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Summary

The advent of the Internet of Things (IoT) has revolutionized the concept of Smart
Buildings by integrating various smart sensing and control devices to improve
efficiency and user experience. This thesis explores the realm of Smart Buildings,
with a focus on the challenges of access control. In particular, the research
investigates the applicability and effectiveness of machine learning techniques to
classify device activities within the Smart Building environment.
As Smart Buildings continue to evolve, the need to ensure robust security measures
becomes paramount. Traditional, intrinsically static access control methods often
struggle to adapt to dynamic environments. This study explores the feasibility of
using machine learning algorithms to dynamically classify device activities, with the
aim of improving access control mechanisms. Research leverages existing datasets
to assess the robustness and accuracy of machine learning traffic classification by
analyzing the traffic patterns generated by IoT devices. Machine learning models
are then applied to classify these patterns into specific activities.
By understanding and classifying different device activities, the system can dynam-
ically adjust access permissions, contributing to a more adaptable and responsive
security infrastructure.
Preliminary results demonstrate that this type of approach has considerable po-
tential, indeed, it has been possible to correctly classify about 98% of packets in
network traffic from several IoT devices.
The results of this research provide valuable insights into the field of IoT-enabled
Smart Buildings, shedding light on the potential of machine learning to promote
access control strategies. The implications of implementing such techniques go
beyond security, impacting the overall functionality and sustainability of Smart
Building environments.
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Chapter 1

Introduction

In the increasingly connected digital era we live in, the importance of IoT (Internet
of Things) devices is constantly growing. IoT devices indeed, represent a revolution
in connectivity and automation. Thanks to their ability to monitor and collect
environmental data, automate processes and control devices remotely, optimize
resource usage and offer new personalized services, they are radically transforming
the way humans interact with the world around them. Through data analysis,
they enable valuable insights that drive smarter, more informed decisions. In
summary, IoT devices promise to improve our everyday activities by making
environments smarter, more efficient and more connected. Regarding the topic of
smart environments, in addition to Smart Homes, Smart Buildings are emerging
as fundamental components of our daily lives. Smart Buildings integrate a wide
range of IoT devices to improve energy efficiency, optimize resources and provide
a more comfortable and secure living or working experience to their occupants.
However, with the increasing complexity and connectivity within Smart Buildings,
new security challenges arise, particularly regarding the domain of security.

As Smart Buildings become more interconnected and complex, the need for robust
Access Control management and IoT traffic protection becomes paramount. Access
Control mechanisms indeed, if properly configured, ensure that only authorized users
can access sensitive resources, data and services within the building’s network. This
is crucial in order to safeguard privacy, prevent unauthorized access and mitigate
potential security breaches. Current approaches to Access Control management
within Smart Buildings, while partially effective, are not without limitations. One
of the main issues lies in the diversity and heterogeneity of IoT devices, each with
its own communication protocols and security requirements. Traditional Access
Control systems often struggle to adequately address this complexity, leading to
vulnerabilities and potential security gaps. In addition, the dynamic nature of smart
environments, where devices are constantly added, removed or reconfigured, poses
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additional challenges to Access Control management. It is also worth noting that
existing approaches focus primarily on Smart Homes rather than Smart Buildings,
making it even more difficult to adapt these solutions to the wider and more
complex ecosystem of Smart Buildings.

To address these challenges, new approaches leveraging machine learning-based
techniques for traffic classification and Access Control management have emerged.
By analyzing IoT traffic patterns and employing predictive models, these approaches
offer more adaptive, intelligent and context-aware solutions for Access Control
management within Smart Buildings. Machine learning algorithms can learn
from historical data, predict device behaviors and dynamically adjust Access
Control policies in order to ensure optimal security while maintaining convenience
and flexibility for the user. The evaluation of these innovative approaches has
provided promising results, demonstrating their effectiveness in enhancing security,
optimizing resource utilization and improving the overall user experience within
Smart Buildings. Therefore, by leveraging machine learning algorithms for traffic
classification and Access Control management, Smart Buildings can achieve greater
resilience, adaptability and efficiency in addressing evolving security threats and
operational challenges.

In summary, the integration of machine learning-based techniques holds immense
potential to revolutionize Access Control management within Smart Buildings.
By addressing the limitations of current approaches and leveraging the power of
predictive analytics, these solutions could pave the way for more efficient, secure
and user-centric smart environments.

1.1 Thesis Objectives

The primary objective of this thesis is to conduct a comprehensive and in-depth
analysis regarding the Access Control management within Smart Buildings, aiming
to fully understand the crucial importance of this aspect in ensuring security and
efficient management of resources, as well as in improving the overall experience of
the occupants.

Another key objective is to carry out a comprehensive review of the existing
literature in the field of Access Control management. Through this review, we
aim to identify current trends, challenges and the best practices with the aim of
developing an in-depth understanding of the context in which our research work
fits.

2



Introduction

In addition, this thesis aims to develop and propose new methodologies and
approaches to enhance the effectiveness and the adaptability of Access Control
policies within Smart Buildings. By using advanced techniques such as machine
learning-based traffic classification, we intend to develop smarter, more efficient and
dynamic Access Control policies capable of adapting in real-time to changing user
needs and variations in the built environment. We also focus on exploring strategies
for practical implementation of such policies, taking into account limitations and
practical considerations.

A crucial aspect of our work is the experimental evaluation of our proposed
methodologies. We aim to conduct in-depth experimental studies and simulations
to evaluate the effectiveness and efficiency of our proposals, comparing them with
traditional solutions and assessing their ability to handle realistic scenarios within
Smart Buildings. This evaluation allows us to identify strengths and areas of
improvement of the several analyzed approaches, as well as to provide an empirical
basis for our conclusions.

Finally, this thesis aims to identify the remaining challenges and outline future
research directions in the field of Access Control management within Smart Build-
ings, in order to contribute to the growth and development of increasingly effective
solutions of this rapidly evolving field.

1.2 Thesis Outline
This section provides a brief overview of the discussed topics for each chapter of
this thesis.

Chapter 2:

In the second chapter of this thesis, in addition to an introduction to the Smart
Building concept and the crucial importance of Access Control in this context, a
detailed analysis of the background and related work is conducted. Smart Buildings
are presented as a new frontier in the integration of advanced technologies aimed
at improving energy efficiency, security and comfort of the occupants. However,
the implementation of these advanced technologies brings with it new challenges in
terms of managing and securing access to devices, resources and services within the
network. This review of existing literature in the context of Access Control within
Smart Buildings provides an in-depth overview of the research and studies conducted
in this field. Both traditional approaches and new innovative methodologies are
explored in order to fully understand the state of the art and the remaining
unresolved challenges. This literature review not only provides a solid knowledge
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base but also identifies key areas that require further studies and development. In
particular, the importance of developing efficient and adaptable Access Control
policies to ensure security and effective management of resources within Smart
Buildings is discussed, while enabling a better user experience.

Chapter 3:

The third chapter of this thesis explores the landscape of potential threats that
could compromise the security of Smart Buildings and countermeasures to address
them. Several risks are identified, including excessive access, privilege abuse,
privacy violation and others, highlighting the complexity of security management
in this technologically advanced context. Three main approaches for addressing
these threats are thoroughly examined: the Brownfield approach, which focuses on
managing existing vulnerabilities; the Proxying approach, which employs secure
devices to filter malicious traffic and finally, Access Control, which regulates user
interactions and permissions within the system. After a careful evaluation, the
decision is made to focus on Access Control as the preferred approach, in order
to improve Smart Building security, given its effectiveness in mitigating a wide
range of threats and its ability to perfectly integrate without compromising the
operational usability of the building. This choice is supported by a robust analysis
of alternatives and is tailored to the specific needs of the research project. This
chapter thus provides a solid foundation for addressing security challenges in the
context of Smart Buildings, offering a comprehensive overview of threats and
strategies to address them.

Chapter 4:

The fourth chapter of this thesis addresses the topic of Access Control within
Smart Buildings, focusing on the importance of Access Control policies for the
well-being and security of the occupants. Several strategies are explored to ensure
the robust and reliable management of such policies. Specifically, the roles, entities
and dynamics of Access Control policies are analyzed, considering both human users
and device identities. Additionally, usage scenarios and concrete examples of Access
Control policy implementation are discussed. Subsequently, different strategies to
implement these policies are explored, including cloud-based authentication and
authorization, Virtual Private Networks (VPNs), IP address filtering with MUD
rules, machine learning-based traffic classification and other techniques. Finally, the
possibility of embedding Access Control policies directly into the devices themselves
is explored, thereby reducing dependence on external servers and simplifying the
overall architecture.
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Chapter 5:

The fifth chapter of this thesis presents two distinct approaches for traffic classi-
fication in IoT networks: PingPong and the Random Forest classifier. Through
the analysis of two different datasets, Bhosale and PingPong, these approaches are
tested to evaluate their effectiveness in detecting and classifying IoT device events.
Each experiment comprises specific phases, such as data collection and preprocess-
ing, model training and performance evaluation. The results obtained provide a
solid basis for comparing the capabilities of both approaches and discussing their
practical applications in the context of traffic management and security of IoT
networks, with significant implications for the design and management of Smart
Building systems.

Chapter 6:

In the sixth chapter of this thesis, the results obtained from the application of two
IoT traffic classification approaches, PingPong and the Random Forest classifier, are
examined. Through the analysis of two different datasets, Bhosale and PingPong,
both approaches show high performance in detecting and classifying IoT device
events. However, PingPong demonstrates greater versatility and adaptability across
the datasets. The chapter then, provides an in-depth evaluation of the performance
of the two classification methods and offers insights for further research in the field
of Access Control policy management within Smart Buildings, thus contributing to
outline future research directions.

Chapter 7:

The seventh chapter of this thesis examines the implications, limitations and future
prospects of the work done. It analyzes the effectiveness of the two IoT traffic
classification approaches used and discusses the importance of considering different
factors when choosing the best approach for a given analysis context. Possible
future directions for research are also outlined, focusing on optimizing Access
Control policies based on the past behavior of devices and integrating these policies
with device communication protocols in Smart Buildings.

Chapter 8:

The eighth chapter of this thesis is the concluding chapter. It emphasizes the
innovative approach in managing Access Control policies within Smart Buildings
through the use of machine learning-based traffic classification. The improvement
in security and user experience is highlighted, thanks to the customization and
responsiveness of Access Control policies. The importance of integration between
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machine learning algorithms and device communication protocols is clearly outlined,
along with the complexity of the traffic classification system. Finally, the chapter
outlines a future vision in which Smart Buildings become adaptable, secure and
advanced environments guided by dynamic and responsive Access Control policies.
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Chapter 2

Background and Related
Work

This Chapter provides an overview related to the basic concepts and a brief review
of the literature in the field of Internet of Things. The “Background” Section (2.1),
introduces the key theoretical concepts, essential to understand the context of this
research. The “Related Work” Section (2.2), reviews the studies and developments
that contributed to the current state of the arts.

2.1 Background
In the context of this thesis, the Internet of Things landscape proves to be of
fundamental importance, especially in relation to the context of Smart Buildings
and the problem of Access Control. Studying and delving into the different facets
of these domains, the interconnected nature of IoT devices certainly becomes a
central theme. In fact, my research aims to support the hypothesis that leveraging
machine learning for traffic classification of IoT devices installed within a smart
environment, brings significant benefits and innovation also and especially with
regard to the security aspect. Indeed, this approach serves as a key element in
enhancing various security measures, highlighting the essential link between Internet
of Things advancements and the overall goals of strengthening Access Control
within Smart Buildings.

2.1.1 IoT overview
The Internet of Things represents a technological paradigm that, through the use
of smart devices such as sensors and other sophisticated tools, is based on the
interaction and connection between physical objects. The main goal of IoT is to
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create a large interconnected network in which physical devices can collect, process
and share data with each other through the Internet infrastructure.

The Internet of Things is characterized by some key aspects:

• Intelligent Devices: Physical devices are considered “smart” as they are
characterized by their computational capabilities and internet connectivity,
enabling advanced functionalities. IoT devices then, are able to collect data
from the environment in which they have been installed, making an analysis
based on the information that has been received and then act accordingly.

• Connectivity: The several IoT devices communicate with each other through
different communication protocols, including Wi-Fi, Bluetooth or Zigbee. Low-
power communication protocols such as LoRaWAN can also be used. This
allows efficient communication and transmission of data between all devices.

• Data Collection and Processing: IoT devices collect data from their
surroundings according to the purpose each of them serves. This data then,
can either be processed and analyzed by the device itself or sent to central
servers for conducting more advanced analysis.

• Cloud Computing: It is possible to use cloud computing services for data
storage, processing and analysis. This, allows large amounts of information to
be managed, taking advantage of scalable services.

• Applications and Automation: The IoT paradigm is highly significant
to a wide range of sectors and environments, such as Smart Homes, Smart
Buildings, industry, health, agriculture, transportation and more. Practical
IoT applications range from managing resources to responding to special
situations that occur in the different areas where they are installed and from
providing personalized services to making industrial processes more efficient.

Smart Thermostat:

An example of IoT device is the smart thermostat, such as the Nest thermostat
(Figure 2.1). This device detects environmental conditions such as temperature
and humidity and uses that data to automatically regulate the heating or cooling
of a room. Users can also control the thermostat via a mobile application, enabling
remote management of thermal comfort in their homes.

Smart Lighting:

Another example is the smart light bulb, like the Philips Hue bulb light (Figure
2.2). This type of bulb can be controlled through an IoT connection, allowing users
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to adjust brightness, color and even set automatic lighting programs. This not
only provides greater control over home lighting but can also contribute to energy
efficiency.

This examples illustrate how IoT devices can be integrated into daily life to improve
comfort, convenience and productivity in a variety of home environments and, in
essence, underscore that Internet of Things has the enormous potential to transform
everything around us, opening up new opportunities for innovation and automation
of operations. However, at the same time, it includes many significant challenges
related to data security, privacy and managing interoperability between devices.

