
POLITECNICO DI TORINO

Master degree course in Computer Engineering

Improving Observability in
Large Enterprise Networks
with NetBox And SuzieQ

Supervisor
prof. Fulvio Risso

Candidate

Riccardo Lucifora

Internship Tutor

dott. ing. Luca Nicosia

Anno accademico 2023/2024

This work is subject to the Creative Commons Licence

Summary

Modern networks are as complex as it gets to meet the needs of the market,
which is placing ever-greater demands on storage space, speed, flexibility,
and availability. However, they have never really been simple, as they are
populated by very diverse devices that do not have a global view of the
entire network. This design, together with the trend just mentioned, has
meant that ever-larger networks cannot be managed efficiently from a single
privileged access point.

We can list various "problems" in computer networks, such as their complex-
ity, opacity, and unpredictability. Some concepts have emerged that aim to
solve some of these problems: Observability and Automation. This thesis
will focus on network observability, which is defined as the ability to un-
derstand the internal state of a complex system based on external outputs.
When a system is observable, a user can identify the causes of a performance
problem by looking at the data it produces, without additional testing and
coding.

In particular, we will analyze two tools that aim to make networks more
observable: SuzieQ and NetBox. SuzieQ stands out for its ease of use,
its performance, and its ability to summarize heterogeneous information in
a normalized "universal" format that is the same regardless of the input.
NetBox strong suits are the completeness and granularity of the stored
information and the great potential it offers in terms of integration with
other tools. The graphical user interface is also worth mentioning: it is
pleasant to use and complete, which is unusual in this field.

The market is interested in integrating the two tools: they can comple-
ment each other, enrich the information provided to the user, and mitigate
some shortcomings. This work aims to study their data models and then
propose a solution to integrate the tools so that two main functions are of-
fered: Synchronization and Validation. The main challenges lay in the

3

architecture and code design, data normalization, and defining the scope of
the solution.

All the phases of the study will be outlined, alongside the architecture of the
solution and its implementation, the challenges to face, and the reasons for
the taken decisions. In the end, the results from a qualitative and quantita-
tive perspective – respected standards and elapsed time measurements – will
be presented as well as future work, as the core logic behind this solution
will be part of a market product.

4

Acknowledgements

I want to thank prof. Fulvio Giovanni Ottavio Risso, my supervisor.
He made me passionate about the subject through his courses and provided
me with this outstanding opportunity at Stardust Systems. On that, I
also want to mention the warm welcome that I found. From the boss to
coworkers, I found such a great and genuine team in a relaxed yet dynamic
environment. They never let me down when needed and left me all the space
I needed for studying. It was never about exploiting me but always about
empowering me. I hope my work reflected that.

On a more sentimental note, I wish to extend my special thanks to my
family, who supported me through these years, between peaks and valleys.
I would not be here without them. Last but not least, my appreciation goes
to my friends. Andreas and Vanessa are almost family, but also Fabio and
Isabella left an unparalleled dent in my heart, which will never disappear.
There are a lot of people I left out, but I feel grateful for each one of them,
and that’s why I want them with me when I’m celebrating, as they were
there for me when I was at my lowest: thanks to you all.

5

Contents

I Introduction 9

1 General Concepts 11

1.1 The Logical Level . 11

1.2 Diverse Hardware . 13

1.3 Diverse Software: Examples 15

2 Problem Statement 19

2.1 The Challenges . 19

2.2 A Solution: Network Observability 21

II Network Observability Tools 23

3 Related Work 25

3.1 The Market . 25

3.2 Cisco ThousandEyes . 25

3.3 Paid Alternatives . 28

3.4 Free Open-Source Alternatives 32

3.5 Integration For Automation: NetBox And Ansible 33

4 NetBox 37

4.1 Functional Scope . 37

4.2 Design . 38

4.3 Data Model . 38

5 SuzieQ 41

5.1 Main Components And Functions 41

5.2 Data Model . 42

6

III NetBox And SuzieQ Integration 45

6 Preliminary Studies 47

6.1 Reasoning . 47
6.2 Requirements . 49

7 Architecture 51

7.1 Functions and Scope . 51
7.2 Methodology And Complexity 52
7.3 Logical Modules . 55

8 Implementation 59

8.1 Language and Libraries . 59
8.2 Files And Directory . 61
8.3 The Facade . 61
8.4 Main Classes . 63
8.5 Translation Logic . 65
8.6 Code Logic And Methods . 66
8.7 Fine Tuning . 69

IV Results 73

9 Evaluation 75

9.1 Performance And Scalability 78
9.2 Good Programming . 82

10 Conclusions and Future Works 85

10.1 Future Works . 85

7

8

Part I

Introduction

9

Chapter 1

General Concepts

On the surface, network operations may seem straightforward - numerous
devices communicating seamlessly through a standardized ‘language’ defined
by protocols. The network is always up and running and we struggle to ask
ourselves: how? There’s an intricate complexity that lies beneath, making
any network a multifaceted heterogeneous system. To get to the bottom
of this, we must revisit the fundamentals.

1.1 The Logical Level

Figure 1.1. Traditional OSI stack vs TCP/IP stack. (1)

11

1 – General Concepts

A network can be seen as a layered structure, following the OSI Model (1):

1. Application (level 7) - this is the most abstract layer, at the top of
the stack. It serves as a way for users to interact with the system. Some
known protocols from here are DNS (Domain Name System), HTTP
(Hyper Text Transfer Protocol), SSH (Secure Shell), POP (Post Office
Protocol);

2. Transport (level 4) - this layer ensures a reliable data transmission. Its
key protocols are TCP (Transmission Control Protocol) which is slower
and more reliable and UDP (User Datagram Protocol) which is faster
but less reliable. Using one or the other depends on the task at hand:
UDP is preferred for real-time tasks where reliability is not crucial and
data loss is tolerable e.g. streaming, VoIP; TCP is used when reliability
is a key point e.g. data transfer, email;

3. Network (level 3) - this layer decides the most efficient routes for
packets. This operation is called routing. The main protocols here are IP
(Internet Protocol), probably the most well-known, in its versions (IPv4
and IPv6); OSPF (Open Shortest Path First); BGP (Border Gateway
Protocol);

4. Data link (level 2) - this layer makes frames flow between nodes re-
liably, on the same physical network layer over a shared medium. The
main protocols here are MAC (Medium Access Control); LLDP (Link
Layer Discovery Protocol); ATM (Asynchronous Transfer Mode); and
MPLS (Multiprotocol Label Switching). MAC won over more reliable
protocols because of its simplicity and reduced costs;

5. Physical (level 1) - this is the most concrete layer, at the base of the
stack. It transmits bits over the physical medium e.g. cables, optical
fibers, and the air using different kinds of signals: electrical, optical, and
electromagnetic.

The bottomline - We have just outlined what’s useful to our discussion,
hence the omission of levels 5 and 6 should not be surprising. The point
is that we have distinct layers, each one equipped with its own protocols;
each layer interacts with the ones immediately above and below it through
specific methods.

As the OSI Model provides a comprehensive, high-level perspective of the
logical layers involved in network design, it’s important to note that we’re

12

1.2 – Diverse Hardware

just scratching the surface. The complexity deepens when we closely analyze
the diverse range of devices, protocols, and formats that come into
play. Within each one of these aspects, there’s also a multitude of commercial
alternatives to take into account.

1.2 Diverse Hardware

Let’s dig deeper into the hardware part of the picture. A modern network
can include:

1. Routers - Routers, operating at the 3rd level of the OSI Model, direct
data traffic based on the destination IP address. This process utilizes a
Routing Table, which is designed to require as little space as possible;

Pure routing devices are rare, as they often incorporate additional
functionalities. These include security e.g. embedded firewall and
filtering software; Wi-Fi capabilities; device connection e.g. printers
reachable through the network, IP phones;

Routers can also significantly vary their behavior in terms of per-
formance, hardware ports, and protocols. For instance: wired routers
share data over cables, while wireless routers use antennas; in large-scale
networks, core routers require higher performances;

2. Switches - Switches channel data to the correct device within a net-
work. This operation requires using a data structure called a Filtering
Database. Unlike routers, switches operate within a single network;

Network switches have experienced significant advancements and
diversification over time, to meet the changing needs of networking.
Not all the ideas that emerged over the years made the cut, but they all
helped shape the range of modern products we can see on the market.
It’s also interesting to notice some crossover between networking and
different fields, with vendors and researchers trying to figure out how to
progress further and further;

For example, one innovation that was anticipated but didn’t fully mate-
rialize (due to high costs) was the use of Network Processing Units
(NPUs). The concept of NPUs, though, is tightly related to GPUs as
they both rely on heavy parallelization.

13

1 – General Concepts

Figure 1.2. Generalized scheme of GPU architecture.

Even network accelerators for switches have been influenced by the
design of GPUs. For instance, NVIDIA’s Spectrum Ethernet switches,
used to accelerate hyperscale generative AI fabrics, are a testament to
this influence. Accelerators are hardware components that make sense
the most for easy, repetitive operations that would be costly to per-
form in software. A fine example is security accelerators, which perform
encryption and decryption.

Figure 1.3. A switch and its accelerators.

