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Abstract

This work aims to define a method for estimating the position and the orientation
of the human limbs. Accurately tracking the movements of the human body is
a crucial operation for what concerns several applications, like, for example, the
remote motor rehabilitation or the creation of a persons’ virtual model in a video
game, to mention just a few. In particular, an inertial measurement unit (IMU)
sensor network is exploited to measure the acceleration and the angular velocity
of the upper limb parts, that are combined, along with a kinematic model of the
arm, in a sensor fusion algorithm to estimate the orientation of the limb. For the
purpose, a 7 degrees-of-mobility kinematic chain is used to model a limb, the three
links of which represent the clavicle, the upper arm and the forearm. Being the
origin of the global reference frame placed in the thorax, the sternoclavicular joint,
the shoulder and the elbow are modeled as multiple rotational and spherical joints.

The orientation of the links in space is represented by quaternions in order to
overcome the matrix inversion issues proper of minimal attitude representations.
The pose of the links is then estimated by means of an Extended Kalman Filter
(EKF), in which the accelerations of a forward kinematic model are compared with
the data provided by the sensors.
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Chapter 1

Introduction

1.1 Applications Overview

The reconstruction of the human body motion is a field of interest that has been
widely investigated in the last decades, for applications that could be very different
one from each other. Several tracking approaches have been proposed over the
years, many technologies have been exploited and a lot of algorithms have been
devised for the purpose. In this context, the video games industry has a broad range
of examples. Among the most famous, some solutions are the Microsoft Kinect™,
which is based on RGB cameras and infrared projectors to map depth through
the light; the Nintendo® Wii™ Remote and the Sony PlayStation® Move both
integrate inertial sensors for reconstructing the trajectory of the wand controller
and a camera to detect the spatial position of the controller itself. In general, an
accurate motion tracking method, looking at the most widespread, is based on
computer vision techniques, that can be either silhouette-based or marker-based.
The two technologies differs in the way that the vision system retrieve the motion
of the subject; the markers are wearable devices that the camera recognizes as
fixed points of the body, allowing the reconstruction of the movement by exploiting
kinematic models of the human body. Markerless capture systems, also referred to
as silhouette-based, do not rely on wearable equipment, but only refers to captured
images to virtualize the moving body instead. The latter application is sometimes
based on Al-powered techniques rather than built on physical models. Examples
of brands that has developed their products exploiting this technologies are Vicon,
Simi, Codamotion.

As a matter of fact, vision-based tracking systems are often taken as ground
truth for the calibration procedure of inertial sensor-based systems, or simply to
compare the performances of such solutions, as done for example in [1, 2]. The
main issue about the vision systems is the limitations in the working conditions. In
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Figure 1.1: Scheme of the IMU and MARG sensors.

fact, as long as those systems are tested in laboratory environments, they work in
quasi-ideal condition but, if these conditions are missing, the camera-based systems
are no longer trustworthy. The limiting working conditions are for examples the
portability of such systems, related to the size and the weight of the devices, the
environmental variables, such as the brightness conditions, and the cost of the
systems itself.

The class of the inertial sensor considered for this work is somehow comple-
mentary to the vision systems introduced above. The most common format, the
inertial measurement unit (IMU) is composed of a tri-axial accelerometer and a
tri-axial gyroscope and provides the measurements of local acceleration along the
three orthogonal axes of the sensor and the angular rate about those axes. For ap-
plications that do not require high precision instrumentations, the most widespread
type of inertial sensors is based on the micro-electro-mechanical systems (MEMS),
which are microscopic sensors directly realized in the silicon chip. The MEMS
integrate both the electronic and the mechanical sensing elements, and possibly the
optical ones, providing a variable electric capacitance or resistance value related
to the physical quantity to be measured. As a result of the miniaturization of
these movement-detection sensors, their application in motion tracking as wearable
devices is become a very popular solution, being moreover a quite cheap technology
by now. However, the inertial sensors do not provide a position measurement value,
but a variation quantity instead, that needs to be time-integrated often more than
once to obtain the position, both linear or angular (also referred to as orientation,

2
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see section 2.1). The main issue with this kind of approach is the integration of
the non-zero-mean noise that unavoidably affects the measurements, which leads
to a time-increasing error that makes the estimated position unreliable after few
moments. As a consequence of this, IMUs are hardly used on their own for dead
reckoning tracking purposes.

The bias affection in gyroscope measurements is so particularly known that
sometimes a different type of sensors is considered instead of IMUs for position
estimation: the magnetic, angular rate and gravity (MARG) sensors, indeed, are
composed of a magnetometer, a part from an accelerometer and a gyroscope. Figure
1.1 helps to visualize the differences between the two classes. The magnetometer
measures the external magnetic field in the local coordinates of the sensor, allowing
a direct evaluation of the orientation in the Earth’s reference frame (global RF).
This is particularly effective when a rotational motion happens about the axis
defined by gravity vector, a very specific case in which the accelerometer does not
provide any relevant information [3].

1.2 Project Description

The stimulus for developing a process to estimate the position of a human arm comes
from the necessity to implement an effective remote motor rehabilitation procedure.
Motor rehabilitation is an important need for millions of people worldwide; it is in
fact a crucial aspect for the well-being of people affected by motor dysfunctions
or for cardiovascular diseases recovery, such as stroke [4]. Since it is very difficult
and expensive to guarantee a professional physiotherapist for each patient, the
development of a system that allows to monitor the correct execution of the
exercises prescribed by experts and save the data for a remote evaluation by
such professionals would have a dramatic impact on the life quality of victims, as
suggested by Balbinot et al. [5].

This thesis proposes an approach, among all the solutions thoroughly investigated
in the literature, for tracking the motion of the upper limbs besides evaluating the
pose at steady state. An open kinematic chain is adopted for modeling the arm; 7
rotational joints are considered to cause the relative motion between the limb parts.
Three 6-axes IMU sensors (3 axes for the accelerometer, 3 axes for the gyroscope)
are used for the identification, one per each limb segment: the clavicle, the upper
arm and the forearm. A forward kinematic formulation of the manipulator structure
defined above is derived, so that the linear acceleration and the angular velocity
are calculated for the points of the manipulator where sensors are supposed to be
placed. This is the key idea of the work: the two different sources of information
relative to the same point (for each point of interest) are combined together, or
filtered, in a probabilistic framework. In fact, since the measurements are affected

3
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by uncertainties, i.e. noise, and the kinematic model could be satisfyingly accurate
only over a certain tolerance interval in the parameters, an estimation process that
accounts for the statistical distribution of such variables is needed. For expressing
the attitude of the limb segments the quaternion notation is preferred to the minimal
representation tools, for the sake of the accuracy of the results and calculation
efficiency. In this context, an Extended Kalman filter algorithm is developed, since
the dynamic equations describing the attitude evolution are non-linear.

The whole system is simulated in Matlab®; the measurement data are generated
by an implementation of the kinematic model described in section 3.2, and then
combined in the filter structure discussed in chapter 4. Detailed simulation setup
discussion is provided in chapter 5, while achievements and obtained results are
reported in chapter 6.

1.3 Thesis Outline

The focus of this work is to define a method for representing the orientation of the
limb parts that is based on the fusion among the information from the model of an
open kinematic chain and the sensor data related to angular rate and acceleration
of the limb. The kinematic model, as well as the Extended Kalman Filter (EKF)
algorithm, are implemented in Matlab for evaluating the performance of the method.
The thesis organization in based on the following scheme:

o Chapter 1 presents an overview of the application fields of the system under
study, comparing some of the different technological solutions that have been
developed over the years. The idea behind the project is also introduced, and
the specific solutions for the application are explained.

o Chapter 2 introduces the adopted method to represent the attitude of rigid
bodies. Then, a comparison among the state-of-the-art literature for what
concerns the inertia-based and quaternion-based tracking algorithm is carried
out.

o Chapter 3 describes both the kinematic model that is intended to represent the
arm and the dynamic system which models the attitude evolution consequent
to the motion of the arm joints. The measurement model presents a particular
innovation with respect to the literature, primarily developed for navigation
purposes.

o Chapter 4 is the most relevant part of the thesis. The data provided by the
sensors are combined to the kinematic model of the arm in a Kalman filter
algorithm. Being the model non-linear, the application of Extended Kalman
filter (EKF) is deepened. Eventually, the determination of the covariance
matrix is discussed, since it is a crucial point for the filter performance.

4
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o Chapter 5 presents the simulation conditions and the criteria adopted to gener-
ate the dataset used for the performance evaluations of the filter implemented
in chapter 4.

o Chapter 6 contains the results of the work. They are reported on the basis of
the relevance with respect to the application field of the work.

o Chapter 7 is a summary of the target set and the achievements. It contains a
discussion over the choices made and presents some suggestions on possible
future developments of the work.



Chapter 2

Background

For investigating the motion of a rigid body in the three-dimensional space, the
time evolution of two states of the body must be taken into account: the position
and the orientation. If both are considered, the term pose is used. In a cartesian
coordinate system, a reference frame is defined as a set of three orthonormal vectors;
in order to fully describe the body it is convenient identifying 2 reference frames:

o Fun ={O0m, 1,7, k} referred to as mobile, or local, is attached to the body and
moves with it. The associated rigid body has constant coordinates in it.

o« Fo={0,1,J, K} referred to as fized, or global, is defined in the space and is
usually independent of the moving bodies.

Figure 2.1: Fixed and mobile reference frames.

The two reference frames are shown in figure 2.1. Once the origin and the unit
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vectors are set, a generic vector U can be represented as:

T=ai4y] + 2k, in local frame,
v=XI+YJ+ ZK, in global frame.

Position and orientation, also called attitude, of a rigid body with respect to a
fixed frame can be characterized by a homogeneous rototranslation matrix 9 [T,
whose structure is:

o .

o7 _ | OOm| (2.1)
01><3 1

An efficient method for the derivation of such an operator is detailed in section

3.2.1.

2.1 Attitude Representation

The determination of the attitude of a rigid body with respect to a fixed reference
frame can be investigated by establishing a relation between two general reference
frames. Since various notations to represent the rotation have been developed, let’s
introduce some of them.

2.1.1 Direction Cosine Matrix

The direction cosine matrix (DCM) is a 3 x 3 rotation matrix R whose elements
are defined as the dot product between the axes of two generic frames. Let’s take
as an example the two frames listed in 2:

Ii T-j Ik
R=\|J-i J-j J-k
K-i K-j K-k

The columns of the matrix are the projection of the axes of frame F,, on the
axes of frame Fy. Let ™o be a 3 x 1 vector expressed in mobile frame F,,. The
representation of such a vector in frame Fy can be expressed as

7 =R ™.

The rotation matrix is denoted as Y R and is characterized by 9 terms.

Rotation matrix is actually the fundamental tool to derive a formulation for a
coordinate change, from a reference frame to another, or to calculate the effect of a
rotation applied to a body. However, for denoting a rotation, a less cumbersome
notation may be used; out of the nine elements that constitute a rotation matrix,

7
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indeed, only three are independent, since six of them are related by orthogonality
constraints due to the fundamental relation:

RIR =1,

where Z3 is the 3 x 3 identity matrix [6].

2.1.2 Euler Angles

The three parameters defined in the previous section to be the least possible to
identify a rotation in space can be thought as independent elementary rotations
about three non-parallel consecutive axes. The set of the three parameters is
usually referred to as Euler angles, and denoted by

e=[¢ 0 Y]

Once the axes about which rotations takes place are defined, the corresponding
rotation matrices can be derived. In particular, the three elementary rotations about
the axes of the body reference frame are represented by the following expressions:

1 0 0
R.(¢) =10 cos¢ —sing (2.2)
0 sing cos¢

is the matrix representing a rotation of an angle ¢ about the x axis of the frame;

[ cosf 0 sinf
R,0)=| 0 1 0 (2.3)
|—sinf 0 cost

is the matrix representing a rotation of an angle # about the y axis of the frame;

cosy —siny 0

R.(¢) = |sinyy  cosy 0 (2.4)
0 0 1

is the matrix representing a rotation of an angle 1) about the z axis of the frame.

Sometimes a different choice in terms of order in the rotation axes selection may
be convenient. Out of the 12 possible configurations of rotations defined about non
consecutive axes, the most common are:

o proper Fuler, are the composition of the rotation about the first axis, e.g. z
according to figure 2.2, followed by a rotation about the rotated second axis,
e.g. ¥, and a rotation about the rotated first axis, z”. The complete matrix is
obtained as R(®) = R.(¢)R, (0)R.» (1) This rotation is also referred to as
Euler ZYZ or Euler 323. Also Euler ZXZ (313) representation is commonly
used.
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A
b4 V-4
o
yf
e o
y‘
»~
@
x z'

Figure 2.2: Orientation of reference frame with Euler Angles ZYZ. Image originally published
in [6].

o Tait-Bryan, also known as Roll-Pitch-Yaw (RPY) or Cardan Angles define
three rotations about all the three axes. Taking the Tait-Bryan 321 for
reference, the rotation happens sequentially about axes X, Y, Z of the fixed
frame. This combination is expressed by the composition matrix R(®P) =
R.(Y)Ry(0)R.(¢) by premultiplying the three elementary matrices in (2.2),
(2.3), (2.4). Tait-Bryan 123 representation is also used.

Considering the rotation matrix that corresponds to a Tait-Bryan 321 represen-
tation,

7?’321((1)) - Rz(w)Ry(Q)Rz(gb) =
clcp —copsy + spsbc)  sps + cosbcy)
clsp  cp+ spsfstp  —spcp + cpsfsip|  (2.5)
—s6 soch coclt

where, for compactness of notation, s®, ¢® indicate sin ®, cos @, the three angles

9
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¢, 0,1 are calculated as:

¢ = arctan?2 <R372, Rg’g)
0 = arctan2(—Rs, (s¢Rsz + coRs3))
w = arctanQ((—ccﬁRl,g -+ S¢R173), <C¢R272 — S¢R273))

It can be verified, however, that for § = +7/2 a singularity occurs. In fact, the
rotation matrix in (2.5) becomes:

0 sin(¢£v) cos(opE)
Rgans2wy = | 0 cos(¢p£9) —sin(¢p £7) (2.6)
-1 0 0

and the three angles are no more independent. In fact, only the sum of ¢ and ¢
can be determined, as shown in relation (2.6); in practice, the two axes of rotations
¢ and 1) are aligned (parallel). This occurrence is an important aspect to be taken
into account when using a minimal representation of rotating bodies, known as
gimbal lock.

2.1.3 Angle Axis

From the Euler’s rotation theorem, it is known that every movement of a rigid
body having a point with constant coordinates in a fixed reference frame can be
represented by a rotation about an axis passing through that point. The idea
behind the proof of such theorem is based on the fact that a rotation matrix has
one eigenvalue equal to 1, the eigenvector associated to which is the axis of the
rotation,

Ru = .

A rotation is therefore defined by four parameters, the three components of
the unit vector of the rotation axis with respect to the local reference frame
U = [ug, uy, u;] and the value of the angle, say 6, considered positive for counter-
clockwise rotations. The angle-axis R(#,%) is a non-minimal representation of
rotations.

10
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2.1.4 Quaternions

A unit quaternion ¢ = (qo, q1, 42, q3) is a rotation representation based on the
Euler’s rotation theorem; four terms, known as Euler parameters, are defined:

qo = cos(0/2)

¢ = uysin(6/2)
g2 = ugsin(6/2)
q3 = uzsin(6/2)

such that the norm is unitary, \/ @ + ¢ + g5 + ¢3 = 1. This property implies that
only three out of the four parameters are independent.

Quaternions are operators defined in the basis {1,1, 7, k} of a four-dimensional
space as an extension of complex numbers, introduced by the Irish mathematician
W. R. Hamilton in 1843. The multiplication among the basis vectors is summarized

in table 2.1.

x |1 i j k
111 i j k
ili -1 k4
jlj -k -1 i
klk j -1 -1

Table 2.1: Multiplication rule of quaternion basis vectors. The first column lists the premultipli-
cation terms, while the first row lists the postmultiplication terms.

Alternative representations of quaternions are:

q=4qo+q
=qo+ q1i + q2J + sk
=cosf/2+usinb/2
=0 q"
where the term g is also denoted as vector part of the quaternion. For what concerns

basic quaternion algebra, the most common operators are introduced. Being ¢, p
two distinct unit quaternions:

e sum: ¢+p=qo+po+7q+7p;
o dot product: -p = 7, ¢ips;

q2pP3 — q3p2
e cross product: § X p = |qp1 — @1p3|;
q1P2 — 42p1

11
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+ Hamilton product: ¢®@p = (¢o+7) ® (po+D) = (qoro—7-P) + (qoP+poG+7 X D)

Let 7; be a vector with coordinates expressed in the reference frame where rotation
is defined; the vector that results from a rotation by 6 angle about u axis, say
Uy = R(#,w)v; can be represented by the following quaternion manipulation:

(07@2> =dq ® (07@1) ® q*
where ¢ is the unit quaternion
q = (cos(6/2),uy sin(0/2), ussin(6/2), uz sin(6/2))

and ¢* is the complex conjugate relative quaternion, ¢* = [go —¢]?. The quaternion
representation of a vector, e.g. (0,7), is also dentoted as v.

For representing successive rotations, defined by the rotation matrices product
R = RiR>...R,, the quaternion rotation operator is the composition of the
quaternions of single rotations:

=1 ®PR - -Qq,

2.2 State Of The Art

In this section the most relevant approaches for the IMU-based tracking methods
are discussed and compared. The development of the research on the orientation
tracking received a strong boost with the growth of the aircraft and satellite
navigation systems in the 60’s, with the implementation of attitude and heading
reference systems (AHRS).

Some sensors are provided with an integrated algorithm for the real-time compu-
tation of the attitude, also known as Digital Motion Processing™ (DMP) engine.

2.2.1 MEMS Technology

Micro-Electro-Mechanical Systems (MEMS) encompasses the technology of de-
signing and manufacturing miniature integrated devices or systems, that combine
electrical and mechanical components on a small chip or substrate. These devices
typically range in size from a few micrometers to a few millimeters.

Key aspects of MEMS technology include its extreme miniaturization, enabling
compact and portable devices, multifunctionality with multiple sensors or functions
on a single chip, fabrication using semiconductor techniques for mass production
with high precision, and its wide range of applications across various fields such as
consumer electronics, automotive, healthcare, aerospace, and industrial automation.
MEMS devices can serve as sensors, actuators, or both, with sensors including

12
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accelerometers, gyroscopes, magnetometers, and pressure sensors, while actuators
may consist of micromirrors, microvalves, or microfluidic pumps [7]. Advantages of
MEMS technology include low cost, low power consumption, high sensitivity, and
robustness, making them suitable for various applications in different environments.
MEMS are nowadays a key technology for the realization of IMU sensors.
Accelerometers use a spring-mass system where a proof mass is suspended on stiff
supports. When the device experiences acceleration along an axis, the proof mass
movement changes the capacitance between the mass and fixed capacitive plates,
which is sensed and related to the external acceleration. Gyroscopes, on the other
hand, exploit the Coriolis effect. They consist of a vibrating proof mass suspended
by flexible beams. When the gyroscope undergoes angular rotation around an
axis, the Coriolis force causes the mass to deflect orthogonal to its trajectory. This
deflection interferes with capacitive plates or piezoelectric elements, resulting in a
change in capacitance or voltage. The output signal represents the rate of angular
rotation around one or more axes, depending on the characteristics of the device.
In figure 2.3 is shown the structure of a MEMS microsensor and microactuator.

] i 1
S4700 15.0kV 11.9mm x250 SE(U) 200um

Figure 2.3: MEMS microsensor and microactuator.

2.2.2 TRIAD Algorithm

Tri-Axial Attitude Determination (TRIAD) is a deterministic algorithm which aims
at determining the orthogonal matrix A that simultaneously satisfies the relations

AV =W, AVy =Wy

where Vi, V5 are non parallel reference unit vectors and Wy, Wy are the correspond-
ing observations unit vectors. Since such a matrix would be overdetermined by
the above constraints, the two coordinate systems are defined by the orthogonal
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vectors
c v o ixVe o Vix (Vi x1h)
1 — 1 2_|‘/1><‘/2| 3 — |‘/1><‘/2|
5 =W §:W1><W2 §:W1X(W1XW2)
! T x W P (W7 x Wa

which compose the 3 x 3 matrices
M,ep = [T1 To T3] Mops = [31 52 S3).
The unique orthogonal matrix that satisfies the above conditions [8] is given by
A= My M,

Being deterministic, the TRIAD algorithm provides a non-optimal solution; more-
over, it can accommodate only two observations, and even part of them is discarded,
losing in accuracy.

2.2.3 QUEST Algorithm

The QUaternion ESTimation (QUEST) is an optimal algorithm introduced by
Shuster et al. [9]. It allows to determine the attitude that achieve the best weighted
overlaps of an arbitrary number of reference and observation vectors. A matrix
Agpt 1s looked for such that it minimizes the loss function

L(4) =

DO | —

Zai“/vi - AV}P
i=1

where the coefficients a; are non-negative weights and

Vectors V;, W; are defined as for TRIAD algorithm in subsection 2.2.2.
Defining the gain function g(A) as 1 — L(A), yields

g(4) = 3 aWT AV, (2.7)
i=1
which is maximized by the optimal value of A, A,,. It is worthwhile to be noticed
that when g(a) is maximized, the loss function L(A) is minimized. Exploiting the
trace rule, the gain function in (2.7) can be expressed as

g(A) = zn: a; tr[W AV;] = tr[AB”]

=1

14
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where the attitude profile matrix B is defined
B=Y aWiV/
i=1

Since the matrix A has nine elements subjected to six constraints, the maximization
of the gain g(A) would be less complicated by considering the quaternion related
to A. The quaternion q representing the rotation, is denoted as

7=1Q q =[Xsin(8/2) cos(6/2)]"

where X sin(0/2) is the vector part defined in section 2.1.4; X is the axis about
which a rotation of an angle # occurs.
The attitude matrix A is expressed as a function of the quaternion g:

A(@) = (¢ — QQ)I +2QQ" + 24[Q)],

where [Q)], is defined as the antisymmetric matrix

0 @3 —Q2
[Q]x = _Q3 0 Ql
Q2 —Q1 0

Taking into account the norm constraint of the quaternions expressed in section
2.1.4, the gain function can be formulated as

9(q) = (¢* — QQ) tr B" + 2tr[QQ" B"] + 2¢ tr[[Q], B”]

Some quantities are defined,

oc=trB=B= Zasz‘/z
i=1
B+ BT =3 a;(W,V;" + ViW])

i=1

Clz‘(VVz‘ X V%)
1

S

A

n

~

after which the matrix K is defined as
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The combination of the parameters yet defined leads to the bilinear form
9@ =7 Kq

which can be redefined by considering the constraint on the quaternion norm in
the Lagrange multipliers framework:

7@ =7"Kq—)7'q

that yields Kq = Ag. The gain g(g) is at maximum if g, is taken as the the
eigenvector of K corresponding to its largest eigenvalue, i.e.

qupt = )\maxqopt

By exploiting the Cayley-Hamilton theorem, a convenient expression for the char-
acteristic equation is derived:

M—(a+b)N —cA+ (ab+co—d)=0
where the equation parameters are defined as

~ r(adi(9))
det(S)

o’ — kK

o?+ 777 .
A+ 7157
VAN

= %trS

Q9 an o b=
Il

By specifying further terms,

= N —-0t+k

= A—o0

= A+o)a—A

= (al+pBS+5%)Z

<o T O

the expression for the optimal quaternion is eventually derived:

1 X
S
e b

The QUEST algorithm is exploited in many applications in combination with
an Extended Kalman filter, like in [10, 11]; the accelerometer and magnetometer
measurements are combined, and the quaternion estimate provided by the algorithm
is fed in the measurement equations of such filter, allowing the measurement model
to be linear in quaternion elements.
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2.2.4 Mahony’s Algorithm

The method proposed by R. Mahony et al. in [12] addresses the problem of
retrieving good estimates of the attitude out of systems characterized by high
noise levels and time-varying additive biases like low-cost IMU. By formulating
deterministic observer kinematics directly on the special orthogonal group SO(3)
and employing reconstructed attitude and angular velocity measurements, this
approach ensure nearly global stability of the observer error through Lyapunov
analysis.

Two observers are introduced: the direct complementary filter and the passive
complementary filter. The former is designed to map gyroscope measurements into
the inertial frame and reconstructed attitude directly, while the latter effectively
decouples gyro measurements from reconstructed attitude within the observer
inputs. Both filters can be extended to estimate gyro bias online, with the passive
filter further refined to provide a formulation based on measurement error, avoiding
algebraic reconstruction of attitude. The culmination of these advancements is the
explicit complementary filter, operating only on accelerometer and gyro outputs,
suitable for embedded hardware implementation. This filter provides accurate
attitude estimates and facilitates online estimation of gyro biases.

Indicating with b the constant bias and with p the additive noise, the expression
for the gyroscope, the accelerometer, and the magnetometer measurements are
given:

W=Q+b+p

a=R"(v=go) + by + g
m = R" + By, + .

Common practice is to consider the system in quasi-static conditions, i.e. ¥ =~ 0,
leading to an expression of the accelerometer measurements that only depends on
the gravity,

Vg = ~ _RT63>

a
lal
with e3 = g—g =[0 0 1]7, being go the gravity acceleration. For what concerns
the magnetometer measurements, only the direction of the Earth’s magnetic field

is relevant,
m
U = —.
m|
The vectors of v,, v, measurements are combined to retrieve an instantaneous
algebraic meeasurement of the rotation from frame B to frame A, 4 R:

R, = argmin(\|e3 — Rua|* + Ao|vf, — Rup|?)
ReSO(3)
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where v}, indicates the inertial direction of the magnetic field in the data acquisition
area, and A;, Ao depend on the confidence in the sensor outputs. However, due to
the computation complexity of solving an optimization problem of this kind, the
error properties of the attitude matrix R, may be difficult to characterize.
An attitude error criteria is established considering the orthogonal matrix R an
estimate of the body-fixed rotation matrix R:
R=R"R.
The cost function definition is based on the Lyapunov stability analysis,
Etr = ;tr(lg - R)
with the aim of estimating R such that the error matrix converges to the identity,
R — I, yielding R — R. Being § = (G G») the quaternion expressing R, the
cost function becomes
Ey = 2|6, = 2(1 - q,,)
Unfortunately, the drawback of passive and complementary filters require the
reconstruction of an estimate of the attitude R,, also used to map the velocity
into the inertial frame. To overcome this issues, the explicit complementary filter
is introduced. Let v; be the body-fixed-frame observations of the fixed inertial
directions:
V; = RTUOi + Wi, v € B

whose estimate is defined as

b = R,
In the case IMU measurements are collected, the observations become
ag
v, = RT —
|ao|
Mo
U = RT —
|mo|

with a cost function expressed as
Emes = kl(l - <®a7 Ua>) + k2<1 - <@mvvm>)
with k1, ko relative sensitivity coefficients. Defining:
wme? = ?:1 ki'l}i X 131
I? = _klwmes
Q= 30 (2 = b+ kpwmes)
where k;, kp are tuning parameters, the estimated attitude in At sample time is
expressed by .
@t = Q-1 + @At

This algorithm is used for limb attitude estimation in [1]
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2.2.5 Recurrent Neural Network

Wei et al. presented in [13] a novel approach to the real-time estimation of the 3D
arm motion. Instead of a 9-axis IMU, that includes an accelerometer, a gyroscope
and a magnetometer, the work intends to use a 6-axis IMU, i.e. without the
magnetometer, and combine the sensor data in a recurrent neural network (RNN)
to estimate the position of both the wrist and the elbow. The conceptual scheme is
shown in figure 2.4. The system is based on the fundamental assumption that the

Accelerometer || Raw IMU - 3D Arm , —
data Sensor Fusion orientation RNN-based |rotatons | Joint Position |, Elbowhwrist
Gyroscope (Complementary Filter) Joints Tracking Transformation positions
6-axis IMU r -

e

| Acceleration

Figure 2.4: Diagram of the proposed arm tracking system.

torso/shoulder is still, otherwise the problem cannot be solved in presence of the
ambiguity of the motion caused by the moving body with still arm or still body with
moving arm. Figure 2.5 represent the architecture details of the neural network;
the accelerometer and gyroscope raw data are combined in a complementary filter
to derive an orientation estimate, which is sent, along with the raw accelerometer
data, to a Gated Recurrent Unit (GRU) layer, and thereafter to a Fully Connected
(FC) layer, a Rectified Linear Unit (ReLU) layer, and a further FC layer.