Figure 2.1: Nest thermostat Figure 2.2: Philips Hue bulb light

2.1.2 Smart Buildings
Delving into more detail, a Smart Building is a structure that maximizes efficiency,
functionality and sustainability through the integration of advanced technologies,
including IoT devices. These buildings use sensors, automation and data anal-
ysis to optimize energy consumption, improve safety and overall comfort. By
incorporating IoT devices, such as temperature sensors and intelligent lighting,
Intelligent Buildings gain real-time data collection and analysis, allowing for precise
control of environmental factors. This interconnected system not only enables
predictive maintenance, early problem identification and remote management but
also enhances security measures. Thanks to IoT-powered cameras, access sensors
and advanced analytics, Smart Buildings can proactively address security concerns,
contributing to a more intelligent, secure and environmentally friendly living or
working environment. The synergy between IoT and Smart Buildings results in a
perfectly integrated infrastructure that prioritizes efficiency, sustainability, security
and comfort for the occupants.
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Figure 2.3: Smart Building

The most common features of a Smart Building include:

• Automation: There are automated systems for controlling lights, air condi-
tioning, curtains or other devices. Automation can be programmed through
well-defined rules or, it can adapt dynamically based on environmental condi-
tions or inputs from the surroundings, such as a person entering a room or
smoke detection following a fire.

• Energy Management: Advanced control and monitoring of energy con-
sumption are made possible by energy management tools and systems. Indeed,
these systems aim to optimize energy efficiency by reducing energy wastage
and balancing consumption as needed.

• Predictive Maintenance: The use of specific sensors in the different areas
of the building, allows for monitoring the status of the several systems. This
results in preventive maintenance interventions to extend the lifespan of the
equipment and thus, the reduction of operational costs.

• Advanced Security: IoT devices within a Smart Building, part of integrated
security systems such as video surveillance, intrusion detection systems or
electronically controlled access, help to improve security by analyzing data
from multiple sensors.

Smart Buildings, therefore, are designed to provide all the occupants, an environ-
ment that is more energy efficient, environmentally sustainable and that can be
adapted to as many needs as possible.
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2.1.3 Smart Buildings threats
After introducing the definition and general characteristics of a Smart Building in
Subsection 2.1.2, we will now discuss the related threats. Although in fact, Smart
Building are facilities that embody innovation and advanced connectivity, security,
especially cybersecurity, remains a significant concern and critical priority. Due to
the interconnectivity among devices and systems, numerous cyberthreats must be
taken into consideration. These threats, can potentially endanger sensitive data
(e.g., patient data within a hospital), key functionalities of several systems and
user privacy in general. Therefore, it is essential to analyze and understand these
risks, in order to try to find different solutions to mitigate them.

Figure 2.4: Smart Building threats

The main critical issues and threats may concern both general aspects and aspects
related to network management, communication and management of the different
IoT devices.

In particular, the following can be highlighted:

• Energy Consumption: While Smart Buildings aim to reduce energy con-
sumption, maintaining user comfort and system functionality is paramount.
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Poor energy management may result in higher operational costs and envi-
ronmental impacts. Thus, Smart Building designers must focus on advanced
energy management systems and sustainable technologies to mitigate this
challenge effectively.

• Network Traffic Management: Inefficient network traffic management
can result in data congestion and potential security vulnerabilities. Poorly
managed network traffic can disrupt communication between devices and
systems, impacting the reliability and security of Smart Building operations.
Implementing robust traffic management solutions is essential to ensure efficient
data flow and data security within the building’s network infrastructure.

• Quality of Service (QoS): Inconsistent QoS can lead to disruptions in
services like video surveillance, Access Control and automation, potentially
creating security vulnerabilities. Ensuring that QoS standards are achieved, is
crucial for the reliable operation of critical Smart Building functions.

• Authentication and Authorization: Weak authentication and authoriza-
tion mechanisms pose significant security risks to Smart Buildings. Inadequate
user or device verification can lead to unauthorized access, potentially com-
promising sensitive data, control over critical systems and overall building
security. Smart Building developers must prioritize robust authentication and
authorization protocols to safeguard against unauthorized intrusions.

• Unsecured Communication Protocols: The use of unsecured commu-
nication protocols can leave communications vulnerable to attacks, allowing
potential adversaries to intercept, manipulate or compromise data exchanged
between devices and systems within the Smart Building. This creates signifi-
cant risks to data privacy, physical building security and operational continuity.

• Diversity of Protocols: The diversity of protocols can cause incompatibility,
hindering communication and creating operational inefficiencies. Selecting
and implementing standardized protocols is essential to ensure effective com-
munication among various building components.

• Heterogeneous Configuration: Integrating devices and systems from dif-
ferent manufacturers can result in configuration and interoperability challenges.
These differences can complicate management and maintenance, potentially
leading to compatibility issues and suboptimal performance. Smart Building
planners must emphasize standardization and compatibility to mitigate these
challenges effectively.
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• Long-Term Software Deployment: The long-term sustainability of Smart
Building software involves several intricacies. As technology evolves, main-
taining and updating software to remain compatible and secure over extended
periods can be complex. Without continuous updates and security patches,
Smart Building systems may become vulnerable to cybersecurity threats. This
challenge highlights the need for a robust software development strategy that
considers long-term support, adaptability and security.

• Load Balancing: Traffic spikes or energy imbalances can overwhelm certain
components, leading to performance degradation or system failures. Effective
load balancing is essential to ensure consistent and reliable operation, as it
distributes workloads evenly, preventing bottlenecks and maintaining optimal
system performance.

• Bandwidth Management: The rapid proliferation of connected devices
within Smart Buildings can strain network bandwidth. This strain can lead
to congestion and latency, particularly affecting critical applications such as
real-time surveillance and emergency communication. Managing bandwidth
effectively is vital to ensure that the diverse data needs within a Smart Building
are met without compromising the performance of essential services.

2.1.4 Traffic Analysis
Traffic analysis, in the context of computer networks, is a technique used to examine,
analyze and understand the flow of data traveling through the network from one
device to another (e.g., from device A to device B and / or vice versa). This type of
analysis, can be conducted at different levels and can involve either a very general
study of data traffic or a more detailed and meticulous one, carried out on the
specific network packet.

Three different types of traffic analysis can be highlighted:

• Analysis of Traffic Volume: It involves monitoring the flow of data
through the network, without examining the specific content of the packets.
The goal is to assess the level of network congestion, identify traffic peaks and
detect possible general anomalies.

• Metadata Analysis: It consists of analysis of metadata from various data
packets without looking at their content. Indeed, metadata includes important
information related to the packets’ transmission (e.g., source and destination
IP addresses, transmission times, protocols used etc.). This type of analysis
can be very useful for identifying communication patterns, data flows and for
detecting suspicious behavior within network flows.
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• Content Analysis: It involves examining the actual content of several data
packets. It can be useful for identifying the type of data being exchanged (e.g.,
images, audio, video, text, etc.). This type of analysis, however, requires clear
and precise permissions, as reading the actual content of network packets can
endanger users’ privacy.

In general, traffic analysis is crucial for resource management, performance moni-
toring and maintaining security in computer networks. However, it is important to
always act with respect and in accordance with the privacy of various users.

2.1.5 Action Identification
After introducing the general characteristics of the traffic analysis in Subsection
2.1.4, it is now possible to discuss the concept of action identification.
This concept, for instance in the context of the Internet of Things, can refer to the
process of analyzing traffic generated by devices to understand specific actions that
are either requested or, directly executed. When different devices communicate
with a management platform or with each other, they generate, like all devices that
are capable of connecting to the Internet, a stream of data that, when analyzed,
provides information regarding the actions (e.g., device status updates, service
requests or specific operations) that are or need to be taken.

Action identification can be useful for several purposes:

• Behavior Monitoring: It means understanding how various devices interact
with each other and then monitoring the overall behavior of the IoT system.

• Security: By understanding and detecting different, suspicious or unautho-
rized behavior, it helps to ensure the security of the system, preventing and
thus avoiding attacks or unauthorized manipulation and accesses.

• Issue Diagnosis: Action identification can help find and solve any problems
or malfunctions in the IoT system.

• Resource Optimization: Comprehending device actions can be helpful for
optimizing the use of network resources and the devices themselves.

In this thesis, traffic analysis and action identification play a key role in improving
the security of Smart Buildings, particularly in addressing challenges related to
Access Control policy management. The challenge lies in the encrypted nature
of traffic generated by IoT devices, which hinders traditional inspection methods.
However, machine learning is a powerful tool for classifying encrypted traffic based
on characteristics derived from packet length, variance and other metadata.

14



Background and Related Work

It is important to note that machine learning does not decrypt packet content, but
operates on computed features to classify traffic patterns associated with different
IoT device activities. Furthermore, this classification aids in refining Access
Control strategies, enabling a more nuanced decision-making process regarding
device access within Smart Building networks. The synergy between traffic analysis,
action identification and machine learning thus ensures, innovative and effective
Access Control management, without compromising the privacy of encrypted data
transmitted between the several IoT devices within the system.

2.2 Related Work
Automated Network Security Orchestration and Configuration

In their respective works, Bringhenti et al. [1] and Sisto et al. [2] contribute
significantly to the field of automated network security. Bringhenti et al. introduce
the VEREFOO (VErified REFinement and Optimized Orchestration) framework,
addressing complex challenges in orchestrating security functions within virtual
networks. Their focus on automated firewall configurations [3] sheds light on
the evolving landscape of network security in dynamic environments. Meanwhile,
Sisto et al. provide a comprehensive overview of automation in network security
systems, emphasizing its pivotal role in enhancing overall security. Their work
not only serves as a valuable reference but also outlines a roadmap for future
research, identifying key challenges and potential directions for automating security
configuration processes. Together, these contributions form a holistic perspective
on advancing automated approaches for securing dynamic network environments.

Advancing Security in Smart Environments: Access Control, Authoriza-
tion and Threat Modeling

Sikder et al. [4] introduce a sophisticated multi-user and multi-device access-aware
system optimized for Smart Home environments. This work outlines the challenges
of managing Smart Home access in shared environments, providing valuable insights
for securing user interactions. Their construction emphasis on users’ skills adds a
layer of granularity to the control mechanisms used, increasing the overall level of
security of Smart Homes.
Cirani et al. [5] contribute with an OAuth-based authorization service architecture,
named IoT-OAS, shedding light on licensing mechanisms in IoT. Their work
underscores the significance of secure Access Control, aligning with contemporary
authorization best practices.
Ren et al. [6] propose a secure Smart Home authentication system using voice
recording and the Internet, focusing on strengthening authentication, particularly
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for remote Smart Home device access. The inclusion of voice recording enhances
overall Smart Home security.
In a broader context, Ning et al. [7] conduct a comprehensive examination of cyber
enterprise security within the Internet of Things. Their research provides valuable
insights into complex security challenges and concepts that characterize the vast
IoT landscape. By addressing cyber entity security, their work contributes to the
understanding of the multiple security dimensions in IoT environments.
Furthermore, Valenza et al. [8] introduce a hybrid threat model designed for
intelligent systems. This work provides a comprehensive approach to threat mod-
eling, aimed at strengthening the security posture of smart environments. By
combining different threat elements in a hybrid model, their research contributes
to the development of robust security algorithms designed for intelligent systems.

Enhancing Cybersecurity in Smart Environments: Anomaly Detection
and Packet-Level Signatures

Bringhenti et al. [9] explore the area of cybersecurity personalization within Smart
Homes, introducing a threat model aimed at fortifying security measures. Alrashdi
et al. [10] present AD-IoT, an anomaly detection system designed for identifying
IoT cyberattacks in Smart Cities, enhancing our understanding of threat detection
in complex environments. This work also highlights the importance of finding
appropriate security models, in order to address the risks related to Smart Home
environments and IoT ecosystems.
In addition, De Carli et al. [11] focus on detecting abnormal usage for IoT devices
within homes, focusing on detection and response to unusual behaviors. These
collective efforts greatly contribute to the development of ongoing initiatives aimed
at strengthening the resilience of the IoT ecosystem against cyber threats.
Trimananda et al. [12] introduce packet-level signatures for Smart Home devices
and help to understand security policies and measures at the network level. Their
work, through the development of a framework called “PingPong”, focuses on
developing signatures to identify, manage and respond to potential threats in Smart
Homes. The emphasis on packet-level analysis enhances the granularity of threat
detection, providing valuable insights for securing Smart Home networks.

Privacy Concerns and Security Solutions in Connected Environments

Privacy issues in Smart Homes are a significant focus, as explored by Acar et al. [13]
in their study “Peek-a-Boo”. The research emphasizes the need to address privacy
challenges, particularly in encrypted Smart Home environments. It highlights the
delicate balance required between Smart Home features and user privacy protection,
recognizing evolving privacy concerns in connected environments.
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In the wider context of digital security, Taylor et al. [14] introduce AppScanner,
an innovative tool designed for automatic fingerprinting and identification of
smartphone applications from encrypted network traffic. AppScanner provides a
reliable solution for real-time app identification, addressing critical security needs
in the dynamic mobile application landscape.
In the realm of IoT security, Miettinen et al. [15] contribute to the field with IoT
Sentinel, a system focused on automated device type identification and security
application. Leveraging a sophisticated fingerprinting mechanism and machine
learning classification, IoT Sentinel demonstrates its strengths in proactive vulner-
ability assessment and effective mitigation strategies.
These works collectively highlight the multifaceted nature of privacy issues in
connected environments and show innovative security solutions that aim to address
these challenges effectively.

Behavior Transparency and Control for Smart Home IoT Devices

O’Connor et al. [16] introduce HomeSnitch, which focuses on explicit behavior and
controls for Smart Home IoT devices. Their work contributes to the development
of tools for greater visibility and control of IoT devices in home environments. The
emphasis on transparent behavior coincides with the growing importance and need
of user-centric control over Smart Home devices, addressing concerns about device
behaviors and potential privacy implications.

