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Chapter 1

Introduction

1.1 Context

In a world where Artificial Intelligence (AI) and machine learning are experiencing
unprecedented growth, industries are in a race against time to deliver cutting-edge
products. These products aim to excel in various aspects, whether it be speed,
accuracy, or versatility, offering a multitude of possibilities for exploration and
research. In the realm of real-time applications, AMD, bolstered by its acquisition
of Xilinx, is endeavoring to introduce innovative products with minimal inference
time. This strategic move opens doors to numerous opportunities.

The application of AI in real-time event processing allows businesses to discern
patterns, identify trends, and respond swiftly to emerging threats and opportunities.
Furthermore, the spotlight on self-driving applications in the automotive industry
has intensified. Real-time data sourced from cameras, lidar, and radar plays a
pivotal role in enabling AI-equipped self-driving cars to interpret their surroundings.
Algorithms analyze this data in real-time, facilitating navigation, obstacle avoidance,
and adherence to traffic rules. Projections indicate that the global automotive
artificial intelligence market will reach a valuation of $74.5 billion by 2030 [1].

Xilinx has introduced a groundbreaking family of devices, the Versal Family,
capable of achieving remarkable results. Versal adaptive System on Chips (SoCs)
offer unparalleled value at both application and system levels, catering to cloud,
network, and edge applications. These devices stand out for their dynamic cus-
tomizability at both hardware and software levels, making them suitable for a wide
spectrum of applications and workloads.
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Introduction

1.2 Research motivation
In the landscape of adaptive compute acceleration platforms, the Versal Series by
Xilinx stands out as a versatile family designed to cater to specific application needs.
Among these, the Versal AI Edge Series holds particular significance. Described
on the Xilinx website as a series that "delivers high performance, low latency AI
inference for intelligence in automated driving, predictive factory and healthcare
systems, multi-mission payloads in aerospace and defense, and a breadth of other
applications" [2], it has garnered attention for its capabilities in diverse real-world
scenarios.

The VEK280, positioned as the most comprehensive board within the Versal
AI Edge Series, has demonstrated remarkable performance. However, it faces
challenges in reaching the market due to its high production cost, compounded by
its original intent for evaluation purposes. Now under the ownership of AMD, Xilinx
recognizes the need for a more accessible and cost-effective board that maintains
high standards. The goal is to create a device that not only addresses affordability
concerns but also delivers optimal performance, particularly in achieving the lowest
possible inference time.

This strategic shift positions Xilinx, now part of AMD, competitively in the
real-time application field. The goal is to offer a board that blends superior
performance with an affordable price, unlocking possibilities across industries like
automated driving, factory automation, healthcare, aerospace, and defense. The
VE2302, explored in this thesis, aims to find the sweet spot between accessibility
and high-performance in the realm of edge AI devices.

1.3 Contributions
My contributions are as follows:

• In Chapter 3 I give a comprehensive exploration and design of the VE2302,
navigating through the reference design made by the team I am working with,
covering its core components, System-on-Module (SOM), and Carrier Board
describing all the different interfaces that will be implemented.

• In Chapter 4 I examine the Board Definition Files (BDF) creation process,
and I write all the files needed for the development tools to be able to target
the incoming board for the build. I group all the information from the various
documents and guides to make a clearer explanation of how to implement
these files.

• In Chapter 5 I contributed extensively to the benchmarking phase, working

2



Introduction

collaboratively with Mario to assess the performance metrics of various non-
Versal and Versal devices, including the VE2302. Employed meticulous testing
procedures to measure throughput, latency, and power consumption, focusing
on gathering valuable insights into the VE2302’s performance characteristics. I
engaged in the identification of optimal configurations and collaborated closely
with Mario to provide a comparative analysis of different Versal boards and
three other prominent boards. The data-driven conclusions drawn from this
benchmarking effort offer valuable insights for decision-makers and researchers
in the field of edge AI devices.

1.4 Pubblications
The material produced for this thesis in Chapter 4 has resulted in a peer-reviewed
publication described below:

• Bryan Fletcher, Tom Curran, Daniel Rozwood, and Tnizan. "Avnet Board
Definition Files −→ ve2302_iocc-dev" https://github.com/Avnet/
bdf/tree/ve2302_iocc-dev

1.5 Thesis structure
This thesis is organized into six chapters. In Chapter 2, I review all the material
needed to understand the project, this includes an exploration of the Vitis AI
library, an overview of the Versal Family devices, and a detailed examination of
their AI Engine. Additionally, I introduce the leading board that will serve as a
reference design for the new device.

Chapter 3 delves into the actual design of the new device, breaking it down
into the main core, the System on Module (SOM), and the Carrier Board. These
components collectively offer the various interfaces needed to fully exploit the
functionalities of the DPU in the new VE2302.

In Chapter 4, I walk through the process of defining the Board Definition
Files required to build and run applications on the upcoming board. This chapter
provides a more detailed exploration of the various components and interfaces of
the two devices considered as a whole. It also describes how the various XML files
are written.

Chapter 5 involves a thorough evaluation where my colleague Mario and
I compare different boards that we obtained. Additionally, we assess how the
architecture of the new board is expected to perform compared to the best-available
device from the same family.

Chapter 6 concludes the thesis with a discussion of the obtained results and
offers perspectives on the future of the project and potential related works.

3
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Chapter 2

Premises

2.1 Vitis AI
In the rapidly evolving landscape of artificial intelligence (AI) and machine learning
(ML), optimizing the performance of AI workloads has become paramount. Vitis
AI stands out as a robust and versatile development platform specifically tailored
for accelerating AI applications on Xilinx hardware. Vitis AI harnesses the power
of Field-Programmable Gate Arrays (FPGAs) and adaptable System on Chips
(SoCs) to deliver efficient and high-performance AI inferencing capabilities [3].
The Vitis AI solution consists of three primary components:

• The Deep-Learning Processor unit (DPU), a hardware engine for optimized
the inferencing of ML models

• Model development tools, to compile and optimize ML models for the DPU

• Model deployment libraries and APIs, to integrate and execute the ML models
on the DPU engine from a SW application

The Vitis AI solution is packaged and delivered as follows:

• AMD open download: pre-built target images integrating the DPU

• Vitis AI docker containers: model development tools

• Vitis AI github repository: model deployment libraries, setup scripts, examples
and reference design

4
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2.1.1 Deep-learning Processor Unit
The Deep-learning Processor Unit (DPU) stands as a programmable engine metic-
ulously optimized for the swift execution of deep neural networks. Featuring an
efficient tensor-level instruction set, the DPU is engineered to support and acceler-
ate a spectrum of widely adopted convolutional neural networks. Notable examples
include VGG, ResNet, GoogLeNet, YOLO, SSD, and MobileNet, among others.

Notably versatile, the DPU extends its support to a range of platforms, en-
compassing AMD Zynq UltraScale+ MPSoCs, the Kria KV260, Versal, and Alveo
cards. Its scalability caters to diverse application needs, including variations in
throughput, latency, scalability, and power efficiency.

AMD further simplifies the deployment of the DPU by providing pre-built plat-
forms tailored for both edge and data-center cards. These platforms empower data
scientists to initiate the development and testing of models without necessitating
hardware development expertise.

For embedded applications, the integration of the DPU into a custom platform
is essential, aligning seamlessly with other programmable logic functions within the
FPGA or adaptive SoC device. Hardware designers can accomplish this integration
using either the Vitis flow or the Vivado Design Suite. This flexibility ensures that
the DPU can be seamlessly incorporated into custom solutions, offering a tailored
approach to meeting specific application requirements.

2.1.2 Vitis AI Library
The Vitis AI Library represents a comprehensive suite of high-level libraries and
APIs meticulously crafted for efficient AI inference utilizing the Deep-Learning
Processor Unit (DPU). Built upon the Vitis AI runtime and seamlessly supporting
XRT 2023.1, this library streamlines the development process by providing unified
APIs and encapsulating various efficient and high-quality neural networks.

Designed to facilitate AI application development, the Vitis AI Library offers an
accessible and unified interface, making it user-friendly even for those without prior
knowledge of deep learning or FPGA intricacies. By abstracting the complexities
of underlying hardware, it empowers developers to focus on crafting applications
rather than dealing with intricate hardware details.

The Vitis AI Library comprises four essential components, as illustrated in the
block diagram:

1. Base Libraries:

• These libraries furnish a fundamental programming interface with the
DPU, encompassing available post-processing modules for each model.

• Key components include:

5
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Figure 2.1: Vitis AI Library Block Diagram
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– dpu_task: The interface library for DPU operations.
– cpu_task: The interface library for operations assigned to the CPU.
– xnnpp: The post-processing library for each model, featuring built-in

modules like optimization and acceleration.

2. Model Libraries:

• These libraries embody a broad spectrum of open-source neural network
deployments, covering common types like classification, detection, seg-
mentation, and more.

• They provide a unified and straightforward interface applicable to AMD
models or custom models.

3. Library Samples:

• Test samples within the library serve as quick tools for evaluating and
testing model libraries.

4. Application Demos:

• Application demos showcase how the Vitis AI Library can be effectively
utilized to develop diverse applications.

Key Features:

• A comprehensive, end-to-end application solution.

• Optimized pre-processing and post-processing functions/libraries.

• Inclusion of open-source model libraries.

• Unified operation interface covering DPU, pre-processing, and post-processing.

• Practical, application-based model libraries, pre-processing and post-processing
libraries, along with application examples.

In essence, the Vitis AI Library is a powerful toolset offering a simplified yet
robust environment for AI inference development, fostering efficiency and ease of
use throughout the application development lifecycle.

7
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2.2 AI Engine
AMD Versal adaptive system-on-chips (SoCs) integrate Scalar Engines, Adaptable
Engines, and Intelligent Engines, alongside cutting-edge memory and interfacing
technologies. This combination delivers potent heterogeneous acceleration suitable
for a diverse range of applications. Importantly, Versal adaptive SoCs are designed
to be programmable and optimized by data scientists, software developers, and
hardware developers alike. The hardware and software ecosystem is supported by
a comprehensive set of tools, software, libraries, IP, middleware, and frameworks,
facilitating integration into industry-standard design flows.

Built on TSMC’s 7 nm FinFET process technology, the Versal portfolio stands
as the first platform to seamlessly merge software programmability, domain-specific
hardware acceleration, and the adaptability required to match the rapid pace of
innovation. The portfolio consists of six series of devices uniquely architected for
scalability and AI inference capabilities across various markets, including cloud
computing, networking, wireless communications, edge computing, and endpoints.

The Versal architecture integrates different engine types with extensive connec-
tivity, communication capabilities, and a network on chip (NoC). This integration
enables seamless memory-mapped access to the entire device. Intelligent Engines
feature SIMD VLIW AI Engines for adaptive inference and advanced signal pro-
cessing compute, while DSP(digital signal processing) Engines handle fixed point,
floating point, and complex MAC operations. Adaptable Engines combine pro-
grammable logic blocks and memory for high-compute density, and Scalar Engines,
including Arm Cortex-A72 and Cortex-R5F processors, cater to intensive compute
tasks.

The Versal AI Core series showcases breakthrough AI inference acceleration
with AI Engines delivering over 100x greater compute performance than current
server-class CPUs. This series targets applications in the cloud with dynamic
workloads and network scenarios demanding massive bandwidth, all while ensuring
advanced safety and security features. The AI Engine’s advanced signal processing
compute capability makes it well-suited for highly optimized wireless applications,
including radio, 5G, backhaul, and other high-performance DSP applications.

AI Engines constitute an array of very-long instruction word (VLIW) proces-
sors with single instruction multiple data (SIMD) vector units, finely tuned for
compute-intensive applications such as digital signal processing (DSP), 5G wireless
applications, and artificial intelligence (AI) technologies like machine learning (ML).
These hardened blocks offer multiple levels of parallelism, including instruction-level
and data-level parallelism.

The AI Engine-ML (AIE-ML) block within the AI Engines is designed to deliver
2x compute throughput compared to its predecessor. Primarily targeted for machine
learning inference applications, the AIE-ML block achieves one of the industry’s

8
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best performance per Watt for a wide range of inference applications.
Programming the AI Engine array requires a thorough understanding of the

algorithm to be implemented, the capabilities of the AI Engines, and the overall
data flow between individual functional units. The AI Engine array supports three
levels of parallelism:

• SIMD (Single Instruction, Multiple Data): Through vector registers
that allow multiple elements to be computed in parallel.

• Instruction Level Parallelism (VLIW Architecture): Through the
VLIW architecture that allows multiple instructions to be executed in a single
clock cycle.

• Multicore Parallelism: Through the AI Engine array, where many hundreds
of AI Engines can execute in parallel.

The AI Engine array consists of a 2D array of AI Engine tiles, where each AI
Engine tile contains an AI Engine, memory module, and tile interconnect module
[4].

• AI Engine: Each AI Engine is a very long instruction word (VLIW) processor
containing a scalar unit, a vector unit, two load units, and a single store unit.

