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Summary

Logistics is one of the greatest sources of pollution. For this reason, electric vehicles for pick
up and deliveries are starting to be common. In the last mile setting, the management of these
vehicles is not a big challenge since batteries have enough charge to cover the entire day of usage.
Nevertheless, in the mid-haul setting, the distances to be covered in a single working day are
usually more than the vehicle’s capability over a single charge, therefore a recharging stop is
required. This paves the way for the application of optimization methods.

In this context, we consider the Electric Vehicle Routing Problem for defining the planning of
a series of pick-ups spatially distributed so that the vehicles may need a recharge at a station.
The proposed solution methodology uses an Adaptive Large Neighborhood Search in which the
first stage aims at destroying and repairing the solution using the expected waiting time at the
stations. The second stage uses the realized waiting time which could lead to customers’ demand
being violated, whereby a recourse operation rectifies the broken solution by sending a new vehicle
to the interested node.

This is where the proposed heuristic comes in, which aims at improving horizontally on
the consolidated methodologies of the literature. More specifically it strives to give alternative
operators to the recourse step, considering other realistic situations that the operations would
find themselves in. The alternative recourse strategies provide an exchange of the customer needs
between vehicles and the possibility of trying to recharge less at a station to still be able to serve
without violating the customer’s demand.
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Chapter 1

Introduction

This thesis work is based and expanded upon the research study of [1, Keskin et al.].
Section 1.1 introduces the motivations behind this work giving an overview of the environmental

context.
Section 1.2 introduces the problem under study, explaining the basic characteristics and the

solution organization.
Section 1.3 explains the ALNS from a theoretical point of view.
Section 1.4 introduces the outline of the work and the contribution proposed in this thesis

work.

1.1 Motivations
Developed countries are witnessing a growing demand to mitigate the environmental impact of
transportation and to create cleaner city centers by reducing various emissions. Addressing the
environmental concerns is crucial, given that the transportation sector, as highlighted in a study
by Quadrelli et al. ([2]), contributed to 24% of total CO2 emissions in 2004. This represents a
notable increase from the 20% reported in 1971, indicating a concerning upward trend in emissions.
Without effective countermeasures, there is a risk that CO2 emissions will continue to escalate.

To assess the relationship between CO2 emissions and logistics performance, Mariano et al.
([3]) proposed a composite index. This index serves as a valuable tool for evaluating both the
environmental friendliness and functionality of the transportation sector. By providing insights
into the extent to which the transport industry is environmentally sustainable, the index also
offers a glimpse into the countries’ investments in reducing the carbon footprint associated with
transportation. Such multidimensional indices contribute to a comprehensive understanding of
the interplay between environmental considerations and logistical efficiency in the context of
transportation.

1.2 Problem Definition
The problem at hand involves designing a set of routes for identical Electric Vehicles (EVs), each
capable of making stops at stations to recharge their batteries. These routes must fulfill the
demands of known customers, each with specific demand quantities and time windows. Notably,
if a vehicle arrives before the early time window, it must wait until the designated time to serve
the customer. However, arrival after the late time is strictly prohibited. Additionally, the State of
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Charge (SoC) throughout the route must remain non-negative, with the option to visit a station
for recharging if necessary. The EVs commence their journeys from the depot opening and must
return before the depot closure.

Upon reaching a station, a vehicle may encounter congestion, necessitating a waiting period
for its turn to recharge. The waiting time is subject to a known distribution, but the actual time
remains uncertain. This waiting time can result in violations of time windows for subsequent
customers, prompting recourse actions to rectify the violation.

The problem is structured as a two-stage model. In the first stage, routes are determined and
computed. In the second stage, the routes are simulated up to the station, where the random
waiting time is realized. The first-stage solution is then adjusted through a recourse action. The
overarching objective is to find a set of routes that minimize the cost of the first stage combined
with the expected cost of the recourse action. The first-term cost encompasses the vehicle fixed
cost, driver cost, and energy cost.

Three available recourse actions address violations. Firstly, if a customer’s time window is
breached, a new vehicle is dispatched from the depot to serve that customer. In the second
scenario, the violated customer may be assigned to a vehicle already en route; otherwise, the
first action is implemented. Lastly, in the third case, the vehicle attempts partial recharging
to minimize time spent at the station. If this proves insufficient, one of the first two actions is
applied accordingly.

1.3 Adaptive Large Neighborhood Search
The Adaptive Large Neighborhood Search (ALNS) represents a meta-heuristic approach applied
to tackle combinatorial optimization problems within an optimization framework. The primary
mechanism of the ALNS involves a continuous cycle of destroying and repairing the solution
through operators, facilitating the exploration of extensive neighborhoods within the search space.
This methodology is an evolution of the Large Neighborhood Search (LNS), with the ALNS
introducing dynamic adjustments to the search strategy.

The ALNS differentiates itself by dynamically assigning scores and weights to each method
used in the destruction and repair process. These scores and weights undergo changes at predefined
intervals or after a certain number of iterations. This dynamic adaptation allows more effective
methods to exert a greater influence on the solution, enhancing their impact. Despite this emphasis
on effectiveness, the ALNS maintains an element of stochasticity in the solution, ensuring a
randomized mixing of solutions. This stochastic mixing is crucial for avoiding local optima and
promoting a more robust exploration of the solution space.

In essence, the ALNS combines the foundational principles of the Large Neighborhood Search
with adaptive mechanisms, providing a flexible and dynamic approach to optimizing solutions in
combinatorial optimization problems. The dynamic adjustment of search strategies based on the
performance of individual methods contributes to the algorithm’s adaptability and efficiency in
finding near-optimal or optimal solutions in complex optimization environments.

1.4 Outline and Contribution
This thesis aims to build upon the groundwork laid by Keskin et al. in their previous work,
as documented in [1]. The primary focus is on introducing alternative recourse methods to
address challenges within the proposed framework. Specifically, the thesis explores the potential of
exchanging orders among vehicles in transit and the feasibility of implementing partial recharging
at designated stations.
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The structure of this thesis unfolds as follows: Chapter 2 provides an updated and com-
prehensive literature review, delving into the nuances of the problem and tracing its evolution
over time. Chapter 3 elucidates the methodology employed to derive the proposed solutions.
Subsequently, Chapter 4 presents the computational results and draws comparisons between
the initially adopted solution and the alternatives proposed in this thesis. Finally, Chapter 5
encapsulates a succinct summary of the undertaken work and outlines potential avenues for future
improvements and enhancements that can be applied to the problem at hand.

12



Chapter 2

Literature review

This chapter discusses the existing problems and methodologies relevant to the work of this thesis.
More specifically the expansion of the problem and the proposed solutions for each stage.

Section 2.1 discusses the VRP, the most basic version of this problem, and the proposed
methodologies analyzed over the years.

Section 2.2 is an in-depth analysis of the EVRP and the proposed methodologies in the
literature, relevant to this study.