Advancements in Smart Building Security and Infrastructure

The research conducted by Wendzel et al. [17] focuses on the security implications
of user interactions within Smart Buildings, offering strategies to strengthen the
system. By emphasizing the crucial role of user involvement, Wendzel provides
valuable insights that help to shape the overall security landscape. To complement
this, Ciholas et al. [18] present a systematic review of the literature, providing
a comprehensive overview of the current state of the art and exploring future
directions for Smart Building security.
A significant contribution to the field comes from Xue et al. [19], who introduce
the S2Net framework. This framework, optimized for software-defined intelligent
architecture networks, addresses the unique challenges posed by Smart Building
environments. By incorporating modern techniques, it aims to improve the effi-
ciency and security of Smart Building systems. In addition, Zangrandi et al. [20]
delve into security aspects, specifically examining threat profiles associated with
IoT devices, including behavioral protocols and algorithms provided directly by
manufacturers. Both projects emphasize the evolving security landscape of Smart
Buildings, highlighting the importance of flexibility and sensitive security measures.
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Moving beyond theoretical frameworks, Hernández-Ramos et al. [21] introduce
SAFIR, a practical secure access framework for IoT-enabled services. This frame-
work places a strong emphasis on secure access mechanisms, contributing signifi-
cantly to the development of systems that ensure the integrity and confidentiality
of services within Smart Buildings.
In the broader context of Smart Building infrastructure, Verma et al. [22] conduct
a comprehensive review of sensing, control and IoT infrastructure. Their work not
only provides a detailed overview of the factors that shape the Smart Building
ecosystem, but also offers valuable insights into the challenges and opportunities
inherent in creating a resilient IoT infrastructure. Together, these studies weave a
narrative of continuous progress and adaptation in the pursuit of security and the
advancement of Smart Building technology.

Advanced Approaches in Traffic Analysis and Anomaly Detection

In the area of improving safety through traffic analysis and anomaly detection,
researchers have made significant contributions. Hamza et al. [23] elaborate on
the crucial role of profiles MUD for the security of IoT ecosystems. Their work
emphasizes the development, validation and use of behavioral profiles, highlighting
the importance of MUD data. Complementing this, Ranathunga et al. [24]
offer tools designed to automate and validate MUD profiles, providing valuable
improvements for security measures in IoT devices.
Shifting the focus to the context of Smart Buildings, Younus et al. [25] explore the
complexities of software-defined web-enabled infrastructures. Their comprehensive
analysis sheds light on architectural complexities, usability challenges and the
broader network security landscape within IoT-enabled Smart Buildings. Under-
standing these issues is critical to improve stability and security in the evolving
landscape of Smart Building infrastructure.
In the domain of Software-Defined Networking (SDN), Fayazbakhsh et al. [26]
propose FlowTags, an extension designed to address the challenges posed by
dynamic middlebox actions in network architectures. This innovative framework
provides essential visibility into middlebox operations, enabling effective policy
enforcement and integrity verification within SDN.
Addressing the human element in network profiling, Chuluundorj et al. [27] present
a system that exploits user actions to improve network traffic analysis. Their focus
on distinguishing between normal and abnormal network activities by monitoring
user and application interactions shows the potential of a UI sensor to achieve high
accuracy in classifying network traffic based on user-initiated actions. Together,
these studies contribute to the continued evolution of advanced approaches in traffic
analysis and anomaly detection that are critical to the security of modern network
infrastructures.
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Chapter 3

Threat Analysis and
Mitigation Strategies

This Chapter presents the potential threats within the network of a Smart Building
(Section 3.1), as well as possible approaches to mitigate those threats (Section 3.2),
while considering the best approach.

3.1 Threat Model
This Chapter describes a threat model which illustrates the potential risks and
vulnerabilities that Smart Buildings might face in terms of security. By analyzing
and understanding these possible risks, it will be possible to develop effective
strategies and solutions to mitigate and manage emerging security challenges in
today’s Smart Buildings.

Within a Smart Building, several pressing threats require careful consideration to
sustain the integrity and security of the network environment. These are the main
threats:

1. Excessive Access: Automatic assignment of full network access to new
devices or users can pave the way for indiscriminate access and unauthorized
intrusion. This underscores the need for precise measures to avoid scenarios
in which privileges exceed needs.

2. Privilege Abuse: Legitimate users may attempt to make unauthorized
changes to network settings or introduce unapproved devices. Such actions
carry the risk of unintended consequences, ranging from compromising net-
work integrity to exposing the system to potential security vulnerabilities.
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Maintaining active monitoring and strict restrictions on user activities emerges
as an imperative strategy to effectively mitigate this risk.

3. Privacy Violation: If communications between the user’s application and
the device are not sufficiently protected or the encryption used to protect
communications is weak or compromised, there may be a risk of interception
by third parties, who could decrypt or manipulate data traffic. The privacy
breach could allow an attacker to access sensitive user information.

4. Persistent Access: The persistence of access granted to temporary guests
or devices without prompt removal from the network accentuates the risk
of sensitive information leakage or unauthorized activity, underscoring the
critical need for efficient access revocation mechanisms.

5. Man-in-the-Middle Attacks: Communications between devices may be
subject to “man-in-the-middle” attacks if they are not adequately protected.
Such attacks may allow an attacker to intercept or alter communications.

6. Firmware and Software Vulnerabilities: Unpatched vulnerabilities in
the firmware and software of connected devices may be exploited to gain
unauthorized access to the network, emphasizing the importance of regular
updates and security patches.

7. Integration with External Systems: Connections to external systems,
such as cloud services or third-party networks instead, may introduce new
threat vectors that require extended security measures.

As an example, we consider the context of a Smart Building system, where an
employee with administrator privileges decides to integrate the system with a new
cloud service, in order to optimize data management. However, due to an insufficient
implementation of cryptography during the integration process, communications
between the system and the cloud service become vulnerable to “man-in-the-middle”
attacks. An attacker, exploiting this vulnerability, is able to intercept sensitive
information transmitted between the system and the cloud service, thereby gaining
unauthorized access to user data. In addition, exploiting his privileges, the employee
also makes unauthorized changes to network security settings and introduces a new
personal device without the necessary approval, configuring the system to allow
for indiscriminate access. This action not only compromises the integrity of the
network, but also creates a situation of privilege abuse.

Although this is just a simple example, it effectively highlights how each aspect
within the network of a Smart Building is crucial for the proper and secure execution
of routine activities.
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Figure 3.1: Example of a Smart Building Structure

3.2 Approaches for Threat Resolution
During the research work for this thesis, three main approaches were primarily
analyzed: Brownfield approach (Subsection 3.2.1), Proxying (Subsection 3.2.2) and
Access Control (Subsection 3.2.3). These three approaches differ from each other
in terms of characteristics and implementation methods, but all three, prove to be
crucial for the enhancement of network security within Smart Buildings.

3.2.1 Brownfield Approach
The Brownfield approach, thoroughly discussed within the paper authored by Miet-
tinen et al. [15], is a strategy that focuses on managing security and vulnerabilities
in an existing environment rather than creating a new system or infrastructure
from scratch.

When considering the threats highlighted in our threat model (Section 3.1), the
Brownfield approach proves to be a relevant solution, offering targeted strategies
to address a multitude of security problems. This approach for instance, faces
the threat “Excessive Access” directly through a comprehensive verification of
existing vulnerabilities, identifying obsolete or unpatched devices. It also allows
the isolation of such vulnerable devices within dedicated segments, preventing
the spread of vulnerabilities within the network. In addition, the “Firmware and
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Software Vulnerabilities” threat, which emphasize the importance of regular updates
and patches, finds a natural resolution in the Brownfield approach. As part of the
overall process, devices that can be updated are prioritized, ensuring that network
components, operating systems, software applications and cryptographic solutions
remain up-to-date. This type of solution minimizes the potential exploitation
of vulnerabilities, helping to improve the overall security of the system. Finally,
in order to mitigate the “Man-in-the-Middle” and “Privacy Violation” threats,
continuous monitoring is essential. Recognizing both the importance and the
vulnerability of communications among devices, the approach incorporates robust
threat detection and active monitoring. This enables a quick identification of
suspicious and malicious activities, facilitating timely and effective responses.

The general process typically includes:

1. Audit of Existing Vulnerabilities: Before introducing new devices or
technologies, it is essential to conduct an audit of existing vulnerabilities
within the environment. This may include identifying outdated or unpatchable
devices, as well as existing threats.

2. Isolation of Vulnerable Devices: If there are legacy devices with known
and unpatchable vulnerabilities, it is advisable to isolate them within separate
network segments or dedicated subsystems. This practice separates IoT
devices, such as sensors and automation equipment, from the main corporate
network, limiting the possibility of vulnerabilities from these devices spreading
throughout the network.

3. Updates and Patching of Manageable Devices: Devices that can be
updated should be kept up to date. For instance, network components,
operating systems, or software applications should be regularly updated to
reduce vulnerabilities.

4. Continuous Monitoring: Threat detection and monitoring systems are im-
plemented to identify suspicious activity or intrusions. Continuous monitoring
is essential for identifying and responding promptly to threats.

The Brownfield approach is often the reality in many organizations, as it is not
always possible to immediately replace all legacy devices. The key to security
in this context is a strategic approach that balances the management of existing
vulnerabilities with the implementation of new technologies and advanced security
practices.
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3.2.2 Proxying
Placing a secure device “upstream” of a vulnerable device to filter harmful traffic,
is a good strategy to enhance security in an IoT environment or within a Smart
Building. This secure device can act as a filter and firewall to protect the vulnerable
device.

Taking into account the specific threats outlined in our threat model (Section 3.1),
it becomes clear that Proxying offers several solutions for effectively mitigating
some of them. To address the “Excessive Access” and “Privilege Abuse” threats,
this type of approach proves to be crucial. By integrating a network firewall, this
approach filters incoming and outgoing traffic, allowing only authorized access to
reach the vulnerable device. In addition, to address the threat “Man-in-the-Middle
attacks”, in which communications between devices are subject to interception or
alteration, the Proxying approach introduces several types of devices, for instance,
a server proxy. This intermediate device performs advanced traffic filtering, en-
suring that only traffic which is considered safe is allowed through. This type of
strategy not only protects against potential intrusions, but also establishes a secure
communication channel between devices. Finally, the use of an Intrusion Detection
System (IDS) and / or an Intrusion Prevention System (IPS), directly addresses the
"Firmware and Software vulnerabilities" and "Privacy Violation" threats. Indeed,
these systems, configured to detect and prevent intrusions or malicious attacks,
contribute significantly to the vulnerable device protection, thus strengthening
security through continuous monitoring and timely responses.

Several types of solutions can be considered:

• Network Firewall: A network firewall is a common device for filtering
incoming and outgoing traffic. It can be configured to allow only authorized
traffic to the vulnerable device and block everything else. One of the many
features of the firewall for instance, is IP filtering. This capability is supported
by the presence of an IP packet filter, a type of security device or software
that operates at the network level and uses filtering rules to determine which
data packets can pass through the device and which should be blocked. This
type of device, can assess data packets based on criteria such as IP addresses,
source and destination ports, protocols and other attributes.

• Intrusion Detection System (IDS) / Intrusion Prevention System
(IPS): These systems can detect and prevent intrusions or malicious attacks.
They can be configured to protect the vulnerable device from known threats.

• Proxy Server: A proxy server can act as an intermediary between the
vulnerable device and the outside world. It can perform advanced traffic
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filtering based on specific criteria, allowing only traffic considered safe.

• Application Layer Gateway (ALG): An ALG is specifically designed to
monitor and control application-level traffic. It can be used to protect specific
applications on vulnerable devices.

• Next-Generation FireWall (NGFW): These devices offer advanced fea-
tures, including application-based filtering, advanced threat detection and
security attack protection.

3.2.3 Access Control
Within a Smart Building, another important aspect can be considered in order to
enhance its security: Access Control. This is a fundamental aspect for ensuring
security and efficient resource management. It involves implementing security
measures to regulate and manage the devices and users connected to the building’s
network. This ensures that only authorized devices and individuals can access
and interact with the building’s systems and data, enhancing overall security and
preventing unauthorized access and potential cyber threats.

Considering our threat model (Section 3.1), this approach proves to be very effective
in mitigating various threats. Thanks to strict identification and authentication
protocols, for example, it is possible to mitigate the risk of “Excessive Access”,
since, only authorized entities are subject to a meticulous verification process, which
ensures that privileges are granted only to those who need them, avoiding the risk of
indiscriminate access and unauthorized intrusion. The threat “Privilege Abuse” is
also effectively mitigated by this type of approach. Indeed, the definition of precise
roles and privileges in the system ensures that legitimate users operate within
predefined boundaries, reducing the risk of unauthorized changes to network settings
or the introduction of unapproved devices. Moreover, with efficient access revocation
mechanisms, the threat “Persistent Access” can be limited; in fact, this strategy
ensures that access is promptly removed, minimizing the risk of sensitive information
leakage or unauthorized activity. The Access Control approach also effectively
counteracts the threat “Privacy Violation”. Through the implementation of robust
authentication processes for both users and devices, along with the utilization of
secure encryption methods and ensuring their proper implementation, it guarantees
the confidentiality of communications, preventing interception by third parties and
thereby safeguarding users’ sensitive information. Through continuous monitoring,
timely updates and security patches, this approach strengthens the Smart Building
network against potential exploits, ensuring that unpatched vulnerabilities are
addressed quickly, thus mitigating the “Firmware and Software Vulnerabilities”
threat. Regarding the “Integration with External Systems” threat, such as cloud
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services or third-party networks, the Access Control approach offers the possibility
of policy management within the devices themselves, thereby eliminating the need
for external devices and with them, potential unwanted attacks. Such measures
serve as a safeguard, protecting devices and systems from potential decryption or
manipulation of data traffic.

There are several key aspects to consider regarding this topic:

Identification and Authentication:

Every user should be uniquely identified and authenticated before being allowed
to access the Smart Building network. This can be done through the use of
credentials such as passwords, PINs, RFID cards, fingerprints, or other biometric
authentication methods.

Roles and Privileges:

The roles and privileges of users within the system should be clearly defined. For
example, security personnel may have access to more areas than employees or
visitors. This helps to limit unauthorized access.

Policy-Based Controls:

Specific policies should be used to define rules and criteria that determine who can
access what and under what conditions. Policies should be flexible and customizable
based on the specific needs of the building.

Logging:

Logging systems should be implemented to track all user activities. This allows for
tracking authorized and unauthorized accesses and provides a starting point in the
event of attacks or incidents.

Continuous Monitoring:

Access Control is not static; it should be continuously monitored and adapted to
changing needs. Access management should be based on a continuous cycle of
evaluation and improvement.

Centralized Management:

Management should be centralized in order to simplify system maintenance and
administration. A centralized system also enables more efficient changes and
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prompt responses to threats.

Updates and Patches:

Devices and software should be kept constantly up to date in order to address
known vulnerabilities and improve security.

