if
end while
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Adaptive Proportion Test

While the Repetition Count Test only provides a coarse method to detect evident
entropy losses in the output bitstream, the Adaptive Proportion Test can track the
frequency of a certain value in a window of samples of size W . In other words,
if a value occurs more frequently than others, the test returns an error. The upper
limit for the occurrence of a specific value within W is indicated as C (cutoff
value), just like in the previous test.
NIST suggests a window size equal to 1024 bits if the noise source is binary,
otherwise it should be equal to 512 samples. For what concerns the cutoff value, it
should be chosen so that the probability of having C or more occurrences of the same
value in W is at most equal to the false positive probability α. Mathematically:

Pr(B ≥ C) ≤ α (3.3)

In [25], NIST also presents a set of possible values of C associated to different
entropy values.
The Adaptive Proportion Test for binary sources is detailed in Algorithm 2, in the
case of non-binary sources, the error is only given by the condition B ≥ C.

Algorithm 2 Adaptive Proportion Test (binary source case)
while continous_samples do

A = next_sample
B = 1
for i = 1 to W − 1 do

if A = next_sample then
B = B + 1

end if
if B ≥ C or W − B ≥ C then error
end if

end for
end while

3.1.2 Conditioning
The entropy source designer might additionally integrate a conditioning component,
generally a cryptographic function. Its purpose is to reduce bias and/or increase
entropy of the raw output of the noise source; it may also be used to increase the
throughput of the system.
Among all the possible conditioning functions (block cipher-based or hash-based),
a particular focus will be now placed on the Keccak cryptographic function, as it
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will be used as a conditioning component in the proposed TRNG implementation
(section 4.2). Keccak also serves as the core hash function for SHA-3 (Secure Hash
Algorithm), the latest member of the SHA family published by NIST.

Keccak

Keccak is a family of cryptographic hash functions, designed by Guido Bertoni,
Joan Daemen, Michaël Peeters and Gilles Van Assche ([28]).
The basic block of the Keccak algorithm is the sponge construction ([29]),
which consists in an iterative process of permutations (f in Figure 3.2) on a fixed
number of bits. The width of the permutation is indicated as b. With the notation
Keccak[r,c], the specific Keccak function of bit-rate r and capacity c is recalled;
r+c is fixed and equal to b. In the case of the four SHA-3 hash functions (SHA3-224,
SHA3-256, SHA3-384, SHA3-512), this value is equal to b = 1600.
As depicted in Figure 3.2, the sponge construction is based on two phases:

• absorbing phase: the r-bit blocks, in which the input message has been
divided, are XOR-ed with the first r bits of the state, interleaved with the
application of the permutation function f . This phase is completed when all
the message blocks are processed.

• squeezing phase: the output string is composed of blocks of r bits, once
again with the interleaving of the permutation function. The length of the
output, i.e. the number of r − bit blocks to be concatenated, is chosen by the
user.

Figure 3.2: Sponge Function

Keccak sponge function is described in Algorithm 3.
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Algorithm 3 Pseudo-code description of the Keccak sponge function
procedure Keccak[r,c](M)

▷ Padding
3: d = 2̂|Mbits| + sum for i=0..|Mbits|-1 of 2îMbits[i]

P = Mbytes || d || 0x00 || . . . || 0x00
P = P ⊕ ( 0x00 || . . . || 0x00 || 0x80)

6: ▷ Initialization
S[x,y] = 0 ▷ ∀ (x,y) in (0...4, 0...4)
▷ Absorbing phase

9: for each block Pi in P do
S[x,y] = S[x,y] xor Pi[x+5*y] ▷ ∀ (x,y) such that x+5*y < r/w
S = Keccak-f[r+c](S)

12: end for
▷ Squeezing phase
Z = empty string

15: while output is requested
Z = Z || S[x,y] ▷ ∀ (x,y) such that x+5*y < r/w
S = Keccak-f[r+c](S)

18: return Z
end procedure
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The description of the permutation function, Keccak − f , is reported in Al-
gorithm 4. Every 1600-bit state, composed of a 5x5 matrix of 64-bit words, is
subjected to 24 compression rounds, each one of them divided in five steps (θ, ρ, π,
χ, ι). At the end of each step, the state array A is updated. Algorithm 5 describes
the compression procedure, for more details refer to [28].

Algorithm 4 Keccak-f[1600] (A)
1: procedure Keccak-f[1600](A)
2: ▷ A is the state matrix
3: for i in 0 ... nr − 1 do
4: A=Round[1600] (A, RC [i])
5: end for
6: return A
7: end procedure

Algorithm 5 Round[b]
procedure Round[b]((A,RC))

2: ▷ θ step
C[x]= A[x,0] ⊕ A[x,1] ⊕ A[x,2] ⊕ A[x,3] ⊕ A[x,4] ⊕, ▷ ∀x in 0...4

4: D[x]= C[x-1] ⊕ ROT(C[X+1],1), ▷ ∀x in 0...4
A[x,y]=A[x,y]⊕ D[x] ▷ ∀ (x,y) in (0...4, 0...4)

6: ▷ ρ and π steps
B[y,2x+3y]=ROT(A[x,y], r[x,y]) ▷ ∀ (x,y) in (0...4, 0...4)

8: ▷ χ step
A[x,y]=B[x,y] ⊕ ((NOT B[x+1,y]) AND B[x+2,y]) ▷ ∀ (x,y) in (0...4, 0...4)

10: ▷ ι step
A[0,0]=A[0,0] ⊕ RC

12: return A
end procedure
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3.2 NIST tests
NIST provides two series of statistical tests to evaluate whether a random number
generator is suitable for cryptographic applications or not. Both test suites analyze
a stream of output samples, directly from the noise source or after the conditioning.
The difference is that the first test suite ([26]) examines specific characteristics of
data to evaluate if it can be considered random or not, and the second one (NIST
800-90B, [25]) assesses the entropy value of the bitstream.

3.2.1 Statistical Test Suite
The NIST statistical test suite is composed of 15 tests 1 and its final objective is to
estimate whether the analyzed data is random or not.
As already mentioned in subsection 3.1.1, the false positive probability (α, also
called level of significance of a test) must be taken into account in every
statistical test. Generally, α is chosen in the range [0.001, 0.01] and, particularly
for cryptographic applications, α = 0.01. This means that, out of 100 sequences
generated by a valid RGB source, one is expected to be rejected.
Another important parameter is the P-value, produced by each one of the 15 tests.
It represents the probability that an ideal random number generator would have
produced a less random sequence than the one analyzed by the test. In other words,
if the P-value is equal to 1, then the sequence is perfectly random. Since each one
of the 15 tests examines a particular statistical characteristic of the sequence, it is
important to notice that the term randomness can have various nuances.
Once chosen the level of significance α and having executed a test, two cases are
possible:

• P-value ≥ α : the sequence is determined to be random, test is passed.

• P-value < α : the sequence is determined to be non-random, test is failed.

To have reliable results, the number of samples n to be analyzed must be in
the range from 103 to 107. Moreover, the number of sequences m, composing n,
must be related to the chosen level of significance alpha: if for example α = 0.01,
at least 100 sequences must be examined, otherwise it would be difficult to observe
a possible rejection.
A brief overview of the 15 tests is depicted in Table 3.1; for a more detailed
description, refer to [26].