14

1.3 – Diverse Software: Examples

3. Servers - A server is a hardware or software component that provides
functionalities ("Services") to other components, called "clients". There’s
a many-to-many relationship between clients and servers. Servers are
often stacked in data centers, providing a powerful platform to share
data as well as other resources and distribute workloads, moving jobs
around transparently to users. (2)

The client-server model is ubiquitous on the Internet: millions of
servers are always connected, up and running, and virtually every user
action requires some degree of interaction with one or more servers.

Servers can hugely vary based on their purpose e.g. database servers,
file servers, mail servers, computing servers, web servers, etc., and on
their hardware requirements even if generally they’re more powerful
and expensive than the clients that connect to them.

4. Much more - A network also includes firewalls (security guards); ded-
icated storage units; cables from electrical to optical ones; power units
etc.

1.3 Diverse Software: Examples

Networking devices mostly rely on CLIs (Command Line Interface) to be
interacted with. That means a lot of work for network administrators to
understand how to use the same commands on different devices from different
vendors. Also because of that, using CLIs is typically error-prone. GUIs
(Graphical User Interface) sure are more intuitive, but they’re quite rare in
this field. Let’s see some examples.

Display the IP interface brief:

• Cisco IOS show ip interface brief

• Juniper Junos OS show interfaces terse

• Huawei display ip interface brief

• Arista EOS show ip interface brief

Display the routing table:

15

1 – General Concepts

• Cisco IOS show ip route

• Juniper Junos OS show route

• Huawei display ip routing-table

• Arista EOS show ip route

Display detailed information about an interface:

• Cisco IOS show interfaces GigabitEthernet0/0

• Juniper Junos OS show interfaces ge-0/0/0 extensive

• Huawei display interface GigabitEthernet 0/0/0

• Arista EOS show interfaces Ethernet1 detail

Configure an IP address on an interface:

• Cisco IOS
interface GigabitEthernet0/0

ip address 192.168.1.1 255.255.255.0

no shutdown

exit

• Juniper Junos OS
edit interfaces ge-0/0/0

set unit 0 family inet address 192.168.1.1/24

commit

exit

• Huawei
interface GigabitEthernet 0/0/0

ip address 192.168.1.1 255.255.255.0

undo shutdown

quit

• Arista EOS
interface Ethernet1

ip address 192.168.1.1/24

no shutdown

exit

16

1.3 – Diverse Software: Examples

Please keep in mind that the exact commands can vary slightly depending
on the specific model and software version of the network device.

17

18

Chapter 2

Problem Statement

2.1 The Challenges

Having revisited the basics, it should be clear now how complex the situa-
tion is: we have very different devices that must work together to pursue a
common goal, and even within a category, different commands are used and
different hardware and software capabilities must be taken into account.

We will analyze the drawbacks that this complexity brings, one by one, and,
in the next chapter, also try to understand how we can solve at least some
of those, to design networks that are increasingly smart, reliable, and easy
to administrate.

1. Complexity - A network administrator has to coordinate many different
devices that may have different protocols, architectures, and functions.
This makes it hard to design, implement, and maintain a distributed
system that works reliably and efficiently.

Configuration is also a pain: CLIs vary significantly by vendor and fre-
quent changes to the CLI structure and syntax make it difficult to main-
tain CLI scripts. The output of commands is also structure-agnostic,
unpredictable, and prone to changes, causing great difficulties in auto-
matically parsing CLI scripts.

2. Opacity - We may think of a network as a whole, but devices only have
a partial and local perspective and may use different formats and units.
This means that: it’s difficult to aggregate and compare their resources
and capabilities; identifying and isolating the source and impact of a
problem can be quite challenging.

19

2 – Problem Statement

3. Unpredictability - There’s a huge variety of failures, delays, and errors
that are hard to anticipate and handle. Moreover, they’re detrimental
to the performance, correctness, and security of the system. Some ex-
amples:

• Device crashing;

• Messages being lost or corrupted;

• Network links being congested or broken;

• Malicious attacks.

Figure 2.1. Complexity - a single network, a wide array of devices. (3)

20

2.2 – A Solution: Network Observability

2.2 A Solution: Network Observability

Network observability can mitigate the aforementioned problems. Network
observability tools utilize multiple data sources to provide quick, meaningful
insights into the underlying functions of the network. This makes it easier
for network operators to remediate issues and improve performance
because they don’t have to understand the raw data.

This approach is in stark contrast to the traditional approach, where data is
only collected and presented without additional context and with low gran-
ularity. The deeper, more powerful architectural design of network
monitoring solutions makes the market for this kind of solution very large.
(4) (5)

In addition, these tools play a crucial role in proactive network man-
agement: by analyzing the data collected, they can help predict potential
problems before they occur and outline the necessary preventative measures.
This can help to reduce downtime and increase the overall reliability of the
network.

Network observability tools can also provide valuable insights into network
usage patterns. This information can be used to make informed decisions
about capacity planning and infrastructure investment. Last but not least,
by observing common patterns, these tools can identify security threats
that violate these patterns.

Figure 2.2. Network Observability Platforms and their capabilities. (6)

21

22

Part II

Network Observability
Tools

23

Chapter 3

Related Work

Of course, the choice of SuzieQ and NetBox was implied when writing a thesis
at Stardust Systems. Be that as it may, it’s still worth analyzing what is out
there in this field. We will first take a look at other network observability
suites - both free and paid - and then at a quite similar software solution:
NetBox integration within Ansible.

3.1 The Market

The market for observability platforms is expected to show astonishing
growth in the medium term. Increasing adoption of cloud-based solutions
for service virtualization, containerization, and other purposes by various
small to large enterprises is a cornerstone for the growth of the market. (5)

Lower cost of setting up and maintaining process automation coupled with
high demand for improved operational efficiency and automated implemen-
tation of business processes across various verticals are driving the market
for observability platforms.

However, the complexity of the observability platform implementation pro-
cess and the lack of standardized solutions are expected to reduce the poten-
tial growth of the market.

3.2 Cisco ThousandEyes

Let’s start with Cisco, which is considered one of the market leaders in this
field (4) also because of recent heavy investments they made. (7)

25

3 – Related Work

ThousandEyes is a cloud-based networking suite that allows for real-time,
end-to-end views across all internal, external, carrier, and internet networks
for large enterprises.

Features - The product offers various features such as:

• Browser-based Real User Monitoring - Monitor the performance of web
applications from the user’s perspective via a browser plugin. This fea-
ture enables the automatic collection of user interactions for various
applications such as Salesforce or Office 365 Suite. Detailed metrics are
displayed along with end-to-end network connectivity, including WiFi
access points, to understand the user’s entire journey to business-critical
applications.

• On-demand and scheduled network synthetics - Proactively run syn-
thetic monitoring tests to stay on top of issues and achieve the right
business outcome. Visualize end-to-end Layer 3 network connections
between users and SaaS and internal applications. Receive alerts on
connectivity and availability issues so you can de-escalate them faster
and increase user satisfaction.

• Wireless network visibility - With users constantly on the move, it can
be difficult to detect and isolate WiFi issues. Knowing some key metrics
about their connection, such as signal quality, connection speed, conges-
tion, etc., can help you speed up troubleshooting and provide a good
digital experience for your employees, no matter where they are.

• Automated session testing - Gain deep insights into the real-time perfor-
mance of business-critical applications with automated session testing.
Because collaboration applications dynamically select the best infras-
tructure components to connect to users based on different metrics, mon-
itoring this environment must be dynamic. By automatically creating
tests for each user and session with the active infrastructure components,
you can monitor and troubleshoot the system way faster.

Pros and cons - While the product is very powerful, complete, and user-
friendly with a well-designed dashboard - as can be seen in Figure 3.1 - the
pricing is not transparent and can be quite expensive. The documentation
is also difficult to navigate. (8)

26

3.2 – Cisco ThousandEyes

Figure 3.1. Schreenshots from Cisco ThousandEyes. (8)

27

3 – Related Work

3.3 Paid Alternatives

As already mentioned, the market for network observability suites is quite
lively, so you can choose between a variety of paid products. (9) Some of the
most commonly used and/or well-documented ones will be presented here,
to see how they differ in terms of proposed features, price, and ease of use.

HoneyComb - HoneyComb is designed to give engineering teams the vis-
ibility they need to troubleshoot distributed systems. It is a cloud-based
tool with support for events, logs, and traces. If your code is not yet in-
strumented, Honeycomb provides an automatic instrumentation agent called
Honeycomb Beelines that takes care of that. It also supports OpenTelemetry
for instrumentation data.

Pros and Cons - HoneyComb enables granular insights because it cap-
tures detailed data. Sampling is dynamic to make operations more efficient
depending on network conditions. It also provides shared workspaces to en-
courage team collaboration and solve problems faster. However, the learning
curve can be a problem for users unfamiliar with the concepts of observability
and the library is quite limited. The price can also be a problem for smaller
teams. (10)

Pricing - Honeycomb offers a free service, while its pro tier starts at 100$.
The pricing is based on data retention and the volume of events captured.
(10)

Auvik - Auvik is a network management software that automates the dis-
covery, mapping, inventory, and documentation of networks. It allows users
to see the network topology and fine details about devices, including their
data lifecycle, in real-time. It also alerts users of issues and helps with trou-
bleshooting by providing insightful information. Last but not least, SaaS
management allows users to track SaaS usage, spending, and security across
the network.

