
POLITECNICO DI TORINO

Master’s Degree in Computer Engineering

Exploring the OCSF Framework in AWS:

Design, Implementation and Performance

Analysis of a Security Lake Platform

Supervisor

Prof. Fulvio Risso

Company Supervisor

Francesco Benforte

Candidate

Stefano Gianola

Academic Year 2023/2024

Abstract

In the cybersecurity world, identifying and contrasting cyber attacks necessitates the
synergistic deployment of diverse tools. These tools generate streams of alerts and
isolated data, with different log formats and data schema, often demanding manual
correlation for comprehensive analysis and response. The Splunk State of Security
2023 report [1] underscores that 64% of Security Operations Center (SOC) teams face
challenges transitioning between security tools due to limited integration. The col-
lected data cannot be seamlessly combined, hindering the ability to obtain a holistic
view of the security environment. Cybersecurity teams find themselves dedicating sig-
nificant time and effort to manually normalize data across diverse tools. This manual
effort detracts from their primary focus on detecting, investigating, and responding to
security events. In essence, the data manipulation and normalization process becomes
a bottleneck, impeding the efficiency of security operations.

The Open Cybersecurity Schema Framework (OCSF), unveiled during the BlackHat
conference in August 2022, represents a groundbreaking initiative in the realm of
cybersecurity. It is designed as an open schema standard with the key objective
of offering a straightforward taxonomy that transcends supplier-specific constraints.
This framework is deliberately vendor-agnostic, allowing it to be seamlessly inte-
grated into any environment, embraced by any application, and adopted by diverse
solution providers. This solution allows security teams to accelerate and streamline
the data entry and analysis process, along with correlating data, without requiring
time-intensive upfront standardization efforts.

In November 2022, Amazon Web Service (AWS) introduced Amazon Security Lake, a
service that leverages OCSF as its foundational data schema. It is a security data lake
and helps to consolidate security-related information from various sources, including
AWS environments, SaaS providers, on-premises infrastructure, cloud platforms, and
third-party providers. The primary function of Security Lake is to facilitate in-depth
analysis of security data, empowering organizations to gain a holistic view of their
security landscape across the entire enterprise. By leveraging Security Lake, users
can enhance the safeguarding of their workloads, applications, and data, thereby
fortifying the overall security posture of their organization.

The objective of the project is to leverage the OCSF standard and to design the archi-
tecture of a platform that is able to ingest and normalize security logs in OCSF format,
integrate logs and events from external sources in the Security Lake, and develop an

ii

Abstract

implementation to automate the creation and configuration of such a platform. The
thesis also analyzes the scalability of the created application and measures the ability
of the system to ingest data, highlighting any constraints encountered and potential
alternative solutions to improve scalability.

iii

To my family

iv

Acknowledgment

At first, I would like to express my gratitude towards Professor Fulvio Risso for
providing me with the opportunity to work on this thesis.

I am also immensely thankful to Storm Reply for warmly welcoming me and, in
particular, to Francesco Benforte for supervising and guiding me throughout my thesis
period.

Lastly, I would like to thank all of my friends who have supported me during my
years of study.

v

Table of Contents

Abstract . ii

Dedication . iv

Acknowledgment . v

Listings . x

List of Figures . xi

Acronyms . xii

Chapter 1 Introduction . 1

1.1 Goal of the thesis . 1

Chapter 2 OCSF . 3

2.1 OCSF Taxonomy . 3
2.2 Data Types . 4
2.3 Attributes . 4
2.4 Event Class . 6

2.4.1 Group . 6
2.4.2 Requirement . 7
2.4.3 Base Event Class . 7

2.4.3.1 Classification Attributes of Base Event 8
2.4.3.2 Occurrence Attributes of Base Event 8
2.4.3.3 Primary attributes of Base Event 8
2.4.3.4 Context Attributes of Base Event 9

2.4.4 Constraints . 10
2.4.5 Associations . 11

2.5 Categories . 11
2.5.1 From Categories to Profiles 12

2.6 Profiles . 12
2.7 Extensions . 13

Chapter 3 Tecnologies . 16

3.1 Terraform . 16
3.2 Kubernetes . 17

3.2.1 Kubernetes architecture . 17

vi

Table of Contents

3.2.1.1 Kubernetes Control Plane 18
3.2.1.2 Kubernetes Node . 19

3.2.2 Kubernetes Objects . 20
3.3 Docker . 23

3.3.1 DockerFile . 23
3.4 Fluentd . 25

Chapter 4 Amazon Web Services (AWS) 26

4.1 Region . 26
4.2 Availability Zone . 26
4.3 Amazon Virtual Private Cloud (VPC) 27
4.4 AWS CodeCommit . 30
4.5 AWS CodePipeline . 31
4.6 AWS CodeBuild . 32
4.7 AWS Elastic Container Registry (ECR) 35
4.8 Amazon Elastic Kubernetes Service (EKS) 35

4.8.1 Amazon EKS Architecture . 35
4.8.1.1 Control Plane . 35
4.8.1.2 Node . 35

4.9 AWS CloudFormation . 36
4.10 AWS Simple Storage Service (S3) . 39
4.11 AWS CloudWatch . 40
4.12 AWS Elastic Compute Cloud (EC2) 40
4.13 AWS EC2 Auto Scaling . 42
4.14 AWS Lambda . 43

Chapter 5 AWS Security Lake . 46

5.1 Source of Amazon Security Lake . 47
5.1.1 AWS Service Sources . 47
5.1.2 Integrated vendors . 48
5.1.3 Custom sources . 48