Ground-truth joint positions (normalizs

Ground Truth Sk » MSE —» Loss
Measurement Normalization & Shuffle
cata (Accel
&30 Orlont) i i 30“'{'0"}"0"'
Sensor ik Joint Position
o Input tateful

e Fusion ][ Be Transformation
E IMU data (Accel & 3D Orient) GRU ¥ User 3D
-5 Arm motion
g e
x RNN-based Joints Tracking

Figure 2.5: Architecture of the RNN-based joints tracking model.

Compared to methods based on 9-axis IMU, the RNN method presented is
showing similar performance in terms of median error (ME) and mean absolute
error (MAE), but the limiting measurement conditions restrict the application of
such a system.

2.3 Proposed Approach

The methods and algorithms shown in the previous section have been developed
with the aim of estimating the position and orientation of vehicles or spacecrafts;
as a consequence, they focus on a single-body model that moves unconstrained in

19



Background

the space. In this work, a different perspective is adopted: a kinematic model is
considered indeed, in which the estimated motion and attitude of a body depends
on the estimated state of the element to which it is jointed to.

Figure 2.6: Joint coordinate system as defined by ISB [14].

A local reference frame is defined for each part of the arm, according to the
procedure suggested by the International Society of Biomechanics (ISB) and sum-
marized in [14]. In figure 2.6 the joint coordinate system (JCS) convention is shown;
when the arm is in relaxed position, with the palm of the hand pointing forward,
the y-axes of the three reference frame are aligned, and so all the x; and the z;,
with the former pointing forward.

2.3.1 Quaternions Attitude Representation

The attitude of the segment that represents the limb part 7; is expressed by means
of the quaternion ¢ = (qo, ¢1, g2, ¢3), which denotes the coordinates rotation operator
from local frame ‘F to frame ~1F,

T =g ed, (2.8)

where the notation (0,7;) = 7¢ has been introduced in subsection 2.1.4. The frame
=1 F corresponds to *F before the rotation . An equivalent operator for describing
the attitude is the rotation matrix R, defined after the quaternion q:

G+a—6 -G 2@ — ) 2(q193 + q0g2)

Re=| 2z +q9) G —G+3 -G  2(0205 — qoq1) (2.9)
2(q193 — 9042) 20 +aqn) -G -6+4
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Chapter 3

The Model

In order to reconstruct the motion of an arm, two essential elements must be
developed: a sensor network to acquire some relevant information and a kinematic
model of the limb to compare the measurements to. Since IMU sensors are
used, the kinematic analysis is focused on the derivation of an expression for the
acceleration in such points where the sensors are supposed to be placed. For the
sake of calculation simplification, the aforementioned accelerations are evaluated in
correspondence of the arm joints, i.e. three sensors are virtually attached to the
scapula, to the elbow and to the wrist and their reference systems are aligned with
the JCS. Nonetheless, M.C. Bisi et al. propose a method for calibrating anatomical
landmark position in the wearable sensor reference frame based on the calibrated
anatomical system technique (CAST) protocol in [15].

3.1 Basic Concepts of Functional Anatomy

The human arm motion is made possible by different collaborating systems, or-
ganized in a very complicated scheme. The model that is derived for this work,
indeed, is only a simplified, yet effective, representation of the very well-designed
machine that our body is. The skeleton is composed of the bones are the structural
part of the system; they give the major contribution to the stiffness of the body
and they characterize the length of the limb parts. These rigid elements are linked
together by ligaments and actuated by muscles, to which they are attached by
means of tendons. The relative motion is guaranteed by the articulations, that
lower the friction between the bones thanks to a cushion of liquid enclosed by a
capsule, called synovial fluid.

The articulations responsible for the arm mobility are essentially located in
three points of the limb: the thorax, the shoulder and the elbow. The wrist would
be the fourth junction to account for, but, as far as the the posture of the arm is
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under study, such an articulation is not considered in the overall analysis.

o The sternoclavicular joint is a saddle type joint that links the clavicle to
the manubrium of the sternum, i.e. the breastbone. It allows the protrac-
tion/retraction and depression/elevation movements of the clavicle, motions
happening parallel to the transversal plane and to the coronal plane, respec-
tively. The anatomy planes of reference are defined in figure 3.1.

o The glenohumeral joint is a ball-and-socket type joint connecting the humerus
to the scapula allowing a wide range of movements. Along with the acromio-
clavicular joint, that links the clavicle to the scapula, the glenohumeral joint
form the shoulder articulation, that is responsible for the flexion/extension of
the upper arm (humerus bone), in the sagittal plane, and the abduction/ad-
duction movement, in the coronal plane.

o The elbow articulation is composed of three joints sharing the same capsule;
the humeroulnar joint, the humeroradial joint and the proximal radioulnar
joint together form a hinge type joint. The latter is responsible for the
pronation/supination of the forearm and the hand (ulna and radius bones),
namely the rotation about its longitudinal axis; the wrist itself, in fact, does
not allow the dorsal/volar rotation of the hand with respect to the forearm.
The humeroulnar and the humeroradial joints cause the flexion/extension
movements of the forearm with respect to the upper arm [14, 16].

coronal or
frontal plane

horizontal,

axial, or
__transverse

plane

sagittal or
longitudinal

plane
—_—

median plane
parasagittal
plane

Figure 3.1: Human anatomy planes definition. By David Richfield and Mikael
Héggstrom, M.D. and cmglee - Human anatomy planes, labeled.jpg, CC BY-SA 4.0,
https://commons.wikimedia.org/w/index.php?curid=91212408
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3.2 Kinematic Model

The arm, for the purpose of this thesis, is considered to behave like a robotic
manipulator having multiple revolute joints, characterized by 7 degrees of mobility.
Such a structure is often referred to as 7 DoF in literature [6, p. 58],[17], as each
joint acts on a single degree of freedom, called joint variable.

The three articulations described in section 3.1 characterize the joints between
the three links of the manipulator;

o the sternoclavicular joint, that allows two DoFs between the clavicle, having
length [., and the thorax, is modeled with two orthogonal revolute joints;

o the shoulder, that allows three DoFs between the clavicle and the upper arm,
whose length is [,,, is modeled with three orthogonal revolute joints (behaving
like a spherical joint);

o the elbow, that allows two DoFs between the upper arm and the forearm,
having length [, is modeled by means of two orthogonal revolute joints.

Figure 3.2: Model of the kinematic joints in the arm.

The global reference frame °F is placed in the thorax, as well as the reference
IMU sensor, as will be explained later in this chapter. The collocation of the
previously listed joints is visible in figure 3.2. When dealing with kinematic chain
analysis, a convenient procedure is to attribute to each link of the chain, r;, a local
reference frame, ‘. In manipulator analysis, the main task is carried out by the
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last element r,,, called end-effector, whose attitude with respect to the base frame,
i.e. the global reference frame, is calculated as

2R = ?R(%) %R(fh) Z_lR(C]n)a (3.1)

where the parameters [qq,. .., ¢,] are the joint variables that actually determine
the posture of the manipulator.

3.2.1 The Denavit-Hartenberg Convention

An effective method to assign a local reference frame to each link of a manipulator
has been set up by Jacques Denavit and Richard S. Hartenberg in 1955; when this
approach is adopted, the forward kinematic analysis become a simple multiplication
of homogeneous transformation matrices related to a single degree of freedom,
ordered according to (3.1), and systematically determined.

JOINT i-1 JOINT 14 JOINT i+1

R ;ﬁ,
\ 4 Y; #i
a, S

2z,
L

: o, T~ _ /%
\ 3 7
\ o /

\ ) -1 /

[Fi-1 ;
\

Figure 3.3: Kinematic parameters according to the Denavit-Hartenberg convention. Image
originally published in [6].

With reference to the scheme depicted in figure 3.3, the crucial part of the
Denavit- Hartenberg (DH) method is the definition of the local reference frame *F
on each joint of the chain:

e axis z; is chosen in correspondence to the axis of joint J;,1;

e axis x; is chosen along the common normal, i.e. minimum distance vector, to
axes z;_1 and z;;

« origin O; of the local frame is placed at the intersection of axes x; and z;;

e axis y; is chosen in order to complete the right-handed frame ¢F.
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In all such cases when the direction of an axis is indefinite, that is, when the choice
is non unique, an arbitrary solution can be adopted for simplifying the calculation.

Once a local frame is attributed to each joint, the whole kinematic chain is
defined by specifying four parameters that characterize the joint, usually known as
DH parameters:

a; is the distance between the axes of the two consecutive joints J; and J;;1 (the
normal);

d; is the distance between axes x;_; and x;. It corresponds to the axial length of
ith link;

0; is the angle between axes x;_; and z;, about axis z;_1;
«; is the angle between axes z;_; and z;, about axis z;.

Depending on the type of the joint, one out the four parameters is the joint variable
qi: 0; if joint J; is revolute, d; if the joint is prismatic. The two remaining parameters
are always constant and determine, along with the third excluded by the joint
type, the geometry of the manipulator. The general expression for a homogeneous
transformation matrix between the coordinate of consecutive joints *~'F and *F is
eventually derived:

cl; —sbco; 8080,  a;cH;

i1 N st; cbico; —cbisay  a;sb;
i Al) = 0 say cay; d; (3.2)
0 0 0 1

The matrix A, due to its structure defined in (2.1) has a particular meaning. the
3 x 3 upper-left submatrix, indeed, is the rotation part and the columns of which
are the axes of frame "' F expressed in frame ‘F; the 3 x 1 upper-right column
vector is the position of the origin of frame ‘"1 F axes, expressed in frame *F.

3.2.2 7 DoFs Model

This subsection is devoted to the development of the model built upon the system
under study. The Denavit-Hartenberg procedure described in subsection 3.2.1 is
adopted to perform the forward kinematic analysis of the manipulator; in figure
3.4 the 7 DoFs kinematic chain represented according to the DH convention is
depicted.

As introduced at the very beginning of this section, the articulations allowing
multiple degrees of freedom are modeled as orthogonal consecutive rotational joint,
connected by dimensionless links. The DH parameters of the manipulator are
presented in table 3.1. The expression for the homogeneous transformation matrix
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Figure 3.4: DH local frames definition on the kinematic chain.

Joint «; d; 0;
1 0 =w/2 0 1
2 lc —7T/2 0 q2
3 0 =/2 0 q3
4 0 w/2 0 w/24+q
5 0 w/2 I, qs
6 0 —7T/2 0 e
7 0 0 ly m/24+qr

Table 3.1: Denavit-Hartenberg parameters of the manipulator.

7T(q) =1A A SAGASAGAZA

of the manipulator defined after (3.2) is reported in appendix A.

Angular Velocity and Acceleration

(3.3)

As introduced at the beginning of the chapter, the purpose of the kinematic analysis
is to derive a formulation for the angular velocity and the acceleration expressed in
the local sensor frames, that is function of the joint variables ¢;. Clearly, sensor
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placement is once again a crucial procedure to be carried out; if the i** IMU, s;,
is not aligned with the local frame, the misalignment can be accounted for by
introducing a constant transformation matrix (7', such that

0T =3T(q) iT. (3.4)

The angular rate evaluation is based on the observation of the kinematic chain;
in fact, according to the DH model, each revolute joint gives a contribution only
about the joint axis z;, according to the expression:

Tlwi=[0 0 ¢, (3.5)
while the total angular velocity experienced by link 7; is the sum of all the contri-
bution of the joint velocities ¢y, ..., ;. It can be iteratively computed as

‘W= R (Twt ), (3.6)

where ! | R is the inverse of { 'R, that coincides with its transpose; it also corre-
sponds with the upper-left 3 x 3 submatrix of the DH transformation matrix ¢_; A.
Figure 3.4 can be used as a reference to better visualize the concept.

The acceleration sensed in local IMU frames is derived in joint frames for
notation simplicity; if the two frames do not correspond, technique shown in (3.4)
can be exploited. Each link r; experiences the acceleration due to the actuation of
joints Ji ... J;, that can be found differentiating the fundamental formula of rigid
bodies [18]:

d’0;

dt?

d - .
= a(Oi_l + "w X 7"7;)

=0, 1+ %WXT;+'wx'wxT;

’La:

(3.7)

where ‘w is the angular velocity from (3.6) and O,_, is the acceleration of frame
=1 F origin, that can be calculated as

O, =" R (3.8)

3.3 Dynamic System Representation

In order to describe the attitude evolution in time of the three limb parts, i.e.
clavicle, upper arm, and forearm, a quaternion-based notation is adopted: a non-
minimal representation yields more accurate results and avoids the angle ambiguities
due to singularity of rotation matrix derived from minimal representations.
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The time variation of the quaternion ¢(t) that represents the attitude of the
body subjected to the angular velocity ‘w = [w, w, w,]’ is derived considering
the rotation Ag(t) that occurs in the time interval At, according to the quaternion
composition:

q(t + At) = q(t) @ Aq(t),

which, thanks to a linearization due to the small time interval At, leads to the
kinematic relation [19]

1

The quaternion derivative expression (3.9) results more handy if in the matrix form

qzi@w, (3.10)

where () is a matrix representation of the quaternion g¢:

—q1 —G2 —g3
. Qb —q3 Q2
= 3.11
¢ a3 g —q1 ( )
—q2 1 qo

3.3.1 The Process Model

From the attitude differential time law, it is clear that equation 3.9 describes
a non-linear dynamic system; an effective representation is thus adopted, the
continuous-time state space description.

The state vector is composed of seven state variables: the three elements of the
angular rate w and the four terms of the quaternion g:

2] w0,
To Wy
T3 Wy
Ty a1
Te q2
LT7 ] L g3

The state transition function of a continuous-time autonomous dynamic system,
i.e. not forced,

w(t) = f (2(t)), (3.13)

formalized by Yun et al. in [11], is a non-linear combination of the state variables
defined in (3.12), due to the dynamics described in (3.10). The dynamic evolution
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of [t1 x x3]" = [ws w, w,]' is characterized by a low predictability, since
the free motion of the limbs is arbitrary; Kim et al. in [20] propose a relation
between & and x which is based on the limits in magnitude and bandwidth that a
power spectral density (PSD) function has. This is modeled through a first order

system having a time constant 7 related to the bandwidth of the system:

jfl 1 T
To| = —= |29 (3.14)
j73 T T3

where 7 is also referred to as the decorrelation time constant of the Gauss-Markov
(GM) model [21]. The remaining part of the state equation is the explicit form of
3.10,

12'4 _$4 0

j?5 1 Iy T

== 3.15
Te 2 |Te “ T2 ( )
[t7 T T3

[ X175 — Talg — T3T7

_ L = wprg s | (3.16)
2 | T1X7 + Xoxg — X3T5

L —Z1%e + Toly + T34

The whole system is depicted in figure 3.5 as presented by Marins in [10]. The
quaternion normalization step is fundamental, but can be implemented in simulation
framework so as not to increase further the complexity of the state equations.
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A\

>
"4
y
Y
—
y
<
1]
ENINTES
LN
®
e
Y
t—
y

Figure 3.5: Process model block scheme.

3.3.2 The Measurement Model

The measurement model establishes a relation between the measurement data
and the state variables. Since IMU sensors provide the local values of angular
velocity and linear acceleration, the model to be implemented must account for an
expression of the aforementioned physical quantities that is a combination of the
state (3.12).

The general, non-linear function of a continuous-time autonomous dynamic
system is expressed as
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and the output variables, for the i*" link are set to be

I %

21 sz
22 ‘wy
23 ‘ Z@z
[2] = |z = ‘ag +oR13 g . (3.17)
25 ‘ay +Ras g
26 Zaz + 6R3,3 g
) @+ g+ a3+ d

Equations [2; 22 z3]7 are referred to the angular velocity expression in (3.6).
Equations [z 25 2|7 represent the three components of the acceleration derived
in (3.7) plus a contribution due to the projection of the gravity acceleration onto
the local frame *F to be discussed in the next section. The kinematic acceleration
measured in local frame is the sum of three components: the tangential acceleration
a; = ‘W % T;, the centripetal acceleration a, = ‘w x ‘w x 7, illustrated in figure 3.6,
and the acceleration of the frame origin, O;_;. The angular velocity operator wx
can be also expressed in matrix form by means of the skew-symmetric matrix S(w),

defined as

0 —w., wy
S(w) =] w, 0 —wel;
—Wy Wy 0

the same notation can be applied to wx, S(w). The rotation matrix R appearing
in the output equations is calculated after 2.9 and is function of the state variables
[234 Iy g ZL’7]T.

The output equation z7 is a constraint on the norm of the quaternion that
constitutes the state vector part x4, x5 x¢ 7|7, introduced both for improving
the quaternion convergence and for augmenting the output vector dimension in
order to avoid lack of observability issues. If a MARG sensor is used instead of an

Figure 3.6: Components of the acceleration.
IMU, i.e. also the magnetic field components m = [m, m, m,]’ are measured,
the three further output equations are defined as
im — ZR Om
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3.3.3 Gravity Compensation

As previously introduced, the acceleration measurement model (3.17) must take
into account the gravity acceleration components in the local frame, that are, by
the way, the most consistent part in acceleration magnitude. The gravity vector,
expressed in global base frame °F (figure 3.4) has component only along z, direction,
g=1[0 0 —g]*, where g is the gravity acceleration value that, although the
Earth’s gravitational field is not constant around the globe, can be considered equal
to g = 9,81 m/s*. The gravity contribution on the acceleration measured in frame

‘F can thus be expressed by ' ,
0, = IR 3. (3.18)
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Chapter 4

The Filter

Often, when dealing with dynamic systems, the interest of the study involves the
state variables monitoring; some examples could concern the control of the system
or the evaluation of the time evolution of the state as the most relevant source
of information of the system. However, in general, only the output variables are
the physical quantities that can be measured, thus only an estimate of the state
could be available. If this is the case, a state observer is an effective tool to be
implemented. The system, however, must satisfy observability conditions, related
somehow to the output capability to affect the state variables; the observability
of a dynamic system, linear in general, is assessed by evaluating the rank of the
observability matriz, defined as:

C
M= . (4.1)
CA?’L—l

where A and C' are the state matrix and the output matrix of a linear time-invariant
(LTT) dynamic system
{x’(t) — Ax(t) + Bu(t)
y(t) = Cx(t)
The system is said to be observable if and only if the rank of M, is equal to the
system order [22], i.e. the number of states:

rank(M,) = n.

When properly designed, a state observer can provide an estimate of the state &
that converges to the real state; such a dynamic system is referred to as asymptotic
state observer, that leads to:

lim |2(t) — z(t)| = 0.

t—o00
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An insight on the observability conditions for non-linear systems is addressed
later in the chapter.

4.1 The Kalman Filter Framework

An asymptotic state observer guarantees its performance as long as the state
x(t), the input u(t), and the output y(t) are deterministic, i.e not affected by
any disturbance in general. But, since every real measurement data collection is
unavoidably characterized noise corruption, the state estimate ought to be assessed
within a probabilistic estimator framework. Let’s consider a discrete-time, LTI
system:

2(k) = Calk) + vm(k) k=12,... (4.2)

The terms v, and v, represent the zero-mean additive white noise:

{x(k +1) = Ax(k) + Bu(k) + v, (k)

» process noise v, follows a normal distribution with zero-mean value
Elv,(k)] =0, Vk
and variance matrix Q,
Elvy(k1)vp(k2)"] # 0 & k1 # ke
e measurement noise v,, follows a normal distribution with zero-mean value
Elv, (k)] =0, Vk
and variance matrix R,
Evpm(k))vm (k)] # 0 & ki # ko

The random variables v, (k), v, (k) are uncorrelated, E[v,(k1)vm,(k2)T] = [0], V1, ko.
The introduction of random variables in the state and output equations leads to
define that z(k) and y(k) are random variables too.

Under the assumptions outlined above, a recursive filtering technique can be
defined:

K(k) = P(k)CT|CP(k)CT + R]™*
Po(k) = (I, — K (k)C]P(k)
2(klk —1) =Ci(klk—1)
KF: e(k) =z(k)— 2(klk —1) : (4.3)
2(klk) =z(klk—1)+ K(k)e(k)
P(k+1) = APR(k)AT +Q
2k + 1|k) = Az(k|k) + Bu(k)
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Such a procedure, known as Kalman Filtering is named after Rudolf E. Kalman,
who described it in 1960. With reference to (4.3), the scheme in figure 4.1 is defined;
the two fundamental parts of the algorithm are the prediction and the correction.
The state transition equations address the a-priori estimate, only based on the
dynamic model of the system, while the measurement equations, instead, are in
charge of updating the estimate, a-posteriori. This innovation due to measurements
is magnified by the Kalman gain factor K (k), calculated as of the state covariance
matrix P(k), which is recursively computed with a difference Riccati equation
(DRE). Under the assumptions of Gaussian distribution of the noise and linearity
in the system modeling, the Kalman filter provides an optimal estimate of the
state [23].

Prior knowledge Pkfl\k71 Prediction step
ofstate — % — Basedone.g.
‘ k—1k—1 physical model
Next timestep l?k\k—l
k+—k+1 Xk|k—1
Py Update step Measurements

<— Compare prediction -—

Xk|k
| to measurements

|

Output estimate
. of state

Figure 4.1: Scheme of the estimation steps of a Kalman filter.

Yi »

Before starting the recursive procedure, an estimate of the initial state Z(k = 1)
and its covariance matrix P(1) = var[Z(1)] are determined, and their accuracy
remarkably affects the convergence time of the algorithm [24].

4.2 The Extended Kalman Filter

The Kalman filter is a powerful tool for estimating the state of a dynamic linear
system in presence of measurements or modeling uncertainties, in addition to
providing an optimal linear estimate. However, LTI systems represent a limited
range of system models; in fact, a large variety of estimation applications concerns
non-linear systems, modeled as:

k=12, ... (4.4)

——

SR

—

E

N~—

+

—_

N—
i1l

Fla(k), u(k)) +vy(k)
h(x(k)) + vm (k)
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in which the state and the measurement equations are defined as functions that
combine the state variables in a general, non-linear, relation instead of the linear
state-space matrix representation. In all such cases, an extension of the Kalman
filter can be formulated, by considering as state and measurement matrices the
jacobian of the state and measurement functions f (x(k),w(k)), h (z(k),u(k)) with
respect to variables, evaluated in the predicted state;

. of(x,u, k

F(klk—-1) = <8x) (4.5)
a=i(k|k—1)

A Oh(x,u, k

H(klk—1)= (83:) (4.6)
z=&(k|k—1)

this formulation derives from the approximation method based on the Taylor series
expansion [25]. The filter algorithm becomes:

K(k) = P(k)H (k)" [H (k)P (k) H (k)" + )™
By(k) = [In — K(k)H (k)| P(K)
E(klk = 1) = h(2(k[k—1))
EKF : e(k) = z(k) — 2(klk — 1) S @)
B(klk) = &(k[k — 1) + K (k)e(k)
Pk+1) =
)

F(k)Po(k)F (k)" +Q
f(

(k+ 1|k 2(k|k))

Matrices F', also called @ in literature [11], and H have to be computed at each
time step, leading the extended Kalman Filter (EKF) to be much more consuming
than the linear version. In the EKF algorithm the Kalman gain K (k) and the
state covariance matrix P(k) are calculated on the base of the linearized matrices
F, H , while the state and the measurement updates are determined by means of
the non-linear equations describing the system (4.4).

4.2.1 Model Linearization

The equations that describe the continuous-time non-linear dynamic system pre-
sented in section 3.3 are linearized differentiating (3.14),(3.16),(3.17) with respect
to the state variables z = [r; ... a7]7, yielding to a symbolic definition of
matrices F', H, which are evaluated in the current predicted state &(k|k — 1) at
each iteration step. Those matrices are used in the filter algorithm (4.3) in place of
A, C to compute the Kalman gain K (k) and the state covariance matrix update
P(k 4+ 1). The filtered state Z(k|k) is then updated on the basis of the linearized
dynamics of the system.
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It may be the case that, albeit the system dynamics is expressed by nonlinear
equations, the measurement model is linear in the state variables. If this occurrence
verifies, the measurement matrix F is directly employed in the filter. In [10], in order
to simplify the filter implementation, an external quaternion convergence algorithm
is exploited to obtain an estimate of the quaternion, leading the measurement
matrix F' to coincide with the identity matrix /; accelerometer and magnetometer
measurements are combined in an error function @) that depends on the rotation
matrix R expressed in terms of rotation quaternion, which is minimized by means
of the Gauss-Newton iterative algorithm. In particular,

PQ=c"e= (Pyr — M Pyo)" (Pyr — M Pyp)

where Py, is the 6 x 1 vector with the gravity and magnetic field values in the
Earth’s reference frame, Py, is the 6 x 1 vector measurements performed in body
frame; M is a rotation matrix defined as

wli

4.2.2 System Discretization Method

The filter algorithm, in order to be implemented, needs a description of dynamic
system in discrete time, as pointed out by the formulation in (4.4). This repre-
sentation requirement essentially derives from the fact that measurement data are
acquired with a time interval T called sample time and because the algorithm
itself is iteratively computed.

The relation that links the continuous time state matrix A and the state matrix
of the discrete time representation of a dynamic system is expressed as

Ad = GTSA
where the term e”4 is a matriz exponential defined as
> 1 M2 M3
M= M =T+ M+ —+ —+... (4.8)
= k! 2 6

Finding a method to approximate the exponential matrix is an active field of
research yet, but among the most widespread, the Padé approximants are the most
used [26]. Although the simple truncation of the Taylor series in (4.8), Ag ~ [+T,A
is itself an effective approximation, in this work the Tustin approximation approach
is considered, since it guarantees more accuracy:

: . 1t
Fy = BF a (1 n 2TSF) <I _ 2:r;F>
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where F'is the state linearized matrix in (4.5).

The non-linear dynamics of the system, described in subsection 3.3.1, is dis-
cretized exploiting the forward Fuler method; the derivative of the state vector is
approximated by means of the incremental ratio:

x(t + At) — x(t)
At

where, since 7 = T, and the discretized time t = kAt, the state can be written
as z(t) = z(k), z(t + At) = z(k + 1) for notation simplicity. The discrete-time
description of the system dynamics then results expressed by the finite-difference
equations:

E28 i (1 —=Ts/7)x1(k) ]

T (1 —T/T)ZL‘Q(]{‘)

T3 (1 —T,/7)x3(k)

zy| (k+1) = |za(k) + Ts/2 (—a1(k)z5(k) — 22(k)ze(k) — 23(k)a7 (k)| (4.9)
5 x5 (k) + T5/2 (21(k)za(k) — w2(k)2r(k) + 23(k)xe(k))

o xo(k) + T5/2 (21(k)z7 (k) + 2(k)za(k) — 23(k)2s(k))

EZd z7(k) + Ts/2 (—x1(k)ze(k) + z2 (k)5 (k) + 23(k)za(k)) ]

4.3 Modeling The Noise

As one of the theoretical assumptions made to derive the filter algorithm, the noise
entering the system is considered to follow a gaussian distribution, with zero mean
and known variance; the process and the measurement ought to be uncorrelated in
different time instants.