Section 2.3 discusses the stochastic EVRP and what it means from a research point of view.
Section 2.4 presents the solution and methodology proposed in the work of Keskin et al.[1]

2.1 Vehicle Routing Problem and solution methodologies
Research on the Vehicle Routing Problem (VRP) has been ongoing since the 1960s, as documented
in [4]. The fundamental objective of the VRP is to optimize the determination of an optimal set
of routes for vehicles tasked with distributing or picking up goods. Mathematically, the VRP
falls into the NP-hard class of problems, indicating its computational complexity. While exact
solution methods exist, they are often time-consuming and impractical for real-world applications.
Consequently, the field has witnessed the development of approximation methods, including
heuristics and meta-heuristics.

Various techniques have been devised to address the VRP, among which are heuristics and
meta-heuristics due to their ability to provide reasonably good solutions in a more computationally
feasible manner. Noteworthy examples include simulated annealing [5], tabu search [6], savings
algorithms [7], I1 route construction method [8], and the 2-opt optimization algorithm [9].

Simulated annealing involves adjusting the initial solution and determining whether to accept
the modification based on a temperature parameter that allows for the acceptance of inferior
solutions. As the algorithm advances, the temperature decreases, gradually steering the objective
function towards a near-optimal value.

Tabu search revolves around refining the solution by referencing a list of recently visited
solutions, which helps prevent the algorithm from becoming trapped in local minima. This
method may involve restricting certain actions temporarily to encourage exploration of different
solution options.

The savings algorithm systematically combines pairs of routes into single, more efficient routes
by identifying and exploiting opportunities for consolidation. This process repeats iteratively
until no further significant savings can be achieved, resulting in a set of optimized routes that
minimize the total distance traveled by vehicles.
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The I1 construction method is primarily employed to generate initial solutions. It begins
by selecting a specific customer as the starting point and then progressively adds additional
customers to the route. This selection process is guided by factors such as distance, time, or
demand.

The 2-opt algorithm operates by iteratively swapping pairs of edges in a given route and
evaluating whether the resulting route is shorter. If the new route is shorter, the edge swap is
accepted, otherwise it is rejected. This process continues iteratively until no further improvements
can be made.

These methodologies have been employed to effectively solve the VRP, offering practical
solutions to a problem that holds significance in logistics and transportation optimization.

2.2 The Electric Vehicle Routing Problem and solution
methodologies

The research conducted by Erdelic et al. [10] provides a comprehensive analysis of the existing
body of work on the Electric Vehicle Routing Problem (EVRP) and its solutions. Within this
broader context, several notable studies have delved into specific facets of the EVRP, contributing
valuable insights to the field.

Juan et al. [11] conduct a thorough examination of the environmental, strategic, and opera-
tional challenges associated with Electric Vehicles (EVs) in logistics. They specifically address
the impact of electric vehicles on carbon emissions, exploring various components of the problem.
Their focus encompasses battery swap technology, optimal charging station locations, constraints
on the number of charges, and the intricacies of the charging network.

Similarly, Margaritis et al. [12] center their attention on the development of batteries, charger
compatibility, systematic energy management, the utilization of cooling and heating systems,
energy sources, novel policies, and the absence of optimization procedures to minimize EV routing
and scheduling decisions.

Pelletier et al. [13] contribute to the technical background of Electric Vehicle types and
batteries, EV market penetration, and competitiveness of EVs, and provide an overview of the
existing research landscape in the domain of Electric Vehicles in transportation.

The uncertain waiting time at public recharging stations has attracted the attention of multiple
researchers. Sweda et al. [14] delve into the problem of computing paths between nodes, with
a specific focus on station availability along these paths. On the other hand, Kullman et al.
[15] address the EVRP by considering potential recharge points at public recharging stations or
the depot, explicitly accounting for waiting times. Their approach involves the development of
routing policies that anticipate queue dynamics, wherein an arriving EV may either wait in a
queue or decide to continue its route without recharging, subsequently replanning the remainder
of its journey. These studies collectively contribute to a nuanced understanding of the EVRP and
its various dimensions.

2.3 The Stochastic Electric Vehicle Routing Problem and
Solution Methodologies

Stochastic Vehicle Routing Problems (SVRPs) involve routing fleets where certain parameters
are not predetermined. In the specific SVRP presented in [1], the variability lies in the stochastic
nature of service times, meaning the time required to serve each customer is uncertain.
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To address SVRPs with stochastic service times, two primary methodologies are commonly
employed: chance-constrained and multi-stage stochastic solutions. In chance-constrained ap-
proaches, the aim is to ensure constraints are met with a specified probability. However, if
constraints are not satisfied, recourse actions are typically lacking. On the other hand, multi-stage
stochastic methodologies compute an initial solution without knowledge of the actual stochastic
parameter realization. After the stochastic parameters are revealed, the solution is re-optimized
through recourse actions.

Recourse actions involve adjusting the initial solution based on the actual realization of
stochastic parameters. Proposed actions include permitting late arrivals at customers or the depot
([16]) and skipping certain customers ([17]). Both exact and meta-heuristic solution methods
have been developed for SVRPs. These methods may derive probability distributions through
analytical approaches or experimental simulations.

For a comprehensive exploration of SVRPs, including various stochastic parameters, [18]
provides an in-depth overview, covering different formulations, solution methods, and applications
in the literature. In summary, SVRPs demand sophisticated modeling and solution strategies to
navigate uncertainty and make robust decisions in the face of unpredictable parameters.

2.4 Keskin solution
Keskin et al. [1] introduce a simulation-based Adaptive Large Neighborhood Search (ALNS)
heuristic for the Electric Vehicle Routing Problem (EVRP). The ALNS begins by constructing
the first-stage solution using expected values for waiting times. This initial solution is then
subjected to a simulator, evaluating the consequences of the vehicle adhering to the proposed
routing. At each station, the waiting time is realized, and based on this, the second-stage solution
is formulated. The total cost of the recourse action is computed, considering multiple scenarios.

The ALNS is designed with two distinct classes of operators: destroy operators and repair
operators. In this thesis, these methods are not only mirrored but also expanded upon, providing
a detailed exploration and extension of the proposed techniques. This extension involves a
comprehensive explanation of the specific destroy and repair operators employed in the ALNS.

Moving to the second stage, the problem is built upon the output of the ALNS first stage,
given that it provides a feasible solution. However, if the station within the route causes a delay
significant enough to compromise this feasibility, a corrective action is triggered. In such cases, a
new vehicle is dispatched from the depot to fulfill the needs of the violated customers, ensuring
that service commitments are met.

This iterative process is repeated for a predetermined number of iterations, and at each step,
a new solution is determined. The decision-making process for selecting a new solution is based
on improvements to the objective function or the acceptance of denied solutions, employing a
simulated annealing criterion. This strategy aids in better exploring the solution space, allowing
the algorithm to adapt and refine its solutions throughout multiple iterations. The intricate
interplay between the first and second stages, coupled with the dynamic adjustment of the solution
strategy, forms the core of the proposed simulation-based ALNS heuristic for the EVRP.
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Chapter 3

Methodology

In this chapter, the problem methodology is explained and analyzed in-depth.
Section 3.1 introduces the structure of the instances and the setup of the problem in general.
Section 3.2 is an in-depth look at the implementation of the core algorithm of this thesis work,

the ALNS, explaining how every operator works and how the scores and weights are updated.
Section 3.3 introduces and explains the recourse actions used in the second stage of the

problem to get the expected recourse cost.
Finally, Section 3.4 discusses the simulated annealing and how it impacts the final solution.