5.2 Subscriber of Amazon Security Lake 49
5.3 Lifecycle of buckets S3 . 49

Chapter 6 Design of Security Lake platform 50

6.1 Challenges . 50
6.2 Platform’s Overview . 51

6.2.1 Catching part . 52
6.2.1.1 Ingestion VPC . 53

6.2.2 Ingestion Pipeline [Normalization] 54

vii

Table of Contents

6.2.3 Admin Repository . 54
6.2.4 Integration Repository . 55

Chapter 7 Platform’s Implementation 56

7.1 STEP 1 of Platform’s construction 58
7.1.1 Platform creation folder . 58

7.1.1.1 File variable.tf . 58
7.1.1.2 File main.tf . 59

7.1.2 Architectural landscape after launched creation folder 63
7.1.2.1 File bootstrap.tf into Repository-Admin 65

7.2 STEP 2 of Platform’s construction 73
7.2.1 Modules to declare an integration 73

7.2.1.1 Modules type “S3Integrated” 75
7.2.1.2 Modules type “SyslogIntegrated”/ “SyslogIntegrated-

DedicatedNodes” . 76
7.2.2 Implementation Catching Part 77

7.2.2.1 Node Group and Autoscaling policy 77
7.2.2.2 Kubernetes components 79

7.2.3 Implementation of architecture that creates the normalization
pipeline part. 83

7.3 STEP 3 of Platform’s construction 87
7.3.1 Integration Repository files . 87

7.3.1.1 template.yaml . 88
7.3.1.2 mappingFunction.py 93

7.3.2 Ingestion Pipeline . 97

Chapter 8 Platform’s Validation . 98

8.1 Environment where the platform is created 98
8.2 Linux events’ integration (Syslog) . 98
8.3 Test 0 . 100
8.4 Optimization of lambda . 102

8.4.1 Test: flush_interval‘s variations 103
8.4.2 Test: Pod CPU variations . 104
8.4.3 Test: unifying the results of previous studies 105

Chapter 9 Conclusions . 107

Bibliographic references . 108

viii

Listings

2.1 Example of enrichments attribute. 9
2.2 Example of “at_least_one” constraints. 10
2.3 Example of “just_one” constraints [3]. 10
2.4 Example of associations into “Scheduled Job Activity” Class [4]. . . . 11
3.1 Example of a Deployment [9] . 21
3.2 Example of a Service [10] . 22
3.3 Example of Dockerfile. 24
3.4 Example of “fluent.conf” . 25
4.1 Example of CloudFormation YAML template 37
7.1 File variable.tf of creation folder . 58
7.2 Terraform configuration, into file main.tf of creation folder 59
7.3 AWS Provider configuration, into file main.tf of creation folder 59
7.4 AWS CodeCommit Repository, into file main.tf of creation folder . . . 60
7.5 AWS CodeBuild, into file main.tf of creation folder 60
7.6 File buildspec-tf-create.yaml of creation folder 61
7.7 Source stage CodePipeline, into file main.tf of creation folder 62
7.8 Build stage CodePipeline, into file main.tf of creation folder 62
7.9 Virtual Private Cloud . 66
7.10 Public Subnet . 67
7.11 Internet Gateway . 67
7.12 Route table and its association . 67
7.13 Elastic Kubernetes Service . 68
7.14 Provider Kubernetes . 68
7.15 Dockerfile Fluentd . 69
7.16 fluent.conf . 70
7.17 AWS Lambda: Delete Stack . 72
7.18 deleteStack.py . 72
7.19 Example of module with type “S3Integrated” 75
7.20 Example of module with type “SyslogIntegratedDedicatedNodes” . . 76
7.21 AWS EKS Node Group for dedicate Nodes 77
7.22 AWS autoscaling policy for dedicate Nodes 78
7.23 Deployment . 80
7.24 LoadBalancer Service . 82
7.25 Horizontal pod autoscaler . 83
7.26 Codepipeline-integration . 85
7.27 Codebuild SAM model . 85
7.28 buildspec-user-create.yaml . 87

ix

Listings

7.29 Codebuild SAM model . 90
8.1 Module of integration Linux Syslog into Admin Repository 99

x

List of Figures

Figure 2.1 OCSF Extensions Registry [5]. 14

Figure 3.1 Kubernetes cluster’s architecture [8]. 18

Figure 4.1 Example of VPC [12] . 27
Figure 4.2 Examples of VPC Endpoint [13] 29
Figure 4.3 Illustration of how to create and manage repositories [14] . . . 30
Figure 4.4 Illustration of how to create and manage repositories [15] . . . 32
Figure 4.5 CodeBuild integrates with CodePipeline [16]. 33
Figure 4.6 CloudFormation workflow for creating stacks [18]. 38
Figure 4.7 CloudFormation workflow for updating stacks [18]. 38
Figure 4.8 Auto Scaling Group [19]. 42
Figure 4.9 Synchronous Invocation of Lambda [20]. 44
Figure 4.10 Asynchronous Invocation of Lambda [21]. 44

Figure 5.1 Overview of Security Lake. 46

Figure 6.1 Platform’s Design. 52
Figure 6.2 Ingestion VPC . 53
Figure 6.3 Ingestion Pipeline [Normalization]. 54

Figure 7.1 Platform’s implementation. 57
Figure 7.2 Architectural landscape after launched creation folder 64

Figure 8.1 Results Test-0: pods. 100
Figure 8.2 Results Test-0: nodes . 100
Figure 8.3 Results Test-0: invocations 101
Figure 8.4 Results Test-0: concurrent execution 102
Figure 8.5 Results Test-0: throttles . 102
Figure 8.6 Graph of ingestion capacity at flush_interval variation 104
Figure 8.7 Graph of ingestion capacity at pod CPU variation 104
Figure 8.8 Results of the optimized test: invocations. 105
Figure 8.9 Results of the optimized test: concurrent executions. 106
Figure 8.10 Results of the optimized test: throttles. 106

xi

Acronyms

SOC: Security Operations Center
OCSF: Open Cyber Security Framework
ICD: Integrated Cyber Defense
IaC: Infrastructure as Code
AWS: Amazon Web Services
CI/CD: Continuous Integration and Continuous Deployment
HCL: HashiCorp Configuration Language
CNCF: Cloud Native Computing Foundation
AZ: Availability Zone
AZs: Availability Zones
VPC: Amazon Virtual Private Cloud
IGW: Internet Gateway
NAT: Network Address Translation
NACLs: Network Access Control Lists
IAM: AWS Identity and Access Management
CLI: Command Line Interface
ECR: Amazon Elastic Container Registry
EKS: Amazon Elastic Kubernetes Service
S3: Amazon Simple Storage Service
ACLs: Access Control Lists
KMS: Key Management Service
I/O: Input/Output
ASGs: Auto Scaling Groups
ASFF: AWS Security Finding Format
IAM: Identity and Access Management

xii

Chapter 1

Introduction

In the cybersecurity world, identifying and contrasting cyber attacks necessitates the
synergistic deployment of diverse tools. These tools generate streams of alerts and
isolated data, with different log formats and data schema, often demanding manual
correlation for comprehensive analysis and response. Splunk State of Security 2023
highlights that 64% of SOC teams struggle to pivot from one security tool to the
next, with little integration between the tools to make it easier [1]. Cybersecurity
teams face challenges in getting a complete view of the security environment due to
difficulties in combining data collected from different tools. This obstacle requires
significant manual effort to normalize data, diverting attention from critical tasks
such as detection, investigation, and response to security events. As a result, sim-
plifying data integration processes is critical to improving operational efficiency and
strengthening cyber defense capabilities.

