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Abstract

This research presents a deep learning-based approach for infant pain assessment
and it was conducted in LINKS Foundation in collaboration with the Neonatal
Unit of AO Ordine Mauriziano Hospital and the Pediatric Emergency Department
of Regina Margherita Hospital, all based in Turin. Since young children are unable
to communicate verbally the experience of pain, accurate pain assessment using
validated tools is crucial to determine the most effective pain management strategies.
Traditional pain assessment relies on the use of pain scales that consider behavioural,
physiological, and contextual indicators, but none of these scales has yet emerged
as the gold standard. The use of these tools is also limited by the lack of objectivity
and repeatability of the assessment, which depends on the experience of healthcare
professionals and the simultaneous monitoring of numerous parameters. For these
reasons, automated pain assessment systems are highly desirable in clinical practice
for more efficient recognition and management of pain. The aim of this thesis is
to propose an objective and contactless computer vision approach for infant pain
evaluation based on facial expression analysis. Video data related to two distinct
infant populations are used: newborns undergoing heel stick procedures for blood
sampling, and children aged 3-36 months admitted to the Pediatric Emergency
Department with acute pain. Videos are accompanied by the corresponding pain
scores assigned by healthcare professionals using traditional pain scales. Two
separate datasets are created by extracting frames from the video recordings and
labelling each frame based on the assigned score. Each dataset is used to train a
specific convolutional neural network for binary pain classification. For both infant
populations, the trained models achieve high accuracy in classifying images into pain
or nonpain categories. Moreover, the application of a visual explanation technique
shows that the networks’ decisions are based on the facial regions most closely
associated to the experience of pain. In conclusion, our promising findings pave
the way for the development of an automated system that integrates, standardises,
and improves human pain evaluation.
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Chapter 1

Introduction

1.1 Thesis Purpose
This thesis investigates the development of deep learning techniques to automatically
assess pain in newborns and young children. The aim is to enhance the objectivity
and convenience of pain assessment with a contactless computer vision approach
that analyses infant facial expressions.

1.2 Pain Assessment

1.2.1 Physiology of Pain
Pain is more than just an unpleasant sensation, it is a complex sensory system
that plays a crucial role in our interaction with the external environment, allowing
us to avoid potential dangers and injuries. When the nervous system detects
stimuli capable of damaging tissues, it triggers immediate reflex reactions. Between
the damaging stimulus at the tissue level and the subjective experience of pain
various chemical and electrical events occur, which can be divided into four phases:
transduction, transmission, modulation and perception [1], as shown in Figure 1.1.
In the first phase the nerve endings called nociceptors, which are present in nearly
every tissue, respond to various forms of energy, activating when the stimulus
intensity exceeds a certain threshold. In the transmission phase the information
detected by the nociceptors is transported in the form of bio-electric signals to the
spinal cord and then reach the cerebral cortex. Modulation refers to the control of
pain transmission by neurological activity, influencing the intensity and quality of
pain perception. Finally, perception is the subjective experience of pain, involving
various brain structures and emotional factors that can impact the perception of
pain [1].
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Figure 1.1: Pain pathway. Source [2]

Consequently, pain is not reducible to the simple conduction of the stimulus but is
the result of a complex interaction between different structures and phenomena that
continually modulate the amplitude and quality of perception [1]. Understanding
the complexity of pain perception is crucial, not only for managing its impact on
individuals, but also for ensuring its proper assessment and treatment in healthcare
settings. This is underscored by the Italian Law 38/2010 [3], which mandates that
the characteristics of the pain detected and its development during hospitalisation,
as well as the antalgic technique and drugs used, their dosages and the result
achieved, must be recorded in each medical record. Hence, pain should be recorded
as the fifth vital parameter along with heart rate, respiratory rate, blood pressure
and body temperature.

1.2.2 Pain in Infants
In 1979 the International Association for the Study of Pain (IASP) defined the
physical pain as "An unpleasant sensory and emotional experience associated with
actual or potential tissue damage or described in terms of such damage" [4]. This
definition emphasises the "bipolar" nature of pain, consisting of both physiological
and psychological variables. However, it aligns more closely with adult experiences,
focusing on emotional and sensory aspects that are difficult to evaluate in non-verbal
infants. This raises the question of whether such a definition adequately captures
the pain experience in early childhood. To address this concern, the IASP Com-
mittee on Taxonomy later added this note: "The inability to communicate verbally
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does not negate the possibility that an individual is experiencing pain and is in need
of appropriate pain-relieving treatment" [5]. Only recently, the IASP introduced a
revised definition of pain as "An unpleasant sensory and emotional experience associ-
ated with, or resembling that associated with, actual or potential tissue damage" [6].

However, until the 1980s, researchers largely believed that newborn babies could
not feel pain due to the perceived immaturity of their central and peripheral nervous
systems [7]. This outdated belief have heavily conditioned the approach to children
with painful symptoms, both in hospitals and at home. As a result, pain in infants,
especially in pre-term children, has often been underdiagnosed and consequently
undertreated [8]. On the other hand, recent research indicates that newborns,
including premature ones, feel pain and remember pain experiences [9]. In fact,
current scientific understanding indicates that, by the 24th week of gestation, a fetus
possesses all the anatomical and neurochemical features required for pain perception.
The nociceptive system further develops after birth, reaching maturity around
the first year of life. The antinociceptive system, responsible for pain modulation,
matures more slowly. Therefore, in response to an equivalent painful stimulus,
younger patients experience a greater perception of pain due to reduced central and
peripheral inhibition [1]. Additionally, studies have revealed that repeated exposure
to pain during early nervous system development can result in various negative
effects on physiology, cognition, behavior, hormones, and the endocrine system,
both in the short and long term [10] [11] [12]. It follows that untreated pain exposes
the infant to a high risk of complications, so the assessment of pain is crucial,
especially in order to identify possible interventions for its prevention and treatment.

Pain in infants can be categorized into three main types: acute procedural, acute
prolonged (including post-operative pain) and chronic pain [13]. Acute procedural
pain refers to short-term pain caused by a painful stimulus, such as immunization,
that quickly dissipates. Acute prolonged pain follows a surgical procedure and
continues for a longer period. In contrast, chronic pain is a recurring pain experience
that is not associated with a specific event and has a significantly longer duration
than prolonged acute pain. Non-pharmacological analgesia techniques before and
during the performance of a painful procedure have proven to be effective in
containing the newborn’s pain, making it possible to limit the use of analgesic
drugs. These techniques include containment facilitated through the use of the
operators’ hands (holding) or through the use of sheets or blankets (wrapping) that
limit postural instability and attenuate physiological and behavioural responses
to pain. The administration of sweetened substances (such as sucrose, glucose or
breast milk) and the skin-to-skin contact are also effective in reducing the painful
sensation [14].
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1.2.3 Traditional Methods for Evaluation of Pain in Infants
Due to the inability of the newborn to express pain verbally, the quantitative as-
sessment of neonatal pain is extremely difficult and relies mainly on the evaluation
of multiple parameters. Over the years, several pain assessment scales have been
validated to diagnose, quantify and monitor neonatal pain across different newborn
populations (term, preterm), as well as for different types of pain such as procedural
pain and postoperative pain.

The algometric scales can be divided into two types: unidimensional scales, which
focus on either behavioural or physiological parameters, and multidimensional scales,
which consider both behavioural and physiological aspects. Behavioural parameters
include facial expression, limb movement, and vocalization, while physiological
measurements include heart rate, respiratory rate, oxygen saturation, and blood
pressure. The multidimensional approach enhances the sensitivity and specificity
of the scales, contributing to a more accurate understanding of the pain experience
[15]. However, the current trend is to attribute less importance to physiological
indicators in favour of behavioural ones and, in particular, facial expressions, which
are more accurate in distinguishing painful situations from non-painful. Behavioral
indicators appear to be more significant because, from an evolutionary perspective,
they are specifically designed to capture the caregiver’s attention [15]. The facial
expressions include brow bulge, eye squeeze, nasolabial furrow and a vertically
stretch mouth with a lowered jaw. Widely used monodimensional scales include
the Neonatal Facial Coding System (NFCS) [16] [17], the Echelle Douleur Inconfort
Nouveau-Né (EDIN) [18], and the Face, Legs, Activity, Cry, Consolability (FLACC)
scale [19]. Among multidimensional scales, frequently used ones are the Premature
Infant Pain Profile (PIPP) [20], Douleur Aiguë du Nouveau-né (DAN) [21] and
Neonatal Infant Pain Scale (NIPS) [22]. The next paragraphs focus specifically on
two algometric scales: the DAN scale and the FLACC scale as they are the pain
assessment tools used by healthcare professionals in the context of this study.

DAN Scale

The DAN scale (Table 1.1), developed in 1996, was validated through 42 venous or
heel stick samples for glucose measurement in newborns with respiratory autonomy
[21]. This scale allows assigning a score based on three factors: facial response,
limb movements, and vocal expression, each scored from 0 to 4, 0 to 3, and 0 to
3, respectively, as represented in Table 1.1. Thus, the total score ranges from 0
to 10, a rating greater than or equal to 3 is associated with an experience of pain.
This scale does not require instrumentation and relies solely on clinical observation
in the 30 seconds following the painful procedure. Specifically focusing on the
assessment of facial expressions, if the newborn is calm, a score of 0 is assigned,
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while if the newborn whines, a score of 1 is assigned. For higher scores, three actions
out of nine in NFCS (Neonatal Facial Coding System) [16] [17] are considered: eye
squeezing, brow bulging, and accentuation of the nasolabial furrow. Depending
on the intensity of one or more of these parameters, the painful expression can be
classified as mild (score 2), moderate (score 3), or severe (score 4) [21].

Facial expression Score
Calm 0
Whines with half-cycle closing and soft opening eyes 1
Determining the intensity of one or several of the following signs:
contraction of the eyelids, frown, or enlargement of nasolabial furrow
- Light, intermittent, with return to calm (<1/3 P) 2
- Moderate (1/3 - 2/3 P) 3
- Very marked, persistent (>2/3 P) 4
Limb movements
Calm or gentle movements 0
Determining the intensity of one or several of the following:
pedaling, spacing of the toes and lower limbs, and stiff raised,
flailing arms, withdrawal reaction
- Light, intermittent, with return to calm (<1/3 P) 1
- Moderate (1/3 - 2/3 P) 2
- Very marked, persistent (>2/3 P) 3
Vocal expression of pain
No complaining 0
Moaning briefly 1
Intermittent cries 2
Long-lasting cry, continuous scream 3
Total

Table 1.1: DAN Scale. P: period of observation. Source: [21]

FLACC Scale

The FLACC scale [19] (Table 1.2) is a combination of 5 behaviors: Face, Legs,
Activity, Cry and Consolability, that are considered indicative of pain and can
be detected and graded by an observer. Each behavior is assigned a score on a
scale of 0 to 2, leading to a pain intensity score ranging from 0 to 10. The initial
usage guidelines advised observing the child for 1 to 5 minutes and correlating
the observed behaviors with those outlined in the scale for each item. Despite
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the Ministry of Health [1] recommending its use in assessing pain in individuals
under the age of 3, including the neonatal period, its validation was conducted on
a sample of 89 children aged between 2 months and 7 years undergoing various
surgical procedures [19].