3.2.4 The Chosen Approach
Within this thesis, we decided to analyze the management of Access Control
policies for improving security within Smart Buildings. This choice was made after
a careful examination of the other two approaches: Brownfield and Proxying. Unlike
the Brownfield approach, which addresses existing vulnerabilities within legacy
systems and Proxying, which involves installing a secure device to filter legitimate
from malicious traffic, Access Control policies are more concerned with regulating
user interactions and permissions within the system. These policies indeed can
serve as a strategic response to threats identified within the network, especially
regarding concerns related to excessive access, privilege abuse and unauthorized
persistence in the system. Thus, by using robust Access Control measures, it is
possible to effectively mitigate these types of vulnerabilities. Furthermore, the user-
friendly implementation of these policies ensures that security enhancements do not
compromise the operational usability of the building, thereby improving the overall
efficiency, security and well-being of both occupants and the infrastructure. In
conclusion, although each approach to security brings its own strengths, the benefits,
accuracy and adaptability of Access Control policies make them an optimal choice
for dealing with a variety of threats in the dynamic context of Smart Buildings.
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Chapter 4

Smart Building Access
Control: Understanding
Dynamics and Implementing
Robust Policies

This Chapter will emphasize the importance of Access Control policies within
Smart Buildings for the well-being and security of its occupants (Section 4.1). It
will then explore potential strategies to ensure the robust and reliable management
of various Access Control policies. (Section 4.2).

4.1 Access Control Roles, Entities and Policies
Dynamics Explored

In this section, in addition to understanding why Access Control policies are crucial
within Smart Building scenarios, various types of roles that can be encountered
and different situations that may occur within a Smart Building will be presented,
starting with a more general definition (Human Users and Device Identities) and
progressively delving into more detail (Subsections 4.1.1 and 4.1.2), concluding
with a concrete example of policy enforcement (Subsection 4.1.3).

In the context of Smart Building and Access Control policies, it is essential to
categorize users to consider access and determine which entities or devices have
access to the systems. Within a Smart Building, devices transcend their role as
simple entities to access and become active participants in the system, similar to
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users. This category includes a number of sensor devices, cameras, smart locks, light
bulbs and thermostats, each of them, perfectly integrated into the infrastructure.

Users, who include both people and devices, interact with the system, seeking access
to designated resources, services, or devices. System administrators, employees,
visitors and other authorized entities fall into this category of users. Managing
different Access Control policies becomes a significant aspect of Smart Building
governance.

Within the Smart Building network system, two main identities contribute to the
dynamic ecosystem:

Human Users:

By representing individuals as system administrators, employees, visitors and other
authorized people, Human users interact with the network to access resources, data,
or services. Their roles may include managing network configurations, requesting
data, or controlling networked devices. By adhering to defined network access
policies, human users use secure authentication strategies, ensuring that only
authorized people access the Smart Building network.

Device Identities:

This type of identity actively participates in the network, which includes intelli-
gent devices integrated into the network, such as sensors, cameras, smart locks,
light bulbs, thermostats and other technological devices, like computers, smart-
phones or tablets. They exchange data, receive commands and interact with other
network entities, contributing to the overall functionality. Operating within the
network framework, Device identities require careful management through network
and packet-level Access Control policies, in order to ensure secure and efficient
interactions within the Smart Building network.

4.1.1 Example of Access Control Use Case

In this subsection, as previously mentioned, we will delve further into detail by
describing more specifically the potential roles and entities that might be found,
the scenarios that may occur and the types of policies that could be enforced within
a Smart Building.
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User Roles:

• System Administrator: The person with the ultimate control over the
Access Control system, able to create or remove accounts, define rules and
permissions.

• Regular Users: Occupants or users of the Smart Building who require
access to different resources, devices or services. Regular Users may include
employees, security staff or maintenance staff.

• Visitors: Individuals who are not regular occupants but need temporary
access to specific devices or resources within the Smart Building. Visitors may
include clients, guests, or service personnel.

• Device Identities: Smart devices or individuals who interact with the Smart
Building system network through personal computers, smartphones, or tablets.
These users, classified as Device Identities, leverage these devices not merely as
tools but as active participants within the system. The devices themselves are
considered users, enabling individuals to access and control various resources,
devices, or services within the Smart Building environment. Their roles may
vary from controlling smart devices to managing preferences and settings
through dedicated applications or interfaces.

Entities or Devices:

• Sensors: Devices used to detect the presence of people or activities in certain
areas.

• Surveillance Cameras: Used to monitor activities and detect potential
threats or breaches.

• Smart Devices (such as light bulbs, thermostats, etc.): May have
access restrictions based on user preferences or requirements.

Access Policies:

• Access Hours: Definition of specific times when users can access certain
resources and other devices.

• Role-Based Permissions: Users may have different permissions based on
their role (e.g., a standard employee vs. a manager).

• Time-of-Day Access: Access permissions vary depending on the time of
day, allowing for different security levels during business hours, evenings, or
weekends.
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• Emergency Access: Overrides normal Access Controls during emergency
situations.

• Visitor Access: Policies governing temporary access for visitors, including
time limitations and restricted services.

• Geofencing: Access is granted or restricted based on the physical location of
a user or device within the building network.

• Contextual Access: Access is determined by contextual factors like the
purpose of the visit, the user’s task, or the current state of the building (e.g.,
emergency situations).

• Conditional Access: Access is granted or denied based on specific conditions,
such as the presence of multiple authorized users or the status of connected
devices.

Usage Scenarios:

• Virtual Access: Controlling access to systems, devices or data through
computer networks.

Access Conditions:

• System Administrator:

– Network Control: The system administrator has full access and can
control all devices connected to the Smart Building network, managing
thermostats, light bulbs, audio / video systems and environmental sensors.

– Authorization Configuration: They can configure network access for
specific users or devices, define access rules and monitor user activities.

• Regular Users (Employees):

– Personal Network Control: Occupants have access only to devices
connected to the network within their designated areas. For instance,
they can adjust the temperature in their offices or control the lights in
their rooms.

– Limited Network Access: They do not have access to critical network
devices or sensitive network areas, such as server controls or conference
room equipment.
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• Regular Users (Security Staff):

– Access to Surveillance Cameras: Security personnel can access surveil-
lance cameras to monitor activities inside and around the building.

– Access Control: They may have permissions to control network access
to certain areas in response to emergency situations.

• Regular Users (Maintenance Staff):

– Access to Environmental Sensors: Maintenance staff have access to
environmental sensors connected to the network, in order to monitor air
quality and other environmental parameters.

– Limited Access to Critical Network Areas: They may have access
to network-connected devices like thermostats and lights but could be
restricted in more sensitive network zones.

– Access to Devices Under Maintenance: They may have access to
some non-critical network devices that are under maintenance, but only
during the period of the maintenance.

• Visitors:

– Limited Network Access: Guests may have access only to common-use
network devices, such as charging stations or audio systems in public
areas.

– Temporary Network Access: Access to certain network devices may
be granted only for a limited period during their stay.

• Device Identities:

– Network Interaction: Smart devices or individuals using personal com-
puters, smartphones, or tablets can interact with and control devices
connected to the Smart Building network. For instance, managing prefer-
ences, settings, or accessing smart devices through dedicated applications
or interfaces.

4.1.2 Example of Real Access Control Scenarios
We will now outline more detailed network-wide scenarios for a surveillance camera
with Access Control functionality, in relation to the use case described in Subsection
4.1.1. In this example, there are three distinct users who want to interact with a
surveillance camera, which, in turn communicates with an external server in order
to manage Access Control permissions.
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In each of these scenarios, network-wide authorization management involves user
authentication, sending of valid access tokens and controlling permissible actions
based on different types of user’s permission levels. In every scenario, encryption
can be used to protect data transmission and ensure user privacy.

Regular User (Alice):

Alice is a regular and authorized user who has full access to the surveillance camera.
When Alice wants to view the video stream of the camera via the mobile app, the
following steps may occur:

1. Alice opens the mobile application and authenticates herself by entering her
username and password.

2. The application sends a camera access request to the manufacturer’s cloud
server.

3. The server checks if the access policy is valid. Since Alice has the necessary
authorization, the server authenticates Alice’s credentials and sends a valid
access token.

4. The Alice mobile app sends a video stream request to the surveillance camera.

5. The surveillance camera, authenticating the access token, responds by sending
the video stream to Alice.

An example illustrating this policy can be found in Listing 4.1.

Regular User with limitations (Bob):

Bob is a regular user with limited access who can only view video stream with time
restrictions (from 14:00 to 16:00 and from 18:30 to 21:15), but cannot control and
configure surveillance camera’s settings. When Bob accesses the mobile application
to view the video stream within his time constraints and change the settings of the
camera, the following steps may occur:

1. Bob authenticates himself in the mobile app.

2. The application sends surveillance camera access and control requests to the
cloud server.

3. The server checks if the access policy is valid. Since Bob has only a limited
access to the camera, Bob’s credentials are authenticated and a limited access
token is sent.
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4. Bob’s video stream request is sent to the surveillance camera.

5. The surveillance camera, authenticating the limited access token, responds by
sending the video stream to Bob.

6. Bob, wanting to adjust the camera’s settings, attempts to modify configuration
parameters through the mobile app.

7. The application sends a request to change settings to the cloud server.

8. The server, recognizing Bob’s limited access, denies the request to modify
camera’s settings.

9. Bob receives a notification informing him that he doesn’t have the necessary
permissions to change camera’s settings.

An example illustrating this policy can be found in Listing 4.2.

Visitor (Eve):

Eve is a visitor trying to view the video stream of the camera, without having any
type of authorization. When Eve tries to connect, the following steps may occur:

1. Eve tries to authenticate himself in the mobile app.

2. The application sends an access request to the cloud server.

3. The server checks if the access policy is valid. Since Eve is a visitor and doesn’t
have the necessary authorization to access surveillance camera’s functionalities,
Eve’s credentials are not authenticated and the access is denied.

4. Eve receives an error message and does not get access to the video stream or
other features.

An example illustrating this policy can be found in Listing 4.3.

4.1.3 Demonstration of Access Control Policy Enforcement
We will now present a concrete demonstration of Access Control policy enforcement,
linked to the example previously illustrated within Subsection 4.1.2. The following
definitions, roles, device types, actions and conditions, do not cover all the possible
scenarios within Smart Building systems. The ones provided here are meant to
give just an idea of how one or more policies could be constructed.
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Definitions:

• UID (User ID): A random string of 20 lowercase characters associated with
each human user within the system.

• DID (Device ID): A random string of 20 lowercase characters associated
with each device within the system.

• RID (Role ID): Numeric identifier associated with each role within the
system.

Roles:

1. System Administrator: RID: 1

2. Regular Users: RID: 2

3. Visitors: RID: 3

Device Types:

• <device_type_camera> = device_type == ’camera’

• <device_type_thermostat> = device_type == ’thermostat’

• <device_type_light> = device_type == ’light’

• <device_type_smartphone> = device_type == ’smartphone’

• <device_type_tablet> = device_type == ’tablet’

• <device_type_computer> = device_type == ’computer’

Actions:

1. connect

2. exchange

3. access

4. control

5. authenticate
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Conditions:

1. Business Hours: business_hours = access allowed only during business
hours

2. Night Hours: night_hours = access allowed only during night hours

3. Custom Hours: start + end = access allowed only during the hours specified
in the condition clause (ex. “start”: “8:00”, “end”: “9:00” )

4. Weekdays: weekdays = access allowed only on weekdays

5. Location-Based Conditions: access allowed only in specific locations of
the Smart Building (ex. conference_room)

6. Priority-Based Conditions: access is based only on specific priority condi-
tions (ex. fire_emergency)

7. Device Status Conditions: access is based only on device status conditions
(ex. online)

Operators:

1. AND

2. OR

3. NOT

Effects:

1. allow

2. deny

35



Smart Building Access Control: Understanding Dynamics and Implementing Robust Policies

Example of Policies:

{
"rule": " regular_user_camera_access ",
" constraints ": [

{ " source ": { "UID": " ilrmvqm1tres6l8ot8u7 ", "RID": 2
} },

AND ,
{ " action ": " access " },
AND ,
{ " target ": { "DID": "303 xp7mcdn4m5k4ytqiq ", "type": "

camera ", " device_status ": " online " } }
],
" effect ": "allow"

}

Listing 4.1: Example of Alice’s Access Control Policy

{
"rule": " regular_user_camera_access ",
" constraints ": [

{ " source ": { "UID": "2 j4mvjabhjsl6l8i3jm1 ", "RID": 2 }
},

AND ,
{ " action ": " access " },
AND ,
{ "time": [

{ "start": "14:00", "end": "16:00" },
OR ,
{ "start": "18:30", "end": "21:15" }

]
},
AND ,
{ " target ": { "type": " camera ", " device_status ": "

online " } },
],
" effect ": "allow",

OR ,

"rule": " regular_user_camera_control ",
" constraints ": [

{ " source ": { "UID": " ype0skeaexmmqbju6ymw ", "RID": 2 }
},

AND ,
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{ " action ": " control " },
AND ,
{ " target ": { "DID": "303 xp7mcdn4m5k4ytqiq ", "type": "

camera ", " device_status ": " online " } },
],
" effect ": "deny"

}

Listing 4.2: Example of Bob’s Access Control Policy

{
"rule": " visitor_camera_access ",
" constraints ": [

{ " source ": { "UID": " eyz9sn5jr8y0k8hnrg3c ", "RID": 3 }
},

AND ,
{ " action ": " access " },
AND ,
{ " target ": { "DID": "303 xp7mcdn4m5k4ytqiq ", "type": "

camera ", " device_status ": " online " } },
],
" effect ": "deny"

}

Listing 4.3: Example of Eve’s Access Control Policy

4.2 Strategies to Implement Access Control
Policies

OpenFlow:

OpenFlow is a network communication protocol that enables centralized control and
management of network devices, such as switches and routers, in a Software-Defined
Networking (SDN) environment. With OpenFlow, network administrators can
dynamically manage and configure network traffic flows, making it more flexible and
adaptable to changing network needs. Finally, the flexibility given by OpenFlow
allows the implementation and the adaptation of Access Control policies in real
time, enabling more precise control over network communication.