The Open Cybersecurity Schema Framework (OCSF), presented at the Black Hat
conference in August 2022, represents an innovative initiative in the field of cyber-
security. It was designed as an open schema standard with the key goal of offering
a simple taxonomy. This framework is vendor-agnostic, meaning security providers
and data producers can adopt and map their existing schemes in OCSF. This solution
allows security teams to accelerate and simplify the data entry and analysis process,
along with data correlation, without requiring time-consuming initial standardization
efforts.

In November 2022, AWS launched Amazon Security Lake, utilizing OCSF as its
core data schema. This service acts as a centralized repository for security data,
consolidating information from diverse sources. It enables comprehensive analysis,
granting organizations a unified perspective of their security environment. Through
Security Lake, users can enhance the protection of their assets, applications, and data,
strengthening their overall security stance.

1.1 Goal of the thesis

After studying and exploring the OCSF, the thesis project aims to expand the func-
tionality of the Security Lake service. The Security Lake enables data integration
from vendors already using OCSF, AWS services predisposed to integration, and

1

Chapter 1. Introduction

third-party sources. However, the data from these latest sources have their own
schema, which must be manually mapped to the OCSF schema for integration into
the Security Lake.

The goal of the thesis is to develop a platform that simplifies and accelerates the
integration of logs from tools that still use their own schema into the Security Lake.
The platform must automate the data collection, normalization of messages from the
original format to the OCSF schema, and loading of data into the Security Lake.

The platform should be easily configurable, customizable, and automated to mini-
mize manual configuration effort and optimize implementation. It should provide a
repository with a pre-set configuration file where the integrator can specify the inte-
grations they want to perform and indicate the mapping required for each integration
to transform the original format into the OCSF schema. Based on the configuration
file, the platform will automatically create the necessary infrastructure for all speci-
fied integrations. It is essential that the platform is scalable in relation to the volume
of incoming traffic, is reliable, and is always available.

It also analyzes the scalability of the application created and measures the ability
of the system to ingest data, highlighting any constraints encountered and potential
alternative solutions to improve scalability and the ability of the platform to ingest
data.

2

Chapter 2

OCSF

The Open Cybersecurity Schema Framework (OCSF) project represents a signifi-
cant collaboration between cybersecurity industry leaders, spearheaded by AWS and
Splunk. Built based on work done by ICD Schema in Symantec, a division of Broad-
com, this initiative has evolved through close engagement with customers and a metic-
ulous analysis of the evolving needs within the security operations market. In the
beginning, OCSF boasted the participation of 18 founding members, a consortium of
technology and security organizations. This collaborative effort signals a unified com-
mitment to advancing the field of cybersecurity. The coalition comprises AWS, Broad-
com Cloudflare, CrowdStrike, DTEX, IBM Security, IronNet, JupiterOne, Okta, Palo
Alto Networks, Rapid7, Salesforce, Securonix, Splunk, Sumo Logic, Tanium, Trend
Micro, and Zscaler. The combined wealth of experience and expertise from these
pioneering organizations culminated in the unveiling of OCSF at the renowned Black
Hat USA event in Las Vegas on August 10, 2022. This announcement marked a piv-
otal moment in the ongoing research, outlining a guideline for cybersecurity. After
a year since the announcement has more than 145 organizations and 435 individual
participants. OCSF is a vendor-agnostic scheme: security providers and data produc-
ers can adopt and map their existing schemes into OCSF. OCSF can be used by any
cybersecurity team, in any organization, for any solution. OCSF is an open-source
project and is an extensible framework for schematic development: new attributes,
objects, categories, profiles, and event classes can be defined.

2.1 OCSF Taxonomy

The OCSF taxonomy encompasses various constructs, each tailored to a specific level
of granularity. These constructs range from defining the kind of value to more gener-
alized groupings of events sharing common characteristics.

Key constructs within the OCSF taxonomy include:

⌅ Data Types: These define the nature or kind of data that a particular value
can assume.

⌅ Attribute: An attribute is a unique and identifiable name linked to a specific
data type.

3

Chapter 2. OCSF

⌅ Event Class: This is a collection of attributes that together describe an event.
⌅ Category: Categories serve as containers for events sharing a common domain.

They facilitate the grouping of events with similar characteristics.
⌅ Profile: Profiles introduce additional, context-specific attributes to event classes

and objects. They enhance the descriptive capabilities of the schema by over-
laying supplementary information.

⌅ Extension: The extension construct allows for the expansion of the schema
without making modifications to the core structure. This flexibility enables
adaptation and growth without disrupting the foundational elements.

In summary, the OCSF taxonomy employs a hierarchical arrangement of constructs,
ranging from specifying data types and attributes to organizing events into classes,
categories, and profiles. The extension mechanism further ensures adaptability and
scalability without compromising the integrity of the core schema.

2.2 Data Types

The term Data Type indicates the specific nature of the value associated with a
variable, and these types can be of different kinds: scalar or complex.

Scalar data, which forms the basic building blocks, is crafted from Base Types like
strings, integers, floating-point numbers, and booleans.

In the OCSF, complex data types are called objects. An object serves as a cohesive
assembly of attributes that are logically connected, typically representing a distinct
entity. These attributes encapsulate relevant information about the entity, and an
object may also incorporate or reference other objects, creating a hierarchical or
interconnected structure.