Since the noise is all but known, only guesses can be made on it. Starting from
its gaussian nature.

4.3.1 Process noise

The uncertainties on the process model are represented by the additive noise term
v,(k); it also accounts for the unmodeled dynamics of the system. Sometimes
it may be convenient to implement a simplified model of the system in order to
reduce the complexity of the calculations, by taking into account the uncertainty
by proper selecting the variance matrix ).
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Since the differential relation relating the quaternion evolution with the angular
velocity is a deterministic kinematic function, no noise occurs in the quaternion
state variables, i.e.

([gn 0 0 0 0 0 0]
0 g9 0 0 0 0 O
0 0 g3 0 0 0 O
Q=10 0 0 0000 (4.10)
O 0 0 0O0O0UO
0O 0 0 O0O0O0O0
L0 0 0 0 0 0 0]

Although in [11, 27] methods to obtain the process noise variance matrix from
calculations are investigated, the values of the matrix (4.10) have to be manually
adjusted in order to obtain the best performances of the algorithm, especially for a
system whose states are characterized by low predictability.

4.3.2 Measurement Noise

When dealing with data acquisition systems, the main source of uncertainties in the
measurements comes from the sensor; in this regard the datasheets of such sensors
provide a reasonable value for the measurements variance. The variance matrix R
can be non-diagonal, in case for example that the sensor axes are not uncoupled,
but this information is usually available in the instrument documentation.

7, 00 0 0 0 0]
0 r O 0 0 0 0
0 0 733 0 0 0 0
R=|0 0 0 r4 0 0 0 (4.11)
0 0 0 0 755 0 0
00 0 0 0 0 rg O
(0 0 0 0 0 0 rpml

The measurement variance matrix R considered for this work is diagonal; the ele-
ments 711, 722, 733 are referred to the gyroscope readings w,, wy, w,, while elements
T4, T55, Te6 Tepresents the variance of accelerometer measurements, a,, a,, a,. The
element 77 is instead a term representing the fictitious variance relative to the
norm of the quaternion to be estimated ¢: it would be virtually zero, so a very tiny
quantity is considered.

4.3.3 Calibration Setup Routine

A critical point in the estimation procedure of the position is the definition of the
initial state 2(0). An effective method for the determination of the initial attitude
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is to consider the system at still; in fact, in static conditions the only acceleration
sensed by the IMU is due to the gravity. Since the bare measurements of the
accelerometer are not sufficient to fully characterize the three angles which define
the attitude in space [3], a widely used approach is to refer to as initial pose the
body position assumed in figure4.2, also referred to as T-pose [5, 28, 29].

Figure 4.2: Calibration position.

In case a magnetometer sensor is available besides the IMU, the attitude in
space can be fully determined by gravity and Earth’s magnetic field readings. If a
MARG sensor is considered instead of an IMU, the calibration procedure consist
in performing circular trajectories in space in order to sense the direction of the
Earth’s magnetic field. Such a procedure is however reported on sensor datasheets.

4.4 Convergence Conditions

The extended Kalman filter is a robust algorithm, but it may be very sensitive to
the occurrence of some conditions.

4.4.1 Linearity

The optimal solution provided by the Kalman filter is based on the assumption
of linearity of the model relative to the system under test. The extended Kalman
filter, however, operates in a local region of the domain where the non-linear state
equation have been linearized; in the case that the model is highly nonlinear in the
area around the linearization point, i.e. the state estimate, the result may be poor
and the algorithm may not converge at all.
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4.4.2 State Initialization

A significant impact on the convergence time, and, sometimes, on the convergence
itself, is made by the determination of the initial predicted state, #(1]0). By
choosing an initial guess as close as possible to the real, unknown, state, would
dramatically decrease the convergence time; a great care indeed must be taken to
the initial estimate, e.g. by exploiting different sensors and methods, like the one
suggested in subsection 4.3.3. Along with the state estimate, the initialization of
its covariance matrix P(1) is also crucial; common practice is to define the state
covariance matrix equal to the process noise variance.

4.4.3 Observability

As stated among the KF implementation conditions, the system is requested to
be observable, i.e. the rank of the observability matrix must be equal to the order
of the system, i.e. rank(M,) = n, otherwise convergence is not guaranteed. Since
for non-linear systems the state and, possibly, the measurement equations do not
have a matrix representations, the observability of such a class of systems must
be investigated exploiting different tools. As pointed out in [30] and thoroughly
discussed in [31], the observability matrix of non-linear systems is addressed by
evaluating the gradients of the Lie derivatives of the measurement function h(x(k)):

O(x) ={VL; s h(@(k))i,j=0,....Lk=1,...,m;s € N}

where m is the dimension of the output vector, [ is the dimension of the input
vector, s is the order of the derivative.

4.4.4 Noise variance

The most immediate tool to adjust the filter performance are the variance matrices
of the noise, relative to both the process model and the noise model. Sometimes,
finding the best combination of parameters in terms of convergence and stability of
the filtered state is a matter of variance matrices fine tuning.

It may be the case that the implemented measurement model leads to a rank
deficiency of the observability matrix. This is in principle due to the fact that only
six measurement equations are exploited to estimate seven parameters, although
only six of them are linearly independent due to the constraint on the quaternion
norm. To overcome this issue, a tri-axial magnetometer can be used in addition to
the accelerometer and the gyroscope, adding in this way three new independent
equations relating the attitude of the arm with the quaternion state variables. The
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drawback would be an increment on the measurement linearized matrix H, that
needs to be inverted in the algorithm loop.

41



Chapter 5
Simulation Setup

The system has been implemented in Matlab 2020b for the simulation; the script
is reported in Appendix B.

A symbolic approach is pursued in order to the derive the analytical expression
for the process model and the measurement model. Starting from these formulations,
the linearized state and measurement matrices to be implemented in the filter are
obtained by differentiation with respect to the state vector, and then evaluated in
the current state estimate. The procedure, detailed in section 4.2, is performed
by substituting the predicted state at time instant k£ in the analytical expressions
previously discussed.

5.1 Data Generation

The kinematic analysis of the limb, handled in subsection 3.2.2, is performed
considering a DH model of the kinematic chain; the angular rate and acceleration
data are indeed derived in the local reference frame defined in such model and
illustrated in figure 3.4. The JCS defined by the ISB, however, does not coincide
with the DH local frames, as can be seen in figure 2.6. In order to guarantee the
compatibility of both the coordinate systems, three transformation matrices are
introduced, such that the simulated acceleration and angular velocities are rotated
into the frames related to the JCS:

010
TR, =10 0 1
100
0 0 1
T9WR, =10 =1 0
1 0 0
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-1 0 0
TR =10 0 -1
0 -1 0

The coordinate transformations expressed by matrices {57 R, 757 Ry, bt R, are

referred to the T-pose calibration position described in subsection 4.3.3.

5.1.1 Parameters Definition

The simulation is performed collected N = 7000 samples with a sampling frequency
fs =100 H z, leading to a sampling period Ty = 0.01 s and thus a total duration of
the experiment 7Ty = 70 s. The time constant of the model 7 should be tuned on
the base of real measurements. However, since only simulation data are available,
it is set to a reasonable but arbitrary value, i.e. 7 =10.2s.

5.1.2 Limb Dimensions

The three parameters that characterize the arm are the length of the clavicle from
the sternoclavicular joint up to the scapula ., the length of the upper arm from
the shoulder up to the elbow [, and the length of the forearm from the elbow up
to the wrist [;. In table 5.1 are reported the assumed value, compatible with the
dimensions of a human arm.

length [m)]
I, 0.2
L, 0.3
ly 0.3

Table 5.1: Caption

5.1.3 Joint Velocities

The angular velocity w;, defined for each joint, is characterized by an impulse-shape
so that it causes a smooth trapezoidal profile in the angle generated 6;, and, at the
same time, gives rise to a smooth angular acceleration «; shape, according to the
function

e 2(t—t1)* _ Qie—Q(t—tQ)Q

V2r V2

whose time law is shown in figure 5.1.
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Figure 5.1: Time profile of the angular velocity, angle and acceleration.

Angular Acceleration

In the formulation of the measurement model, the tangential acceleration contri-
bution depends on the angular acceleration w; though, deriving an estimate of w
from the estimate of the angular rate @ would lead to a remarkable performance
degradation of the algorithm. In order to accurately estimate the angular accelera-
tion, the state of the system should be augmented, including the components of w
in local frame. For this reason, in the simulation the angular velocity is considered
to be zero, introducing a dramatic but necessary approximation.

Wy 0
@yl =10
W, 0

5.1.4 Initial Conditions

The initial posture is determined on the base of the T-pose reference, i.e. the
starting position of the DH model. The initial state estimate #(1) is however
corrupted by random noise from the normal distribution having variance R.

The initial state covariance matrix P(1) is assumed to be equal to the process
noise variance ).
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5.1.5 Variance Matrices

The variance matrices of process noise and measurement noise are a fundamental tool
to settle the performance of the filter. However, in many situations a compromise
between the tracking and convergence achievement is difficult to be obtained, so for
each task the aforementioned parameters are specified. This behaviour may depend
on the lack of observability conditions on the system; although an observability
test based of the linearized model is implemented at each iteration step, a deeper
analysis can be addressed by assessing the non-linear observability as defined in
subsection 4.4.

5.1.6 Simulation Data

In the following, figures 5.2, 5.3, 5.4, 5.5, 5.6, 5.7 represent the measurement
datasets that are used for estimating the attitude of the limb by means of the
extended Kalman filter algorithm. In particular, the depicted case correspond to
the protraction/retraction of the clavicle by an angle ¢» = /6.

)
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0 100 200 300 400 500 600 700 800 900 1000
[s]
z3(t)
T T T T T T T T
- 0.05 i
] 0 | i
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-0.1 1 1 1 1 1 1 1 1 1
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[s]

Figure 5.2: Gyroscope measurement data relative to the shoulder.
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Figure 5.3: Accelerometer measurement data relative to the shoulder
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Figure 5.4: Gyroscope measurement data relative to the elbow.
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Figure 5.5: Accelerometer measurement data relative to the elbow.
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Figure 5.6: Gyroscope measurement data relative to the wrist.
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Figure 5.7: Accelerometer measurement data relative to the wrist.
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Results

This chapter collects the results of the tests performed on the filter. As stated in
subsection 5.1.5, the conditions and the particular choice of parameters associated
to the presented achievements is reported. In order to figure out the quality of the
estimate, root mean square errors (RMSE) values relative to the output z of each
test evaluation are reported.

6.1 Static Results

In this section the static performance is evaluated; the measurement dataset refers
to a still T-pose posture, as depicted in figure 4.2.

link 1 link 2 link 3

wy 0.0318 0.0323 0.0324
wy 0.0317 0.0323 0.0319
w, 0.0322 0.0320 0.0320
a; 0.5733 0.0529 0.0543
a, 0.0533 0.0517 0.0516
a, 0.0525 0.0497 0.0503

Table 6.1: RMSE of the output in static conditions.

6.2 Dynamic Results

In this section, the joint variables motions are testes separately. A description of
the arm degrees of freedom is detailed in section 3.1.
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Figure 6.1: Attitude of link 1 in terms of RPY angles in static conditions.
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Figure 6.2: Attitude of link 2 in terms of RPY angles in static conditions.

50



Results

3
$°(t)
T T T T
— 6f phiest )
4 phi |7
B i
0 AV 1 1 = 1 I I
0 10 20 30 40 50 60 70
[s]
o)
T T T T T T
6 theta__ |
84 est
% theta
25 J
0 o v - + -
0 10 20 30 40 50 60 70
[s]
3
A »()
T T T T T T N
psi
§ | -est |
3 2 psi
O 1 1 1 1 1 1
0 10 20 30 40 50 60 70

Figure 6.3: Attitude of link 3 in terms of RPY angles in static conditions.

Variance [rad?/s?]

q11 1- 10_5
Qo2 1-107°
433 1-107°

Table 6.2: Variance values of the process noise in static conditions.

6.2.1 Forearm Pronation/Supination

A ¢; = 7/6 rotation with a smooth trapezoidal profile is imposed to the joint 7
of the kinematic chain, correspondent to the forearm pronation and successive
supination. The resulting angle is shown in the local joint coordinate system.

The measurement variance matrix R for this experiment is the same as assumed
in static case, section 6.1.

6.2.2 Forearm Flexion/Extension

A g¢ = 7/6 rotation with a smooth trapezoidal profile is imposed to the joint 6 of
the kinematic chain, correspondent to the forearm flexion and successive extension.
The resulting angle is shown in the local joint coordinate system.
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Variance [rad®/s*] Variance [m?/s?] Variance | |

11 1-1073

99 1-1073

733 1-1073

T44 2.5 ].0_3

T'ss5 2.5 10_3

T66 2.5-1073

77 1-10712

Table 6.3: Variance values of the measurement noise in static conditions.
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Figure 6.4: Attitude of link 1 in terms of RPY angles during forearm pronation/supination.

The measurement variance matrix R for this experiment is the same as assumed
in static case, section 6.1, while the process variance matrix () is the same as in
the case of forearm pronation/supination.

6.2.3 Upper Arm Rotation

A g5 = 7/6 rotation with a smooth trapezoidal profile is imposed to the joint 5 of
the kinematic chain, correspondent to the upper arm rotation. The resulting angle
is shown in the local joint coordinate system.

52



Results

2
t
'80 T T ¢ ( ) T T
f— phiest
é’ -85 phi
‘90 T e T I T I
0 10 20 30 40 50 60 70
[s]
o)

70
[s]
BA(t)
T T T T T T

4 - . -

psi
§ oL ‘est B

S0 s
-2 1 1 1 1 1 1 i
0 10 20 30 40 50 60 70

[s]

Figure 6.5: Attitude of link 2 in terms of RPY angles during forearm pronation/supination.
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Figure 6.6: Attitude of link 3 in terms of RPY angles during forearm pronation/supination.
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link 1 link 2 link 3

wy 0.0332 0.0347 0.0350
wy 0.0331 0.0348 0.0364
w, 0.0336 0.0346 0.0346
a; 0.6361 0.0539 0.0583
a, 0.0551 0.0527 0.0525
a, 0.0527 0.0497 0.0506

Table 6.4: RMSE of the output relative to forearm pronation/supination.

Variance [rad?/s?]

qu 1-1074
22 1-107*
33 1-1074

Table 6.5: Variance values of the process noise relative to forearm pronation/supination.

The measurement variance matrix R for this experiment is the same as assumed
in static case, section 6.1, while the process variance matrix () is the same as in
the case of forearm pronation/supination.

6.2.4 Upper Arm Abduction/Adduction

A g4 = /6 rotation with a smooth trapezoidal profile is imposed to the joint 4
of the kinematic chain, correspondent to the upper arm abduction and successive
adduction. The resulting angle is shown in the local joint coordinate system.

The measurement variance matrix R for this experiment is the same as assumed
in static case, section 6.1, while the process variance matrix () is the same as in
the case of forearm pronation/supination.

6.2.5 Upper Arm Flexion/Extension

A g3 = 7/6 rotation with a smooth trapezoidal profile is imposed to the joint 3
of the kinematic chain, correspondent to the upper arm flexion and successive
extension. The resulting angle is shown in the local joint coordinate system.

The measurement variance matrix R for this experiment is the same as assumed
in static case, section 6.1, while the process variance matrix () is the same as in
the case of forearm pronation/supination.
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Figure 6.7: Attitude of link 1 in terms of RPY angles during forearm flexion/extension.
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Figure 6.8: Attitude of link 2 in terms of RPY angles during forearm flexion/extension.
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Figure 6.9: Attitude of link 3 in terms of RPY angles during forearm flexion/extension.

link 1 link 2 link 3
w, 0.0336 0.0347 0.0487
wy 0.0342 0.0335 0.0345
w, 0.0330 0.0340 0.0338
a, 0.3334 0.0608 0.0626
a, 0.0506 0.0537 0.0887
a, 0.0587 0.0494 0.0882

Table 6.6: RMSE of the output relative to forearm flexion/extension.

6.2.6 Clavicle Elevation/Depression

A ¢» = 7/6 rotation with a smooth trapezoidal profile is imposed to the joint
2 of the kinematic chain, correspondent to the clavicle elevation and successive
depression. The resulting angle is shown in the local joint coordinate system.

The measurement variance matrix R for this experiment is the same as assumed
in static case, section 6.1.
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Figure 6.10: Attitude of link 1 in terms of RPY angles during upper arm rotation.
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Figure 6.11: Attitude of link 2 in terms of RPY angles during upper arm rotation.
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Figure 6.12: Attitude of link 3 in terms of RPY angles during upper arm rotation.

link 1 link 2 link 3

w, 0.0336 0.0347 0.0344
wy 0.0342 0.0467 0.0353
w, 0.0330 0.0339 0.0337
a; 0.3334 0.0907 0.0806
a, 0.0506 0.0538 0.0537
a, 0.0587 0.0525 0.0540

Table 6.7: RMSE of the output relative to upper arm rotation.

6.2.7 Clavicle Protraction/Retraction

A ¢, = 7/6 rotation with a smooth trapezoidal profile is imposed to the joint 1
of the kinematic chain, correspondent to the clavicle protraction and successive
retraction. The resulting angle is shown in the local joint coordinate system.

The measurement variance matrix R for this experiment is the same as assumed
in static case, section 6.1.
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Figure 6.13: Attitude of link 1 in terms of RPY angles during upper arm abduction/adduction.
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Figure 6.14: Attitude of link 2 in terms of RPY angles during upper arm abduction/adduction.
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Figure 6.15:

Table 6.8: RMSE of the output relative to upper arm abduction/adduction.

Table 6.9: RMSE of the output relative to upper arm flexion/extension.
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Wy 0.0376 0.0431 0.0436
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a, 0.0506 0.0615

0.0618

60

10



Results

¢'(t)
oF T T T T T T T L ]
S Phigg
‘g 1r phi 4
0 1 1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9 10
[s]
. 0'()
= 2k theta g, | -
g 4k theta
6 J
1 1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9 10
[s]
1
P (t)
0 T Iv’\/\h T T T T T T T T ]
S \W PSlest
i -0.51 psi_ |
_1 1 1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9 10

[s]

Figure 6.16: Attitude of link 1 in terms of RPY angles during upper arm flexion/extension.
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Figure 6.17: Attitude of link 2 in terms of RPY angles during upper arm flexion/extension.
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Figure 6.18:

Table 6.10:
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Attitude of link 3 in terms of RPY angles during upper arm flexion/extension.

Variance [rad?/s?|

qu 1-1073
422 1-107°
433 1-1073

Variance values of the process noise relative to upper arm flexion/extension.

link 1 link 2 link 3

wy 0.1736  0.1390 0.1289
wy 0.0571 0.0357 0.0351
w, 0.0343 0.0531 0.0313
a; 0.2717 0.2329 0.3390
a, 0.6558 1.4712 0.9958
a, 2.1379 0.5091 0.4432

Table 6.11: RMSE of the output relative to clavicle elevation/depression.
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Figure 6.20: Attitude of link 2 in terms of RPY angles during clavicle elevation/depression.
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Figure 6.21: Attitude of link 3 in terms of RPY angles during clavicle elevation/depression.

Variance [rad?/s?|

q11
q22
q33

5-1077
5-1077
5-1077

Table 6.12: Variance values of the process noise relative to clavicle elevation/depression.

link 1 link 2 link 3
wy 0.0319 0.0335 0.0378
wy 0.1690 0.0324 0.0380
w, 0.0312 0.1442 0.1419
a; 0.3935 0.1978 0.2892
a, 0.0515 0.2076 0.2035
a, 0.2252 0.0509 0.0535

Table 6.13: RMSE of the output relative to clavicle protraction/retraction.
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Figure 6.22: Attitude of link 1 in terms of RPY angles during clavicle protraction/retraction.
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Figure 6.23: Attitude of link 2 in terms of RPY angles during clavicle protraction/retraction.
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Figure 6.24: Attitude of link 3 in terms of RPY angles during clavicle protraction/retraction.

Variance [rad?/s?]

g 1-10-°
422 1-107°
433 1-107°

Table 6.14: Variance values of the process noise relative to clavicle protraction/retraction.
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Chapter 7

Conclusions

7.1 Analysis of Results

With respect to the estimate of the orientation shown in chapter 6, the static
reconstruction turns out to be quite reliable in terms of angle error; in a 70 s
simulation the error is always confined within 5° (figures 6.1, 6.2, 6.3). For what
concerns the tracking error, it can be observed that the performance decays from
the wrist up to the shoulder; in fact, while the pronation/supination and the
flexion/extension movements of the forearm are estimated with an error always
lower than 5°, figures 6.4, 6.5, 6.6, 6.7, 6.8, 6.9, the elevation/depression and the
protraction/retraction of the clavicle estimate procedure leads to very poor result,
due to an increasing complexity of the kinematic model. Moreover, considering
the estimate of the angular acceleration equal to zero as discussed in subsection
5.1.3, the acceleration measurements do not provide relevant information for the
reconstruction of that kind of motion.

The choice of comparing only the RMSE relative to the output is due to the
fact that the states of the kinematic model used to generate the simulation data
and the states of the model implemented in the filter do not coincide; they are
indeed expressed in different reference frames. Moreover, the kinematic model used
for the data generation is composed of seven joints, each having a single degree of
freedom out of the three axis, so only one state active at a time (quaternion state
are excluded from the discussion). Conversely, the model used for estimation is
composed of three links, each having two or three relative degrees of freedom, so
the full state is active, or near.
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7.2 Future Developments

The limits of the proposed model mainly concern the choice of the state variables
representing the system. In fact, the tangential component of the acceleration, i.e.
the angular acceleration w, has been neglected from the model implemented in the
filter in the absence of a reliable estimate. An improvement in the model is the
implementation of the angular acceleration components as state variables, in order
to retrieve an accurate estimate of such quantities; Peppoloni et al. implemented
a similar model in [17]. Another enrichment of the model may be represented by
the consideration in the state vector also the bias of the gyroscope, that for real
applications is a overwhelming side effect deriving from the application of such
sensors, as done for example by Sabatini in [21]. The enhancement of the state
leads however to a remarkable increment on the complexity of the algorithm, since
it involves the enlargement of the system matrices, that need to be inverted at each
sample time for the calculation of the Kalman gain matrix K (k).

The constant bias in the gyroscope measurements can be rejected by using
a magnetometer sensor in addition to the already employed accelerometer and
gyroscope, as pointed out by Truppa et al. in [32].
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Appendix A

Forward Kinematics

Hereunder is reported the homogeneous transformation matrix from frame 7F to
frame °F derived with the Denavit-Hartenberg convention. Note that matrix %A is
expressed as a function of the seven joint variables ¢;.

Rii Rip Riz dy

Ry1 Rey Ros d
. _ |42 g2 figg Q2
7A(Q1> d2, 43,494, g5, 46, Q7) - Rs1 Rso Rss do

0 0 0 1
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Forward Kinematics

Ri1 = 5q6(5q5(cqa(5q18q3 — cqucqacqs) + cq15¢25qa) + cgs(cqzsqr + cqicgasgs))+
- CQG(SQG(SC]4(SQ1SC]3 - CQ10Q2CQS) - CCI10€_I4SQ2) + CQG(CQ5(CQ4(SQ13Q3+
— cq16q2€q3) + €q15¢25G4) — 5G5(Cq35q1 + €q1CG25q3)))
R1 5 = cqs(sq5(cqu(s5q15q3 — cqicqacqs) + cqi5q25qa) + cqs(cqssqr + cqicgasqs) )+
+ 5¢6(5q6(5q4(5q15q3 — cqucgacqs) — cqiequsqs) + cqs(cgs(cqu(sqrsqs+
— €q1€q2€q3) + €q15¢25G4) — 5G5(cq35q1 + €q1CG25q3)))
Ry 3 = 5q6(cqs(cqa(sqisqs — cqicqacqs) + cq15G2sqa) — sqs(cqzsqu + cqicqasqs) )+
- CQ6(SQ4(SQ1SQ3 - CQ1€Q2CQ3) - CQlcQ4SQ2)
dy = lcCQ1CC]2—lu(SQ4(SQ1SQ3—CQ1CQ2CQ3)—CQ1CQ4SCI2)—lf(CQ6(SQ4(SQ1SQ3—CQ1CQ2CC]3)+
— q1¢q45q2) — 5G6(cqs(cqs(5q15q3 — cqicqacqs) + cq15q25qs)+
— 5q5(cq3sq1 + cqi1cq28q3)))
Ro1 = cqs(sqs(sqa(cqr15g3+cqacqssqr) +cqasq15G2) +cqs(cqs (cqa(cqusqs+cqaeqssqr)+
- 5611SQ28614) - 8Q5(C(11093 - CQ2SQ1SQ3))) - S%(SQ5(CQ4(CQ18613+
+ CCI2CQ3SQ1) - SQ1SCI2SQ4) + CQ5(CC]1CQ3 - CC]23€I1SQ3))
Roo = —cq6(5q5(cqa(cqi5qs + cqacqssqr) — $q15¢25qa) + cgs(cqicgs — cqasqisqs) )+
— 5q6(5G6(594(cq15G3 + cqacqzsqr) + cqusqi8q2) + cqs(cqs(cqa(cqisgs+
+ CQ2CQ3SQ1) - 5(]15(]25(]4) - 8Q5(CQ1CQ3 - CQQSQ1SQB)))
Ry 3 = cqs(s5qa(cqi5q3 + cqacqssqr) + cqusqisqa) — 5qs(cqs(cqa(cqisqs + cqacqssqr)+
— 5q1525G4) — 5G5(cqicqs — cq25G15q3))
dy = lf(cqs(sqa(cqr8qs + cqacqasqr) + cqusq15q2) — 5q6(cqs(cqa(cqisqs + cqacqzsqr)+
- 3(115(]28(14) - SQ5(CQ1CQ3 - CQ23(115(J3))) + lu(SQ4(CQ1SQ3 + CQ2CQ3SQ1)+
+ cqu8q18q2) + lcCcq25q1
Rs 1 = cqs(cqs(cgs(cqasqa + cq3cqasqa) + 5q25q35Gs) — 5qs(Cqacqs — €q35q25qs))+
— 8G6(505(cq28qs + €q30q48G2) — €455q25G3)
R39 = —cqs(5q5(cqasqa + cq3cqasqa) — cqs5G25q3) — 5¢6(cq6(cqs(cq25qa + cq3cqasqz)+
+ SQ2SC]3SQ5) - SQG(CC]2CQ4 - CQ3SQ2SQ4))
R33 = —SQG(CQ5(CC]2SQ4 + CQ3CQ4SQ2) + SQ2SCI3SQ5) - CQ6(CQ2C(14 - CCI3SQ2SC]4)
ds = l.5q2 — 7 (5q6(cqs(cq2sqs + €q3cqssqa) + 5G25G35qs) + cqs(Ccqacqs — cq35q25qs) )+
— Lu(cq2cqs — cq35425q4)
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Forward Kinematics

Jacobian of the state function

[—1/7 0 0 0 0 0 7
0 —1/7 0 0 0 0
R 0 0 —1/7 0 0 0
F=|-q1/2 —¢/2 —¢/2 0 —w,/2 —w,/2 —w,/2
W0/2 —q3/2 @2/2 w./2 Wy /2 —wy/2
G/2 @/2 —q)2 wy/2 —w,/2 0 Wy /2
__q2/2 Q1/2 %/2 wz/2 wy/2 _wx/Q 0 J
Jacobian of the measurement function relative to link r;
[ 1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
]f[ = | TyWy + 1w, TyWe — QTwWy ToWe — 2T$wz _2QQQ 2gq3 _2gq0 29(]1
TeWy — 2Tyww TeWs + T2W, ToWy — 27"wa 29Q1 29(10 29q3 29Q2
TeWy — zrzwx TyWz — 2rzwy TaWy + TyWy 29% —2QQ1 —29612 2gQ3
I 0 0 0 @o/n(q) a/n(a) a/n(q) gs/n(q).

where n(q) = \/& + @ + @3 + 63
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Appendix B
Matlab code

In this appendix is reported the code relative to the system implementation, divided
into sections, each referred to a specific functionality.