Category
Scoring

0 1 2

Face No particular ex-
pression or smile

Occasional gri-
mace

Frequent to con-
stant quivering
chin, clenched jaw

Legs Normal position
or relaxed

Uneasy, restless,
tense

Kicking or legs
drawn up

Activity Lying quietly,
normal position
moves easily

Squirming, shift-
ing, back and
forth, tense

Arched, rigid or
jerking

Cry No cry (awake or
asleep)

Moans or whim-
pers; occasional
complaint

Crying steadily,
screams, sobs, fre-
quent complaints

Consolability Content, relaxed Reassured by
touching, hugging
or being talked to,
distractible

Difficult to con-
sole or comfort

Table 1.2: FLACC scale. Source: [19]

1.2.4 Importance of Automatic Infant Pain Assessment
based on Facial Expression

Despite the usefulness of the traditional algometric scales, their actual application
in clinical practice is limited. No scale has been recognised as the gold standard,
and there are no clear indications on which is the best to use [15]. The use of pain
scales is also limited by the poor objectivity and repeatability of the assessment,
which are strictly dependent on the sensitivity and experience of the healthcare
professionals, complicated by the simultaneously monitoring of multiple parameters.
A recent survey of Italian emergency departments [23] revealed positive progress in
pain measurement, with increased utilisation of algometric scales. However, the
study also indicates that achieving optimal pain management remains a challenge
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in these settings, necessitating further efforts for improvement. Therefore, the
implementation of new methods with easy clinical applicability that allow for an
objective and repeatable assessment of pain in infants is highly desirable. A recent
review [24] highlights the importance of developing automated face-based pain
detection systems for infants, emphasizing the gap between computational methods
developed for automated pain assessment and their real-time bedside application.

Facial expressions are one of the most important indicators of pain in people
with limited verbal communication, such as infants. Moreover, in the case of
newborns undergoing painful procedures, containment methods (wrapping and use
of pacifier) are typically employed, making it challenging to analyse other factors,
such as vocal expression or body movements. By concentrating exclusively on facial
expressions, automatic pain detection becomes feasible, aligning with containment
methods while remaining contactless and non-intrusive, in order to avoid potential
complications linked to sensors directly placed on infants’ skin, such as skin damage
or an elevated risk of infection transmission.

Starting from previous works of [25] [26], this thesis aims to propose an ap-
proach to assess pain in infants using facial expression analysis and deep learning
techniques. This approach will be fundamental to developing a more convenient
and objective system for automatic pain assessment in infants.

The project has been developed in LINKS Foundation, a research center based in
Turin, in collaboration with the Neonatal Unit of AO Ordine Mauriziano Hospital
and the Pediatric Emergency Department of Regina Margherita Hospital. Every
decision made in this work has been agreed upon with healthcare professionals to
ensure a multidisciplinary view of the problem.

1.3 Thesis Overview
The following Chapter describes existing datasets with pain score annotations and
various techniques used in the literature for automatic pain assessment, including a
Section outlining the state of the art. Chapter 3 provides a theoretical framework
for the thesis, with a specific focus on deep learning, convolutional neural networks,
and explainable artificial intelligence methods. Chapter 4 describes two datasets
under study in this thesis, including infant video recordings with expert pain
annotations and a detailed explanation of the proposed approach for binary pain
classification using deep learning models. Later in Chapter 5, the experimental
results are presented and discussed. Finally, Chapter 6 presents the conclusions of
the thesis and identifies potential avenues for further improvement.
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Chapter 2

Literature Review

This Chapter examines facial pain expressions in infants, first exploring their nature
and importance in assessing pain. It then reviews existing neonatal datasets anno-
tated with pain scores and various techniques used in the literature for automated
pain assessment in infants, providing a comprehensive analysis of the most relevant
methods and approaches.

2.1 Infant Facial Expressions of Pain
Among the non-verbal ways to communicate emotional state, it is important to
consider face and gaze. Indeed, facial expressions can be considered a spontaneous,
immediate and involuntary response to the emotions felt by the subject. According
to [27], facial expression are a primary and perhaps the most consistent cue when
assessing pain in children, even above cry. Charles Darwin was the first to use a
scientific approach to study the correlation between facial movements and emotional
experience [27], but it was not until the 1970s that the main techniques for detecting
and analysing facial expressions emerged.

In 1977, Ekman and Frisen, based on the measurement studies of the actions of
the facial musculature of Hjortsjo [28], developed the Facial Action Coding System
(FACS) [29]. In addition, Ekman was the first to propose that these expressions
are innate and reflexive, meaning that even neonates can use them involuntarily to
capture attention. FACS is a system that describes the movement of facial muscles
and how each muscle acts in visibly changing the configuration of the face. Each
facial movement is the result of the action of an exact number of muscles that
contract or relax synergistically. Each individual detectable movement, given by
the contraction or relaxation of one or more muscles, is described by Action Units
(AUs), which make it possible to encode any facial expression and analyse the
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different emotional states. The coding manual explains specifically interpretation
and meaning of each individual AU and also classifies a total of 44 movements [27].

The challenges associated with the use of the FACS has led to the development
of other coding systems tailored specifically for examining pain in children [27].
These facial coding systems are:

• MAX (Maximally Discriminative Facial Movement Coding System), that
analyses three different anatomical areas (forehead and eyebrows, eyes and
nose, and mouth and chin) to estimate various emotions, including pain [30].

• NFCS (Neonatal Facial Coding System), that includes 10 facial actions associ-
ated with pain and derived from the FACS [16].

• CFCS (Child Facial Coding System), that focuses on 13 facial actions and
it derived from both the FACS and NFCS to identify pain in toddlers and
school-age children [31].

In 2003, Oster [33] proposed a FACS adaptation for infants (Baby FACS), that
identifies anatomical variation in the facial structures of children. Baby FACS
includes an additional action unit in the brow area, along with adjustments guided
by the difference in facial morphology and dynamics between adults and infants.
Later, in 2008, Schiavenato [27] hypothesised that newborns have a Primal Face of
Pain (PFP), an instinctive, innate and universal expression that allows the child
to communicate stressful situations such as pain. This expression include mouth
opening, brows furrowing and eyes closing. The PFP serves as the foundation for
recognising pain in newborns, unaffected by social factors that may influence painful

Figure 2.1: Primal face of pain, involving brow bulge, eye squeeze, and a horizon-
tally stretched open mouth with deepening of the nasolabial furrow. Source: [32]

9
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expressions through the control and alteration of specific movements. Newborns
faithfully display the PFP to communicate pain, whereas adults tend to modify
expressions based on their experiences and the environment in which they were
raised. Thus, Schiavenato highlights that it is no longer suitable to reference the
PFP in older children aged over 6 [27].

Despite the existence of different pain coding models of facial expressions,
they often evaluate highly similar, and frequently identical, parameters. This
phenomenon arises from the universal nature of emotional communication, as
humans possess an innate understanding of micro facial expressions. The infant
pain expression (Figure 2.1) is always associated with eye squeeze, brow bulge, and
a horizontally stretched open mouth with deepening of the nasolabial furrow [27].

2.2 Existing Datasets with Pain Score Annota-
tions

According to a recent review [24], there is a limited number of datasets for facial
expression analysis of pain in newborns. These databases are extensively used in
the academic scientific environment; however, they have certain limitations. These
include a restricted quantity of images, a representation of a single ethnic group,
limited confidence due to insufficient explanations regarding ethics committee
approval, and a predominant focus on a specific clinical population, predominantly
term newborns, not allowing studies with critically ill and preterm newborns [24].
Several databases have a limited number of newborns, limited types of pain stimuli
that differ greatly from painful clinical procedures [34] or they have not collected
the data under different levels of pain [35]. Despite their limitations, these datasets
offer valuable contributions to the field of research. This Section provides brief
descriptions of the publicly available datasets specifically focused on neonatal pain,
with a summarised overview presented in Table 2.1.

iCOPE

The Infant COPE (Classification Of Pain Expressions) database [36] [37] [38] [39]
contains a total of 204 images of 26 Caucasian neonates (13 boys and 13 girls)
ranging in age from 18 hours to 3 days. The facial expressions of the infants were
photographed in one session while the neonates were experiencing four distinct
stimuli in the following sequence:

• Rest/cry: after moving the neonates to a new crib, they were swaddled and
their behavior (crying or resting) was documented at the time of each picture.

10
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• Air stimulus: a small amount of air from a squeezable plastic camera lens
cleaner was directed towards the newborns’ nose.

• Friction: a cotton wool soaked in alcohol was rubbed on the outer side of the
newborns’ heel.

• Pain: the external lateral surface of the newborns’ heel was punctured for
blood collection.

The photographs taken after the series of the first three stress-inducing stimuli were
classified as nonpain, while the photographs corresponding to the heel puncture
was classified as pain. The iCOPE dataset presents a unique challenge due to the
presence of crying images caused by both pain and non-painful stimuli, such as
discomfort or frustration. Figures 2.2, 2.3 show some example images of iCOPE
dataset.

(a) Rest (b) Air (c) Cry (d) Friction (e) Friction

Figure 2.2: Examples of iCOPE images labelled as nonpain

(a) Pain (b) Pain

Figure 2.3: Examples of iCOPE images labelled as pain

iCOPEVid

The Infant Cope Video dataset (iCOPEVid) [40] expands the data collection of
iCOPE and it contains 234 videos (20 seconds/video) obtained following the same
procedures. Video images were collected from 49 newborns (26 boys and 23 girls)
aged between 34 to 70 hours. Ethnicity was distributed as 73 Caucasian, 5 African
and 1 Asian.
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NPAD

Zamzmi et al. [41] collected data of 40 neonates (approximately 50 percent male and
50 percent female), aged between 32 and 40 weeks of gestational age (GA), within
the NICU environment. They have different ethnicity: 13 White, 8 Caucasian, 6
African-American and 4 Asian. Among them, 31 neonates were recorded undergoing
procedural pain (routine heel lancing and immunization), while the remaining 9
undergoing postoperative pain, for example, due to a gastronomy tube procedure.
In addition to video recordings capturing the neonate’s face, head, and body, as
well as audio signals, vital sign readings were collected. For procedural pain the
score are assigned based on the NIPS scale [22], categorising pain into three labels:
no pain (score 0-2), moderate pain (3-4), and severe pain (>4). While for the post
operative pain, the N-PASS scale [42] was used, providing five emotional states,
that are deep sedation, light sedation, normal, mild pain, and severe pain. This
dataset is highly representative of the real-world condition as it was obtained during
standard clinical procedures in a typical clinical setting.

APN-db

The Acute Pain in Neonates (APN-db) database [43] contains more than 200 videos
of infants undergoing different painful and painless procedures. It is divided in
two parts: the vaccination pain partition and the NICU partition. In the first
partition, 112 infants, aged between 0 and 6 months, were recorded during different
types of vaccines via intramuscular injection. While in the Neonatal Intensive Care
Unit partition, a total of 146 procedures involving 101 individual participants (GA
26-41) were collected. The videos were annotated frame by frame with the Neonatal
Face and Limb Acute Pain Scale (NFLAPS), which integrates facial expression
parameters from the NFCS scale [16] [17] with limb movement parameters (arm
and leg movements) from the NIPS scale [22]. This scale assesses pain intensity on
a scale ranging from 0 to 11.

FENP

The facial expression of neonatal pain (FENP) database [35] is composed by 11000
images of 106 different Chinese neonates, aged between 2 days and 4 weeks. The
facial expression images encompass four distinct categories: calmness expression,
crying expression, mild pain expression and severe pain expression, each comprising
2750 neonatal facial expression images. For the pain emotion category, videos were
collected when neonates underwent intramuscular injections or blood sampling on
their heels. The crying emotion category includes scenes of changing the baby crib
and other crying situations not induced by pain (such as hunger or fear). The
calmness category comprises videos of sleeping or calm neonates. To classify the
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neonatal pain images into two pain degrees (mild pain or severe pain), the NFCS
scale [16] [17] was used and images with scores between 6 and 10 were categorized
as severe pain, while those with scores between 1 and 5 were labeled as mild pain.

DFEPN

The Dynamic Facial Expression of Pain in Neonates (DFEPN) dataset [44] consists
of 1897 video clips with four different categories of expression: calmness, crying,
moderate pain, and severe pain. These clips were recorded from 106 neonates using
the same procedure and labelling method as the FENP dataset [35]. The length of
each video ranges from 20 to 60 seconds.