2.3 Attributes

An attribute is essentially a distinct and identifiable name linked to a specific data
type. In the OCSF schema, all attributes that can be used are present in the Attribute
Dictionary. This dictionary serves as a complete list, detailing all available attributes
in the schema. You can compare attributes to essential bricks, and together they build
the entire OCSF scheme. The attribute dictionary consists of a structured table with
five columns.

4

Chapter 2. OCSF

The first column, known as “Caption”, serves as a user-friendly name for each at-
tribute. This makes the attributes easily understandable for users who may not be
deeply familiar with the technical intricacies.

Moving on to the “Name” column, it contains unique identifiers for each attribute.
The names are crafted with specific suffixes that convey additional meaning. The
“_uid” suffix signifies an attribute’s uniqueness within the OCSF schema, often cou-
pled with a friendly companion bearing the “_name” suffix. Together, they establish a
link between a distinct identifier and a more human-readable name. This symbiotic re-
lationship is exemplified in the Base Event Class with attributes like “category_uid”,
“category_name”, “type_uid”, and “type_name”. Another suffix is “_uuid”, denot-
ing a globally unique value. An instance of this can be found in the Session object,
where the “uuid” attribute holds the universally unique identifier for a session. At-
tributes, that finish with “s”, are indicative of an array. The “_id” suffix in the
Attribute Dictionary signifies an Enum integer value, where each integer is linked to
a corresponding label. It operates in tandem with an attribute sharing the same name
minus the suffix. This associated attribute steps in when there is no fitting label in
the Enum or to reveal the name of the Enum label. In Enums, two default values are
typically present: 0 for “Unknown” and 99 for “Other”. If you opt for the value 99,
indicating “Other”, it is essential to populate the associated attribute. “_ids” signals
an array of Enum attributes, introducing a collective dimension to Enum structures.
Attributes like “_ip,” “_info”, “_detail”, “_time”, “_time_dt”, “_process”, and
“_version” each contributes a unique characteristic to the schema. “_ip” refers to
an IP address, “_info” encapsulates a value containing information, while “_detail”
holds additional information. “_time” and “_time_dt” both relate to time, with
the former in milliseconds since the Epoch 01/01/1970 00:00:00 UTC and the latter
following the RFC-3339 format. “_process” contains information about a process,
and “_version” indicates a specific version.

The “Type” column is where the fundamental nature of the attribute is defined,
whether it is a basic, scalar, or complex data type. This sheds light on how the
attribute is expected to behave within the schema.

In the “Referenced By” column, we find a valuable list of Class Events and Objects
where each attribute can be applied. This linking ensures that attributes are utilized
appropriately across various elements of the OCSF schema.

Lastly, the “Description” column offers a brief narrative about each attribute. This
narrative serves as a guide, providing users with insights into the purpose and func-
tionality of each attribute.

5

Chapter 2. OCSF

2.4 Event Class

Event Classes are a set of attributes that together describe and represent a specific
event at a precise time. The objective of the schema is to allow the mapping of any
raw event into a single class of events.

Within the OCSF schema, all Event Classes derive from the Base Event Class. This
foundational class comprises a set of attributes that are common across most event
classes. Specific attributes are then incorporated into each class to provide a more
detailed description of the event’s context. Furthermore, the Base Event Class can
function as a foundation for creating new Event Classes or for mapping generic events
that don’t align with any specific event class.

The Base Event Class encompasses attributes found in the Attribute Dictionary.
Apart from the typical Caption, Name, Type, and Description fields derived from the
Attribute Dictionary, the Group and Requirement columns are introduced to enhance
the overall understanding of the event attributes.

2.4.1 Group

Attributes are categorized for documentation purposes into four groups: Classifica-
tion, Occurrence, Primary, and Context. The first two groups, Classification and
Occurrence, are universal and not specific to any particular event class. On the other
hand, Primary and Context groups are tailored to a specific event class.

Classification attributes play a crucial role in the framework’s taxonomy and are
designated as Required within the Base Event class. Examples are “activity_id”,
and “class_id” attributes.

Occurrence attributes are linked to time-related aspects and can be required, recom-
mended, and optional based on their relevance to a particular event class. Instances
are “duration” and “time”.

Primary attributes signify the core semantics of an event across all use cases. They
are typically marked as Required or Recommended, depending on their importance
within each event class. Primary attributes in the Base Event class are applicable to
all event classes. Examples are “observables” and “status” attributes.

Context attributes, on the other hand, contribute to variations in typical use cases,
adding depth or nuance to the event’s meaning. These attributes may have different

6

Chapter 2. OCSF

requirement levels but are commonly marked as Optional. “metadata” and “enrich-
ments” are attributes that context is their group.

2.4.2 Requirement

In event classes, attributes play a crucial role, with each assigned a requirement flag
based on the semantics of the event class. These flags are available in three distinct
types, each of which outlines a specific need in the context of the event.

Firstly, we have “Required” attributes. These are considered indispensable, consti-
tuting essential elements that must be present within the Class Event to ensure a
comprehensive understanding of a particular occurrence. In instances where these
attributes cannot be filled in, a default value, typically denoted as “Unknown”, is
employed to maintain a baseline of information.

Next, there are “Recommended” attributes. These attributes bring certainly advan-
tage for a more comprehensive understanding of a given event but are not obligatory
additions. Their inclusion is suggested due to their potential usefulness, providing
additional layers of information that can enhance the overall context. However, it
is important to note that there might be instances where these attributes cannot be
filled in.

Finally, we encounter “Optional” attributes. These attributes, while not imperative
for basic event comprehension, serve to enrich the contextual understanding or fa-
cilitate the mapping of data with a higher information density. Their inclusion is
discretionary, allowing for a more nuanced description of the event.

2.4.3 Base Event Class

The Base Event Class embodies a dual nature that perfectly integrates generality and
concreteness. This fundamental construct not only represents a generic archetype of
an event but also concretely outlines a standardized set of attributes that form a
universal language shared between different classes of events. The base event serves
as a reference point for creating new classes of events, providing a model on which
specific classes can be built. One of the distinctive features of the base event lies
in its agnostic nature to the predefined event categories. This inherent adaptability
becomes particularly valuable when facing the challenge of classifying events that lack
predefined categorizations or fall outside the boundaries of the established scheme.
Let is now analyze the main attributes of the Base Event, according to the division
in Group.