• AI Engine Tile: An AI Engine tile contains an AI Engine, a local memory
module together with several communication paths to facilitate data exchange
between tiles.

• AI Engine Array: AI Engine array refers to the complete 2D array of AI
Engine tiles.

• AI Engine Program: The AI Engine program consists of a data flow graph
specification written in C/C++. This program is compiled and executed using
the AI Engine toolchain.

• AI Engine Kernels: Kernels are written in C/C++ using AI Engine vector
data types and intrinsic functions. These are the computation functions
running on an AI Engine. The kernels form the fundamental building blocks
of a data flow graph specification.

• ADF Graph: An ADF graph is a network with a single AI Engine kernel
or multiple AI Engine kernels connected by data streams. It interacts with
the programmable logic, global memory, and processing system with specific
constructs like PLIO (port attribute in the graph programming that is used
to make stream connections to or from the programmable logic), GMIO (port
attribute in the graph programming that is used to make external memory-
mapped connections to or from the global memory), and RTP.

9
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Figure 2.2: AI Engine Architecture

AMD provides two distinct types of AI Engines: AIE (AI Engine) and AIE-ML
(AI Engine for Machine Learning). Both engines bring substantial performance
enhancements compared to previous-generation FPGAs. AIE is designed to accel-
erate a well-balanced range of workloads, including ML inference applications and
advanced signal processing tasks such as beamforming, radar processing, and other
workloads that demand extensive filtering and transforms [5].

The AIE-ML, tailored for machine learning inference applications, delivers supe-
rior performance compared to AIE. It incorporates enhanced AI vector extensions
and introduces shared memory tiles within the AI Engine array. This enhancement

10
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positions AIE-ML as the preferred choice for ML-focused applications. On the
other hand, AIE may outperform AIE-ML in certain scenarios involving advanced
signal-processing tasks.

2.2.1 AI Engine Tile

Figure 2.3: AI Engine Tile

AIE is designed to accelerate a diverse range of workloads, encompassing ML
inference applications and advanced signal processing tasks such as beamforming,
radar processing, FFTs, and filters. Key features include:

• Support for a broad spectrum of workloads and applications.

• Advanced DSP capabilities tailored for communications.

• Efficient processing of video and image data.

• Acceleration of machine learning inference tasks.

11
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• Native support for real, complex, and floating-point data types, including
INT8/16 fixed point, CINT16, CINT32 complex fixed point, and FP32 floating-
point.

• Dedicated hardware features for optimized FFT and FIR implementations,
including 128 INT8 MACs per tile.

2.2.2 AI Engine-ML Tile

Figure 2.4: AI Engine-ML Tile

The AI Engine-ML architecture undergoes optimization specifically for machine

12
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learning, resulting in improvements to both the compute core and memory ar-
chitecture. While retaining capabilities for both machine learning and advanced
signal processing, these optimized tiles shift focus away from INT32 and CINT32
support, commonly utilized in radar processing, to better cater to machine learning
applications. Key enhancements include:

• Extended native support for machine learning data types, incorporating INT4
and BFLOAT16.

• Doubled ML compute performance with reduced latency, featuring 512 INT4
MACs per tile and 256 INT8 MACs per tile.

• Increased array memory to localize data, achieved through the doubling of
local data memory per tile (64kB) and the introduction of new memory tiles
(512kB) for high bandwidth shared memory access.

2.3 Versal Series
The Versal Series represents a family of adaptive compute acceleration platforms
by Xilinx, a range of devices tailored to address diverse computing challenges
in artificial intelligence, machine learning, networking, and performance testing
equipment. Key features across the Versal Series:

• Adaptive Compute Platform: The Versal Series introduces an adaptive
system-on-chip (SoC) platform, featuring Adaptable Engines and Intelligent
Engines for a combination of flexibility and specialized processing capabilities.
It seamlessly integrates various engines, including the AI Engine, to deliver
powerful heterogeneous acceleration for a wide array of applications.

• High Bandwidth Memory (HBM): Leveraging the power of High Band-
width Memory (HBM), the Versal Series delivers significant memory bandwidth
to tackle large datasets efficiently, reducing processing bottlenecks across the
entire series.

• AI/ML Acceleration: Tailored for AI/ML applications, the Versal Se-
ries excels in parallel processing with Adaptable Engines, coupled with the
optimization capabilities of the Vitis unified software platform.

• Compute Pre-Processing: Versal Series devices efficiently handle large-
scale pre-data processing, offering 819 GB/s of HBM bandwidth alongside
Adaptable Engines to create potent predictive inputs.

13
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• Next-Generation Firewall: Providing unmatched scalability, the Versal
HBM series within the series ensures robust multi-layer network security,
integrating High-Speed Crypto (HSC) Engines and 32G HBM for enhanced
performance.

• Application Performance Test Equipment: Catering to the demands of
data center networking and cloud providers, the Versal Series features 112G
PAM4 transceivers as essential building blocks for adaptive networks and
sophisticated test equipment.

Within this family (ACAP), there are several platforms, each designed for a
specific purpose:

• Versal HBM Series: hyper Integration of Fast Memory, Secure Data, and
Adaptive Compute.

• Versal AI Core Series: it delivers breakthrough AI inference and wireless
acceleration with integrated AI engines that deliver outstanding compute
performance.

• Versal AI Edge Series: delivering Breakthrough AI Performance/Watt For
Real-Time Systems.

• AMD Versal Prime Series: it provides a diverse set of compute engines,
next-generation I/O, and integrated DDR controllers, enabling low-latency
acceleration across a wide range of workloads.

• Versal Premium Series: engineered for the most demanding compute and
data movement applications, now featuring the world’s largest adaptive SoC.

When coming to navigate throught Versal Devices it is important to understand
the naming convention used for the main FPGA of the platform as described in
Figure 2.5.

Among them the project will focus on a new board belonging to the Versal AI
Edge Series.

2.4 Versal AI Edge
The Versal AI Edge series stands out by delivering a remarkable 4X improvement
in AI performance per watt compared to leading GPUs, making it a prime choice
for power and thermally constrained environments at edge nodes. This series is
designed to accelerate the entire application spectrum, seamlessly spanning from
sensor input to AI processing and real-time control. It boasts the world’s most
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Figure 2.5: Versal Device Ordering Information

Figure 2.6: Versal AI Edge Chip

scalable portfolio in its class, addressing diverse needs from intelligent sensors to
edge computing. The hardware adaptability of the Versal AI Edge series positions
it as a dynamic solution that evolves in sync with ongoing AI innovations in
real-time systems [2]. Going beyond the realm of AI, the Versal AI Edge series
excels in providing high-performance, low-latency AI inference capabilities. Its
applications span across various domains, including automated driving, predictive
factory operations, healthcare systems, and multi-mission payloads in aerospace
and defense. This versatility is coupled with a holistic approach, accelerating the
entire application workflow from initial sensor input to AI-driven insights and
real-time control. Notably, the Versal AI Edge series adheres to stringent safety
and security standards, meeting critical requirements such as ISO 26262 and IEC
61508. This adaptive compute acceleration platform empowers developers to rapidly
iterate on sensor fusion and AI algorithms. Moreover, its scalable device portfolio
accommodates diverse performance and power profiles, offering a comprehensive
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solution from edge to endpoint. The most complete and best performing one among
all of this family of devices is the VEK280 Evaluation Kit.

Figure 2.7: Versal Premium chip diagram

The devices in this family share common processing and connectivity features.
They have a dual-core Arm Cortex-A72 Application Processing Unit with 48 KB/32
KB L1 Cache featuring parity and ECC, along with a 1 MB L2 Cache with ECC.
Additionally, each device incorporates a Real-Time Processing Unit consisting of
a second dual-core Arm Cortex-R5F with 32 KB/32 KB L1 Cache and 256 KB
TCM(Tightly Coupled Memory) with ECC(Error-Correcting Code) (Figure 2.7).

For connectivity, the family includes dual Ethernet ports, dual UART ports,
dual CAN-FD interfaces, one USB 2.0 port, and dual SPI and I2C interfaces. These
shared features across the family provide a consistent foundation for application
development, ensuring a common set of processing capabilities and connectivity
options.

2.5 The VEK280 Evaluation Kit
The VEK280 Evaluation Kit (Figure 2.8) is a cutting-edge solution powered by the
AMD Versal AI Edge VE2802 Adaptive SoC[6]. It distinguishes itself with robust
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hardware acceleration engines, incorporating AIE-ML and DSP functionalities, and
offers a plethora of high-speed connectivity options. Specifically designed for ML
inference applications across diverse sectors such as automotive, vision, industrial,
scientific, and medical, this exclusive kit boasts advanced capabilities to meet the
demanding needs of these industries.

Figure 2.8: Vek 280 description.

However, it’s important to note that this exceptional performance does come at
a higher cost, exceeding ten thousand dollars. The limited production of only three
units, with an additional one reserved for our use, underscores the exclusivity of
this kit. This availability suggests that it may not align with the broader market
due to its specialized nature and higher cost.

2.6 The new board
The concept behind the creation of the new board was to provide a more budget-
friendly device that showcases the capabilities of this chip family. With seven
products in this series, selecting one from the middle range allowed us to develop a
device aimed at capturing the interest of a broader customer base without imposing
a prohibitive price tag (Figure 2.9).

Taking into account the varying quantity of AI Engines across each platform and
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Figure 2.9: Versal AI Edge Platform Features

the discernible step that nearly halves the specifications between the two groups of
products, the most pragmatic decision was to opt for the top-tier device within
the lower range (Figure 2.10). This strategic choice allows us to deliver optimal
performance while minimizing both hardware and production costs. In the context
of the seven boards, where the first four exhibit less than half the specifications
of the superior three, selecting the fourth board from the lower range ensures an
efficient balance between performance and cost-effectiveness for this project.

Figure 2.10: AI Engine and DSP Engine Features
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Chapter 3

The VE2302

The new board should have been meticulously designed, featuring a sophisticated
architecture comprising two integral components: the System-on-Module (SOM)
and the Carrier Board. This deliberate configuration is engineered to deliver a
notably more cost-effective solution when compared to the VEK280, catering to
budget considerations without compromising performance.

What sets this board apart is its modular design, a key aspect that optimizes cost
and lends itself to unparalleled versatility. The SOM, housing the potent FPGA,
forms the computational heart of the system, providing substantial processing
power and adaptability. Simultaneously, the Carrier Board plays a pivotal role
in customization, allowing users to tailor connectivity and I/O configurations
according to the specific requirements of diverse use cases.

This synergy between the SOM and Carrier Board unlocks a spectrum of
possibilities for deploying advanced AI and edge computing solutions. Whether in
automotive, industrial, scientific, or other sectors, this modular approach ensures
adaptability, making it an ideal choice for applications with varying connectivity
and processing demands. The flexibility inherent in this design empowers users
to harness the full potential of FPGA technology while maintaining the agility
to meet their unique needs through tailored connectivity solutions on the Carrier
Board.

3.1 Goals
The objectives of the board are summarized below:

• Create a SOM targeting the Versal AI Edge family of devices.

• Create a plan for developing a dense design in a small form factor.
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• Create a Carrier Card with the intended mating SOM targeting the Versal AI
Edge family of devices.

• Leverage previous design efforts as needed to reduce time to market.

• Incorporate Best Known Methods in design and layout to meet the required
performance.

• Develop plans for the Versal AI Edge SOM and for the Versal AI Edge Carrier
Card.

3.2 Versal AI Edge SOM
The System-on-Module (SOM) is a compact powerhouse integrating key components,
including the robust Versal AI Edge FPGA, Arm Cortex-A72 cores for general-
purpose computing, and essential memory resources. Designed to accelerate AI
and edge computing workloads, the SOM serves as the core computational engine,
ensuring seamless task execution. Its highly integrated and modular nature offers
adaptability and easy integration into diverse systems and applications. With
specifications tuned for efficiency, the SOM stands as a reliable solution in the
realm of AI and edge computing.

3.2.1 Features and block diagram
The Versal AI Edge SOM is offered in commercial and industrial temp with the
following feature set (Figure 3.1):

• AMD XCVE2302-1LSESFVA784-E (Pin compatible with the XCVE2202
device)

• LPDDR4 SDRAM (4GB, 2x32)

• PMC OSPI Flash (Octal 64MB up to 256MB)

• PMC eMMC Flash (x8 16GB up to 64 GB)

• PMC USB 2.0 ULPI PHY

• PS Gigabit Ethernet RGMII PHY

• I2C MAC EEPROM

• I2C 8-bit I/O Expander

• 2-channel I2C Switch/Mux
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Figure 3.1: Versal AI Edge SOM Block Diagram.