Cloud Authentication and Authorization:

If the IoT device relies on a cloud service for management and control, authentication
and authorization can be managed at the cloud server level. Each user would have
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an account with corresponding permissions and requests from the devices would be
managed according to those permissions. This centralized approach has positive
consequences on the management of Access Control policies, indeed, it simplifies
user authorization management and allows the regulation of access to IoT devices
based on specific permissions assigned to each user account.

VPNs and Secure Connections:

The use of VPNs and secure connections can help ensure that communications
between the IoT device and the management server are protected. In this way,
authorization could be managed through secure authentication protocols. In the
context of Access Control policies, the secure communication facilitated by the use
of VPNs adds an additional layer of security to the authorization process. The
encrypted nature of VPN connections in fact, protects against unauthorized access
and data breaches, thus making an important contribution to the overall Access
Control management strategy.

Token of Authorization:

Sending authorization tokens along with device requests may be one way to manage
authorizations. The tokens could be generated and managed at the server level
and validated by the device before specific actions are performed. This strategy
enables more granular management of Access Control policies. Indeed, tokens,
generated and managed at the server level, enable the validation of device requests
only if they are associated to authorized tokens, thereby facilitating the immediate
exclusion of unauthorized requests.

User Recognition at Application Level:

Some IoT devices may implement user recognition at the application level. For
example, a mobile app associated with a device may require user authentication.
This way, only authorized users can send commands or access certain features
through the application. This type of strategy allows access and actions to be
restricted to only authorized users, thus contributing to efficient and more high-level
management of Access Control policies.

IP Filtering with MUD

IP Filtering with MUD (Manufacturer Usage Description) rules is a network security
technique that allows network administrators to control and manage the network
traffic based on the specific behavior and requirements of connected IoT devices,
for instance restricting incoming and outgoing connections based on specific IP
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addresses and ports associated with authorized users. MUD rules are created by
device manufacturers and describe the intended communication and access patterns
for their devices. These rules are implemented in network devices, such as routers
and firewalls, to enforce policies that permit or restrict network access for IoT
devices according to their intended usage. This approach then, allows specific
Access Control policies to be defined for each device based on the MUD rules
provided by the manufacturers.

Layer 4 Filtering (Vulnerability Protection):

Layer 4 filtering is a network security measure that focuses on safeguarding networks
against known vulnerabilities and threats. In this context, filtering occurs at
the transport layer of the OSI model, which allows for precise control over data
transmission based on attributes like source and destination ports. By implementing
Layer 4 filtering techniques, organizations can enhance their network security and
optimize performance by blocking or allowing specific types of traffic. In this way
it is possible to precisely control traffic based on source and destination ports,
contributing to the definition of specific and targeted Access Control policies.

Machine Learning-Based Traffic Classification:

Traffic classification in Smart Buildings involves the use of machine learning al-
gorithms to analyze and classify network activities generated by several devices.
By then classifying devices based on their traffic patterns, it becomes easier to
modify and improve Access Control policies, ensuring that only authorized devices
interact with specific areas or systems. This dynamic approach not only improves
security by identifying potential threats, but also contributes to efficient network
management.

Device Tagging:

Device tagging for Access Control in Smart Buildings involves assigning specific
labels or attributes to devices connected to the network. These labels can include
information about the device type, owner, location and security requirements.
By categorizing and tagging devices, it becomes easier to enforce Access Control
policies, monitor network activity and ensure that each device is compliant to
security and standards. This, could help in maintaining a secure and well-managed
network environment within the building.
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Figure 4.1: Device Tagging

4.2.1 Incorporating Access Control Policies Within the
Device

Another strategy to implement Access Control policies could be incorporating
them within one or more devices. Indeed, it may be necessary to implement less
advanced Access Control policies that relies on systems integrated in the device
itself, without the use of external servers or third-party dependencies.

The implementation then, could be managed as follows:

1. Local Authentication: Implement a local authentication system on the
device itself. Users must authenticate directly to the device using specific
credentials (e.g., username and password).

2. Assign Permission Levels: The device assigns specific permission levels to
each authenticated user. For example, there may be a user with full access
and a user with limited access only to specific device functionalities.

3. Package Labeling: Each packet of data generated or received by the device
is labeled with the associated user identifier and its permission level. This
label is added to the package metadata.
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4. Local Permission Control: Before performing a specific action (for example,
sending a video stream to a mobile application or changing device settings),
the device verifies the package label and associated authorization level locally.
Only actions allowed for the authenticated user are performed.

5. Local Encryption: Implement local encryption to protect communication
between the device and user applications. Encryption ensures security when
transmitting data within the network.

6. Local User Management: The device manages the list of authorized users
and their credentials locally. Administrators can add, remove, or edit users
directly through the device interface.

This approach reduces the dependency on external servers, allowing the device
to operate independently within the network. However, it is important to note
that while this solution may simplify the architecture, it requires effective local
management of security and device manufacturer permissions. In addition, the
implementation should be carefully designed to mitigate risks such as unauthorized
access and firmware vulnerability.
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Chapter 5

Machine Learning-Based
Traffic Classification:
Implementations and
Experiments

This Chapter will outline the main features of the implementations and various ex-
periments conducted regarding traffic classification of different IoT devices through
machine learning. In particular, Section 5.1 will give a brief overview of the litera-
ture review in this field, Sections 5.2 and 5.3 will describe the two implementations
(PingPong and Random Forest classifier), Section 5.4 will detail the two datasets
used for the experiments while Section 5.5 will illustrate the experiments conducted
on these datasets.

Additionally, the main modules and functions that are part of the code of the
Random Forest classifier, will be described within Appendix A.

5.1 Literature Review
For the experimental section of this thesis, we found the machine learning-based
traffic classification to be of significant interest as a strategy for implementing
Access Control policies (for the reasons previously discussed within Section 4.2 of
Chapter 4). Machine learning indeed, provides a dynamic and adaptive approach
to Traffic Analysis, enabling the real-time identification of patterns and anomalies.
This capability not only has the potential to improve the accuracy of device
classification, but also allows the system to promptly respond to emerging security
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threats. Furthermore, by integrating machine learning with Access Control policy
management, we expect a more resilient and agile system that can adapt to the
many different network dynamics within Smart Buildings, ensuring both robust
security and simplified network management.

As the initial research strategy for the experimental part, we planned to get two
to three different implementations presented in literature ([10], [11], [12], [13],
[16]). Subsequently, we wanted to test them on at least two common datasets and
finally make comparisons and considerations on the various approaches, in terms
of accuracy, precision, recall and F1-score of the classification. Unfortunately, this
was not possible, as, apart from the implementation outlined in [12], which is public
on their research website, all the other implementations could not be obtained.

As a consequence, since [12] provided both a good implementation with innovative
features and a diverse well-structured dataset, we decided to implement a generic
Random Forest Classifier on Python and then, test both implementations on two
different datasets: the PingPong dataset and the one used within [11] (Bhosale
dataset). The choice to test both implementations on two different datasets is driven
by the need to evaluate the generalizability and performance of the classifiers across
different data sources. This strategy indeed, allows for testing and validating the
ability of the two approaches to adapt to different contexts and data distributions,
thus evaluating their potential for use in real-world scenarios, such as those found
within Smart Buildings.

5.2 PingPong
PingPong [12] is an advanced system for the analysis of IoT traffic and represents a
significant innovation in the field of cybersecurity and the detection of Internet of
Things device events. This system is developed to handle the increasing challenges
linked to the analysis of encrypted traffic generated by proprietary protocols, addi-
tionally offering an automated approach in order to extract packet-level signatures
from IoT devices. This implementation, detects previously unexplored packet-level
signatures and introduces an automated approach to extract them from different
training datasets. This enables the creation of generalized models, applicable to a
wide range of devices and events.

A series of different experiments demonstrate the effectiveness of this approach.
These experiments include the analysis of traffic traces from devices such as WeMo
Insight smart plug and Blink camera. PingPong, by leveraging its novel method
focused on events “fingerprints”, demonstrates its capability to address challenges
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such as signature evolution, variability due to specific configurations and encrypted
data analysis. Finally, it implements defenses against possible passive confusion
attacks (such as addition of dummy bytes), ensuring the robustness of traffic analysis
and therefore provides a practical approach to the identification and understanding
of the events of IoT devices.

Key Features of the Implementation:

1. Identification of Package Level Signatures, Clustering and Traffic
Analysis:

• PingPong employs spatial clustering algorithms like DBSCAN to identify
signatures at the packet level within traces of IoT device traffic, enabling
the grouping of packets into clusters associated with specific event signa-
tures. It also uses both exact and relaxed matching techniques to compare
packet signatures and conducts in-depth traffic analysis to detect distinct
patterns and recurring behaviors.

• Signatures represent unique sequences of packets that correspond to
specific events of IoT devices, such as turning a light bulb on or off.

• This approach enables more detailed traffic analysis, allowing the iden-
tification and differentiation of specific events within the overall packet
flow.

2. Extraction Methodology:

• The implementation is based on an automatic approach for signature
extraction. This allows the creation of a generalized model that can be
applied to new devices or similar events.

• PingPong is designed to deal with encrypted data or data generated by
proprietary protocols, allowing for wide coverage in traffic analysis.

3. Identification of Signature Variations and Evolutions:

• PingPong can identify changes in signatures due to firmware updates or
different device configurations. This ability to recognize and adapt to
variations in signatures makes this implementation a robust system over
time.

4. Passive Defense Analysis:

• By addressing possible passive defenses, PingPong implements strategies
such as adding dummy bytes to packets or intentionally delaying packet
transmission. This helps to maintain the effectiveness of the classification
even when there are attempts to obfuscate specific traffic characteristics.
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5.3 Random Forest Classifier
This implementation aims to analyze and classify network flows captured from
Internet of Things devices. The primary goal is to develop a classification model
that can accurately categorize different events or behaviors exhibited by these
devices based on network traffic data. The analysis involves processing packet
captures (.PCAP files) and associated .timestamps files (every file includes a series
of timestamps, each identifying the start of an associated device event, such as
the startup of a smart camera) to extract features, which are then used to train a
Random Forest classifier.

Working Environment and Used Libraries:

For the implementation of this classifier, we decided to use Python, primarily
because it is a simple language to use but also because it offers a vast ecosystem of
libraries and frameworks, specifically created for machine learning and data analysis.
In this case, libraries such as Scikit-learn, Numpy and Pandas were used, which
provide robust tools for building and deploying machine learning models efficiently.
These libraries not only simplify the development process but also provide powerful
functionalities, such as data manipulation, preprocessing and model evaluation. In
addition, this programming language also offers several libraries useful for reading,
filtering and analyzing .PCAP files, with Scapy being the foremost among them.

The main characteristics of the used libraries are:

• PyTZ (version 2023.4): PyTZ is a Python library for working with time
zones. It provides functionality for converting between different time zones,
handling daylight saving time adjustments and locating datetime objects.
Since the data within both datasets were collected in countries with a different
time zone compared to Italy (Los Angeles for the PingPong dataset and UTC
- 1 for the Bhosale dataset), this library was useful for aligning all timestamps
within the .timestamps files to the same time zone of the timestamps within
the analyzed packets.

• NumPy (version 1.26.3): NumPy is a very important package for numerical
computation in Python. It provides support for multidimensional arrays,
along with a collection of mathematical functions for operating on these
arrays efficiently. NumPy is widely used for numerical operations and data
manipulation. We used this library to build the NumPy feature matrix and
the NumPy array of labels, input parameters for the Random Forest algorithm
of the Scikit-learn library.
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• Pandas (version 2.2.0): Pandas is a powerful data manipulation and analysis
library for Python. It offers data structures such as Series and DataFrame,
which make it easy to work with structured data. Pandas offers functionality
for reading and writing data from various file formats, cleaning, reshaping
and aggregating data. We used this library to efficiently construct the data
structure containing the features computed on the various traffic flows.

• Scikit-learn (version 1.4.0): Scikit-learn is a comprehensive machine learn-
ing library for Python. It provides implementations of various machine learning
algorithms, including classification, regression, clustering and dimensionality
reduction. Scikit-learn also provides tools for model selection, evaluation and
preprocessing. We used this library to instantiate, train, test and compute the
performance of the Random Forest classifier in terms of accuracy, precision,
recall and F1-score.

• Scapy (version 2.5.0): Scapy is a powerful interactive packet manipulation
library for Python. It allows users to create, decode and analyze low-level
network packets. Scapy supports a wide range of protocols and can be used
for tasks such as network testing, network discovery and security evaluation.
We used this library to read and filter packets contained within the several
analyzed .PCAP files.

Type of Classifier:

To obtain the best machine learning-based traffic classification performance we
opted for a Random Forest Classifier, which proves to be particularly effective in
classifying IoT device traffic for several reasons. First of all, IoT devices typically
generate data with many characteristics, reflecting the different types of traffic
they produce. Random Forests classifiers, as also demonstrated by Bhosale et al.
in [11], excel at handling this high-dimensionality data, eliminating the need for
complex feature selection or dimensionality reduction techniques. In addition, IoT
traffic patterns, often have complex and non-linear relationships between features
and classes. Leveraging decision trees, this type of classifier effectively models and
classifies complex traffic patterns commonly encountered in IoT environments.

Finally, Random Forest classifiers offer scalability and efficiency, making them
very useful for processing large volumes of IoT traffic data. Different tasks can
be parallelized across multiple CPU cores and their computational complexity
remains manageable even for big datasets. This ensures their applicability in real
IoT environments where scalability and efficiency are critical. In conclusion, as
highlighted by O’Connor et al. in [16], the robustness, the ability to capture
complex relationships, the resistance to unbalanced data, the feature importance
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analysis and the scalability of the Random Forest classifier make it an excellent
choice for effectively classifying IoT device traffic.

5.3.1 Key Features of the Implementation
This subsection outlines the key features of this implementation, focusing on
detailing the methodology employed for feature extraction from packet flows.

This implementation was designed specifically for the analysis of two different types
of datasets. The first type of dataset (e.g., Bhosale dataset) comprises a unified
set of data that needs to be randomly divided into training and test sets, typically
in proportions such as 75% for training and 25% for testing. The second type of
dataset (e.g., PingPong dataset), already consists of two distinct sets of data, each
prepared for classifier training and testing purposes.