7

Chapter 2. OCSF

2.4.3.1 Classification Attributes of Base Event

The classification attributes within the framework’s taxonomy play a pivotal role,
contributing significantly to the overall structure and organization. These attributes
serve as key elements that help categorize and define different aspects within the
framework. In the Base Event, the classification attributes follow a pattern where each
attribute with the suffix “_id” or “_uid” is accompanied by a corresponding attribute
with the suffix “_name”. An exception is made for the “severity_id” attribute, which
is associated with the “severity” attribute instead of “severity_name”. The attribute
with the “_id” suffix is required, while its associated attribute with the “_name”
suffix is optional. However, if the value of the attribute with the “_id” suffix is 99,
denoting “Other”, the associated attribute must be provided.

2.4.3.2 Occurrence Attributes of Base Event

In the OCSF, the occurrence attributes play a crucial role in capturing the temporal
and frequency aspects of events. The framework places significant emphasis on repre-
senting time, utilizing attributes with the type “timestamp_t”, which expresses time
in milliseconds. An important addition to OCSF is the Date/Time profile, which
introduces a new attribute type, “datetime_t”, for each attribute previously defined
with “timestamp_t”. This allows for a more detailed description of time, adopting the
RFC3339 format, such as “1999-09-07T23:20:50.52Z”. In the Base Event, not all time
attributes are represented as a single attribute, but some are within the “metadata”
object attribute.

2.4.3.3 Primary attributes of Base Event

The primary attributes serve as clear indications of the event’s meaning or context
across all possible use cases. The primary attributes of a Base Event include:

• “message”: Description of the event provided by the source.
• “observables”: Collection of extracted information associated with the event,

streamlining data display.
• “status”: Represents the current state of the event, normalized to a correspond-

ing label.
• “status_code”: Reflects the current status of the event, directly sourced from

the event provider.
• “status_detail”: Supplementary information about the outcome of the event.
• “status_id”: Standardized identifier categorizing the event into distinct states,

8

Chapter 2. OCSF

such as Unknown, Success, Failure, or Other.

2.4.3.4 Context Attributes of Base Event

Context attributes improve the significance and enrich the content of an event by
introducing variations. Within the event base class, four specific context attributes
are integrated to bring nuance and depth to the information conveyed. These context
attributes serve to provide additional layers of meaning, ensuring that the event is
not only comprehensible at a basic level but also capable of conveying more details
and contextual nuances. They are:

• “enrichments”: Enrichments attribute adds external data to events via Enrich-
ment objects with required (data, name, value) and recommended (provider,
type) attributes. Data attribute allows flexible JSON insertion. Name and
value attributes are crucial for linking to specific attributes within the enriched
event class. Incorporating “modified_time” into “metadata” during enrichment
is recommended for accurate temporal context. For example add location in-
formation for the IP address in the DNS answers [2].

• “metadata”: This object contains attributes that are filled with information
external to the source event, essential attributes such as “product” and “ver-
sion” are required. The “product” identifies the reporting software, while the
“version” follows Semantic Versioning (SemVer) and indicates the version of
the OCSF schema used. Other attributes help identify events, such as “cor-
relation_uid” and “event_code”. Attributes with the prefix “log” add details
about the event registration system. Time attributes detail the timestamps of
events, while “profiles” and “extensions” indicate which profiles and extensions
are used.

Listing 2.1: Example of enrichments attribute.

1 [{

2 name: answers.ip,

3 value: 92.24.47.250,

4 type: location,

5 data: {city: Socotra, continent: Asia, coordinates: [-25.415,

17.0743], country: YE, desc: Yemen}

6 }]

• “raw_data”: The “raw_data” refers to the unprocessed and unstructured in-
formation obtained directly from the event source.

9

Chapter 2. OCSF

• “unmapped”: It refers to attributes that have not been associated with a field
inside the OCSF event schema.

2.4.4 Constraints

A constraint is a documented validated rule that indicates how attributes should be
used. One type of constraint is the “at_least_one” constraint. This rule acknowl-
edges that, while not all attributes are mandatory in every use case, there should be
a minimum requirement to ensure clarity and avoid ambiguity. In simpler terms, it
suggests that at least one of the specified recommended attributes within the con-
straint must be filled. In the “actor” object, at least one attribute must be present
between “process”, “user”, “invoked_by”, and “session”.

Listing 2.2: Example of “at_least_one” constraints.

1 constraints: {

2 at_least_one: [

3 process,

4 user,

5 invoked_by,

6 session

7]

8 }

The second constraint, “just_one”, takes a slightly different approach. It recognizes
that, in certain scenarios, having more than one recommended attribute populated
might create confusion or redundancy. Therefore, it mandates that only one of the
specified attributes within the constraint should be filled.

Listing 2.3: Example of “just_one” constraints [3].

1 constraints: {

2 just_one: [

3 privileges,

4 group

5]

6 }

10

Chapter 2. OCSF

2.4.5 Associations

In the context of OCSF, the association construct is used within a class definition
to denote relationships between attributes. These relationships can be either bi-
directional or uni-directional. The purpose of these associations is to indicate that
certain attributes within an event class may be associated with each other, and in
some cases, only one of them is present in the event while the other can be added at
processing or storage time. For example, let is consider an event in the “Scheduled
Job Activity” Class with attributes: “actor” and “device”. The association construct
specifies that there is a relationship between the “actor.user” and “device”. In this
case, the relationship is bi-directional, meaning that if you have an attribute “ac-
tor.user”, you can also access the attribute “user” and vice versa.

Listing 2.4: Example of associations into “Scheduled Job Activity” Class [4].

1 Attribute Associations

2 actor.user: device

3 device: actor.user

There could be situations where the association may be uni-directional, indicating
that you can only access one attribute from the other.
This construct becomes particularly useful in automated processing systems where a
lookup service is available for an attribute that might not be populated directly by
the event source producer. In such cases, the association allows you to link attributes
in a way that enables the retrieval of additional information during processing or
storage. In these situations, it is important to fill the attribute “processor_time” of
the “metadata” object, at the moment the association is established.