Pros and Cons - While Auvik is a very flexible and powerful tool that is
great for network troubleshooting and mapping, it can be quite expensive and
requires a lot of attention. This makes it best suited for larger organizations.
(11)

Pricing - Auvik doesn’t list pricing on its website. Interested users can
request a custom quote. (11)

28

3.3 – Paid Alternatives

Figure 3.2. HoneyComb Dashboard.

Figure 3.3. Splunk Dashboard.

29

3 – Related Work

Figure 3.4. Auvik Dashboard.

Figure 3.5. Zipkin Dashboard.

30

3.3 – Paid Alternatives

Figure 3.6. Zabbix Dashboard.

Figure 3.7. Jaeger Dashboard.

31

3 – Related Work

Splunk - Splunk is a software for searching, monitoring, and analyzing
machine-generated big data via a web-based interface. It captures, indexes,
and correlates real-time data in a searchable repository from which it can cre-
ate charts, reports, alerts, dashboards, and visualizations. It was included
in this section because it is very popular with users and appears in pretty
much every article on the topic. It even was the Top Rated on TrustRadius
in 2020. (12)

Pros and Cons - Splunk is very good at collecting and aggregating log
messages from different sources so that users can easily access and analyze log
data in a centralized location. Splunk’s reporting features are very powerful
and easy to use, powered by intuitive, well-made dashboards. Other than
that, the GUI can be quite confusing, the integration with Excel is limited
and its architecture is so complex that it can discourage new users.

Pricing - Splunk’s observability Cloud for Enterprise editions starts at 95$

per host per month if billed annually.

3.4 Free Open-Source Alternatives

Zipkin - Zipkin is an open-source APM tool used for distributed tracing.
Zipkin collects timing data needed for debugging latency issues in service
architectures. Indeed, in distributed systems, it is quite difficult to trace
user requests across different services. If a request fails or takes too long,
distributed tracing helps to understand what caused it. Zipkin includes Re-
porters that send data, which is then collected by Collectors. The data can
then be easily queried via APIs and the included user interface.

Pros and Cons - Zipkin is a mature platform with broad industry support
and a large and active community. Because of that, it has a wide range
of extensibility options and tool integrations. However, since it uses a less
modular and more centralized architecture, it’s slower and less flexible than
its newer competitors, especially at scale. Also, its UI is limited, but you can
use add-ons for better analytics and visualizations.

Jaeger - Jaeger can be seen as a modern version of Zipkin. In addition to
Zipkin’s feature set, Jaeger also offers dynamic sampling, a REST API, a
ReactJS-based user interface, and support for Cassandra and Elasticsearch

32

3.5 – Integration For Automation: NetBox And Ansible

in-memory data stores. To achieve that, Jaeger takes a decentralized ap-
proach, with a client that sends traces to an agent that waits for incom-
ing spans and forwards them to the collector. The collector then validates,
transforms, and persists the spans. Not all generated traces and spans are
collected, as Jaeger takes a dynamic representative sample of the monitored
data.

Pros and Cons - Jaeger’s documentation is very well done and offers a
wide range of possible applications. Jaeger’s original way of collecting data
handles sudden traffic spikes better than other tools, which increases Jaeger’s
overall performance even on a large scale. Like the main advantages, the main
disadvantages have to do with its modern approach and relative immaturity:
Jaeger is written in Go, for example, which is far less popular than Java and
Python, so you may need to learn a new language. Also, its architecture is
much more complex and difficult to maintain.

Zabbix - Zabbix is an enterprise-grade open-source monitoring solution
known for its scalability and extensibility. It offers features for network,
server, and application monitoring such as agentless and agent-based moni-
toring, real-time alerting and notifications, performance and availability re-
porting, and support for SNMP and IPMI.

Pros and Cons - Zabbix is scalable for large environments, very customiz-
able, and flexible, as it supports various data sources. It also has a very
active community, and its documentation is well-written and complete. It
can be quite complex for some setups, though.

3.5 Integration For Automation: NetBox And
Ansible

As mentioned in the summary, modern efforts to make networks more efficient
focus not only on observability but also on automation. We will now briefly
explain how you can achieve this by integrating NetBox with another tool:
Ansible.

Ansible is a widely used open-source, command-line automation tool. It
can be used to configure systems, deploy software, and orchestrate advanced
workflows for application deployment, updates, etc. Ansible is very secure
and reliable. This is achieved by using vanilla SSH to communicate with
the hosts without the need for bootstrapping. Ansible uses human-readable

33

3 – Related Work

language, making it easy to use right from the start.

Let’s now talk about NetBox - we will add details in the next chapter - and
how it can be integrated with Ansible to achieve network automation. (13)

A Network Source of Truth - The Source of Truth (SoT) is the place
where you can retrieve the intended state of the device. You should have a
single Source of Truth per data domain, often referred to as the System of
Record (SoR). You can aggregate the data from the physical site Source of
Truth into other data sources for automation.

NetBox is an excellent choice because of its main advantages, which made it
the de-facto standard for SoT in the industry. We will discuss them in the
next chapter.

To create a framework for network automation you must first identify the
Source of Truth for the data to be used in future automation. Every time
you need a configuration data point for automation, it is inefficient to read
the configuration from the device and it should be given that it is as it should
be and not simply left there by mistake. When it comes to providing data to
teams outside of the network organization, providing an API can help speed
up data collection without having to log into the device first.

The NetBox Collection allows you to quickly add information to a NetBox
instance. You just need to supply an API key and a URL to get started.
With this Collection, a base inventory, and a NetBox environment you can
quickly populate your SoT. My solution will allow users to quickly populate
NetBox from SuzieQ while allowing SuzieQ to use NetBox as its SoT in the
process.

34

3.5 – Integration For Automation: NetBox And Ansible

Figure 3.8. Diagram of interactions between Ansible and NetBox. (14)

35

36

Chapter 4

NetBox

NetBox is the market-leading solution for modeling and documenting mod-
ern networks. It combines IP address management (IPAM) and data center
infrastructure management (DCIM) with powerful APIs and add-ons, mak-
ing it the ideal SoT for network automation. Unlike other CMDBs, NetBox
has a data model that is specifically tailored to the needs of network admin-
istrators. For example, you can document racks, hierarchical regions, cables,
AS numbers, and much more.

4.1 Functional Scope

NetBox was developed for network operators, and this is reflected in its main
functions. Among other things, it offers:

• IPAM with full IPv4/IPv6 parity;

• Automatic IP provisioning;

• VLANs with variably-scoped groups; ASN management;

• Device modeling;

• VPN tunnels;

• User-defined fields to extend the data model;

• Much more.

The NetBox’s feature set is limited to ensure that development focuses on
what is needed and that the exposure surface is minimized. To overcome

37

4 – NetBox

this, it can be integrated with other tools. On its own, it cannot be used for
network monitoring - which is why SuzieQ is so well suited for integration
- DNS or RADIUS server, configuration, and facility management.

4.2 Design

NetBox’s design is focused on providing a data model that can reflect a real-
world network. For instance, IP addresses are assigned to interfaces, which
will be then attached to a device. This kind of choice makes it very precise
but also kind of convoluted.

NetBox represents the desired state of a network versus its operational
state. It can then be used to fill monitoring and provisioning systems with
a high level of confidence. However, NetBox itself does not perform any
scanning of network resources, but SuzieQ takes care of this task in our
solution.

The code itself is kept as simple as possible, striving for a reasonable
compromise between complexity, optimization, and provided functionalities.

4.3 Data Model

Each object type in NetBox, such as a device or IP address, is represented by
a model. Each model is defined as a Python class and has its own SQL table.
Tables in NetBox are implemented as discrete SQL tables, each representing
a model. Each attribute of a model exists as a column within its table.

NetBox supports six types of custom fields:

1. Text - Free-form text (up to 255 characters);

2. Integer - A whole number (positive or negative);

3. Boolean - True or False;

4. Date - A date in ISO 8601 format (YYYY-MM-DD);

5. URL - This will be presented as a link in the web UI;

6. Selection - A selection of one of several pre-defined custom choices;

38

4.3 – Data Model

7. Multiple selection - A selection field that supports the assignment of
multiple values.

NetBox also supports object nesting, as shown in Figure 4.1. This is
achieved through the use of foreign keys, which allow a field in one table
to reference an entire object from another table. This is a common practice
in relational databases and is used extensively in NetBox to create relation-
ships between different types of objects.

For example, a device object in NetBox might have a site field that references
a site object. This allows the device to be associated with all the information
contained in the site object, such as its name, location, and other attributes.
Moreover, NetBox introduced a new type of custom field that enables refer-
encing a related NetBox object.

While this allows for a high degree of flexibility in modeling complex rela-
tionships, it also requires careful management to ensure data integrity and
avoid confusion.

All in all, NetBox is an excellent open-source tool, with a very high level of
granularity, APIs that are comprehensive and easy to use, a well-polished
GUI, and a high degree of customization and extensibility.

39

4 – NetBox

Figure 4.1. A NetBox device with nested objects.