USF-MNPAD-I

The USF-MNPAD-I (University of South Florida Multimodal Neonatal Pain As-
sessment Dataset) [45] includes recordings from 58 neonates (GA 27-41) during
hospitalization in the neonatal intensive care unit. It contains video, audio signals,
physiological signals and also the contextual data. The dataset includes individuals
from diverse ethnic and racial backgrounds, with an almost equal representation
of males and females. It covers both procedural and postoperative pain scenarios,
with data from 36 subjects undergoing 44 procedures and 9 subjects in the postop-
erative phase. Additionally, cortical activity data using NIRS were collected from a
subset of neonates. Pain assessments were conducted using the NIPS scale [22] for
procedural pain (scored every minute) and the N-PASS scale [42] for postoperative
pain.

YouTube Immunization and YouTube Blood Test

The YouTube Immunization dataset [46] is composed by 142 YouTube videos, filmed
by parents or guardians, capturing infants (0-12 months) undergoing immunization
injections. Expert evaluators utilised the FLACC pain scale [19] to assess the
videos at three specific time points: 15 seconds before the initial injection, during
the initial and the final injection, with an additional assessment 15 seconds after
the last injection. Supplementary data such as the infant’s gender, number of
injections, and caregiver’s gender were also collected.
Using a similar approach, in 2018, Harrison et al. [47] collected YouTube videos of
babies undergoing blood test. A total of 55 videos, showing 63 procedures, were
selected for analysis, with evaluations conducted using Neonatal Facial Coding
System (NFCS) scores [16] [17].
The main limitation of these databases is the poor quality of the captured videos,
which results in many videos being excluded from annotation. In addition, some
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videos are no longer available (offline or non-public) and in other videos the baby’s
face is not visible at certain times points.

Dataset Subjects Age Ethnicity Size Type Pain labels
iCOPE 26 18-36 h Caucasian 204 PR pain/nonpain
[36] [37] images
[38] [39]
iCOPEvid 49 34-70 h Diversified 234 PR pain/nonpain
[40] videos
NPAD 40 GA: Diversified multi- PR, PR: no/moderate/
[41] (PR+PO) 32-40 w modal PO severe pain,

data PO: 5 states
USF- 58 GA: Diversified multi- PR, PR: no/moderate/
MNPAD-I (PR+PO) 27-41 w modal PO severe pain,
[45] data PO: several levels
APN-db 213 GA: N/A >200 PR 0-11 pain levels
[43] 26-41 w videos

0-26 w
FENP 106 2 d - 4 w Chinese 11000 PR calmness/crying/
[35] images moderate pain/

severe pain
DFENP 106 N/A N/A 1897 PR calmness/crying/
[44] videos moderate pain/

severe pain
YouTube 142 0-12 m N/A 142 PR 0-10 FLACC
Imm. [46] videos scores
Youtube 63 N/A N/A 55 PR 0-4 NFCS
Blood scenarios videos scores
Test [47]

Table 2.1: Relevant literature datasets for infant facial pain detection. GA:
gestational age, PR: procedural pain, PO: postoperative pain, h: hours, d: days, w:
weeks, m: months.
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2.3 Automatic Pain Classification in Infants
In the last years, different computational methods have been developed to au-
tomatically detect the painful phenomenon, to assist healthcare professionals in
monitoring pain and identify the need for therapeutic interventions. Current auto-
matic methods for assessing neonatal pain rely on the analysis of facial expressions,
crying sounds, body movements, and physiological responses. These approaches can
be unimodal, focusing on a single signal modality, or multimodal, integrating mul-
tiple modalities for a more accurate and comprehensive assessment of neonatal pain.

Due to their significant importance in communicating pain in newborns, facial
expressions have attracted substantial research interest, leading to the development
of diverse automatic methods for their analysis. Methods for assessing neonatal
pain using facial expressions can be categorised into static and dynamic approaches.
Static methods involve extracting relevant features from static images, which are
then utilised to train off-the-shelf machine learning classifiers. Existing static
approaches can be broadly divided into two groups: handcrafted methods and deep
learning-based methods. The former are manually designed by human experts
to isolate specific predefined characteristics, they are generally interpretable and
relatively efficient but may require design expertise for optimal performance. Two
well-known handcrafted methods are: Local Binary Pattern (LBP), which generates
a binary pattern by comparing each pixel with its neighbours to form a texture
descriptor, and Histogram of Oriented Gradients (HOG), a shape descriptor that
computes gradients’ intensity and direction within small image regions, thereby
constructing a histogram to encapsulate edge details. The challenges and limita-
tions of handcrafted methods have significantly driven the development of deep
learning-based methods, in particular Convolutional Neural Networks (CNNs).
CNNs autonomously learn and extract pertinent features from raw data or images
at various levels of complexity. These networks have demonstrated groundbreaking
performance across numerous domains, such as clinical and emotion recognition
applications [48].

Other studies [49] [50] have instead used the FACS method for pain assessment.
However, it is worth noting that the detection of Action Units (AUs) in infants is
very challenging, because the tools for AU detection, trained primarily on adult
data, do not performing well on infants, especially in presence of occlusions, like
the use of pacifier. Moreover, there are no publicly available databases with AU
labels for children and the manual labelling is time-consuming. These challenges
complicate the use of the FACS method for assessing pain in infants and may
require further development or adaptation to be effective.
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The following paragraph provides an overview of literature studies focused on
techniques for automatic pain assessment through the analysis of facial expressions
in infants.

2.3.1 Related Works
In 2006, pioneering studies [36] [37] [38] were conducted to classify pain based
on facial expression. The first paper [36] used three different face classification
techniques: Principal Component Analysis (PCA), Linear Discriminant Analysis
(LDA), and Support Vector Machine (SVM). The SVM outperformed the other
methods, reaching an accuracy of 88% in pain versus non-pain classification on
iCOPE dataset using 10-fold cross-validation. However, this work considered a
best case scenario where samples of the same neonate were used in both training
and testing sets. The above-discussed work is extended in [38] to include NNSOA
(Neural Network Simultaneous Optimization Algorithm) for classification along
with LDA, PCA, and SVM. Moreover, they used a different evaluation protocol,
leave-one-subject-out cross-validation (LOSOXV), that is challenging but more
realistic in clinical settings. The results showed that NNSOA achieved the highest
average classification rate (90.2%) in classifying infants’ images. However, Celona et
al. [51] claim that they have reimplemented the methodology of [38] for comparison
purposes, reaching an average accuracy of 78.94%.

Instead of detecting the presence or absence of the pain expression, Gholami et al.
[52] suggested a method to estimate the intensity level of the pain expression, using
a sparse kernel machine algorithm, known as Relevance Vector Machine (RVM).
This algorithm, which is a Bayesian adaptation of the Support Vector Machine
(SVM), provides the posterior probabilities for class memberships and enabled
the generation of pain intensities, that were also compared with the assessment
of five expert and five non-expert examiners. For the model’s evaluation leave-
one-image-out method was applied. The linear kernel RVM algorithm achieved a
classification accuracy of 91% on iCOPE dataset, but it failed to converge in 5 of
the 21 subjects considered. It is worth noting that Gholami et al. tried to infer
intensity of pain on the iCOPE dataset with RVM prior probabilities. The images
in the dataset were labeled for pain intensity using a scale from 0 to 100, which does
not correlate with any established clinical pain measurement scale for newborns [43].

In 2015, Heiderich et al. [53] proposed a computational framework that enables
pain evaluation based on image recognition of pain-related facial actions. The
software is capable of identifying 66 facial landmarks and compare the distances
between the main nodal points in order to perform facial action detection based on
the Neonatal Facial Coding System (NFCS) [16] [17]. If three or more facial actions
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were detected, the newborn was considered to be in pain. The results showed
100% of sensitivity and specificity when assessing a neonate with pain and 85% of
sensitivity and 100% specificity when assessing a neonate during periods of rest.

Later, Zamzmi et al. [54] implemented a multimodal machine learning based
approach that combining facial expression, body movement and changes in vital
signs in order to classify the infant’s final state as no pain, moderate pain, or severe
pain. The method was evaluated using a dataset of 18 neonates recorded in NICU
during a painful procedure and the ground truth labels were assigned by a trained
nurse with the NIPS scale [22]. In particular, for facial expressions Zamzmi et al.
used optical flow, a well-known method of motion estimation, to calculate optical
strain magnitudes in the facial tissues of the infants. The prediction was obtained
using binary classifiers (SVM and KNN) trained using handcrafted features. An
overall accuracy of 95% was achieved by combining all pain indicators for assessment
and utilizing LOSOXV as evaluation method. In addition, the different unimodal
approaches, where each of the pain indicators is used individually, were compared
and the results confirmed that facial expression could be the most specific and
common indicator of pain, as it achieved the highest overall accuracy.
This work [54] was then extended to include crying sounds and state of arousal as
behavioural measures of pain in [55], achieving an accuracy of 96.6% for the binary
classification of the infants’ emotional states as no pain or severe pain.

Some recent researches have also combined different modalities, Celona et al.
[51] extracted deep features from images of iCOPE dataset with two pre-trained
CNNs (VGG-face and MBPCNN) and combined them with LBP and HOG features.
The extracted feature vector was used to train SVM to perform binary classification.
Testing the trained model on unseen data achieved 82.42%, 81.53%, and 83.78%
for VGG-Face, MBPCNN, and VGG-Face+MBPCNN, respectively.

Other authors have therefore applied Convolutional Neural Network models to
classify infant pain. In 2018, Zamzmi et al. introduced two distinct techniques
based on the use of CNNs. Their first work [56] explored the application of transfer
learning using four pre-trained CNN architectures: VGG-F, VGG-S, VGG-M, and
VGG-Face. The first three architectures were originally trained on the ImageNet
dataset for object classification, while VGG-Face was specifically trained on facial
data. They extracted deep features from both high and low layers of these architec-
tures, employing them to train a supervised machine learning classifier. The results
demonstrated promising performance, achieving an AUC of 0.841 and an accuracy
of 90.34%. It was also observed that the VGG-Face model outperformed others
due to its training on a face-specific dataset, leading to a better feature extraction.
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More recently, Zamzmi et al. introduced the Neonatal Convolutional Neural
Network (N-CNN) [57]. This architecture was designed and trained end-to-end
to detect neonatal pain. The N-CNN is structured as a cascaded CNN featuring
three convolutional branches. This design enables the combination of image-specific
details with general information after applying convolutions. The features gen-
erated from these branches are merged and subsequently classified into "pain" or
"nonpain" by two fully connected layers. Their N-CNN model demonstrated good
performance, achieving an average accuracy of 91% and an AUC of 0.93 on NPAD
dataset, along with an average accuracy of 84.5% on the iCOPE dataset.

In 2021, Carlini et al. [58] proposed a mobile application for the Android operat-
ing system that uses AI techniques to automatically identify the facial expression of
pain in neonates. The framework was based on a CNN architecture, specifically the
VGG-Face architecture, fine-tuned on the iCOPE [36] and UNIFESP [53] datasets
for binary pain classification. Then the classification model was optimised and
embedded in a mobile application. The results showed that the model trained on
both datasets lead to better performance (89% cross-validation accuracy) with
respect to using only iCOPE (83%) or only UNIFESP (72%) for training. Moreover,
an explainable method called Integrated Gradients was employed to the test set of
both datasets to identify relevant facial regions for pain assessment. The authors
conclude that the nasolabial groove, as well as the open mouth and protrusion of
the tongue are likely the most discriminating facial regions to pain assessment.

Conversely, Sun et al. [50] employed Action Units to assess infant pain intensity.
The intensities and importance of the AUs were identified through the engagement
analysis performed with the Gradient Class Activation Map (Grad-CAM) [59] and
were used to train a regression model for infant pain assessment. Experiments
were carried out by fine-tuning a pre-trained ResNet model on the YouTube Im-
munization dataset, and testing on two unseen dataset, i.e. the YouTube Blood
Test dataset, and the iCOPEVid dataset. The Grad-CAM layer was added to the
ResNet architecture to analyse what the neural networks learn during training.
The results showed that the regression model outperformed end-to-end models,
and the best model results were achieved by using engagement levels to weight the
AUs.