Methodology of Feature Extraction:

The classifier in this implementation categorizes various packet flows by considering
the features that can be derived from the packets themselves, in this case, packet
lengths. Packet lengths indeed, can provide valuable information about the network
traffic patterns and behaviors, as highlighted by Taylor et al. in [14].

These are the main distinctive features that can be derived for precise and compre-
hensive classification:

• Average Length: This feature calculates the average length of packets within
a specific time window. It can indicate the typical size of packets transmitted
by the device during specific events.

• Variance: The variance measures the dispersion of packet lengths around the
mean. A higher variance suggests greater variability in packet sizes, which
may indicate different types of traffic patterns or behaviors.

• Standard deviation: Standard deviation quantifies the dispersion of packet
lengths from the mean. It provides insights into the consistency or variability
of packet sizes within the traffic data.

• Minimum and maximum length: These features detect the range of packet
sizes observed during a particular event. They can reveal outliers or anomalies
in packet length and it may be indicative of specific events or behaviors.

• Percentiles: Percentiles (e.g., 70th, 80th and 90th percentiles) divide the
packet length distribution into segments, revealing the distribution of packet
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sizes within the data. For instance, the 70th percentile represents the value
below which 70% of packet lengths fall. Similarly, the 80th and 90th percentiles
represent the values below which 80% and 90% of the packet lengths fall,
respectively.

• Skewness and Kurtosis: Skewness measures the asimmetry of the packet
length distribution, indicating whether the distribution is skewed towards
shorter or longer packet lengths. Kurtosis measures the shape of the distribu-
tion, providing insights into the concentration of packet lengths around the
mean.

Furthermore, it is possible to extract numerous other features such as additional
percentiles or the median absolute deviation, to make the characteristics of each
packet flow increasingly specific. Our Random Forest classifier is then able to
classify different types of device events based on their corresponding network traffic
patterns.

5.4 Datasets
The two considered implementations, have been tested on two different datasets:
PingPong [12] and Bhosale [11]. Both with similar characteristics, i.e., they consist
of traffic traces (.PCAP files) belonging to different devices and for different
events, accompanied by a series of timestamps (.timestamps files), each identifying
the beginning of a series of packets, related to a specific event to be analyzed.
Additionally, data within the two datasets, represent real-world scenarios including
traffic generated by devices that use encrypted communication or proprietary
protocols. The following Subsections 5.4.1 and 5.4.2, explain the main characteristics
of the two datasets.

5.4.1 Bhosale Dataset
The Bhosale dataset consists of several network traffic traces generated by various
IoT devices within a Smart Home environment. It proves to be crucial as it is
useful for training end testing the classifier in the experiment conducted by Bhosale
et al. in [11].

Key Features of the Dataset:

1. Composition:

• The dataset includes many IoT devices that can be found within a Smart
Home environment, for instance a smart tv, a smart camera or smart
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speakers. Each device has a diverse set of traffic traces that can be used
as a rich source of training set for the classifier.

2. Training and Test Sets:

• The Bhosale dataset doesn’t consist of distinct sets of data specifically
designed for training and testing the classifier, unlike the PingPong dataset.
Instead, it contains a unified set of data that must be proportionally and
randomly divided in order to derive training and test sets (we used 75%
of the data for training and 25% for testing).

3. Device Events:

• The dataset includes traces corresponding to several device events (further
information about the type of devices and the analyzed events are provided
within Section 6.1 of Chapter 6, precisely Table 6.2), such as turning on /
off or playing videos with a smart tv, pronouncing a specific word in front
of smart speakers or capturing video streams with the smart camera.

• Each trace is associated with a specific device event, which facilitates the
labeling process performed by the classifier.

4. Timestamps:

• Timestamps are included within the dataset, providing temporal infor-
mation about when each device event was started. This temporal data is
useful to analyze, filter and divide packet flows based on temporal criteria.

In conclusion, the Bhosale dataset collects a large amount of data related to various
events from different IoT devices and proves to be an excellent resource for carrying
out experiments with our two implementations, in relation to traffic classification
through machine learning.

5.4.2 PingPong Dataset
The PingPong dataset consists of numerous network traffic traces generated by
various IoT devices in a Smart Home environment. This dataset is a key component
within the PingPong research project, as it serves as training and evaluation data
for the PingPong implementation, concerning the creation of packet-level signatures
and the analysis of device behaviors.
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Key Features of the Dataset:

1. Composition:

• The dataset includes several IoT devices commonly found in Smart Homes,
including smart plugs, light bulbs and cameras. Each type of device,
contributes to the richness and variety of the dataset.

• The dataset is organized into two main categories: “standalone” and
“smarthome”, providing separate scenarios for the evaluation of PingPong’s
capabilities.

2. Standalone Category:

• The “standalone” category involves individual devices operating indepen-
dently. It enables the analysis of device-specific behaviors without the
influence of interactions with other Smart Home devices. Data of this
category is exclusively used to train the classifier.

3. Smart Home Category:

• The “smarthome” category captures network traffic in a more realistic
network environment, where multiple IoT devices coexist and interact.
This setting introduces complexities associated with simultaneous device
tasks, providing a holistic view of real Smart Home network dynamics.
Data of this category is exclusively used to test the classifier.

4. Device Events:

• The dataset includes traces corresponding to several device events (further
information about the type of devices and the analyzed events are provided
within Section 6.1 of Chapter 6, precisely Table 6.1), such as turning on /
off smart plugs, increasing / decreasing the intensity of smart lights or
capturing video streams with smart cameras.

• Each trace is associated with a specific device event, allowing the training
and evaluation of PingPong’s ability to identify and classify these events
based on packet-level signatures.

5. Timestamps:

• Timestamps are included within the dataset, providing temporal infor-
mation about when each device event was started. This temporal data is
useful to analyze, filter and divide packet flows based on temporal criteria.
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In summary, the PingPong dataset is an important collection of network traffic
data that reflects the complexity of IoT device communication in Smart Homes
and, it serves as the basis for the machine learning-based traffic analysis through
our two implementations.

5.5 Experiments

This section describes the phases of the four experiments carried out on the two
datasets, namely “Random Forest on Bhosale”, “Random Forest on PingPong”
(Subsection 5.5.1), “PingPong on Bhosale” and “PingPong on PingPong” (Sub-
section 5.5.2). Each experiment aims to achieve the classification of bidirectional,
incoming and outgoing traffic flows, in relation to the various IoT devices within
the Smart Home environment. At the end of the experiments, the performance
of the classifiers is evaluated in terms of accuracy, precision, recall and F1-score.
Classification results, comparison of the PingPong and the Random Forest clas-
sifiers, further discussions and considerations will be provided within Chapters 6
and 7 of this thesis.

5.5.1 Random Forest Experiment

The experiments “Random Forest on Bhosale” and “Random Forest on PingPong”
were practically carried out in the same way (the two datasets have the same file
structure). The only difference between them is that in the former case, classification
is performed on a unified set of data, divided into 75% for the training set and 25%
for the test set, whereas in the latter case, classification is performed on a dataset
already divided into distinct sets of data for training and testing the classifier.

Data Collection and BPF Filtering:

We began the experiment by reading from the two datasets the .PCAP files
containing network traffic data of IoT devices. Each .PCAP file was associated with
a timestamp file documenting device events, such as powering on and off, playing a
video or adjusting bulb intensity. To filter relevant traffic, we extracted the current
analyzed IoT device’s IP address(es) from a previously populated dictionary and
used a BPF filter based on IP address filtering. This filtering process resulted in a
list of packets where the IP address(es) of the device appeared as either the source
or the destination address of the packets.
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Data Preprocessing:

Once we obtained the list of filtered packets, we proceeded with data preprocessing.
For each .PCAP file, we extracted and inserted into a list all the packet flows
belonging to a 20-second time window around each corresponding event timestamp.
This ensured that we only used the necessary and sufficient traffic from the device
events for the upcoming classification. Subsequently, from the initial list containing
bidirectional traffic, we derived two additional lists: one containing only outgoing
packets (in which the device’s IP address appears as the source in the packet)
and another containing only incoming packets (in which the device’s IP address
appears as the destination in the packet). Then, for each packet flow, after mapping
each packet within the three lists to its respective length, we computed various
statistical features, comprising about 40 distinctive characteristics (as outlined by
Taylor et al. in [14]), such as mean, minimum and maximum packet sizes, variance,
standard deviation and several percentiles. Finally, this set of features was stored
in a structured NumPy matrix.

Flow Labeling:

Alongside feature extraction, we assigned a label to each device event for each
IoT device under consideration. Each event was then associated with a specific
integer via a previously populated dictionary. These labels were eventually added
to a separate NumPy array, ensuring alignment with the corresponding extracted
features. Indeed, the feature NumPy matrix is characterized by a number of
columns equal to the number of features extracted from each flow and a number of
rows equal to the number of analyzed flows. As each flow has an associated label,
the number of elements within the array of labels is also equal to the number of
analyzed flows.

Training and Testing:

Following the “Data Preprocessing” and “Flow Labeling” phases, we proceeded
with the training of the Random Forest classifier. Leveraging its functionalities
(previously illustrated within Section 5.3), along with the features and labels of the
newly extracted and associated flows, the classifier was able to learn the various
characteristics and peculiarities related to the events of the IoT devices. Finally, we
evaluated the performance of the trained classifier using a distinct set of test data.
This evaluation phase aimed to assess the classifier’s ability to classify different
types of IoT device events with varying degrees of precision, based on the analyzed
packet flows.

In conclusion, through this comprehensive experiment, we aimed to demonstrate
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the effectiveness of using a Random Forest classifier to classify the traffic of different
IoT devices within a smart environment. By integrating packet data with device
event timestamps and using advanced feature extraction techniques, we have tried
to extract valuable insights into the results that can be achieved with this type of
classification, using this type of classifier.

5.5.2 PingPong Experiment
As for the previous two experiments (outlined in Subsection 5.5.1), the experiments
“PingPong on Bhosale” and “PingPong on PingPong” are also nearly identical and
differ only in some minor details, primarily aimed at making the structure of the
Bhosale dataset as similar as possible to that of the PingPong dataset.

Adapting Bhosale Dataset for Compatibility with PingPong
Implementation:

Since the PingPong implementation can be considered as a “black box”, the only
way to make it work with a dataset other than its native one was to take an
external dataset (Bhosale in this case) and modify it in order to make it as similar
as possible to the structure of the PingPong dataset. The most challenging part of
the modification was transforming the Bhosale dataset from a unified set of data
into two distinct sets of data already prepared for training and testing the classifier.
Since many .PCAP files within the dataset were related to the same event of the
same device, we were able to solve this issue by equally dividing these files into
two separate folders, with the same purpose of the “standalone” and “smarthome”
categories of the PingPong dataset. The only thing that couldn’t be changed was
that the conditions of the two Smart Home environments of PingPong and Bhosale
were slightly different (and thus without a real distinction between “standalone”
and “smarthome”), but still compatible and the results proved it. Finally, small
modifications were made to the names of the folders and .timestamps files, in order
to make them reflect the PingPong “style”.

Execution of PingPong Implementation with Different Datasets:

After the previous phase and following the instructions provided to us, we executed
the PingPong implementation first with its dataset and then with the Bhosale
dataset, obtaining output results that would then be compared with those from the
Random Forest Classifier. This part was quite straightforward, since, as mentioned
earlier, PingPong is a “black box” and we only had to concern ourselves with
providing input data and not with what was done during the execution of the
implementation. Nevertheless, the various steps of the PingPong execution are the
same as those illustrated by Trimananda et al. in [12].
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Management of Results:

At the end of the experiment, we obtained the results in the form of True Positives
(TP), False Positives (FP), True Negatives (TN) and False Negatives (FN). Using
these values, we were able to calculate the classifier’s performance, namely: accuracy,
precision, recall and F1-score.

In summary, with these two experiments on PingPong, we aimed to test an existing
solution based on a different classification approach from that used in the Random
Forest classifier experiments. Furthermore, these experiments were very useful as
they allowed us to obtain an excellent set of results for comparison between the two
approaches, enabling us to delve into an interesting discussion regarding strengths
and weaknesses of these techniques and the future implications to ensure that such
strategies can be widely used in the context of Access Control policy management
within Smart Buildings.
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Results

This Chapter will present the results of several experiments conducted by running
two different implementations: the PingPong and the Random Forest Classifier, on
two different datasets discussed in Chapter 5. Furthermore, many considerations
regarding the two different approaches will be made, addressing two questions:

• What is the accuracy achieved by the Action Identification methods?

• Which approach gives the best results?

6.1 Events of Analyzed Devices

The Table 6.1, shows all the IoT PingPong devices and the corresponding events
that were analyzed. The PingPong dataset includes a wide range of devices, ranging
from smart bulbs and cameras to thermostats and sprinkler systems. A notable
trend is the prevalence of “on/off” events, which are a common event among
multiple devices such as Amazon Plug, D-link Plug and Smart Things Plug. This
suggests a fundamental and frequently encountered functionality related to the
activation and deactivation of the device. Additionally, specific types of devices
show specific features corresponding to their functionality. For instance, cameras
like the Arlo camera have “stream on/off” events, which emphasize the monitoring
aspect, while irrigation systems like Blossom and Rachio have events related to
different types of modes.
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Device Events

Amazon plug on/off

Arlo camera stream on/off

Blossom sprinkler mode - quickrun

D-link plug on/off

D-link siren on/off

Ecobee thermostat hvac

Kwikset door lock lock/unlock

Nest thermostat fan on/off

Rachio sprinkler mode - quickrun

Ring alarm arm/disarm

Roomba vacuum robot robot mode

Sengled light bulb on/off - intensity

Smart Things plug on/off

TP-link bulb on/off - intensity - color

TP-link plug on/off

WeMo Insight plug on/off

WeMo plug on/off

Table 6.1: PingPong IoT devices and related analyzed events

Table 6.2 provides information about events associated with several devices within
the Bhosale dataset. A notable trend here, as in the PingPong dataset, is the
prevalence of “startup” events (“on/off” on PingPong dataset) on all devices. The
diversity of events shows the different capabilities and functions of the devices;
for example, Arlo and Omna cameras include events such as ’night vision’ and
“video stream”, emphasizing their surveillance and video-related features. Echo
and Google Home, being smart speakers, are characterized by events such as
“weather”, “wake word” or “volume adjust”, highlighting their ability to provide

56



Results

weather information and customization of specific settings. Samsung TV instead,
in addition to the “startup” event, is characterized by the “play video” event, which
indicates a specific action related to media playback.