40

Chapter 5

SuzieQ

SuzieQ is an open-source, multi-vendor network observability application
that focuses on improving your understanding of your network. It allows you
to analyze your network using a range of vendor-independent queries
and methods. For example, with SuzieQ you can ask questions such as:
What was the state of an interface 30 minutes ago? What changes have been
made to a VLAN between now and 10 am yesterday? What software ver-
sion is running on our devices? Is LLDP running correctly on the network?
SuzieQ is primarily intended for network engineers.

5.1 Main Components And Functions

SuzieQ follows this process:

• Data is collected from routers, bridges, and Linux servers with an agent-
less model using either SSH or REST API as the transport. Various
providers are supported, such as Arista EOS, Cumulus Linux, Cisco’s
IOS, IOS-XE, and IOS-XR platforms, etc.

The Poller is the component taking care of this. Periodically, it collects
data from the list of nodes specified in the inventory file. Then, those
lists fill a centralized global inventory.

This Inventory can be split and distributed to a customized number of
workers. Some sources are dynamic - Netbox - so the node list might
change over time. The Poller can dynamically track these changes and
provide updated inventory chunks to the workers.

41

5 – SuzieQ

• The data is normalized into a vendor-agnostic format. This allows
consistent analysis and the seamless integration of data from different
sources. The Data Normalizer takes care of this.

• All data is stored in files using Parquet, a popular Big Data format.

The Coalescer is part of the SuzieQ data processing pipeline. After
the data is collected and normalized, it is timestamped and stored in the
Database. At this point, the Coalescer reorganizes this data - belonging
to a certain time window - to ensure time-efficient further analysis. The
Coalescer accepts fine-grained periods such as 10m, 2h, etc.

• The data is then made accessible via a command line interface (CLI),
a graphical user interface (GUI), a REST API, or Python. It can be
analyzed using simple, intuitive commands. Data can be visualized and
exported in various formats, from plain text to JSON, CSV, and Mark-
down.

Figure 5.1. Poller Architecture.

5.2 Data Model

SuzieQ gathers data and stores it in tables, the most basic structures of the
SuzieQ database. Each table corresponds to a specific service that collects

42

5.2 – Data Model

data. For instance, the BGP table contains the BGP data that the BGP
service collects from routers.

To check what kind of information is collected for each table, you can use
the <table> describe command through the SuzieQ CLI. For example, to
see the details of the fields in the BGP table, you can run the command bgp

describe. Fields can vary depending on the type of collected data.

Figure 5.2. Poller Architecture.

43

44

Part III

NetBox And SuzieQ
Integration

45

Chapter 6

Preliminary Studies

6.1 Reasoning

After analyzing our tools, their functions, and their main components, we
can now remember the thesis goal: integrating them. But the question is,
why would anyone want to do that?

The market interest for this function is high, as Stardust Systems has
received several requests from customers. Why is this the case? Surprisingly,
it has as much to do with the limitations and potential for improvement of
the two tools as it does with their benefits.

NetBox perspective - NetBox is widely used because, as a Network Source
of Truth (NSoT), it provides a consistent and reliable source of data while
decoupling our intent from the actual infrastructure in a flexible, granular,
intuitive way. Nonetheless, after analyzing user feedback on forums and the
NetBox GitHub page, it’s clear that there’s still room for improvement.

• NetBox is very capable, but that comes with a steep learning curve (15).
SuzieQ clients could be encouraged to use NetBox if they could use some
of its benefits without having to deal with its complexity;

• NetBox is commonly used to manage VLANs and sites so we will include
them in our solution;

• Filling NetBox manually can be tiresome and error-prone. Also, it re-
quires a lot of passages in some cases e.g. setting an IP address as the
main address on a device. SuzieQ could be used to bulk push data in a
quick, convenient way;

47

6 – Preliminary Studies

• According to the 2022 Community Survey, users are asking for “topology
diagram generation” and that’s something SuzieQ can provide;

• Users may update the network state time after time, leaving NetBox
behind. Periodic automatic updates could be a welcome change. User
attention should be requested anyway to check if everything makes sense;

• LLDP is not supported by default on NetBox, but it’s supported by
SuzieQ. Cables can be dinamically pushed from SuzieQ to NetBox ex-
ploiting this.

Figure 6.1. Most used objects in NetBox.

SuzieQ Perspective - SuzieQ aims to offer a wide variety of tools to handle
your network and make it work consistently to support your business appli-
cations. Using NetBox functionalities seamlessly can enhance its capabilities:
let’s see how.

• Observability - If there’s a mismatch between the intended and actual
state, we can understand why based on data. Where is the problem?
What is causing it? We can now answer all those questions.

48

6.2 – Requirements

• Granularity - NetBox documents a wide range of aspects about your
network: the chosen devices (device, device type), their duties (device
role), where they are (rack, site, region), how they’re connected (inter-
faces status), and much more. Some information could integrate and
enrich what’s present in SuzieQ.

• Feature completition - SuzieQ can only pull devices from NetBox.
We want to close the circle by writing a sturdy code foundation to allow
users to push devices and compare the NetBox view (intended state)
with the SuzieQ view (actual state).

Business Perspective - At last, let’s see why Stardust Systems itself is
interested in adding this feature to its suite:

• Growth - Covering more use cases, they could interest new users in
adopting our system;

• Low costs - Other than some added complexity, there are no real addi-
tive costs here. Indeed, the new function will run independently without
impacting the overall computational load;

• User retention - Users will be encouraged to keep using SuzieQ as new
possibilities continue emerging, thanks to the team’s effort to bring in
more functionalities.

6.2 Requirements

After utilizing the tools, I presented my coworkers with a list of requirements
to visualize the user experience and solution. Together, we choose the more
relevant ones.

Functional - What should be possible:

1. See if the actual state matches the desired state (validation);

2. Update NetBox to match the current state (synchronization);

3. Enable periodical execution;

4. Enable execution on demand;

5. Immediately signal errors;

49

6 – Preliminary Studies

6. The status should always be visible to the user;

7. Store the operation’s results in a log file;

8. Select the items you want to synchronize;

9. Updating (even deleting) selected fields;

10. Tracking device added from SuzieQ via a tag.

Non-Functional - How should the function behave:

1. Usability and learning curve - Seamless integration with SuzieQ: existing
commands should be used as much as possible, and new commands
should be intuitive;

2. Usability and learning curve - The system output should be as human-
friendly as possible. For instance, “500: Unknown server error” is not
okay;

3. Usability and learning curve - Logs should be rich enough in information,
complete but not overdone. They should include timestamps, operation
results, the reasoning behind errors and decisions (see FR 5, 6);

4. Scalability and performance - It shouldn’t slow down other operations;

5. Scalability and performance - The operation should be completed within
some minutes;

6. Security - The synchronization operation can be automatic or on de-
mand: the user should have the possibility to choose to avoid unwanted,
unreversible changes;

7. Security - The system should be as secure as it was before the function
was introduced;

8. Accountability - The user should know what pertains to SuzieQ when
looking at their data in NetBox. We will tag data accordingly;

9. Reliability - The operation should be always available;

10. Reliability - If the operation fails, it should be possible to retry it after.

50

Chapter 7

Architecture

7.1 Functions and Scope

After studying and using the two tools and their data models, two tables
to start with are selected: devices to close the loop and VLANs to start
supporting IPAM management. Further reasons for this are their relevance
and the fairly simple translation between SuzieQ and NetBox.

My Approach - First, you must understand which fields are compulsory in
NetBox and then which SuzieQ fields are needed to match those. As you can
see from Tables 7.1, 7.2, and 7.3, the mapping is not 1:1, but that will be
discussed later.

The functional scope of the solution was divided hierarchically into tiers.
This allowed me to include only the most important parts in the final version
of the code and limit the impact of time constraints.

1. Tier 1) Basic Synchronization and Validation functions - Push and com-
pare whole tables;

2. Tier 1) Basic user customization - Enable the user to choose the tables
and the granularity of the operations;

3. Tier 1) Performance optimization - Execute the task in <5 minutes;

4. Tier 2) Basic information logging - Provide information on how many
items succeeded in comparison and push.;

5. Tier 2) Complexity hiding - Hide the specific implementation of the
solution as much as possible (we’ll see more on that later);

51

7 – Architecture

6. Tier 2) Future-proof coding - Make the solution as open as possible for
future addictions and improvements;

7. Tier 3) Updating - Enable the user to update items;

8. Tier 3) Allow horizontal and vertical filtering on tables on which the
operations will be applied.

9. Tier 4) User interaction - Add user interaction through CLI and GUI.

Prospects - Following a similar process, potential advancements for the
feature are envisioned. However, as you will see in the final chapter of this
thesis, my understanding of the implementation challenges and domain of
the feature improved significantly over time, resulting in more precise and
concrete changes. Initially, it was believed that future versions could also
include:

• Intent networking - A new approach that aims to replace manual
configuration and issue response with a deeper level of intelligence and
intended state. That would require some integration with Ansible;

• A full change control system - Change control is a well-organized
method for managing any alterations to a product or system. It ensures
that no superfluous changes are made, all modifications are properly
documented, and resource usage doesn’t disrupt services. Users asked
for this in the 2023 NetBox Community Survey.