1https://github.com/terrillmoore/NIST-Statistical-Test-Suite.git
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TYPE OF TEST IT CHECKS ON:

Frequency Equal proportion of 1s and 0s in
the entire sequence

Block Frequency Equal proportion of 1s and 0s in
M -bit blocks

Cumulative Sums

Maximal excursion of the cumulative sum
random walk (a defined sequence of steps).
For the cumulative sum, the digits of the

sequence are adjusted (0 → -1)

Runs Total number of uninterrupted
sequences of identical bits (runs)

Longest Run Longest run of 1s in M -bit blocks

Rank Rank of disjoint
sub-matrices of the sequence

FFT Peaks in the Discrete Fourier
Transform of the sequence

Non Overlapping Template Number of occurrences of m-bit
target strings

Overlapping Template
Same as the previous test,

difference in how the m-bit string
slides of 1 bit along the sequence

Universal Number of bits
between matching patterns

Approximate Entropy Frequency of all possible overlapping
consecutive m-bit patterns in the sequence

Random Excursions Number of cycles having exactly K visits
in a cumulative sum random walk

Random Excursions Variant Number of visits to a specific state
in a cumulative sum random walk

Serial Frequency of all possible overlapping
m-bit patterns in the sequence

Linear Complexity Length of the LFSR that would
generate M -bit blocks

Table 3.1: NIST statistical test suite overview
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The listing below depicts a possible output file produced by the tests (in this
case the Frequency test).

1 ------------------------------------------------------------------------------
2 RESULTS FOR THE UNIFORMITY OF P-VALUES AND THE PROPORTION OF PASSING SEQUENCES
3 ------------------------------------------------------------------------------
4 generator is <./results/to_analyze/rnd_out_13INV_32RO_30sigma.txt>
5 ------------------------------------------------------------------------------
6 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 P-VALUE PROPORTION STATISTICAL TEST
7 ------------------------------------------------------------------------------
8 16 9 12 6 15 10 13 7 5 7 0.145326 99/100 Frequency

For each statistical test, a row of 12 results is reported. The first 10 represent
the distribution of P-values of the m analyzed sequences: the unit interval has
been divided into ten discrete bins to have a measure of uniformity of results. The
next number is the resulting P-value from a chi-square test; as mentioned above, it
indicates whether the test is successful or not. Finally, the last result corresponds
to the proportion of sequences passing the test compared to the total number
applied. In order to be acceptable, this value should be in the confidence interval
defined as p̂ ± 3

ñ
p̂(1−p̂)

m
, with p̂ = 1 − α.

3.2.2 NIST SP 800-90B Tests
Along with the discussed statistical test suite, NIST also provides additional tests2

to assess the entropy of a RBG. There are four different variations:

• IID tests: these tests determine whether the source generates independent
and identically distributed samples or not. If just one of the IID tests is failed,
then the bitstream can be defined as non-IID and the next set of tests will be
applied. If this is not the case, the IID tests will already provide a result of
entropy. They are divided into two classes:

– permutation testing: different statistical tests are performed on 10000
permutations of the original dataset. The results are then compared to
observe whether the permutation of samples can affect the entropy level
of the stream.

– chi-square statistical tests: additional tests to discover dependencies
between successive samples and/or regularities in the samples’ distribution.

2https://github.com/usnistgov/SP800-90B_EntropyAssessment.git
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• non-IID tests: they provide an entropy assessment after the non-IID declara-
tion, obtained from the previous battery of tests. Ten different estimators are
used, each one of them producing an entropy assessment. The lowest resulting
min-entropy is taken as the final result.

• restart tests: in this case, a series of sequences of samples are collected after
the restart of the source and then tested, similarly to what has already been
discussed in subsection 3.1.1 for health tests.

• conditioning tests: these tests must be applied to the collected samples
after the conditioning component. Even though it usually decreases the bias
of samples, the conditioning function may however cause a lower final entropy,
due to its inherent determinism.

Also in this case, the analyzed data must be composed of a large number of
samples, at least equal to 106.
For more details on the available specific statistical tests and estimators, refer to
[25].
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Chapter 4

Hardware Implementation

This chapter will focus on the hardware implementation of the true random number
generator, both with and without the additional conditioning.
Among all the possibilities discussed in chapter 2, a ring oscillator approach has
been selected to implement the noise source. Besides the certified high robustness
and security level that arises from the study of literature, the other advantage of
this choice is given by the realization of flexibility: ROs can be easily implemented
both in ASICs, using standard cell libraries, and FPGAs. Even though most of
the papers in the literature focus on TRNGs realized on FPGA, this work aims
to propose a versatile design methodology. The goal is an implementation with a
good trade-off among all the different PPA and entropy parameters, despite the
employed platform.
As previously anticipated, the additional conditioning makes use of an accelerator
implementing the Keccak function, that can be also exploited as a stand-alone
component.
The design presents a hierarchical structure and employs the SystemVerilog
language, with the only exception being the Keccak block, previously developed
in VHDL. Furthermore, whenever possible, parameterization has been applied. In
this way, not only the design can be adjusted depending on the requirements, but
it is also possible to examine how the tuning of the different parameters can affect
the final results.
Testing and intermediate analyses have been carried out using both Questasim and
Synopsys and by developing auxiliary Python scripts.
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4.1 TRNG implementation without conditioning
Figure 4.1 shows the schematic of the complete TRNG block without conditioning
(clock and asynchronous active-low reset signals have been omitted).

Figure 4.1: TRNG schematic (clock and asynchronous active-low reset signals
omitted)

The system takes four input signals: besides clk and rst_n, the enable signal
is used to start up the noise source, whereas ack_read is received from the external
as an acknowledge that the last generated key has been read.
After enabling the TRNG, the RO-based noise source (top_level_RO) will start to
produce random bits serially. To have a parallel output, a configurable N_BITS_KEY
shift register is inserted to get a key of the desired number of bits. The correct
operation of the noise source is checked on-the-fly by the component implementing
the health tests.
The TRNG also provides a flag that notifies whether the key is ready to be used or
not (key_ready) and an interrupt (trng_intr).

In the following subsections, a more detailed description of the single components
will be presented.

4.1.1 Noise source
As previously mentioned, the entropy source is based on an RO configuration
(Figure 4.2).

The circuit is structured hierarchically: it is composed of a series of parallel
ROs, each of them formed by a certain number of inverters. The design has been
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Figure 4.2: Noise source hardware implementation (clock and global reset signals
omitted)

parameterized to be able to select both these quantities flexibly. A discussion on
the choice of design parameters will be detailed in the next paragraph. The OR
gate of each RO is used to connect the enable signal, hence starting the oscillation.
This signal should not be constantly active, otherwise, the behavior of the ring
oscillator would be fixed and the circuit would not work correctly.
A bit of each RO is sampled by a D flip-flop; all the FFs output bits are XORed
together to increase randomness. Finally, the XOR output is sampled again and a
random bit is then generated.

Design parameters analysis

The number of parallel ROs and the number of inverters for each RO affect not
only the area, power, and maximum frequency of the circuit but also the statistical
properties of the output bitstream. Consequently, particular attention has been
paid in finding the best trade-off among these parameters.
The PPA analysis has been carried out by observing different syntheses’ reports
on Synopsys’ Design Compiler, fixing the number of parallel ROs, and varying
the number of inverters for each RO and vice-versa. The minimum considered
configuration is composed of 3 inverters and 4 ROs, the maximum one corresponds
to 65 inverters and 32 ROs (obviously, for ring oscillators only odd numbers of
inverters are taken into account).
The results are reported on the graphs of Figures 4.3 - 4.5.
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Figure 4.3: Area vs number of parallel ROs, fixing the number of inverters for
each RO (left) and vs number of inverters for each RO, fixing the number of parallel
ROs (right)

Figure 4.4: Power vs number of parallel ROs, fixing the number of inverters
for each RO (left) and vs number of inverters for each RO, fixing the number of
parallel ROs (right)