3.1 Instances and problem setup
The instances examined in this study are derived from the Solomon dataset [19], augmented
with the specific characteristics related to electric vehicles. The dataset used can be accessed via
the link provided in the paper by Desaulniers et al. [20]. Each instance belongs to one of three
types: C, characterized by a clustered arrangement of elements based on geographical logic; R,
where the positioning is entirely random; and RC, which combines both randomly and clustered
positioned customers.

The problem-solving approach is structured into five main steps and draws inspiration from
the heuristic proposed by Keskin et al. [1]:

The algorithm begins by constructing a base solution through a greedy approach. This involves
searching for the nearest reachable customer, serving it, and continuing until the vehicle’s return
to the depot is imminent. This initial step often results in a solution with a relatively high cost,
laying the groundwork for subsequent refinement.

The Adaptive Large Neighborhood Search (ALNS) cycle commences with this initial solution
as its foundation. The first stage of the ALNS involves a process of destroying and repairing the
solution. Both stations and customers undergo modifications, with the distinction that station
modifications occur only every five iterations. After this step potential empty routes or routes
with only one customer are eliminated, effectively reducing overall costs. Importantly, during this
stage, there is no explicit check for solution feasibility.

Following the first stage, the algorithm verifies the feasibility of the solution. In cases where the
solution becomes infeasible, the applied methods receive low scores, diminishing their probability
of being selected. However, if the solution remains feasible, the algorithm proceeds to compute
the expected recourse cost in the second stage, considering various recourse application heuristics.

Once the expected recourse cost is computed, the algorithm evaluates whether to accept
the solution. If the overall cost is lower than the best cost encountered thus far, the solution
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is accepted outright. Alternatively, the solution may be accepted with simulated annealing,
enhancing the statistical mixing of solutions. If both tests fail, indicating that the solution is not
optimal, the proposed solution is rejected, and the previous one is reinstated.

Periodically, every ten iterations, the scores of the first-stage operators are assessed, and
their weights are updated based on performance. The algorithm then proceeds to the next batch
of iterations, resetting the scores to zero. This iterative process ensures that the algorithm
dynamically adapts its strategy over multiple iterations, balancing exploration and exploitation
in the search for an optimal solution.

3.2 ALNS implementation
The ALNS is implemented based on the organization in [1, Keskin et al.]’s paper.

3.2.1 ALNS destroy operators
The destroy operators modify the given solution by removing a certain number of elements from
it. In this project, there are operators for both the customers and the stations.

Customer destroy operators

In the context of this thesis, the term "Customer Destroy" refers to a family of operators designed
to remove a certain number of customers from the current solution (γc). These operators are
characterized by distinct criteria, and once a customer is removed, it is temporarily saved and
passed on to the repair operator for potential inclusion in the revised solution.

This thesis utilizes 11 variations of destruction operators, primarily influenced by the work of
Keskin et al. [1] and their recommended implementation. These operators are as follows: random
customer removal, worst distance destroy, worst time destroy, Shaw destroy, demand-based
destroy, time-based destroy, proximity-based destroy, random route destroy, zone destroy, greedy
route removal, and probabilistic worst removal.

Random customer destroy

The "Random Customer Removal" operator, as its name suggests, involves the selection of a
customer from the available list of elements and subsequently removing that customer from the
current solution. The pseudocode for the implementation of this operator is outlined in Algorithm
1.

Worst distance customer destroy

The "Worst Distance Removal" procedure involves ranking the customers in decreasing order
based on the sum of the distance costs covered from a node to both its successor and predecessor.
After this ranking, the procedure generates a random number between 0 and 1. A parameter
κ ≥ 1, referred to as the determinism factor, serves as a stochasticity index. If κ is closer to 1,
the choice of which customer to remove becomes more random.

In simpler terms, the worst distance removal method identifies customers that, when removed,
would result in the most significant increase in the overall distance cost. The stochasticity
introduced by the determinism factor ensures variability in the customer selection process. A
higher κ makes the choice more random, while a lower value leans towards a more deterministic
selection.
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Algorithm 1 Random customer removal pseudo-code
1: procedure Random Destroy Customer(solution)
2: ▷ solution contains all the information on routes and vehicles
3: cr ← empty list ▷ customers to remove list
4: while length(cr) < γc do
5: c←random customer to remove
6: if c /∈ cr then
7: append c to cr

8: end if
9: end while

10: Remove customers from solution
11: return cr ▷ Return removed customers
12: end procedure

18
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Algorithm 2 provides the pseudocode that outlines the step-by-step implementation of the
worst distance removal procedure within the algorithm.

Algorithm 2 Worst distance removal pseudo-code
1: procedure Worst Distance Destroy Customer(solution)
2: ▷ solution contains all the information on routes and vehicles
3: cr ← empty list ▷ customers to remove list
4: dc ← empty list ▷ distance costs list
5: for route ∈ routes do
6: for node ∈ route do
7: costarc1 ← cost from node to predecessor
8: costarc2 ← cost from node to successor
9: append |costarc1 + costarc2 | to dc

10: end for
11: end for
12: while length(cr) < γc do
13: n←random value ∈ [0,1)
14: pos← ⌊nκ ∗ length(dc)⌋
15: c← customer at position pos
16: if c /∈ cr then
17: append c to cr

18: end if
19: end while
20: Remove customers from solution
21: return cr ▷ Return removed customers
22: end procedure

Worst time customer destroy

The "Worst Time Destroy" procedure operates like Algorithm 2. However, instead of focusing on
the cost of the arc, it assesses the difference in time between the early time window of the customer
and the arrival of the vehicle to the element. The pseudocode implementation is provided in
Algorithm 3.

In essence, this procedure identifies customers whose removal would result in the most
significant negative impact on the time-related constraints. It evaluates the difference between
the early time window of a customer and the arrival time of the vehicle at that customer. By
ranking customers based on this difference, the algorithm aims to select customers that, when
removed, would disrupt the existing schedule the most.

This method provides a complementary approach to solution refinement, specifically targeting
time-related constraints. The pseudocode offers a detailed representation of how the worst-time
destroy procedure is implemented within the algorithm.

Shaw customer destroy

The "Shaw Customer Destroy" procedure introduces a measure of relatedness between customers,
aiming to remove the most closely related customers to a particular node. The relatedness is
calculated using the following formula:

Γij = λcij + µ|cei − cej |+ ϕ|Ωij |+ ν|δi − δj |
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Algorithm 3 Worst time removal pseudo-code
1: procedure Worst Time Destroy Customer(solution)
2: ▷ solution contains all the information on routes and vehicles
3: cr ← empty list ▷ customers to remove list
4: tc ← empty list ▷ time costs list
5: for route ∈ routes do
6: for node ∈ route do
7: time← |arrival − ce| ▷ ce is the early customer time window
8: append time to dc

9: end for
10: end for
11: while length(cr) < γc do
12: n←random value ∈ [0,1)
13: pos← ⌊nκ ∗ length(dc)⌋
14: c← customer at position pos
15: if c /∈ cr then
16: append c to cr

17: end if
18: end while
19: Remove customers from solution
20: return cr ▷ Return removed customers
21: end procedure
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Here:

• λ is the Shaw factor that relates to the distance between two customers.