7.2 Methodology And Complexity

While the device table is more complex on the NetBox side - as it contains
many external references - the VLAN table is the real star of the show, as
it will require accessing the interface table to be bound to a device. Also,
VLANs are not unique in SuzieQ and NetBox in the same way. That will be
discussed later.

Different data models - In SuzieQ, all information relevant to a table is
provided locally in that table as a string, boolean, integer, etc. In NetBox,
instead, any field can be another object from another table. Moreover, rele-
vant information could be hidden by the GUI or entirely located on another
table referencing the original one.

Compare - When comparing NetBox and SuzieQ, you either:

52

7.2 – Methodology And Complexity

Interface device name type
Device device_type role site status
VLAN name status vid site
Site slug name status
Manufacturer slug name

Table 7.1. Needed fields for tables of interest.

SQ Device namespace model, vendor - status
NB Device Site Device type Device role status
SQ Namespace name lower(name) status
NB Site name slug status
SQ Device vendor - model lower(model)
NB Dev type Manufacturer height model slug
SQ - - - -
NB Dev role name slug color
SQ Device vendor lowercase vendor
NB Manufacturer name slug

Table 7.2. Mapping between SuzieQ and NetBox - Device Table.

SQ VLAN vname state VLAN
NB VLAN name status vid

Table 7.3. Mapping between SuzieQ and NetBox - VLAN Table.

53

7 – Architecture

• Compare two plain values;

• Convert values from a fixed set using dictionaries and then compare
them. For example, a device can be "active" in SuzieQ but "alive" in
NetBox, which is the same;

• Flatten NetBox nested objects to a plain value. For example, flatten a
NetBox site to its name to match namespace information in the SuzieQ
device table;

• Compare a composite value in NetBox with different plain values in
SuzieQ. For example, a NetBox device may be built as SQ model + SQ
vendor.

Push - When pushing SuzieQ objects to NetBox, you have to:

• Know in advance if some fields are references to external objects;

• In that case, do a lookup in NetBox data, fetch the object’s ID, and use
it instead of its name or other information;

• If that object is not in NetBox, it must be pushed manually. However,
it’s possible that you may not have all the required information to do
so. For instance, if you want to push an interface and a device is not
present, you need details such as its model and vendor. Unfortunately,
these details are not available in the interface table;

• After all required external objects are in NetBox and their IDs are
fetched, the "main" object can also be pushed.

Limited by design - After conducting preliminary studies, I decided to
prioritize quality over quantity by implementing limitations on less polished
functions. This does not mean that future versions cannot relax those limi-
tations.

The “interface situation” - Since the software solution was designed
around the "device" and "VLAN" tables, the "interface" table is only used
to bind VLANs with devices/interfaces. Therefore, we cannot independently
push interfaces just yet. This will be discussed further in the last chapter.

No updates, only additions - To avoid accidental data corruption or loss,
any addition must be explicitly allowed. If you need to edit existing data,

54

7.3 – Logical Modules

you should evaluate each case carefully and make changes only if necessary.
Updating is more disruptive than pushing, so we won’t provide any automatic
update mechanism for now. Instead, the user will be able to compare SuzieQ
and NetBox using the comparison function, see the differences between them,
optionally add mismatching objects, or fill up an empty instance of NetBox.

VLANs 1:1 mapping - In NetBox, VLANs are unique by name and site.
In SuzieQ, there’s a record for each name/hostname/namespace combina-
tion. Hence, to ensure that each SuzieQ VLAN has a corresponding NetBox
VLAN to be compared to when pushing VLANs to NetBox, some wrapper
information with the VLAN name, site, and device must be included.

7.3 Logical Modules

The implemented operations can be classified into different logical modules.
However, this is just a high-level classification to isolate different op-
erations and study them separately. There is no guarantee that all these
operations will be separated coding modules. Each operation could be a
method, an entire class, or a small part of another method. Some modules
may already exist and need enhancements or adaptations, while others may
be completely new.

Let’s list them:

• Storage - Where data is stored. It can be a remote repository, offline
folder, etc.;

• Ingress Converter - A module to convert external (NetBox) data so
that it can be compared with internal (SuzieQ) data;

• Egress Converter - A module to convert internal (SuzieQ) data so it
can be pushed to external tools (NetBox);

• Configuration File - A configuration source with custom user param-
eters;

• Configuration Manager - A module to enforce the user configuration
on code;

55

7 – Architecture

• Logger - A module to extract and show the output in the most human-
friendly way possible. It could even store some information in a storage
medium;

• Comparator - A module to compare internal and external data. The
output is then processed by the Logger;

• Loader - A module to take internal data from SuzieQ storage - after
conversion and some intermediate processing - and push it to an external
tool’s storage. This may include some querying logic;

• Mapper - A module containing mapping information between the two
tools e.g. dictionaries;

• Coordinator - A module to call smaller modules in the right sequence,
ensuring all needed data is passed to them.

56

7.3 – Logical Modules

Figure 7.1. Diagram of interactions between the main modules.

57

58

Chapter 8

Implementation

8.1 Language and Libraries

Python, Pandas, and Pydantic were chosen because they’re used in Stardust
Systems. Here we will briefly explain what they are and what advantages
and disadvantages they have.

Python - Python is a widely used high-level, general-purpose programming
language. (16) (17) Some characteristics:

• Python uses indentation to designate code blocks, improving readability.
Whitespaces (tabs or spaces) connect statements within the same block.
To nest blocks, indent to the right;

• Python supports multiple programming paradigms, such as procedural,
object-oriented, and functional. My solution makes heavy use of the
latter;

• Python is dynamically typed and garbage-collected. This ensures a good
grade of flexibility that must managed carefully. There are typing li-
braries for that;

• Its comprehensive standard library makes it the perfect programming
language for writing simple programs without the aid of external li-
braries.

Let’s understand what made Python the right choice for Stardust or anyone
else in the market and which drawbacks must be considered.

59

8 – Implementation

Pros - Python’s simple syntax is perfect for beginners. It’s free to use and
distribute and has a vibrant community behind it, leading to wide avail-
ability of libraries for any use case. For this reason, Python is suitable for
applications such as web development, data science, and machine learning.

Cons - Python is an interpreted language, so it’s a lot slower than compiled
languages like C/C++ and Rust. Python is also heavy on memory, and some
liberties it takes - for instance, dynamic typing - make it less safe and more
difficult to debug than strictly typed languages.

Python’s popularity is growing also in modern domains such as data analysis
and machine learning. So, using it is convenient and future-proof.

Pandas - As we mentioned, Python is seeing rapid adoption for data sci-
ence/data analysis and machine learning tasks. Pandas is an open-source
Python package that is used for this. Since massive amounts of data will be
processed, Pandas is perfect. (18)

Pros - The Pandas library allows developers to represent and process (wran-
gle) data in various ways with a comprehensive list of methods. It makes code
very dense, fast, and efficient: a welcome improvement over "plain" Python
iterative loops.

Cons - The learning curve is fairly steep, as it can take quite some time
to understand which combination of methods you should use and why. The
documentation doesn’t mitigate this at all.

Pandas is a beloved library with a vibrant community behind it and a lot of
users all over the world.
Pandas is an essential library with a vibrant, dynamic community. It just
requires some effort to get accustomed to it and make better choices.

Pydantic - Pydantic is a Python library for data validation and setting man-
agement. With it, you can create nested models, validate data automatically
- or in a custom way - against your models, ensure data integrity, and much
more. (19)

Pros - Pydantic makes both writing code - using Python’s type annotations
- and debugging it - with clear error messages - very intuitive. It also en-
sures that your data is consistent and can be integrated with Modern Web
Frameworks.

Cons - Pydantic is Python-specific, so it’s not the best if you’re working in

60

8.2 – Files And Directory

a multi-language environment. Pydantic can also be slow when validating
datetime objects.

Pydantic is powerful and simple enough for ingress data and configuration
file validation, and its drawbacks don’t affect me.

8.2 Files And Directory

A directory was made just for the NetBox integration modules. There are
three auxiliary files, called netbox_constants.py, nb_cfg.yml and nb_utils.py.
The first contains the needed mapping data, while the second contains the
configuration parameters for users to customize their experience. The third
file is a Pydantic Validator for the second file.

Two other files, called test_main.py and test_main.py are used to test the
code. While the first passes the right parameters to the second, the second
is a wrapper calling the methods in the right order, one after another.

The two main modules are netbox_integration.py and suzieq_facade.py.
The first contains the NetBox-specific classes and methods. The second con-
tains all the classes and methods which are specific to SuzieQ. The methods
are hidden under a facade to enable their seamless use by other tools in the
future.

8.3 The Facade

The facade pattern is a software design pattern used in object-oriented pro-
gramming. As mentioned, a facade serves as a front-facing interface masking
the low-level complexity of the underlying code.

What problems can the Facade design pattern solve?

• It makes a complex subsystem easier to use;

• It decouples the high-level use of relevant functions from their low-level
implementation.

Two versions of a hypothetical facade were designed.

61

8 – Implementation

1. Naive approach - The Facade will include all the modules inside the
SuzieQ part, as long as it involves schema conversion and content com-
parison. The client specifies what operations to perform, which tables
should be involved, how often, etc. via the configuration file.