Overall, these studies demonstrated the effectiveness of transfer learning with
pre-trained Convolutional Neural Networks for feature extraction in neonatal pain
expression recognition, especially with the VGG-Face architecture. Therefore, we
selected this approach for our work. Moreover, some studies integrated Explainable
AI (XAI) methods to enhance the interpretability of the neural network models and
understand which facial regions were considered during the recognition process.
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Chapter 3

Deep Learning Theoretical
Framework

This Chapter provides a theoretical framework for the thesis, with a particular em-
phasis on deep learning, Convolutional Neural Networks, the VGG-16 architecture,
and methods of explainable artificial intelligence (XAI).

3.1 Overview

The term artificial intelligence (AI) refers to the broad area of computer science that
focuses on building intelligent machines capable of performing tasks like learning,
problem-solving, and decision-making that normally need human intellect. AI is
founded on the concept that machines can be trained to learn from experience in
the same way humans do. It includes many different methods, such as Machine
Learning (ML) and Deep Learning (DL). Machine Learning is a subset of AI where
statistical techniques are employed to enable machines to learn from data without
explicit programming. ML algorithms have the ability to automatically learn from
experience and make predictions or take decisions about new data. On the other
hand, Deep Learning is a subset of ML that processes and analyses data using
neural networks. The relationship among AI, ML and DL is illustrated in Figure
3.1 and Deep Learning will be described in more detail in the following Section,
since it constitutes the theoretical framework of the approach proposed in this
thesis.
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Figure 3.1: Relationship between AI, ML and DL

3.2 Deep Learning
Deep learning comprises a collection of learning techniques aimed at modeling
data using complex architectures that integrate various non-linear transformations.
The basic elements of deep learning are neural networks, which are assembled
to construct deep neural networks. There are two primary learning approaches:
supervised and unsupervised techniques. Supervised techniques operate with labeled
data, meaning they start with a dataset where each sample has an associated ground
truth. Their objective is to establish the relationship between the ground truth
and the data samples. Typical examples of supervised learning models include
classifiers, which are trained to assign class labels to data samples based on labeled
datasets. Conversely, unsupervised learning aims to uncover meaningful patterns
within data without relying on pre-existing labels. An example of unsupervised
learning is clustering, where data samples are grouped based on inherent similarities
rather than predefined categories.

3.2.1 Artificial Neural Networks
Artificial neural networks (ANNs), also known as neural networks (NNs), are
mathematical models designed to mimic the behaviour of biological neurons. The
architecture of neural networks is characterised by neurons distributed in different
layers that exchange information with each other through a complex system of
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connections and nodes. As shown in Figure 3.2 every neural network comprises at
least three layers:

• An input layer, receiving input data and communicating it to the next layer;

• One or more hidden layers, processing the data to obtain the desired output;

• An output layer, providing the model’s results.

Figure 3.2: Neural Network Architecture

Neurons within each layer are interconnected with those of the subsequent
layers by weighted activation functions. The weight is a numerical value that is
multiplied by that of the next neuron to determine the importance of any given
variable. Each neuron sums the weighted values of all neurons connected to it
and possibly adds a bias value. Before passing the data to the next layer, the
resulting sum is transformed by applying an activation function. The output of
one node then becomes the input of the next node. This neural network is also
known as a feedforward network because of this process of passing data from one
layer to the next. Following input-to-output propagation, the network evaluates
its prediction’s accuracy compared to the expected output using a loss function.
The network’s objective is to minimize this loss by adjusting its weights and biases
through training:

J(W, b) = 1
n

nØ
i=1

L(ŷi − yi) (3.1)

where J is the cost function with given weights W and bias b, L is the loss
function, ŷi is the output from the network, and yi is the expected output.

Activation functions are non-linear functions, which allows the data to be
approximated much more precisely. The main activation functions are:
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• Sigmoid function: takes a number as input and returns as output a number
between 0 and 1. Used mainly in binary classification problems.

σ(x) = 1
1 + e−x

(3.2)

• Softmax: is the generalisation of the Sigmoid function. It is used in multiclass
classification algorithms to calculate relative probabilities. It returns the
probability of a given input to belong to a given class.

Softmax(xi) = exiq
j exj

(3.3)

• TanH (Hyperbolic Tangent): returns an output in the range [-1,1] and unlike
the Sigmoid the output is centred on zero.

tanh(x) = ex − e−x

ex + e−x
(3.4)

• ReLu (Rectified Linear Unit): returns an output between 0 and infinity. When
the input is positive it returns the input itself as output, if the input is negative
it returns 0 as output.

ReLU(x) = max(0, x) (3.5)

3.3 Convolutional Neural Networks
Nowadays, Convolutional Neural Networks (CNNs) find extensive application in
tasks like image segmentation and classification, object recognition, and face recog-
nition. CNNs are a class of feedforward neural networks specifically designed to
process data with a grid-like topology, like images. A digital image is a binary
representation of visual information. It is made up of a grid-like arrangement of
pixels with values to indicate the color and brightness of each pixel. When an image
is perceived, the human brain efficiently processes a huge amount of information.
Each neuron operates within its individual receptive field and it is interconnected
with others to cover the entire visual field. Similar to how neurons in the biological
vision system respond solely to stimuli within their receptive fields, neurons in a
CNN exclusively process data within their receptive fields. CNNs are characterised
by neurons with three dimensions: height, width and depth and diverge from
traditional artificial neural networks in their connectivity pattern. Specifically, the
neurons in one layer are only connected to a small region of the previous layer.
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This feature enables the processing of very large input images without the need to
store an excessive number of parameters.

The CNN architecture consists of three main types of layers: convolutional
layers, pooling layers and fully connected layers. Convolutional and pooling layers
extract hierarchical visual features from raw pixel data. They start by detecting
simple patterns like lines and curves, then progress to more complex ones like
faces and objects. On the other hand, the fully connected layers are designated to
perform classification or regression.

Convolutional layer The convolutional layer is the core building block of a
CNN, responsible for the majority of the network’s computational workload. Its
parameters primarily focus on the use of learnable kernels, which are small in spatial
dimensions but extend through the entire depth of the input. As the kernel slides
across the input data during the forward pass, it captures the kernel’s response
at every spatial position, producing an activation map. This process requires
convolving each filter across the input’s spatial dimensions, leading to the creation
of an activation map. The scalar product between the learnable kernel parameters
and a restricted region of the input is computed for each value within the kernel as
the input data is scrolled through. Each kernel has a corresponding activation map,
which will then be stacked along the depth dimension to compose the complete
output volume from the convolutional layer.

Figure 3.3: Example of convolutional operation

Convolutional layers can also efficiently reduce model complexity by optimizing
their output. This optimization relies on three key hyperparameters, which affect
the size of the output and need to be set before the network training:

• Depth: the number of filters determines the depth of the output. Reducing this
hyperparameter can significantly decrease the total number of neurons in the
network, but it can also substantially reduce the model’s pattern recognition
capabilities.
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• Stride: describes the extent to which the kernel traverses the matrix. A
stride of 1 results in heavily overlapped receptive fields and large activations,
while a larger stride reduces overlap and yields an output with smaller spatial
dimensions.

• Zero-padding: process of adding extra values to the border of the input.
Setting all elements outside of the input matrix to zero results in an output
that is either larger or of equal size.

Each convolutional layer is necessarily followed by an activation function. The
purpose of activation functions is to provide the network with non-linear behaviour,
enabling the solution of complicated problems using a relatively small number
of nodes. A neural network without a non-linear activation function will always
behave as a single layer network, regardless of the number of hidden layers present.

Pooling layer The pooling layers enable the reduction of spatial dimensions in
the feature map, aiming to maintain crucial information while introducing some
degree of translation invariance to the network. Similar to the convolutional layer,
the pooling operation applies a filter across the input, but this filter has no weights.
Instead, the kernel uses an aggregation function to combine the values within the
receptive field, resulting in an output array. These layers usually typically do not
have trainable parameters because they only act on small patches of the image
summarising local information. However, like convolutional layers, pooling layers
also involve hyperparameters such as filter size, stride, and padding. There are two
main types of pooling:

• Max pooling: selects the maximum value present in the filter window. This is
useful for capturing the most dominant features in a region.

• Average pooling: computes the average value within the filter window. This
can be helpful for reducing noise and capturing overall trends.

Figure 3.4 shows an example of operations with max and average pooling.

Fully connected layer The fully connected layers perform the classification task
based on the characteristics extracted through the previous layers. Each neuron in
this layer is directly linked to the neurons in the two adjacent layers, without any
connections to layers within them.

Dropout layer In neural network construction, dropout layers can be added
to mitigate overfitting. For each mini-batch in the training set, dropout layer
randomly disconnects inputs from the previous layer to the next layer. This
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Figure 3.4: Example of pooling operations

operation effectively removes nodes from the network, preventing their influence
on predictions and backpropagation. This process creates slightly varied network
architectures in each training run, aiding in generalization. The proportion of nodes
set to zero is determined by the dropout probability. For instance, a probability of
20% indicates that 20% of the nodes will not be utilised in each run.

3.3.1 VGG-16
In the last decade, several CNN architectures have been developed through struc-
tural modifications, regularisation and parameter changes. The architecture plays a
crucial role in enhancing the performance of various applications [60]. In particular,
popular architectures such as AlexNet, VGG, Inception (GoogLeNet), ResNet and
DenseNet have made significant contributions to the field of convolutional neural
networks. A detailed description of the VGG-16 network is provided below, as it is
the network used in this study.

The VGG-16 model is a convolutional neural network that was proposed for the
2014 ImageNet Challenge by the Visual Geometry Group (VGG) from the University
of Oxford [61]. ImageNet is a large image database used in computer vision for
object recognition tasks. It contains over 14 million images, each annotated with
object labels and bounding boxes. The objects are classified into more than 20,000
categories. In the ImageNet Large Scale Visual Recognition Competition (ILSVRC)
a subset of ImageNet with 1000 image categories is used.
Based on research indicating that smaller filter sizes can improve CNN performance,
the VGG replaced larger filters with stacks of 3 × 3 filters in their architecture.
They demonstrated empirically that using multiple small size filters concurrently
could emulate the effect of a single large size filter. The use of small size filters also
offers the advantage of low computational complexity by lowering the number of
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parameters [60]. The series of 3 x 3 convolutional layers are stacked on top of each
other, for a total of 16 trainable layers, separated by some max pooling layers, which
manage the reduction volumes. The max-pooling layers use 2 x 2 filters with a
step of 2 in both horizontal and vertical directions. As a result, the output of these
layers will be a volume of size [wout, hout, n], where wout = win

2 and hout = hin
2 , while

n remains unchanged. The fact that the spatial dimensions of the representation are
reduced makes it possible to reduce the number of parameters and, consequently,
also the computational time and the probability of overfitting the data. Overfitting
occurs when a model memorises the training data rather than generalising well to
unseen data. In addition, each convolution layer is always followed by an activation
layer, with the ReLU function. After the series of convolution and max-pooling
layers, the VGG-16 network includes three fully connected layers: the initial two
have 4096 channels each, while the third contains 1000 channels, each corresponding
to a distinct class [61].
The architecture of the VGG-16 network is illustrated in Figure 3.5.

Figure 3.5: VGG-16 model architecture

The VGG-16 model used in this thesis was pre-trained on the first version of the
VGG-Face face recognition database [62], which was created by the same research
group to classify faces belonging to 2622 individuals. In the VGG-Face architecture,
the final fully connected layer consists of 2622 neurons, each corresponding to one
of the individuals in the database and producing a value indicating the probability
that the input image belongs to that individual.
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3.4 Explainability in Deep Learning
Although deep neural networks have revolutionised many domains by achieving
exceptional performance across diverse tasks, their inherent complexity and “black
box” nature pose significant challenges in terms of interpretability and explainabil-
ity. Explainable AI methods aim to increase transparency and comprehensibility
of decision-making processes in artificial intelligence models, especially in deep
learning models. These methods are essential for enabling users to understand how
AI model predictions are generated, thereby increasing confidence in the use of
such systems, particularly in critical sectors like healthcare [63].
In a recent review [63], the authors underscored the importance of interpretability
in healthcare AI applications to increase understanding and trust among clin-
icians and end-users. They also highlighted the adaptation of general-domain
interpretability methods to healthcare problems, which can assist physicians in
better understanding data-driven technologies.