Obviously, area and power grow linearly with the number of ROs and inverters,
with an impact of the increasing number of parallel ROs slightly higher with respect
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Figure 4.5: Maximum frequency vs number of parallel ROs, fixing the number
of inverters for each RO (left) and vs number of inverters for each RO, fixing the
number of parallel ROs (right)

to an increasing number of inverters for each chain. The influence of the number of
inverters is however prevailing when considering the critical path, whereas the ROs
are in a parallel configuration, hence they will not affect this aspect. Nevertheless,
Figure 4.5 seems to contradict this last observation. The reason is that, for a
number of inverters lower than 33, the critical path of the circuit is not yet given
by a single-ring oscillator.
One of the most challenging part of the TRNG design is to combine PPA properties
to statistical ones. As a matter of fact, by varying the number of inverters and ROs
in the noise source, also the randomness of the output bitstream changes, as well
as its entropy. The NIST statistical tests have been applied to output data coming
from the same different configurations analyzed with Synopsys’ Design Compiler.
The proportions of sequences passing the 15 tests of the NIST statistical test suite
for three different cases of design parameters are reported in Figure 4.6.
Ideally, the proportion of sequences passing a test should be in the acceptable range
indicated by the dotted lines (confidence interval defined in subsection 3.2.1). It can
be observed that this is true only for the case with the highest number of inverters
and ROs among the reported ones. For this reason, 32 parallel ring oscillators
and 13 inverters have been chosen as final design parameters. In this way, all the
NIST tests are passed and a good trade-off in terms of area (approximately 1000
µm2), power (approximately 280 uW) and maximum frequency (approximately 880
MHz) is achieved.
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Figure 4.6: Proportions of sequences passing the 15 tests of NIST suite for
different design parameters

Simulation

Being the randomness of physical phenomena the core aspect of the true random
number generator, the functional simulation is one of the most critical points of
the whole design. The main issue is the inherent ideality of a simulation which
clashes with the key idea underlying the TRNG.
The adopted strategy to overcome this problem consists in assigning a certain delay
to each inverter of each RO, similarly to what is done in [8]. Figure 4.7 displays
the basic model.

Figure 4.7: Delay simulation model

The different delay values are generated using a Python script, following the
jitter model of section 2.1 and the directives of [8]. Only the local Gaussian jitter is
taken into account, whereas the global deterministic component is neglected under
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the initial assumption of not having injection attacks. Consequently, each delay
value is obtained by superimposing a Gaussian random variable with mean equal
to 0 and standard deviation σ= 30 ps to a nominal inverter delay (typical values
reported in [8]). The script is reported in Appendix A.

In SystemVerilog this can be easily done with a line:

1 out <= #delay ~in;

Being not synthesizable, this command will only help to assign a certain delay
value to the inverter for the simulation. The variable delay is read from the Python
model file employing a task in the testbench, which simply consists in the parsing
of the file. The code is reported in the appendix A.
The different delay values of each inverter of each RO are then assigned hierarchically
starting from the top level of the TRNG architecture.
An important note must be made: since the delays are of the order of hundreds of
ps, the simulation must be performed with a resolution of 1 ps.

4.1.2 Health Test
As described in subsection 3.1.1, the health test component has the function of
checking the correct runtime behavior of the noise source. The two main tests are
implemented: the Repetition Count and the Adaptive Proportion tests.
The schematic of the component is shown in Figure 4.8, the clk and rst_ni signals
are omitted. The output bit generated by the noise source (rnd_bit) is used in
two separate ways to implement both tests.

For the Repetition Count test, the bit is used as input for a configurable
(NBITS) shift register. Its lenght, i.e. NBITS, which corresponds to the cutoff value
of the test, is parameterized to be changed depending on the chosen false-positive
probability α. The shift register parallel output and its negated version is sent to
two AND gates to determine whether the sequence of bits is stuck at 1 or 0. If one
of these cases is true, the output error flag is set to 1 and sent to the control unit.
The other parts of the component are employed to implement the Adaptive
Proportion test. It only realizes in hardware what is described by Algorithm 2:
a window of samples, W, properly controlled by means of a counter, is accumulated;
if the final value of the accumulator does not belong to the correct range, meaning
that there is a prevalence of 1s or 0s, the error signal is set to 1. Since binary
data are considered, the window size W is fixed to 1024 bits, while the CUTOFF value,
determining the allowed range, is parameterized so that it can be tuned accordingly
to the expected entropy value, as indicated by NIST ([25]).
An additional counter is inserted to count the number of consecutive errors: if this
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Figure 4.8: Health test component schematic (clock and global reset signals
omitted)

value is equal to the constant FAIL_THRESH, the total_failure output signal is
high and the control unit will declare the unrecoverable DEAD state. Also in this
case, the FAIL_THRESH value is parameterized.

4.1.3 Control Unit
The control unit (CU) synchronizes the whole system. It is organized as a classical
finite state machine (FSM), its state diagram is displayed in Figure 4.9.

The FSM is an extended version of the one proposed in the RISC-V Crypto-
graphic Extension documentation 1. It is composed of six states: IDLE, BIST, WAIT,
ES32, WAIT_FOR_ACK and DEAD.
Figure 4.10 shows the CU timing diagram when no errors are detected by the

1https://github.com/riscv/riscv-crypto.git
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Figure 4.9: Control unit state diagram

health tests. Initially, the system is in a IDLE state, everything is switched off.
When the enable input signal of the TRNG arrives, the FSM will move to the
BIST state, i.e. the warm-up phase, and all the components of the TRNG are
switched on. Since the TRNG relies on physical phenomena, an adjustment phase
is useful to have a noise source behaving as expected. The BIST state can be
seen as a sort of conservative start-up health test, in which the random bits are
continuously checked but no output key is produced. The duration of this phase is
parameterized through the latency constant and can be chosen also considering
the specific operating conditions of the circuit.
After BIST, the serial random bits of the noise source can be collected into the shift
register to produce the output key: this is the WAIT state. As in the BIST case, a
parameterized counter (WAIT_CONST) is used to determine how many cycles this
phase will last, depending on the output key parallelism.
When this interval of time elapses, the FSM moves into the ES32 state: the key is
ready, and the interrupt and the rnd_ready flag can be set to 1. This phase only
lasts one clock cycle. The system will then wait for the external acknowledgment of
the key (WAIT_FOR_ACK state) and, when it is received, it moves back to the WAIT
state to generate another key.
The WAIT_FOR_ACK state may not be necessary: in this case, it has been inserted
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to have both the interrupt and the rnd_ready flag set to 1 for just one clock cycle,
which is convenient for the conditioning component integration (section 4.2). The
CU also outputs the flush_regs_o signal. It may be useful when the TRNG key
needs to be readable by external devices immediately after its generation, only for
a specific number of clock cycles. In this case, flush_regs_o would allow to reset
the buffer containing the key.

Figure 4.10: Timing diagram of the control unit when no errors arise

The described FSM flow occurs when no errors are detected by the health test
component. On the other hand, Figure 4.11 reports the CU timing diagram in case
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of errors or total failures. Whenever the error flag set by the health tests is equal
to 1, the system goes back to the BIST state, regardless of the current state. The
counter_BIST signal, keeping track of the number of cycles that the system must
spend in BIST state, will start to increment only if the error flag is sent back to 0,
meaning that the errors have been recovered. In this case, the system can come
back to its normal operation, following the normal FSM flow. However, if the error
persists and the health tests detect a total_failure condition, the system goes
to the unrecoverable DEAD state and must be rebooted.

Figure 4.11: Timing diagram of the control unit in case of simple errors or total
failure condition

4.2 Keccak conditioning
The Keccak accelerator block developed in [30] has been used as an optional
conditioning. The block takes a 1600-bit input and outputs 1600 processed bits.
The processing starts after the reception of the start pulse; after 24 clock cycles,
a status flag and an interrupt notify that the output is ready.
The architecture has been developed both with a unique CU for the TRNG and the
Keccak blocks and with separate CUs. In this way, the most convenient architecture
can be chosen depending on the requirements. This point will be better clarified in
the next chapter.
Figure 4.12 shows a schematic with the main signals. In this case, each block has
its internal control unit, but with a unique CU the operating principle remains the
same.

The system’s behaviour is determined by the conditioning signal:

• conditioning = 0: the TRNG and Keccak blocks are independent of each

38



Hardware Implementation

Figure 4.12: TRNG with optional Keccak conditioning

other. The TRNG output is not conditioned, the output key will be produced
in the same way as described in the previous section. At the same time, the
Keccak unit can be also exploited to process different data (keccak_in) as a
stand-alone component.