B.1 Symbolic Definition Of The Model

In the following, the symbolic procedure to obtain an analytical expression of the
system is listed. The function quaternion product is defined afterwards.

WTTTSTITTII TSI TSI TSI TSI TSI TSI TSI TSI I TS IS SIS TSI TSI ITSITTII o
% Tommaso Lovato 28/03/2024

% Symbolic procedure for the definition of the analytical formulation
% of the state function and its jacobian, and measurement function

i|% with the relative jacobian

TSI TSI TSI IS TSI SIS TSI TSI IS TSI T TITS TSI I TITSTITITSTT o
cle
clear
close all

syms q0 gl g2 g3 Ix ly lz wx wy wz wxd wyd wzd tau g real
vel=sym(’v’,[3,1], real’); acc=sym(’'v’,[3,1], real’);

5|% the quaternion q=(q0,ql,q2,q3) represents the coordinate change
5|% from RF{m} to RF{0}, [so the vector rotation from {p} m to {p’} m.]
7|% The limb vector in mobile frame is expressed with

% quaternion p m=(0,lx ,ly ;1z) up to sensor position.

9|% 07 p=q@Qp_mQqsx

% intermediate quaternion
[pa0,pql,pq2,pg3]=quaternion_product ([0,1x,ly,lz],[q0,—ql,—q2,—q3]) ;

72




Matlab code

N
w

% position quaternion (position in base frame 0) p=
5| [~,P1,P2,P3]=quaternion_product ([q0,q1,92,93],[pq0,pql,pq2,pq3d]);

NN NN

% velocity expressed in mobile frame m, {v}={w}x{p}=S(w)=*{p}

00 ~

2| vel=[0,—wz,wy
29 wz,0, —wx
30 —wy,wx,0]x[Ix,ly,1z]";

32|% acceleration expressed mobile frame m, {a}={w’ }x{p}+{wix({w}x{p})
33| ace=[0,—wzd ,wyd

34 wzd,0, —wxd

35 —wyd,wxd,0]*[1x,ly ,1z]"+[0, —wz,wy

36 wz,0, —wx

37 —wy,wx,0]«[vel (1) ,vel(2),vel(3)]’;
38

39|% DCM rotation matrix associated with g
10|R=[q0724q172—q272—q372 2x(qlxq2—q0*q3) 2x(ql*q3+q0xq2)

a1 2x(qlxq2+q0%q3) q072—q172+q272—q372 2x(q2xq3—q0x*ql)

42 2x(qlxq3—q0*q2) 2x(q2xq3+q0*ql) q072—ql172—q2724+q3 " 2];

14|% gravity vector
15| g_vec=1[0;0;g];

17|1% process model x'=f(x,t)
1| f=[—wx/tau
49 —wy/tau
50 —wz/tau
51 (—ql*xwx—q2*wy—q3*wz) /2
(q0xwx—q3*wy+q2*wz) /2
53 (g3 xwx+qO0xwy—ql*wz) /2
(qlxwy—q2*xwxt+q0*xwz) /2];
56|/% linearized process model x'=Fx
s7|F=simplify (jacobian (f,[wx,wy,wz,q0,ql,q2,q3]));

50|% measurement model z=h(x,t)

60| h=[wx

61 wy

62 WZ

63 acct+R’xg_vec

64 (q0724q1724+q2724q372) " (1/2) |;

65| h=simplify (h);
66
67|% linearized measurement model z=H(x)x

6s|H=simplify (jacobian (h,[wx,wy,wz,q0,q1,q2,q3]));
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WITTTTITTISTTISTISTISTISSTTISTISTISTISTITTTITTIS o
% Tommaso Lovato 28/03/2024
WSTTITSTTISSTTISSTISSSTTIISSTTIISSTTISSTIISSTTIS o
% Definition of a quaternion product function
VST TITSTTISSTTISSITTISSTITIS ST SIS ST SIS TSI STTIS o
function [t0,t1,t2,t3]=quaternion_ product(q,r)

a0=q(1); ql=q(2); a2=q(3); q3=q(4);
rO=r(1); rl=r(2); r2=r(3); r3=r(4);

t0=(r0*q0—11*xql—-12xq2—13%q3)
t1=(r0*ql+rl%q0—12%q3+r3%q2)
t2=(r0*q2+rl*q3+r2%q0—r3xql)
t3=(r0*q3—r1*q2+r2%ql+r3xq0)

Tot=[t0;t1;t2;t3];

end

B.2 Kinematic Model For Simulation Data Gen-
eration

%o

WSITTISTTISSTITISSTISSTIISSTTISSSTIIS SIS STTISSTISSSTTISSTISSTTISSITISS
% Tommaso Lovato 28/03/2024
%o

IWITSTTISTTISTTISTISTISTISTISTISTISTISTISTISTISTISTISTISTISTISTISTISTN

% 7 DoFs Kinematic Model for the generation of linear acceleration

and
% angular velocity measurement data
%
WSITTSSTTIISTTISSTTIISTTISSTIISSTIISSTIISSTISSTTISSTISS SIS STIISSTIISS
cle
clear

close all
rng default

Ts=1/100; %][s]
T fin=10; %[s]

5|\ N=T_ fin/Ts;
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35
36
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41

43

44
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Matlab code

tvec=0:Ts: T_fin—Ts;

g=9.81; %[m/s 2]
tau=[0.2;0.2;0.2];
% gravity vector
g vec=[0;0;g];

J=7; % number of joints
L=3; % number of links
n=7; % number of states

Re=diag ([le—3,1e—3,1e—3,2.5e—3,2.5e—3,2.5e—3]); % measurement noise
variance , gyro, acc

% Initial conditions and vectors allocation
w__joint=NaN(J,N);

x=NaN(n,N+1); s=x;
z=NaN(n, size (x,2)—1);
v_sens=NaN(size(z));
phi=NaN(J,N); theta=phi; psi=phi;
a_j=pt; a_t=pt; w_dot=pt;
Pos=cell (1,J);

At=Pos;

Z=cell (1,]); X=cell (1,7]);

T=cell (J,N); A=T;

A_tot=cell (1,N); Ttot=cell (1,N);

for k=1:N % ground—truth motion. {p m}™m

w__joint (1,k)=0;%(pi/6)*2/sqrt (2xpi)xexp(—2x(tvec (k) —2.5).72)—(pi
/6)x2/sqrt (2+pi)xexp(—2x(tvec(k) —7.5).72);
w_joint (2,k)=0;%(pi/6)*2/sqrt (2xpi)*xexp(—2x(tvec(k)—-12.5).72)—(pi
/6)%2/sqrt (2% pi)xexp(—2x(tvec (k) —17.5).72);
w__joint (3,k)=0;%(pi/6)*2/sqrt (2% pi)*exp(—2*(tvec(k)—22.5).72)—(pi
/6)%2/sqrt (2+pi)xexp(—2*(tvec (k) —27.5).72);
w__joint (4,k)=0;%(pi/6)*2/sqrt (2xpi)xexp(—2x(tvec (k) —32.5).72)—(pi
/6)%2/sqrt (2xpi)xexp(—2x(tvec(k) —37.5).72);
w_joint (5,k)=0;%(pi/6)*2/sqrt (2xpi)*xexp(—2x(tvec (k) —42.5).72)—(pi
/6)%2/sqrt (2% pi)*exp(—2%(tvec (k) —47.5).72);
w__joint (6 ,k)=0;%(pi/6)x2/sqrt (2xpi)xexp(—2x(tvec (k) —52.5).72)—(pi
/6)%2/sqrt (2% pi)xexp(—2x%(tvec(k) —=57.5).72);
w_joint (7,k)=0;%(pi/6)*2/sqrt (2xpi)*exp(—2x(tvec(k)—62.5).72)—(pi
/6)%2/sqrt (2xpi)xexp(—2x(tvec(k) —67.5).72);
end

% length of the links
lce=0.2; 1u=0.3; 1£f=0.3;

% list of the DH paramenters
a_vec=[0,1¢,0,0,0,0,0];
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Matlab code

s7| alpha_vec=[pi/2,—pi/2,pi/2,pi/2,pi/2,—pi/2,0];

59|% offset on theta DH parameter: TO BE ADDED THE INITIAL ATTITUDE
60| psi__off=[0,0,0,pi/2,0,0,pi/2]";
61/d_vec=[0,0,0,0,1lu,0,1f]";

63|% link coordinates in {RF} m
61|p_m=[a_vec,zeros (7,1),d_vec];
oo p_l=[p . m(2,:);p m(5,:);p m(7,:)];

66

6s| for jj=1:J % for each joint

69 A{jj ;N+1}=eye(4); % DH matrix

70 if jj==1

71 q 0=[1,0,0,0]";

72 x(:,1)=[0;0;0;9 0]; % initial state

73 % rotation mtx from quaternions: coordinate change from RF{i}

to RF{i—1}

74 T{jj ,1}=[x(4,1)"24x(5,1)72—x(6,1)"2—x(7,1)72 2x(x(5,1)*x(6,1)
—x(4,1)*x(7,1)) 2% (x(5,1)*x(7,1)4x(4,1)*x(6,1))

75 2%(x(5,1)*x(6,1)+x(4,1)*x(7,1)) x(4,1)72—x(5,1)
T24x(6,1)72—x(7,1)72 2%(x(5,1)*x(7,1)—x(4,1)*x(5,1))

76 2%(x(5,1)*x(7,1)—x(4,1)xx(6,1)) 2% (x(6,1)*x(7,1)
+x(4,1)xx(5,1)) x(4,1)72—x(5,1)72—x(6,1)72+x(7,1) "2];

77 % RPY or Tait—Bryan 321

78 phl(JJ ,1):atan2(T{jj ’1}(372) ,T{.].] 71}(373))7

79 theta (jj ,1)=atan2(=T{jj ,1}(3,1),sin(phi(jj,1))*T{jj,1}(3,2)+
cos (phi (jj ,1))*T{ij ,1}(3,3));

80 psi(jj,1)=atan2(—cos(phi(jj,1))«T{jj,1}(1,2)+sin(phi(jj,1))«T
{J.] 71}(173) ,COS(phi(jj 71))*T{JJ ,1}(2,2)—sin(phi(jj al))*T{.].]
11(2.3));

81 % D-H matrix

A{jj,1}=[cos(psi_off(jj)+psi(jj,1)),—sin(psi_off(jj)+psi(j]

,1))*cos (alpha_vec(jj)),sin(psi_off(jj)+psi(jj,1))=*sin(alpha_vec(
ji)),a_vec(jj)xcos(psi_off(jj)+psi(jj,1))

83 sin (psi_off (jj)+psi(jj,1)),cos(psi_off(jj)+psi(jj,1))*cos(
alpha_vec(jj)),—cos(psi_off(jj)+psi(jj,1))xsin(alpha_vec(jj)),
a_vec(jj)*sin(psi_off(jj)+psi(jj,1))

84 0,sin (alpha_vec(jj)),cos(alpha_vec(jj)),d_vec(jj)

85 0,0,0,1];

86 % Total DH mtx

87 A tot{1}=A{jj ,1};

88 for k=1:N % for each sample

89 % state transition process

90 x(1:3,k+1)=[0,0,w_joint(jj ,k)]’; % rotation is always
about z—axis

91 x(4:7 ,k+1)=x(4:7 ,k)+1/2«Tsx[—x(5,k),—x(6 ,k),—x(7,k)

92 x(4,k),—x(7,k) ,x(6,k)

93 x(7,k) ,x(4,k),—x(5,k)
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—x(6,k) ,x(5,k),x(4,k)]*[x(1,k
). x(2,k) ,x(3,k) ]
x(4:7,k+1)=x(4:7 ,k+1)/norm(x (4:7 ,k+1));
% rotation mtx from quaternions: coordinate change from
RF{i} to RF{i-1}
T{jj ,k+1}=[x(4,k+1)"24+x(5,k+1)"2—x(6 ,k+1)"2—x (7 ,k+1)"2
2% (x(5,k+1)*x (6 ,k+1)—x (4, k+1)*x (7 ,k+1)) 2% (x (5 ,k+1)*x (7 ,k+1)+x
(4,k+1)*x(6 ,k+1))
2% (x(5,k+1)*x (6 ,k+1)4+x (4 ,k+1)*x(7,k+1)) x(4,
k4+1)72—x(5,k+1)"24x(6 ,k+1)"2—x(7,k+1)72 2x(x(5,k+1)*x(7,k+1)—x(4,k
+1)*x(5,k+1))

2% (x(5,k+1)*x(7,k+1)—x(4,k+1)*x(6 ,k+1)) 2% (x
(6,k+1)*x(7,k+1)+x (4 ,k+1)*x(5,k+1)) x(4,k+1)72—x(5,k+1)"2—x (6,
k4+1)724x (7 ,k+1)"2];

% RPY or Tait—Bryan 321
phi(jj ,k+1)=atan2 (T{j] ,k+1}(3,2) T{ij ,k+1}(3,3));
theta (jj ,k+1)=atan2(-T{jj ,k+1}(3,1),sin(phi(jj ,k+1))«T{j]
Jk+1}(3,2)+cos (phi(jj ,k+1))*T{jj ,k+1}(3,3));
psi(jj,k+1)=atan2(—cos(phi(jj ,k+1))«T{jj ,k+1}(1,2)+sin(
phi(jj ,k+1))¥T{ij ,k+1}(1,3) ,cos (phi(jj ,k+1))#T{jj s k+1}(2,2)—sin (
phi(jj  k+1))«T{jj k+1}(2.3))
% D-H matrix
A{jj ,k+1}=[cos(psi_off(jj)+psi(jj,k+1)),—sin(psi_off(jj)+
psi(jj ,k+1))*cos(alpha_vec(jj)),sin(psi_off(jj)+psi(jj,k+1))*sin(
alpha_vec(jj)),a_vec(jj)xcos(psi_off(jj)+psi(jj,k+1))
sin (psi_off (jj)+psi(Jj k+1)),cos(psi_off (i )+psi(jj .k
+1))*cos(alpha_vec(jj)),—cos(psi_off(jj)+psi(jj,k+1))*sin(
alpha_vec(jj)),a_vec(jj)*sin(psi_off(jj)+psi(jj,k+1))
0,sin (alpha_vec(jj)),cos(alpha_vec(jj)),d_vec(jj)
0,0,0,1];
% Total DH mtx
A tot{k+1}=A{jj ,k+1};
% angular acceleration derived from angular velocity w
w_dot (:,k)=(x(1:3,k+1)—x(1:3,k))/Ts;
% position
Pos{jj }(:,k)=A{jj .k} (1:3,4) ;
% acceleration in i {RF}
a_j(1,k)=p m(jj,3)*w_dot(2,k)—p m(jj,2)*w_dot(3,k)—x(2,k)
*(pﬁm(\]‘] ,1)*X(2,k)—pﬁm(jj ,2)*X(1,k))—X(?),k)*(pim(jj ,1)*X(3,k)—pﬁm(
Ji53)#x(1,k));
a_j(2,k)=p_m(jj,1)*w_dot(3,k)—p_m(jj,3)*w_dot(1,k)+x(1,k)
e(pm (] 1) % (2,K)-pm( ] ,2) #x(1,K) )—x(3,k) % (b m(jj ,2)#x(3,k)-p m(
§j,3)5x(2,K))
a_j(3,k)=p m(jj,2)*w_dot(1,k)—p_m(jj,1)*w_dot(2,k)+x(1,k)
*(pfm(.]‘] ,1)*X(3,k)—pﬁm(jj ,3)*){(1,k))—i—X(Q,k)*(pim(jj ,2)*X(3,k)—pﬁm(
ij,3)5x(2,K))
a_t=a_j;
% output equations

z(:,k)=|
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A{jj ,k}(1:3,1:3) *x(1:3,k)
A_tot{k}(1:3,1:3) x(a_t(:,k)+g_vec)
1
J;

s(1:3,k)=A{jj ,k}(1:3,1:3) ’*x(1:3,k);

s(4:7 ,k)=x(4:7 k)

end
else

q 0=[1,0,0,0]’

x(:,1)=[0;0;0;q 0]; % initial state; A{jj—1,k+1}(1:3,1:3) *X{
jj —1}(1:3,1)+

% rotation mtx from quaternions: coordinate change from RF{i}
to RF{i—1}

T{jj,1}=[x(4,1)"24x(5,1)2—x(6,1)2—x(7,1)72 2*(x(5,1)*x(6,1)

—x(4,1)xx(7,1)) 2% (x(5,1)*x(7,1)4x(4,1)*x(6,1))

2%(x(5,1)*x(6,1)+x(4,1)*x(7,1)) x(4,1)72—x(5,1)

T24x(6,1)72—x(7,1)72 2x(x(5,1)*x(7,1)—x(4,1)*x(5,1))

2% (x(5,1)*x(7,1)—x(4,1)xx(6,1)) 2% (x(6,1)*x(7,1)

4x(4,1)%x(5,1)) x(4,1)7°2-x(5,1)"2-x(6,1)"24+x(7,1) ~2];

% RPY or Tait—Bryan 321
phi(jj,1)=atan2 (T{jj ,1}(3,2) T{ij 1}(3.3));
theta (jj ,1)=atan2(ZT{jj ,1}(3.1),sin (phi(ij 1)) ¥T{jj ,1}(3,2)+
cos (phi (i ,1))¢T{jj ,1}(3,3))
psi (3 ,1)=atan2(—cos (phi (jj ,1))*T{jj ,1}(1,2)+sin (phi(jj ,1))«T
13H(2,3));
% D-H matrix
A{jj 1} =[cos (psi_off(jj)+psi(jj,1)),—sin(psi_off (jj)+psi(j]
,1))xcos (alpha_vec(jj)),sin(psi_off(jj)+psi(jj,1))=*sin(alpha_vec(
§3)).a_vec(jj)xcos(psi_off (jj)+psi(jj,1))
sin (psi_ off(jj)+psi(1j,1)),cos (psi_off(jj)+psi(ij,1))«cos(
alpha_vec(jj)),—cos(psi_off(jj)+psi(jj,1))*sin(alpha vec(jj)),
a_vec(jj)xsin (psi_off (jj)+psi(jj 1))
0,sin (alpha_vec(jj)),cos(alpha_vec(jj)),d_vec(jj)
0,0,0,1];
% Total DH mtx
A _tot{1}=A_tot{1}*A{jj ,1};
pom(jj i) =[A{jj 1} (1:3,1:3) spm(jj ,:) ]
for k=1:N % for each sample
% state transition , process
x(1:3,k+1)=[0,0,w_joint(jj ,k)]’; % rotation is always
about z—axis;

x(4:7,k+1)=x(4:7 ,k)+1/2«Tsx[—x(5,k),—x(6 ,k),—x(7,k)
x(4,k),—x(7,k) ,x(6,k)
x(7,k),x(4,k),—x(5,k)
x(6,k),x(5,k),x(4,k)]*[x(1,k

)»x(2,k),x(3,k)] 7
x(4:7,k+1)=x(4:7 ,k+1)/norm (x (4:7 ,k+1));
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% rotation mtx from quaternions: coordinate change from
% RF{k}(body) to RF{k=1}(local)
T{jj  k+1}=[x(4,k+1)"2+x(5,k+1)"2—x(6 ,k+1)"2—x (7 ,k+1)"2
2% (x(5,k+1)*x (6 ,k+1)—x (4 ,k+1)*x(7,k+1)) 2% (x (5, k+1)*x (7, k+1)+x
(4,k+1)*x(6,k+1))

2% (x(5,k+1)*x (6 ,k+1)+x (4 ,k+1)*x(7,k+1)) X
(4,k+1)72—x(5,k+1)"24x (6 ,k+1)"2—x (7 ,k+1)72 2x*(x(5,k+1)*x(7,k+1)—x
(4,k+1)*x(5,k+1))

2% (x(5,k+1)*x (7, k+1)—x(4,k+1)*x (6 ,k+1))

2% (x(6,k+1)*x (7, k+1)4+x (4, k+1)*x(5,k+1)) x(4,k+1)72—x(5,k+1)72—
x(6,k+1)724x(7,k+1)"2];
Ttot {k+1}=T{jj —1,k-+1}¥T{jj ,k+1};
% RPY or Tait—Bryan 321
phi (jj ,k+1)=atan? (T{jj ,k+1}(3,2) T{jj k+1}(3,3))
theta (jj ,k+1)=atan2(—T{jj ,k+1}(3,1),sin (phi(}j ,k-+1))¥T{j]
e 13(3,2)cos (phi (3] 2 k+1))#T{i] 1 k+1}(3,3))
psi(jj ,k+1)=atan2(—cos(phi(jj ,k+1))*T{jj ,k+1}(1,2)+sin(
phi(jj ,k+1))*«T{jj ,k+1}(1,3),cos(phi(jj,k+1))*T{jj , k+1}(2,2)—sin(
phi (7 Jk+1))#T{j) k+1}1(2.3)) ;
% D-H matrix
A{jj k+1}=[cos (psi_off (jj)+psi(ij ,k+1)),—sin (psi_off (jj)+
psi(jj ,k+1))*cos(alpha_vec(jj)),sin(psi_off (jj)+psi(jj,k+1))*sin(
alpha_vec(jj)),a_vec(jj)*cos(psi_off(jj)+psi(jj,k+1))
sin (psi_off(jj)+psi(jj,k+1)),cos(psi_off(jj)+psi(jj.k
+1))=xcos(alpha_vec(jj)),—cos(psi_off(jj)+psi(jj,k+1))*sin(
alpha_vec(jj)),a_vec(jj)«sin(psi_off(jj)+psi(jj,k+1))
0,sin (alpha_vec(jj)),cos(alpha_vec(jj)),d vec(jj)
0,0,0,1];
% Total DH mtx
A_tot{k+1}=A_tot{k+1}*A{jj ,k+1};
% total angular velocity:
s(1:3,%)=A{jj ,k}(1:3,1:3) "%(X{jj —1}(1:3,k)+x(1:3,k)); %
total angular rate
s(4:7,k)=x(4:7,k);
% angular acceleration derived from angular velocity w:
w_dot (:,k)=(A{jj ,k+1}(1:3,1:3) "%(X{jj —1}(1:3,k+1)+x(1:3,k
+1))—s(1:3,k))/Ts; %(s(1:3,k+1)—s(1:3,k))/Ts;
% position
Pos{jj }(:,k)=A_tot{k}(1:3,4);
% acceleration
% a=i"(i—1)_[R]*(i—1)"a_ (i—1)H{w }x{p}+{w}x({w}x{p}) in i
~{RF}
% acceleration of only link jj in jj—1"{RF}, a={w’}x{p}+{
whx({w}x{p})
a_j(1,k)=p_m(jj,3)*w_dot(2,k)—p m(jj,2)*w_dot(3,k)—s(2,k)
e(p (i 1) %8 (2,5)-p m( ] »2) %5 (1,k))s (3,K) x(pm(jj ,1)*s (3,K)-p m(
3i,3)%5(1,K));
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186

188

189

190

191

192

193

194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209

210

Matlab code

a_j(2,k)=p m(jj,1)*w_dot(3,k)—p_m(jj,3)*w_dot(1,k)+s(1,k)
#(pm(jj ,1)*s(2,k)—p m(jj,2)*s(1,k))=s(3,k)*(p_m(jj,2)*s(3,k)-p_m(
Ji,3)*s(2,k));

a_J(3,k):})_IIl(JJ ,2)*W_d0t(1,k)—p_m(jj ,]_)*W_dOt(Q,k)—l—S(l,k)
*(p_m(JJ 71)*8(37k)_p_m(jj ,3)*5(1,k))+S(2,k)*(p_m(JJ ,2)*8(3,k)—p_m(
JJ 73)*5(271{));

% total acceleration of link jj in i {RF}: [A_i] 'xi—1"
acc i

a_t(:,k)=A{jj ,k}(1:3,1:3) «At{jj —1}(:,k)+a_j(:,k); %
parentheses added %T{jj ,k} ' «At{jj —1}(:,k)+a_j(:,k); OR s OR a_t

s,
% output equations
% A{jj ,k}(1:3,1:3) '%Z{jj —1}(1:3,k) is w_(jj—1) in jj
frame
z(:,k)=]
s(1:3,k) % YES! % A{jj ,k}(1:3,1:3) "«(Z{jj —1}(1:3,k)+x
(1:3,k%))
A tot{k}(1:3,1:3) g vecta t(:,k) % acc&grav in i th
frame
1
K
end
end

X{jjF(1:3,:)=s(1:3,:);
X{jjp(4:7,:)=x(4:7,:)
At{jit=a_t(:,:);
Z{JJ}:Z( 7:);

)

clear x z

x=NaN(n ,N+1);

z=NaN (7, size (x,2)—1);
end

save output.mat Z

% rotation into ISB std representation frames
R2=[0,1,0
0,0,1

0,-1,0];
Zo=cell (1,7J);
% rotation into JCS frame + noise corruption
for k=1:N
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Zo{1}(:,k)=[R2,zeros(3);zeros(3) ,R2]*Z{2}(1:6,k)+mvnrnd(zeros

(1,6),Rc) ’;

Zo{2}(:,k)=[R5,zeros (3);zeros(3) ,R5|*Z{5}(1:6,k)+mvnrnd(zeros

(1,6),Re) ’;

Zo{3}(:,k)=[R7,zeros (3);zeros(3) ,R7|*Z{7}(1:6 ,k)+mvnrnd(zeros

(1,6),Rc) ’;
end
Zo{1}(7,:)=ones(1,N);
Zo{2}(7,:)=ones (1,N);
Zo{3}(7,:)=omnes (1,N);

save out.mat Zo
save phi.mat phi
save theta.mat theta
save psi.mat psi

%% figures

for jj=1:J

figure
subplot (311), plot(tvec
mum2str(§3),°(6) ' ])
subplot (312), plot(tvec
mum2str (1), (1) ])
subplot (313), plot(tvec
mum2str (§3) . (t) 1)

end

for jj=1:J

figure
subplot (411), plot(tvec
num2str (j1)(t)])
subplot (412), plot (tvec
mum2str (33, (t)])
subplot (413), plot(tvec
num2str(jj), " (t)"])
subplot (414), plot(tvec
mum2str(jj), (1) ])

i| end

for jj=1:J

figure
subplot (311), plot(tvec
mum2str (§3),°(6)°])
subplot (312), plot(tvec
num2str(jj), (t)’])
subplot (313), plot(tvec
num2str (jj), (t)])

X{J5 (1,1
X{33 12,1

X{Ji3(3,1:

X{Jj 34,1
X{J5 (5,1
X{3j (6,1

X{55 (7,1

{3 (1,1
235 (2,1

{3 }(3,1:
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grid
grid

grid

grid
grid
grid

grid

grid
grid

grid

title ([ 'x_177
title ([ 'x 277

title (['x 37

title (['x 47"
title (['x 57
title (['x 67

title (['x 77

title ([ 2177
title ([7z 27

title (['z 37"