Device Events

Arlo camera startup - night vision - video stream

Echo startup - weather

Echo Dot startup - wake word - volume adjust

Google Home startup - weather - wake word - volume adjust

Omna camera startup - night vision - video stream

Samsung TV startup - play video

Table 6.2: Bhosale IoT devices and related analyzed events

6.2 Performance of Random Forest Classifier
Random Forest Classifier on Bhosale Dataset:

The classification results obtained by the Random Forest Classifier on the Bhosale
dataset (Table 6.3), indicate high performance across many devices:

• Arlo camera: This device achieved perfect score (100%) across accuracy,
precision, recall and F1 score, demonstrating excellent classification.

• Echo, Echo Dot, Google Home and Omna camera: These devices
present similar outstanding performance compared to the previous one with
99% accuracy, precision, recall and F1 score.

• Samsung TV: This device, while still good, shows slightly lower performance
with 94% accuracy, 96% precision, 90% recall and 93% F1 score.
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Device Accuracy Precision Recall F1 score
(%) (%) (%) (%)

Arlo camera 1,00 1,00 1,00 1,00

Echo 0,99 0,99 0,99 0,99

Echo Dot 0,99 0,99 0,99 0,99

Google Home 1,00 1,00 1,00 1,00

Omna camera 1,00 1,00 1,00 1,00

Samsung TV 0,94 0,96 0,90 0,93

Table 6.3: Classification results obtained by the Random Forest Classifier run on
the Bhosale dataset

Random Forest Classifier on PingPong Dataset:

The classification results obtained by the Random Forest Classifier on the PingPong
dataset (Table 6.4), demonstrates outstanding performance across a diverse set of
devices:

• Majority of devices: These devices achieved perfect scores (100%) across
accuracy, precision, recall and F1 score, indicating highly reliable classification.

• Sengled light bulb: This device shows comparatively lower performance
with 56% accuracy, 77% precision, 55% recall and 44% F1 score, indicating
an important misclassification.

• TP-link bulb: This device displays 92% across all metrics, indicating good
but not perfect classification.

In summary, the Random Forest Classifier generally performs exceptionally well
across both datasets, with only a few devices within the PingPong dataset, present-
ing lower classification metrics. Further in-depth investigations into the specifics
of these cases have revealed a potential issue with misclassification. Specifically,
concerning events such as “intensity” and “color”, unique for the Sengled light bulb
and the TP-link bulb, regardless of the temporal delta that is set, the number of
packets within the considered network flow proves to be significantly low. This,
leads to a lower specificity of the features extracted and computed from the flow,
consequently making it more challenging for the classifier to correctly distinguish
these types of events from more general events or those with more specific features.
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Device Accuracy Precision Recall F1 score
(%) (%) (%) (%)

Amazon plug 1,00 1,00 1,00 1,00

Arlo camera 1,00 1,00 1,00 1,00

Blossom sprinkler 0,98 0,98 0,97 0,97

D-link plug 1,00 1,00 1,00 1,00

D-link siren 1,00 1,00 1,00 1,00

Ecobee thermostat 1,00 1,00 1,00 1,00

Kwikset door lock 1,00 1,00 1,00 1,00

Nest thermostat 1,00 1,00 1,00 1,00

Rachio sprinkler 1,00 1,00 1,00 1,00

Ring alarm 1,00 1,00 1,00 1,00

Roomba vacuum robot 1,00 1,00 1,00 1,00

Sengled light bulb 0,56 0,77 0,55 0,44

Smart Things plug 1,00 1,00 1,00 1,00

TP-link bulb 0,91 0,93 0,91 0,91

TP-link plug 1,00 1,00 1,00 1,00

WeMo Insight plug 1,00 1,00 1,00 1,00

WeMo plug 1,00 1,00 1,00 1,00

Table 6.4: Classification results obtained by the Random Forest Classifier run on
the PingPong dataset

6.3 Performance of PingPong Implementation
PingPong Implementation on Bhosale Dataset:

The PingPong implementation on the Bhosale dataset (Table 6.5) demonstrates
great classification performance:
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• Arlo camera, Echo, Echo Dot, Google Home, Omna camera: These
devices achieved high scores across accuracy, precision, recall and F1 score,
with values ranging from 94% to 100%.

• Samsung TV: This device shows slightly lower performance compared to
the other devices, with 98% accuracy, 99% precision, 98% recall and 98% F1
score.

Device Accuracy Precision Recall F1 score
(%) (%) (%) (%)

Arlo camera 0,96 0,97 0,94 0,95

Echo 0,97 0,99 0,94 0,97

Echo Dot 1,00 1,00 1,00 1,00

Google Home 0,99 0,99 0,98 0,98

Omna camera 1,00 1,00 1,00 1,00

Samsung TV 0,98 0,99 0,98 0,98

Table 6.5: Classification results obtained by the PingPong implementation run
on the Bhosale dataset

PingPong Implementation on PingPong Dataset:

The PingPong implementation on its own dataset demonstrates robust classification
(Table 6.6) across various devices:

• Majority of devices: These devices achieved perfect scores (100%) across
accuracy, precision, recall and F1 score, indicating highly reliable classification.

• TP-link bulb: This device achieves high scores with 98% accuracy, 99%
precision, 98% recall and 98% F1 score.

• Ecobee thermostat and Nest thermostat: These devices display slightly
lower performance compared to the other devices, with accuracy and F1 score
around 94 / 95%.

In summary, the PingPong implementation generally performs well across both
datasets, with only a few devices showing slightly lower classification metrics.
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Compared to the previous analysis, we can observe how this “fingerprints”-based
approach is less affected by the issue of a low number of packets available for
analysis. This is very positive as it allows for more accurate classifications even
when less information is available.

Device Accuracy Precision Recall F1 score
(%) (%) (%) (%)

Amazon plug 1,00 1,00 1,00 1,00

Arlo camera 0,97 0,98 0,97 0,97

Blossom sprinkler 0,95 0,96 0,94 0,95

D-link plug 1,00 1,00 1,00 1,00

D-link siren 1,00 1,00 1,00 1,00

Ecobee thermostat 0,95 0,98 0,91 0,94

Kwikset door lock 1,00 1,00 1,00 1,00

Nest thermostat 0,99 0,99 0,98 0,99

Rachio sprinkler 1,00 1,00 1,00 1,00

Ring alarm 1,00 1,00 1,00 1,00

Roomba vacuum robot 1,00 1,00 1,00 1,00

Sengled light bulb 1,00 1,00 1,00 1,00

Smart Things plug 1,00 1,00 1,00 1,00

TP-link bulb 0,98 0,99 0,98 0,98

TP-link plug 1,00 1,00 1,00 1,00

WeMo Insight plug 0,96 0,99 0,94 0,96

WeMo plug 1,00 1,00 1,00 1,00

Table 6.6: Classification results obtained by the PingPong implementation run
on the PingPong dataset
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6.4 The Best Action Identification Approach

Figure 6.1: Classification results for the Bhosale dataset

Random Forest Classifier run on the Bhosale Dataset:

The Random Forest Classifier shows outstanding performance on the Bhosale
dataset, with an accuracy of 99%, precision of 99%, recall of 98% and an F1 score
of 98%. These high metrics suggest that the Random Forest model can accurately
identify actions within the dataset. Accuracy and recall scores above 98% indicate
a well-balanced performance both in terms of minimizing false positives and false
negatives.

PingPong Implementation run on the Bhosale Dataset:

The PingPong implementation, when applied to the Bhosale dataset, maintains
strong performance. Although the accuracy is a little bit lower than the Random
Forest Classifier, it still stands at an impressive 98%. The accuracy of 99% indicates
a minimum rate of false positives, while the recall of 97% suggests an effective
identification of the action. The F1 score of 98% further underlines the overall
robustness of the PingPong implementation on the Bhosale dataset.
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Figure 6.2: Classification results for the PingPong dataset

Random Forest Classifier run on the PingPong Dataset:

Shifting focus to the PingPong dataset, the Random Forest Classifier shows a
noticeable drop in performance compared to its performance on the Bhosale dataset.
The accuracy, precision, recall and F1 score are considerably reduced (76% on
average), indicating challenges in traffic classification on some devices of the dataset.
The reasons for this discrepancy, were previously explained within the Section 6.2
of this thesis.

PingPong Implementation run on the PingPong Dataset:

In contrast, the PingPong implementation excels on its native dataset, achieving
outstanding and impressive metrics. With an accuracy, precision, recall and F1 score
greater than 98%, this implementation shows a great effectiveness and adaptability.
High scores indeed, suggest that PingPong is able to correctly classify almost all
the events from the traffic flows of devices within in its own dataset.
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In conclusion, the analysis reveals that the PingPong implementation demonstrates
robust performance for both the PingPong and Bhosale datasets. Its ability to
maintain high metrics on its native dataset and to function reasonably well on the
Bhosale dataset suggests a great versatility, efficiency and generalization. On the
other hand, while the Random Forest Classifier excels on the Bhosale dataset, its
reduced performance on the PingPong dataset raises concerns about its adaptability
across different datasets. Furthermore, the two implementations significantly differ
in terms of internal approach: for traffic classification, the first uses the unique
“fingerprints” derived from the events of each device, whereas the second uses features
such as mean and variance associated to the length of packets captured from the
network flow. However, the decision of choosing one of the two implementations
might depend on many different factors, such as the specific characteristics of the
dataset to be analyzed or the desired balance between precision, recall, F1 score
and overall accuracy. The selection process should consider the nature of the data,
their distribution and the potential impact of false positives or false negatives. In
addition, consideration should be given to the computational resources required by
each implementation, especially if the different devices used have limitations on
processing power or memory. Furthermore, the choice could be influenced by the
interpretability of the model’s decisions. For instance, the ’fingerprint’ approach
of the PingPong implementation allows to understand the basis of classification
decisions for each device. On the other hand, the Random Forest Classifier, relying
on statistical features, might be perceived as a ’black box’ with less interpretability.
All these factors, together with the nature of objectives and limitations, contribute
to the selection of the most suitable approach.
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Chapter 7

Discussion

Building upon the findings presented in Chapter 6, this Chapter analyzes the
implications (Section 7.1) of the results of the two approaches, taking into consid-
eration all the associated limitations (Section 7.2). This allows to provide a more
detailed understanding of the research field. In addition, important reflections are
made regarding possible future work (Section 7.3), suggesting potential avenues for
further research.

7.1 Implications
We will now deepen what was previously discussed in Chapter 2, specifically
addressing fundamental principles related to Traffic Analysis (Subsection 2.1.4)
and exploring the core principles of Action Identification (Subsection 2.1.5). In
the context of Access Control policy management in Smart Buildings indeed, the
connection and use of advanced techniques such as Action Identification and Traffic
Analysis, supported by machine learning and packet length evaluation, play a
crucial role.

Connection Dynamics Learning:

The use of machine learning to analyze packet lengths in data streams from IoT
devices enables the learning of specific connection dynamics. Each device, through
its activities, creates unique “fingerprints” and Action Identification, leveraging
machine learning, can recognize and classify these distinctive features. This level
of detail is pivotal, since it allows to create an accurate and precise picture of each
device’s activity, thus making possible the identification of any deviations from the
normal behavior.

The PingPong implementation for instance, relies specifically on those “fingerprints”
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(called “signatures”) unique to each activity. This approach involves training a
machine learning model in order to classify traffic based on different signatures. The
effectiveness of this methodology is highlighted in the results presented in Tables:
6.5 and 6.6 as well as in Figures: 6.1 and 6.2. These illustrate the performance
of the PingPong implementation on two different datasets with different devices
among them, demonstrating a high and promising performance of the classifier,
in total about 98% to 99%, taking into consideration metrics such as accuracy,
precision, recall and F1 score.

In addition, the process of learning connection dynamics enables more effective
management of Access Control policies. For instance, an IoT device with environ-
mental monitoring functions might be authorized to access only specific areas and
specific data, thus avoiding the risk of unauthorized handling. Action Identification,
then, ensures that each action is consistent with the role assigned to that device,
helping to create more targeted and secure Access Control policies.

Identifying Actions via Packet Length:

The evaluation of packet length offers considerable insight into Action Identification.
This approach not only identifies the type of action, but can also distinguish specific
details within an action. For example, the distinction between an authorized access
request and an unauthorized one, can be based on small variations in packet length.
This level of detail allows the implementation of highly customized Access Control
policies, adapting the system’s response based on the specific nature of the identified
action.

The Random Forest Classifier, for example, takes advantage of this type of feature
to classify the diverse packets sent and received by devices within the two datasets.
Analyzing Figures 6.1 and 6.2, the performance of this classifier stands out. Specif-
ically, the classifier achieves about 99% accuracy for devices in the Bhosale dataset
and approximately 84% accuracy for devices in the PingPong dataset. Going into
more detail and considering the Tables 6.5 and 6.6 with a focus on individual
devices, it becomes evident that the significant difference in measurements between
this and the PingPong implementation comes mainly from two devices (especially
the Sengled light bulb). This classifier indeed (as already explained within the
Section 6.2), compared to the other classifier based on the event “fingerprint”,
presents several classification challenges when the features associated with an event
are few and not very specific. In considering which method is most promising
between these two classifiers, it is essential to weigh their respective strengths and
challenges. Based on these considerations, it is necessary to analyze the types of
objectives and the computational resources that are available and then make a
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choice based on what is better to prioritize. For example, having the same amount
of computational resources available, prioritizing a more reliable and accurate solu-
tion across a wider range of devices, even if slightly slower, may lead to choosing
the implementation based on event “fingerprints”. Vice versa, if a slightly less
reliable solution but still highly accurate and faster is acceptable, the approach
based on the Random Forest Classifier would be preferred.

However, let’s consider an example where the system detects many anomalous
packet lengths from a device within a Smart Building. Action Identification
can distinguish whether this change is due to a normal firmware update, which
can be allowed, or if it indicates an attempt to hack the device. Based on this
distinction, the system can apply Access Control policies that allow or block the
action, contributing to ensure the security of protected network areas.