• conditioning = 1: the two blocks work together. The output key generated
by the TRNG is the input of the Keccak unit and the key_ready flag acts as
start pulse. In this case, the final output key is ready only after the Keccak
processing and it must be extracted from its 1600-bit output. Consequently, the
status_d flag is connected to the final key_ready signal of the TRNG_KECCAK
block. In the same way, the interrupt of the system corresponds to the interrupt
of the Keccak unit.

A timing diagram with the essential signals is reported in Figure 4.13.
Two observations must be made. The first one concerns the number of bits of

the output key produced by the TRNG, which must be fixed to 1600 or slightly
lower. As a matter of fact, the conditioning input could be switched from 0 to 1
runtime, meaning that the TRNG output must be ready to be used as input of the
Keccak block. The parallelism could also be slightly lower than 1600 bits due to
the padding operation performed by the Keccak function. This can be important to
increase the throughput since the TRNG produces random bits serially. However,
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Figure 4.13: TRNG + Keccak timing diagram

too few bits may result in an insufficient randomness of the final key. Therefore, a
trade-off analysis between randomness and throughput must be taken into account.
The second note is about the extraction of the final output key from the 1600-bit
Keccak output. Usually, a lower number of bits are needed by the key, hence a
truncation must be performed. Since the objective is to obtain a random output,
MSBs, LSBs or different combinations of bits are all valid choices. A study on this
additional degree of freedom may also be carried out to increase the entropy of the
final key.
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Chapter 5

X-HEEP Integration

5.1 X-HEEP
X-HEEP (eXtendable Heterogeneous Energy-Efficient Platform)1 is a 32-bit RISC-V
based customizable microcontroller, developed by the Embedded Systems Labora-
tory (ESL) at the Swiss Federal Institute of Technology in Lausanne (EPFL). [31]
The main purpose of X-HEEP is to offer a flexible platform for the integration of
ultra-low-power edge accelerators. Configurability is one of the main features: the
user can choose among different CPU micro-architectures, memory sizes, and bus
topologies.
Figure 5.1 shows the X-HEEP MCU. The architecture includes:

• CPU : the user can choose among three different RISC-V cores (CV32E20,
CV32E40X, and CV32E40P), selected from the OpenHW Group Core-V family.
They offer different possibilities in terms of power and performance trade-offs.

• memory subsystem: the memory size and the number of memory banks can
be selected depending on the specifications. The memory models are derived
from the PULP platform, a project born with the same intent as X-HEEP.

• bus subsystem: the open-bus interface (OBI) is used to ensure compatibility
with IPs coming from different projects (OpenHW Group, PULP, OpenTitan).
The user can choose between a one-at-a-time topology (only one master
allowed) and a fully connected topology (multiple masters).

• Peripheral subsystem: it includes an interrupt controller (PLIC), timers,
and general-purpose I/O peripherals such as GPIO and I2C. These IPs can
be turned off in case of strict power consumption requirements.

1https://github.com/esl-epfl/x-heep.git
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• Always-on peripheral subsystem: in this case, the IPs are always on.
The SoC controller, boot ROM, power manager, fast interrupt controller, and
DMA are originals of the X-HEEP platform. In particular, the power manager
unit implements low-power strategies, such as clock-gating, power-gating, and
RAM retention. The whole system is indeed divided into different power
domains.

• Debug subsystem : inherited by the PULP platform.

Figure 5.1: X-HEEP MCU

To facilitate the integration of external accelerators, the platform presents the
configurable XAIF interface, which allows it to accommodate the X-HEEP system
to the specific requirements of the different accelerators. The XAIF interface
includes a configurable number of interrupt ports, a configurable number of master
and slave ports in the bus subsystem, and a customizable power control interface.
X-HEEP makes use of the FuseSoc build system to simplify the processes of
simulation and FPGA/ASIC implementation with different EDA tools.
The following sections will focus on the description of the integration of the TRNG,
alone and with the Keccak block, as an external accelerator of the X-HEEP MCU.
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5.2 TRNG integration
The TRNG integration process can be divided in six steps.

1. Generation of a register file for the TRNG.

2. Creation of a wrapper including the TRNG and the register file.

3. Integration of the TRNG wrapper in the X-HEEP wrapper.

4. Creation of the FuseSoc new core file.

5. Development of TRNG drivers.

6. Creation of the Makefile.

5.2.1 Step 1: Register file
The first step for the TRNG integration is to create a register file so that the
accelerator can be controlled through load and store operations by the X-HEEP
core.
In order to have standardization with respect to the X-HEEP parallelism, the
width of all registers has been chosen equal to 32 bits. The register file is composed
of two registers:

• Control-Status register: can be written and read both by the CPU and
the TRNG. Only three LSBs are used: the two control bits (enable and
ack_read) are written by the CPU; the status bit (key_ready) is written by
the accelerator.

• Data register: it contains the output key to be read by the CPU. In case of
a key larger than 32 bits, it will be segmented into 32-bit chunks and read in
successive cycles. Obviously, if the key width is fixed and known in advance,
more than one data registers can be directly allocated.

This interface has been created by using OpenTitan’s Register Tool2, which
employs a simple Python 3 script (regtool.py). By describing the registers in
hjson format, the tool generates the register file in SystemVerilog and a C header
file with the address offset of the registers, useful when creating the driver.
Besides the name and width of the registers, the tool allows to specify different
options. Some examples are the primary clock and reset signals, the bus interfaces,

2https://github.com/lowRISC/opentitan.git
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the hardware and software access permissions, and the different bit fields in which
a register is divided. For instance, the hjson description of the data register is
shown below:

1 name: "trng_data",
2 clock_primary: "clk_i",
3 reset_primary: "rst_ni",
4 bus_interfaces: [
5 { protocol: "reg_iface", direction: "device" }
6 ],
7 regwidth: "32",
8 registers: [
9 { name: "TRNG_DOUT"

10 desc: "Random key"
11 swaccess: "ro",
12 hwaccess: "hwo",
13 hwext : "true",
14 fields: [
15 { bits: "31:0"
16 }
17 ]
18 }
19 ],

The generated SystemVerilog description will present a standardized interface.
Specifically, two types of structures are provided to clarify the direction of the
input and output signals: from the register to the TRNG (reg2hw_t) and vice
versa (hw2reg_t).

5.2.2 Step 2: TRNG Wrapper
After creating the register file, the next step is to have a wrapper containing
the TRNG and the register file to be connected to X-HEEP (TRNG_WRAPPER in
Figure 5.2).
While the control register will be directly connected to the slave port of X-HEEP,
the data registers will exploit the OBI protocol to communicate with an external
bus, which will be then connected to the slave port. This difference is due to
the possibility of using the DMA for fast data management. Because of this,
the additional periph_to_reg component has been inserted in the TRNG_WRAPPER
to allow the correct communication between the data register top level and the
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external bus.

5.2.3 Step 3: Integration in X-HEEP wrapper
The TRNG_WRAPPER needs now to be connected to X-HEEP, as shown in Figure 5.2.
X-HEEP has been configured with one slave port. As just mentioned, the signals
of the control register of the TRNG_WRAPPER are directly connected to the X-HEEP
slave port. On the other hand, the external bus links the data register to the same
slave port, which is then connected to the internal X-HEEP bus.
The final operations consists of reserving a slot of memory addresses for the acceler-
ator and assigning the TRNG interrupt to one of the external_interrupt_vector
empty slots of X-HEEP.

Figure 5.2: TRNG and X-HEEP connection
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Additional modifications have been made to the testbench used by X-HEEP
(testharness.sv). The most important one is the inclusion of the assign_delays
task to correctly simulate the TRNG.