• µ relates to the difference in the early time window for customers.

• ϕ identifies whether two customers are on the same route.

• ν relates to the difference in demand between two customers.

The relatedness values are then arranged in decreasing order, and a position is chosen like the
selection process in Algorithms 2 and 3. Algorithm 4 provides the pseudocode implementation
which offers a step-by-step representation of how the Shaw customer destroy procedure is
implemented within the algorithm, showcasing the incorporation of various relatedness factors for
intelligent customer removal.

In essence, the Shaw removal procedure assesses the inter-customer relationships based on
multiple factors, including spatial distance, temporal constraints, route similarity, and demand
differences. By removing customers with higher relatedness values, the algorithm aims to disrupt
clusters of closely related customers, potentially leading to more effective solution improvements.

Demand, time, proximity customer destroy

The demand-based, time-based, and proximity-based removal procedures are all built on Algorithm
4. The only difference in the methods is that all other parameters are set to 0, except the one
under study. In the demand based, λ, ϕ, µ parameters are all 0 while ν is set to ν0. For the time
based only µ is set to µ0 while in the proximity-based only λ is set to λ0. To avoid redundancy
the pseudo-code of the procedures is omitted since they are equal to Algorithm 4.

The demand-based, time-based, and proximity-based removal procedures are variations of the
Shaw removal procedure (Algorithm 4). The distinction lies in the setting of parameters in these
methods, with all parameters other than the one under study being set to 0.

• Demand-Based Removal: In this procedure, λ, ϕ, and µ are all set to 0, while ν is assigned a
value (ν0). This means that only the demand-related parameter ν influences the relatedness
measure.

• Time-Based Removal: This procedure sets µ to a value (µ0) while all other parameters
(λ, ϕ, ν) are set to 0. Thus, only the time-related parameter µ affects the computation of
relatedness.

• Proximity-Based Removal: In this procedure, λ is set to a value (λ0), while all other
parameters (ϕ, µ, ν) are set to 0. Consequently, only the spatial distance-related parameter
λ plays a role in determining relatedness.

To avoid redundancy, the pseudocode for these procedures is omitted since they share
similarities with Algorithm 4.

Random route customer destroy

The "Random Route Customer Destroy" procedure is straightforward in its approach. It involves
randomly selecting a route, then removing up to γc customers from that route.

Algorithm 5 provides the pseudocode for a step-by-step representation of how the random
route customer destroy procedure is implemented within the algorithm.
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Algorithm 4 Shaw removal pseudo-code
1: procedure Shaw Destroy Customer(solution)
2: ▷ solution contains all the information on routes and vehicles
3: cr ← empty list ▷ customers to remove list
4: Γi ← empty list ▷ Relatedness to node i list
5: λ← λ0 ▷ λ0 is the initialized parameter
6: µ← µ0 ▷ µ0 is the initialized parameter
7: ϕ← ϕ0 ▷ ϕ0 is the initialized parameter
8: ν ← ν0 ▷ ν0 is the initialized parameter
9: ci ← random customer

10: for cj ∈ customers do
11: Γij ← Γij + distanceij × λ
12: Γij ← Γij + |cei − cej | × µ ▷ ce is the early customer time window
13: Γij ← Γij + |δi − δj | × ν ▷ δ is the customer demand
14: for route ∈ routes do
15: if ci and cj ∈route then
16: Ωij ← −1
17: end if
18: end for
19: Γij ← Γij + Ωij × ϕ
20: append Γij to Γi

21: end for
22: while length(cr) < γc do
23: n←random value ∈ [0,1)
24: pos← ⌊nκ ∗ length(Γi)⌋
25: c← customer at position pos
26: if c /∈ cr then
27: append c to cr

28: end if
29: end while
30: Remove customers from solution
31: return cr ▷ Return removed customers
32: end procedure

Algorithm 5 Random route customer removal pseudo-code
1: procedure Random Route Destroy Customer(solution)
2: ▷ solution contains all the information on routes and vehicles
3: cr ← empty list ▷ customers to remove list
4: j ← random route
5: while length(cr) < γc do
6: c←customer in route j to remove
7: if c /∈ cr then
8: append c to cr

9: end if
10: end while
11: Remove customers from solution
12: return cr ▷ Return removed customers
13: end procedure
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Zone customer destroy

The "Zone Removal" procedure divides the space occupied by customers into four zones. It then
removes up to γc customers from a specific zone. Algorithm 6 provides the pseudocode for the
implementation.

In simpler terms, the space is spatially divided into distinct zones, and the algorithm system-
atically removes customers from each zone until the desired number of removals is achieved. This
procedure helps in exploring the impact of removing customers from different spatial regions,
contributing to the diversity in the solution search space.

Algorithm 6 Zone customer removal pseudo-code
1: procedure Zone Destroy Customer(solution)
2: ▷ solution contains all the information on routes and vehicles
3: cr ← empty list ▷ customers to remove list
4: j ← random zone
5: while length(cr) < γc do
6: c←customer in zone j to remove
7: if c /∈ cr then
8: append c to cr

9: end if
10: end while
11: Remove customers from solution
12: return cr ▷ Return removed customers
13: end procedure

Greedy customer destroy

The "Greedy Route Removal" procedure involves the computation of the cost for each route in
the solution. Subsequently, the routes are ranked in decreasing order based on their costs, and up
to γc customers are removed from the top-ranked route. Algorithm 7 provides the pseudocode for
the implementation.

In simpler terms, this procedure identifies the route with the highest cost, likely indicating
inefficiency, and selectively removes customers from that route. By focusing on the most costly
route, the algorithm aims to strategically improve overall solution quality.

Probabilistic customer destroy

The "Probabilistic Worst Removal" procedure focuses on removing customers that might lead
to a violation of their successor’s time window. Since waiting time is only realized at charging
stations, the probability of violating time windows is considered for all successive customers. The
procedure ranks customers based on this probability and then removes the first γc customers
from the ranked list. Algorithm 8 provides the pseudocode for the implementation.

In simpler terms, this procedure identifies and removes customers whose presence in the
solution could potentially cause violations of time windows for their successors. By considering
the waiting time realization at charging stations, it calculates the probability of time window
violations for successive customers and prioritizes their removal.
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Algorithm 7 Greedy route customer removal pseudo-code
1: procedure Greedy Route Destroy Customer(solution)
2: ▷ solution contains all the information on routes and vehicles
3: cr ← empty list ▷ customers to remove list
4: cost← empty list ▷ route costs list
5: for route ∈ routes do
6: costroute ← cost of the route
7: append costroute to cost
8: end for
9: j ← most expensive route in cost

10: while length(cr) < γc do
11: c←customer in j to remove
12: if c /∈ cr then
13: append c to cr

14: end if
15: end while
16: Remove customers from solution
17: return cr ▷ Return removed customers
18: end procedure

Algorithm 8 Probabilistic worst customer removal pseudo-code
1: procedure Probabilistic Worst Destroy Customer(solution)
2: ▷ solution contains all the information on routes and vehicles
3: cr ← empty list ▷ customers to remove list
4: pinf ← empty list ▷ probability of infeasibility list
5: for route ∈ routes do
6: for node ∈ route do
7: prob← 0
8: for n ∈ scenarios do
9: if node after station and vehicle arrival > cenode then

10: prob← prob + 1
11: end if
12: end for
13: prob← prob/scenarios
14:
15: append probroute to pinf

16: end for
17: end for
18: while length(cr) < γc do
19: c← most probable customer
20: if c /∈ cr then
21: append c to cr

22: end if
23: end while
24: Remove customers from solution
25: return cr ▷ Return removed customers
26: end procedure

24



Methodology

Station Destroy

The family of "Station Destroy" operators involves removing a certain number of stations (γs)
from the current solution, guided by various criteria. Once the stations are removed, the modified
solution is passed on to the repair operator for adjustment.