Recognition of Usage Trends and Adaptability to Changes in the Network
Environment:

Traffic Analysis, supported by machine learning, can recognize specific usage trends
of devices. For instance, analyzing the traffic of a device in an office on a normal
day, during working hours it could be associated to a “typical” behavior, whereas
during the night it could be linked to different activities. Therefore, the recognition
of usage trends may help to figure out which are the ordinary activities related
to each device within the network. Moreover, in the context of Access Control
policy management, we can imagine a situation where an IoT device with facility
control functions, shows an unexpected usage trend, such as a significant increase
in access requests during a non-business time period. Traffic analysis, identifying
this abnormal behavior, can trigger an alert and apply Access Control policies,
thus limiting the action of the device during that period and then reducing the
potential risks of unauthorized access or malfunction.

In reviewing the results comprehensively, although the activities of two devices
were not classified correctly by the Random Forest Classifier’s classifier, but,
considering a broad range of devices analyzed, it is possible to conclude that the
overall performance of the models, turns out to be promising. Such a conclusion
holds significant importance, since it indicates the potential for classifying the
activities of virtually all current and future market devices in near real-time. This
capability allows the immediate management of other aspects and behaviors that
were previously unmanageable or very challenging to manage.

Therefore, variations in daily activities or the introduction of new devices will be able
to be detected and integrated into Access Control policies, ensuring dynamic and
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efficient management. This kind of adaptability could not only assure continuous
security, but also allow for flexibility, resulting in constant optimization of Access
Control policies. However, the presence of false positives reduces the overall
classification accuracy and introduces an additional dimension of complexity, that
must be carefully considered. In this context, false positives, consist of the incorrect
identification and classification of one or more device events within the traffic
flow, potentially leading to a misconfiguration of the Access Control policies. For
instance, if the system generates not negligible rate of false positives, it may trigger
unnecessary alarms, interventions or unplanned behavior of devices, interrupting
the normal flow of network activities within the Smart Building. This can lead
to inconvenience for occupants, inefficient use of resources or misinterpretation of
security threats.

7.2 Limitations of the Approach
Despite the positive and promising results that this approach, based on two
different implementations has highlighted, it is now important to discuss the
potential limitations related to the machine learning-based traffic classification.
This discussion is particularly paramount, also in anticipation of the use of these
techniques for the management of Access Control policies within a Smart Building.

Device-Specific Limitations:

Both implementations exhibit slightly lower performance for certain devices (e.g.,
Samsung TV in the Random Forest Classifier and Echo and Ecobee thermostat in
the PingPong implementation). This highlights the challenge of creating a unique
model that excels for all devices due to inherent differences in their communication
patterns. Indeed, different devices can present specific communication models,
making it difficult to come up with a universal classification approach.

Dataset Specificity:

The models are trained and evaluated on specific datasets (Bhosale and PingPong).
While these datasets provide valuable insights, the challenge consists of generalizing
models to the wide range of devices and network scenarios present in several Smart
Building environments. Models then, might not capture the complexity of new
devices or unique usage patterns.

Imbalanced Classes:

In both implementations, some classes have a more significant representation than
others, such as the Sengled light bulb within the PingPong dataset. Unbalanced
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classes might lead to a bias in the model towards the majority class and may affect
its ability to accurately classify the less represented devices.

Static Network Conditions and Behavioral Changes:

Models may be sensitive to specific network conditions prevalent in training data.
However, in real-world scenarios, such as in Smart Buildings, network configurations
are dynamic and devices might be added or removed. Moreover, Smart Buildings
involve human interactions and user behaviors may evolve over time. Changes in
user habits or the introduction of new devices could not be promptly reflected in
the models. Models then, can struggle in order to adapt to changing conditions,
thus affecting their reliability in dynamic environments.

Limited Feature Set:

Both implementations rely on specific features such as event “fingerprints”, packet
lengths, mean, variance, etc. This approach may not capture the whole complex-
ity of communication patterns, especially with the evolution of Smart Building
technologies. Therefore, considering more sophisticated features or exploiting deep
learning techniques, could provide a more nuanced understanding of communication
patterns within Smart Buildings.

Security and Adversarial Attacks:

Models may be vulnerable to adversarial attacks that aim to manipulate network
traffic patterns. Therefore, ensuring the robustness of the models against intentional
malicious behavior or attacks, is crucial for the security of Access Control systems
within Smart Buildings.

Real-Time Constraints:

Assessing the real-time applicability of the implementations is very important,
especially within Smart Building contexts, where Access Control decisions require
low latency. Delays, particularly in authentication and verification processes, can
result in unauthorized access, thereby compromising the overall security of the
Smart Building. Furthermore, such delays in Access Control can significantly
impact emergency response times, increasing the risk for occupants. For these and
other reasons, evaluating the computational efficiency of models and their ability
to provide real-time responses is essential for practical deployment.
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Privacy Concerns:

Network traffic analysis for device classification introduces privacy concerns. Find-
ing a balance between accurate classification and user privacy is paramount. The
implementation of privacy protection mechanisms, such as anonymization or feder-
ated learning, is crucial to comply with data protection regulations.

In conclusion then, addressing these limitations is crucial for implementing effective
and reliable Access Control systems in the dynamic and diverse environment of
a Smart Building. Continuous model refinement, adaptation to evolving device
configurations and a strong focus on privacy and security considerations are key
elements for a successful implementation and operation of IoT devices within Smart
Building environments.

7.3 Future Work
In the context of managing Access Control policies in a Smart Building, a promising
future perspective is to deepen and enhance the machine learning-based approach
for traffic classification. This involves using advanced algorithms such as deep
neural networks, ensemble methods like Gradient Boosting and clustering techniques
such as k-means or hierarchical clustering to learn and dynamically adapt to the
communication patterns of devices within the Building. A key research area could
focus on customizing Access Control policies based on specific contexts. By using
machine learning algorithms, like Support Vector Machines (SVM) or decision trees,
it is possible to analyze traffic data in real time and adapt the policies in response
to changing conditions within the Smart Building. This approach would allow for a
more flexible and adaptable management of Access Control policies while ensuring
high-security standards. Another important aspect concerns the implementation
of Access Control policies focused on the past behavior of devices. Through the
application of machine learning algorithms capable of recognizing patterns and
anomalies in network traffic, a system could be developed to automatically adapt
to changes in device usage patterns, thus improving the overall effectiveness of
these policies.

The interaction between machine learning-based Access Control policies and device
communication protocols in Smart Buildings is another important point. Research
could explore how to optimize the integration of these policies across different types
of devices, thereby ensuring an accurate classification and a consistent management
of authorizations. Furthermore, a critical aspect concerns the robustness of the
traffic classification system. Implementing machine learning techniques that are
resilient to changes in traffic patterns is essential to ensure long-term Access
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Control policy accuracy, especially considering the continuous evolution of smart
environments. Finally, it is also crucial to address the challenges associated with
false positives. A comprehensive management strategy must be integrated into the
system. This could include further verification steps or setting flexible thresholds
that consider the unique characteristics of Smart Buildings. Finding the right
balance between accuracy and adaptability is very important in order to ensure that
Access Control policies remain effective, responsive and adapted to the evolving
dynamics of the intelligent construction environment. In summary, future work
should focus on the evolution and optimization of the machine learning-based
approach for traffic classification to create more flexible, intelligent and adaptable
Access Control policies within the Smart Building environments.
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Conclusions

The research performed in this thesis illustrates a robust and innovative approach in
the management of Access Control policies within Smart Buildings. The adoption
of machine learning-based techniques for traffic classification is an important step
towards creating intelligent, adaptable and secure environments. The research
also showed how the customization of Access Control policies according to specific
contexts could be made possible through the dynamic analysis of network traffic,
thus leading to a more flexible and responsive management. This approach not only
enhances security, but also the overall user experience within the Smart Building.
Indeed, Access Control policies can be tailored to the diverse needs of different
users, across various areas of the building and at different times of the day. This
allows to create a user-centric system while maintaining a high level of security.
Furthermore, a key feature that has emerged is the importance of applying machine
learning algorithms to model and predict device behaviors. This not only allows
for more accurate classification of network traffic, but also provides a dynamic
basis for continuous Access Control management. The introduction of a predictive
element, based on learned models, helps to improve the resilience of the system
and additionally, allows it to anticipate and address not only current challenges,
but also future ones, as it is able to predict and adapt dynamically to changes
in user behaviors and environmental dynamics. Essentially, the use of predictive
models based on machine learning is a key element to ensure the preparation and
the effectiveness of the Access Control policy management system in the face of a
constantly evolving landscape. Moreover, the interaction between machine learning-
based algorithms and device communication protocols represents an important area
of convergence. The research has emphasized the importance of providing consistent
permission management in a heterogeneous environment and demonstrates the
importance of optimizing integration between policies and devices, ensuring accuracy
and consistency in classification. The complexity of the traffic classification system
has also emerged as a key factor. The implementation of machine learning techniques
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capable of adapting to changes in traffic patterns, is essential to ensure the security
of Access Control policies throughout the years, especially in smart environments
characterized by continuous evolution. In conclusion, this research not only provides
an in-depth review and analysis of current developments in Access Control policy
management, but also outlines a path for future development. The integration
of machine learning-based techniques is crucial for the transformation of Smart
Buildings into adaptable, secure and intelligent environments and also shapes the
future where Access Control policies efficiently adapt to the changing needs and
dynamics of users.
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Appendix A

Random Forest Classifier:
Code Modules and Main
Functions

In this appendix, the different modules with their respective main functions within
the project are described. These functions are responsible for the entire flow
of operations, from preprocessing the data within the dataset to evaluating the
Random Forest classifier.

Utilities Module (utilities.py):

This module provides utility functions for various tasks, including converting times-
tamps, filtering packets based on timestamps and computing statistical features
from packet lengths.

The function compute_statistical_features is the main function of this module. It
calculates several statistical characteristics based on packet lengths. The computed
characteristics include the maximum, skewness, variance, standard deviation, kur-
tosis, median absolute deviation and percentiles (e.g., 90th, 80th, 70th, 60th, 50th,
40th, 30th, 20th and 10th percentiles) for both the complete set of packets and the
separate sets of incoming and outgoing packets.

• Parameters:

– packets: The list of packets including the bidiriectional traffic from and
to the current analyzed IoT device.

– incoming_packets: The list of packets including only incoming traffic
to the current analyzed IoT device.
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– outgoing_packets: The list of packets including only outgoing traffic
from the current analyzed IoT device.

• Return Value:

– A NumPy array containing the calculated statistical characteristics for
further processing and analysis.

de f compute_s ta t i s t i c a l_ f ea tu r e s ( packets , incoming_packets ,
outgoing_packets )

Listing A.1: Prototype of compute_statistical_features function

Dataset Formatting Module (dataset_formatter.py):

This module is responsible for reading dataset files, including .PCAP and .times-
tamps files. It extracts features from packet flows, combines them with correspond-
ing labels and prepares the data for training the classifier. The module includes
functions to read .timestamps files, read .PCAP files and format the overall dataset.

The function read_dataset_files is the main function of this module. It iterates
through all files in the directory and subdirectories, searching for .PCAP files. For
each .PCAP file found, it reads the packets and filters them based on timestamps
obtained from a .timestamps file. Statistical features are computed for each flow
of packets using the compute_statistical_features function. This function also
retrieves the label associated with the flow using the get_flow_label function. If a
label is found, it is appended to the list of labels. Finally, the function returns the
computed features and labels as NumPy arrays.

• Parameters:

– folder_path: The path to the folder containing .PCAP and .timestamps
files.

– folder_name: The name of the folder containing the dataset.

• Return Value: A tuple of NumPy arrays representing data and target for
the classifier.

de f r ead_data s e t_ f i l e s ( fo lder_path , folder_name )

Listing A.2: Prototype of read_dataset_files function
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Classifier Module (classifier_module.py):

The classifier module implements a Random Forest classifier. It includes a function
to train and evaluate the classifier both for a “single” and a “double” dataset. The
module also showcases the use of cross-validation and scaling features.

The function train_and_evaluate_classifier is the main function of this module. It
is used to train the classifier using the training set and evaluate its performance using
the test set. It first initializes a Random Forest classifier with specified parameters
such as the number of estimators, random state and criteria for splitting nodes.
Then, it trains the classifier using the training data (X_train and y_train). Next, it
makes predictions on the test data (X_test) and evaluates the model’s performance
using the true labels (y_test). The accuracy of the model and the classification
report are computed and returned as a tuple.

• Parameters:

– X_train: Array-like or matrix of shape (n_samples, n_features) repre-
senting the features from the training set of the dataset.

– y_train: Array-like of shape (n_samples) representing the class labels
associated with the features in X_train from the training set of the
dataset.

– X_test: Array-like or matrix of shape (n_samples, n_features) repre-
senting the features from the test set of the dataset.

– y_test: Array-like of shape (n_samples) representing the class labels
associated with the features in X_test from the test set of the dataset.

• Return Value: A tuple containing the model’s accuracy and the classification
report.

de f t r a in_and_eva lua t e_c l a s s i f i e r ( X_train , y_train , X_test , y_test )

Listing A.3: Prototype of train_and_evaluate_classifier function

Flow Labeling Module (flow_labeling.py):

The flow labeling module provides functions for classifying events based on labels
and indices obtained from timestamps. It assigns integer labels to different IoT
device events, allowing for easier interpretation and analysis of the classification
results.
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The function get_flow_label is the main function of this module. It uses a dictionary,
called label_dictionary, which maps each event to its corresponding integer label.
It then iterates over the dictionary and checks if the event is present as a key. If
found, it returns the corresponding label. If no matching label is found, it returns
the integer −1.

• Parameters:

– activity: The activity (event) coming from the type of captured flow.

• Return value: The integer label associated with the event or the integer −1.

de f get_f low_label ( a c t i v i t y )

Listing A.4: Prototype of get_flow_label function

IP Addresses Module (ip_addresses.py):

The IP Addresses module provides a function to map device names to their
corresponding IP addresses. This is useful for identifying the source and destination
of network traffic flows.

The function get_ip_address uses a dictionary, called device_ip_dictionary, which
maps each device name to its corresponding IP address(es). It then iterates over
the dictionary and checks if the device name is present as a key. If found, it returns
the corresponding IP address(es). If no matching IP address is found, it returns
the integer −1.

• Parameters:

– device_name: The name of the device.

• Return Value: The IP address associated with the device name or the integer
−1.
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