• Reference Clock

• Real Time Clock

• On-Board Voltage Regulators

• 3 Micro-Header Connectors. Samtec ADM6/ADF6 family of connectors will
be used to implement the Versal AI Edge SOM to the Versal AI Edge Carrier
Card connections. These connectors have 0.635mm pitch and are rated at up
to 56Gbps data rate with 1.4A/pin current rating:

– JX1/JX2/JX3 (3x160-pin)
– Connections to the Carrier Card
– 104 User XPIO Pins
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– 22 User HDIO Pins
– 12 User LPD MIO Pins
– 13 User PMC MIO Pins
– 4 GTYP Transceivers
– 4 GTYP Reference Clock Inputs
– JTAG Interface
– SYSMON interface
– USB 2.0 Connector Interface
– Gigabit Ethernet RJ45 Connector Interface
– PMBus Interface
– Carrier Card I2C Interface
– SOM VCC_BATT Battery Input
– SOM Reset Input
– Carrier Card Interrupt Input
– Carrier Card Reset Output
– SOM Power Good Output
– SOM to Carrier Card Ground Pins
– SOM Input Voltages and Output Sense Pins

3.2.2 Platform Management Controller (PMC) IO Banks
The Platform Management Controller (PMC) contains several I/O Banks that can
be connected to various peripherals through MIO port connections. The following
sub-sections detail the specific connections to each PMC MIO Bank.

PMC MIO Bank 500

The 26 pins in PMC MIO Bank 500 play a key role in implementing essential
interfaces, including a bootable OSPI Flash interface, a USB2.0 interface utilizing
a ULPI PHY, and a dedicated MIO pin. Identification of these pins is achieved
by creating an example design in Vivado 2022.2, leveraging a BETA version that
provides access to the Versal AI Edge device. The physical connector for the
USB2.0 interface is present on the Versal AI Edge Carrier Card, necessitating the
mapping of the USB2.0 ULPI PHY to the JX Connectors.
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• Octal SPI Flash: The Versal AI Edge SOM utilizes an OSPI Flash device for
primary boot functionality. While specific details such as the manufacturer and
model are omitted, it’s worth noting that there are options for larger density
devices in this footprint, allowing flexibility in OSPI flash configurations.

• USB2.0 ULPI PHY: The Versal AI Edge SOM features a USB 2.0 PHY
interface using the Microchip USB3321C USB 2.0 ULPI PHY. The USB 2.0
ULPI PHY connector side, connected to the JX connector, facilitates the
implementation of a USB 2.0 interface via a single connector on Versal AI
Edge Carrier Cards. The USB 2.0 ULPI PHY operates at 1.8V on the Versal
AI Edge SOM, and the P1 port of the I2C 8-bit I/O expander is utilized for a
soft reset of the USB 2.0 ULPI PHY.

• PMC General Purpose Input: The Versal AI Edge SOM includes a
general-purpose interrupt IO connected to PMC_MIO_11.

PMC MIO Bank 501

Bank 501 MIO pins on the Versal AI Edge are purposefully designated for imple-
menting diverse interfaces, providing adaptability for various applications. These
pins, directed to the JX Connectors on the Versal AI Edge Carrier Card, extend
their utility beyond dedicated functions to serve multiple purposes effectively.
Within this bank, specific MIO pins are exclusively allocated for establishing an
SD3.0 interface on the Versal AI Edge Carrier Card. This versatile SD3.0 interface
caters to both BOOT and STORAGE applications, ensuring a flexible and practical
solution. Additionally, other MIO pins within the same bank are earmarked for
implementing an eMMC interface on the Versal AI Edge SOM, playing a crucial
role in supporting STORAGE functions or serving as a pathway for SECONDARY
BOOT operations. Furthermore, Bank 501 MIO pins are assigned to implement a
PMC I2C interface, serving as the primary I2C interface on the Versal AI Edge
SOM. This strategic allocation ensures seamless communication and connectivity
within the system. As these physical connections extend to the Versal AI Edge
Carrier Card, it becomes essential to map the SD3.0 MIO interfaces to the JX
Connectors for optimal integration and functionality.

• eMMC x8 Flash: The Versal AI Edge SOM utilizes a Micron MTFC16GAPA
LBH-AAT TR eMMC Memory for Secondary Boot and/or storage.

• JX Connector Interface: PMC MIO pins for this interface are routed to the
JX connectors, allowing flexible implementation on the Versal AI Edge Carrier
Card. Customers can tailor the interface to their needs on their Custom
Carrier Card design.
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• PMC I2C MAC EEPROM: The Versal AI Edge SOM features a Microchip
AT24MAC402-MAHM I2C EEPROM 2Kbit 1MHz device, housing the unique
EUI-48 ethernet MAC address.

• I2C 8-Bit I/O Expander

• I2C 2-Channel Switch/MUX

• Carrier Card I2C Interface: The Versal AI Edge SOM provides a master
I2C bus to the Versal AI Edge Carrier Card via the JX connector for seamless
communication with I2C devices on both the SOM and Carrier Card.

• PMBUS I2C Interface: PMBus is accessible on the Versal AI Edge SOM for
programming, controlling, and monitoring on-board PMBus voltage regulators,
with access to Carrier Card PMBus signals via the JX connector through the
I2C switch/mux.

• PMC Push Button

LPD MIO Bank 502

The LPD MIO Bank 502 consists of 26 MIO pins, MIO[25:0]. There are Bank 502
MIO pins that are dedicated to implementing a Gigabit Ethernet interface to an
RGMII PHY. The RJ45 ethernet jack will exist on the Versal AI Edge Carrier
Card. The rest of the Bank 502 MIO pins are routed to the JX connectors. The
generic MIO pins will be used on the Versal AI Edge Carrier Card to implement
UART, I2C, CAN, SPI, or general purpose interfaces.

• Gigabit Ethernet RGMII PHY: The Versal AI Edge SOM will provide a
single Gigabit Ethernet PHY interface using the Microchip KSZ9131RNXU
RGMII PHY device in 48-pin QFN package (in industrial temp). The Versal
AI Edge SOM Gigabit Ethernet PHY connector side (connected to the JX
connector) along with an RJ45 connector located on the Versal AI Edge
Carrier Card will be used to implement the Gigabit Ethernet port.

• JX Connector Interface: The LPD MIO pins will be trace length matched
to allow for proper implementation on the Versal AI Edge Carrier Card of any
interfaces that can be targeted to these LPD MIO pins. Although the Versal
AI Edge Carrier Card will implement several interfaces, customers utilizing
the Versal AI Edge SOM will be able to implement the interface they desire
on their Custom Carrier Card design.
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PMC CONFIG Bank 503

The PMC Configuration Bank 503 consists of JTAG, RESET, Reference Clock
Input, BOOT MODE, RTC Crystal Input, and other associated configuration pins.
Some of these signals are implemented on the Versal AI Edge SOM and others are
routed to a JX Connector for implementation on the Versal AI Edge Carrier Card.

• DONE LED: The Versal AI Edge Carrier Card will implement a BLUE LED
indicating the configuration is complete.

• ERROR OUT LED: The Versal AI Edge Carrier Card will implement an
Error Out LED. The ERROR_OUT LED will be RED.

• JTAG Interface

• BOOT Mode Pins: The Versal AI Edge Carrier Card will implement a
small 4-position DIP switch for the Boot Mode pins.

• Other stuff: Real Time Clock, SOM RESET and a Processor Clock

3.2.3 Programmable Logic IO Banks
The Programmable Logic portion of the design consists of several IO Banks that
can be connected to various peripherals through the programmable logic GPIO.
The following sub-sections detail the specific connections to each PL IO Bank.

• XPIO Bank 700-701-702 – LPDDR4 Interface: The Versal AI Edge
SOM will provide 4GB of LPDDR4 memory in a 2x32 configuration using 2
Micron MT53E512M32D1ZW-046 IT:B (200-pin BGA package) x32 devices.
The LPDDR4 devices are implemented in 512Mb x 32 configuration and
supports up to 4266Mbps. The LPDDR4 devices will be connected to the
XPIO banks 700, 701, and 702 and be operated at +1.1V at the maximum
supported bandwidth available in the PIN EFFICIENT implementation on
the Versal AI Edge device.

• XPIO Bank 702 - JX Connector Interface: The XPIO Bank 702 consists
of 54 XPIO pins. 50 of these pins are routed to a JX connector on the Versal
AI Edge SOM. 4 of the Bank 702 XPIO pins are utilized by the LPDDR4
interface.

• HDIO Bank 302 - JX Connector Interface

• Bank 103-104 - GTYP Transceivers
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3.3 Versal AI Edge Carrier Card
The Carrier Card serves as the pivotal interface and expansion platform for the
high-speed Versal AI Edge SOM, meticulously crafted for rapid machine learning
inference. It is equipped with connectors for seamless power supply, external
communication interfaces (including Ethernet and USB), and versatile expansion
slots catering to additional peripherals or customized interfaces. In the intricate
web of system architecture, the Carrier Card plays a decisive role, effortlessly
linking the SOM to the external world, ensuring its integration into a broader
system efficiently.

A distinctive feature of the Carrier Card is its unique provision for six MIPI
connectors, strategically designed to accommodate up to six cameras. This spe-
cialized capability enhances the system’s adaptability, enabling it to effortlessly
interface with multiple cameras concurrently. This becomes particularly valuable
in real-time applications where the Versal AI Edge SOM’s exceptional speed in
executing machine learning inference is a critical asset.

This configuration not only exemplifies the Carrier Card’s versatility but also
positions it as a crucial enabler for a wide array of applications. From advanced
surveillance systems to intricate computer vision setups, the inclusion of six MIPI
connectors aligns perfectly with real-time requirements, making it a key component
for applications demanding swift and accurate machine learning inference in real-
time scenarios.

3.3.1 Features and block diagram
The Versal AI Edge Carrier Card is offered in commercial and industrial temp with
the following feature set (Figure 3.2):

• Versal AI Edge SOM Slot

• 2x SFP28 Interfaces

• HDMI RX/TX Interface

• 6x MIPI-CSI 22-Pin Camera/Display Connectors

• 1x HSIO GTYP / HDIO Connector

• 2x CAN Industrial Header Connectors

• RJ45 Connector

• USB 2.0 Type-A Receptacle

• XPIO Push Buttons
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Figure 3.2: Versal AI Edge Carrier Card Block Diagram.

• XPIO LEDs

• PMC Push Button

• I2C GPIO LEDs

• microSD Card Connector

• microUSB Receptable-UART-JTAG Interface

• PC4 JTAG Header
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• Differential Clock Generator

• PMBus Header

• VBATT Battery Connector

• SOM Reset Button

• 3x 160-Pin JX Micro-Header Connectors

3.3.2 Functionalities
1. SFP28 Interfaces:

• The Versal AI Edge Carrier Card will provide two SFP28 interfaces. These
SFP28 interfaces can be used to implement high-performance Ethernet
interfaces as well as a host of other interfaces up to the SFP28 expected
line rates.

• Key components include:
– SFP28 I2C I/O Expander
– SFP28 I2C Switch: The SFP28 I2C interface signals will be generated

from an I2C 8-Channel Switch / MUX on the Versal AI Edge Carrier
Card.

2. HDMI TX / RX Interfaces:

• Key components include:
– HDMI Reference Clocks: It is expected that several clocks will be

necessary for the HDMI TX and HDMI RX interfaces. All of these
locks will be mapped to the GTYPs.

– HDMI Transceiver Lanes: The data lanes for the HDMI TX and
HDMI RX interfaces should come from the Bank 104 GTYPs. All of
these data lanes will be appropriately mapped to the GTYPs.

– HDMI Required Programmable IO: The HDMI RX and TX interface
solutions will require control and status pins to be mapped to the
Versal AI Edge device.

3. HSIO TXR2 PL Connector:

• This interface is designed to integrate both GTYP (GTY Transceivers)
lanes and HDIO (High-Density Input/Output) pins. It combines the
capabilities of GTY transceivers and high-density I/O pins to facilitate
communication and data transfer, ultimately serving as a crucial compo-
nent in the overall system architecture.
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4. MIPI-CSI2-DSI-22 Connectors:

• The MIPI Camera Serial Interface 2 is a widely adopted, high-speed
protocol for the transmission of still and video images from image sensors
to application processors.

• The Versal AI Edge Carrier Card will feature an impressive configuration
with six MIPI-CSI2-DSI 22-pin connectors. These connectors will be
strategically mapped to the XPIO banks on the Versal AI Edge device,
emphasizing the substantial capacity for connecting multiple cameras to
the system.

5. USB2.0 Connector:

• The USB 2.0 ULPI PHY connector side (connected to the JX connector)
is implemented on the Versal AI Edge Carrier Cards to complete the USB
2.0 interface.

6. SYSMON Header:

• The PMC Bank 500 contains the Versal AI Edge devices SYSMON pins.
These pins are routed to a JX connector on the Versal AI Edge SOM.
The Versal AI Edge Carrier Card will take the SYSMON signals on the
JX connector and provide a header for customers to utilize.

7. SD3.0 Interface:

• The Versal AI Edge SOM and Carrier Card together will provide a microSD
card interface.

• Since microSD cards do not have a Write-Protect (WP) pin, the PMC
SD controller WP signal (MIO37) will not be utilized and that MIO will
be repurposed as a PMC Push Button.

• The PMC MIO pins for this interface are routed to the JX connectors.
Although the Versal AI Edge Carrier Card will implement the MicroSD
Card Interface, customers utilizing the SOM will be able to implement
the interface they desire on their Custom Carrier Card design.