In this thesis, two specific station removal operators are employed: the "Random Destroy"
and the "Longest Waiting Time Destroy."

Random station destroy

The "Random Station Removal" procedure, as its name suggests, involves randomly selecting a
station from the current solution and removing it. Algorithm 9 provides the pseudocode for the
implementation.

In simpler terms, this procedure introduces a stochastic element by randomly choosing a
station and excluding it from the current solution. The randomness contributes to the exploration
of various possibilities for station removal during the optimization process.

Algorithm 9 Random station removal pseudo-code
1: procedure Random Destroy Station(solution)
2: ▷ solution contains all the information on routes and vehicles
3: sr ← empty list ▷ stations to remove list
4: while length(sr) < γs do
5: s←random station to remove
6: if s /∈ sr then
7: append s to sr

8: end if
9: end while

10: Remove station from solution
11: return sr ▷ Return removed stations
12: end procedure

Longest waiting time station destroy

The "Longest Waiting Time Station Removal" procedure focuses on removing charging stations
that contribute the most to waiting time. The objective is to allow the repair operator to
select a more convenient station for the vehicles. Algorithm 10 provides the pseudocode for the
implementation.

In simpler terms, this procedure identifies charging stations based on the waiting time they
cause and prioritizes the removal of stations that result in the most extended waiting times
for vehicles. By targeting stations associated with higher waiting times, the algorithm aims to
improve the overall efficiency of the solution.

3.2.2 ALNS repair operators
The "Repair Operators" play a crucial role in modifying the given solution by reintegrating
the elements that were previously removed. The goal is to enhance the existing solution by
strategically placing the removed elements in different positions.
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Algorithm 10 Longest waiting time station removal pseudo-code
1: procedure Longest Waiting Time Destroy Station(solution)
2: ▷ solution contains all the information on routes and vehicles
3: sr ← empty list ▷ stations to remove list
4: while length(sr) < γs do
5: Etw ← empty list
6: for station in stations do
7: Etwi ← expected waiting time of station i
8: append Etwi to Etw

9: end for
10: se ← Etw sorted in increasing order
11: for s ∈ se do
12: if s /∈ sr then
13: append s to sr

14: end if
15: end for
16: end while
17: Remove station from solution
18: return sr ▷ Return removed stations
19: end procedure
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In the case of "Customer Repair," the removed customers are reinserted into the solution,
potentially in a different spot on the same route or even on an entirely different route. This
process allows for the exploration of different customer placements to improve the overall solution.

On the other hand, in "Station Repair," a removed station is reintroduced to the route. It’s
important to note that the station added during repair may not necessarily be the same as the one
that was removed. This flexibility allows for a dynamic adjustment of charging station locations
to optimize the solution.

It’s worth mentioning that the repair operators’ step in the Adaptive Large Neighborhood
Search (ALNS) does not guarantee that the repaired solution will be feasible. The algorithm
explores various possibilities during repair, and feasibility is ensured in subsequent steps or
iterations.

Customer repair

The family of "Customer Repair" operators focuses on reintegrating previously removed customers
into the solution, intending to enhance its overall quality. In this thesis, four specific repair
operators are employed: the "Greedy Repair", the "Naive Greedy Repair", the "Probabilistic
Greedy Repair", and the "Probabilistic Greedy with Confidence Repair".

Greedy customer repair

The "Greedy Customer Repair" procedure aims to reintegrate previously removed customers into
the solution. The approach taken is to explore every possible position for each customer on the
routes and select the spot that minimally increases the cost of the solution, recalculating this
cost after every customer to find its best position. This process is repeated for every γc customer
that was removed during the destruction phase. Algorithm 11 provides the pseudocode for the
implementation.

In simpler terms, for each removed customer, the algorithm systematically evaluates the
impact of placing that customer at various positions within the routes. The goal is to identify the
placement that results in the smallest increase in the overall solution cost. By prioritizing positions
that least impact the cost, the algorithm seeks to optimize the reintroduction of customers into
the solution.

Naive Greedy customer repair

The "Naive Greedy Customer Repair" procedure aims to reintegrate previously removed customers
into the solution. The approach taken is to explore every possible position for each customer on
the routes and select the spot that minimally increases the cost of the solution. This process
is repeated for every γc customer that was removed during the destruction phase. To avoid
redundancy, the implementation is omitted so refer to Algorithm 11.

Probabilistic greedy customer repair

The "Probabilistic Greedy Customer Repair" approach shares similarities with the greedy repair
method in that it attempts to insert a customer at every possible position within each route.
However, this approach introduces a probabilistic element, incorporating the expected recourse
cost into the ranking of potential positions. The algorithm considers not only the immediate
impact on the solution cost but also the overall expected cost, choosing positions that minimize
the expected impact.

Algorithm 12 provides the pseudocode for the implementation of this procedure.
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Algorithm 11 Greedy customer repair pseudo-code
1: procedure Greedy Repair Customer(solution, removed_elements)
2: ▷ solution contains all the information on routes and vehicles
3: ▷ removed_elements contains all the elements removed at the destroy step
4: for customer in removed_elements do
5: max_cost_difference← − inf
6: for route in routes do
7: for spot in route do
8: add customer in spot at route
9: cost_difference← cost difference of insertion

10: if cost_difference > max_cost_difference then
11: best_spot← spot
12: best_route← route
13: end if
14: end for
15: end for
16: add customer in best_spot of route best_route
17: end for
18: return solution
19: end procedure
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In simpler terms, for each removed customer, the algorithm evaluates potential positions
within the routes. The choice of position is not solely based on immediate cost considerations
but also factors in the expected recourse cost. By probabilistically selecting positions with lower
overall expected costs, the algorithm takes a more nuanced approach to customer reintegration,
balancing immediate and potential future impacts on the solution.