The Facade will do everything, from creating intermediate objects like
NetBox tables to converting them to the SuzieQ format to compare their
content. This approach has a limitation: the conversion can be wildly
different from one case to the other. In some cases, it’s just a matter of
resolving some references, flattening the DataFrame, and there you are;
in other cases, there’s also a conversion to be performed on the content.

Converting data may require several steps such as mapping values, chang-
ing units, and modifying the data types. We could fill the constants file
with dictionaries and update them as time passes and more components
need it, but it’s unclear how scalable or feasible that would be.

Bottomline - Conversion can vary so much that trying to do it within
the same component, trying to fit every scenario, may not be feasible as
it could lead to unoptimized, dirty code. Even if we conditioned what’s
being executed based on which kind of objects are being converted, we
would end up with a monster class with redundant methods.

2. Conservative approach - Under the facade we compare different tables
and validate ingress data to be compared with SuzieQ. Another module -
in our case, the NetBox one - performs its specific conversion operations
and then submits it to the facade for comparison. To be accepted, ingress
data must match the expected schema.

If something is wrong, the comparison won’t happen. With this ap-
proach, the conversion methods can be used by different app-specific
modules without the user noticing. The developer has to write the app-
specific module and nothing else. There is a single entry point for the
comparison operation.

62

8.4 – Main Classes

Figure 8.1. The winner: Conservative Facade schema, comparison function.

8.4 Main Classes

Initially, a basic version of the code was developed to figure out the low-level
logic. This version lacked a clear structure and was essentially a long block
of text. Later, it was restructured and separated into different files and code
blocks. A combination of top-down and bottom-up approaches was chosen
by designing the main classes and methods beforehand and then building the
sub-classes as needed.

The main classes:

• NetboxTable - This is the main class of the netbox_integration.py

module. It contains all basic methods e.g. __init__(...) to initialize a
NetBox table, get_data(...) to perform GET requests to the NetBox
API servers and push_obj(...) to perform POST requests.

63

8 – Implementation

Figure 8.2. NetBox classes diagram.

Figure 8.3. SuzieQ classes diagram.

64

8.5 – Translation Logic

Any subclass can use the common methods included in it. Those encom-
pass two main types of operations: data wrangling e.g. flatten(...),
normalize(...), to_json(...) and more specific versions of data
GET e.g. get_site(...) and get_tag(...).

Subclasses - This class has one subclass for each kind of table that we
want to work with: NetboxDevice, NetboxVLAN and NetboxInterface.
They contain methods divided into data-wrangling methods and GET/POST
wrapper methods. They also include methods to convert ingress data to
enter the Facade.

Superclass - This class is actually a subclass of NetboxConn, which
makes connecting to NetBox possible.

• SuzieqTable - This is the main class of the suzieq_facade.py module.
It contains the __init__(...) method, the gather(...) to fetch
data from SuzieQ and the methods which are the fulcrum of this thesis:
compare(...) to fully perform the comparison with ingress data and
the export(...) method, to prepare data for exiting the Facade, in
different formats (to make it future-proof). As already discussed, as it
can be quite specific, the push function - for any external tool - will be
handled by the application-specific component.

Subclasses - This class has one subclass for each kind of table that we
want to work with: SuzieqDevice, SuzieqVLAN and SuzieqInterface.
Usually we only overwrite some parameters, while the SuzieqVLAN class
includes an overwritten gather(...) method and two methods to do the
binding with interfaces and devices: process(...) and VLAN_interfaces(...).

This module includes methods meant only for internal use. The most
important is probably df_validator(...) which ensures that ingress
data is in the correct format and can be compared with SuzieQ data.

8.5 Translation Logic

As discussed in Chapter 7, it was necessary to devote some time to under-
stand NetBox’s and SuzieQ’s data models and how the device and VLAN
tables could be converted, compared, and pushed from SuzieQ to NetBox.

65

8 – Implementation

This was an impervious process, with multiple challenges: once the needed
fields were selected, there was a chain of dependencies and different unique-
ness constraints between SuzieQ and NetBox. Also, some objects are present
in NetBox but not in SuzieQ - and vice versa - so I had to figure out how
to convert those by taking information from different tables. Figure 8.4 and
8.5 try to summarize that.

8.6 Code Logic And Methods

In this section, the code logic and the used methods will be briefly explained
step by step. Actual code won’t be shown here or in any other section
because of the non-disclosure agreement I signed with Stardust Systems.

1. It all starts in the test_main module, where the needed configuration
files are passed to the wrapper_main module. This mimics a user passing
the configuration file paths to the NetBox integration command using
the CLI.

2. The wrapper_main coordinates all the next steps. It performs the same
operations for each table, with some exceptions. First, it initializes the
NetboxTable object and gets its data with a NetboxTable.get_data

method.

3. If there’s data in NetBox for that table, it converts it using the NetboxTable.convert

method and a comparison using the SuzieqTable.compare method.
The comparison also includes ingress data validation thanks to the df_validator

method. The comparison outputs all failing objects on SuzieQ and Net-
Box parts, separated. If there’s no data in NetBox, no comparison will
take place.

4. If NetBox is empty, all data from the selected SuzieQ tables must be
pushed. A SuzieqTable object is initialized and its data is fetched using
the SuzieqTable.gather method. If we’re handling the VLAN table,
the build_VLAN method decides which fields are needed, as the code
provides an option to "filter out" interfaces, as they slow up computation
quite a bit.

5. Now, if the push function is allowed by the user in nb_cfg.yml, we first
prepare data to exit the Facade, calling the push method, a wrapper for
the export internal method and then use the NetboxTable.push_tablename

66

8.6 – Code Logic And Methods

Figure 8.4. Device Push Logic. Device Comparison is similar.

67

8 – Implementation

Figure 8.5. VLAN Push Logic. VLAN Comparison is similar.

68

8.7 – Fine Tuning

method. To push VLANs with interfaces, we will retrieve only the inter-
faces listed in the VLAN table, using the SuzieqVLAN.VLAN_interface

method.

6. The NetboxTable.push_tablename method works like this: first we un-
derstand which external objects are needed, selecting normalized NetBox
data (all lowercase, no special characters) which doesn’t match normal-
ized SuzieQ data; then we push them; then we fetch their NetBox id
which is unique within that table; then we push the "entire" object.
The program will either push everything or nothing. Users can verify
progress by running the comparison function.

8.7 Fine Tuning

In this section you will see all the improvements introduced along the way,
from the first to the last version of my code.

First Version - In this version all necessary operations are performed in a
brute-force fashion without regard for code structure or optimization. In this
way, low-level logic can be fast understood. The code fetched all data from
VLAN, device, and interface tables in SuzieQ, compared each row with Net-
Box data, and pushed a row at a time, regardless of which data was already
in NetBox. The output was manually handled with dedicated error messages
for each mismatch, making it richer but not scalable. Improvements:

1. Code refactoring - The code was reorganized into files, classes, and
methods. This made the code much more readable and scalable. To
add functions, you can add a subclass and some methods or add some
dictionaries to the netbox_constants.yml file. You know where to add
new code as everything follows a hierarchical logic, and you can look
at pre-existing similar methods, which are placed and named coherently
and intuitively.

2. The Facade - The SuzieQ part, enclosed in the suzieq_facade mod-
ule, offers some generic methods that will always work regardless of the
source of ingress data, given that it’s converted in the right way. It can
also export data in different formats, and you can add others follow-
ing what’s already in the export method. There also are some internal
methods that could be useful for future functions.

69

8 – Implementation

3. Asynchronous Operations - The GET and POST requests are now
performed asynchronously - using the asyncio library - to align the
code with the pre-existing SuzieQ codebase. This also ensures that if
the component is integrated into a part of the architecture that supports
concurrent execution, we can speed up computation.

4. Bulk Comparison - Now we don’t compare rows but DataFrames: we
don’t need to write the output manually anymore, as differences are
shown regardless of which kind of data doesn’t match. This is also a lot
faster than iterating on rows.

5. Bulk Requests - We don’t perform one request for one object: we
first group objects and then perform requests. Examples: we don’t
perform a POST request for each object but for an array of objects; when
fetching the unique ID of external objects to prepare devices, VLANs, or
interfaces for the POST, we don’t make a GET request for each external
object but we fetch all objects of that kind and then filter out the one
we need.

Intermediate Version - This version performs the needed operations on the
selected tables. The code is decently organized, and testing was successful for
many scenarios. The next improvements will focus on performance and better
execution flow, avoiding useless operations and some extras to complete the
solution.
Improvements:

1. Data Tagging And Normalization - SuzieQ data is labeled to distin-
guish it from existing data in NetBox, from data pushed by other tools
or entered manually. Additionally, data is normalized before comparison
to ensure that differences in case and special characters do not impact
the primary functions.;

2. VLAN Uniqueness - The code does no longer push tags combining
the VLAN name, site, and device - used so that NetBox VLANs can be
1:1 with SuzieQ VLANs - but it uses custom fields. That way, we don’t
clutter our NetBox instance;

3. Device Type Handling - The first version and the intermediate one
pushed a Device Type for each device, while now it will only push one
for each model/manufacturer combination. This speeds up computation
and declutters our NetBox instance.

70

8.7 – Fine Tuning

4. Bulk Push And Optimizations - When performing push operations,
we bulk all the missing objects together and send them in a single POST
request to the server. For GET operations, we apply filters to the entire
NetBox tables, enabling us to perform only one request for those as well.