8. Carrier Card I2C Interface:

• The Versal AI Edge SOM provides a master I2C bus to the Versal AI Edge
Carrier Card via the JX connector so that software can communicate with
I2C devices on the Versal AI Edge SOM as well as the slave I2C devices
on the Versal AI Edge Carrier Card using a single I2C interface.
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• The Versal AI Edge Carrier Card will implement I2C Bus Expanders
to implement the various I2C interfaces that exist on the Carrier Card.
These I2C interfaces are implemented on the SFP28s, HDMI, HSIO TXR2
PL, and the MIPI connectors.

9. PMBus I2C Interface:

• PMBus may be used on the Versal AI Edge SOM to program/control/-
monitor on-board PMBus voltage regulators. The Versal AI Edge SOM
will have access to the Carrier Card PMBus signals via the JX connector
through the I2C switch/mux.

10. PMC Push Button:

• The Versal AI Edge Carrier Card will provide a PMC active low user
PUSH BUTTON. This PUSH BUTTON will be connected to the MIO37
pin on the JX Connector and operated at the proper bank voltage.

11. I2C Expander LEDs:

• The Versal AI Edge Carrier Card will provide active high-user LEDs that
are extensions of the I2C GPIO Expander on the Versal AI Edge SOM.
These LEDs will be connected to two pins on the JX Connector and
operated at 3.3V I/O.

12. RJ45 Gigabit Ethernet Connector:

• The Versal AI Edge SOM Gigabit Ethernet PHY connector side (connected
to the JX connector) along with an RJ45 connector located on the Versal
AI Edge Carrier Card will be used to implement the Gigabit Ethernet
port.

13. XPIO User Interfaces:

• The Versal AI Edge SOM and Versal AI Edge Carrier Card together will
provide several interfaces that will be mapped to the remaining XPIO
pins. These are routed to the JX connectors.

• While customers utilizing the Versal AI Edge SOM will be able to imple-
ment the interface they desire on their Custom Carrier Card design, it’s
important to note that the Versal AI Edge Carrier Card will implement
several interfaces:

– XPIO LEDs: The Versal AI Edge Carrier Card will provide XPIO
active high-user LEDs. These USER LEDs will be connected to 4
XPIO pins on the JX Connector (Figure 4.3).
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– XPIO Switch: The Versal AI Edge Carrier Card will provide an XPIO
USER SWITCH. The 4-port Dipswitch will be connected to the 4
XPIO pins on the JX Connector

– XPIO Push Buttons: The Versal AI Edge Carrier Card will provide
two XPIO PUSH BUTTONS.

14. LPD User Interfaces:

• The Versal AI Edge SOM and Versal AI Edge Carrier Card together will
provide several interfaces that will be mapped to the remaining LPD MIO
pins. These LPD MIO pins will be routed to the JX connectors.

• As before customers will be able to implement the interface they desire on
their Custom Carrier Card design, but the Versal AI Edge Carrier Card
will implement several interfaces:

– LPD CAN Interfaces: The Versal AI Edge Carrier Card will imple-
ment two CAN interfaces. The two CAN interfaces will be connected
to 6 LPD MIO pins on the JX Connector. The CAN interfaces will
terminate at to INDUSTRIAL CONNECTOR TERMINALS. It is
expected that the CAN interfaces will be implemented like what exists
on the VEK280 design by AMD.

– LPD UART Interface: The Versal AI Edge Carrier Card will imple-
ment a UART interface that is shared with the JTAG interface. The
UART interface will be part of a USB-JTAG-UART solution.

– LPD I2C Interface: The LPD I2C interface is connected to the
SFP28 interface using a x8 I2C Switch to drive the I2C interfaces to
the SFP28 modules. It also connects to the SFP28 control interfaces
using an I2C GPIO Expander to drive the SFP28 control signals to
the SFP28 modules (SFP28 I2C Interfaces). The 8 output ports can
be connected to the I2C interfaces on the MIPI camera connectors
and the SFP28 I2C interfaces.

15. Configuration Interfaces:

• The PMC Configuration Bank 503 consists of JTAG, RESET, Reference
Clock Input, BOOT MODE, RTC Crystal Input, and other associated
configuration pins. Some of these signals are implemented on the Versal AI
Edge SOM and others are routed to a JX Connector for implementation
on the Versal AI Edge Carrier Card.

– DONE LED: The Versal AI Edge Carrier Card will implement a BLUE
LED indicating the configuration is complete.

– ERROR OUT LED: There will be an Error Out LED. It will be RED.

31



The VE2302

– USB-JTAG-UART Interface: The Versal AI Edge Carrier Card will
route the JTAG interface and the UART interface from the JX connec-
tors to an FTDI FT2232HL device. An example to use as a reference is
on the VEK280. The FTDI USB-JTAG-UART interface will terminate
with a micro USB connector.

– BOOT Mode Pins: The Boot Mode pins will be manually controlled
by a small 4-position DIP switch.

16. RESET Structure:

• A small push switch will be used to manually assert the SOM_RESET_IN
_B signal on the Versal AI Edge Carrier Card and send it to the Ver-
sal AI Edge SOM via the JX connector. This will in turn assert the
POR_B (Power-On Reset) signal to the Versal AI Edge device and other
components on the SOM that are connected to this signal.

17. Clock Generator:

• The Versal AI Edge Carrier Card will provide a Renesas programmable
clock source for generating clock inputs for the Versal AI Edge SOM
GTYP transceivers and the LPDDR4/MIPI system clock on an XPIO
bank.

• The programming file for the Renesas device is generated by a tool called
Timing Commander.

18. JX Micro Header Connectors:

• The Versal AI Edge SOM will utilize 3 micro headers to provide connections
to the Versal AI Edge Carrier Card. The Versal AI Edge SOM will more
than likely use a 160-pin (4-rows x40-pins) connector for all 3 of the JX
connectors (Samtec ADM6/ADF6).
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Chapter 4

The creation of the Board
Definition Files

The first thing to do to be able to build for the new board was to create the
board platform to give to the program as the target for the application. The
platform has to be built using Vivado which is the design software for AMD
adaptive SoCs and FPGAs. It includes Design Entry, Synthesis, Place and Route,
Verification/Simulation tools. When creating a new project in Vivado, you can
start from a Xilinx part or predefined board; given that the new board, VE2302, is
still in development, no existing Board Definition Files (BDF) were available in
either Vivado or the XilinxBoardStore GitHub repository. To address this, the team
recommended examining the board definition file of a similar board, the Vek280,
along with its schematics (though not publicly available). The objective was to
comprehend how the BDF is structured, explore the writing style, and assess the
potential for modification or reduction to adapt it to the specifications of the new
board, VE2302. The Board Definition File (BDF) will encompass the description of
both the System on Module (SOM) and the Carrier Card. This comprehensive file
captures the entirety of the integrated system, providing a holistic representation
of the combined functionalities and characteristics of the SOM and Carrier Card.

4.1 The schematics
Board schematics serve as intricate graphical blueprints, illustrating the electronic
components and their interconnections (example Figure 4.2). These detailed repre-
sentations offer a visual roadmap of the board’s circuitry, providing a comprehensive
overview. Utilizing these schematics was crucial for deciphering the necessary infor-
mation to be included in the BDFs and understanding how to structure them. The
complexity of the Vek280 becomes evident when considering its schematic PDF
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Figure 4.1: First page of the Carrier Schematics

file, an extensive document spanning 94 pages. This stands in contrast to the 20
pages each for both the SOM and the Carrier of the VE2302 (Figure 4.1).

4.2 Connections
After reviewing the two PDF files for the VE2302, I created a table (Table 4.1)
summarizing signals and their functions based on their connections. This table
simplifies understanding of the key roles and interactions within the system, offering
a quick reference guide to the VE2302’s functionality. It’s essential to note that
not every signal will find detailed mention in the BDF. The table serves as a
comprehensive reference, highlighting key connections and their purposes. This
selective approach ensures that the BDF focus on pertinent signals crucial to
understanding and working with the VE2302, streamlining the documentation
process.

34



The creation of the Board Definition Files

Figure 4.2: Example page from Vek280 schematics: four General Purpose Input
Output (GPIO) pins are interfaced with a Logic Level Shifter, which, in turn,
connects to four Light Emitting Diodes (LEDs).

Figure 4.3: Example schematics from VE2302 Carrier Board of the Dipswitch
(4-Port Dipswitch).
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Purpose Signals VE

SD on Carrier PMC_MIO38-45

EMMC (Flash Memory) PMC_MIO26-36 (28 -> I2C RESET)

OSPI (Flash Memory) PMC_MIO0-11

USB on SOM PMC_MIO13-25

LEDs on Carrier PMC_MIO47-48

I2C PMC_MIO50-51

PMC PUSH BUTTON on Carrier PMC_MIO37/46

GIGABIT ETHERNET LPD_MIO0-11 + 24-25

BOOT MODE DIPSWITCH MODE0-3

REAL TIME CLOCK RTC_PADI RTC_PADO

RESET VARIOUS POR_B + specific RST

LPDDR4 BANK 700-701

XPIO JX (1.0V - 1.5 V from Carrier) BANK 702-703

ñ→ HSIO on Carrier (PL CONNECTOR)

HDIO JX (1.8V - 3.3V from Carrier) BANK 302

GTYP transceivers BANK 103-104

ñ→ Various (HDMI, Clock, ...)

Various BANK 503

Table 4.1: Signal Mapping of VE2302
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4.3 The Board Definition Files
Board Definition Files (BDFs) are configuration files that provide a detailed and
structured description of a hardware board’s components, connections, and con-
straints. These files are commonly used in electronic design automation (EDA)
tools, such as Xilinx Vivado, to define the physical properties and relationships of
various elements on a printed circuit board (PCB) or a programmable logic device
(PLD) development board. As explained in the tutorial [7]: “A board in Vivado
is defined through the board definition files: the picture of our board and three
important XML files":

• board.xml: This file encompasses fundamental information about the board,
including the board name, description, vendor details, and information about
various components such as the FPGA part, LEDs, and buttons. It also
outlines details about the required interfaces for these components and the
preferred IP cores to implement these interfaces (See Section 4.4).

• preset.xml: This file defines presets for IP cores specified in the board.xml
file. It plays a role in configuring and setting parameters for these IP cores
(See Section 4.6).

• part0_pins.xml: This file specifically defines the physical pins and I/O
standards for the interfaces specified in the board.xml file. It is crucial for
mapping out the connectivity and electrical characteristics of the board (See
Section 4.5).

The meaning of each element that composes the files is better described in the
Vivado Design Suite User Guide: System-Level Design Entry (UG895) [8].

4.4 board.xml
The file begins with an XML tag named <board>, wherein we provide fundamental
information about the board. Firstly, we define the board file schema version
attribute, indicating to the Vivado software how to interpret the data provided
in the file. As of Vivado 2023.1, the latest version of the schema is "2.2". Next,
we specify the vendor name, board name, and webpage for the board vendor;
additionally, we include the name of the preset file, which I will describe later.
Following this, we must conclude by writing </board> on a new line. All other
board information must be defined between these opening and closing tags.

1 <board schema_version ="2.2" vendor ="avnet.com" name="
ñ→ ve2302_iocc " display_name =" Versal VE2302 IOCC
ñ→ Evaluation Platform " url="http :// avnet.me/ ve2302_iocc
ñ→ " preset_file =" preset .xml" supports_ced ="true">
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2 ...
3 </board >

Listing 4.1: Enclosing XML tag of board.xml

An additional crucial piece of information is the image that will be displayed in
the selection tool of Vivado when generating a new project as shown in Figure 4.4.
This image serves as a visual reference for the Versal VE2302 IOCC Evaluation
Platform, assisting users and developers in identifying and comprehending the
platform. The "display_name" attribute specifies the name that will appear, and the
"sub_type" attribute indicates its relation to the board. The "resolution" attribute
is set to "high", implying that the image is of high quality. The "description"
element provides a brief textual description of the image, mentioning the Versal
VE2302 IOCC Evaluation Platform.

1 <images >
2 <image name=" ve2302_image .jpg" display_name =" Versal VE2302

ñ→ IOCC Evaluation Platform " sub_type ="board" resolution
ñ→ ="high">

3 <description > Versal VE2302 IOCC Evaluation Platform " </
ñ→ description >

4 </image >
5 </images >

Listing 4.2: <compatible_board_revisions> and <file_version> tags of
board.xml

To ensure the proper functioning of board files, it is essential to include the
<file_version> and <compatible_board_revisions> tags:

1 <compatible_board_revisions >
2 <revision id="0">Rev A01 </ revision >
3 </ compatible_board_revisions >
4 <file_version >1.0 </ file_version >

Listing 4.3: <compatible_board_revisions> and <file_version> tags of
board.xml

<file_version> tag is used to track the version of board files while the
<compatible_board_revisions> tag allows us to specify compatible board revi-
sions, such as Revision1, Revision2, and so on. These tags contribute to maintaining
compatibility and ensuring that the board files are interpreted correctly by the
software. Note that changes to the physical board may also trigger changes in
board file, and therefore a new board <file_version>. However, revisions to the
board file may not require revisions to the physical board; and revisions to the
physical board can include changes that do not necessitate an updated board file.
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Figure 4.4: Vivado - New Project -> Board selection

Therefore it is possible for a board file to support multiple revisions of a physical
board.