5.2.4 Step 4: FuseSoc core
Once having completed all the RTL connections to X-HEEP, a new FuseSoc core
file is required.
A core file is written in YAML syntax and is used to describe a design in FuseSoc.
The first line of the file specifies the CAPI 2 schema, which indicates the structure
of the core file. Successively, the name of the design must be indicated. The rest of
the file can be divided in different sections:

• filesets: first of all, all the involved sources must be specified, along with
their type. They can be divided in different groups; dependencies on other
cores can be also included. In this case, the TRNG source files have been
added to the original X-HEEP filesets.

• parameters and scripts: parameters that are present in the source files may
be specified here with their default value, for example, the type of core to be
used by X-HEEP. Moreover, also specific scripts to be used in simulation or
synthesis must be declared.

• targets: his section allows the configuration of the different simulation/syn-
thesis processes, similar to what one would do within a specific tool. An
example of the configuration of the Modelsim simulation is reported below:

1 sim:
2 <<: *default_target
3 default_tool: modelsim
4 filesets_append:
5 - tb-harness_x_heep
6 parameters:
7 - use_cv32e40p_corev_pulp? (COREV_PULP=1)
8 - "!use_cv32e40p_corev_pulp? (COREV_PULP=0)"
9 - use_jtag_dpi? (JTAG_DPI=1)

10 - "!use_jtag_dpi? (JTAG_DPI=0)"
11 tools:
12 modelsim:
13 vlog_options:
14 - -override_timescale 1ps/1ps
15 - -suppress vlog-2583
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16 - -suppress vlog-2577
17 - -suppress vlog-2720
18 - -pedanticerrors
19 - -define MODELSIM
20 vsim_options:
21 - -voptargs=+acc

After specifying the involved files to be compiled, the vlog and vsim options
are provided so that everything is correctly set up for an automatic simulation.
The same process can be repeated for different tools. In this work, the target
section has been configured for Modelsim, Synopsys’ Design Compiler, and
Vivado.

5.2.5 Step 5: Driver
At this point, the TRNG will need a driver. Having memory-mapped the accelerator,
all the memory locations will be automatically generated in the trng_x_heep.h
header file and the specific registers offset constants have been already created
through the regtool.py script.
The driver consists of a simple function called get_rnd_key:

void get_rnd_key(uint32_t* Dout);

The only argument of the function is a pointer to a uint32_t variable which
will contain the output key.
The first operation performed by the driver is defining the pointers to the TRNG
registers; their addresses are defined as macros in the trng_x_heep.h file.

1 uint32_t volatile *ctrl_reg = (uint32_t*) TRNG_CTRL_START_ADDR;
2 uint32_t volatile *Dout_reg = (uint32_t*) TRNG_DOUT_START_ADDR;
3 uint32_t volatile *status_reg = (uint32_t*) TRNG_STATUS_START_ADDR;

After this initialization phase, the TRNG is triggered by writing a 1 in the
correct bit of the control register:

*ctrl_reg = 1 << TRNG_CTRL_CTRL_TRNG_EN_BIT;

In the next line, a 0 is written again in the same position to just have an
enabling pulse. Memory barriers are also inserted to ensure the correct succession
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of operations to be executed.
At this point the status register is polled up to generation of the key, notified by
the dedicated flag of the TRNG.

1 do {
2 key_ready = (*status_reg) & (1 << TRNG_CTRL_STATUS_TRNG_BIT);
3 } while (key_ready == 0);

When the key is ready, the data register contains the 32-bit random key to be
read.

*Dout = Dout_reg[0];

The final line consists in writing a 1 in the proper bit position of the control
register, to indicate the acknowledgement of the key.
Another version of the same function has been developed by exploiting the TRNG
interrupt instead of polling the status flag. The dedicated functions of the
interrupt controller peripheral of X-HEEP (header file rv_plic.h) are used for the
initialization. The correct interrupt line is the one that was previously assigned in
the RTL, in the third step.

1 plic_Init(); // Init the PLIC
2 plic_irq_set_priority(EXT_INTR_0, 1); // Set the priority of the TRNG interrupt
3 plic_irq_set_enabled(EXT_INTR_0, kPlicToggleEnabled); // Enable the interrupt

To enable the TRNG interrupt, a few write operations in the control registers
of the system are needed, as explained in the X-HEEP documentation 3.

1 // Enable global interrupt for machine-level interrupts
2 CSR_SET_BITS(CSR_REG_MSTATUS, 0x8);
3 // Set mie.MEIE bit to one to enable machine-level external interrupts
4 const uint32_t mask = 1 << 11; //IRQ_EXT_ENABLE_OFFSET;
5 CSR_SET_BITS(CSR_REG_MIE, mask);

Now that the interrupt is correctly set, the triggering of the TRNG can be done in
the same way as before. The polling is now replaced by the wait_for_interrupt()
X-HEEP library function.

3https://github.com/esl-epfl/x-heep.git
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1 while(plic_intr_flag==0) {
2 wait_for_interrupt();
3 }

The wait_for_interrupt() function works as a NOP, meaning that the system
will wait for the TRNG interrupt. The remaining lines of the driver are the same
as in the polling case.

5.2.6 Step 6: Makefile
The final step to test the TRNG application is the creation of the new makefile,
which is directly inherited from the original one of X-HEEP. This makefile, in turn,
is built upon a hierarchy of different makefiles.
After including the new header files and the drivers, the remaining operation is to
integrate the new rules to compile, link, and run the new applications.

5.2.7 TRNG accelerator test
The application to test the drivers is very simple. It just recalls the two functions
and prints the output hexadecimal keys:

1 int main()
2 {
3 static uint32_t Dout;
4

5 get_rnd_key(&Dout);
6 printf("Key: %08X \n", Dout);
7 get_rnd_key_intr(&Dout);
8 printf("Key: %08X \n", Dout);
9

10 return EXIT_SUCCESS;
11 }

Furthermore, performance counters in each function are used to trace the number
of required clock cycles to execute the driver.
Figure 5.3 and Figure 5.4 show two snippets of the simulation on Questasim,
proving that the accelerator and the driver work properly.

By recalling the functions, one can obtain an output similar to the one displayed
in Figure 5.5.
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Figure 5.3: Questasim simulation - write operation in the control register to
enable the TRNG

Figure 5.4: Questasim simulation - the key is ready, the respective flags are set
to 1 and the bits will be collected from the data register

Figure 5.5: Output of the TRNG test application

After analysing the results of several tests, it has been found that no more than
150 cycles are required by the drivers.

5.3 TRNG and Keccak integration
The integration of the TRNG with the Keccak conditioning has been realised
following the same procedure described in the previous section. An overview on
the main differences will be now presented.
The first one concerns the register file. Since the TRNG and Keccak components
can also be used as stand-alone accelerators (section 4.2, case conditioning = 0),
additional data registers must be added to the register file for the 1600-bit Keccak
input and output. Keeping the 32-bits parallelism, 50 registers are allocated for the
input data and 50 more are allocated for the output data, as depicted in Figure 5.6.
Therefore, the output data register structure has been conceived to have 51 32-bits
registers, 50 for the keccak_out signal and the last one for the output random key.
For what concerns the Keccak control and status bits, they are included in the
same control/status register used for the TRNG, as only three bits were actually
used. An additional bit is also reserved for the conditioning signal.
The structure of the wrapper remains unchanged, as well as the connections
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to X-HEEP. The only modification consists in adding another element to the
external_interrupt_vector, because of the presence of the additional Keccak
interrupt signal. Furthermore, a larger slot of memory locations may be needed,
meaning that also the memory-mapping might require a modification.
Obviously, the FuseSoc core has been updated in order to include also the Keccak
component source files.

Figure 5.6: TRNG-Keccak and X-HEEP connection

Even for the driver, only a minor change is needed. It is important to specify
that the driver for the standalone Keccak component will not be discussed, as the
case study of this work is the TRNG.
The previous driver has been modified by adding another argument:
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void get_rnd_key(uint8_t conditioning, uint32_t* Dout);

Depending on the value of this parameter, the conditioning bit of the control
register will be set to 1 or 0:

1 if (conditioning == 1)
2 *ctrl_reg = 1 << TRNG_KECCAK_CTRL_CTRL_CONDITIONING_BIT;
3 else
4 *ctrl_reg = 0 << TRNG_KECCAK_CTRL_CTRL_CONDITIONING_BIT;

The rest of the code remains unchanged, as the correct signal routing depending
on the conditioning bit has already been made in hardware. The only difference is
in the data register containing the key: as previously mentioned, the 51st register
must be read.