Some of the most common Explainable AI methods include:

• LIME (Local Interpretable Model-agnostic Explanations) that generates local
explanations for model predictions, identifying the input characteristics that
influenced a given prediction.

• SHAP (SHapley Additive exPlanations) that assigns an importance value to
each input characteristic, showing how much each variable contributed to the
model’s prediction.

• CAM (Class Activation Mapping) that is a method for visualising which parts
of an image were important for a deep learning model’s prediction. CAM is a
technique primarily used in computer vision to display the regions of an image
that influenced the model’s classification.

• RETAIN (Reverse Time Attention Model), which is a method specifically
designed for deep learning models in healthcare. It allows for the identification
of the parts of temporal data sequences that influenced the model’s predictions
[63].

3.4.1 Grad-CAM
Gradient-weighted Class Activation Mapping (Grad-CAM) [59] was introduced as
a generalization to CAM whose applicability is limited to specific convolutional
neural network architectures as it requires feature maps directly preceding the final
softmax layer. Grad-CAM is a localization technique that generate visual explana-
tions for any convolutional neural network model without requiring architectural
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changes or re-training [59]. It is also class-discriminative, meaning that it is capable
of producing a unique visualisation for each class represented in the image.
Figure 3.6 shows examples of Grad-CAM outputs for the “tiger cat” class and
“boxer” (dog) class.

(a) Original Image (b) Grad-CAM “dog” (c) Grad-CAM “cat”

Figure 3.6: Grad-CAM examples. Source: [59]

This technique utilises gradients relative to a class and a layer that requires
visualisation. This enables the visualisation of discriminative regions for any convo-
lutional layer, not just the last one. Obviously, the most interesting visualisations
are located towards the bottom of the network. Therefore, maps generated from
initial convolutional layers are poorly defined, as these layers are the ones contain-
ing the smallest filters [59]. The gradient information flowing into the CNN layer
enables the identification of which feature maps are activated for a specific class.
By calculating a weighted sum of these feature maps, Grad-CAM produces a heat
map that highlights the areas in the input image that had the most influence on the
model’s prediction. Grad-CAM is therefore used post-training on a neural network
with fixed weights. An image is fed into the network to compute the Grad-CAM
heatmap for a selected class of interest.

Grad-CAM operates through a three-step process, starting from yc, which
represents the score for class c (i.e. the raw output for class c before the softmax):

1 - Compute gradient:
Compute the gradient of yc with respect to the feature map activations Ak of
a convolutional layer

∂yc

∂Ak
(3.6)
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2 - Calculate alphas by averaging gradients:
Calculate the neuron importance weights αc

k by taking the global average
pooling of the gradients over the width dimension and the height dimension
(indexed by i and j respectively)

αc
k = 1

Z

Ø
i

Ø
j

∂yc

∂Ak
ij

(3.7)

3 - Calculate final Grad-CAM heatmap:
Perform a weighted combination of the feature map activations Ak where the
weights are the αc

k

Lc
Grad−CAM = ReLU

AØ
k

αc
kAk

B
(3.8)

The application of the ReLU function to the linear combination of feature maps
emphasises positive values while setting negative values to zero. This step aims to
highlight features that positively influence the class of interest, in other words the
pixels whose intensity should be augmented in order to increase yc [59].
In addition, it should be noted that the final Grad-CAM heatmap has the same
size as the convolutional feature map (14 x 14 in the case of the last convolutional
layers of the VGG network), which is smaller in width and height than the original
input image. For this reason, the tiny heatmap is up-sampled to match the size of
the original image before making the final visualization.
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Chapter 4

Materials and Methods

This Chapter describes the construction of the proposed framework for binary pain
classification that consists of three main parts:

• We first describe the video data collected in two different clinical environments
and annotated with pain score by healthcare professionals.

• We then present a comparative study of face detectors that identify the most
suitable tools to extract the face bounding boxes from the video frames.

• Finally, we present the methods used to perform binary pain classification
on different datasets and also an explainable AI method that enhance model
transparency and interpretability.

4.1 Data Description and Pain Scale Implemen-
tation

In this Section, the data used in the study are described. Prior to the start of
video recordings for each data collection, informed consent was obtained from
participants’ parents. Additionally, the study protocols were approved by the Local
Ethic Committee.

4.1.1 M-PAIN Dataset
Subjects

The Mauriziano Pain Assessment In Newborns (M-PAIN) dataset is composed of
79 videos of 79 different full term newborns (48 females and 31 males), aged 36-78
hours, with different ethnicity: 73 Caucasian, 5 African and 1 Asian. The videos
were recorded during the procedure of blood sampling by heel prick.
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Recording setup

The videos were recorded at the Neonatology department of the Mauriziano Hospital,
in Turin, between October 2022 and January 2023. An Intel® RealSense™ depth
camera D435i was placed over the changing table where newborns underwent blood
sampling. The video recordings were performed with 1280 × 720 resolution at a
frame rate of 30 fps, and stored as MKV files. Each video has a different time
duration as the duration of the blood collection depends on several factors, such as
the speed of blood outflow and the behavioural state of the child. In addition, in
some videos multiple blood samples were taken from the same baby.

Blood sampling procedure

Before being discharged, newborns are subjected to blood tests in order to identify
various congenital diseases. Early detection and intervention for these conditions
can prevent serious health consequences for the infant, enabling treatment from the
earliest days of life and initiation of specialised therapies. Prior to the withdrawal
procedure, the infant is placed on the changing table and is wrapped, which is done
as a measure of pain containment. It is worth noting that a pacifier is also used to
further alleviate the child’s discomfort in this process [14]. During the recording,
the heart rate and saturation oxygen of the newborn were measured using the
Masimo cardiosaturimeter, whose display shows the oxygen saturation value at the
top and the heart rate at the bottom. This physiological data were recorded for
future investigations, but they were not used in the current study. The parameters
were measured by an electrode, which was placed in one foot and held in place
with gauze. In the other foot, the nurse took the sample by pricking the heel with
a disposable needle and squeezing the foot to encourage blood to flow out (Figure
4.1). Afterwards, the heel was disinfected and a dressing was applied.

Pain score annotation

Each video was assessed by a healthcare professional using the DAN scale, described
in the Section 1.2.3. We defined an observation window within each video, which
started with the heel squeeze and extended either until the completion of the
procedure or until the infant exhibited signs of calmness. Each video was cut
so to keep only the chosen observation window. Then, for each video the pain
experienced by the newborn was evaluated by the healthcare professional, who
assigned a DAN score, specifying three contributions: facial expressions, limb
movements, and vocal expressions. In this study we consider specifically the facial
expressions score, ranging from 0 to 4 and including three parameters: brow bulge,
eye squeeze, and nasolabial furrow. Each parameter was individually evaluated and
quantified based on the duration of the parameter within the observation window.
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Figure 4.1: Example image of M-PAIN dataset during the blood sampling
procedure. The image was postprocessed to anonymise infant face.

Subsequently, there was a phase of aggregation of the individual output scores,
with the maximum value selected as the final DAN face score. For this study, 76
videos were considered usable after excluding 3 videos where the infant’s face was
either out of frame or excessively covered by a blanket. Considering only facial
expressions, there are 50 videos with a score of 0, 2 videos with a score of 1, 8
videos with a score of 2, 11 videos with a score of 3, and 5 videos with a score of 4.
It should be noted that the dataset is imbalanced, with a limited number of videos
exhibiting medium or high pain scores.

4.1.2 VideoDol Dataset

Subjects

This dataset is composed of 34 videos featuring 29 different children (14 males and
15 females), aged 3-36 months, admitted to the Pediatric Emergency Department
(ED) with acute pain as main or accompanying symptom. Notably, the vast
majority of the children are of Caucasian ethnicity, with only one child being of
Arabian origin. Children with chronic health conditions, those whose faces and
limbs were partially obscured due to dressing, medications, or medical devices, and
those assigned high triage priority codes upon admission were excluded from the
study.
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Recording setup

The videos were recorded at the Regina Margherita Children’s Hospital, in Turin,
between April 2022 and September 2023. A video capturing the entire body of
the children was recorded using an RGB camera with a resolution of 1920 × 1080
pixels and a frame rate of 30 fps. The camera was positioned 100 cm away from
the subject, maintaining consistent lighting conditions. Additionally, heart rate
and oxygen saturation were evaluated and recorded using the pulse oximeter in the
Emergency Department. Figure 4.2 shows an example of the setup.

Figure 4.2: Example image of VideoDol dataset setup. The image was postpro-
cessed to anonymise infant face.

Pain score annotation

Pain assessment was conducted for all children by three different healthcare profes-
sionals, using the Italian validated version of the FLACC scale [19] [64], described
in Section 1.2.3. However, due to excessive noise in the audio signals recorded
in the Emergency Department environment, the cry (C) and consolability (C)
categories were excluded from the analysis, as they could not be accurately pro-
cessed or analysed. In this study we consider specifically the facial expression
score, ranging from 0 to 2, which involve mouth opening, brow bulging and eye
squeezing parameters. Nevertheless, it is important to note that these parameters
were not evaluated individually, unlike the evaluation with the DAN scale. Table
A.1 shows the list of videos with the FLACC face score assigned by three different
healthcare professionals. It is evident that the majority of the videos have a score of
0. Additionally, in some videos, the ratings of the three operators are inconsistent.

33



Materials and Methods

4.2 Comparative Study of Face Detectors
This Section presents a comparative study of face detectors, as the initial step
of our approach involved detecting faces to extract bounding boxes from video
recording frames.

4.2.1 Face Detection
Face detection is a subset of computer vision technologies that can automatically
detect and locate human faces in images or video frames. It is the fundamental
initial step in most computer vision applications that involve face analysis. A high-
quality facial detector is a necessary starting point for various activities involving
the face including facial landmark detection, gender classification, crowd analysis,
attendance tracking, face tracking, and facial recognition. Face detection must be
robust to various factors, including orientation, lighting conditions, skin tones, hair
color, makeup, facial clothing and accessories, age, and so on. The task becomes
particularly challenging when applied to young children and newborns, especially in
clinical environments. This stems from the fact that many face detection frameworks
have been primarily trained on datasets consisting of adult faces [65]. As a result,
they struggle to cope with the significant differences in size and proportion that
are characteristic of infant faces. Newborns have less well-defined facial features
compared to adults, with a wider range of poses and postures, and obstructions like
pacifiers, toys, or blankets are very common. Moreover, in the clinical environment,
background scenes are complicated, medical equipment and procedures may be
present, and varying lighting conditions pose additional challenges [65].
For these reasons, in order to identify the most suitable tool we conducted a
comparative study of the face detector on M-PAIN and VideoDol datasets. The
following Section provides an overview of selected state-of-the-art face detectors.

4.2.2 State-Of-The-Art Face Detectors
OpenCV

OpenCV’s Haar cascade classifier, introduced by Viola and Jones in 2001 [66],
represents a traditional approach to face detection. It operates by analyzing Haar
features, which are simple rectangular patterns that capture basic differences in
brightness and contrast within an image region. By combining these features in
various arrangements, the classifier learns to identify patterns characteristic of faces.
The classifier is trained using the AdaBoost algorithm, which iteratively selects the
most informative features from a large collection of positive (containing faces) and
negative (without faces) images. So the classifier scans the image, calculating pixel
intensity sums within regions defined by the selected Haar features. If a sufficient
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number of features match within a particular region, the classifier identifies that
region as containing a face.

Dlib-HOG

Dlib [67] is a C++ library that provides an implementation of the HOG (Histogram
of Oriented Gradients) feature descriptor, which can be utilised for tasks such as
face detection and object detection. Dlib integrates the traditional HOG feature
with a linear SVM classifier model, an image pyramid, and a sliding window
detection method. HOG captures edge orientations in image regions, providing a
texture and shape representation. The classifier, trained on facial and non-facial
images, distinguishes between faces and other objects. The image pyramid allows
the detection of faces at different scales, while the sliding window method scans
the image at different locations and scales.