5. Commented Code - The code has been thoroughly commented to be
easier to understand both for me in the future and for my coworkers,
who will push this feature to market in future versions of the SuzieQ
suite.

71

72

Part IV

Results

73

Chapter 9

Evaluation

The solution performs its main tasks: synchronization and validation. The
program has undergone extensive testing and works seamlessly for devices
and VLANs. It has been successfully tested several times, and it works
perfectly fine in these scenarios:

• NetBox is empty and we want to push everything from SuzieQ. No com-
parison will be performed to speed up computation. We can push only
devices, or devices and VLANs, or devices, VLANs and related inter-
faces;

• NetBox is not empty, so the program outputs the differences. The pro-
gram only pushes mismatching SuzieQ objects when it’s not too compli-
cated;

• If we want to compare VLANs but don’t care about interfaces, we can
exclude interfaces to speed up the computation;

• Thanks to data normalization, similar SuzieQ and NetBox data are equal
in validation and synchronization, regardless of the fields’ case or use of
special characters (underscores and hyphens). This is crucial when deal-
ing with a NetBox instance that already has some objects in it because
it’s linked to other tools or filled manually, as the syntax conventions
may vary;

• Thanks to data validation, the program won’t try comparing data with
mismatching formats: if the ingress data from NetBox isn’t converted
correctly, the program will signal it and stop its execution;

75

9 – Evaluation

Figure 9.1. Devices in SuzieQ and NetBox, after synchronization.

76

9 – Evaluation

Figure 9.2. Validation output.

77

9 – Evaluation

• Thanks to file validation, the user will be signaled if something they put
in the configuration file is wrong: configuration data is in the wrong
format, there was a typo, etc.;

• If a NetBox object matches a SuzieQ object except for some fields, the
program will signal the difference but won’t update. The reasoning
behind this can be found in Chapter 6. With further studies, the update
function may be introduced;

• Thanks to data tagging on NetBox, SuzieQ objects can easily be de-
tected and deleted: this helps to troubleshoot and ensures Separation of
Concerns so that if something goes wrong it doesn’t affect non-related
data.

9.1 Performance And Scalability

The solution performs its main tasks correctly. But how fast is it? The
elapsed time for the different code sections was measured to understand what
part is worth optimizing more. Testing only considered the worst-case sce-
nario, starting with an empty instance of NetBox.

The elapsed time will be divided in:

• Time to fetch data from SuzieQ;

• Time to convert NetBox data;

• Time to compare SuzieQ and NetBox data;

• Time to push data in NetBox.

An important note - NetBox pages query results show only 50 objects per
page by default. Larger values should reduce the number of iterations and
improve the elapsed time for larger tables. As shown in the next section, this
strategy was successful.

Variables - The results will showcase how paging can improve the perfor-
mance while handling interfaces can be very detrimental because the VLAN
binding with interfaces is complex. Significant data is expressed in seconds
and commented.

78

9.1 – Performance And Scalability

Figure 9.3. Performance for Synchronization.

Figure 9.4. Performance for Comparison.

79

9 – Evaluation

Let’s comment on Figure 9.3 and 9.4, considering that we’re dealing with
120 devices, 120 VLANs, and 740 interfaces.

Synchronization - As expected, paging doesn’t affect fetching data from
SuzieQ: that comes into play only when performing GET/POST requests to
the NetBox API server. The performance gain is around 5% for all tables.

Fetching SQ data is so fast that it’s irrelevant to the general performance.
That’s good, as we can expect it to be as irrelevant when increasing the
tables’ size. Pushing devices takes twice the time than pushing VLANs
with comparable size: performance depends on the table cardinality and the
number of external references. Both factors must be considered.

Pushing interfaces, as anticipated, is very slow: we only have a 6x multiplier
when considering the cardinality, but performance is eight times worse than
devices and 20 times worse than VLANs. This is probably the part that
could use more optimization.

Validation - Interfaces do not affect devices, only VLANs. Moreover, the
performance gain from paging is negligible, as the elapsed time is short and
variations are within the same order of magnitude as statistical variance.
Excluding the interfaces, when relevant, leads to a whopping 67% to 96%

performance gain.

As expected, a different approach to the interface table could improve the
main bottleneck at the cost of additional studying. At least Port Channels
and interface modes should be considered.

All in all, it takes <2 minutes to perform both functions with Page =
1000. That’s not bad considering that, as already said, this kind of oper-
ation won’t be performed often. Also, fetching data from SuzieQ is not a
significant overhead, and given that operations are bulked and paging can
be further increased, we expect less than linear increase for elapsed time
with increasing data.

Scalability testing - You will now see the results of a scalability test, try-
ing to run the program with 10,000 devices. The device table was chosen
because the VLAN tables would’ve required that referenced devices existed.
Generating two random tables with cross references would complicate the
task quite a bit.

80

9.1 – Performance And Scalability

A DataFrame with randomly generated fields was generated. To simulate
a meaningful data set, it must be understood how many values should be
provided for each field:

• Unique devices: 120;

• Unique namespaces: 9 (1

12
of total);

• Unique hostnames: 32 (1

4
of total);

• Unique statuses: we already know the permitted values and they are
three;

• Unique vendors: 5 (1

24
of total);

• Unique models: 7 (1

17
of total).

A DataFrame with 2000 unique hostnames, 670 unique namespaces, three
statuses, 50 models, and ten vendors was generated.

Let’s comment on the last numbers: there can be up to V*M device types -
if V*M < D - where D is the number of unique devices, V is the number of
unique vendors, and M is the number of models. In a production network,
devices are typically bought and organized in large groups, with a reasonable
number of devices for each device type. For instance, 2,000 device types and
10,000 devices are not a likely scenario. It is also recommended to avoid
buying from multiple manufacturers unless strictly necessary since different
devices may not work well together.

Figure 9.5. Performance: 120 devices vs 10,000 devices.

Figure 9.5 shows outstanding results. With 83x more devices, we only
have a 16x overall increase in the elapsed time. The program’s behavior at
scale is excellent, and we can expect it to work well for big networks. The
total of three minutes is also impressive.

81

9 – Evaluation

9.2 Good Programming

When coding, developers often focus on getting the job done, forgetting about
all the rest. There’s a lot more to be considered (20), so you will now see
some good programming practices which were followed. It will be clear why
they’re important, what was done in that regard, and, in the next chapter,
what could be improved further.

Following standards is crucial to attain consistency, readability, scalability,
and reliability in a software solution. Let’s explore some of them:

1. Naming conventions - using descriptive and meaningful names for
variables, functions, classes, and modules enhance code readability and
maintainability. When programming, choose either CamelCase or snake_case
according to the conventions of your programming language. The entire
codebase must consistently adhere to naming conventions. Avoid using
single-letter variables, gibberish, or ambiguous abbreviations.

The code - My coworkers didn’t have any problem with this when
studying my code: snake_case was always used, as it’s Python’s pre-
ferred convention, and ambiguous names were avoided. Similar functions
have been named similarly, which is a good thing. However, some "tmp"
variables need to be removed, and the code should be more compliant
with the rest of the SuzieQ codebase.

2. Comments and documentation - Comments are useful to provide
context and explain what their code is doing. They should be used
sparingly so as not to clutter the code. Comments can help explain the
purpose of your code, return values, potential errors, the role of classes,
and any particularly complex steps in a function. Overall, comments
can improve the readability and understanding of your code.

The code - After active programming ended, the code was thoroughly
commented. Each function had its parameters and purpose explained,
some variables were explained, and some intricate steps were commented
on step by step. My coworkers were satisfied too.

3. Organize code (21) - code should be grouped into blocks or functions,
and comments on their purpose should be provided. Each class should
only have one responsibility, and it should be possible to add functional-
ities without editing existing code. Subtypes should be consistent with

82

9.2 – Good Programming

the base types to avoid errors, and there shouldn’t be dependencies with
irrelevant classes for the task.

The code - After creating the first working version of my code, I spent
months restructuring it. As you can see, there are now two main classes
and some sub-classes. The code is also organized in different files, each
with a different functionalities. As this is the first time I’ve dealt with a
project of this size alone, there is room for improvement. The main files
can be further divided and decluttered, and some methods may need to
be rewritten.

4. Code reusability - write code that can be reused efficiently. You can
achieve this by creating functions that are as generic as possible, encap-
sulating similar yet different functions in wrappers so that it can call the
appropriate one in a way that’s transparent to other modules.

The code - The facade component was created for this purpose specif-
ically. Other tools could potentially utilize its methods by simply pro-
viding the necessary dictionaries.

5. Use short line length (22) - Using shorter line lengths, such as 80
characters, enhances readability and makes it easier to manage your
code.

The code - The 80-character limit is rarely exceeded, and the worst
lines of code are usually around 120 characters long. There’s a little
room for improvement especially in the push_something functions.

6. Version control - Commit messages should be as informative as pos-
sible to let you and other developers keep track of the changes, why
they were introduced, and how. This way, code can be studied and
troubleshooted faster. A reasonable branching strategy should be ap-
plied, and pull requests should be used for seamless collaboration among
coworkers.