The <parameters> tag is used to list miscellaneous parameters of the board.
It includes one or more nested <parameter> tags that define different features or
properties of the board. The values of this tag are nearly always identical to those
listed below 4.4.

1 <parameters >
2 <parameter name=" heat_sink_type " value=" medium "

ñ→ value_type =" string " />
3 <parameter name=" heat_sink_temperature " value_type ="

ñ→ range" value_min ="20.0" value_max ="30.0" />
4 </parameters >

Listing 4.4: Parameters defined in board.xml

Now that we’ve covered the fundamental information, we can delve into detailing
the components on the board by adding specific information. The <component>
section forms a very important part of the board file because it defines the compo-
nents found on the board, as well as different operating modes of the components,
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and the settings needed to enable these modes. The first one is the FPGA, for
this, we also define the vendor and the pin map file. All of the IP cores used
to implement interfaces between FPGA and board components must be defined
between FPGA <component> tags.

As described in Table 4.1 there are a lot of interfaces that need to be mapped.
For each one, we must specify the interface mode, name, preferred IP core to
implement this interface, and preset name (preset_proc) which will link the IP
core with predefined configurations in the preset.xml file. The interfaces section
provides a listing of all the physical interfaces available on a <component>. The
<interfaces> section contains one or more <interface> tags nested within. An
interface is defined by multiple ports through the use of the <port_map> tag.
Interfaces can be defined only inside a <component> of "type=fpga". Each interface
is further broken down into individual port maps. These port maps serve as a map
of a logical port, that is defined in the interface, with a physical port, that relates
to a physical package pin on the AMD device. Finally, in the <pin_map> section,
each physical port is broken down into one or more individual pins depending on
the width of the port being mapped. Pins can be shared across different physical
ports of the interfaces they are defined in.

1 <components >
2 <component name="part0" display_name =" xcve2302 FPGA" type=

ñ→ "fpga" part_name ="xcve2302 -sfva784 -1LP -e-S-es1"
ñ→ pin_map_file =" part0_pins .xml" vendor ="avnet" spec_url =
ñ→ "http :// avnet.me/ ve2302_iocc ">

3 <description > XCVE2302 FPGA </ description >
4 <interfaces >
5 ...
6 <!-- Push Buttons -->
7 <interface mode=" master " name=" pmc_pb " type=" xilinx .

ñ→ com: interface : gpio_rtl :1.0" of_component =" pmc_pb "
ñ→ preset_proc =" pmc_pb_preset ">

8 <preferred_ips >
9 <preferred_ip vendor =" xilinx .com" library ="ip"

ñ→ name=" axi_gpio " order="0"/>
10 </ preferred_ips >
11 <port_maps >
12 <port_map logical_port ="TRI_I" physical_port ="

ñ→ pmc_pb_tri_i " dir="in" left="1" right="0">
13 <pin_maps >
14 <pin_map port_index ="0" component_pin ="

ñ→ pmc_pb_0 "/>
15 <pin_map port_index ="1" component_pin ="

ñ→ pmc_pb_1 "/>
16 </pin_maps >
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17 </port_map >
18 </port_maps >
19 </interface >
20 ...
21 </interfaces >
22 </component >
23 ...

Listing 4.5: FPGA in board.xml with an example of interface declaration of 2
push buttons.

The different interfaces are further specified as components to provide them
with all the essential information:

1 <component name=" pmc_pb " display_name ="PMC PB" type="chip"
ñ→ sub_type ="led" major_group =" General Purpose Input or
ñ→ Output " part_name ="SML -LX0603GW -TR" vendor ="LUMEX">

2 <description >PMC Push Buttons </ description >
3 </component >

Listing 4.6: Component declaration of the 2 PMC Push Buttons (10).

1 <component name=" xpio_pb " display_name ="XPIO PB" type="chip"
ñ→ sub_type ="led" major_group =" General Purpose Input or
ñ→ Output " part_name ="SML -LX0603GW -TR" vendor ="LUMEX">

2 <description >XPIO Push Buttons </ description >
3 </component >

Listing 4.7: Component declaration of the 2 XPIO Push Buttons (13).

1 <component name=" xpio_dp " display_name ="XPIO DIP" type="chip
ñ→ " sub_type ="led" major_group =" General Purpose Input or
ñ→ Output " part_name ="SML -LX0603GW -TR" vendor ="LUMEX">

2 <description >XPIO DIP Switches </ description >
3 </component >

Listing 4.8: Component declaration of XPIO 4-port dipswitch (13).

1 <component name=" pmc_led " display_name ="PMC LED" type="chip"
ñ→ sub_type ="led" major_group =" General Purpose Input or
ñ→ Output " part_name ="SML -LX0603GW -TR" vendor ="LUMEX">

2 <description >PMC LEDs </ description >
3 </component >

Listing 4.9: Component declaration of 2 PMC LEDs (11).
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1 <component name=" xpio_led " display_name ="XPIO LED" type="
ñ→ chip" sub_type ="led" major_group =" General Purpose
ñ→ Input or Output " part_name ="SML -LX0603GW -TR" vendor ="
ñ→ LUMEX">

2 <description >XPIO LEDs </ description >
3 </component >

Listing 4.10: Component declaration of 3 XPIO LEDs (13).

Towards the end of the file, there is a section detailing all connections established
between the identified system part ("part0") and various previously seen components.
This section provides comprehensive information about each connection, including
the nature of the relationship, typical delay, and index ranges associated with each
component.

1 <connections >
2 <connection name=" part0_lpddr4_clk1 " component1 ="part0"

ñ→ component2 =" lpddr4_clk1 ">
3 <connection_map name=" part0_lpddr4_clk1_1 "

ñ→ typical_delay ="5" c1_st_index ="0" c1_end_index ="1"
ñ→ c2_st_index ="0" c2_end_index ="1" />

4 </connection >
5 <connection name=" part0_pmc_pb " component1 ="part0"

ñ→ component2 =" pmc_pb ">
6 <connection_map name=" part0_pmc_pb_1 " typical_delay =

ñ→ "5" c1_st_index ="2" c1_end_index ="3" c2_st_index ="0"
ñ→ c2_end_index ="1" />

7 </connection >
8 <connection name=" part0_xpio_pb " component1 ="part0"

ñ→ component2 =" xpio_pb ">
9 <connection_map name=" part0_xpio_pb_1 " typical_delay

ñ→ ="5" c1_st_index ="4" c1_end_index ="5" c2_st_index ="0"
ñ→ c2_end_index ="1" />

10 </connection >
11 <connection name=" part0_xpio_dp " component1 ="part0"

ñ→ component2 =" xpio_dp ">
12 <connection_map name=" part0_xpio_dp_1 " typical_delay

ñ→ ="5" c1_st_index ="6" c1_end_index ="9" c2_st_index ="0"
ñ→ c2_end_index ="3" />

13 </connection >
14 <connection name=" part0_pmc_led " component1 ="part0"

ñ→ component2 =" pmc_led ">
15 <connection_map name=" part0_pmc_led_1 " typical_delay

ñ→ ="5" c1_st_index ="10" c1_end_index ="11" c2_st_index ="0
ñ→ " c2_end_index ="1" />
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16 </connection >
17 <connection name=" part0_xpio_led " component1 ="part0"

ñ→ component2 =" xpio_led ">
18 <connection_map name=" part0_xpio_led_1 "

ñ→ typical_delay ="5" c1_st_index ="12" c1_end_index ="14"
ñ→ c2_st_index ="0" c2_end_index ="2" />

19 </connection >
20 <connection name=" part0_LPDDR4_Controller0 " component1 ="

ñ→ part0" component2 =" LPDDR4_Controller0 ">
21 <connection_map name=" part0_lpddr4_0_1 "

ñ→ typical_delay ="5" c1_st_index ="300" c1_end_index ="433"
ñ→ c2_st_index ="0" c2_end_index ="133" />

22 </connection >
23 </ connections >

Listing 4.11: Connections declarations of the various components (13).

4.5 part0_pins.xml
This file starts with <part_info> </part_info> tags in which it is specified the
FPGA part used on the board. The new board takes his name from it, "xcve2302-
sfva784-1LP-e-S-es1". Between these two tags we will be providing all the pin
mapping information.

The name of the IP CORE follows a naming convention that is:

• Family ("xcve2302"): This typically refers to the family of FPGAs. For
example, "xcve2302" belongs to the Versal Edge family or series.

• Package ("sfva784"): The package code specifies the physical package or
form factor of the FPGA. It includes details about the size, pin count (e.g.
784), and other physical characteristics.

• Speed Grade ("1LP"): This speed grade indicates low-power variants.
These FPGAs are optimized for power efficiency, making them suitable for
battery-powered or power-sensitive applications.

• Extended Standard Temperature Range ("e-S"): The temperature range
designation indicates whether the FPGA is suitable for industrial applications
and the specific temperature range. The "e-S" suffix indicates that the FPGA is
designed for an extended standard temperature range. Extended temperature
ranges are useful in applications where the device may experience temperatures
higher or lower than those covered by standard temperature ranges.
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For comparison purposes, in the Vek280, the FPGA utilized was the "xcve2802-
vsvh1760-2MP-e-S-es1", featuring a distinct package with more than double the
pin count. This variant operates at the Mainstream Performance capacity of the
FPGA, commonly expressed in terms of megahertz (MHz) or gigahertz (GHz).

As you can see in the pictures below, the pin map of the package of the VE2302
(Figure 4.5) is a smaller subset of the VE2802 one (Figure 4.6).

Figure 4.5: SFVA784 Package—VE2302 Pin Map
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Figure 4.6: VSVH1760 Package—VE2802 Pin Map
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The index and name serve as unique identifiers, pins listed here are linked to IP
core port pins specified in the board.xml file by the pin name attribute in the board
and preset files. The optional "iostandard" parameter specifies the programmable
I/O Standard used for configuring input, output, or bidirectional ports on the
target device (refer to the Xilinx Vivado I/O Standards documentation [9]). It is
worth noting that pins in the same bank on the schematics must have compatible
iostandards, starting from the same voltage level.

Before diving into the actual file describing how the pin locations are defined
(see next section 4.5.2), I have to explain how to find the physical pin location in
the schematics.

4.5.1 How to find the pin location
The primary purpose of the part0_pins.xml file is to instruct the program about the
physical connections of various signals and components to the main core, designated
as "xcve2302-sfva784-1LP-e-S-es1". Once a signal, such as those from the 4-port
Dipswitch (Figure 4.3), has been identified, its corresponding point on the JX
connector can be determined (See connectors). In this instance, signals should
maintain consistent names across all schematics. To confirm, one can trace the
signal’s path to the connector on the carrier board and verify its name as it exits
the pin on the opposite side. For clarity, only the connector on the carrier board is
depicted here, as both connectors are identical (Figure 4.7).

Figure 4.7: JX connector schematics

Once it is known the signal name used on the Som schematic, it remains only
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to follow it back to the source. In this example, it comes from the BANK 703 and
the pin location is E24 (Figure 4.8).

Figure 4.8: Cut of the schematic showing BANK 703 and the signal of the
Dipswitch

The name shown on the inside of the component is the name used internally.

4.5.2 The Pins Map
The first elements specified in the <pins> tag are the LPDDR4 clocks and the
GPIOs. This includes two pins for the clock positive and negative, four pins for
the buttons, four pins for the 4-port Dipswitch, and an additional four pins for the
LEDs (4.12). It can be seen the correspondence between the signals comments (<!–
signal –>) and the signals in the schematics (Figure 4.9).

1 <part_info part_name ="xcve2302 -sfva784 -1LP -e-S-es1">
2 <pins >
3 <pin index="0" name=" lpddr4_clk1_p " iostandard ="

ñ→ DIFF_SSTL15 " loc="N23"/>
4 <pin index="1" name=" lpddr4_clk1_n " iostandard ="

ñ→ DIFF_SSTL15 " loc="N24"/>
5 <!-- Push Buttons -->
6 <!-- PMC_MIO46 -->
7 <pin index="2" name=" pmc_pb_0 " iostandard =" LVCMOS18 " loc

ñ→ ="AF9"/>
8 <!-- PMC_MIO37 -->
9 <pin index="3" name=" pmc_pb_1 " iostandard =" LVCMOS18 " loc

ñ→ ="AU34"/>
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Figure 4.9: GPIO example schematics

10 <!-- XPIO_702_L26_P -->
11 <pin index="4" name=" xpio_pb_0 " iostandard =" LVCMOS18 "

ñ→ loc="N25"/>
12 <!-- XPIO_703_GC_XCC_L24_P -->
13 <pin index="5" name=" xpio_pb_1 " iostandard =" LVCMOS18 "

ñ→ loc="F23"/>
14 ...
15 </pins >
16 </part_info >

Listing 4.12: First section of part0_pins.xml

Both boards feature LPDDR4 memory, and modifications were made to the
physical locations of various pins by referencing the schematics (here the "loc"
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attribute is easier to find in respect as explained in Section 4.5.1 because the memory
is directly connected to BANK 700 and 701). Notably, the changes included the
removal of pins associated with two additional DDRs, as the new board incorporates
a single DDR instead of three, along with the exclusion of LPDDR4 clocks (Figure
4.10).