Algorithm 12 Probabilistic greedy customer repair pseudo-code
1: procedure Probabilistic Greedy Repair Customer(solution, removed_elements)
2: ▷ solution contains all the information on routes and vehicles
3: ▷ removed_elements contains all the elements removed at the destroy step
4: for customer in removed_elements do
5: max_cost_difference← − inf
6: for route in routes do
7: for spot in route do
8: add customer in spot at route
9: cost_difference← cost difference of insertion + expected recourse cost

10: if cost_difference > max_cost_difference then
11: best_spot← spot
12: best_route← route
13: end if
14: end for
15: end for
16: add customer in best_spot of route best_route
17: end for
18: return solution
19: end procedure

Probabilistic greedy customer repair with confidence

The "Probabilistic Greedy Customer Repair with Confidence" operates similarly to the greedy
customer repair approach, attempting to insert a customer at every possible position within each
route. However, it introduces an additional layer of complexity by computing the probability that
the route remains feasible after the repair. If this probability falls outside a specified confidence
interval, the insertion is discarded. The algorithm then selects the position with the lowest
insertion cost, and the customer is added to the solution.

Algorithm 13 provides the pseudocode for the implementation of this procedure.
In simpler terms, for each removed customer, the algorithm assesses potential positions within

the routes. The decision to insert the customer considers not only the immediate cost implications
but also the feasibility of the route after the repair. If the computed probability of feasibility falls
within a certain confidence interval, the insertion is accepted. Otherwise, it is discarded, and
the algorithm seeks an alternative position. The final choice is based on minimizing the overall
insertion cost.

Station repair

The family of "Station Repair" operators focuses on integrating stations into the solution, which
does not necessarily include the stations removed in the destroy step, intending to enhance its
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Algorithm 13 Probabilistic greedy customer repair with confidence pseudo-code
1: procedure Probabilistic Greedy Confidence Repair Customer(solution, re-

moved_elements)
2: ▷ solution contains all the information on routes and vehicles
3: ▷ removed_elements contains all the elements removed at the destroy step
4: for customer in removed_elements do
5: max_cost_difference← − inf
6: for route in routes do
7: for spot in route do
8: add customer in spot at route
9: cost_difference← cost difference of insertion

10: pfeasible ← probability that route is feasible
11: if pfeasible > greedy_confidence then
12: if cost_difference > max_cost_difference then
13: best_spot← spot
14: best_route← route
15: end if
16: else
17: discard insertion
18: end if
19: end for
20: end for
21: add customer in best_spot of route best_route
22: end for
23: return solution
24: end procedure
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overall quality. In this thesis, two specific repair operators are employed: the "Deterministic Best
Repair", and the "Probabilistic Best Repair".

Deterministic best station repair

The "Deterministic Best Station Repair" procedure focuses on reintegrating stations into the
solution at previously removed spots. The approach involves exploring every possible station that
was removed and assessing the maximum cost difference between the old station and the new one.
Subsequently, the procedure inserts the station that yields the best cost improvement back into
the solution.

Algorithm 14 provides the pseudocode for the implementation of this procedure.
In simpler terms, for each removed station, the algorithm evaluates various possibilities of

reintegrating stations into the solution. The goal is to identify the station that, when inserted,
results in the maximum improvement in the overall solution cost. By systematically exploring
these possibilities, the algorithm optimizes the reintroduction of stations into the solution.

Algorithm 14 Probabilistic greedy customer repair with confidence pseudo-code
1: procedure Deterministic Best Station Repair(solution, removed_elements)
2: ▷ solution contains all the information on routes and vehicles
3: ▷ removed_elements contains all the elements removed at the destroy step
4: cl ← empty list
5: ▷ list of base costs
6: for route in solution do
7: append cost_solution to cl

8: end for
9: for route in routes do

10: for spot in route do
11: insertionc ← empty list
12: add station in spot at route
13: append insertion_cost− cl to insertionc

14: if insertionc > max_cost_difference then
15: insert station at the spot
16: end if
17: end for
18: end for
19: return solution
20: end procedure

Probabilistic Best Station Repair

The "Probabilistic Best Station Repair" procedure shares similarities with the "Deterministic
Best Station Repair." It also focuses on reintegrating stations into the solution at previously
removed spots. The primary distinction lies in the consideration of both the minimal insertion
cost and the cost of the recourse stage. This dual consideration adds a probabilistic element to the
decision-making process, incorporating the expected cost implications of station reintroduction.

While the pseudocode for the "Probabilistic Best Station Repair" is omitted, it operates like
Algorithm 14. For each removed station, the algorithm assesses various possibilities of reintegrating
stations into the solution, aiming to identify the station that, when inserted, results in the optimal
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balance between minimal insertion cost and expected recourse cost. This probabilistic approach
adds complexity to the decision-making process, considering both immediate and potential future
impacts on the solution.

3.2.3 Operators score and weight

The operators mentioned earlier work collaboratively within the Adaptive Large Neighborhood
Search (ALNS) framework to iteratively refine the solution. The ALNS employs a dynamic
scoring mechanism and weight adjustment for each operator to adapt and improve the search
strategy over iterations.

The ALNS assigns scores to operators based on their impact on the current solution state.

• If the operators result in an infeasible solution, the score is set to 0.

• If the solution is rejected based on the new cost, the simulated annealing attempts to accept
the new solution, and a score of 1 is assigned if successful.

• If the solution improves the cost but is not the best solution yet, the score is set to 3.

• If the solution provides the best cost as of yet, the score is 5.

After every N iterations, the weights of both customer operators and station operators are updated
based on the total score accumulated over these iterations. The weights are adjusted to reflect
the performance of each operator, giving higher weight to operators that have consistently led
to improved solutions. In essence, the ALNS dynamically adjusts the influence of each operator
based on their historical performance. By assigning scores and updating weights, the ALNS
strives to increase the likelihood of choosing operators that have demonstrated effectiveness in
improving the solution, while gradually diminishing the influence of less effective operators. This
adaptive approach contributes to the algorithm’s ability to explore the solution space efficiently
and converge towards optimal or near-optimal solutions.

3.3 Recourse actions
Following the completion of the first stage, which involves the application of Adaptive Large
Neighborhood Search (ALNS), the algorithm proceeds to the second stage, which focuses on
computing the expected cost of recourse actions. In this thesis, three recourse actions are proposed:
the basic recourse mirroring the method proposed by Keskin et al. [1], the pickup exchange
recourse, and the partial recharge recourse.

3.3.1 Basic recourse

The "Basic Recourse" procedure closely follows the approach proposed by Keskin et al. [1]. The
method involves the realization of waiting times at the stations, followed by a thorough check for
feasibility concerning all subsequent customers. If any customer is found to violate the specified
time window, a straightforward corrective action is taken: a new vehicle is dispatched from the
depot to serve the customers that were identified as violating their time window.
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3.3.2 Pickup exchange recourse
In the "Pickup Exchange Recourse" procedure, the algorithm responds to the realization of waiting
times at stations by conducting a feasibility check on all subsequent customers. If it identifies
a customer violating their specified time window, the algorithm initiates a corrective action.
Specifically, it attempts to modify the route of another vehicle by incorporating the problematic
customer into its itinerary. The aim is to address the violation and ensure the overall feasibility
of the routes by redistributing the responsibility for serving customers among different vehicles.

3.3.3 Partial recharge recourse
In the "Partial Recharge Recourse" procedure, the algorithm responds to the realization of waiting
times at stations by conducting a feasibility check on all subsequent customers. If it identifies a
customer violating their specified time window, the algorithm initiates a corrective action. In
this case, the vehicle attempts to limit its charging process by interrupting it prematurely. The
goal is to address the violation and enable the vehicle to serve the customers without any time
window violations. This recourse action focuses on adjusting the charging strategy dynamically
to ensure that the overall feasibility of the routes is maintained, particularly in situations where
violations are detected.