34

46

Matlab code

end

for jj=1:J

figure
subplot (311), plot(tvec,Z{jj}(4,1:N)), grid on, title ([’z 4",
mum2str(13) (1) '])
subplot (312), plot(tvec,Z{jj}(5,1:N)), grid on, title ([’z_5""
numa2str (1) (t) ' ])
subplot (313), plot(tvec,Z{jj}(6,1:N)), grid on, title ([’z_6"",
mum2str (1), (6) '])

end

)

for jj=1:J

figure
subplot (311), plot(tvec,Pos{jj}(1,1:N)), grid on, title (['P_x"",
num2str(jj), (t)’])
subplot (312), plot(tvec,Pos{jj}(2,1:N)), grid on, title (['P y 7,
num2str(jj), (t)’])
subplot (313), plot(tvec,Pos{jj}(3,1:N)), grid on, title (['P_z" ",
num?2str(jj),’ (t)’])

end

for jj=1:J

figure
subplot (311), plot(tvec ,At{jj}(1,1:N)), grid on, title ([’a_x"",
mum2str (1), (4) '])
subplot (312), plot(tvec ,At{jj}(2,1:N)), grid on, title([’a_y ',
num2str(jj), (t)’])
subplot (313), plot(tvec,At{jj}(3,1:N)), grid on, title([’a 2z 7,
num2str (j1)(t) ' ])

end

for jj=1:J%[2,5,7]

;| figure

subplot (311), plot(phi(jj,:)=«180/pi), grid on, title ([’\phi™’,
num2str (jj), " (t)’])
subplot (312), plot(theta(jj,:)=*180/pi), grid on, title ([ ’\theta™’
num2str (§3) () ')
subplot (313), plot(psi(jj,:)*180/pi), grid on, title ([’\psi 7,
mum2str (33, (1) ])

end

B.3 Extended Kalman Filter Algorithm Imple-
mentation
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5% 3 link kinematic chain with revolute joints

Matlab code

%
WISTTTITTS TSI IS TS TSI IS IS TSI IS TS TSI IS IS TSI IS IS TSI IS IS TSI TSI TS

% Tommaso Lovato

%

28/03/2024
SISSSSTTTTITISSSISTT TSI ISSSS TS IS TSSS SIS TSI SIS SIS SIS SIS TS ST SITSSSSTIT,

% Extended Kalman Filter implementation for estimating the attitude
of a

%

TISSTITTTSISSITTTSTSSSIIT TS SSTITT TS ST TTSTSSSIIT TS SSIIT TS STITTSTSSSITS
cle
clear

close all

xlabel (7 [s] ),

ylabel (7 [m/s™2] ")
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load out.mat
load phi.mat
load theta.mat
load psi.mat
figure
subplot (311), plot(Zo{1}(1,:)), grid on, title(’z_17s(t)’),
xlabel (7 [s] ), ylabel(’[rad/s]")
subplot (312), plot(Zo{1}(2,:)), grid on, title(’z 27s(t)’),
xlabel (7 [s]’), ylabel(’[rad/s]’)
subplot (313), plot(Zo{1}(3,:)), grid on, title(’z_37s(t)’),
xlabel (7 [s]’), ylabel(’[rad/s]")
| figure
subplot (311), plot(Zo{1}(4,:)), grid on, title(’z _47s(t)’),
xlabel (7 [s]’), ylabel(’[m/s"2]")
subplot (312), plot(Zo{1}(5,:)), grid on, title(’z 57s(t)’),
xlabel (7 [s]’), ylabel(’[m/s"2]")
subplot (313), plot(Zo{1}(6,:)), grid on, title(’z_6"s(t)’),
xlabel (" [s]7), ylabel(’[m/s"2]")
5| figure
subplot (311), plot(Zo{2}(1,:)), grid on, title(’z_17e(t)’),
xlabel (7 [s]’), ylabel(’[rad/s] ")
subplot (312), plot(Zo{2}(2,:)), grid on, title(’z_27e(t)’),
xlabel (' [s] ), ylabel(’[rad/s]’)
subplot (313), plot(Zo{2}(3,:)), grid on, title(’z 37e(t)’),
xlabel (7 [s]’), ylabel(’[rad/s]’)
figure
0 subplot (311), plot(Zo{2}(4,:)), grid on, title(’z_47e(t)’),
xlabel ("[s]7), ylabel(’[m/s"2]")
1 subplot (312), plot(Zo{2}(5,:)), grid on, title(’z 57e(t)’),

s

s

s




Matlab code

32 subplot (313), plot(Zo{2}(6,:)), grid on, title(’z_6"e(t)’),
xlabel (7 [s]’), ylabel(’[m/s"2]")

33

34| figure

35 subplot (311), plot(Zo{3}(1,:)), grid on, title(’z 1"w(t)’),
xlabel (7 [s]’), ylabel(’[rad/s]’)

36 subplot (312), plot(Zo{3}(2,:)), grid on, title(’z_2"w(t)’),
xlabel (7 [s]’), ylabel(’[rad/s] ")

37 subplot (313), plot(Zo{3}(3,:)), grid on, title(’z_3"w(t)’),
xlabel ('[s] ), ylabel(’[rad/s]’)

33| figure

39 subplot (311), plot(Zo{3}(4,:)), grid on, title(’z_4"w(t)’),
xlabel (7 [s]’), ylabel(’[m/s"2]")

40 subplot (312), plot(Zo{3}(5,:)), grid on, title(’z_5w(t)’),

xlabel ("[s]7), ylabel(’[m/s"2]")
11 subplot (313), plot(Zo{3}(6,:)), grid on, title(’z 6 w(t)’),
xlabel (7 [s]’), ylabel(’[m/s"2]")

13| pause (5)

15| Y

5| close all

as|rng default

s0l clear x_ p e f Pz p phi est theta est psi_et index_ not_obsv
51| Ts=1/100; %[s
52| T_fin=10; %[s
53| N=T_fin/Ts;

sal tvec=0:Ts: T_fin—Ts;

.
]

56| g=9.81; %[m/s 2]
571 tau=0.2;
58| % gravity vector

50l g_vec=1[0;0;g];

61| J=7; % number of joints
62| L=3; % number of links
63ln=7; % number of states

65| Qe=le2xdiag ([1,1,1,0,0,0,0]); % process noise variance, only on w
states

66| Re=diag ([1e—3,1e—3,1e—3,2.5¢—3,2.5¢—3,2.5e—3,1le—12]); % measurement
noise variance: gyro, acc

68|% length of the links
60| le=0.2; 1lu=0.3; 1f=0.3;
7o|p_1=[0,0,1c

71 0,1u,0
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Matlab code

72 0,1f ,0];
73

71| T_tot=cell (1,N);
75| x_p=NaN(n ,N+1,L);
76|z_p=cell (1,L);

77| e=NaN (7 ,N); v_sens=zeros (size(e));

7s| x__f=NaN(n,N,L) ;

79| w_dot=NaN(3 ,N,L); w_dot(:,1,1)=0; w_dot(:,1,2)=0; w_dot(:,1,3)=0;
so|P=cell (L, length(x_p));

51| P{1,1}=Qc; P{2,1}=Qc; P{3,1}=Qc;

s2| phi__est=NaN(J,N); theta_est=NaN(J,N); psi_est=NaN(J,N);

T_tot(:)={eye(3)}; T_£=T_tot;

84|% rotation from DH to ISB of frame?2
s5|R2=[0,1,0

86 0,0,1

87 1,0,0];

88

20|% initial states

e
oo|x_p(:,1,1)=[0,0,0,1,0,0,0]"+mvnrnd(zeros (1,7) ,Rec) ’;
o1|x_p(:,1,2)=[0,0,0,cos(—pi/4),sin(—pi/4),0,0]’+mvnrnd(zeros(1,7) ,Rc) ’;
o2|x_p(:,1,3)=[0,0,0,1,0,0,0]"+mvnrnd(zeros(1,7),Rc) ’;

93
94|% observability test

os| index_not_obsv=[]; % vector containing the samples in which the
system is not observable

96

o7| for k=1:N—1 % for each sample

98 for jj=1:L % for each link
99 % Linearized process matrix
100 F_hat=] —1/tau, 0, 0, 0,
0, 0, 0
101 0, —1/tau, 0, 0,
0, 0, 0
102 0, 0, —1/tau, 0,
0, 0, 0
103 7Xfp(5ak7jj)/27 7Xfp(67ka.]‘])/27 7Xfp(7ak7jj)/27
07 _X_p(]-ak,jj)/Qa - _p(2’k7jj)/27 - _p(3ak,JJ)/2
X p(4,k,5§)/2, —x p(7.k,§i)/2, x p(6,k,§i)/2, x p(l,
kvjj)/2? 0, Xfp(37kajj)/27 _Xfp(27kajj)/2
105 Xfp(77k7jj)/27 Xfp(47kajj)/2’ _Xfp(5ak7jj)/27 Xip(2,
kaJ)/27 —Xip(?),k,jj)/z, 07 Xfp(lakvjj)/2
106 7X_p(6ak,jj)/2’ X_p(57kaJJ)/27 X_p(4ak,JJ)/2’ X_p('?’a
kv.].])/27 Xfp(27ka.].])/27 —Xip(].,k,jj)/Q, 0
107 ;
108 % Linearized output matrix
109 if jj==
110 H_hat=]
111 1,0,0,0,0,0,0
112 0,1,0,0,0,0,0
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113

114

116

117

118

119

120

123

Matlab code

0,0,1,0,0,0,0

p_1(jj,2)*x p(2.k,jj)+p_1(jj,3)*x p(3.k,jj),p_1(jj,2)
*Xﬁp(l,k,jj )—2*p71(JJ ,1)*X7p(2,k,jj ) 7p71(‘].] ,3)*X7p(1,k,jj )—2*p71(
3 s1)#x_p(3,k,jj),(981xx p(4,k,jj))/50,(981xx p(5.k,jj))/50,—(981x
x_p(6,k,jj))/50,—(981x p(7.,k,jj))/50

p_1(jj,1)*x p(2,k,jj)—2+p_1(jj,2)s*x p(1,k,jj),p_1(]]
1) sx p(1,k, jj)+p_1(jj,3)*x_p(3.k,jj),p_1(jj,3)*x_p(2,k,jj)—2p_l(
33 52)xx p(3,k,jj),—(981xx_p(7,k,jj))/50,(981*x_p(6,k,jj))/50,(981x

x_p(5,k,jj))/50,—(981x_p(4.,k,jj))/50
;2)*x_p(3,k, jj)=2+«p_1(jj ,3)*x_p(2,k,jj),p_1(jj,1)*x_p(1,k,jj)+p_I(
ij,2)xx_p(2,k,jj),(981*x_p(6,k,jj))/50,(981*x_p(7,k,jj))/50,(981x
x_p(4,k,jj))/50,(981+x_p(5,k,jj))/50
0,0,0,x_p(4,k,jj)/(xp(4,k,jj) 2+x_p(5,k,jj) 24x_p(6,
k,jj)2+x_p(7,k,jj)"2)7(1/2) x p(5,k,jj)/(x_p(4,k,jj)24x p(5,k,]jj
) 2+x_p(6,k,jj) 2+x p(7,k,jj)"2)7(1/2) x p(6,k,jj)/(x_p(4,k,jj) 2+
x_p(5,k,jj) 24x p(6,k,jj) 2+x_p(7,k,jj)"2)7(1/2) x p(7.,k,jj)/(x_p
(4.k,jj) 24x_p(5,k,jj) 24x_p(6,k,jj)2+x p(7.k,jj)"2)"(1/2)
else
H_hat=]
1,0,0,2+x_p(4,k,jj)*x_f(1,k,jj—1)+2%x_p(7,k,jj)*x_f
(2,k,jj —1)—2#x_p(6,k, jj)*x_f(3,k,jj—1),2%x p(5.k,jj)*x_f(1,k,jj—1)
+2xx_ p(6,k,jj)*x f(2,k,jj—1)+2+x_p(7,k,jj)*x_f(3,k,jj—1),2xx p(5,k
, i) xx £(2,k,jj—1)—2xx_p(6,k,jj)*x_f(1,k,jj—1)—2xx_p(4,k,jj)*x_f
(37k7J.] 71) 72*X_p(4’k7jj )*X—f(2 7k7jj 71)72*X—p(77ka .].] )*X—f(l 7kajj 71)
+2xx_p(5,k,jj)*x_f(3,k,jj—1)

0,1,0,2%x p(4,k,jj)*x_£(2,k,jj—1)—2x p(7.k,jj)*x f
(1,k,jj —1)+2+x_p(5.k, jj)*x_f(3,k,jj—1),2%x p(6.k,jj)*x_f(1,k,jj—1)
—2xx_p(5,k,jj)*x_f(2,k,jj—1)4+2+x_p(4,k,jj)*x_(3,k,jj—1),2+x p(5,k
7JJ )*X—f(l 3k7JJ 71)+2*X— (67ka .]J )*X—f(27kaJJ 71)+2*X—p(7ak7JJ )*X—f
(kavJ.] _1) ,2*x7p(6,k,jj )*X—f(gvkv.].] —1)—2*X7p(7,k, J.] )*X—f(kaa.].] _1)
—2sx_p(4,k,jj)*x_f(1,k,jj—1)

0,0,1,2%x_p(6,k,jj)*x_f(1,k,jj—1)—2x«x_p(5,k,jj)*x_f
(2,k,jj—D42+x_p(4,k,jj)*x_£(3,k,jj—1),2+«x_p(7,k,jj)*x_f(1,k,jj—1)
—2xx_p(4,k,jj)*x_1(2,k,jj—1)—2%x_p(5,k,jj)*x_f(3,k,jj—1),2+x p(4,k
7.].] )*X—f(l ak,JJ _1)+2*X— (77ka .]J )*X—f(2’k7JJ —1)—2*X_p(6,k,JJ )*X—f
(3,k,jj—1),2%x_p(5,k,jj)*x_f(1,k,jj—1)+2+x_p(6,k,jj)*x_f(2,k,jj—1)
+2xx_p(7,k,jj)*x_f(3,k,jj—1)

b 137 ,2) #(x p(2,k, §j )% £(2,k,jj —1)x(x_p(4,k, jj)2—
Xip(5,k,jj)/\2—|—x7p(6,k,jj)A2—X7p(7,k,jj)AQ)—Xif(l,k,jj —1)*(2*X7p(4,
k,JJ)*X_p(7,k,JJ)*2*X_ (5,k,JJ)*X_ (67kaJJ))+X—f(3’k7JJ 71)*(2*X_p
(4,k,jj)*x p(5,k,jj)+2+x p(6,k,jj)*x p(7,k,jj)))+p_1(jj,3)*(x p(3,
kaJ)+X—f(37k>JJ —1)*(X7p(4,k7jj>A2—X7p(5,k,jj)AQ—Xip(6,k7jj)A2+X7p
(7,06,73)72) 4% (1K, Jj —1)x(25x p(4,k, jj)wx p (6., 1) +2ex p(5,k, i)
*Xﬁp(?,k,jj))—Xif(Q,k,jj —1)*(2*X7p(4,k,jj)*Xﬁp(5,k,jj)—2*x7p(6,k,
3)ex p(72k, i) o
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Matlab code

p_1(jj,2)*(x_p(1,k,jj)+x_£(1 k,jj—1)=(x_p(4,k,jj) 2+
Xfp(57ka‘]<])AQ_Xfp(67k7J.])AQ_Xfp(77k7J.])A2)+X—f(27k"]<] —1)*(2*X7p(47
k,jj)sx_p(7.,k,jj)+2=x p(5.k,jj)*x p(6,k,jj))—x £(3,k,jj—1)*(2+x_p
(4,k,jj)*X_ (G,k,JJ)*Q*X_p(5,k,JJ)*f_p('ﬁk,”)))*g*p_l(” ,1)*(Xip
(27k7JJ)+X—f(2vkaJJ _1)*(X—p(47k7JJ) 2_X—p(5ak,JJ) 2+X—p(67ka.].]) 2—
Xfp(77k7‘]¢])A2)_X—f(17k7JJ —1)*(2*X7p(47k,3‘])*Xﬁp(77k,(]3)—2*x7p(57k7
Ji)xxop(6,k,§j))+x_£(3 k,jj—1)*(2+x_p(4,k,jj)*x_p(5,k,jj)+2+x_p(6,
K, Ji) e p(T,K6,00))) - A

p_1(jj.3)*(x_p(1.,k,jj)+x f(1.k,jj—1)*(x_p(4,k,jj) 2+
X_p(57ka.]J)A27X—p(6,k7JJ)A27X—p(7ak,;]‘])A2)+X—f(27ka.” 71)*(2*X—p(43
k,jj)sx_p(7.,k,jj)+2=x_p(5,k,jj)*x_p(6,k,jj))—x_f(3k,jj—1)*(2+x_p
(4,k7jj)*Xfp(ﬁ,k,Jj)—2*X7P(57k’jj)*EAP(7,k,jj)))—2*Pgl(jj,1)*(X:P
x p(7,k,ji)72)+x_£(1,k,jj—1)=(2+x_p(4.,k,jj)*x_p(6.,k,jj)+2+x_p(5,k,
JJ)*X_p(77k7JJ))7X—f(23k7;].] 71)*(2*X—p(47k7‘]t})*X_p(5’k7JJ)72*X—p(63
k,ji)=x p(7.,k,jj))) ...
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Matlab code

(981+T_tot{k}(3,1)*x_p(4,k,jj))/50+(981«T_tot{k}(3,2)
*x_p(7,k,jj))/50—(981«T_tot{k}(3,3)*x_p(6.,k,jj))/50—(p_1(jj,1)*(2x
x p(4,k,jj)«x_f(2,k,jj—1)—2+x_p(7,k,jj)*x_f(1,k,jj—1)+2xx_p(5,k,jj
)*X_f(3 7k7jj 71))7p_1(‘” 72) *(Z*X_p(4vka .].] )*X—f(l 7kajj 71)+2*X_p(75k7
JJ)*X—f(Qﬂka.] _1)_2*X—p(67ka.].])*X—f(?’vka.].] —1)))*(X_p(2,k,JJ)+X_f
(27k7jj —1)*(X7p(47k,jj)A2—X7p(5,k7jj)A2+X7p(6,k7jj)A2—X7p(77k,jj)
T2)—x_f(1,k,jj—1)*(2xx_p(4,k,jj)*x_p(7,k,jj)—2%x_p(5,k,jj)*x_p(6,k
,jj))+X7f(3,k,jj —1)*(2*X7p(4,k,jj)*Xﬁp(5,k,jj)—|—2*X7p(6,k,jj)*Xﬁp
(7’k7.]J )))7(pf1(.].] ,1)*(2*X7p(6,k,jj )*Xff(lak7JJ *1)*2*X7p(5,k,jj )*
Yex_f(1,k,jj—1)4+2+x_p(7,k,jj)*x_f(2,k,jj—1)—2+x_p(6,k,jj)*x_£(3k,
JJ —1)))*(X7p(3,k,jj)+X7f(3,k,jj —1)*(X7p(4,k7jj)AQ—Xip(5,k,jj)A2—
x_p(6,k,jj) 24x_p(7,k,jj) " 2)+x_f(1,k,jj —1)*(2+xx_p(4,k,jj)*x_p(6,k,
jj)+2*Xﬁp(5,k,jj)*Xﬁp(’?,k,jj))—Xff(Q,k,jj —1)*(2*X7p(4,k,jj)*Xﬁp(5,
k,jj) =2 p(6,k, jj)sx_p(7,k,jj)))—=(p_1(jj,1)*(x_p(2,k,jj)+x_f(2k,
Ji—D)=*(x_p(4,k,jj)2=x_p(5,k,jj) 2+x p(6,k,jj) 2—x_p(7.,k,jj) " 2)-
X—f(17k7jj —1)*(2*X7p(4,k,jj)*Xﬁp(?,k,jj)—2*X7p(57k,jj)*Xﬁp(G,k,jj)
)+x_f(3,k,jj —1)*(2xx_p(4,k,jj)*x_p(5,k,jj)+2xx_p(6,k,jj)*x_p(7,k,
.].])))_pfl(.].] ,2)*(X7p(1,k,jj )+Xff(1’k7jj —1)*(X7p(4,k,jj )A2+X7p(5,k7
J‘])A2*X7p(6,k,t]‘])A27X7p(7,k,‘]‘])A2)+X7f(2,k,‘]l] 71)*(2*)(71)(4,1{,‘]‘])*
x p(7.k,jj)+2=x p(5.k,jj)*x p(6,k,jj))—x f(3,k,jj—1)*(2+x p(4.k,]jj
)*Xﬁp(G,k,jj)—2*X7p(5,k7jj)*Xﬁp(’?,k,jj))))*(2*X7p(4,k,jj)*Xif(2,k7
J.] —1)—2*X7p(7,k,jj )*Xff(l ’kajj —1)+2*X7p(5 7k7jj )*X—f(3ak7jj _1))_(
pil(.]‘] ,1)*(X7p(3,k,jj )—|—X7f(3,k,‘].] —1)*(X7p(4,k,jj )AQ—Xip(5,k,jj )AZ_
x p(6,k,jj)24x p(7.,k,jj) 2)+x_f(1,k,jj—1)*(2xx_p(4,k,jj)*x_p(6,k,
JJ)+2*X_p(5,k,JJ)*X_p(7,k,Jj))*X_f(Q,k,‘],] 71)*(2*X—p(4ak7.]t])*X—p(5a
kv.].] )_Q*Xfp(67k7.].] )*Xfp(77ka.]‘])))_pf1(.]‘] 73)*(Xfp(l’k7¢].])+X—f(]-7kv
JJ —1)*<X7p(47k,jj)A2+X7p(5,k7jj)AQ—Xip(fS,k,jj)AQ—Xip('?,k,jj)A2)+
x_£(2,k,jj —1)*(2%x_p(4,k, jj)*x_p(7,k,jj)+2sx_p(5,k,jj)*x_p(6.k,jj)
)—x_1(3,k,jj—1)*(2xx_p(4,k,jj)*x p(6.,k,jj)—2+x_p(5,k,jj)*x p(7,k,
x p(4,k,jj)«x_f(3,k,jj—1))—2+x_p(4,k,jj)*((981«T_ tot{k}(3,1))/100—
z_p{jj —1}(4,k))—2+x_p(7,k,jj)*((981«T_tot{k}(3,2))/100—z_p{jj
—1}(5,k) )+2+x_p(6,k,jj)*((981«T_tot{k}(3,3))/100—z_p{jj —1}(6,k))

)
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Matlab code

(981+T_tot{k}(3,1)*x p(5.,k,jj))/50+(981«T tot{k}(3,2)
*x_p(6,k,jj))/504+(981%T tot{k}(3,3)*x p(7.,k,jj))/50—(p_1(jj,1)=(2x
x p(6,k,jj)*«x_f(1,k,jj—1)—2+x_p(5,k,jj)*x_f(2,k,jj—1)+2xx_p(4,k,jj
)*X_f(3 7k7JJ 71))7p_1(‘” 72) *(2*X_p(5 7k5 .].] )*X—f(l 7ka.]J 71)+2*X_p(6 5k7
(27k7jj —1)*(X7p(47k,jj)A2—X7p(5,k7jj)A2+X7p(6,k7jj)A2—X7p(77k,jj)
T2)—x_f(1,k,jj—1)*(2xx_p(4,k,jj)*x_p(7,k,jj)—2%x_p(5,k,jj)*x_p(6,k
,jj))+X7f(3,k,jj —1)*(2*X7p(4,k,jj)*Xﬁp(5,k,jj)—|—2*X7p(6,k,jj)*Xﬁp
(7’k7.]J )))+(p71(JJ ,1)*(2*X7p(4,k,jj )*Xff(25k7JJ *1)*2*X7p(7,k,jj )*
)*X—f(l’kmjj —1)+2*X7p(6,k,jj)*Xif(27k,jj —1)+2*X7p(7,k,jj)*Xif(3,k7
JJ —1)))*(X7p(3,k,jj)+X7f(3,k,jj —1)*(X7p(4,k7jj)AQ—Xip(5,k,jj)A2—
x_p(6,k,jj) 24x_p(7,k,jj) " 2)+x_f(1,k,jj —1)*(2+xx_p(4,k,jj)*x_p(6,k,
jj)+2*Xﬁp(5,k,jj)*Xﬁp(’?,k,jj))—Xff(Q,k,jj —1)*(2*X7p(4,k,jj)*Xﬁp(5,
k,jj) =2 p(6,k, jj)sx_p(7,k,jj)))—=(p_1(jj,1)*(x_p(2,k,jj)+x_f(2k,
Ji—D)=*(x_p(4,k,jj)2=x_p(5,k,jj) 2+x p(6,k,jj) 2—x_p(7.,k,jj) " 2)-
X—f(17k7jj —1)*(2*X7p(4,k,jj)*Xﬁp(?,k,jj)—2*X7p(57k,jj)*Xﬁp(G,k,jj)
)+x_f(3,k,jj —1)*(2xx_p(4,k,jj)*x_p(5,k,jj)+2xx_p(6,k,jj)*x_p(7,k,
.].])))_pfl(.].] ,2)*(X7p(1,k,jj )+Xff(1’k7jj —1)*(X7p(4,k,jj )A2+X7p(5,k7
J‘])A2*X7p(6,k,t]‘])A27X7p(7,k,‘]‘])A2)+X7f(2,k,‘]l] 71)*(2*)(71)(4,1{,‘]‘])*
x p(7.k,jj)+2= p(5.k,jj)*x p(6,k,jj))—x f(3,k,jj—1)*(2+x p(4.k,jj
)*Xﬁp(G,k,jj)—2*X7p(5,k7jj)*Xﬁp(’?,k,jj))))*(2*X7p(6,k,jj)*Xif(l,k7
J.] —1)—2*X7p(5 ’k7 .]J )*Xff(2 ’kajj —1)+2*X7p(4 7k7 J.] )*X—f(3ak7jj _1))+(
pil(.]‘] ,1)*(X7p(3,k,jj )—|—X7f(3,k,‘].] —1)*(X7p(4,k,jj )AQ—Xip(5,k,jj )AZ_
x p(6,k,jj)24x p(7.,k,jj) 2)+x_f(1,k,jj—1)*(2xx_p(4,k,jj)*x_p(6,k,
JJ)+2*X_p(5,k,JJ)*X_p(7,k,Jj))*X_f(Q,k,‘],] 71)*(2*X—p(4ak7.]t])*X—p(5a
kv.].] )_Q*Xfp(67k7.].] )*Xfp(77ka.]‘])))_pf1(.]‘] 73)*(Xfp(l’k7¢].])+X—f(]-7kv
JJ —1)*<X7p(47k,jj)A2+X7p(5,k7jj)AQ—Xip(fS,k,jj)AQ—Xip('?,k,jj)A2)+
x_£(2,k,jj —1)*(2%x_p(4,k, jj)*x_p(7,k,jj)+2sx_p(5,k,jj)*x_p(6.k,jj)
)—x_1(3,k,jj—1)*(2xx_p(4,k,jj)*x p(6.,k,jj)—2+x_p(5,k,jj)*x p(7,k,
x p(5,k,jj)*x_f(3,k,jj—1))—2+x_p(5,k,jj)*((981«T_ tot{k}(3,1))/100—
z_p{jj —1}(4,k))—2x_p(6,k,jj)*((981*T_tot{k}(3,2))/100—z_p{jj
—1}(5,k))—2+x_p(7,k,jj)*((981«T_tot{k}(3,3))/100—z_p{jj —1}(6,k))