SSD

Single-shot multibox detectors (SSD) [68] finds the object in just one iteration
through the input image, unlike other models that require multiple passes to
generate detection results. The backbone model serves as a feature map extractor,
pre-trained for image classification. Stacked convolutional layers form the SSD
head, which is added on top of the backbone model. SSD employs a set of default
bounding boxes with various aspect ratios and scales for each feature map position.
In the face detection process, each of these default boxes produces an output
indicating whether a face is detected, and if so, adjusts the box accordingly to fit
the detected face.

RetinaFace

RetinaFace [69] is a single-stage face detector that combines the prediction of
facial bounding boxes and 2D facial landmark detection. It employs a combination
of extra-supervised and self-supervised multi-task learning techniques to perform
pixel-wise face localisation in images, even across various scales of face sizes. The
model was trained on the WIDER FACE dataset and identifies five key facial
landmarks: the right and left eyes, nose, right mouth, and left mouth.

Mediapipe

MediaPipe [70], developed by Google, is a cross-platform framework that provides
pre-built components for multimedia pipelines, enabling easy integration for tasks
like object detection, face detection and recognition, and pose estimation. Face
Detection by MediaPipe is built on BlazeFace [71] a lightweight and efficient
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face detection model designed specifically for mobile GPU inference. The feature
extraction network is inspired by MobileNetV1/V2, while the anchor scheme is
adapted from SSD. MediaPipe enables a rapid facial detection featuring 6 landmarks
(right and left eyes, nose, centre mouth, and left and right ears) and the ability
to detect multiple faces simultaneously. In addition, it offers two model variants
specifically designed to suit different face detection distances. The “long range”
model is optimised for detecting faces at medium or long distances from the camera,
while the “short range” model is ideal for detecting faces at closer distances.

Yolov5

YOLO (You Only Look Once) is a deep learning system for real-time object
detection known for its efficiency and single-stage architecture. In particular,
YOLOv5 [72] offers significant improvements in accuracy, speed, scalability, and
flexibility compared to its predecessors. YOLOv5 uses pre-trained models to learn
from existing data, then combines information from various image scales (low-
resolution for coarse details, high-resolution for fine details) to improve detection
accuracy for objects of different sizes. Finally, it uses a combined loss function that
optimises both object class confidence and precise object location within the image.
In our study, we use YOLOv5 object detector [72] with pre-trained weight obtained
from [73], which were specifically trained on a subset of the USF-MNPAD-I dataset
[45], composed of images of newborns undergoing a painful procedure. In [65] this
model has shown better performance for detecting the faces of neonates compared
to YOLO model baselines.

4.2.3 Performance Comparison of Face Detectors
To evaluate the performance of the face detectors on the datasets, we extracted
frames at a rate of one per second and then we applied the detection methods to
these frames for testing purposes. Our evaluation included 76 videos (14148 frames)
from the M-PAIN dataset and 30 videos (2491 frames) from the VideoDol dataset.
In this comparative analysis two primary metrics were assessed: the percentage of
images without detected faces and the corresponding time required for detection.
The average execution time per image during the inference phase was calculated
using Python on a CPU 2.8GHz 4-Core Intel i7. The results of the comparison
between the face detectors are presented in Table 4.1.

On the VideoDol dataset, it is noteworthy that the Mediapipe (long range)
method emerged as the top performer, exhibiting the best outcome regarding
the proportion of images without detected faces while simultaneously requiring
a relatively shorter detection time. RetinaFace showed superior performance in
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reducing the number of unrecognised faces, but at the cost of a longer recognition
time. Conversely, the other face detection methods exhibited comparatively inferior
performance and longer processing times.

On the M-PAIN dataset, many existing methods struggled to detect the new-
borns’ face, reaching 95% of images with no face detected in the case of OpenCV.
The best results were obtained with Yolov5, followed by Mediapipe (short range),
with a significant difference in time. Yolov5, despite its superior performance,
requires much more time for detection compared to Mediapipe.

Overall, these findings confirmed that the majority of commonly used methods
demonstrate suboptimal performance, particularly in cases involving newborns
with occlusions such as pacifier usage. Selecting the appropriate face detection
method (see Sections 4.3.3, 4.3.4 ) is crucial for achieving optimal results on infant
datasets, considering their unique characteristics and challenges. A balance between
accuracy and speed is essential when choosing a method for practical applications,
for instance a faster method is more suitable for real-time processing.

VideoDol M-PAIN
Method Empty Time Empty Time

(%) (ms) (%) (ms)
Mediapipe (short range) 25.93 4.6 18.63 3.3
Mediapipe (long range) 4.01 7.1 28.53 5.9
OpenCV 22.68 25.4 95.25 20.7
SSD 8.51 22.7 69.42 24.3
RetinaFace 1.24 28.8 22.26 27.4
Yolov5 with weights 26.69 142.1 11.12 136.7
Dlib 17.94 238 89.39 106.4

Table 4.1: Results of comparative study of face detectors

4.3 Pain Classification
This Section explains the methodologies used for binary pain classification. Firstly,
the general model is explained, which was then applied to two different infant
population: newborns undergoing blood tests and young children recorded in the
Pediatric Emergency Department. The details of both applications are provided.
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4.3.1 Computational Resources and Framework

In order to provide reproducibility and transparency of our work, we present a
review of the computational resources and frameworks that we used. Specifically,
we used TensorFlow, an open-source library for machine learning and artificial
intelligence, along with Keras, a high-level interface that simplifies neural network
development. Additionally, we leveraged the computational power of a GPU
(Graphics Processing Unit) to accelerate the model training process, enabling us
to achieve results in less time and with greater efficiency. In particular, we were
equipped NVIDIA GeForce GTX 1060 6GB. The utilised version of Python was
3.10.13 with Scikit-Learn version 1.3.1 and the versions of Tensorflow and Keras
were 2.10 with CUDA 11.2.2.

4.3.2 CNN Model

In the following, model architecture and methods used to perform binary pain
classification on both infant populations are presented.

Model architecture

For our pain classification model, we decided to use the VGG-Face model, which
has been shown to achieve the best performance in literature studies [56] [58].
The VGG-Face network [62], developed by researchers at the Visual Geometry
Group (VGG), is based upon the VGG-16 architecture [61] (Section 3.3.1) and
it has been pre-trained on 2.6M facial images of over 2.6K people. The network
model and respective weights were obtained from [74] that represent the Keras
implementations of the models developed by the Visual Geometry Group.

To adapt the model to our requirements, we hence customised the top layers
of the architecture. We substituted the last flattening and fully connected layers
with the average pooling layer and three dense layers, the first two consisting of
2048 and 1024 neurons, respectively, both employing ReLU activation functions.
In addition, dropout layers with a 50% rate were inserted after each dense layer to
mitigate overfitting. The final dense layer consists of two units with the Softmax
activation function, generating binary outputs for pain or nonpain classes. While a
simple Sigmoid can also be effective for binary classification, the Softmax performs
better as an output layer. The Sigmoid produces only a single probability for the
positive class. On the other hand, Softmax’s output probabilities are interrelated
and always add up to 1; consequently, a higher output value for one class leads to
a lower output for the other class.
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Transfer learning

Given the limited size of the datasets used in this study, a transfer learning
approach was adopted. The main task associated to the VGG-Face network is face
recognition. Consequently, the initial layers of the VGG-Face model are able to
capture low-level features and general facial representations. While this provides a
good starting point, in order to adapt the acquired features to our specific problem,
it was necessary to further fine-tune the network on the infants’ data. During the
training process, the first 15 layers were kept frozen, while the parameters of the
last group of convolutional layers were updated to capture more specialised facial
features of infants. The resulting architecture had 10 230 274 trainable parameters
and it is illustrated in Figure 4.3.

Figure 4.3: CNN model architecture

Data preprocessing

To maintain consistency with the training procedures of the VGG-Face pre-trained
model, the same preprocessing method used in the VGG-Face dataset [62] was
employed. Thus, the images were converted from RGB to BGR, and each color
channel was zero-centered with respect to the mean values of the VGG-Face dataset.
All the images were resized to 224 × 224 pixels, to match the expected dimensions
of the pre-trained model. An overview of the complete training CNN process is
depicted in Figure 4.4.
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Figure 4.4: Overview of the complete training CNN process

Class imbalance

Class imbalance is a prevalent characteristic across all datasets utilised for training
our CNN models, with a notably higher number of samples belonging to the nonpain
class compared to the pain class. To address this issue, we included class weights to
ensure that the model gives more attention to instances from the underrepresented
class. Specifically, the Scikit-Learn library was used to compute class weights which
were then incorporated into the fit() function as a parameter in order to weight
the loss function during training. Although our task was binary classification, we
used categorical cross-entropy as the loss function. This choice is motivated by the
relationship between categorical cross-entropy and the softmax function, which will
be discussed in more detail later.

Categorical Cross-Entropy Loss Function:

LCCE = −E
C

CØ
i=1

yi · log(ŷi)
D

(4.1)

Weighted Categorical Cross-Entropy Loss Function:

LwCCE = −E
C

CØ
i=1

wi · yi · log(ŷi)
D

(4.2)

where:

– C is the number of classes

– yi is the true label

– ŷi is the model prediction

– wi is the class weight
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Performance parameters

In order to evaluate the performance of the model, the important performance
parameters, i.e., accuracy, precision, recall, specificity, and F1-score were calculated
using Equations (4.3). The values needed to calculate the performance parameters
mentioned above, namely True Positive (TP), True Negative (TN), False Positive
(FP), and False Negative (FN) were derived from confusion matrices (Table 4.2).

Precision = nTP

nTP + nFP
(4.3a)

Recall = nTP

nTP + nFN
(4.3b)

Specificity = nTN

nTN + nFP
(4.3c)

Accuracy = nTP + nTN

nTP + nTN + nFP + nFN
(4.3d)

F1-score = 2 × Precision × Recall
Precision + Recall (4.3e)
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Table 4.2: Confusion matrix illustrating the model predictions against true class
labels

In our binary classification task, the nonpain and pain images were considered as
negative and positive cases, respectively. Thus, nTN and nTP denote the correctly
predicted nonpain and pain images, while nFN and nFP represent the falsely
predicted nonpain and pain images, respectively. Because of class imbalance, the
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F1-score metric was chosen as an evaluation metric in addition to the accuracy. In
this way, it was possible to measure the model’s ability to correctly identify images
depicting pain while minimising false positives.

4.3.3 CNN for Pain Classification in Newborns
This Section describes the experiment conducted on the M-PAIN dataset (Section
4.1.1) and iCOPE dataset. The same model architecture and methods described in
Section 4.3.2 were used, while the remaining implementation details are presented
in the following paragraphs.

Frame extraction and labelling on M-PAIN dataset

In order to build our neural network training dataset, we implemented a systematic
frame extraction process from videos (cut on the observation window as described
in Section 4.1.1), aimed at preventing a significant class imbalance. For videos with
a DAN facial score of 0 or 1, one frame was selected every two seconds of footage.
Conversely, for videos with score between 2 and 4, we opted for a higher extraction
rate, specifically one frame per second. Since the length of the observation window
was variable, for the longer videos only the first part of the observation window
was used for frame extraction, to have almost the same number of frames extracted
for every infant. Within an observation window, the infant usually alternates
calm and agitation moments. Indeed, pain scales as the DAN scale evaluate the
frequency of facial expressions within an observation window. For this reason,
even if a video has been assigned a high pain score, not all the frames within
the observation window will exhibit pain-related facial expression. Following this
considerations, we manually labelled all the extracted frames under the supervision
of a healthcare professional. Frames from videos with a pain score of 0 or 1 were
categorised as belonging to class nonpain; on the other hand, frames from videos
with scores ranging from 2 to 4 were classified as belonging to class pain or class
nonpain according to the facial expression present in each frame, as evaluated by
the healthcare professional.