2.5 Categories

In the OCSF framework, the incorporation of event classes into distinct categories is
a strategic practice that serves several purposes, contributing to the overall cohesion
and efficiency of the system.

Firstly, these categories act as logical containers, grouping event classes that share
common themes or belong to specific domains. This organization enhances documen-
tation clarity and simplifies the search process. Users can easily navigate through
related event classes, making it more convenient to understand and work with the
system.

11

Chapter 2. OCSF

Beyond documentation, categorization plays a crucial role in reporting. By associ-
ating event classes with specific categories, the system can generate more targeted
and meaningful reports. Storage partitioning is another key aspect influenced by
categories. Grouping related event classes logically can optimize storage structures,
promoting efficiency in data retrieval and management. This proves valuable for scal-
ability and performance, ensuring that the system operates smoothly even with large
volumes of data.

Additionally, categories contribute to access control strategies. By organizing event
classes based on their nature or sensitivity, the system can implement security mea-
sures at the category level. This means that users or processes can be granted specific
access rights, enhancing overall system security.

Each category is uniquely identified by a “category_uid” attribute, providing a dis-
tinct marker for reference. To enhance user-friendliness, these categories are associ-
ated with friendly name attributes: “category_name”. These names serve as intuitive
labels, facilitating effective communication and understanding among users.

2.5.1 From Categories to Profiles

Determining the optimal level of detail for categories is a crucial aspect of model-
ing. In handling events that might neatly fit into multiple distinct categories, the
challenge is to avoid diluting the specificity and context inherent to each category.
To address this, the OCSF introduces a practical solution: the concept of Profiles.
Profiles serve as a tool to navigate the complexity of overlapping categorical scenarios
without resorting to the creation of additional event classes that might only partially
contribute new information. Instead of forming generalized categories that risk losing
the nuanced context of specific events, OCSF employs Profiles to manage this overlap
effectively.

2.6 Profiles

Profiles serve as dynamic extensions to event classes and objects, acting as versatile
mix-ins of attributes along with their associated requirements and constraints. Un-
like event classes, which specialize in category domains, profiles provide a means to
enhance existing event classes by introducing a set of attributes that are independent
of category considerations.

A profile improves the functionality of event classes, acting as a modular add-on,
contributing to creating attributes that are tailored to specific contexts without the

12

Chapter 2. OCSF

need to create entirely new classes for each variation. This is achieved through the
optional “profiles” attribute within the Base Event class, where multiple profiles can
be seamlessly added in the form of an array of profile values.

The mix-in methodology inherent in profiles promotes the reusability of event classes,
eliminating the need to replicate classes that share the same attributes. By incor-
porating profiles, event classes, and instances can be selectively filtered using the
profiles attribute, transcending the boundaries of categories and event classes. This
introduces an additional layer of classification, allowing for a more nuanced and flex-
ible approach to organizing and managing events.

If the “profiles” attribute is absent, it signifies that no profile attributes are added,
as expected. Attributes defined within a profile come with mandatory requirements
that cannot be overridden, considering profiles are optional. The assumption is that
the application of a profile implies a desire for those specific attributes, and they
can be populated accordingly. However, certain classes, like System Activity classes,
inherently incorporate the attributes of a profile. For instance, the “Host” profile
attributes such as “device” and “actor” are explicitly defined within the class. Even
when a class definition includes these profile attributes, the class still registers for
that profile. This registration is done in the class definition to ensure compatibility
with any searches across events associated with that profile. It is important to note
that in such cases, the attribute requirements defined within the class take precedence
over those specified by the profile.

2.7 Extensions

OCSF provides a flexible structure for defining new attributes, objects, categories,
profiles, and event classes. The framework allows the extension of schemas, enabling
vendors or customers to tailor the schema to their specific needs.

Extensions serve multiple purposes, such as accommodating vendor-specific require-
ments, enhancing an existing schema, factoring out non-essential schema domains
keeping a schema small. When extending the core schema, the process involves creat-
ing categories, profiles, or event classes as needed, drawing from the schema dictionary.
Additionally, extensions can introduce new attributes and objects to the dictionary.

Maintaining consistency and avoiding conflicts is crucial, and this is achieved through
unique identifiers and versioning. Each extension, like categories, event classes, and
profiles, is assigned a unique ID within the OCSF framework. Versioning is essential

13

Chapter 2. OCSF

to keep track of schema changes over time, and extended events should update the
“metadata.version” attribute to reflect the extended schema version. To ensure the
uniqueness and visibility of extensions, developers must register their extensions in
the OCSF Extensions Registry. This involves assigning a unique identifier and name
to the extension. This registry plays a vital role in preventing collisions with the
core schema or other extensions, making the extended schema widely accessible and
identifiable. By adhering to these practices, developers can effectively manage and
integrate customizations within the OCSF framework. For instance, the introduction
of a new extension would be represented by a new entry in the table.

Figure 2.1: OCSF Extensions Registry [5].

Expanding the schema involves the creation of a fresh subdirectory within the ex-
tensions directory. In this newly established subdirectory, introduce a new “exten-
sion.json” file that serves to articulate key details like the extension’s name and
unique identifier (UID). It’s worth noting that the architecture of the extension’s
directory aligns with that of the primary schema directory. Within this framework,
the extension directory can incorporate specific files such as “categories.json” and
“dictionary.json”. Additionally, the extension directory has the flexibility to include
subdirectories for the desired type of extension. These subdirectories may be events,
including, objects, and profiles, depending on the extension you want to make. This
design allows for a customizable and adaptable organizational approach, ensuring that
the extension directory aligns seamlessly with the intended functionality and features
of the extension.

14

Chapter 2. OCSF

Extensions to the core schema serve another purpose by facilitating the creation of new
schema artifacts. These newly developed elements may be evaluated and, if deemed
appropriate, be integrated into the core schema or designated as part of a platform
extension. In the OCSF schema, experimental categories and event classes featuring
additional attributes and objects are denoted with a “dev” extension superscript,
illustrating their status as developmental elements.