3.4 Simulated annealing
The Simulated Annealing approach in this work serves the purpose of accepting a rejected
solution during the main iteration loop, enabling exploration of the search space and avoiding
getting trapped in local minima. The mechanism involves generating a random number uniformly
distributed between 0 and 1. This random number is then compared against the value of an
exponential distribution, which is determined by the difference in the objective function between
the current solution and the previously rejected solution according to the following formula:

e
(OFprevious−OFcurrent)

k∗T

Where k is the cooling rate of the Simulated Annealing, T is set at the start to the value T0
then is updated according to the following formula:

T ← T
1+(T ∗fractioning)
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Chapter 4

Computational results

4.1 Simulation parameters
Simulation Parameters (Based on Keskin et al. [1]) in Table 4.1:

Table 4.1: Simulation Parameters

Category Parameter Value
Energy-related Unit energy cost 0.4

Driver Wage 1
Fixed Vehicle Acquisition Cost 1200
Overtime Factor 11/6

Station Utilization Utilization Range ρlow = 0.3, ρhigh = 0.7
Customers Service Time R Low = 8, High = 12

C Low = 70, High = 110
RC Low = 8, High = 12

Solver Parameters in Table 4.2:
These parameters collectively define the simulation environment and the solver’s behavior.

The energy-related parameters, station utilization, and service times influence the characteristics
of the simulated system. In contrast, the solver parameters control the annealing process, ALNS
behavior, and other aspects of the optimization algorithm.

4.2 Performance metrics
In-Sample Stability

The problem is solved multiple times with different seed values. The more the solutions and the
objective functions are similar, the better. The result will be represented by OF value vs. the
number of scenarios with standard deviation boxes. In Fig. 4.1 we can see that the problem
provides a stable solution regardless of the number of scenarios considered, even when input
conditions differ.

The stability, both in and out of sample, was computed on instance r105_21_100.txt with 50
scenarios and the mean of 10 simulations for every number of scenarios.
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Table 4.2: Solver Parameters

Category Parameter Value
Annealing Parameters Initial Temperature (T0) 300

Cooling Rate (k) 2
Fractioning 0.1

ALNS Scores Global Best 5
Current Best 3
Solution Accepted 1
Solution Rejected 0

ALNS Parameters Number of Zones 4
Decay Parameter 0.9
Nit 5000
Nit for Station Removal 5
Nit for Weight Update 5

Shaw Parameters λ 9
µ 3
ν 2
ϕ 5

Destruction Operators Determinism Factors Worst Removal 2
Shaw Removal 2

Greedy Confidence Confidence Level 0.8
Destroy Parameters γc (Number customers removed) 3

γs (Number stations removed 1
State of Charge Tolerance Tolerance 0.15

Figure 4.1: In-sample stability
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Figure 4.2: Out of sample stability

Out-of-Sample Stability

The problem is solved once, then the instance is generated with new waiting time values and the
solution of the first problem is applied to the new realizations.

• solve the problem and take the first stage solution

• generate several scenarios

• for each of them, compute the second stage

The result is similar to the in-sample stability as proven in Fig. 4.2.

4.3 The value of pickup sharing and partial recharge
The primary focus of this thesis was to replicate and build upon the heuristic approach proposed by
Keskin et al. (2021)[1] for the Electric Vehicle Routing Problem with Time Windows (EVRPTW).
Expanding upon their methodology and introducing two new recourse actions aimed at achieving
significant cost reductions in terms of the objective function.

The results of the computational experiments, as summarized in Table 4.3, indicate that,
on average, the proposed algorithm does not consistently outperform the performance of the
solutions obtained by Keskin et al. However, upon closer examination of Table 4.4, it becomes
evident that in the best-case scenarios, the algorithm proposed in this thesis tends to outperform
Keskin’s approach in most cases.

Figure 4.4 offers a clearer perspective on how the algorithm’s performance varies, specifically
when analyzing the outcomes across different recourse actions and their application to various
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instance types. It reveals that for R and RC class instances, the algorithm not only consistently
outperforms the results obtained by Keskin et al., but it also shows a remarkable consistency in
its performance. This is evident through the tightly grouped results, indicating that regardless of
the recourse action applied, the algorithm maintains a stable and predictable level of performance
for these classes.

On the other hand, the behavior of the algorithm when dealing with C-class instances is notably
more erratic. The performance fluctuates significantly across different strategies, underscoring the
complexity and challenges associated with these particular instances. This variability in outcomes
highlights the C class instances as being particularly challenging for the algorithm, both in terms
of achieving consistent objective function values and in managing computational times efficiently.

This analysis thus underscores a clear dichotomy in the algorithm’s performance: while it
exhibits robustness and reliability when applied to R and RC classes, achieving consistently
better outcomes than Keskin’s approach with low variability, it struggles to maintain this level of
performance across the more complex C class instances. The unpredictability associated with the
C class instances points to a need for further optimization or a tailored approach to address the
inherent complexities of these scenarios, ensuring both efficiency in computation and consistency
in achieving high-quality solutions.

This nuanced performance can be further appreciated through the distribution patterns
observed in Figure 4.3, which illustrates the algorithm’s behavior across different types of instances.
The performance distribution for R and RC classes closely resembles a right-skewed Gaussian
distribution, characterized by a tail that extends towards higher values but with fewer instances
reaching these peaks. This indicates that while there are outliers with higher performance, the
bulk of these instances are concentrated towards the lower end of the scale, suggesting a level of
consistency in performance with fewer instances of exceptional outcomes.

Conversely, the performance across C class instances appears more variable and less predictable.
This variability results in a higher average cost across all tests for the C class, pointing to a
scenario where the algorithm’s behavior is less consistent and more susceptible to fluctuations.
Such randomness in performance suggests that while the algorithm can achieve high marks, it
does so with less reliability, particularly in the context of C-class instances where it demonstrates
a wider range of outcomes.

In summary, while the algorithm might not consistently outshine the benchmark set by Keskin
et al. across all tests, it shows a noteworthy capacity to achieve superior results in optimal
conditions. The performance across different instance classes further indicates that the algorithm’s
efficacy varies, with more predictable outcomes for R and RC classes and a broader performance
spectrum for C class instances, highlighting its adaptability and potential for high achievement in
specific contexts.

It’s important to highlight that introducing additional recourse actions plays a crucial role in
improving the overall cost. By offering more diverse options for addressing unforeseen events in
the routing process, the algorithm becomes more adept at handling the second step of the problem,
leading to improvements in the total cost. It’s worth noting that while this improvement is
observed across many instances, it’s not universal, and variance in performance can be attributed
to the inherent stochastic nature of the problem.

In summary, although the proposed algorithm may not consistently outperform Keskin’s
approach regarding mean performance, it demonstrates superior performance in certain scenar-
ios. The enhanced capability to handle unexpected events through diversified recourse options
contributes to improved total cost in many cases, underscoring the effectiveness of the proposed
methodology.