1 *Dout = Dout_reg[50];
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Chapter 6

Results and comparison

This chapter will provide an overview of the final results in terms of randomness,
power, area, and performance. A comparison with other recent works in literature
is also included. The last section presents a summary of potential improvements
and ideas to further develop the proposed TRNG.

6.1 NIST Tests Results
The TRNG before and after conditioning has been tested by means of the NIST
tests described in chapter 3.
For what concerns the entropy, the NIST SP 800-90B has been applied to the
raw bitstream of the TRNG, identifying a non-iid distribution with a Shannon
Entropy per bit equal to 0.9995.
The results of the NIST SP 800-22 statistical test suite are reported in table
6.2, for multiple outcomes of the same test (Non Overlapping Template, Random
Excursions, Random Excursions Variant) the average values have been considered.
2 · 107 bits have been analyzed: in the first part of the table the output stream
is directly produced by the noise source (Figure 4.2), in the second part it is the
result of the Keccak block post-processing. The block length parameters of the
tests have been chosen following the NIST directives and are reported in Table 6.1.

Since a level of significance α = 0.01 has been considered, a test is passed if
its P-value is higher than 0.01, as explained in chapter 3. Therefore all tests are
passed. Moreover, the P-values after the Keccak conditioning are on average higher,
indicating a more uniform distribution and a less biased output bitstream.
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Statistical Test Block Length
Block Frequency Test 128

Non Overlapping Template Test 9
Overlapping Template Test 9
Approximate Entropy Test 10

Serial Test 12
Linear Complexity Test 500

Table 6.1: Parameters for NIST SP 800-22 test suite

Test No conditioning Conditioning (Keccak)
P-value Prop. Result P-value Prop. Result

Frequency 0.3505 1 PASS 0.7399 1 PASS
BlockFreq. 0.0127 0.95 PASS 0.1223 1 PASS

Cumulat.Sums 0.6885 1 PASS 0.5078 1 PASS
Runs 0.9114 1 PASS 0.4373 0.95 PASS

LongestRun 0.8343 1 PASS 0.7399 0.95 PASS
Rank 0.3505 1 PASS 0.7399 1 PASS
FFT 0.3505 1 PASS 0.1626 1 PASS

NonOver.Templ. 0.4598 0.99 PASS 0.4945 0.99 PASS
Over.Templ. 0.2757 0.95 PASS 0.6371 1 PASS

Universal 0.5341 1 PASS 0.9114 0.95 PASS
Approx.Entr. 0.4373 1 PASS 0.6371 1 PASS
Rand.Excurs. 0.1091 0.984 PASS 0.3714 0.990 PASS
Rand.Exc.Var. 0.0838 0.993 PASS 0.2367 0.995 PASS

Serial 0.3505 1 PASS 0.3943 0.975 PASS
LinearComplex. 0.9643 1 PASS 0.4373 1 PASS

Table 6.2: NIST SP 800-22 test results

Also, the proportion of sequences passing each test is in the acceptable range
(Figure 6.1).
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Figure 6.1: Proportions of sequences passing the 15 NIST tests - before (up) and
after conditioning (down)

6.2 Modelsim Results

The proposed TRNG implementation has been tested by exploiting the C imple-
mentation of the CRYSTALS-Kyber algorithm proposed by PQClean 1.
CRYSTALS-Kyber is a KEM (Key Encapsulation Mechanism), based on the Learn-
ing with Errors (LWE) problem. ([32])
CRYSTALS-Kyber algorithm presents three different versions, with different secu-
rity levels and lengths (Table 6.3).

1https://github.com/PQClean/PQClean.git
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Kyber Length [bytes]
Kyber version Secret Key Public Key Cipher Text
Kyber512 1632 800 768
Kyber768 2400 1184 1088
Kyber1024 3168 1568 1568

Table 6.3: Kyber Crypto Length

Following the algorithm, the PQClean implementation is composed of three
main functions:

• crypto_kem_keypair: the public and private keys are generated.

• crypto_kem_enc: it generates the cipher text and the shared secret for the
given public key (encryption phase).

• crypto_kem_dec: it generates the shared secret for the given cipher text and
private key (decryption phase).

All the random values are generated by means of the randombytes function
which actually produces a predictable sequence of bytes. As a matter of fact, it is
declared that the function is used only for testing purpose, without any reliable
cryptographic qualities. Therefore, by replacing this function with the TRNG
driver, there is the a double advantage: having a faster execution and robust
random keys.
The three variants have been tested on the X-HEEP MCU. Initially, the average
number of clock cycles required for each original version has been measured.
Subsequently, the TRNG accelerator has been used to replace the randombytes
function. To get more than 32 bits, a minor modification to the driver has been
made, such that an output buffer of the required length is filled 32 bits at a time.
The code is reported in Appendix A. The results are presented in Table 6.4.

PQC Function Avg. number of clock cycles Speed-up
SW With TRNG

Kyber512 3 083 978 3 036 592 1.015
Kyber768 4 994 839 4 938 277 1.012

Kyber1024 7 608 400 7 517 755 1.012
randombytes 27209 925 29.415

Table 6.4: Number of cycles required by PQClean Kyber functions, before and
after the TRNG accelerator

The TRNG acceleration provides a speed-up higher than 29 for the single
randombytes function. This value could be increased even more by modifying the
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N_BITS_KEY value of the TRNG, reducing the software operations and directly
obtaining the key of the desired length. At the same time, if considering the complete
Kyber functions, the speed-up is minimal: the majority of the computational cost
is indeed required by the Keccak function permutations.

6.3 ASIC Results
The system has been synthesized by means of Synopsys’ Design Compiler,
exploiting the 65nm library. The results, reported in Table 6.5, refer to the
case of the maximum achievable frequency. This means that the clock has been
progressively reduced in order to achieve a slack equal to 0. This is reached for
a clock equal to 1.10 ns in the TRNG without conditioning and to 1.4 ns in the
presence of the Keccak block.

Max freq. [MHz] Area [µm2] Power [mW]
TRNG 909.1 3912.84 2.61

TRNG + Keccak 714.3 84130.92 39.20
(÷1.27) (x21) (x15)

Table 6.5: Synthesis results with 65 nm library

The synthesis with the Keccak accelerator produces an area and power overhead
and a reduction of the maximum achievable frequency. This can be in turn
compensated by the possibility of having a higher throughput: Keccak produces
an output of 1600 bits every 24 clock cycles, whereas the TRNG produces a bit at
each clock cycle. Therefore, by passing a key of width lower than (1600-24) bits, a
higher throughput will be reached.
More detailed comparisons of the power and area contributions are displayed in
Figure 6.2 and Figure 6.3.

Table 6.6 shows a hierarchical overview of the area occupied by the TRNG. The
most expensive component in terms of resources is the one implementing the health
tests, which is more than 2 times bigger than the noise source.

Cell Area [µm2] Percentage
noise_src 983.880027 25.2%

CU 407.160011 10.4%
health_comp 2204.280038 56.3%

shift_reg 317.520009 8.1%
TRNG 3912.840085 100%

Table 6.6: TRNG resources utilization after Synopsys synthesis
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Figure 6.2: Power contributions of the TRNG with and without Keccak

Figure 6.3: Area contributions of the TRNG and TRNG with Keccak
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6.4 FPGA Results
To be able to compare the proposed TRNG to the ones presented in other papers,
the FPGA synthesis and implementation have been performed. In particular, two
Xilinx FPGA families have been considered, Artix and Spartan, as they are the most
widely used in literature. The specific devices are the Spartan 7 xc7s100fgga676-
1Q and the Artix 7 xc7a75tcsg324-3. By exploiting Vivado, the results of
Table 6.7 have been obtained.