15

Chapter 3

Tecnologies

3.1 Terraform

Terraform is an open-source infrastructure as a code software tool created by HashiCorp
[6]. It allows users to define and provision infrastructure resources such as virtual ma-
chines, networks, storage, and more, using a declarative configuration language. This
means you define the desired state of your infrastructure in code, and Terraform
handles the provisioning and management of those resources.

Terraform stands out as a crucial tool in modern infrastructure management for sev-
eral compelling reasons. Firstly, its adoption of Infrastructure as Code (IaC) empow-
ers teams to treat infrastructure configurations as software, enabling version control,
collaboration, and automation. This shift not only enhances efficiency but also re-
duces errors and facilitates better team coordination.
Moreover, Terraform’s declarative approach to configuration simplifies infrastructure
management by allowing users to define the desired state of their systems without get-
ting bogged down in procedural details. This abstraction enables Terraform to handle
the intricacies of provisioning and managing resources, thereby improving clarity and
maintainability.
Another key advantage of Terraform is its support for multiple cloud providers, en-
suring compatibility across various platforms such as AWS, Azure, and Google Cloud.
This capability enables organizations to avoid vendor lock-in and leverage the best
features of each cloud provider while managing their infrastructure through a unified
interface.
Additionally, Terraform promotes scalability and consistency by enabling easy ad-
justments to configuration files to accommodate changing needs. This flexibility
facilitates the smooth scaling of infrastructure while also mitigating the risk of con-
figuration discrepancies across different environments.
Terraform streamlines the complexities of infrastructure management in cloud-based
environments, offering a potent solution for modern development and operational
workflows.

Using Terraform with AWS provides a streamlined approach to managing your cloud
infrastructure as code. Now, it describes the process step by step.
Firstly, you will need to install Terraform on your local machine or CI/CD server.

16

Chapter 3. Tecnologies

With Terraform installed, the user will write your infrastructure code using the HCL
within .tf files. Here, the user will define the AWS resources you want to provision,
along with their configurations. For instance, he can specify EC2 instances, VPCs,
subnets, security groups, IAM roles, S3 buckets, and more. The user has to navigate
to Terraform project directory and execute “terraform init”. This command initializes
your working directory and automatically downloads any required provider plugins.
For AWS, Terraform fetches the AWS provider plugin, which enables interaction with
the AWS API. Then, it can generate an execution plan by running the “terraform
plan”. Terraform analyzes your configuration files and compares the current state of
your infrastructure with the desired state defined therein. It then outlines the actions
needed to achieve the desired state. The user can review the plan output carefully to
ensure it aligns with his expectations. When the user is satisfied with the plan, he
can execute “terraform apply”. Terraform handles the creation, updating, or deletion
of resources as necessary to bring the user’s infrastructure in line with the desired
state. Before any changes are made, Terraform prompts you to confirm the execution
plan. Should the need arise to decommission your infrastructure or clean up resources,
utilize “terraform destroy”. This command permanently deletes all resources managed
by Terraform in your AWS account, based on your configuration files.

3.2 Kubernetes

Kubernetes is an open-source platform designed to automate deploying, scaling, and
operating application containers [7]. Originally developed by Google, it is now main-
tained by the Cloud Native Computing Foundation (CNCF). Kubernetes helps man-
age containerized applications across a cluster of machines, providing mechanisms for
deployment, maintenance, and scaling, all while ensuring high availability and re-
source efficiency. It abstracts away the underlying infrastructure, allowing developers
to focus on application development rather than worrying about the specifics of the
infrastructure.

3.2.1 Kubernetes architecture

A Kubernetes cluster is made up of a group of worker machines, also known as nodes,
that execute containerized applications. Each cluster must always have at least one
working node. The worker nodes are responsible for hosting the Pods, which are
the building blocks of the application workload. The control plane manages both
the worker nodes and the Pods within the cluster. In production environments,
the control plane is typically distributed across multiple computers, and a cluster
generally runs on several nodes to ensure fault tolerance and high availability [8].

17

Chapter 3. Tecnologies

Figure 3.1: Kubernetes cluster’s architecture [8].

3.2.1.1 Kubernetes Control Plane

The Kubernetes control plane, often referred to as the master in Kubernetes archi-
tecture, is responsible for managing the Kubernetes cluster. It consists of several
components that work together to maintain the desired state of the cluster and to
manage the deployment, scaling, and operation of applications. Here is a detailed
breakdown of the components that make up the Kubernetes control plane:

• API Server: The API server is the central management entity of the Kuber-
netes control plane. It provides access to the Kubernetes API, enabling users,
administrators, and other system components to communicate with the cluster.
All operations and communication within the cluster are mediated by the API
server. It serves RESTful API endpoints that clients use to interact with the
cluster.

• Scheduler: The scheduler is responsible for assigning newly created pods to
nodes within the cluster. It takes into account various considerations such as
resource needs, quality expectations, limitations posed by hardware, software,
or policies, preferences for proximity or separation of workloads, data placement,
potential impact of workload interactions, and time constraints.

• Controller Manager: The controller manager is a collection of controllers that
regulate the state of the cluster. Each controller works to ensure that the cluster
reaches and maintains the desired state. Examples of controllers include the

18

Chapter 3. Tecnologies

Replication Controller, ReplicaSet Controller, Endpoint Controller, Namespace
Controller, and Service Account Controller.

• etcd: etcd is a distributed key-value store used as Kubernetes’ backing store
for all cluster data [8]. It stores configuration data that represents the state
of the cluster at any given time, including cluster configuration, node and pod
metadata, service information, and more. Consistency and high availability are
ensured through distributed consensus algorithms.

• Cloud Controller Manager: The Cloud Controller Manager is responsible for
integrating the cluster with the underlying cloud provider’s API. It manages
the interaction between the cluster and the cloud provider’s services, such as
load balancers, storage, and networking. This component is only present in
Kubernetes clusters deployed on cloud infrastructure and is optional.

3.2.1.2 Kubernetes Node

The Kubernetes worker node is responsible for running the workload, which typically
includes containers managed by Kubernetes. Here is a detailed breakdown of the
components that make up the Kubernetes worker node:

• Kubelet: Kubelet is the primary node agent that runs on each worker node. It is
responsible for managing the containers running on the node and ensuring that
they maintain the desired state specified in the Kubernetes manifests. Kubelet
communicates with the Kubernetes API server to receive instructions about
pod deployment, updates, and deletions. It manages the pod lifecycle, execut-
ing actions such as pulling container images, starting, stopping, and restarting
containers as necessary.