)
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Matlab code

(981%T tot{k}(3,2)*x p(5.k,jj))/50—(981+T tot{k}(3,1)
*x_p(6,k,jj))/50—(981«T_tot{k}(3,3)*x_p(4.,k,jj))/50—(p_1(jj,1)=*(2x
x p(5,k,jj)*x_f(1,k,jj—1)+2+xx_p(6,k,jj)*x_£(2,k,jj—1)+2xx_p(7,k,jj
)*X_f(3 7k7JJ 71))+p_1(‘” 72) *(Z*X_p(G 7k5 .].] )*X—f(l 7ka.]J 71)72*X_p(5 5k7
(27k7jj —1)*(X7p(47k,jj)A2—X7p(5,k7jj)A2+X7p(6,k7jj)A2—X7p(77k,jj)
T2)—x_f(1,k,jj—1)*(2xx_p(4,k,jj)*x_p(7,k,jj)—2%x_p(5,k,jj)*x_p(6,k
,jj))+X7f(3,k,jj —1)*(2*X7p(4,k,jj)*Xﬁp(5,k,jj)—|—2*X7p(6,k,jj)*Xﬁp
(7.k,jj)))—(p1(jj,1)*(2%x_p(4,k,jj)sx_f(1,k,jj—1)+2%x_p(7 .k, jj)=
)*X—f(l’kmjj —1)—2*X7p(5,k,jj)*Xif(27k,jj —1)+2*X7p(4,k,jj)*Xif(3,k7
JJ —1)))*(X7p(3,k,jj)+X7f(3,k,jj —1)*(X7p(4,k7jj)AQ—Xip(5,k,jj)A2—
x_p(6,k,jj) 24x_p(7,k,jj) " 2)+x_f(1,k,jj —1)*(2+xx_p(4,k,jj)*x_p(6,k,
jj)+2*Xﬁp(5,k,jj)*Xﬁp(’?,k,jj))—Xff(Q,k,jj —1)*(2*X7p(4,k,jj)*Xﬁp(5,
k,jj) =2 p(6,k, jj)sx_p(7,k,jj)))—=(p_1(jj,1)*(x_p(2,k,jj)+x_f(2k,
Ji—D)=*(x_p(4,k,jj)2=x_p(5,k,jj) 2+x p(6,k,jj) 2—x_p(7.,k,jj) " 2)-
X—f(17k7jj —1)*(2*X7p(4,k,jj)*Xﬁp(?,k,jj)—2*X7p(57k,jj)*Xﬁp(G,k,jj)
)+x_f(3,k,jj —1)*(2xx_p(4,k,jj)*x_p(5,k,jj)+2xx_p(6,k,jj)*x_p(7,k,
.].])))_pfl(.].] ,2)*(X7p(1,k,jj )+Xff(1’k7jj —1)*(X7p(4,k,jj )A2+X7p(5,k7
J‘])A2*X7p(6,k,t]‘])A27X7p(7,k,‘]‘])A2)+X7f(2,k,‘]l] 71)*(2*)(71)(4,1{,‘]‘])*
x p(7.k,jj)+2= p(5.k,jj)*x p(6,k,jj))—x f(3,k,jj—1)*(2+x p(4.k,]jj
)*Xﬁp(G,k,jj)—2*X7p(5,k7jj)*Xﬁp(’?,k,jj))))*(2*X7p(5,k,jj)*Xif(l,k7
J.] —1)+2*X7p(6 ’k7 .]J )*Xff(2 ’kajj —1)+2*X7p(7,k, J.] )*X—f(3ak7jj _1))_(
pil(.]‘] ,1)*(X7p(3,k,jj )—|—X7f(3,k,‘].] —1)*(X7p(4,k,jj )AQ—Xip(5,k,jj )AZ_
x p(6,k,jj)24x p(7.,k,jj) 2)+x_f(1,k,jj—1)*(2xx_p(4,k,jj)*x_p(6,k,
JJ)+2*X_p(5,k,JJ)*X_p(7,k,Jj))*X_f(Q,k,‘],] 71)*(2*X—p(4ak7.]t])*X—p(5a
kv.].] )_Q*Xfp(67k7.].] )*Xfp(77ka.]‘])))_pf1(.]‘] 73)*(Xfp(l’k7¢].])+X—f(]-7kv
JJ —1)*<X7p(47k,jj)A2+X7p(5,k7jj)AQ—Xip(fS,k,jj)AQ—Xip('?,k,jj)A2)+
x_£(2,k,jj —1)*(2%x_p(4,k, jj)*x_p(7,k,jj)+2sx_p(5,k,jj)*x_p(6.k,jj)
)—x_1(3,k,jj—1)*(2xx_p(4,k,jj)*x p(6.,k,jj)—2+x_p(5,k,jj)*x p(7,k,
JJ))))*(2*X—p(4akaJJ)*X—f(17ka.” 71)+2*X—p(73k7JJ)*X—f(23k7J.] 71)72*
x p(6,k,jj)*x_f(3,k,jj—1))+2+xx_p(6,k,jj)*((981«T_ tot{k}(3,1))/100—
z_p{jj —1}(4,k))—2+x_p(5,k,jj)*((981*T_tot{k}(3,2))/100—z_p{jj
—1}(5,k) )+2+x_p(4.,k,jj)*((981«T_tot{k}(3,3))/100—z_p{jj —1}(6,k))

)
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Matlab code

(981xT_tot{k}(3,2)*x_p(4,k,jj))/50—(981«T_tot{k}(3,1)
*x_p(7,k,jj))/50+(981«T_ tot{k}(3,3)*x_p(5,k,jj))/50+(p_1(jj,1)=*(2x
x p(4,k,jj)«x_f(1,k,jj—1)+2+xx_p(7,k,jj)*x_£(2,k,jj—1)—2xx_p(6,k,jj
)*X_f(3 7k7jj 71))+p_1(‘” 72) *(Z*X_p(4vka .].] )*X—f(2 7kajj 71)72*X_p(75k7
(27k7jj —1)*(X7p(47k,jj)A2—X7p(5,k7jj)A2+X7p(6,k7jj)A2—X7p(77k,jj)
T2)—x_f(1,k,jj—1)*(2xx_p(4,k,jj)*x_p(7,k,jj)—2%x_p(5,k,jj)*x_p(6,k
,jj))+X7f(3,k,jj —1)*(2*X7p(4,k,jj)*Xﬁp(5,k,jj)—|—2*X7p(6,k,jj)*Xﬁp
(7., 33))) ~(p_ 1035 1) #(2%x_p(5,K, jj)ex_£(1,k,jj —1)+26x_p(6,k, jj)*
yex_£(2,k,jj —1)—2+x_p(7,k,jj)*x_£(1,k,jj —1)+2+x_p(5.k,jj)*x_f(3,k,
J] —1)))*(X7p(3,k,jj)+X7f(3,k,jj —1)*(X7p(4,k7jj)AQ—Xip(5,k,jj)A2—
Xip(ﬁ,k,jj)/\z—l—xip(?,k,jj)A2)+X7f(1,k,jj —1)*(2*X7p(4,k,jj)*Xﬁp(6,k7
jj)+2*Xﬁp(5,k,jj)*Xﬁp(’?,k,jj))—Xff(Q,k,jj —1)*(2*X7p(4,k,jj)*Xﬁp(5,
K, ) —2ec p(6,k, jj) e p(7.k,15)))+(p 103 1) *(x_p(2.k, jj)+x_£(2.k,
Ji—1)x(xp(4.k, jj)2-x p(5.k, jj) 2+x p(6,k,jj) 2-x p(7.k,jj) 2)-
X—f(17k7jj —1)*(2*X7p(4,k,jj)*Xﬁp(?,k,jj)—2*X7p(57k,jj)*Xﬁp(G,k,jj)
)+x_f(3,k,jj —1)*(2xx_p(4,k,jj)*x_p(5,k,jj)+2xx_p(6,k,jj)*x_p(7,k,
.].])))_pfl(.].] ,2)*(X7p(1,k,jj )+Xff(1’k7jj —1)*(X7p(4,k,jj )A2+X7p(5,k7
J‘])A2*X7p(6,k,t]‘])A27X7p(7,k,‘]‘])A2)+X7f(2,k,‘]l] 71)*(2*)(71)(4,1{,‘]‘])*
X p(7,k, 33 )42 p(5,k, jj)#x p(6,k,7i))—x £(3,k, ij —1)*(2%x p(4,k, jj
)*Xﬁp(G,k,jj)—2*X7p(5,k7jj)*Xﬁp(’?,k,jj))))*(2*X7p(4,k,jj)*Xif(l,k7
J] _1)+2*Xfp(7’k7jj )*Xff(2’kajj —1)—2*X7p(6,k7jj )*X—f(3ak7jj _1))_(
pil(.]‘] ,1)*(X7p(3,k,jj )—|—X7f(3,k,‘].] —1)*(X7p(4,k,jj )AQ—Xip(5,k,jj )AZ_
x p(6,k,jj)24x p(7.,k,jj) 2)+x_f(1,k,jj—1)*(2xx_p(4,k,jj)*x_p(6,k,
JJ)+2*X_p(5,k,JJ)*X_p(7,k,Jj))*X_f(Q,k,‘],] 71)*(2*X—p(4ak7.]t])*X—p(5a
kv.].] )_Q*Xfp(67k7.].] )*Xfp(77ka.]‘])))_pf1(.]‘] 73)*(Xfp(l’k7¢].])+X—f(]-7kv
JJ —1)*<X7p(47k,jj)A2+X7p(5,k7jj)AQ—Xip(fS,k,jj)AQ—Xip('?,k,jj)A2)+
x_£(2,k,jj —1)*(2xx_p(4,k, jj)#x_p(7,k, jj)+2x_p(5,k,jj)*x_p(6,k,jj)
)—x_1(3,k,jj—1)*(2xx_p(4,k,jj)*x p(6.,k,jj)—2+x_p(5,k,jj)*x p(7,k,
x_p(7,k,jj)*x_1(3,k,jj—1))—2%x_p(4,k,jj)*((981%«T_tot{k}(3,2))/100—
z_p{jj —1}(5,k))+2+x_p(7,k,jj)*((981*T_tot{k}(3,1))/100—z_p{jj
“1}(4,k) ) —26x p(5 .k, i) *((981%T tot{k}(3,3))/100—z p{jj —1}(6,k))
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Matlab code

p_1(jj 1) =(x_p(2,k,jj)+x_£(2,k,jj—1)*(x_p(4,k,jj)2—
Xip(f),k,jj)AZ—l—Xip(ﬁ,k,jj)AQ—Xip('?,k,jj)AQ)—Xif(l,k,jj —1)*(2*X7p(4,
k,ji)sx_p(7,k,jj)=2sx_p(5.k,jj)*x_p(6,k,jj))+x_£(3.,k,jj—1)*(2%x_p
(4,k,jj)=x_p(5,k,jj)+2xx_p(6,k,jj)sx_p(7,k,jj)))=2+«p_1(jj,2)=(x_p
(17k7JJ)+X—f(1vkaJJ —1)*(X_p(4,k7JJ)A2+X_p(5,k,JJ)AQ— _p(67ka.].])A2_
x_p(7,k,ji) " 2)+x_f(2,k,jj—1)*(2«x_p(4,k,jj)*x_p(7,k,jj)+2+x_p(5,k,
jj)*xfp(67k7jj))_X—f(37k?jj —1)*(2*X7p(4,k,jj)*Xﬁp(6,k,jj)—2*X7p(57
k,jj)sx_p(7.k,jj))),p1(jj,1)*(x_p(1,k,jj)+x_f(1,k,jj—-1)(x_p(4k,
jj)A2+X7p(5,k,jj)AQfxip(ﬁ,k,jj)A27X7p(7,k,jj>A2)+X7f(2,k7jj 71)*(2*
x_p(4,k,jj)sx_p(7.k,jj)+2=x_p(5,k,jj)sx_p(6,k,jj))—x_f(3,k,jj—1)
#(2xx_p(4,k,jj)*x_p(6,k,jj)—2xx_p(5,k,jj)sx p(7,k,jj)))+p_1(jj,3)
*(Xﬁp(?),k,jj)—i-xif(?),k,jj —1)*(X7p(4,k,jj)AQ—Xip(E),k,jj)A2—X7p(6,k,
Ji) T 24x p(7,k,jj)"2)+x_f(1,k,jj —1)=(2xx_p(4,k, jj)*x_p(6,k,jj)+2x
Xip(5,k,jj)*xip(7,k,jj))—Xif(Q,k,jj —1)*(2*X7p(4,k,jj)*Xﬁp(5,k,jj)
—2#x_p(6,k, jj)*x_p(7,k,jj))),p_1(jj.3)*(x_p(2,k,jj)+x_£(2,k,jj—1)
*(Xip(ﬁl,k’.]t])A2—X7p(5,kh]l])A2+X7p(67k,‘]‘])A2—X7p(7,k7.](])A2)—X7f(]_,k
7.].] —1)*(2*X7p(4,k,jj)*Xﬁp(?,k,jj)—2*X7p(5,k7jj)*Xip(6,k7jj))+X7f
(3,k,jj —1)*(2#x_p(4,k, jj)=x_p(5,k,jj)+2xx_p(6,k,jj)*x_p(7,k,jj)))
—2xp_1(jj,2) *(x_p(3,k,jj)+x_f(3 k,jj—1)*(x_p(4.,k,jj)2—x_p(5,k,jj)
2—x p(6,k,jj) 24x p(7,k,jj) " 2)+x f(1,k,jj—1)«(2+xx_p(4,k,jj)*x_p
(6,k,jj)+2xx_p(5,k,jj)sx_p(7,k,jj))—x_f(2,k,jj—1)*(2*x_p(4,k,jj)=*

Xfp(57k7.]¢] )_2*X—p(67k7JJ )*X—p(77k7.].]) ) PARI
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Matlab code

(981xT_tot{k}(3,2)*x_p(4,k,jj))/50—(981«T_tot{k}(3,1)
*x_p(7,k,jj))/50+(981«T_ tot{k}(3,3)*x_p(5,k,jj))/50+(p_1(jj,1)=*(2x
x p(4,k,jj)«x_f(2,k,jj—1)—2+x_p(7,k,jj)*x_f(1,k,jj—1)+2xx_p(5,k,jj
)*X_f(3 7k7jj 71))7p_1(‘” 72) *(Z*X_p(4vka .].] )*X—f(l 7kajj 71)+2*X_p(75k7
JJ)*X—f(Qﬂka.] _1)_2*X—p(67ka.].])*X—f(?’vka.].] —1)))*(X_p(1,k,JJ)+X_f
(17k7jj —1)*(X7p(47k,jj)A2+X7p(5,k7jj)AQ—Xip(G,ijj)A2—X7p(77k,jj)
T 4x_f(2,k,j] —1)*(2xx_p(4,k,jj)*x_p(7,k,jj)+2xx_p(5,k,jj)*x_p(6,k
7J.]))_Xff(3’k7.].] —1)*(2*X7p(4,k,jj)*Xﬁp(6,k,jj)—2*X7p(5,k,jj)*Xﬁp
(7’k7.]J )))7(pf1(.].] ,2)*(2*X7p(6,k,jj )*Xff(lak7JJ *1)*2*X7p(5,k,jj )*
yex_£(2,k,jj —1)—2+x_p(7,k,jj)*x_£(1,k,jj —1)+2+x_p(5.k,jj)*x_f(3,k,
J] —1)))*(X7p(3,k,jj)+X7f(3,k,jj —1)*(X7p(4,k7jj)AQ—Xip(5,k,jj)A2—
Xip(ﬁ,k,jj)/\z—l—xip(?,k,jj)A2)+X7f(1,k,jj —1)*(2*X7p(4,k,jj)*Xﬁp(6,k7
jj)+2*Xﬁp(5,k,jj)*Xﬁp(’?,k,jj))—Xff(Q,k,jj —1)*(2*X7p(4,k,jj)*Xﬁp(5,
K, J3) 2o p(6,Kk, 33 )wx p(7.k,35)))+(p_1(3) 1) *(x_p(2.k, jj)+x_£(2,k,
§i 1) (e p(4,k, jj) 2= p(5,k, jj ) 24x p(6,k, jj) 2—x_p(7.,k,jj) 2)-
X—f(17k7jj —1)*(2*X7p(4,k,jj)*Xﬁp(?,k,jj)—2*X7p(57k,jj)*Xﬁp(G,k,jj)
)+x_f(3,k,jj —1)*(2xx_p(4,k,jj)*x_p(5,k,jj)+2xx_p(6,k,jj)*x_p(7,k,
.].])))_pfl(.].] ,2)*(X7p(1,k,jj )+Xff(1’k7jj —1)*(X7p(4,k,jj )A2+X7p(5,k7
J‘])A2*X7p(6,k,t]‘])A27X7p(7,k,‘]‘])A2)+X7f(2,k,‘]l] 71)*(2*)(71)(4,1{,‘]‘])*
X p(7,K, 3§ )+26x p(5,k, 55 )*x p(6,k,1i))—x £(3,k,jj—1)*(2xx p(4,k, jj
)*Xﬁp(G,k,jj)—2*X7p(5,k7jj)*Xﬁp(’?,k,jj))))*(2*X7p(4,k,jj)*Xif(l,k7
J] _1)+2*Xfp(7’k7jj )*Xff(2’kajj —1)—2*X7p(6,k7jj )*X—f(3ak7jj _1))_(
pil(.]‘] ,2)*(X7p(37k,jj )—|—X7f(3,k,‘].] —1)*(X7p(4,k,jj )AQ—Xip(5,k,jj )AZ_
x_p(6,k,jj) 24x_p(7,k,jj) " 2)+x_f(1,k,jj —1)*(2+*x_p(4.,k,jj)*x_p(6,k,
JJ)+2*X_p(5,k,JJ)*X_p(7,k,Jj))*X_f(Q,k,‘],] 71)*(2*X—p(4ak7.]t])*X—p(5a
kv.].] )_Q*Xfp(67k7.].] )*Xfp(77ka.]‘])))_pf1(.]‘] 73)*(Xfp(2’k7¢].])+X—f(27kv
JJ —1)*<X7p(47k,jj)AQ—Xip(f),k,jj>A2+X7p(6,k,jj)AQ—Xip('?,k,jj)AQ)—
Xff(lvkajj —1)*(2*X7p(4,k,jj)*Xﬁp(7,k,jj)—2*X7p(5,k,jj)*Xﬁp(6,k,jj)
Y+x_ f(3,k,jj—1)*(2xx p(4,k,jj)*x_p(5,k,jj)+2xx_p(6,k,jj)*x p(7,k,
x p(4,k,jj)«x_f(3,k,jj—1))—2+x_p(4,k,jj)*((981«T_ tot{k}(3,2))/100—
z_p{jj —1}(5,k))+2+x_p(7,k,jj)*((981*T_tot{k}(3,1))/100—z_p{jj
“1}(4,k) ) —26x p(5 .k, i) *((981%T tot{k}(3,3))/100—z p{jj —1}(6,k))

)
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Matlab code

(981+T_tot{k}(3,1)*x p(6,k,jj))/50—(981+T tot{k}(3,2)
*x_p(5,k,jj))/504+(981%T tot{k}(3,3)*x p(4,k,jj))/50+(p_1(jj,1)=(2x
x p(6,k,jj)*«x_f(1,k,jj—1)—2+x_p(5,k,jj)*x_f(2,k,jj—1)+2xx_p(4,k,jj
)*X_f(3 7k7JJ 71))7p_1(‘” 72) *(2*X_p(5 7k5 .].] )*X—f(l 7ka.]J 71)+2*X_p(6 5k7
(17k7jj —1)*(X7p(47k,jj)A2+X7p(5,k7jj)AQ—Xip(G,ijj)A2—X7p(77k,jj)
T 4x_f(2,k,j] —1)*(2xx_p(4,k,jj)*x_p(7,k,jj)+2xx_p(5,k,jj)*x_p(6,k
7J.]))_Xff(3’k7.].] —1)*(2*X7p(4,k,jj)*Xﬁp(6,k,jj)—2*X7p(5,k,jj)*Xﬁp
(7’k7.]J )))+(p71(JJ ,2)*(2*X7p(4,k,jj )*Xff(25k7JJ *1)*2*X7p(7,k,jj )*
)*X—f(l’kmjj —1)—2*X7p(5,k,jj)*Xif(27k,jj —1)+2*X7p(4,k,jj)*Xif(3,k7
JJ —1)))*(X7p(3,k,jj)+X7f(3,k,jj —1)*(X7p(4,k7jj)AQ—Xip(5,k,jj)A2—
x_p(6,k,jj) 24x_p(7,k,jj) " 2)+x_f(1,k,jj —1)*(2+xx_p(4,k,jj)*x_p(6,k,
jj)+2*Xﬁp(5,k,jj)*Xﬁp(’?,k,jj))—Xff(Q,k,jj —1)*(2*X7p(4,k,jj)*Xﬁp(5,
k,jj) =2 p(6,k, jj)ex p(7,k,jj)))+(p_1(jj,1)*(x_p(2,k,jj)+x_f(2k,
Ji—D)=*(x_p(4,k,jj)2=x_p(5,k,jj) 2+x p(6,k,jj) 2—x_p(7.,k,jj) " 2)-
X—f(17k7jj —1)*(2*X7p(4,k,jj)*Xﬁp(?,k,jj)—2*X7p(57k,jj)*Xﬁp(G,k,jj)
)+x_f(3,k,jj —1)*(2xx_p(4,k,jj)*x_p(5,k,jj)+2xx_p(6,k,jj)*x_p(7,k,
.].])))_pfl(.].] ,2)*(X7p(1,k,jj )+Xff(1’k7jj —1)*(X7p(4,k,jj )A2+X7p(5,k7
J‘])A2*X7p(6,k,t]‘])A27X7p(7,k,‘]‘])A2)+X7f(2,k,‘]l] 71)*(2*)(71)(4,1{,‘]‘])*
x p(7.k,jj)+2= p(5.k,jj)*x p(6,k,jj))—x f(3,k,jj—1)*(2+x p(4.k,]jj
)*Xﬁp(G,k,jj)—2*X7p(5,k7jj)*Xﬁp(’?,k,jj))))*(2*X7p(5,k,jj)*Xif(l,k7
J.] —1)+2*X7p(6 ’k7 .]J )*Xff(2 ’kajj —1)+2*X7p(7,k, J.] )*X—f(3ak7jj _1))+(
pil(.]‘] ,2)*(X7p(37k,jj )—|—X7f(3,k,‘].] —1)*(X7p(4,k,jj )AQ—Xip(5,k,jj )AZ_
x p(6,k,jj)24x p(7.,k,jj) 2)+x_f(1,k,jj—1)*(2xx_p(4,k,jj)*x_p(6,k,
JJ)+2*X_p(5,k,JJ)*X_p(7,k,Jj))*X_f(Q,k,‘],] 71)*(2*X—p(4ak7.]t])*X—p(5a
kv.].] )_Q*Xfp(67k7.].] )*Xfp(77ka.]‘])))_pf1(.]‘] 73)*(Xfp(2’k7¢].])+X—f(27kv
JJ —1)*<X7p(47k,jj)AQ—Xip(f),k,jj>A2+X7p(6,k,jj)AQ—Xip('?,k,jj)AQ)—
Xff(lvkajj —1)*(2*X7p(4,k,jj)*Xﬁp(7,k,jj)—2*X7p(5,k,jj)*Xﬁp(6,k,jj)
Y+x_ f(3,k,jj—1)*(2xx p(4,k,jj)*x_p(5,k,jj)+2xx_p(6,k,jj)*x p(7,k,
x p(5,k,jj)*x_f(3,k,jj—1))—2+x_p(6,k,jj)*((981«T_ tot{k}(3,1))/100—
z_p{jj —1}(4,k))+2+x_p(5,k,jj)*((981*T_tot{k}(3,2))/100—z_p{jj
—1}(5,k))—2+x_p(4.,k,jj)*((981«T_tot{k}(3,3))/100—z_p{jj —1}(6,k))

)
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Matlab code

(981+T_tot{k}(3,1)*x p(5.,k,jj))/50+(981«T tot{k}(3,2)
*x_p(6,k,jj))/504+(981%T tot{k}(3,3)*x p(7.k,jj))/50+(p_1(jj,1)=(2x
x p(5,k,jj)*x_f(1,k,jj—1)+2+xx_p(6,k,jj)*x_£(2,k,jj—1)+2xx_p(7,k,jj
)*X_f(3 7k7JJ 71))+p_1(‘” 72) *(Z*X_p(G 7k5 .].] )*X—f(l 7ka.]J 71)72*X_p(5 5k7
(17k7jj —1)*(X7p(47k,jj)A2+X7p(5,k7jj)AQ—Xip(G,ijj)A2—X7p(77k,jj)
T 4x_f(2,k,j] —1)*(2xx_p(4,k,jj)*x_p(7,k,jj)+2xx_p(5,k,jj)*x_p(6,k
7J.]))_Xff(3’k7.].] —1)*(2*X7p(4,k,jj)*Xﬁp(6,k,jj)—2*X7p(5,k,jj)*Xﬁp
(7,k,33)))—=(p_1(jj ,2) *(2+x_p(4,k, jj)ex_f(1,k,jj —1)+2x_p(7 k,jj)*
X—f(27ka.” 71)*2*X_p(6,k,1]‘] )*X_f(?),k,JJ 71))7p_1(t].] 33) *(Q*X—p(5’kaJJ
)*X—f(l’kmjj —1)+2*X7p(6,k,jj)*Xif(27k,jj —1)+2*X7p(7,k,jj)*Xif(3,k7
JJ —1)))*(X7p(3,k,jj)+X7f(3,k,jj —1)*(X7p(4,k7jj)AQ—Xip(5,k,jj)A2—
x_p(6,k,jj) 24x_p(7,k,jj) " 2)+x_f(1,k,jj —1)*(2+xx_p(4,k,jj)*x_p(6,k,
jj)+2*Xﬁp(5,k,jj)*Xﬁp(’?,k,jj))—Xff(Q,k,jj —1)*(2*X7p(4,k,jj)*Xﬁp(5,
k,jj) =2 p(6,k, jj)sx_p(7,k,jj)))—=(p_1(jj,1)*(x_p(2,k,jj)+x_f(2k,
Ji—D)=*(x_p(4,k,jj)2=x_p(5,k,jj) 2+x p(6,k,jj) 2—x_p(7.,k,jj) " 2)-
X—f(17k7jj —1)*(2*X7p(4,k,jj)*Xﬁp(?,k,jj)—2*X7p(57k,jj)*Xﬁp(G,k,jj)
)+x_f(3,k,jj —1)*(2xx_p(4,k,jj)*x_p(5,k,jj)+2xx_p(6,k,jj)*x_p(7,k,
.].])))_pfl(.].] ,2)*(X7p(1,k,jj )+Xff(1’k7jj —1)*(X7p(4,k,jj )A2+X7p(5,k7
J‘])A2*X7p(6,k,t]‘])A27X7p(7,k,‘]‘])A2)+X7f(2,k,‘]l] 71)*(2*)(71)(4,1{,‘]‘])*
x p(7.k,jj)+2= p(5.k,jj)*x p(6,k,jj))—x f(3,k,jj—1)*(2+x p(4.k,jj
)*Xﬁp(G,k,jj)—2*X7p(5,k7jj)*Xﬁp(’?,k,jj))))*(2*X7p(6,k,jj)*Xif(l,k7
J.] —1)—2*X7p(5 ’k7 .]J )*Xff(2 ’kajj —1)+2*X7p(4 7k7 J.] )*X—f(3ak7jj _1))_(
pil(.]‘] ,2)*(X7p(37k,jj )—|—X7f(3,k,‘].] —1)*(X7p(4,k,jj )AQ—Xip(5,k,jj )AZ_
x p(6,k,jj)24x p(7.,k,jj) 2)+x_f(1,k,jj—1)*(2xx_p(4,k,jj)*x_p(6,k,
JJ)+2*X_p(5,k,JJ)*X_p(7,k,Jj))*X_f(Q,k,‘],] 71)*(2*X—p(4ak7.]t])*X—p(5a
kv.].] )_Q*Xfp(67k7.].] )*Xfp(77ka.]‘])))_pf1(.]‘] 73)*(Xfp(2’k7¢].])+X—f(27kv
JJ —1)*<X7p(47k,jj)AQ—Xip(f),k,jj>A2+X7p(6,k,jj)AQ—Xip('?,k,jj)AQ)—
Xff(lvkajj —1)*(2*X7p(4,k,jj)*Xﬁp(7,k,jj)—2*X7p(5,k,jj)*Xﬁp(6,k,jj)
Y+x_ f(3,k,jj—1)*(2xx p(4,k,jj)*x_p(5,k,jj)+2xx_p(6,k,jj)*x p(7,k,
JJ))))*(2*X—p(4akaJJ)*X—f(17ka.” 71)+2*X—p(73k7JJ)*X—f(23k7J.] 71)72*
x p(6,k,jj)*«x_f(3,k,jj—1))—2+x_p(5,k,jj)*((981«T_ tot{k}(3,1))/100—
z_p{jj —1}(4,k))—2x_p(6,k,jj)*((981*T_tot{k}(3,2))/100—z_p{jj
—1}(5,k))—2+x_p(7,k,jj)*((981«T_tot{k}(3,3))/100—z_p{jj —1}(6,k))