Figure 4.10: Versal AI Edge SOM LPDDR4.

1 <part_info part_name ="xcve2302 -sfva784 -1LP -e-S-es1">
2 <pins >
3 <!-- LPDDR4_Channel_0 -->
4 <pin index="300" name=" lpddr4_0_dq0 " loc="AB14"/>
5 <pin index="301" name=" lpddr4_0_dq1 " loc="AB21"/>
6 <pin index="302" name=" lpddr4_0_dq2 " loc="AC16"/>
7 <pin index="303" name=" lpddr4_0_dq3 " loc="AB15"/>
8 <pin index="304" name=" lpddr4_0_dq4 " loc="AB20"/>
9 <pin index="305" name=" lpddr4_0_dq5 " loc="AC20"/>

10 <pin index="306" name=" lpddr4_0_dq6 " loc="AC22"/>
11 ...
12 </pins >
13 </part_info >

Listing 4.13: LPDDR4_Channel_0 of part0_pins.xml
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Furthermore, the FMC1 HSPC connectors were removed in the process. Subse-
quent attention was directed towards the analysis and adjustment of various input
and output components on the new board.

Specifically, as seen before (Section 3.3.1), the new board integrates four push
buttons, a 4-port dipswitch, and five LEDs (excluding the one managed by the
I2C expander interface). These modifications ensure that the new board configura-
tion aligns with the desired design specifications. The ongoing process involves a
meticulous review and adjustment of the board’s I/O characteristics, ensuring com-
patibility and adherence to the defined standards outlined in the Xilinx UltraScale
I/O and Termination documentation [10].

4.6 preset.xml
Preset file helps customize an IP core in a particular configuration. The preset.xml
file starts with an XML tag called <ip_presets> in which we must provide this
file schema version. The current schema version for the preset file is "1.0":

1 <ip_presets schema = "1.0">

Listing 4.14: First tag of preset.xml

Within the <ip_preset> the <ip> section defines the specific IP that the preset
values will apply to. First, we add configurations for the Versal CIPS IP Core.
The Control, Interfaces, and Processing Subsystem (CIPS) is common to all Versal
designs and contains all of the hardened IP that is common across all Versal
devices. These configurations are linked to the board.xml file by the attribute
called "preset_proc_name".

1 <ip_preset preset_proc_name =" ps_pmc_fixed_io_preset ">
2 <ip vendor =" xilinx .com" library ="ip" name=" versal_cips "
3 version ="*" ip_interface =" FIXED_IO ">
4 <user_parameters >
5 <user_hier_parameter name=" CONFIG . PS_PMC_CONFIG ">
6 ...
7 <user_hier_parameter name=" PMC_SD1_PERIPHERAL ">
8 <user_parameter name=" ENABLE " value="1"/>
9 <user_hier_parameter name="IO">

10 <user_parameter name=" PMC_MIO " value="38 .. 45"/>
11 </ user_hier_parameter >
12 </ user_hier_parameter >
13 ...
14 </ user_hier_parameter >
15 </ user_parameters >
16 </ip >
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17 </ip_preset >

Listing 4.15: Extract of Versal CIPS definition in preset.xml with declaration of
PMC_SD1_PERIPHERAL

Within the <ip> section, the <user_parameters> and <user_parameter> tags
define the various configuration presets to apply to the specified IP core. It is
important to understand that the "name" attribute and the "value" range, in this
case "38 .. 45", are used to specify the name of the associated signals, here from
PMC_MIO38 counting up to PMC_MIO45. This information can be derived from
the Table 4.1.

The preset file also serves to configure all parameters of various IPs. The "name"
attribute designates the name of the pre-configured property for the IP core, while
the value sets the property. In the case of AMD target reference platforms or
evaluation boards, the IP possesses knowledge of the FPGA pins employed on
the target boards, known as board awareness. Leveraging this information, the
IP integrator’s board/connection automation feature can assist in connecting IP
interfaces/ports to external ports on the board. IP integrator then generates the
necessary physical and other I/O constraints required for the specified I/O port.

The recognition of preconfigured properties is facilitated by board awareness,
which automatically selects the appropriate IP using the "name" property within
the enclosing <ip> tag. An example is illustrated in the configuration of the
LPDDR4_Controller0_preset (see 4.16).

Examples of board-aware IPs used here (with the full list available in the Vivado
Design Suite User Guide [8]) include axi_gpio_v2_0 (utilized for LEDs, push
buttons, and switches), axi_noc_v1_0 (employed for memory), clk_wiz_v6_0
(configured for the system clock), and versal_cips_v3_2 (defining interfaces com-
municating with the FPGA).

1 <ip_preset preset_proc_name =" LPDDR4_Controller0_preset ">
2 <ip vendor =" xilinx .com" library ="ip" name=" axi_noc "

ñ→ version ="*">
3 <user_parameters >
4 <user_parameter name=" CONFIG . CONTROLLERTYPE " value="

ñ→ LPDDR4_SDRAM " />
5 <user_parameter name=" CONFIG . MC_NO_CHANNELS " value="

ñ→ Dual" />
6 <user_parameter name=" CONFIG . MC_SYSTEM_CLOCK " value="

ñ→ Differential " />
7 <user_parameter name=" CONFIG . MC_MEMORY_SPEEDGRADE "

ñ→ value="LPDDR4 -3733" />
8 <user_parameter name=" CONFIG . MC_DATAWIDTH " value="32"

ñ→ />
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9 <user_parameter name=" CONFIG . MC_LP4_PIN_EFFICIENT "
ñ→ value="true" />

10 <user_parameter name=" CONFIG . MC_FREQ_SEL " value="
ñ→ MEMORY_CLK_FROM_SYS_CLK " />

11 <user_parameter name=" CONFIG . MC_IP_TIMEPERIOD0_FOR_OP "
ñ→ value="5000" />

12 <user_parameter name=" CONFIG . MC_OP_TIMEPERIOD0 " value=
ñ→ "541" />

13 <user_parameter name=" CONFIG . MC_LP4_OVERWRITE_IO_PROP "
ñ→ value="true" />

14 </ user_parameters >
15 </ip >
16 </ip_preset >

Listing 4.16: Configuration of LPDDR4 Controller0 in the preset.xml

4.6.1 xitem.json
Another important file not mentioned earlier is xitem.json. While it doesn’t play
a role in helping Vivado understand the board composition, it retains certain
information about the board, its author, and the associated website. In this
instance, I updated the search keyword and other values to align with the new
ones.

1 {
2 " config ": {
3 "items ": [
4 {
5 "infra ": {
6 "name ": "v e2302_iocc_reva ",
7 " display ": "Versal VE2302 IOCC Evaluation Platform

ñ→ ",
8 " revision ": "0.1",
9 " description ": "Versal VE2302 IOCC Evaluation

ñ→ Platform ",
10 " company ": "xilinx.com",
11 " company_display ": "Xilinx",
12 " author ": "R adaele ",
13 " contributors ": [
14 {
15 "group ": "Xilinx",
16 "url ": "www. xilinx .com"
17 }
18 ],
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19 " category ": "E valuation Boards ",
20 " website ": "www. xilinx .com/ ve2302 ",
21 " search-keywords ": [
22 "v e2302_iocc_reva ",
23 "xilinx.com",
24 "board",
25 "M ultiple Parts"
26 ]
27 }
28 }
29 ]
30 },
31 " _major ": 1,
32 " _minor ": 0
33 }

Listing 4.17: xitem.json

Once done with the bdf, I committed all the files to the official GitHub repository
of the bdf of Avnet [11] to let my college Mario Bergeron validate the design. Even
though the board didn’t exist yet, this was crucial to be able to build a DPU-
TRD. The DPU-TRD (DPU Targeted Reference Design) is a document or package
provided by Xilinx that serves as a reference design for implementing and using the
DPU (Deep Learning Processing Unit). It includes information and resources that
guide developers in implementing the DPU into their FPGA-based designs. After
that, this part was concluded, waiting for the realization of the physical board to
test.

4.7 Mario Bergeron
Before delving into the experiments, it is essential to introduce my colleague who
has been an integral part of this project. Working closely together, Mario played a
pivotal role in the collaborative efforts that shaped this thesis.

Mario Bergeron is a Machine Learning Specialist, specializing in embedded vision
and AI at the edge. He has a Bachelor of Science degree in Computer Engineering
from Université Laval in Québec City and he accumulated over 30 years of DSP
and FPGA-based embedded design experience such as deep learning platforms,
reference designs, and customer training [12].
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The benchmarks

In the meantime, courtesy of AMD, I was sent the VEK280 to carry out all the
necessary measurements to calculate the theoretical performance of the new VE2302
board. To do that, we did some benchmarks trying various models from Vitis AI [3]
on different boards I was able to put my hands on. The primary parameters to be
measured are throughput (fps), latency (msec), and power consumption (W). These
metrics are crucial for calculating the throughput/power ratio (fps/W), providing
a more accurate assessment. While it’s evident that the VEK280 outperforms all
others in terms of throughput, it’s equally important to consider the electrical
consumption of each device. All this information will be useful to compute the
theoretical performance of the new board.

5.1 The boards
I decided to use four boards, starting from the most used, based on availability (we
needed to get the hands-on), cost, and compatibility with the task. These boards
are versatile and can be used for a wide range of applications, including embedded
systems development, hardware acceleration, prototyping, and testing. They are
all built around AMD Xilinx Zynq UltraScale+ and offer an FPGA and various
connectivity options, including interfaces such as USB, Ethernet, HDMI, and others,
all needed to run prediction models that use USB cameras and monitors to display.
The Zynq UltraScale+ MPSoC family is based on the Xilinx UltraScale MPSoC
architecture. This family of products integrates a feature-rich 64-bit quad-core or
dual-core Arm Cortex-A53 and dual-core Arm Cortex-R5F based processing system
(PS) and Xilinx programmable logic (PL) UltraScale architecture in a single device.
Also included are on-chip memory, multiport external memory interfaces, and a
rich set of peripheral connectivity interfaces.

• ZUBoard 1CG: A versatile board featuring the Xilinx Zynq UltraScale+
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MPSoC ZU1CG. It has an FPGA, a Dual ARM Cortex-A53 processor, a
DDR4 memory, and multiple connectivity options[13].

• Ultra96-V2: An ARM-based development board based on the Xilinx Zynq
UltraScale+ MPSoC ZU3EG. It features an FPGA, a Quad ARM Cortex-A53,
and a Dual Cortex-R5 processors, WiFi/Bluetooth, HDMI, USB, and other
interfaces[14]. The EG (and EV) versions feature an Arm Mali-400MP2,
a GPU from the Mali series produced by ARM Holdings, one of the most
widely shipped mobile GPUs across various platforms. Chosen for its emphasis
on minimizing power and bandwidth consumption, the Mali-400 GPU was
selected for cost-effective devices.

• UltraZed-EV: is a high-performance, full-featured, System-On-Module(SOM)
based on the AMD Xilinx Zynq UltraScale+ MPSoC ZU7EV family of devices.
It features an FPGA, a Quad ARM Cortex-A9, and a Dual Cortex-A53
processor, a DDR memory, and a variety of connectivity options[15]. In
addition to the EG version of the Zynq the EV also has H.264/H.265 Video
Codec[16].

• VEK280: The VEK280 Evaluation Kit featuring the AMD Versal AI Edge
VE2802 Adaptive SoC. Key Features: AIE-ML and DSP hardware acceleration
engines, high-speed connectivity, optimized for ML inference applications in
automotive, vision, industrial, scientific, and medical sectors[6]. The produc-
tion is limited, with exclusivity due to high cost. The board is described in
detail in Chapter 2.

5.2 The models
The models used to test the performances were chosen among the ones available
on the VitisAI GitHub repository [17]. They can be seen in the Table 5.1.