Device Frequency [MHz] Area Power [mW]
LUT FF Slices

Artix 7 324.7 106 194 73 99
Spartan 7 230.3 98 194 79 104

Table 6.7: TRNG FPGA post-implementation results

The results of power and area are similar, whereas a slight difference is present
in terms of frequency, the Artix 7 device reaching 100 MHz more than the Spartan
7.
Figure 6.4 reports a more detailed overview of the power, highlighting the predomi-
nance of static power.
Figure 6.5 displays the different area contributions for the two devices. Even though
the most used resources are LUTs, only a minimal part of the total available area
is used. The utilization of I/O ports is instead higher with respect to the available
ones, reaching 18% in the case of the Artix board.

Figure 6.4: FPGA different power contributions
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Figure 6.5: FPGA different area contributions, the percentage refers to the total
available resources of the device

Table 6.8 shows the hierarchical distribution of the resources: also in this case,
as in the 65 nm synthesis, the greater amount of area is reserved to the health tests
component.

Artix 7 Spartan 7
Cell Area Area

LUT FF Slices LUT FF Slices
noise_src 23 33 8 23 33 10

CU 35 22 16 29 22 15
health_comp 48 132 46 46 132 50

shift_reg 0 7 3 0 7 4
TRNG 106 194 73 98 194 79

Table 6.8: TRNG resources utilization after Synopsys synthesis
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6.5 Comparison
The results obtained in this work have been compared to the ones presented in
recent literature, the outcome is reported in Table 6.9. An effort has been made
to collect common parameters to have a reliable comparison, nevertheless, some
specifications are not always disclosed and the Table presents some missing points.
For the same purpose, only the results regarding the TRNG, without the Keccak
conditioning, are taken into consideration.

Shann. FPGA Area Thrp. Freq.
Entr. device LUTs FFs Slices [Mbps] [MHz]

[10] 0.9999 Artix7 24* 33* 13* 275.8 275.8
[11] 0.9999 Spartan3 528 177 270 6 24
[12] - Zynq7 65* 119* 5* 1600 100
[16] 0.9999 Stratix4 288 190 - 400 100
[33] 0.9993 Artix7 40@ 29@ - 1.91 -
[34] 0.997 Spartan6 16@ 11@ - 1.15 100

This 0.9995 Artix7 106|23* 194|33* 73|8* 324.7 324.7
Work Spartan7 98|23* 194|33* 79|10* 230.3 230.3

Table 6.9: Comparison of different TRNG implementations (* no control logic
nor health tests, @ no health tests)

To have a valid comparison, RO-based TRNGs have been considered.
Z. Lu et al ([10]) proposes an architecture composed of only 4 parallel ROs. A
higher level of randomness is then given by a multiphase sampler, i.e. another RO,
sampling the 4-ring oscillators in different instants of times. The implementation
proves to be very robust in terms of statistical properties, also providing low-power
and low-area results. However, there is no mention of the control circuitry nor of
the health tests.
In [11] programmable delay inverters are exploited to have a higher control on the
period of each ring oscillator. To do so, some inputs of the LUTs, implementing
the inverters on the FPGA, are used as delay tuning. The solution allows to have
great control of the entropy level of the noise source but results in big requirements
of the area. Moreover, the Von Neumann post-processing reduces the throughput
of the system.
In [12] ROs of different lengths are additionally conditioned by means of Maximal
Length Feedback Shift registers. As in this thesis, also in this case a Keccak post-
processing block is exploited. To have a fair comparison among the different papers,
only the results related to the TRNG without the Keccak block are considered.
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Even though no information about the Shannon Entropy is provided, the non-linear
logic function used as a pre-processing block allows to achieve high performances
in terms of throughput.
P. Nannipieri et al ([16]) implement a TRNG based on Fibonacci-Galois ROs
(FiGaRO), achieving an entropy per bit very close to 1. By using 4 parallel
FiGaRO stages, a throughput of 400 Mbps is reached with an operating frequency
of 100 MHz, at the expense of area.
In [33] a configurable TERO-based TRNG is proposed, along with an accurate
statistical analysis of the architecture. No information on the used operating
frequency is provided, however the resulting throughput is not higher than 2 Mbps.
The entropy and area follow the state of art trend.
Mentens et al ([34]) present an architecture based on edge sampling, similarly
to what is done in [10], with the addition of an accurate mathematical model.
Moreover, an implementation of a bit extractor is included to increase randomness.
The biggest point in favor of this work is the low area occupation.
From Table 6.9 it is possible to observe that this work follows the trend of the
recent literature papers in terms of entropy. Regarding the area, the first result
of each field is referred to the complete design, the second one only takes into
account the noise source area. Comparing the respective cases of the table, the
implementation results are lower than most of the papers. In addition, promising
throughput results are also provided. Even though [12] and [16] present better
results in this field, it is also true that their area is higher. This work presents a
good trade-off between these parameters, with also a contained power consumption.
In summary, the proposed design manages to fulfill the original objective of this
thesis, which is finding a TRNG implementation balancing both the entropy level
and the PPA metrics.

6.6 Future Improvements
The proposed TRNG shows promising results, however there is still room for
improvement.
First of all, the throughput and the latency of the circuit can be enhanced by imple-
menting a parallel output for the noise source. An idea to be further investigated
could be to sample each ring oscillator at different points along the chain, and then
XORing together all the parallel samplings, as depicted in Figure 6.6. An accurate
study of the resulting entropy should be carried out to understand if this solution
is feasible.

On the other hand, different conditioning circuits can be compared to find the
best trade-off in terms of area, frequency and power overhead.
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Figure 6.6: Sketch of the noise source schematic to have a parallel output

Another possibility is to implement power-gating and retention solutions to reduce
power consumption. An idea could be to block the noise source through power
gating when unused. At the same time, the actual advantage of this solution with
respect to the time required for the warm-up phase at each power-on must be
estimated.
Regarding the X-HEEP integration, the register file and output buffer of the TRNG
could be partially merged to reduce the latency.
Finally, the proposed TRNG should be physically tested on a real FPGA device.
A few tests have already been done on the Pynq-z2 board, but there is still a lot of
work to do to be able to read the actual output bitstream and have a more realistic
entropy estimate.
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Conclusion

The generation of robust unpredictable random keys is paramount in any crypto-
graphic algorithm, even more, if considering the complexity of PQC ones.
This work presents a possible hardware implementation of a true random number
generator, along with an efficient design methodology, with the aim of combining
statistical properties and power-performance-area (PPA) metrics. The proposed
solution passes all the tests of the NIST statistical test suite and presents a Shan-
non entropy per bit of 0.9995. Syntheses on two different Xilinx FPGA families
have proven promising results in terms of area, power, and maximum frequency.
An accelerator implementing the Keccak primitive can be used as an optional
conditioning component, leading to a more unbiased datastream and a higher
throughput.
The whole system has been integrated as an external accelerator in the RISC-V-
based X-HEEP microcontroller. The hardware acceleration given by the TRNG
has been applied to the PQClean C implementation of the CRYSTALKS-Kyber
algorithm: the TRNG driver is more than 29 times faster than the original C
function generating pseudo-random bytes.
Encouraging results have been obtained, but there is still room for improvement in
terms of the trade-off between throughput, latency, and entropy.
The last years have seen deep research efforts in the field of Post-Quantum Cryp-
tography, leading to novel algorithmic ideas and a focus on the development of
dedicated cryptographic cores. There is still work to do, but this thesis can rep-
resent a valid starting point for a random number generator for an integrated
cryptographic system.
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Code snippets

A.1 Simulation scripts

A.1.1 Delay theoretical model

1 import os.path
2 import numpy as np
3 import matplotlib.pyplot as plot
4

5 # Time unit : ps
6

7 # Parameters
8 n_RO = 33
9 n_delay_elem = 13

10 sigma = 30
11

12 # Deterministic jitter supposed = 0
13 Delta_dGD = 0
14

15 with open(os.path.join(os.getcwd(), 'model_13INV_33RO_30sigma.txt'),
16 'w') as fileID:
17 for j in range(1, n_RO + 2):
18 D_i = np.random.randint(275, 282) # mean delay of a INV (275-281) ps
19 # print delays of a RO for each line
20 if j != 1:
21 n_char = fileID.write(f'RO #{j-1} ')
22 for print_var in range(len("RO #xxxx") - n_char):
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23 fileID.write(' ')
24 for i in range(1, n_delay_elem + 1):
25 if j == 1:
26 if i == 1:
27 for _ in range(len("RO #xxxx")):
28 fileID.write(' ')
29 fileID.write(f'I#{i} ')
30 else:
31 Delta_dLG = np.random.normal(0, sigma)
32 # print delay of INV for each column
33 fileID.write(f'{int(D_i + Delta_dLG + Delta_dGD)} ')
34

35

36 fileID.write('\n')

The parameters and the name of the files are varied by means of a bash script
to have a quick automatic procedure.