)
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Matlab code

(981+T_tot{k}(3,3)*x p(6,k,jj))/50—(981%T tot{k}(3,2)
*x_p(7,k,jj))/50—(981«T_tot{k}(3,1)*x_p(4.,k,jj))/50—(p_1(jj,1)=*(2x
x p(4,k,jj)«x_f(1,k,jj—1)+2+xx_p(7,k,jj)*x_£(2,k,jj—1)—2xx_p(6,k,jj
)*X_f(3 7k7jj 71))+p_1(‘” 72) *(Z*X_p(4vka .].] )*X—f(2 7kajj 71)72*X_p(75k7
(17k7jj —1)*(X7p(47k,jj)A2+X7p(5,k7jj)AQ—Xip(G,ijj)A2—X7p(77k,jj)
T 4x_f(2,k,j] —1)*(2xx_p(4,k,jj)*x_p(7,k,jj)+2xx_p(5,k,jj)*x_p(6,k
7J.]))_Xff(3’k7.].] —1)*(2*X7p(4,k,jj)*Xﬁp(6,k,jj)—2*X7p(5,k,jj)*Xﬁp
(7.k,jj)))—=(p_1(jj,2)*(2%x_p(5,k, jj)sx_f(1,k,jj—1)+2%x_p(6,k,jj)=
Yex_f(1,k,jj—1)4+2+x_p(7,k,jj)*x_f(2,k,jj—1)—2+x_p(6,k,jj)*x_£(3k,
JJ —1)))*(X7p(3,k,jj)+X7f(3,k,jj —1)*(X7p(4,k7jj)AQ—Xip(5,k,jj)A2—
x_p(6,k,jj) 24x_p(7,k,jj) " 2)+x_f(1,k,jj —1)*(2+xx_p(4,k,jj)*x_p(6,k,
jj)+2*Xﬁp(5,k,jj)*Xﬁp(’?,k,jj))—Xff(Q,k,jj —1)*(2*X7p(4,k,jj)*Xﬁp(5,
k,jj) =2 p(6,k, jj)ex p(7,k,jj)))+(p_1(jj,1)*(x_p(2,k,jj)+x_f(2k,
Ji—D)=*(x_p(4,k,jj)2=x_p(5,k,jj) 2+x p(6,k,jj) 2—x_p(7.,k,jj) " 2)-
X—f(17k7jj —1)*(2*X7p(4,k,jj)*Xﬁp(?,k,jj)—2*X7p(57k,jj)*Xﬁp(G,k,jj)
)+x_f(3,k,jj —1)*(2xx_p(4,k,jj)*x_p(5,k,jj)+2xx_p(6,k,jj)*x_p(7,k,
.].])))_pfl(.].] ,2)*(X7p(1,k,jj )+Xff(1’k7jj —1)*(X7p(4,k,jj )A2+X7p(5,k7
J‘])A2*X7p(6,k,t]‘])A27X7p(7,k,‘]‘])A2)+X7f(2,k,‘]l] 71)*(2*)(71)(4,1{,‘]‘])*
x p(7.k,jj)+2=x p(5.k,jj)*x p(6,k,jj))—x f(3,k,jj—1)*(2+x p(4.k,]jj
)*Xﬁp(G,k,jj)—2*X7p(5,k7jj)*Xﬁp(’?,k,jj))))*(2*X7p(4,k,jj)*Xif(2,k7
J.] —1)—2*X7p(7,k,jj )*Xff(l ’kajj —1)+2*X7p(5 7k7jj )*X—f(3ak7jj _1))_(
pil(.]‘] ,2)*(X7p(37k,jj )—|—X7f(3,k,‘].] —1)*(X7p(4,k,jj )AQ—Xip(5,k,jj )AZ_
x p(6,k,jj)24x p(7.,k,jj) 2)+x_f(1,k,jj—1)*(2xx_p(4,k,jj)*x_p(6,k,
JJ)+2*X_p(5,k,JJ)*X_p(7,k,Jj))*X_f(Q,k,‘],] 71)*(2*X—p(4ak7.]t])*X—p(5a
kv.].] )_Q*Xfp(67k7.].] )*Xfp(77ka.]‘])))_pf1(.]‘] 73)*(Xfp(2’k7¢].])+X—f(27kv
JJ —1)*<X7p(47k,jj)AQ—Xip(f),k,jj>A2+X7p(6,k,jj)AQ—Xip('?,k,jj)AQ)—
Xff(lvkajj —1)*(2*X7p(4,k,jj)*Xﬁp(7,k,jj)—2*X7p(5,k,jj)*Xﬁp(6,k,jj)
Y+x_ f(3,k,jj—1)*(2xx p(4,k,jj)*x_p(5,k,jj)+2xx_p(6,k,jj)*x p(7,k,
x p(7,k,jj)*x_f(3,k,jj—1))+2xx_p(4,k,jj)*((981%«T_tot{k}(3,1))/100—
z_p{jj —1}(4,k))+2+x_p(7,k,jj)*((981«T_tot{k}(3,2))/100—z_p{jj
—1}(5,k))—2+x_p(6,k,jj)*((981«T_tot{k}(3,3))/100—z_p{jj —1}(6,k))

p_1(jj 1) =(x_p(3,k,jj)+x_f(3,k,jj—1)*(x_p(4,k,jj)2—
x p(5,k,jj)2—=x p(6.,k,jj) 24x p(7,k,jj) " 2)+x_f(1,k,jj—1)«(2+xx_p(4,
k,jj)sx_p(6,k, jj)+24x_p(5,k,jj)*x_p(7,k,jj))—x_f(2,k,jj—1)*(2«x_p
(4,k,jj)*Xﬁp(57k,jj)—2*X7p(6,k,jj)*Xﬁp(?,k,jj)))—?*pil(jj 73)*(X7p
(1’k7jj)+x—f(1’ka‘jj —1)*(X7p(4,k,jj)A2+X7p(5,k7jj)AQ—Xip(G,k,jj)AQ—
x p(7,k,jj) " 2)+x_f(2,k,jj—1)*(2*x_p(4,k,jj)*x_p(7,k,jj)+2*xx_p(5.,k,
‘].])*Xip(fi,k,.].]))—Xﬁf(g,k,.]'] —1)*(2*X7p(4,k,jj)*Xﬁp(G,k,jj)—2*X7p(5,
k,jj)*=x_p(7.k,ji))) ...
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Matlab code

p_1(jj,2)*(x_p(3.k,jj)+x_f(3 k,jj—1)*(x_p(4.,k,jj) 2
Xfp(57ka‘]<])AQ_Xfp(67k7J.])A2+Xfp(7’k7‘].])A2)+X—f(17k"]<] —1)*(2*X7p(47
k,ji)*x p(6,k,jj)+2+x p(5,k,jj)*x p(7.k,jj))—=x_f(2,k,jj—1)*(2*x_p
(4,k,jj)*X_ (5,k,JJ)*Q*X_p(ﬁ,k,”)*f_p('ﬁk,”)))*g*p_l(” ,3)*(Xip
(27k7JJ)+X—f(2vkaJJ _1)*(X—p(47k7JJ) 2_X—p(5ak,JJ) 2+X—p(67ka.].]) 2—
Xfp(77k7‘]¢])A2)_X—f(17k7JJ —1)*(2*X7p(47k,3‘])*Xﬁp(77k,(]3)—2*x7p(57k7
Ji)xxop(6,k,§j))+x_£(3 k,jj—1)*(2+x_p(4,k,jj)*x_p(5,k,jj)+2+x_p(6,
K, J3)# p(7,k,§§))) - A

p_1(jj 1) *(x_p(1,k,jj)+x f(1.,k,jj—1)*(x_p(4,k,jj) 2+
X_p(57ka.]J)A27X—p(6,k7JJ)A27X—p(7ak,;]‘])A2)+X—f(27ka.” 71)*(2*X—p(43
k,jj)sx_p(7.,k,jj)+2=x_p(5,k,jj)*x_p(6,k,jj))—x_f(3k,jj—1)*(2+x_p
(4,1, jj)*x p(6,k, ji)=2%x p(5,k,jj)*x p(T,k,ji)))+p 1(Jj 2)*(x p(2,
k,jj)+x £(2,k,jj—1)=*(x_p(4.,k,jj)2—x p(5,k,jj) 24+x p(6,k,jj)2—x p
#x_p(6,k,jj))+x_f(3,k,jj—1)=(2+x_p(4,k,jj)*x_p(5,k,]jj)+2+x_p(6,k
Ji)xx p(7,k,jji))) ...

)

97




139

Matlab code

(981+T_tot{k}(3,1)*x p(6,k,jj))/50—(981+T tot{k}(3,2)
*x_p(5,k,jj))/504+(981%T tot{k}(3,3)*x p(4,k,jj))/50+(p_1(jj,1)=(2x
x p(6,k,jj)*«x_f(1,k,jj—1)—2+x_p(5,k,jj)*x_f(2,k,jj—1)+2xx_p(4,k,jj
)*X_f(3 7k7jj 71))7p_1(‘” 73) *(Z*X_p(4vka .].] )*X—f(l 7kajj 71)+2*X_p(75k7
JJ)*X—f(Qﬂka.] _1)_2*X—p(67ka.].])*X—f(?’vka.].] —1)))*(X_p(1,k,JJ)+X_f
(17k7jj —1)*(X7p(47k,jj)A2+X7p(5,k7jj)AQ—Xip(G,ijj)A2—X7p(77k,jj)
T 4x_f(2,k,j] —1)*(2xx_p(4,k,jj)*x_p(7,k,jj)+2xx_p(5,k,jj)*x_p(6,k
7J.]))_Xff(3’k7.].] —1)*(2*X7p(4,k,jj)*Xﬁp(6,k,jj)—2*X7p(5,k,jj)*Xﬁp
(7’k7.]J )))+(p71(JJ ,2)*(2*X7p(6,k,jj )*Xff(lak7JJ *1)*2*X7p(5,k,jj )*
)*X—f(2’k7jj _1)_2*Xfp(7vkajj)*X—f(]-7k7jj —1)+2*X7p(5,k,jj)*Xif(3,k7
JJ —1)))*(X7p(2,k,jj)+X7f(2,k,jj —1)*(X7p(4,k7jj)AQ—Xip(5,k,jj)A2+
Xip(ﬁ,k,jj)AQ—Xip('?,k,jj)AQ)—Xif(l,k,jj —1)*(2*X7p(4,k,jj)*Xﬁp(?,k7
J3)=2xx_p(5,k, jj)*x_p(6,k,jj))+x_£(3,k,jj—1)=(2%x_p(4,k,jj)*x_p(5,
k,jj)+2ex p(6,k, jj)sx_p(7,k,jj)))+(p_1(jj,1)*(x_p(3,k,jj)+x_f(3k,
Ji—D)=(x_p(4,k,jj)2—x_p(5,k,jj) 2=x_p(6,k,jj) 2+x p(7,k,jj) 2)+
x_f(1,k,jj —1)*(2%x_p(4,k, jj)*x_p(6,k,jj)+2xx_p(5,k,jj)sx_p(7.k,jj)
)—x_f(2,k,jj —1)*(2xx_p(4,k,jj)*x_p(5,k,jj)—2xx_p(6,k,jj)*x_p(7,k,
.].])))_pfl(.].] ,3)*(X7p(1,k,jj )+Xff(1’k7jj —1)*(X7p(4,k,jj )A2+X7p(5,k7
J‘])A2*X7p(6,k,t]‘])A27X7p(7,k,‘]‘])A2)+X7f(2,k,‘]l] 71)*(2*)(71)(4,1{,‘]‘])*
x p(7.k,jj)+2xx p(5.k,jj)*x p(6,k,jj))—x f(3,k,jj—1)*(2+x p(4.k,]jj
)*Xﬁp(G,k,jj)—2*X7p(5,k7jj)*Xﬁp(’?,k,jj))))*(2*X7p(4,k,jj)*Xif(l,k7
J.] —1)+2*X7p(7,k,jj )*Xff(2’kajj —1)—2*X7p(6,k7jj )*X—f(3ak7jj _1))+(
pil(.]‘] ,2)*(X7p(37k,jj )—|—X7f(3,k,‘].] —1)*(X7p(4,k,jj )AQ—Xip(5,k,jj )AZ_
x p(6,k,jj)24x p(7.,k,jj) 2)+x_f(1,k,jj—1)*(2xx_p(4,k,jj)*x_p(6,k,
JJ)+2*X_p(5,k,JJ)*X_p(7,k,Jj))*X_f(Q,k,‘],] 71)*(2*X—p(4ak7.]t])*X—p(5a
kv.].] )_Q*Xfp(67k7.].] )*Xfp(77ka.]‘])))_pf1(.]‘] 73)*(Xfp(2’k7¢].])+X—f(27kv
JJ —1)*<X7p(47k,jj)AQ—Xip(f),k,jj>A2+X7p(6,k,jj)AQ—Xip('?,k,jj)AQ)—
Xff(lvkajj —1)*(2*X7p(4,k,jj)*Xﬁp(7,k,jj)—2*X7p(5,k,jj)*Xﬁp(6,k,jj)
Y+x_ f(3,k,jj—1)*(2xx p(4,k,jj)*x_p(5,k,jj)+2xx_p(6,k,jj)*x p(7,k,
x p(5,k,jj)*x_f(3,k,jj—1))—2+x_p(6,k,jj)*((981«T_ tot{k}(3,1))/100—
z_p{jj —1}(4,k))+2+x_p(5,k,jj)*((981*T_tot{k}(3,2))/100—z_p{jj
—1}(5,k))—2+x_p(4.,k,jj)*((981«T_tot{k}(3,3))/100—z_p{jj —1}(6,k))

)
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Matlab code

(981+T_tot{k}(3,1)*x p(7.k,jj))/50—(981%T tot{k}(3,2)
*x_p(4,k,jj))/50—(981«T_tot{k}(3,3)*x_p(5,k,jj))/50—(p_1(jj,1)=*(2x
x p(4,k,jj)«x_f(2,k,jj—1)—2+x_p(7,k,jj)*x_f(1,k,jj—1)+2xx_p(5,k,jj
)*X_f(3 7k7JJ 71))+p_1(‘” 73) *(2*X_p(5 7k5 .].] )*X—f(l 7ka.]J 71)+2*X_p(6 5k7
(17k7jj —1)*(X7p(47k,jj)A2+X7p(5,k7jj)AQ—Xip(G,ijj)A2—X7p(77k,jj)
T 4x_f(2,k,j] —1)*(2xx_p(4,k,jj)*x_p(7,k,jj)+2xx_p(5,k,jj)*x_p(6,k
7J.]))_Xff(3’k7.].] —1)*(2*X7p(4,k,jj)*Xﬁp(6,k,jj)—2*X7p(5,k,jj)*Xﬁp
(7’k7.]J )))7(pf1(.].] ,2)*(2*X7p(4,k,jj )*Xff(25k7JJ *1)*2*X7p(7,k,jj )*
yex_f(1,k,jj —1)—2+x_p(5,k,jj)*x_£(2,k,jj —1)+2+x_p(4,k,jj)*x_f(3,k,
J] —1)))*(X7p(2,k,jj)+X7f(2,k,jj —1)*(X7p(4,k7jj)AQ—Xip(5,k,jj)A2+
Xip(ﬁ,k,jj)AQ—Xip('?,k,jj)AQ)—Xif(l,k,jj —1)*(2*X7p(4,k,jj)*Xﬁp(?,k7
Ji)—2xx p(5.k,jj)*x p(6.k,jj))+x _£(3.k,jj—1)*(2+x_p(4.k,jj)*x p(5,
K, J3) 20 p(6,k, 33 ) p(7.k,35)))+(p_1(3) 1) *(x_p(3.k,jj)+x_£(3,k,
Ji—1)x(xp(4,k, jj)2-x p(5.k, jj) 2% p(6,k,jj) 24x p(T.k,jj) 2)+
x f(1,k,jj—1)*(2+x p(4.,k,jj)*x p(6.,k,jj)+2+x p(5.,k,jj)*x p(7.,k,jj)
)—Xif(Q,k,jj —1)*(2*X7p(4,k,jj)*Xﬁp(f),k,jj)—Q*Xip(G,k,jj)*Xip('?,k’
.].])))_pfl(.].] ,3)*(X7p(1,k,jj )+Xff(1’k7jj —1)*(X7p(4,k,jj )A2+X7p(5,k7
J‘])A2*X7p(6,k,t]‘])A27X7p(7,k,‘]‘])A2)+X7f(2,k,‘]l] 71)*(2*)(71)(4,1{,‘]‘])*
X p(7,K, 3§ )+26x p(5,k, 55 )*x p(6,k,1i))—x £(3,k,jj—1)*(2xx p(4,k, jj
)*Xﬁp(G,k,jj)—2*X7p(5,k7jj)*Xﬁp(’?,k,jj))))*(2*X7p(5,k,jj)*Xif(l,k7
§i —1)42%x_p(6.,k, jj)*x_£(2,k,jj—1)+2sx_p(7,k,jj)*x_£(3,k,jj—1))+(
pil(.]‘] ,2)*(X7p(37k,jj )—|—X7f(3,k,‘].] —1)*(X7p(4,k,jj )AQ—Xip(5,k,jj )AZ_
x_p(6,k,jj) 24x_p(7,k,jj) " 2)+x_f(1,k,jj —1)*(2+*x_p(4.,k,jj)*x_p(6,k,
JJ)+2*X_p(5,k,JJ)*X_p(7,k,Jj))*X_f(Q,k,‘],] 71)*(2*X—p(4ak7.]t])*X—p(5a
kv.].] )_Q*Xfp(67k7.].] )*Xfp(77ka.]‘])))_pf1(.]‘] 73)*(Xfp(2’k7¢].])+X—f(27kv
JJ —1)*<X7p(47k,jj)AQ—Xip(f),k,jj>A2+X7p(6,k,jj)AQ—Xip('?,k,jj)AQ)—
Xff(lvkajj —1)*(2*X7p(4,k,jj)*Xﬁp(7,k,jj)—2*X7p(5,k,jj)*Xﬁp(6,k,jj)
Y+x_ f(3,k,jj—1)*(2xx p(4,k,jj)*x_p(5,k,jj)+2xx_p(6,k,jj)*x p(7,k,
x p(4,k,jj)«x_f(3,k,jj—1))+2+«x_p(4,k,jj)*((981«T_ tot{k}(3,2))/100—
z_p{jj —1}(5,k))—2%x_p(7,k,jj)*((981«T_tot{k}(3,1))/100—z_p{jj
—1}(4,k) ) +2%x_p(5,k, jj)*((981«T tot{k}(3,3))/100—z p{jj —1}(6,k))

)
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Matlab code

(981+T_tot{k}(3,1)*x_p(4,k,jj))/50+(981«T_tot{k}(3,2)
*x_p(7,k,jj))/50—(981«T_tot{k}(3,3)*x_p(6,k,jj))/50+(p_1(jj,1)=*(2x
x p(4,k,jj)«x_f(1,k,jj—1)+2+xx_p(7,k,jj)*x_£(2,k,jj—1)—2xx_p(6,k,jj
)*X_f(3 7k7JJ 71))+p_1(‘” 73) *(Z*X_p(G 7k5 .].] )*X—f(l 7ka.]J 71)72*X_p(5 5k7
(17k7jj —1)*(X7p(47k,jj)A2+X7p(5,k7jj)AQ—Xip(G,ijj)A2—X7p(77k,jj)
T 4x_f(2,k,j] —1)*(2xx_p(4,k,jj)*x_p(7,k,jj)+2xx_p(5,k,jj)*x_p(6,k
7J.]))_Xff(3’k7.].] —1)*(2*X7p(4,k,jj)*Xﬁp(6,k,jj)—2*X7p(5,k,jj)*Xﬁp
(7,k,33)))+P_1(jj,2) *(2+x_p(4,k, jj)ex_f(1,k,jj —1)+2x_p(7 k,jj)*
X—f(27ka.” 71)*2*X_p(6,k,1]‘] )*X_f(?),k,JJ 71))7p_1(t].] 33) *(Q*X—p(5’kaJJ
)*X—f(l’kmjj —1)+2*X7p(6,k,jj)*Xif(27k,jj —1)+2*X7p(7,k,jj)*Xif(3,k7
JJ —1)))*(X7p(2,k,jj)+X7f(2,k,jj —1)*(X7p(4,k7jj)AQ—Xip(5,k,jj)A2+
Xip(ﬁ,k,jj)AQ—Xip('?,k,jj)AQ)—Xif(l,k,jj —1)*(2*X7p(4,k,jj)*Xﬁp(?,k7
J3)=2sx_p(5,k, jj)*x_p(6,k,jj))+x_£(3,k,jj—1)=(2%x_p(4,k,jj)*x_p(5,
k,jj)+2ex p(6,k, jj)ex p(7,k,jj)))—=(p_1(jj,1)*(x_p(3,k,jj)+x_f(3 k,
Ji—D)=(x_p(4,k,jj)2—x_p(5,k,jj) 2=x_p(6,k,jj) 2+x p(7,k,jj) 2)+
x_f(1,k,jj —1)*(2%x_p(4,k, jj)*x_p(6,k,jj)+2xx_p(5,k,jj)sx_p(7.k,jj)
)—x_f(2,k,jj —1)*(2xx_p(4,k,jj)*x_p(5,k,jj)—2xx_p(6,k,jj)*x_p(7,k,
.].])))_pfl(.].] ,3)*(X7p(1,k,jj )+Xff(1’k7jj —1)*(X7p(4,k,jj )A2+X7p(5,k7
J‘])A2*X7p(6,k,t]‘])A27X7p(7,k,‘]‘])A2)+X7f(2,k,‘]l] 71)*(2*)(71)(4,1{,‘]‘])*
x p(7.k,jj)+2= p(5.k,jj)*x p(6,k,jj))—x f(3,k,jj—1)*(2+x p(4.k,jj
)*Xﬁp(G,k,jj)—2*X7p(5,k7jj)*Xﬁp(’?,k,jj))))*(2*X7p(6,k,jj)*Xif(l,k7
J.] —1)—2*X7p(5 ’k7 .]J )*Xff(2 ’kajj —1)+2*X7p(4 7k7 J.] )*X—f(3ak7jj _1))+(
pil(.]‘] ,2)*(X7p(37k,jj )—|—X7f(3,k,‘].] —1)*(X7p(4,k,jj )AQ—Xip(5,k,jj )AZ_
x p(6,k,jj)24x p(7.,k,jj) 2)+x_f(1,k,jj—1)*(2xx_p(4,k,jj)*x_p(6,k,
JJ)+2*X_p(5,k,JJ)*X_p(7,k,Jj))*X_f(Q,k,‘],] 71)*(2*X—p(4ak7.]t])*X—p(5a
kv.].] )_Q*Xfp(67k7.].] )*Xfp(77ka.]‘])))_pf1(.]‘] 73)*(Xfp(2’k7¢].])+X—f(27kv
JJ —1)*<X7p(47k,jj)AQ—Xip(f),k,jj>A2+X7p(6,k,jj)AQ—Xip('?,k,jj)AQ)—
Xff(lvkajj —1)*(2*X7p(4,k,jj)*Xﬁp(7,k,jj)—2*X7p(5,k,jj)*Xﬁp(6,k,jj)
Y+x_ f(3,k,jj—1)*(2xx p(4,k,jj)*x_p(5,k,jj)+2xx_p(6,k,jj)*x p(7,k,
x p(7,k,jj)*x_1(3,k,jj—1))—2%x_p(4,k,jj)*((981%«T_tot{k}(3,1))/100—
z_p{jj —1}(4,k))—2+x_p(7,k,jj)*((981«T_tot{k}(3,2))/100—z_p{jj
—1}(5,k) )+2+x_p(6,k,jj)*((981«T_tot{k}(3,3))/100—z_p{jj —1}(6,k))

)
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151

152

Matlab code

(981+T_tot{k}(3,1)*x_p(5,k,jj))/50+(981«T_tot{k}(3,2)
*x_p(6,k,jj))/504+(981%T tot{k}(3,3)*x p(7.k,jj))/50+(p_1(jj,1)=(2x
x p(5,k,jj)*x_f(1,k,jj—1)+2+xx_p(6,k,jj)*x_£(2,k,jj—1)+2xx_p(7,k,jj
)*X_f(3 7k7jj 71))7p—1(‘” 73) *(Z*X_p(4vka .].] )*X—f(2 7kajj 71)72*X_p(75k7
(17k7jj —1)*(X7p(47k,jj)A2+X7p(5,k7jj)AQ—Xip(G,k,jj)A2—X7p(77k,jj)
T 4x_f(2,k,j] —1)*(2xx_p(4,k,jj)*x_p(7,k,jj)+2xx_p(5,k,jj)*x_p(6,k
7J.]))_Xff(3’k7.].] —1)*(2*X7p(4,k,jj)*Xﬁp(G,k,jj)—2*X7p(5,k,jj)*Xﬁp
(7,k,33)))+P_1(jj,2) *(2+x_p(5 .k, jj)sx_f(1,k,jj —1)+2xx_p(6,k,jj)*
Yex_f(1,k,jj—1)4+2+x_p(7,k,jj)*x_f(2,k,jj—1)—2+x_p(6,k,jj)*x_£(3k,
JJ —1)))*(X7p(2,k,jj)+X7f(2,k,jj —1)*(X7p(4,k,jj)AQ—Xip(5,k,jj)A2+
Xip(ﬁ,k,jj)AQ—Xip('?,k,jj)AQ)—Xif(l,k,jj —1)*(2*X7p(4,k,jj)*Xﬁp(?,k7
J3)=2xx_p(5,k, jj)*x_p(6,k,jj))+x_£(3,k,jj—1)=(2%x_p(4,k,jj)*x_p(5,
k,jj)+2ex p(6,k, jj)sx_p(7,k,jj)))+(p_1(jj,1)*(x_p(3,k,jj)+x_f(3k,
Ji—D)=(x_p(4,k,jj)2—x_p(5,k,jj) 2=x_p(6,k,jj) 2+x p(7,k,jj) 2)+
x_f(1,k, jj —1)(2+x_p(4,k, jj)sx_p(6.k, jj)+2x_p(5,k,jj)*x_p(7,k,jj)
)—x_f(2,k,jj —1)*(2xx_p(4,k,jj)*x_p(5,k,jj)—2xx_p(6,k,jj)*x_p(7,k,
.].])))_pfl(.].] ,3)*(X7p(1,k,jj )+Xff(1’k7jj —1)*(X7p(4,k,jj )A2+X7p(5,k7
JJ)A27X7p(6,k,J‘])A27X7p(7,k,‘]‘])A2)+X7f(2,k,‘]t] 71)*(2*)(71)(4,1{,‘]‘])*
x_p(7.,k,jj)+2x_p(5.k,jj)*x_p(6,k,jj))—x_f(3,k,jj—1)*(2+x_p(4.k,j]
)*Xﬁp(ﬁ,k,jj)—2*X7p(5,k7jj)*Xﬁp(’?,k,jj))))*(2*X7p(4,k,jj)*Xif(2,k7
J.] —1)—2*X7p(7,k,jj )*Xff(l ’kajj —1)+2*X7p(5 7k7jj )*X—f(3ak7jj _1))_(
pil(.]‘] ,2)*(X7p(3,k,jj )—|—X7f(3,k,‘].] —1)*(X7p(4,k,jj )AQ—Xip(5,k,jj )AZ_
x p(6,k,jj)24x p(7.,k,jj) 2)+x_f(1,k,jj—1)*(2xx_p(4,k,jj)*x_p(6,k,
JJ)+2*X_p(5,k,JJ)*X_p(7,k,Jj))*X_f(Q,k,‘],] 71)*(2*X—p(43k7.]t])*X—p(5a
kv.].] )_Q*Xfp(67k7.].] )*Xﬁp(77k,‘]'])))—p71(‘]‘] 73)*(X7p(2,k7(]‘])+X7f(2,k,
JJ —1)*<X7p(4,k,jj)AQ—Xip(f),k,jj>A2+X7p(6,k,jj)A2—X7p(7,k7jj)AQ)—
Xff(lvkajj —1)*(2*X7p(4,k,jj)*Xﬁp(7,k,jj)—2*X7p(5,k,jj)*Xﬁp(6,k,jj)
Y+x_ f(3,k,jj—1)*(2xx p(4,k,jj)*x_p(5,k,jj)+2xx_p(6,k,jj)*x p(7,k,
JJ))))*(2*X—p(4akaJJ)*X—f(17ka.” 71)+2*X—p(73k7JJ)*X—f(Qak’JJ 71)72*
x p(6,k,jj)*«x_f(3,k,jj—1))—2+x_p(5,k,jj)*((981«T_ tot{k}(3,1))/100—
z_p{jj —1}(4,k))—2x_p(6,k,jj)*((981*T_tot{k}(3,2))/100—z_p{jj
—1}(5,k))—2+x_p(7,k,jj)*((981«T_tot{k}(3,3))/100—z_p{jj —1}(6,k))