Face detection

The results of the face detector comparison, presented in Section 4.2.3, showed that
on the M-PAIN dataset Yolov5 with pre-trained weights [73] performed best, being
able to identify the faces of newborns in most cases. For this reason we employed
this methods to detect and crop the subject’s face in order to obtain the facial
images to train the network.
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Model details

At the end of the preparation process of the M-PAIN dataset we obtained a total
of 5309 frames, with 3934 labelled as nonpain and 1375 labelled as pain. While
the iCOPE dataset is composed of 204 images, with 144 labelled as nonpain and
the remaining labelled as pain. In both cases, we divided each dataset in three
different sets: training, validation and test set.

Experiments performed Three experiments were performed. In the first
experiment, we built a pain classification model using only the M-PAIN dataset.
In the second experiment, we used the same approach on the iCOPE dataset,
to enable comparisons with similar research works. Finally, we performed model
training on both the M-PAIN and iCOPE dataset, to check if the performance on
the M-PAIN data can be further improved by the combination of different training
data.

Data augmentation To expand the data and enhance its variability data
augmentation techniques were applied. However, data augmentation techniques
should be applied in moderation to avoid introducing unrealistic or implausible
variations that deviate too far from the real-world distribution. We limited data
augmentation to include only random horizontal flips, random rotations within
a 30-degree range, and brightness adjustments in the range (1.0 - 1.5). These
techniques were applied to the images in both training and validation sets, shuffling
the data, along with VGG-Face preprocessing; on the other hand, for the test set
images, only the VGG-Face preprocessing step was applied.

Regularisation and hyperparameters With the aim of mitigating overfitting,
besides adding dropout layers, other regularisation techniques are employed. We
included early stopping to terminate the training when the validation loss fails to
improve for 15 consecutive epochs and we employed the categorical cross-entropy
loss function along with L1 regularization penalty. In order to mitigate the problem
of class imbalance we employed class weights to adjust the loss function.
In all the three experiments performed, the Adam optimizer was used. This
optimizer was chosen because, unlike SGD, it is unaffected by the scaling change
induced on the loss by class weights [75]. The batch size was set to 32, which
was the largest feasible value given our available computing resources, and the
maximum number of epochs was set to 100. For what concerns the initial learning
rate, it was set to 5e-6 in the first and third experiments, which involve the M-PAIN
dataset. While in the second experiment, involving iCOPE, a larger value was
chosen (1e-5) to speed up convergence.

43



Materials and Methods

Model evaluation To evaluate the trained model and estimate its generalization
performance, k-fold cross-validation was employed to avoid the limitations of a
single train-validation-test split, which may not adequately represent the overall
population, particularly for small datasets. In particular we use StratifiedGroupK-
Fold, provided by the scikit-learn library in Python [76]. This technique creates
folds that preserve the proportion of samples for each class and ensure that no
groups overlap between splits. This is important for creating homogeneous training,
validation, and test sets and to avoid assigning frames of the same newborn to
different sets. At each of the k cross-validation steps, the dataset was partitioned in
three parts: training, validation and test sets. A model was trained on the training
set, while the test set performance was computed using the model weights obtained
on the epoch with the highest validation accuracy. The final cross-validation
performance was obtained by averaging the performance of the k trained models.
In the first and third experiments, with M-PAIN data, k was set to 5. In this
way, each fold had a test set comprising approximately 20% of the total dataset,
while the validation set was then derived from the training set and comprises
approximately 20% of it. The second experiment, instead, involves only iCOPE
data, so k was set to 10, given the smaller size of the dataset. Figure 4.5 shows
the StratifiedGroupKFold schema for the first experiment using only the M-PAIN
dataset, in our case the groups denotes individual newborns, with each newborn
being associated with a distinct set of frames.

Figure 4.5: StratifiedGroupKFold on M-PAIN dataset (training set includes both
training and validation data).
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4.3.4 CNN for Pain Classification in Pediatric ED

This Section describes the experiment conducted on the VideoDol dataset (Section
4.1.2) that involve young children, aged 3-36 months, admitted to the Pediatric ED
with acute pain. The same model architecture and methods described in Section
4.3.2 were used, while the remaining implementation details are presented in the
following paragraphs.

Frame extraction and labelling

Following a similar methodology to that described in the previous Section (4.3.3),
we employed a predefined strategy for extracting frames to avoid an excessive class
imbalance in the dataset. From the VideoDol data described in Section 4.1.2 we
excluded 3 videos to prevent redundancy, as there were already existing videos
with low pain assessment scores featuring those specific children. Furthermore,
considering the varying lengths of the videos, to maintain balance and prevent
the dataset from being skewed by longer videos with low pain scores, we chose to
analyze only the initial approximately one-minute segments for such cases. We
selected frames at a rate of one frame per second for videos with a FLACC face
score equal to 0 or 1, while for videos with a score of 2 we chose a rate of two
frames per second. Under the supervision of a healthcare professional, we have
labelled the frame in this way: frames belonging to videos with a pain score of 0
or 1 were categorised as belonging to class nonpain; frames belonging to videos
with score equal to 2 were classified as belonging to class pain. In consideration of
some differences in the scores estimated by different healthcare professionals, we
decided to eliminate the frame associated to one video with inconsistent facial pain
scores, equal to 1 or 2. At the end we considered 30 videos of 28 different children.
It is crucial to highlight that only 5 videos, belonging to 3 different children, had
a score of 2. This significant class imbalance, coupled with the scarcity of pain
images, posed a challenge in training the network effectively.

Face detection

Based on the findings of our comparative analysis of face detectors (Section 4.2.3),
we chose to use Mediapipe for the detection and cropping of the infant’s face within
each frame. This choice stems from Mediapipe’s ability to offer extensive coverage
in face detection, thus ensuring both sufficiently high precision and fast execution
times. Afterward, we conducted a manual review to exclude some frames where
the face was excessively covered, whether by objects, the operator’s hands, or the
child’s hands.
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Model details

At the end of the frame extraction and face detection phases we obtained a total
of 2026 frames, with 1414 labeled as nonpain and 612 frames labeled as pain.
Considering the small number of samples, especially of frames classified as pain,
belonging to only 3 different children, it was not feasible to divide them into
training, validation and test sets. Consequently, we opted for a single division into
training (75%) and test (25%) sets, maintaining in each set the same proportion
of pain and nonpain images of the entire dataset. To mitigate the issue of class
imbalance, we employed the class weight (Section 4.3.2).

Data augmentation Data augmentation techniques were applied to the training
data to increase its volume and improve variability, along with VGG-Face prepro-
cessing. We limited image data augmentation to include only random horizontal
flips and random rotations within a 30-degree range.

Regularisation and hyperparameters We employed the categorical cross-
entropy loss function along with L1 regularization penalty. We used the Adam
optimizer with a learning rate equal to 5e-6. This optimizer was chosen because,
unlike SGD, it is unaffected by the scaling change induced on the loss by class
weights [75], which was employed to address the issue of class imbalance. The
batch size was set to 32, which was the largest feasible value given our available
computing resources.

Model evaluation To address the risk of overfitting, we restricted the training
duration to a limited number of epochs, i.e. 20, ensuring that the model did
not excessively specialise on the training data. This approach aimed to promote
generalization by preventing the model from memorising the training samples.
Subsequently, to assess the model’s performance, we employed the model parameters
obtained from the final epoch and evaluated its predictive capabilities on the
independent test set.

4.4 Explainability
To provide model explainability and transparency, we used an explainable AI
method, i.e. Gradient-weighted Class Activation Mapping (Grad-CAM) [59]. Grad-
CAM is a visualisation technique, which is used to create a class-specific heatmap
that allow to understand which parts of an image the network focuses on when
making a prediction. Figure 4.6 shows a schematic diagram of the Grad-CAM
method for generating the heatmap from an input image. In our implementation,
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the inputs specified to the Grad-CAM algorithm were the trained classification
model, the final convolutional layer, together with the test images and the cor-
responding model predictions. Compared to initial convolutional layers, which
have smaller receptive fields and exclusively focus on local features, later layers
better capture high-level semantic information while keeping spatial information
[59]. In fact, the final convolutional layer is the nearest layer to the classifica-
tion target that preserves spatial information essential for capturing visual patterns.

Figure 4.6: Architecture to describe the Grad-CAM technique for generating the
heatmap from an input image. Adapted from [59]

47



Chapter 5

Results and Discussion

In this Chapter, the results of the infant pain assessment approach described in
Section 4.3 are presented and discussed. The following Section presents the results
of the experiments conducted on the M-PAIN and iCOPE datasets, followed by the
results obtained on the VideoDol dataset. In addition, examples of the resulting
Grad-CAM heatmaps on the test set images are provided, where the heatmaps
have been simplified to ensure a clearer presentation of the underlying image.

5.1 CNN for Pain Classification in Newborns
For newborn pain assessment three different models were trained, following the
approach described in Sections 4.3.2, 4.3.3. The results in terms of mean and
standard deviation of the accuracy and F1-score over the cross-validation steps are
shown in Table 5.1.

The first model, trained and tested on the M-PAIN dataset using 5-fold cross-
validation, achieved an average accuracy of 87.4% ± 3.4% in classifying pain vs
nonpain images. Due to the significant class imbalance within the dataset, with

Experiments performed Accuracy F1-score
1 - Training and evaluation on M-PAIN 0.874 ± 0.034 0.754 ± 0.054
2 - Training and evaluation on iCOPE 0.838 ± 0.107 0.668 ± 0.293
3 - Training on M-PAIN+iCOPE, 0.888 ± 0.050 0.796 ± 0.081

evaluation on M-PAIN

Table 5.1: Cross-validation results for pain vs nonpain classification, in terms of
accuracy and F1-score (mean ± standard deviation).
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approximately 74% of examples representing nonpain instances and 26% depicting
pain instances, the F1-score metric was also considered. This metric evaluates the
model’s performance in accurately detecting images depicting pain (considered
positive examples), while also mitigating the occurrence of false positives. The
effectiveness of the model in detecting pain images is demonstrated by the average
F1-score of 75.4% ± 5.4%.
Upon analysing the confusion matrices of each cross-validation fold, it was observed
that the model exhibited different behaviours. In some cases, the model accurately
classified almost all images labelled as nonpain, but struggled more to classify
pain images. Conversely, in other cases, the model appeared to perform better at
classifying pain images than nonpain images. The differences among the various
folds may be due to variations in the composition of the training, validation, or test
data, as well as to the fact that the model itself was saved based on its performance
on the validation set. Each fold may contain a different distribution of examples,
with variations in the quality or representativeness of the data itself. For instance,
one fold test set may have more challenging cases than others.
Another important result emerged from the analysis performed through Grad-CAM,
in which images from the M-PAIN test set of each cross-validation step were con-
sidered. Some examples of the resulting heatmaps are shown in Figure 5.1, where
the areas in red are the ones that have most influenced the prediction of the model.
The forehead emerged as the most highlighted facial feature in images classified as
nonpain (Figures 5.1a, 5.1b, 5.1c, 5.1d). Conversely, for images classified as pain
(Figures 5.1e, 5.1f, 5.1g, 5.1h), Grad-CAM highlighted the upper contour of the
nose, the eye squeeze, and the nasolabial groove. Notably, the gradients did not
emphasise the pacifier or secondary artifacts such as the blanket, focusing primarily
on the newborn’s face.
Despite the inability to analyse the mouth due to the presence of the pacifier, the
network was able to detect pain by focusing on the other facial regions most closely
associated with the experience of pain, in accordance with pain scales commonly
used in clinical practice. On the other hand, analysing the frames where infants
were highly agitated and lose their pacifiers, it becomes evident that in some cases
the network redirected its focus also to the mouth, as shown in the Figure 5.2.