A.1.2 assign_delays task

1 task assign_delays;
2 output int unsigned delays_vec[N_STAGES][RO_LENGTH];
3

4 string line;
5 static string fixed_chars = "RO #xxxx";
6 int fID_delays;
7

8 fID_delays = $fopen ("./model_files/model_13INV_33RO_30sigma.txt", "r");
9 $fgets(line, fID_delays);

10

11 for(int j = 0; j < N_STAGES; j++) begin
12 $fscanf(fID_delays, "%s %s ", line, line);
13 for(int i = 0; i < RO_LENGTH; i++) begin
14 $fscanf(fID_delays, "%d ", delays_vec[j][i]);
15 end
16 end
17

18 $fclose(fID_delays);
19
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20 endtask

A.2 Drivers

A.2.1 get_rnd_key(uint32_t* Dout)

1 void get_rnd_key(uint32_t* Dout)
2 {
3 uint32_t volatile *ctrl_reg = (uint32_t*) TRNG_CTRL_START_ADDR;
4 uint32_t volatile *Dout_reg = (uint32_t*) TRNG_DOUT_START_ADDR;
5 uint32_t volatile *status_reg = (uint32_t*) TRNG_STATUS_START_ADDR;
6 uint8_t volatile key_ready;
7 // Performance regs variable
8 unsigned int volatile cycles = 0;
9

10 // Starting the performance counter
11 CSR_CLEAR_BITS(CSR_REG_MCOUNTINHIBIT, 0x1);
12 CSR_WRITE(CSR_REG_MCYCLE, 0);
13

14 // trigger
15 asm volatile ("": : : "memory");
16 *ctrl_reg = 0 << TRNG_CTRL_CTRL_ACK_KEY_READ_BIT;
17 asm volatile ("": : : "memory");
18 *ctrl_reg = 1 << TRNG_CTRL_CTRL_TRNG_EN_BIT;
19 asm volatile ("": : : "memory");
20 *ctrl_reg = 0 << TRNG_CTRL_CTRL_TRNG_EN_BIT;
21

22 // poll
23 do {
24 key_ready = (*status_reg) & (1 << TRNG_CTRL_STATUS_TRNG_BIT);
25 } while (key_ready == 0);
26

27 // get key
28 *Dout = Dout_reg[0];
29

30 // acknowledge key
31 *ctrl_reg = 1 << TRNG_CTRL_CTRL_ACK_KEY_READ_BIT;
32 asm volatile ("": : : "memory");
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33 *ctrl_reg = 0 << TRNG_CTRL_CTRL_ACK_KEY_READ_BIT;
34

35 // stop the HW counter used for monitoring
36 CSR_READ(CSR_REG_MCYCLE, &cycles);
37 printf("\nNumber of clock cycles to generate the key - polling:
38 %d\n", cycles);
39 }
40

A.2.2 get_rnd_key_intr(uint32_t* Dout)

1 void get_rnd_key_intr(uint32_t* Dout)
2 {
3 uint32_t volatile *ctrl_reg = (uint32_t*) TRNG_CTRL_START_ADDR;
4 uint32_t volatile *Dout_reg = (uint32_t*) TRNG_DOUT_START_ADDR;
5 uint32_t volatile *status_reg = (uint32_t*) TRNG_STATUS_START_ADDR;
6 uint8_t volatile key_ready;
7 // Performance regs variable
8 unsigned int volatile cycles = 0;
9

10 // Interrupt
11 plic_Init();
12 plic_irq_set_priority(EXT_INTR_0, 1);
13 plic_irq_set_enabled(EXT_INTR_0, kPlicToggleEnabled);
14

15 CSR_CLEAR_BITS(CSR_REG_MCOUNTINHIBIT, 0x1);
16 CSR_WRITE(CSR_REG_MCYCLE, 0);
17

18 CSR_SET_BITS(CSR_REG_MSTATUS, 0x8);
19 // Set mie.MEIE bit to one to enable machine-level external interrupts
20 const uint32_t mask = 1 << 11;//IRQ_EXT_ENABLE_OFFSET;
21 CSR_SET_BITS(CSR_REG_MIE, mask);
22

23 // trigger
24 asm volatile ("": : : "memory");
25 *ctrl_reg = 0 << TRNG_CTRL_CTRL_ACK_KEY_READ_BIT;
26 asm volatile ("": : : "memory");
27 *ctrl_reg = 1 << TRNG_CTRL_CTRL_TRNG_EN_BIT;
28 asm volatile ("": : : "memory");

72



Code snippets

29 *ctrl_reg = 0 << TRNG_CTRL_CTRL_TRNG_EN_BIT;
30

31 while(plic_intr_flag==0) {
32 wait_for_interrupt();
33 }
34 // get key
35 *Dout = Dout_reg[0];
36

37 // acknowledge key
38 *ctrl_reg = 1 << TRNG_CTRL_CTRL_ACK_KEY_READ_BIT;
39

40 // stop the HW counter used for monitoring
41 CSR_READ(CSR_REG_MCYCLE, &cycles);
42 printf("\nNumber of clock cycles to generate the key - interrupt:
43 %d\n", cycles);
44 }

A.2.3 get_rnd_bytes(size_t nbytes, uint8_t *Dout)

1 void get_rnd_bytes(size_t nbytes, uint8_t *Dout)
2 {
3 uint32_t volatile *ctrl_reg = (uint32_t*) TRNG_CTRL_START_ADDR;
4 uint32_t volatile *Dout_reg = (uint32_t*) TRNG_DOUT_START_ADDR;
5 uint32_t volatile *status_reg = (uint32_t*) TRNG_STATUS_START_ADDR;
6 uint8_t volatile key_ready;
7

8 // trigger
9 asm volatile ("": : : "memory");

10 *ctrl_reg = 0 << TRNG_CTRL_CTRL_ACK_KEY_READ_BIT;
11 asm volatile ("": : : "memory");
12 *ctrl_reg = 1 << TRNG_CTRL_CTRL_TRNG_EN_BIT;
13 asm volatile ("": : : "memory");
14 *ctrl_reg = 0 << TRNG_CTRL_CTRL_TRNG_EN_BIT;
15

16 uint32_t mask = 0x000000FF;
17 for(int i = 0; i < nbytes; i=i+4){
18 asm volatile ("": : : "memory");
19 *ctrl_reg = 0 << TRNG_CTRL_CTRL_ACK_KEY_READ_BIT;
20 asm volatile ("": : : "memory");
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21 do {
22 key_ready = (*status_reg) & (1 << TRNG_CTRL_STATUS_TRNG_BIT);
23 } while (key_ready == 0);
24

25 for(int j = 0; j < 4; j++)
26 Dout[i+j] = (Dout_reg[0] >> (j<<3)) & mask;
27 *ctrl_reg = 1 << TRNG_CTRL_CTRL_ACK_KEY_READ_BIT;
28 }
29

30 }
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