Model Input ModelZoo name
Inception V4 229x229 tf_inceptionv4_imagenet_299_299_24.55G

VGG-16 224x224 tf_vgg16_imagenet_224_224_30.96G
ResNet-50 224x224 tf_resnetv1_50_imagenet_224_224_6.97G

Mobilenet-V1 224x224 tf_mobilenetv1_1.0_imagenet_224_224_1.14G
Mobilenet-V2 224x224 tf_mobilenetv2_1.0_imagenet_224_224_0.59G

SSD Mobilenet-V1 300x300 tf_ssdmobilenetv1_coco_300_300_2.47G
SSD Mobilenet-V2 300x300 tf_ssdmobilenetv2_coco_300_300_3.75G

Table 5.1: Models used.
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5.2.1 Inception v4
Inception-v4, a convolutional neural network (CNN) architecture belonging to the
Inception family, was developed by Google to address limitations observed in its
predecessors, including Inception-v1, Inception-v2 (also known as BN-Inception),
and Inception-v3. Known for its innovative use of inception modules, which involve
parallel convolutional operations with various filter sizes, Inception-v4 focuses
on capturing multi-scale features efficiently [18]. Key features of Inception-v4
include the introduction of Inception Modules such as Inception-A, incorporating a
1x1 convolution to enhance computational efficiency, Inception-B with factorized
7x7 convolutions, and Inception-C with parallel branches capturing multi-scale
information. The architecture incorporates Reduction Modules to downsample
feature map dimensions and a sophisticated Stem Network for richer feature
representations. It leverages factorized convolutions (separable convolutions) to
reduce parameters and computations, contributing to improved training efficiency.
Inception-v4 adopts Global Average Pooling (GAP) before the final fully connected
layer, reducing spatial dimensions to a single value per channel. This architecture
aims to enhance training efficiency, generalization, and computational performance
compared to its predecessors. Notably, it is sometimes referred to as "Inception-
ResNet-v2" due to the incorporation of residual connections inspired by ResNet
architectures. This integration addresses challenges like the vanishing gradient
problem, promoting smoother optimization. Inception-v4 is designed as a potent
model applicable to various computer vision tasks, including image classification
and object detection.

5.2.2 VGG-16
VGG-16, a convolutional neural network (CNN) architecture belonging to the Visual
Geometry Group (VGG) family, was introduced by researchers Karen Simonyan
and Andrew Zisserman from the University of Oxford. As documented in the
paper "Very Deep Convolutional Networks for Large-Scale Image Recognition"[19],
VGG-16 is recognized for its simplicity and effectiveness, specifically designed
for image classification tasks. The architecture’s key characteristics include its
significant depth, comprising 16 layers denoted by the "16" in its name. This
depth encompasses 13 convolutional layers and 3 fully connected layers, facilitating
the learning of hierarchical features of increasing complexity. VGG-16 employs
small 3x3 convolutional filters in its convolutional layers, utilizing the rectified
linear unit (ReLU) activation function. The use of multiple convolutional layers
captures hierarchical representations and allows the network to learn local features.
For downsampling spatial dimensions, VGG-16 incorporates max-pooling layers
with a 2x2 window and a stride of 2. Three fully connected layers follow the
convolutional layers, with the first two layers housing 4,096 neurons each. The
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third fully connected layer serves as the output layer, containing 1,000 neurons for
tasks such as ImageNet classification. Throughout the network, ReLU activation
functions introduce non-linearity. VGG-16 distinguishes itself with a relatively
large number of parameters, contributing to computational expense and potential
higher memory requirements. A distinctive feature is the use of 3x3 convolutional
filters throughout the architecture. The absence of batch normalization, a common
feature in recent architectures, is notable. Instead, VGG-16 includes dropout in
fully connected layers as a regularization technique to prevent overfitting. Although
VGG-16 is less prevalent today due to the adoption of more lightweight architectures
like ResNet and Inception, its simplicity and efficacy have left a lasting impact
on the development of deeper models. It laid the groundwork for subsequent
architectures, including VGG-19, influencing the history of deep learning.

5.2.3 ResNet-50
ResNet-50, a variant of the ResNet (Residual Network) architecture, addresses
challenges in training deep neural networks. Introduced by Kaiming He and
team[20], ResNet-50 features:

• Residual Blocks: Key to ResNet, these blocks employ a "shortcut" for
gradient flow, enabling training of very deep networks.

• Depth and Architecture: With 50 layers, including convolutional layers
and residual blocks, ResNet-50 surpasses VGG in depth.

• Bottleneck Design: Residual blocks in ResNet-50 use a bottleneck design,
reducing computational complexity for efficiency.

• Global Average Pooling (GAP): Replacing fully connected layers, GAP
reduces spatial dimensions for efficient classification.

• Shortcut Connections: Enhance gradient flow during training, critical for
very deep architectures.

• Pre-activation Residual Blocks: Introduce batch normalization and ReLU
activation before convolutional layers for improved training.

• Pooling and Stride: Strategic use of max pooling and strided convolutions
downsamples spatial dimensions.

Efficient and potent for image classification, ResNet-50’s architecture has influ-
enced deeper variants like ResNet-101 and ResNet-152.
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5.2.4 MobileNetV1 & MobileNetV2

MobileNetV1, designed by Andrew G. Howard and his team, is a lightweight
convolutional neural network (CNN) optimized for efficient image classification on
mobile and edge devices. It employs depthwise separable convolutions, introducing
width and resolution multipliers for flexible trade-offs between model size, accuracy,
and computational efficiency. The unique bottleneck design and ReLU6 activation
contribute to its efficiency, making it suitable for real-time applications[21].

Building upon MobileNetV1, MobileNetV2 introduces an inverted residual
structure with linear bottlenecks and shortcut connections, inspired by ResNet-50.
This evolution enhances feature representation and mitigates vanishing gradient
issues. MobileNetV2 retains the width and resolution multipliers, maintaining
flexibility. Both models utilize global average pooling for efficient classification[22].

While MobileNetV1 focuses on lightweight efficiency, MobileNetV2 refines the
balance between efficiency and performance. These models offer versatile solutions
for diverse real-time applications on resource-constrained devices, each addressing
specific nuances in accuracy and computational efficiency.

5.2.5 SSD MobileNetV1 & SSD MobileNetV2

SSD MobileNetV1[23] and SSD MobileNetV2[24] are variants of the Single Shot
Multibox Detector (SSD) object detection model. They use MobileNetV1 and
MobileNetV2(Section 5.2.4) as their base architecture and improve their efficiency
by making trade-offs between accuracy and computation. They efficiently detect
objects of varying sizes and shapes, making them suitable for real-time applications
on resource-constrained devices. SSD MobileNetV2 employing the enhanced Mo-
bileNetV2 architecture, with inverted residuals and linear bottlenecks for improved
feature extraction, achieves enhanced accuracy while maintaining efficiency.

5.3 The theoretical results

Before talking about our benchmarking of the different models on the selected
devices, we need to dive deeper in the technical implementation of the processing
unit of the Versal family and to see how they are expected to behave based on
their specific product specification. This will help to derive some formulas that will
permit us to estimate the future performance of the VE2302 on the same models
and tasks.
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5.3.1 The DPUCV2DX8G
The AMD Versal Deep Learning Processing Unit (DPUCV2DX8G) stands as a
configurable computational engine meticulously designed to optimize convolutional
neural networks within Versal Adaptive SoCs devices equipped with AI Engines.
Tailored for Versal devices featuring AI Engine-ML tiles, the DPUCV2DX8G offers
specialized functionality. Conversely, for Versal devices equipped with AI Engines
(excluding AI Engine-ML), the recommended choice is the DPUCVDX8G. The level
of parallelism incorporated into the engine is a flexible design parameter, providing
adaptability based on the target device and specific application requirements. The
DPU is equipped with a comprehensive set of highly optimized instructions and
extends support to a wide array of convolutional neural networks, including VGG,
ResNet, GoogLeNet, YOLO, SSD, MobileNet, FPN, among others[25].

DPUCV2DX8G Features:

• One AXI4-Lite slave interface for accessing configuration and status registers.

• One AXI4 master interface for DPU instruction fetch.

• Supports a configurable number of AXI4 interfaces for activation and feature
map load/store.

• Supports 20 AI Engines-ML tiles per batch handler, where BATCH_N=[1,14].

Key Supported Operators:

• Convolution and transposed convolution.

• Depthwise convolution and depthwise transposed convolution.

• Max pooling.

• Average pooling.

• ReLU, ReLU6, Leaky ReLU, Hard Sigmoid, and Hard Swish.

• Elementwise-Sum and Elementwise-Multiply.

• Dilation.

• Reorg.

• Fully connected layer.

• Concat, Batch Normalization.
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Figure 5.1: DPUCV2DX8G Block Diagram (top-level).

The DPUCV2DX8G is a high-performance, user-configurable convolutional
neural network (CNN) processing engine optimized for Versal Adaptive SoCs with
AI Engine-ML tiles. It is designed for use in Versal AI Edge and AI Core Adaptable
SoCs, as well as AMD Alveo V70 accelerator cards. Utilizing both AI Engine-
ML tiles and programmable logic (PL) resources, this IP exposes configurable
parameters for AI Engine-ML tiles and PL resource utilization. AI Engine-ML
tiles perform convolution and non-convolution operations, and their interface tiles
facilitate data transfer between memory tiles and the PL. Each DPU core consists
of an AI Engine-ML group, and for multi-batch architectures, each batch handler
has a private AI Engine-ML group and memory tile group. The PL component
includes a high-level scheduler module and batch handlers for Load and Save,
implemented as shared logic for all DPUCV2DX8G batch handlers.

In the Figure 5.2 is shown an example system in which video frames are captured
by a Versal device with a connected MIPI camera. The DPUCV2DX8G is integrated
into the Versal Adaptive SoCs via the high-performance network on chip (NoC) and
SmartConnect to enable deep learning inference tasks, such as image classification,
object detection, and semantic segmentation.
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Figure 5.2: Versal Adaptive SoC Integration Example.

5.3.2 Resource Utilization

Architecture AI Engine
Conv Cores

AI Engine
Non-Conv

Cores

Memory
Tiles LUT FF Block

RAM
Ultra
RAM DSP PL

NMU

C20B1CU1 16 4 8 42027 51742 12.5 0 78 4
C20B2CU1 32 8 12 53648 63662 14 0 79 5
C20B3CU1 48 12 16 64638 74197 15.5 0 80 6
C20B4CU1 64 16 20 74816 84441 17 0 81 7
C20B5CU1 80 20 24 84612 94807 18.5 0 82 8
C20B6CU1 96 24 28 94744 105087 20 0 83 9
C20B7CU1 112 28 32 104717 115335 21.5 0 84 10
C20B8CU1 128 32 36 114693 125665 23 0 85 11
C20B9CU1 144 36 40 124665 135980 24.5 0 86 12
C20B10CU1 160 40 44 134632 146252 26 0 87 13
C20B11CU1 176 44 48 144476 156663 27.5 0 88 14
C20B12CU1 192 48 52 154120 166893 29 0 89 15
C20B13CU1 208 52 56 164545 177182 30.5 0 90 16
C20B14CU1 224 56 60 174431 187467 32 0 91 17

Table 5.2: Resources Utilization of Different DPUCV2DX8G Architectures
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Table 5.2 illustrates the resource utilization of various DPUCV2DX8G archi-
tectures. In the example of C20B14CU1, that is the architecture implemented
in the VEK280 (2.5), "C20" signifies 20 AI Engine-ML Cores per batch handler,
"B14" indicates 14 batch handlers, and "CU1" denotes one compute unit. We
must remember that the VE2302 will implement a C20B1CU1 with just one batch
handler.

5.3.3 Resource Utilization
The peak number of INT8 operations per clock cycle of a single AI Engine-ML
tile is 512. Thus, the total peak theoretical performance is calculated as 512 *
TCPB_N * BATCH_N * CU_N * AIE_ACT_FREQ, where:

• TCPB_N: is the total number of AI Engine-ML cores per batch handler (for
example C20, TCPB_N = 20).

• BATCH_N: is the maximum batch size (for example B14, BATCH_N=14).

• CU_N: is always 1 in this 1.0 IP release.

Example:
C20B14CU1 (14 AI Engine-ML cores per Batch, 16 cores for Conv, 4 cores for
non-Conv)
Peak TOPs = 512 * 20 * 14 * 1 * 1.18 GHz
Peak TOPs = 169.16
The table showing the theoretical results measured in TOPS (Trillions or Tera
Operations per Second) can be seen below (Table 5.3).

The table show us that we should expect on the new board a performance
14 times less powerful. This has not to be seen as a negative aspect as we are
addressing a different target of market and it needs to be considered that these
are theoretical results. Also compared with the other boards considered in the
benchmark it outperforms all of them (see Table 5.4). The empirical data will help
to understand the actual performance we should expect on the different models.
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Architecture Peak Theoretical Performance
(TOPS)

C20B1CU1 12.08

C20B2CU1 24.17

C20B3CU1 36.25

C20B4CU1 48.33

C20B5CU1 60.42

C20B6CU1 72.5

C20B7CU1 84.58

C20B8CU1 96.67

C20B9CU1 108.75

C20B10CU1 120.83

C20B11CU1 132.92

C20B12CU1 145.0

C20B13CU1 157.08

C20B14CU1 169.16

Table 5.3: Peak Theoretical INT8 Performance of the DPUCV2DX8G

ZUB1CG U96V2 UZ7EV VE2303 VEK280
Device 1CG 3EG 7EV VE2302 VE2802
DPU 1-B512 1-B2304 2-B4096 C20B1CU1 C20B14CU1

Frequency 300MHz 200MHz 300MHz 1.18GHz 1.18GHz
Peak TOPS 0.15 0.46 2.46 12.08 169.16

Table 5.4: Resources Utilization of Different DPUCV2DX8G Architectures
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5.4 The experiments
The Xilinx Model Zoo contains many pre-built convolutional neural network models.
The first thing to do is to create the SD card that will boot on the board that we
will measure. To do so Mario Bergeron has created all the pre-built Vitis-AI SD
card images that are needed for the chosen boards. These will already contains the
models we want to use.