In evaluating the computation times as detailed in Table 4.5, it becomes clear that the
algorithm in question demonstrates a high level of efficiency, completing tasks in a relatively
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brief period. However, the time required for computations is not uniform across all scenarios.
Specifically, scenarios with clustered time windows stand out for requiring more processing
time—often four to five times as much—as compared to other types. This observation is further
supported by the distribution of computational times for C class instances, as illustrated in
Figure 4.5, where most computational times cluster between 200 and 400 seconds, indicating a
broader spread across the spectrum of possible values. In contrast, R and RC class instances
mainly exhibit computational times within the 0-200 second range, with occurrences beyond 200
seconds being notably less frequent. This pattern suggests that the algorithm’s performance is
more consistent and efficient for R and RC classes, whereas it encounters variability and longer
processing times with C class instances.

Despite this discrepancy, it’s essential to contextualize these time requirements within real-life
applications. The overall computational demand remains insignificant even in scenarios where
the algorithm takes longer to converge, such as with clustered time instances. Practically, a
simulation lasting around 20 minutes is often sufficient to derive a highly satisfactory solution for
the given routing problem.

Therefore, while there may be variations in computational time across different instance types,
the algorithm’s overall efficiency remains commendable and well-suited for real-world applications,
where timely decision-making is crucial.
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Figure 4.3: Objective Function distribution of values over different kinds of recourse divided for
the class of instances
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Figure 4.4: Objective Function minimum values vs Keskin results over different instances
grouped by class
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Figure 4.5: Computational times distribution of values over different kinds of recourse divided
for the class of instances
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Table 4.3: Mean Objective Function computational results obtained from the combination of
the usage of the alternative recourse scenarios. The first word refers to pickup exchange, the
second word refers to partial recharge (e.g. No/No means no pickup exchange and no partial
recharge)(number of customers = 100)

Instance name Yes/Yes Yes/No No/Yes No/No Keskin paper
c101 41314 37425 37030 41295 34245
c102 40504 42161 42404 39218 31885
c103 38336 35217 36817 36742 30963
c104 32679 31992 31023 32491 27886
c105 42891 44033 41768 45237 32307
c106 40829 43055 42197 38989 31025
c107 40311 40426 39313 39812 31476
c108 37221 38102 37817 37811 31082
c109 37385 35429 35946 35603 29985
r101 37195 34729 38290 37062 34167
r102 32400 33988 32754 33896 30458
r103 28832 28072 27754 31054 25848
r104 28290 29343 27713 28284 21796
r105 34771 36635 34903 37616 29891
r106 31775 31754 32418 32050 26536
r107 29591 28831 27952 28914 24159
r108 25430 26377 25754 25931 21548
r109 29749 30657 28496 30608 25692
r110 26861 26786 26805 26736 22328
r111 27865 27230 27627 27226 23202
r112 23636 22967 23048 23492 22955
rc101 31682 33457 33253 33546 30696
rc102 32357 32735 33214 32462 27033
rc103 27033 27587 26896 27107 24147
rc104 23319 23853 23900 24821 20519
rc106 27764 28320 27875 28486 24297
rc107 24858 25373 24521 24968 22268
rc108 23523 23599 23162 24361 21685
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Computational results

Table 4.4: Mean Objective Function computational results obtained from the combination of
the usage of the alternative recourse scenarios. The first word refers to pickup exchange, the
second word refers to partial recharge (e.g. No/No means no pickup exchange and no partial
recharge)(number of customers = 100)

Instance name Yes/Yes Yes/No No/Yes No/No Keskin paper
c101 26520 26880 28574 28204 34245
c102 26479 21620 25244 25593 31885
c103 26291 27055 25597 27085 30963
c104 27087 26769 26431 28783 27886
c105 30421 33066 29239 33529 32307
c106 27160 32487 31233 30253 31025
c107 28743 31188 30080 28116 31476
c108 29268 26189 31352 28974 31082
c109 30083 29010 29793 28195 29985
r101 20624 20433 21502 18885 34167
r102 21538 21005 18751 22548 30458
r103 20863 20349 20868 20494 25848
r104 21270 23807 22909 22651 21796
r105 28564 29226 26968 29742 29891
r106 25787 26311 23335 24671 26536
r107 22539 22147 22696 22745 24159
r108 21380 20651 20067 21070 21548
r109 25388 26728 22880 25458 25692
r110 24004 22449 22743 22788 22328
r111 23861 23148 24034 25302 23202
r112 21955 21186 20979 21327 22955
rc101 25038 23605 25199 27660 30696
rc102 24723 24027 23848 23786 27033
rc103 23438 22866 21985 22681 24147
rc104 18678 21033 19785 20424 20519
rc106 24480 24510 23400 24670 24297
rc107 22788 22888 20073 22698 22268
rc108 20266 21399 21496 21571 21685
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Computational results

Table 4.5: Mean Objective Function computational times [s] obtained from the combination
of the usage of the alternative recourse scenarios. The first word refers to pickup exchange, the
second word refers to partial recharge (e.g. No/No means no pickup exchange and no partial
recharge)(number of customers = 100)

Instance name Yes/Yes Yes/No No/Yes No/No
c101 1185 1603 1058 694
c102 1104 1376 696 631
c103 1213 1106 955 607
c104 1502 727 952 521
c105 1557 1340 888 587
c106 1265 1658 970 597
c107 1092 1272 987 765
c108 1260 2274 913 800
c109 2003 2115 1187 953
r101 1206 759 394 256
r102 721 785 422 153
r103 320 291 159 156
r104 241 203 123 117
r105 199 209 137 89
r106 244 312 132 156
r107 230 266 112 121
r108 405 334 172 165
r109 246 228 125 108
r110 261 240 106 131
r111 244 258 167 151
r112 239 230 169 119
rc101 198 245 127 117
rc102 243 294 137 117
rc103 196 222 113 117
rc104 182 244 104 103
rc106 135 164 118 90
rc107 153 197 117 118
rc108 226 214 156 115
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Chapter 5

Conclusions and future
improvements

The primary goal of this thesis was to replicate and enhance the heuristic approach proposed by
Keskin et al. (2021)[1] and to introduce additional recourse steps to improve the solution. This
objective was successfully achieved, resulting in an improved solution methodology and providing
a framework for potential future enhancements.

One of the most challenging aspects of this endeavor was the development of the solver and the
fine-tuning of all aspects related to the Adaptive Large Neighborhood Search (ALNS) algorithm,
including the implementation of various destroy and repair methods. It was crucial to ensure
that the code remained efficient and could execute within a reasonable time frame.

Looking ahead, there are several avenues for further exploration and enhancement. This
includes exploring different approaches to constructing initial solutions, leveraging machine
learning techniques to augment the ALNS algorithm’s performance, expanding the repertoire of
recourse actions, and refining the modeling of charging stations, batteries, and chargers.

The field of route optimization continues to attract increasing attention, driven by the
pressing need to reduce carbon emissions in the transportation sector. Advancements in vehicle
technology and overall operational efficiency play a crucial role in achieving this objective. As such,
ongoing research and innovation in route optimization hold significant promise for contributing
to sustainability efforts in the transport industry.
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