The code - The first version was fully developed offline, but that’s
because it was just a way to get to know the fundamentals of the program
logic: it was not intended to be final in any way, and it took a reasonably
short time to develop. After that, commits were pushed regularly, with
exhaustive logs. A separate branch was used and a Pull Request draft
was provided.

83

9 – Evaluation

7. Review - Peer reviews are crucial for writing high-quality code. When
someone outside reviews the code, it is easier to identify any weaknesses.
Additionally, different people can provide unique insights on how to im-
prove the code. Peer reviews can also help identify and fix issues earlier,
reducing the costs associated with addressing them later on.

The code - I consistently sought my coworkers’ perspectives, with mod-
eration. That led me to write code faster and better, as some choices
wouldn’t have been possible without an external, impartial eye evaluat-
ing the situation.

Coding standards may depend on the used programming language and evolve,
but they’re adaptable and likely valid in the future. As changes may occur,
it is advised to stay up-to-date with the latest version to facilitate collab-
oration among developers.

84

Chapter 10

Conclusions and Future
Works

In conclusion, results show that the proposed solution is good in terms of
good programming, performance and scalability. That made it ready for my
coworkers to put it to market as soon as possible. They also confirmed that
the proposed logic was solid and didn’t need any serious makeover.

Some successful strategies were the detailed preliminary studies - with rich
documentation - and the mixed approach between top-down and bottom-
up. This ensured minimal need to rewrite code, easy communication of the
problem specifications to my coworkers, and a fairly fast progress pace.

Some weak spots were the code structure, as my coworker had to declutter
and rebase it a bit, and some naive choices on my part. In particular, the
facade was too opaque and the interfaces management was too complex and
slow. Also, in the last coding phases documentation disappeared altogether,
leaving GitHub commits alone in explaining the process.

We will now delve more into details, outlining future prospects for this fea-
ture.

10.1 Future Works

In the beginning, new functions to integrate into the solution were proposed
along more concrete objectives that were unlikely to make it into my final
iteration (Tier 3 and 4 objectives).

85

10 – Conclusions and Future Works

After the process of implementing the solution and discussed it and its limi-
tations with my coworkers – who are currently studying the code to integrate
it into the SuzieQ suite – we can be far more precise. In this section, you
will see some remarks on the objectives to realize sooner or later. This kind
of consideration can partially be found in the previous section, so I will not
repeat myself.

Improvements - The existing code can be improved in some ways:

• The output shows results – failed and successful items and their numbers
– as soon as they’re available, but it was left barebone. For instance, it
shows mismatching rows without providing a more detailed explanation.
My idea: process the merge results further. The left_only rows should
be compared with the right table’s ones and vice versa to see which field
was the reason for the failure;

• My coworkers found the facade too generic and kinda of difficult to
understand. Although it’s good that the solution’s particularities are
left hidden, some methods were considered too opaque.

• Even if the NetBox class already includes various common methods to
get sites and tags, there is still room for further generalization. For
example, URLs are heavily used, but there’s no way to generate them
automatically. Writing them manually is error-prone;

• VLAN management could be simplified as my 1:1 mapping approach is
a little convoluted and slows down pushing. This also requires studying
interfaces on a deeper level and then pushing them all instead of just
the ones in the VLAN table;

• The management of table lifecycles, especially related to sessions, needs
further refinement. If the program execution is stopped abnormally, an
"Unclosed client session" error will occur.

Additions - To make this solution more complete they could add:

• Filtering on rows and columns to speed up computation;

• The “platform” information to the device table. SuzieQ holds the needed
information in the “os” and “version” fields, which are already included
but not used later;

86

10.1 – Future Works

• VLANs and interfaces need related devices to be already present: there’s
a chain of dependencies to be respected. That may apply to new tables
in the future, so the configuration model should enforce a precise or-
der in the validation and synchronization process. For instance, a user
shouldn’t be allowed to try to push VLANs if no devices were pushed
before;

• Other tables could be supported in the future.

On top of that, you must keep in mind that studying a problem is one thing
while selling the solution to customers is an entirely different challenge.
Some details that are important to users can be invisible to developers. The
first months after commercialization will be crucial to see how our consider-
ations hold up in a real-world scenario.

87

88

Bibliography

[1] KEARY T. The OSI Model Explained: What is the OSI Model? |
Comparitech; 2018. Available from: https://www.comparitech.com/

net-admin/osi-model-explained/.

[2] Contributors W. Server (computing). Wikimedia Foundation;
2019. Available from: https://en.wikipedia.org/wiki/Server_

(computing).

[3] Moreno V, Reddy K. Network virtualization. Cisco Press; 2006.

[4] Townsend W. Defining Network Observability And As-
sessing The Market Leaders; 2023. Available from:
https://www.forbes.com/sites/moorinsights/2023/06/29/

defining-network-observability-and-assessing-the-market-leaders/

?sh=6ca20ee16935.

[5] Saha S. Observability Platform Market; 2022. Available
from: https://www.futuremarketinsights.com/reports/

observability-platform-market.

[6] Coombs B. Enterprise Network Observability with Kentik - TFD27;
2023. Available from: https://www.techdoodles.co.uk/blog/2023/

4/1/enterprise-network-observability-with-kentik-tfd27.

[7] Meyer D. Cisco widens its ThousandEyes vision
with enhanced observability; 2023. Available from:
https://www.sdxcentral.com/articles/interview/

cisco-widens-its-thousandeyes-vision-with-enhanced-observability/

2023/06/.

[8] Ly A. ThousandEyes Review 2024 Pricing, Features, Short-
comings; 2024. Available from: https://www.betterbuys.

89

BIBLIOGRAPHY

com/network-monitoring/reviews/thousandeyes/#:~:text=

ThousandEyes%20At%20A%20Glance%20Good%3A%20The%20solution%

20offers.

[9] Anand A. Latest Top 11 Observability Tools in Spotlight - 2024’s
Guide | SigNoz; 2024. Available from: https://signoz.io/blog/

observability-tools/.

[10] Club TC. HoneyComb Observability Tool In-Depth Review; 2023. Avail-
able from: https://thectoclub.com/tools/honeycomb-review/.

[11] Guide TS. Auvik — Pricing, Review, and FAQs; 2023. Available from:
https://www.thesmbguide.com/auvik-reviews.

[12] Reviews U. Splunk Enterprise Reviews Ratings 2024; 2023.
Available from: https://www.trustradius.com/products/

splunk-enterprise/.

[13] VanDeraa J. Using NetBox for Ansible Source of Truth;
2020. Available from: https://www.ansible.com/blog/

using-netbox-for-ansible-source-of-truth.

[14] KaonBytes. Netbox Dynamic Inventory for Ansible as a feed-
back loop; 2022. Available from: https://kaonbytes.com/p/

netbox-dynamic-inventory-for-ansible-as-a-feedback-loop/.

[15] Barry J Jim Lopez. NetBox review: Simplifying Network Documenta-
tion - Compsmag; 2023. Available from: https://www.compsmag.com/

reviews/netbox-review/.

[16] Basel K. Python Pros and Cons: What are The Benefits and Downsides
of the Programming Language; 2018. Available from: https://www.

netguru.com/blog/python-pros-and-cons.

[17] Contributors W. Python (programming language). Wikimedia Founda-
tion; 2019. Available from: https://en.wikipedia.org/wiki/Python_

(programming_language).

[18] S S. What Is Pandas in Python? Everything You
Need to Know; 2022. Available from: https:

//www.activestate.com/resources/quick-reads/

what-is-pandas-in-python-everything-you-need-to-know/.

90

BIBLIOGRAPHY

[19] Kurinna O. Pydantic explained: revolutionizing Python data man-
agement; 2023. Available from: https://www.apptension.com/

blog-posts/pydantic.

[20] Dixit V. Coding Standards and Guidelines: A Comprehensive Guide
With Examples And Best Practices; 2023. Available from: https://

www.lambdatest.com/learning-hub/coding-standards.

[21] Suvariya R. SOLID Principles — explained with exam-
ples; 2019. Available from: https://medium.com/mindorks/

solid-principles-explained-with-examples-79d1ce114ace.

[22] Gregori S. Ask Hackaday: Are 80 Characters Per Line Still Reasonable
In 2020?; 2020. Available from: https://hackaday.com/2020/06/18/

ask-hackaday-are-80-characters-per-line-still-reasonable-in-2020/.

91

	I Introduction
	General Concepts
	The Logical Level
	Diverse Hardware
	Diverse Software: Examples

	Problem Statement
	The Challenges
	A Solution: Network Observability

	II Network Observability Tools
	Related Work
	The Market
	Cisco ThousandEyes
	Paid Alternatives
	Free Open-Source Alternatives
	Integration For Automation: NetBox And Ansible

	NetBox
	Functional Scope
	Design
	Data Model

	SuzieQ
	Main Components And Functions
	Data Model

	III NetBox And SuzieQ Integration
	Preliminary Studies
	Reasoning
	Requirements

	Architecture
	Functions and Scope
	Methodology And Complexity
	Logical Modules

	Implementation
	Language and Libraries
	Files And Directory
	The Facade
	Main Classes
	Translation Logic
	Code Logic And Methods
	Fine Tuning

	IV Results
	Evaluation
	Performance And Scalability
	Good Programming

	Conclusions and Future Works
	Future Works