The second model was trained on the iCOPE dataset using 10-fold cross-
validation and it achieved an average accuracy of 83.8% and average F1-score
of 66.8%. These results exhibit a high standard deviation, indicating significant
performance variation across different folds. Such variability is typical when dealing
with small dataset sizes, as is the case with iCOPE. Moreover, iCOPE dataset is
known to be highly challenging due to the presence of nonpain images induced by
stressful stimuli, such as friction or moving to a new crib, which in some cases can
provoke the infant’s crying. Our results on binary pain classification with iCOPE
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(a) No pain (b) No pain (c) No pain (d) No pain

(e) Pain (f) Pain (g) Pain (h) Pain

Figure 5.1: Examples of resulting Grad-CAM heatmaps on M-PAIN test set
images. Labels are reported below each image. The images were postprocessed to
anonymise infant faces.

(a) Pain (b) Pain (c) Pain

Figure 5.2: Examples of resulting Grad-CAM heatmaps on M-PAIN test set
images of newborns without pacifier. Labels are reported below each image. The
images were postprocessed to anonymise infant faces.

are comparable to state-of-the-art results in prior studies [37] [51] [57] [58]. However,
it is important to recognise that the comparison of these related research works
and our model is also based on different evaluation methods. Leave-One-Subject-
Out (LOSO) method used in other studies [38, 51] may overestimate accuracy
on iCOPE dataset, because not all subjects have the same number of images for
each category. Hence, the presence of subjects with a limited number of nonpain
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images related to stressful stimula as friction and cry (the most difficult to classify)
may lead to an over-optimistic estimate of the model performance. Instead, with
stratified k-fold cross-validation, the test set at each step includes always the same
percentage of pain and nonpain images, leading to a more realistic performance
estimation. Moreover, it is noteworthy to highlight the differences between the
iCOPE dataset and the M-PAIN dataset. Firstly, the presence of the pacifier in
the M-PAIN dataset, and secondly, the different data acquisition and labelling
protocol. Figure 5.3 shows the resulting Grad-CAM heatmaps on iCOPE test set.
For images classified as pain (Figures 5.3e, 5.3f, 5.3g, 5.3h) Grad-CAM highlighted
the nasolabial groove and the open mouth. Conversely, the forehead and the nose
area emerged as the most highlighted facial features in images classified as nonpain
(Figures 5.3a, 5.3b, 5.3c, 5.3d).

(a) No pain (b) No pain (c) No pain (d) No pain

(e) Pain (f) Pain (g) Pain (h) Pain

Figure 5.3: Examples of resulting Grad-CAM heatmaps on iCOPE test set.
Labels are reported below each image.

Finally, the third model was trained on both M-PAIN and iCOPE datasets, and
tested on M-PAIN. This cross-database training led to an improvement in both
accuracy and F1-score compared to the first model, which was trained only on
M-PAIN dataset. This suggests that incorporating a wider range of training data
can enhance performance, particularly in challenging scenarios. The Grad-CAM
heatmaps for M-PAIN test set images relative to this third experiment are shown
in Figure 5.4. Again, as in the first experiment, we can see that the facial regions
most closely associated with the experience of pain are highlighted. The forehead
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emerged as the most highlighted facial feature in images classified as nonpain
(Figures 5.4a, 5.4b, 5.4c, 5.4d). On the other hand, in images classified as pain
(Figures 5.4e, 5.4f, 5.4g, 5.4h), Grad-CAM highlighted the upper contour of the
nose, the eye squeeze, and the nasolabial groove.

(a) No pain (b) No pain (c) No pain (d) No pain

(e) Pain (f) Pain (g) Pain (h) Pain

Figure 5.4: Examples of resulting Grad-CAM heatmaps on M-PAIN test set
images with training cross-database. Labels are reported below each image. The
images were postprocessed to anonymise infant faces.

5.2 CNN for Pain Classification in Pediatric ED
The model, trained on frames extracted from VideoDol dataset with a single train-
test split as described in Sections 4.3.2, 4.3.4, achieved an accuracy of 88.8% and a
F1-score of 78.8%. It should be noted that the model demonstrated higher accuracy
in predicting images associated with nonpain compared to those associated with
pain. This discrepancy could be attributed to the limited number of training
examples of pain images, belonging to only two different infants. Due to the
relatively small dataset size for pain-related images, the model may not have
had enough exposure to generalise patterns associated with pain, resulting in a
performance bias towards nonpain images. The normalized confusion matrix is
represented in Figure 5.5. Given the absence of false positives, precision reaches
its maximum value of 1.00, indicating the model’s ability to accurately identify all

52



Results and Discussion

nonpain cases. However, with a recall of 0.65, the model demonstrates a moderate
performance in capturing pain images relative to the total number of actual pain
cases.

Figure 5.5: Normalized confusion matrix of VideoDol test set.

The analysis performed through Grad-CAM (Figure 5.6) shows that the most
highlighted facial feature in images correctly classified as nonpain are the nose
area and the eyes. Conversely, for images correctly classified as pain, Grad-CAM
highlights the open mouth and the nasolabial groove.

(a) No pain (b) No pain (c) No pain

(d) Pain (e) Pain (f) Pain

Figure 5.6: Examples of resulting Grad-CAM heatmaps on VideoDol test set
images correctly classified. Labels are reported below each image. The images were
postprocessed to anonymise infant faces.
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For some misclassified images, when the correct label, i.e. pain, is passed to
Grad-CAM, the mouth remains the most prominently highlighted facial feature
(Figures 5.7b, 5.7d). However, generating the heatmap based on the predicted,
and thus incorrect, label Grad-CAM highlights the nose or other irrelevant areas.
(Figures 5.7a, 5.7c).

(a) No pain (b) Pain

(c) No pain (d) Pain

Figure 5.7: Examples of resulting Grad-CAM heatmaps on misclassified test set
images of VideoDol dataset. Labels passed to Grad-CAM are reported below each
image. The images were postprocessed to anonymise infant faces.

5.3 Results Discussion and Limitations
Overall, our promising findings pave the way for the development of an automated
system that integrates, standardises, and improves human pain evaluation. The use
of a visual explanation technique further validates our framework, while revealing
interpretability aspects which can provide the basis for an effective integration of
automatic pain assessment in the clinical practice. Furthermore, it promotes better
understanding and trust among healthcare professionals. It is important to note
that the M-PAIN dataset aims to overcome some limitations of other literature
datasets, as a small number of subjects, and inadequate annotations or protocol
documentation [24] [43]. This dataset reflects the typical characteristics of the
real-world environment of the Neonatology Department. It includes the adoption
of pain management strategies, such as the pacifier, diverse lighting conditions,
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and dynamic newborn positions, including variations in facial orientation. The
availability of numerous and diverse data has facilitated the development of a
reliable and effective framework.

On the other hand, the Videodol dataset provides a realistic context, but its
limited size hinders the ability to train a neural network in a robust manner, which
in turn prevents effective generalisation to unseen data during training. Moreover,
it is worth noting the substantial disparity between the M-PAIN and VideoDol
datasets. These datasets originate from distinct contexts characterised by different
setups. The M-PAIN dataset was captured in the Neonatology Department during
procedural blood sampling, where pain management strategies such as pacifier use
are present. Conversely, the VideoDol dataset encompasses observations of infants
up to three years old admitted to the Pediatric Emergency Department, where
pacifier use is less common. Therefore, the datasets also differ in the types of pain,
with one focusing on procedural acute pain and the other on acute pain. In fact,
given their significant dissimilarity, it was not feasible to merge these two datasets.

In addition to the limited data availability within the VideoDol dataset, this study
acknowledges several other limitations. One notable limitation is the demographic
homogeneity observed among the subjects, who are predominantly individuals
of Caucasian ethnicity. This homogeneity may introduce bias and hinder the
generalisation of the findings to more ethnically diverse populations. Moreover,
relying exclusively on static images for analysis presents a significant constraint.
By limiting the analysis to static frames, the complex temporal dynamics inherent
in facial expressions are overlooked. This prevents a comprehensive understanding
of the evolving nature of pain expression, thereby limiting the depth of insights
that could be gained from the data. Furthermore, binary classification, although
efficient for simplifying analytical processes, does not capture the nuanced spectrum
of pain intensity. Pain, as a multifaceted and subjective phenomenon, encompasses
varying degrees of severity that are inadequately captured by binary classification.
As a result, the study may overlook subtler nuances in pain expression that could
contribute to a more comprehensive understanding of the phenomenon. Addressing
these limitations by incorporating more diverse subject populations, considering
the temporal dynamics of facial expressions, and exploring methods for capturing
the intensity of pain expression could enhance the robustness and applicability of
future studies in this area.
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Chapter 6

Conclusion and Future
Works

This study presents a deep learning framework for pain assessment in infants based
on facial expression analysis. It was developed using frames extracted from two
different video datasets recorded in real-world conditions. The first (M-PAIN
dataset) included newborns undergoing heel stick procedures for blood sampling,
recorded in the neonatal unit of the AO Ordine Mauriziano Hospital, while the
second (VideoDol dataset) included healthy children, aged 3-36 months, admitted
with acute pain to the Pediatric Emergency Department of the Regina Margherita
Hospital.

The model trained with a transfer learning technique on the M-PAIN dataset
reached an average accuracy of 87.4% and average F1-score of 75.4% using a
stratified 5-fold cross-validation. In this setup, pain management strategies as the
use of a pacifier were adopted, making the analysis of newborn facial expressions
more challenging. In addition, performance on M-PAIN data improved, reaching an
average accuracy of 88.8% and an F1-score of 79.6%, when the training was carried
out adding images from another existing neonatal dataset, i.e. iCOPE. The same
transfer learning approach was used with the image data recorded in the Pediatric
Emergency Department. The model trained on the VideoDol dataset achieved
an accuracy of 88.8% and a F1-score of 78.8%. Moreover, the application of an
explainable AI method based on Grad-CAM showed that the networks’ decisions
are based on the facial regions most closely associated to the experience of pain in
infants, i.e., brow bulge, eye squeeze, and nasolabial furrow.

In conclusion, our promising findings suggest the potential for developing an au-
tomated system that integrates, standardises, and improves human pain evaluation.
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The results shows that automated pain detection from facial expressions is feasible
even in real-world settings. The use of a visual explanation technique enables
the interpretability of neural networks outcomes, thereby increasing transparency
and trust among healthcare professionals. Furthermore, this research work paves
the way for further developments by providing a starting point for subsequent
investigations into automatic infant pain assessment.

Several possible directions for further research can be identified:

• Model Enhancement: this may involve investigating alternative neural network
architectures, exploring the robustness of our framework against artefacts due
to occlusions or movements, and expanding training datasets with additional
data.

• Model Extension: the framework could be extended into a multiclass classi-
fication task to infer pain intensity levels or it could incorporate additional
data, such as vital signs or body motion analysis, where feasible. Additionally,
future work could include the investigation of the temporal dimension of pain
exploiting videos to gain additional insights.

• Real-Time Pain Detection: future applications of the model could include
real-time pain assessment, enabling improved patient monitoring and informed
decision-making for better pain management. Such a system could also be
useful in more critical settings, like Neonatal Intensive Care Units (NICUs),
where continuous monitoring and early pain detection are crucial for improving
outcomes and reducing suffering in vulnerable neonates.
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Evaluations

A.1
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FLACC Face Score
Video ID Infant ID Operator 1 Operator 2 Operator 3

0 173047 0 0 0
1 173047 0 0 0
2 181140 0 0 0
3 4163 0 0 0
4 4228 0 0 0
5 4295 0 0 0
6 5158 0 0 0
7 5242 0 0 0
8 5244 0 0 0
9 5244 0 0 0
10 5246 0 0 0
11 8159 0 0 0
12 8201 0 0 0
13 8517 0 0 0
14 8628 0 0 0
15 8631 0 0 0
16 8632 0 0 0
17 8669 0 0 0
18 8676 0 0 0
19 8686 0 0 0
20 8688 0 0 0
21 5191 1 0 0
22 8531 1 0 0
23 8276 0 1 0
24 8523 0 1 0
25 8565 0 1 1
26 4163 1 1 1
27 4226 1 1 1
28 8203 1 2 1
29 3759 2 2 2
30 4155 2 2 2
31 4155 2 2 2
32 4203 2 2 2
33 4203 2 2 2

Table A.1: FLACC face score for VideoDol dataset
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