0,0,0,x_p(4,k,jj)/(x_p(4,k,jj) 2+x p(5,k,jj) 24+x_p(6,
k,ji)24x p(7.k,jj)72)7(1/2) x p(5,k,jj)/(xp(4,k,jj) 24x p(5.k, ]
) 24x p(6.k,jj) 24x p(7,k,jj)72)"(1/2) x_p(6,k,jj)/(x_p(4,k,jj) 2+
x_p(5,k,jj) 24x_p(6,k,jj)2+x p(7.k,jj)"2)"(1/2) x_p(7,k,jj)/(x_p
(4.k,jj) 24x_p(5,k, jj) 24x_p(6,k,jj)2+x p(7.k,jj)"2)"(1/2)

]
end
% observation test
Ml=obsv (F_hat ,H_hat); rMl=rank (M1);
if tM1~=7
index_not_obsv(length (index_not_obsv)+1)=k;
% more accurate method in "Nonlinear controllability and
observability"
end
% discretization
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153
154
155
156
157

158

159

160

161
162
163
164
165
166

167

168

169

173

174

175

176

178
179
180
181

182

183

184

185

186

Matlab code

Fd=(eye (7)+1/2%xF_hat+xTs)*inv (eye (7) —1/2%F_hat*Ts) ;

% Kalman gain

K0=P{jj ,k}+*H hat’sxinv (H hat«P{jj ,k}*H hat’+Rc);

PO=(eye (n)—KO0«H_hat)*P{jj ,k};

% T_predicted:

Tﬁp:[Xip(ﬁl kg )A2+Xfp(5 K, )A2_Xfp(6 K, )A2_Xfp(7 kg )A2
2#(x_p(5.,k,jj)*x p(6,k,jj)—=x p(4,k,jj)=x p(7.k,jj)) 2% (x_p(5,k
33 )#x p(7,k, jj)+x p(4,k,jj)*x_p(6,k,jj))

2#(x_p(5,k,jj)=x_p(6,k,jj)+x_p(4,k,jj)*x_p(7,k,jj))
X_p(4 7ka .]J )A27X—p(5 ,ka JJ )A2+X—p(6 ak, JJ )AQ*X—p(7 7ka .].] )A2 2*(X—p(6 ak
233 ) p(7.k,jj)—=x p(4,k,jj)*x p(5,k,jj))
2*(X7p(5 akv .].] )*Xﬁp(’?,k, .].] )—Xﬁp(4,k, .].] )*Xﬁp(G 7k7 JJ ))
2+ (x_p(6.,k,jj)*x p(7,k,jj)+x p(4,k,jj)=x_p(5.k,jj)) x_p(4.k,jj
)A2_Xfp(5 7k7 .].] )A2_Xfp(6 ’k7 J.] )A2+Xfp(7 7k’ JJ )A2];
% output equation
if jj==
z_p{jj}(: k)=
x_p(1:3,k,jj)
[0,—w_dot(3,k,jj)
w_dot(3,k,jj)
—w_dot(2,k, jj
x p(3.k,jj).xp(2,k,jj)
Xfp(?’ ,ka JJ ) ,0,—X7p(1 7ka .].] )
—x p(2,k,jj),x p(1,k,jj),0]=[[0,—x p(3.k,jj),

,0,7W7d0t(1,k,jj)
) 7W—d0t(1ak7jj) 30]*p—1(JJ ,:) ’+[Oa_

x p(2.k,jj)
X_p(?),k,JJ ) 70,7X_p(1 7k3jj )
—x_p(2,k,jj),x_p(1,k,jj),0*p_1(jj,:) "]+
R2+T_p)x*g_vec
(x_p(4,k,jj)2+x p(5,k,jj) 24x p(6.k,jj) 2+x p(7.k,jj
)72)7(1/2)

]

else
% being the RFs aligned the posture is fully described by
T tot
% Az (:,k)=R{jj ,k} '*(z pl{k,jj —1}(4:6)-T_ tot{k} ' «x{g})+acc
(:,k)+(T_tot{k}*R) ’*{g}, T tot=T_tot_old if not updated yet
% z_predicted vector
z_pv(1:3)=[% w=i"(i—1)_[R]*(W{jj —1}(1:3,k)+w(1:3,k))
T pxx_f(1:3,k,jj—1)+x_p(1:3,k,jj)
]
% a=i"(i—1)_ [R]*(i—1)"a_ (i—1)H{w }x{p}+{w}x({w}x{p}) in i
“{RF}
% T_tot is not updated yet, so it is referred to jj—1
z_pv(4:7)=]
T p’*(z_p{jj —1}(4:6,k)-T_tot{k} xg_vec)+[0,—w_dot(3,k
L33 w_dot(2 K, jj)
w_dot(3,k,jj),0,—w_dot(1,k,jj)
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Matlab code

—w_dot(2,k,jj),w_dot(1,k,jj),0]*p_1(jj,:) +[0,—
z_pv(3),z_pv(2)
z_pv(3),0,—z_pv(1l)
—z_pv(2) .,z PV(l) ,01%[[0, =z pv(3),z pv(2)
z_pv(3),0,—z_pv(l)
—zipv(2) z_pv(1) ,0]*p_1(jj ,:) ]+ (T_tot{k
}+«T_p) 'xg_vec
(x_p(4,k,jj) 2+x p(5,k,jj) 2+x p(6,k,jj) 24x p(7.k, j]
)"2)7(1/2)

]
2 p{ii ()= pv () ;
end
% measurement error
e(:,k)=Zo{jj}(:,k)—z_p{jj}(: ,k)+v_sens(: k);
% state update
X F(: 0k, 33)=x (5 k, §i)HKOke (k) ;
% quaternion normalization
x_f(4:7.%k,jj)=x_f£(4:7,k,jj)/(x_£(4:7 ,k,jj) *x_f(4:7,k,jj))
~(1/2);
% state covariance matrix update
P{jj ,k+1}=Fd*P0*Fd’+Qc;
% state prediction
x p(1:3,k+1,jj)=x_f(1:3,k,jj)+Ts*x[—1/tau(l)*x_ f(1,k,jj)
—1/tau(2)*xx_1£(2.,k,jj)
—1/tau(3)xx_f(3,k,jj)];
x_p(4:7,k+1,jj)=x_1£(4:7 k,jj)+Ts/2«[—x_£(5 .k, jj),—x_£(6,k,jj)
,—Xif('?,k,jj)
x_f(4,k,jj),—x_f(7,k,jj),x_f

(6.,k,jj)
x 0(7,k,jj),x_f(4,k,jj),—x_f
(5.k,jj)
_X—f(ﬁakajj ) ,Xif(t—),k,jj ) ,Xif(4
R R e (R R IR IC (ER
(5 T2+4x £(6.,k,jj)24x f(7,k,jj)"2)7(1/2);

[
,3d)
/, quaternion normalization
x p(4:7,k+1,jj)=<_p(4:7,k+1,jj)/(x p(4:7,k+1,jj) *x_p(4:7,k
+1,jj)) (1/2);%/norm (x_p(4:7 ,k+1));
% angular acceleration estimate
w_dot (:,k+1,jj)=1[0,0,0] ;%(x_p(1:3,k+1)—=x_p(1:3,k))/Ts;
% Euler angles conversion. T _ filtered:
T f{jj}=[x_1(4,k,jj)2+x_£(5,k,jj) 2—x_f(6,k,jj)2—x_f(7,k,jj
)72 25 (x_£(5,k, jj)ex_£(6,k,j)—x_£(4.k,jj)ex £(T,K,jj))  2x(x_f
(5.4, 33 )*x_£(7,k,jj)+x_£(4.k,]j)*x_£(6,k,jj))
2x(x_f(5,k,jj)«x_f(6,k,jj)+x_f(4,k,jj)*x_f(7,k,jj))
x_f(4,k,jj)2—x_f(5,k,jj) 2+x_f(6,k,jj)2—x_f(7,k,jj) 2 2x(x_f
(6’k7.].])*Xff('Yvkv.]J)_Xff(Zlvk’J.])*Xff(57k’JJ))
25 (x_£(5,k, i) ex_F(7,k, jj)=x_F(4,k,jj)x_£(6,k,jj))
(x 106k J o (70310 (40 11w (6 k0 01)) - x 1(4k,
2—x_f£(5,k,jj)"2—x _£(6.k,jj)"2+x _£(7 k,jj) 2];
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% Total rotation matrix update

T tot{k}=T tot{k}*T f{jj};

% TB 321 angle estimates

%

phi_est (jj ,k)=atan2(T_£{jj }(3,2) ,T_£{jj}(3,3));

theta est(jj,k)=atan2(—=T f{jj}(3,1),sin(phi_est(jj,k))«T £{jj
}(3,2)+cos (phi_est (jj ,k))+T (1] }(3,3));
226 psi_est (jj ,k)=atan2(—cos(phi_est(jj,k))*T_£{jj}(1,2)+sin(
phi_est(jj ,k))*«T _f{jj}(1,3),cos(phi_est(jj,k))*«T_£{jj}(2,2)—sin(
phi_est(jj k) +T_£{j] }(2.3))

N

NN NN
NN NN >
w N

N
N
I

227 % TB 312

228 %{

229 theta_est (jj ,k)=atan2 (T_f{jj }(3,1),T_f{jj}(3,3));%atan2(—T_f{
JiH3 1) sart (T F(J] }(1,1) 25T (1) H(2,1)72))

230 psi_est(jj ,k)=atan2 (T_f{jj}(1,2),T _{{jj}(2,2));%atan2(T f{{jj
F(2,1)  To{jj H(1,1));

231 phi_est(jj ,k)=asin(=T_f{jj}(3,2));%atan2(T_f{jj}(3,2),T f{jj
H(3.3));

232 %

233 % TB 132

o phi_est (jj K)=atan2(~T £{}j }(1,3) T £{jj }(1,1)):

235 theta est(jj ,k)=asin (T £{jj}(1,2));

e psi_est (jj ,k)=atan2(~T_{}j }(3.2) ,T_f{jj }(2,2))

237 %}

238 end

239 end

240|% performance evaluation
2411 k0=100; % discard the first kO samples in the performance evaluations
202 for jj=1:L

243 for ii=Il:n

244 RMSE z(ii,jj)=norm(Zo{jj }(ii ,k0+1:N-1)—z p{jj}(ii ,k0+1:N-1))/
sqrt (N—1-kO0) ;

245 end

246 end

247

248

219] for jj:1:L
250] figure

251 subplot (311), plot(tvec,phi_est(jj,:)*180/pi), grid on, title ([’\
phi”™ 7 ;num2str(jj), (t)’]), xlabel(’[s]’), ylabel(’[deg]’)

252 subplot (312), plot(tvec,theta_est(jj ,:)*180/pi), grid on, title (]
"\theta™ " ,num2str(jj), (t)’]), xlabel(’[s]’), ylabel(’[deg]’)

253 subplot (313), plot(tvec,psi_est(jj,:)*180/pi), grid on, title ([’\
psi”’ ,num2str(jj),’ (t)’]), xlabel(’[s]’), ylabel(’[deg]’)

254 end

256 W(%

257| for jj=1:L

25s] figure
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259 subplot (311), plot(tvec,x_f(1,1:N,jj)), grid on, title ([’'x_ 17",
num?2str(jj),’ (t)’])

260 subplot (312), plot(tvec,x_f(2,1:N,jj)), grid on, title ([’'x_ 27",
num2str (jj), (t)'])

261 subplot (313), plot(tvec,x_f(3,1:N,jj)), grid on, title ([’'x 377,

num2str(jj), (t)’])
262| end

263
264 for jj=1:L
265| figure

266 subplot (411), plot(tvec,x_f(4,1:N,jj)), grid on, title ([’'x 47",
num2str (jj), " (t)’])

267 subplot (412), plot(tvec,x_f(5,1:N,jj)), grid on, title ([’'x 5",
num?2str(jj), (t)])

268 subplot (413), plot(tvec,x_ f(6,1:N,jj)), grid on, title ([’'x 677,
num?2str (jj), (t)"])

269 subplot (414), plot(tvec,x_f(7,1:N,jj)), grid on, title ([’'x_ 77,

num2str(jj),’ (t)’])
end

N
3

B.4 Figures Generation

%figures

Y% still

close all

for jj=1:L

5| figure

subplot (311), plot(tvec,phi_est(jj,:)*180/pi), grid on, title ([’\
phi™’ ;num2str(jj), (t)’]), xlabel(’[s]’), ylabel(’[deg]’), hold on
subplot (312), plot(tvec,theta_est(jj ,:)*180/pi), grid on, title (]
"\theta™ ' ,num2str(jj), (t)’]), xlabel(’[s]’), ylabel(’[deg]’), hold
on

subplot (313), plot(tvec,psi_est(jj,:)*180/pi), grid on, title ([’\
psi”’  num2str(jj),’ (t)’]), xlabel(’[s]’), ylabel(’[deg]’),hold on

AW N

-~

o]

ol end
1| figure (1)
11 subplot (311) ,plot (tvec,phi(2,1:N)x180/pi), legend(’phi {est}’,’

phi’)

12 subplot (312) ,plot (tvec ,theta (2,1:N)*180/pi), legend( 'theta_{est}’
, theta )

13 subplot (313) ,plot (tvec,psi(2,1:N)x180/pi), legend(’psi_{est}’,’
psi’)

15| figure (2)
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16 subplot (311) ,plot (tvec,—90%xones(size (tvec))), legend (’phi_{est}’,
"phi’)

17 subplot (312) ,plot (tvec,theta (5,1:N)*180/pi), legend (’'theta_{est}’
, theta )

18 subplot (313) ,plot (tvec,psi(5,1:N)x180/pi), legend(’psi_ {est}’,’
psi’)

19

20| figure (3)

21 subplot (311) ,plot (tvec ,phi(5,1:N)*180/pi), legend ( 'phi_ {est}’,’
phi’)

22 subplot (312) ,plot (tvec,theta (7,1:N)«180/pi), legend( ’theta {est}’
, ‘theta’)

23 subplot (313) ,plot (tvec ,psi(7,1:N)x180/pi), legend( 'psi_{est}’,’
psi’)

5|%% pronation/supination of the forearm
26| close all

2
28| for jj=1:L

20| figure

30 subplot (311), plot(tvec,phi_est(jj ,:)*180/pi), grid on, title ([ "\
phi™’ ;num2str(jj), (t)’]), xlabel(’[s]’), ylabel(’[deg]’), hold on

31 subplot (312), plot(tvec,theta_est(jj,:)*180/pi), grid on, title (]
"Ntheta™’ jnum2str(jj),’ (t)’]), xlabel(’[s]’), ylabel(’[deg] ), hold
on

%}

subplot (313), plot(tvec,psi_est(jj ,:)*180/pi), grid on, title ([ "\
psi”’  num2str(jj),’ (t)’]), xlabel(’[s]’), ylabel(’[deg]’),hold on

33/ end

31| figure (1)

35 subplot (311) ,plot (tvec ,phi(2,1:N)x180/pi), legend( 'phi_ {est}’,’
phi’)

36 subplot (312) ,plot (tvec,theta(2,1:N)%180/pi), legend(’theta {est}’
, "theta’)

37 subplot (313) ,plot (tvec ,psi(2,1:N)x180/pi), legend(’'psi_{est}’,’
psi’)

30| figure (2)

10 subplot (311) ,plot (tvec,—90*xones(size (tvec))), legend (’phi_{est}’,
7phi7)

a1 subplot (312) ,plot (tvec ,theta (5,1:N)x180/pi), legend (’theta {est}’
, ‘theta 7)

42 subplot (313) ,plot (tvec,psi(5,1:N)x180/pi), legend(’psi {est}’,’
psi’)

43

u| figure (3)

a5 subplot (311) ,plot (tvec ,phi(5,1:N)%180/pi), legend(’'phi_{est}’,’
phi’)

46 subplot (312) ,plot (tvec,—psi(7,1:N)x180/pi), legend(’theta {est}’,
"theta )
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subplot (313) ,plot (tvec,theta (7,1:N)*180/pi), legend(’'psi_{est}’,’
psi’)

o|%% flexion/extension of the forearm

close all

for jj=1:L

figure
subplot (311), plot(tvec,phi_est(jj ,:)*180/pi), grid on, title (["\
phi™’ jnum2str(jj),’ (t)’]), xlabel(’[s]’), ylabel(’[deg]’), hold on
subplot (312), plot(tvec,theta_est(jj ,:)*180/pi), grid on, title (]
"\theta™’ ;num2str(jj),’(t)’]), xlabel(’[s]’), ylabel(’[deg] ), hold
on
subplot (313), plot(tvec,psi_est(jj ,:)*180/pi), grid on, title (["\
psi” 7 num2str(jj), (t)’]), xlabel(’[s]’), ylabel(’[deg]’),hold on

7| end

figure (1)
subplot (311) ,plot (tvec ,phi(2,1:N)%180/pi), legend( ’'phi_{est}’,’
phi’)
subplot (312) ,plot (tvec,theta (2,1:N)x180/pi), legend(’theta {est}’
, ‘theta )
subplot (313) ,plot (tvec ,psi(2,1:N)x180/pi), legend( 'psi_{est}’,’
psi’)

figure (2)
subplot (311) ,plot (tvec,—90%ones (size (tvec))), legend(’'phi {est}’,
"phi’)
subplot (312) ,plot (tvec,theta (5,1:N)*180/pi), legend( 'theta {est}’
, "theta’)
subplot (313) ,plot (tvec,psi(5,1:N)x180/pi), legend(’psi_ {est}’,’
psi’)

figure (3)
subplot (311) ,plot (tvec ,psi(5,1:N)x180/pi), legend(’'phi_{est}’,’
phi’)
subplot (312) ,plot (tvec,theta (5,1:N)x180/pi), legend(’theta {est}’
, ‘theta )
subplot (313) ,plot (tvec ,phi(5,1:N)%180/pi), legend(’'psi_{est}’,’
psi’)

3|%% rotation of the upper arm

close all

7| for jj=1:L

figure
subplot (311), plot(tvec,phi_est(jj ,:)*180/pi), grid on, title (["\
phi™’ jnum2str(jj),’ (t)’]), xlabel(’[s]’), ylabel(’[deg]’), hold on
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subplot (312), plot(tvec,theta_est(jj ,:)*180/pi), grid on, title (]
"Ntheta™ " ,num2str(jj), (t)’]), xlabel(’[s]’), ylabel(’[deg]’),hold
on

subplot (313), plot(tvec,psi_est(jj,:)*180/pi), grid on, title (["\
psi” 7 num2str(jj), (t)’]), xlabel(’[s]’), ylabel(’[deg]’),hold on

2| end

figure (1)
subplot (311) ,plot (tvec ,phi(2,1:N)x180/pi), legend( ’'phi_{est}’,’
phi’”)
subplot (312) ,plot (tvec,theta(2,1:N)x180/pi), legend(’theta {est}’
, ‘theta )
subplot (313) ,plot (tvec ,psi(2,1:N)x180/pi), legend(’'psi_{est}’,’
psi’)

figure (2)
subplot (311) ,plot (tvec,—90%ones (size (tvec))), legend(’phi {est}’,
"phi’)
subplot (312) ,plot (tvec ,theta (4,1:N)x180/pi), legend(’theta_{est}’
, theta )
subplot (313) ,plot (tvec,psi(4,1:N)x180/pi), legend(’psi {est}’,’
psi’)

figure (3)
subplot (311) ,plot (tvec ,phi(4,1:N)%180/pi), legend(’'phi_{est}’,’
phi’”)
subplot (312) ,plot (tvec,theta(4,1:N)%180/pi), legend(’theta {est}’
, ‘theta’)
subplot (313) ,plot (tvec ,psi(4,1:N)x180/pi), legend(’'psi_{est}’,’
psi’)

%% flexion /extension of the upper arm

close all

for jj=1:L

figure
subplot (311), plot(tvec,phi_est(jj ,:)*180/pi), grid on, title ([ "\
phi™’ ;num2str(jj), (t)’]), xlabel(’[s]’), ylabel(’[deg]’), hold on
subplot (312), plot(tvec,theta_est(jj ,:)*180/pi), grid on, title (]
"Ntheta™’ jnum2str(jj),’ (t)’]), xlabel(’[s]’), ylabel(’[deg] ), hold
on
subplot (313), plot(tvec,psi_est(jj,:)=*180/pi), grid on, title ([ "\
psi”’  num2str(jj),’ (t)’]), xlabel(’[s]’), ylabel(’[deg]’),hold on

end

figure (1)
subplot (311) ,plot (tvec ,phi(2,1:N)%180/pi), legend(’'phi_ {est}’,’
phi’)
subplot (312) ,plot (tvec,theta(2,1:N)%180/pi), legend(’theta {est}’
, "theta’)

108




Matlab code

11 subplot (313) ,plot (tvec ,psi(2,1:N)x180/pi), legend(’'psi_{est}’,’
psi’)

112
ns| figure (2)

114 subplot (311) ,plot (tvec,—90%ones (size (tvec))), legend(’phi {est}’,
"phi’)

115 subplot (312) ,plot (tvec,psi(3,1:N)x180/pi), legend( 'theta_{est}’,’
theta )

116 subplot (313) ,plot (tvec,theta (3 ,1:N)x180/pi), legend( 'psi_ {est}’,’
psi’)

117

ns| figure (3)

119 subplot (311) ,plot (tvec ,phi(7,1:N)x180/pi), legend( 'phi_{est}’,’
phi’)

120 subplot (312) ,plot (tvec,theta (7,1:N)*180/pi), legend (’'theta {est}’
, ‘theta )

121 subplot (313) ,plot (tvec ,psi(7,1:N)x180/pi), legend('psi_{est}’,’
psi’)

122

123|%% elevation/depression of the clavicle
124
25| close all

27| for jj=1:L
128| figure

129 subplot (311), plot(tvec,phi_est(jj ,:)*180/pi), grid on, title ([ "\
phi”™ 7’ ;num2str(jj), (t)’]), xlabel(’[s]’), ylabel(’[deg]’), hold on

130 subplot (312), plot(tvec,theta_est(jj ,:)*180/pi), grid on, title (]
"Ntheta™’ jnum2str(jj),’ (t)’]), xlabel(’[s]’), ylabel(’[deg]’), hold
on

131 subplot (313), plot(tvec,psi_est(jj,:)*180/pi), grid on, title (["\
psi”’  num2str(jj),’ (t)’]), xlabel(’[s]’), ylabel(’[deg]’),hold on

132| end

133 figure (1)

134 subplot (311) ,plot (tvec ,phi(2,1:N)x180/pi), legend (’phi {est}’,’
phi’)

135 subplot (312) ,plot (tvec,psi(2,1:N)x180/pi), legend(’theta {est}’,’
theta )

136 subplot (313) ,plot (tvec,theta (2,1:N)*180/pi), legend( 'psi_{est}’,’
psi’)

137

33| figure (2)

139 subplot (311) ,plot (tvec,—90%ones (size (tvec))), legend(’phi {est}’,
"phi’)

140 subplot (312) ,plot (tvec ,theta (5,1:N)x180/pi), legend (’theta_{est}’
, theta )

141 subplot (313) ,plot (tvec,psi(5,1:N)x180/pi), legend(’psi_ {est}’,’
psi’)
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1| figure (3)

144 subplot (311) ,plot (tvec ,phi(7,1:N)%180/pi), legend(’'phi_{est}’,’
phi’)

145 subplot (312) ,plot (tvec,theta (7,1:N)*180/pi), legend (’'theta {est}’
, ‘theta )

146 subplot (313) ,plot (tvec ,psi(7,1:N)x180/pi), legend('psi_{est}’,’
psi’)

147

18| %% protraction/retraction of the clavicle
149
150l close all
151
52| for jj=1:L

153 figure

154 subplot (311), plot(tvec,phi_est(jj ,:)*180/pi), grid on, title (["\
phi™’ ;num2str(jj), (t)’]), xlabel(’[s]’), ylabel(’[deg]’), hold on

155 subplot (312), plot(tvec,theta_est(jj,:)*180/pi), grid on, title (]
"Ntheta™’ jnum2str(jj),’ (t)’]), xlabel(’[s]’), ylabel(’[deg] ), hold
on

156 subplot (313), plot(tvec,psi_est(jj,:)*180/pi), grid on, title (["\
psi” 7 num2str(jj), (t)’]), xlabel(’[s]’), ylabel(’[deg]’),hold on

157 end

155 figure (1)

159 subplot (311) ,plot (tvec ,psi(1,1:N)x180/pi), legend( ’'phi_{est}’,’
phi’”)

160 subplot (312) ,plot (tvec,theta(1,1:N)x180/pi), legend(’'theta {est}’
, ‘theta’)

161 subplot (313) ,plot (tvec ,phi(1,1:N)%180/pi), legend(’'psi_{est}’,’
psi’)

162

63| figure (2)

164 subplot (311) ,plot (tvec,—90%ones (size (tvec))), legend(’phi {est}’,
"phi’)

165 subplot (312) ,plot (tvec ,theta (5,1:N)*180/pi), legend( ’theta_{est}’
, ‘theta’)

166 subplot (313) ,plot (tvec ,psi(5,1:N)x180/pi), legend( 'psi_ {est}’,’
psi’)

167

16s| figure (3)

169 subplot (311) ,plot (tvec ,phi(7,1:N)*180/pi), legend( ’'phi_{est}’,’
phi’)

170 subplot (312) ,plot (tvec,theta (7,1:N)*180/pi), legend (’'theta {est}’
, ‘theta )

171 subplot (313) ,plot (tvec ,psi(7,1:N)x180/pi), legend(’'psi_{est}’,’
psi’)
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