5.4.1 Running the models
To begin, navigate to the classification application examples in the Vitis-AI-Library
(5.1).

1 cd ~/ Vitis -AI/ examples / vai_library / samples / classification

Listing 5.1: Example Shell Script

Next, build the models to prepare for execution (5.2).
1 ./ build.sh

Listing 5.2: Example Shell Script

Finally, execute the model using the specified command (5.3).
1 ./ test_performance_classification <model >
2 test_performance_classification .list
3 -t <number of threads >
4 -s <number of seconds >
5 -l <log file name >

Listing 5.3: Example Shell Script

5.4.2 Instruments
All the power measurements were performed directly at the source using the Kuman
Power Meter (Figure 5.3 left). This instrument supports different modes, the one
used here is the Mode 1: Time/ Watt/ Cost (Figure 5.3 right).

• Cumulative Time: How long you have monitored the device.

• Watt: Real-time current Watt of your device.

• Cost: How much have you cost (based on the unit price you set). Here set to
zero as we don’t have prior knowledge about that.
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Figure 5.3: Kuman Power Meter (left) and Operating Mode (right)

The usage is very straightforward; you just need to plug it in, power it up, and
connect the board. Afterward, we ran each model on every board, taking notes of
all the results. By combining the various results obtained from the instrument, a
graph illustrating the consumption of the various models can be generated. Here is
an example for the VEK280 (C20B14 is the DPU used, as indicated in Table 5.2).

Figure 5.4: Power Graph of VEK280.
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5.4.3 Comparison across all boards

Model ZUB1CG U96V2 UZ7EV VEK280
Inception V4 5/5 10/10 30/60/62 467/636/637

VGG-16 5/5 12/12 21/38/39 568/712/712
ResNet-50 17/18 29/30 85/160/172 1801/3296/5099

Mobilenet-V1 81/86 133/145 317/619/799 2381/4648/5200
Mobilenet-V2 89/94 114/123 258/499/611 2298/4472/5242

SSD Mobilenet-V1 35/40 53/65 103/216/319 906/1698/1980
SSD Mobilenet-V2 20/22 32/35 79/158/204 820/1564/1969

Table 5.5: Throughput (fps) - 1/2/N threads (N=4 for UZ4EV, N-16 for VEK280)

Model ZUB1CG U96V2 UZ7EV VEK280
Inception V4 194.64 101.41 32.77 29.90

VGG-16 206.83 82.50 46.75 24.60
ResNet-50 57.76 36.52 11.77 7.76

Mobilenet-V1 12.35 7.78 3.15 5.87
Mobilenet-V2 11.25 9.09 3.86 6.08

SSD Mobilenet-V1 28.81 20.02 9.78 15.44
SSD Mobilenet-V2 49.50 36.32 14.79 17.04

Table 5.6: Latency (msec) - 1 thread

Upon reviewing the various tables (refer to Tables 5.5, 5.6, 5.7, 5.8), it becomes
evident that the VEK280, equipped with the latest Versal Adaptive SoCs, surpasses
all other boards in performance. The throughput ranges from 6 to 30 times
faster compared to the closest competitor. Furthermore, the relative throughput
concerning power consumption (fps/watt) is 6 to 9 times higher. This remarkable
performance highlights the superiority of the new Versal Adaptive SoCs in the field
of Artificial Intelligence inference. It underscores the potential for various real-time
applications, emphasizing the technology’s prowess in enabling cutting-edge AI
solutions. The results showcase the VEK280 as a leading platform for demanding
AI workloads, illustrating its capability to drive advancements in AI applications
and their real-time implementations.
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Model ZUB1CG U96V2 UZ7EV VEK280
Idle power 7.7 11.9 22.4 42.4

Inception V4 1.1 3.2 6.2 12.4
VGG-16 1.1 4.7 5.5 16.8

ResNet-50 1.2 2.7 5.2 12.3
Mobilenet-V1 1.2 2.4 3.6 4.0
Mobilenet-V2 0.9 1.4 3.2 3.4

SSD Mobilenet-V1 1.1 2.3 3.6 3.8
SSD Mobilenet-V2 1.0 1.8 2.9 4.9

Table 5.7: Power (watts) - 1 thread

Model ZUB1CG U96V2 UZ7EV VEK280
Inception V4 4.5 3.1 4.8 37.7

VGG-16 4.5 2.6 3.8 33.8
ResNet-50 14.2 10.7 16.3 146.4

Mobilenet-V1 67.5 55.4 88.1 595.3
Mobilenet-V2 98.9 81.4 80.6 675.9

SSD Mobilenet-V1 31.8 23.0 28.6 238.4
SSD Mobilenet-V2 20.0 17.8 27.2 167.3

Table 5.8: Throughput/delta-Power (fps/W) - 1 thread
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5.4.4 Comparison between the VEK280 and VE2302 DPU
Considering the VEK280 as the most comprehensive Versal device, we simulated
the integration of the C20B1CU1 DPU into it to project the performance that
the VE2302 would attain. The subsequent tables present the results of these
computations, providing insights into the throughput, power consumption, and
relative throughput in relation to power. The comparison is drawn between the
VEK280 (C20B14CU1) and the C20B1CU1, which was implemented in the VEK280
to simulate the VE2302 performance.

Model C20B1 C20B14
Inception V4 71 / 74 / 74 / 74 468 / 638 / 633 / 638

VGG-16 53 / 54 / 54 / 54 572 / 719 / 718 / 718
ResNet-50 309 / 354 / 354 / 354 1800 / 3252 / 5082 / 5025

Mobilenet-V1 826 / 1270 / 1256 / 1255 2373 / 4286 / 5279 / 5192
Mobilenet-V2 726 / 1036 / 1035 / 1035 2300 / 4473 / 5259 / 5155

SSD Mobilenet-V1 363 / 587 / 587 / 586 905 / 1650 / 1976 / 1983
SSD Mobilenet-V2 229 / 301 / 301 / 301 821 / 1500 / 1964 / 1966

Table 5.9: Throughput (fps) - 1 / 2 / 14 / 28 threads

Model C20B1 C20B14
Idle power 38.2 42.2

Inception V4 2.5 / 2.6 / 2.6 / 2.6 12.5 / 17.0 / 17.1 / 17.1
VGG-16 2.6 / 2.6 / 2.6 / 2.6 16.8 / 21.2 / 21.2 / 21.2

ResNet-50 3.3 / 3.7 / 3.7 / 3.7 12.2 / 23.4 / 35.3 / 35.1
Mobilenet-V1 2.1 / 3.1 / 3.1 / 3.1 4.0 / 7.0 / 8.7 / 8.6
Mobilenet-V2 1.6 / 2.2 / 2.2 / 2.2 3.4 / 6.7 / 7.8 / 7.7

SSD Mobilenet-V1 2.0 / 3.2 / 3.2 / 3.2 3.7 / 6.8 / 8.2 / 8.2
SSD Mobilenet-V2 1.9 / 2.6 / 2.6 / 2.6 4.7 / 8.8 / 11.6 / 11.6

Table 5.10: Power (watts) - 1 / 2 / 14 / 28 threads

The obtained results indicate a decrease in throughput by factors of 5×, 7×, 8×
and 8× for the C20B1 compared to the more powerful C20B14. This outcome aligns
with expectations, given the reduced AI Engine-ML cores per Batch, dropping
from 14 to just one in the C20B1 architecture. However, an essential observation is
that this decrease in performance comes with a more budget-friendly price point.
While the exact pricing of the VE2302 (C20B1) is not yet determined, the VEK280
(C20B14) costs over 10 thousand euros.

Interestingly, the results reveal that despite the reduction in performance,
the trade-off is justified by the cost efficiency. The fps over watt factor, while
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Model C20B1 C20B14
Inception V4 28 / 28 / 28 / 28 37 / 37 / 37 / 37

VGG-16 20 / 21 / 21 / 21 34 / 34 / 34 / 34
ResNet-50 94 / 96 / 96 / 96 147 / 139 / 144 / 143

Mobilenet-V1 393 / 409 / 405 / 405 593 / 612 / 607 / 603
Mobilenet-V2 454 / 471 / 470 / 470 677 / 667 / 674 / 670

SSD Mobilenet-V1 181 / 183 / 183 / 183 244 / 243 / 241 / 241
SSD Mobilenet-V2 114 / 116 / 116 / 116 174 / 170 / 170 / 170

Table 5.11: Throughput/delta-Power (fps/watt) - 1 / 2 / 14 / 28 threads

experiencing a decline, remains relatively reasonable, only 1.4 times below the
superior architecture. This insight suggests that the VE2302 (C20B1) is poised
to offer a more economical alternative, making the compromise in performance
justifiable, especially when compared to its closest competitor, the UZ7EV.
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Conclusions

In conclusion, the thesis provides a comprehensive exploration of the Versal AI Edge
series, focusing on the VE2302 and its integration with the VEK280. The Versal
AI Edge series, with its adaptable architecture and advanced features, emerges as
a leading solution for artificial intelligence (AI) inference at the edge. The VE2302,
being a part of this series, exhibits remarkable capabilities with its optimized tiles,
diverse interfaces, and integration possibilities.

The thesis covers various aspects, from the hardware architecture, memory con-
figurations, and interface implementations to the versatile applications enabled by
the VE2302. The implementation of the C20B1 DPU into the VEK280, simulating
the VE2302’s performance, underscores the adaptability and cost-effectiveness of
the Versal devices. Despite a reduction in throughput, the trade-off in perfor-
mance is justified by the more budget-friendly nature of the VE2302, making it a
compelling choice for diverse applications.

The detailed explanation of hardware interfaces, MIO banks, and connectors
contributes to a thorough understanding of the VE2302’s capabilities. The integra-
tion with Vitis AI, ML data types support, and extended native support further
highlight the platform’s prowess in machine learning applications.

The evaluation of performance, power consumption, and throughput over power
for various models on different Versal devices, notably the VE2302, provides valuable
insights. Despite being a more compact and cost-effective solution compared to
the VEK280, the VE2302 showcases commendable performance and demonstrates
competitive efficiency in terms of fps over watt. This underscores the versatility
and cost-effectiveness of the VE2302, making it an attractive option for a broad
range of applications.

In summary, the thesis not only delves into the technical aspects of the Versal
AI Edge series but also emphasizes the practical implications and real-world
applications. The VE2302 stands out as a versatile and cost-effective solution,
making it a strong contender in the landscape of edge AI devices.
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Conclusions

In the upcoming months, the plan is to collaborate with Mario Bergeron on the
development of a real-time application that effectively demonstrates the capabilities
of the forthcoming VE2302 device. The focus will be on integrating the device with
real-time input from six cameras. While the specific target market is still under
discussion, considerations are leaning towards applications in the automotive and
self-driving sectors.

The team is currently engaged in a race against time, striving to deliver a
functional prototype by April. The goal is to showcase the prototype at the
Embedded World event, a global exhibition held in Nuremberg from April 9 to 11,
2024. This event attracts participants and potential customers from around the
world. The team is dedicated to presenting a compelling and innovative solution to
capture the attention of a diverse and global audience, aiming to stand out among
the offerings of global competitors at the exhibition. The anticipation is high, and
the team is committed to making a significant impact in the industry.

The Embedded World Exhibition and Conference [26] serves as a global platform
and vital meeting point for the entire embedded community, bringing together
leading experts, key players, and industry associations. Its distinctive focus on
technologies, processes, and cutting-edge products, coupled with unparalleled expert
knowledge, sets it apart on the international stage, making it a must-attend event
for the industry. In 2024, the Embedded World Exhibition and Conference will
continue to act as a crucial trend barometer, showcasing significant topics directly
from the embedded systems industry through its extensive supporting program.

A transversal project that Mario is embarking on involves the integration of the
Hailo-8 AI Accelerator [27] into our boards. His initial experiments are currently
underway using the ZUBoard [13], the same board employed for our benchmarks.
In these experiments, Mario is exploring the integration of the module at the end
of the pipeline, following Video Capturing and Image Processing, both carried
out in the programmable logic (PL). The preliminary results are already showing
incredible promise.

Finally, the thesis successfully demonstrates the remarkable results achievable
with the smallest architecture of the new DPU, as integrated into the forthcoming
VE2302 board. The limited decrease in performance, coupled with the cost-
effectiveness of the VE2302, highlights its potential to cater to a broader market.
Notably, with only three physical VEK280 boards in existence, our thesis contributes
valuable insights that extend beyond the limited availability of the current hardware.
The envisioned accessibility of the VE2302 is poised to target multiple real-time
applications, further emphasizing its significance in the evolving landscape of edge
AI devices.
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