• Kube Proxy: The Kube Proxy is a network proxy that operates on every node
within the cluster. It maintains network rules on the node, allowing network
communication to and from pods running on that node. Kube Proxy imple-
ments Kubernetes services abstraction by managing network traffic routing to
the appropriate pods based on service selectors.

• Container Runtime: The container runtime is responsible for running contain-
ers on the node. Kubernetes supports multiple container runtimes, including
Docker, containerd, and CRI-O. The container runtime is responsible for pulling
container images from a container registry, creating containers based on those
images, managing the container lifecycle, and providing isolation between con-
tainers.

• Addons: Worker nodes may also run optional add-ons to provide additional

19

Chapter 3. Tecnologies

functionality, such as DNS, Dashboard, Container Resource Monitoring, cluster-
level logging, and Network plugins.

3.2.2 Kubernetes Objects

In Kubernetes, various objects are used to define the desired state of the system, al-
lowing Kubernetes to manage and maintain the application environment accordingly.
Here are some of the key objects in Kubernetes:

• Namespace: namespace is a way to logically divide cluster resources into sepa-
rate virtual clusters. It is like creating multiple virtual clusters within a single
physical cluster. Namespaces provide a scope for names so that resources of
the same type can have the same name within different namespaces. This helps
in organizing and managing Kubernetes objects and resources more effectively,
especially in multi-tenant environments or when dealing with multiple projects
or teams. Here are some common namespaces in Kubernetes:

– default: This is the default namespace for objects which do not have a
namespace explicitly specified. It is recommended not to deploy your ap-
plications into this namespace for better isolation.

– kube-system: This namespace is reserved for Kubernetes system objects
and resources created by Kubernetes itself. Components like kube-dns,
kube-proxy, and others reside in this namespace.

– kube-public: Resources in this namespace are visible and accessible to all
users (including those not authenticated) and can be useful for sharing
resources publicly.

– kube-node-lease: This namespace holds node lease objects that are used
for node heartbeats, determining node availability, and maintaining the
high availability of the cluster.

• Pod: Pods are the smallest deployable units in Kubernetes and can consist of
one or more containers. They share a common network namespace, allowing
containers within the same Pod to communicate with each other via localhost.
Pods can be created directly, but it is more common to define them using
higher-level controllers like Deployments or StatefulSets. They are ephemeral
by default, meaning they can be created, destroyed, and replaced dynamically
based on the cluster’s needs.

• Volumes: Volumes are directories that hold data accessible to containers within
pods. They serve to persist data beyond pod lifecycles, enable data sharing

20

Chapter 3. Tecnologies

between containers, and facilitate communication with the underlying infras-
tructure.

• StatefulSet: StatefulSets are used to manage stateful applications with unique
identities. They provide guarantees about the ordering and uniqueness of Pods,
persistent storage, and stable network identities. StatefulSets are suitable for
applications like databases, queues, and key-value stores that require stable,
persistent storage and ordered deployment.

• ReplicaSet: ReplicaSets ensure that a specified number of identical Pods are
running at all times. They are used by Deployments to maintain the desired
number of Pods and handle scaling operations. If a Pod fails or is deleted, the
ReplicaSet creates a new Pod to maintain the desired number of replicas.

• Deployment: Deployments manage the lifecycle of Pods by controlling Repli-
caSets. They enable declarative updates to Pods and ReplicaSets, facilitating
rolling updates and rollbacks. Deployments ensure that a specified number of
Pods are running and handle scaling, self-healing, and updates to the desired
state. The following example creates a ReplicaSet with three nginx Pods.

1 apiVersion: apps/v1
2 kind: Deployment
3 metadata:
4 name: nginx-deployment
5 labels:
6 app: nginx
7 spec:
8 replicas: 3
9 selector:

10 matchLabels:
11 app: nginx
12 template:
13 metadata:
14 labels:
15 app: nginx
16 spec:
17 containers:
18 - name: nginx
19 image: nginx:1.14.2
20 ports:
21 - containerPort: 80

Listing 3.1: Example of a Deployment [9]

21

Chapter 3. Tecnologies

• Service: There are several ways to expose services to the outside world or to
other services within the cluster. The three common ways are:

– ClusterIP: This is the default service type in Kubernetes. It essentially
makes the service accessible only within the cluster via a cluster-internal
IP address. This type of service is commonly utilized for facilitating com-
munication between various components of an application that are running
within the same Kubernetes cluster.

– NodePort: This service type exposes the service on each node’s IP at a
static port. It allows for accessing the service from outside of the cluster.
When you create a NodePort service, Kubernetes allocates a port from a
range on each node and forwards traffic from that port to the service.

– LoadBalancer: This service type exposes the service externally using a
cloud provider’s load balancer. It is typically used when you want to expose
your service to the internet or to an external network. The cloud provider
provisions a load balancer that forwards traffic to the service. This type
is only available when running Kubernetes in certain environments that
support external load balancers.

1 apiVersion: v1
2 kind: Service
3 metadata:
4 name: my-service
5 spec:
6 selector:
7 app.kubernetes.io/name: MyApp
8 ports:
9 - protocol: TCP

10 port: 80
11 targetPort: 9376

Listing 3.2: Example of a Service [10]

• Ingress: Ingress serves as a configuration API within Kubernetes, handling
external access to services hosted within a cluster. It acts as a traffic controller,
directing incoming HTTP and HTTPS traffic to the appropriate services based
on defined rules. Ingress works with an Ingress controller, which configures load
balancing or proxying to enable external access to services. It simplifies routing
by allowing users to define rules for routing traffic based on hostnames, paths,
and services. Additionally, Ingress controllers can handle TLS termination for

22

Chapter 3. Tecnologies

secure communication.
• HPA: The Horizontal Pod Autoscaler is a feature that automatically adjusts

the number of replica pods in a deployment, replica set, or stateful set based
on observed CPU utilization. It continuously monitors the CPU usage of pods,
compares it to a target value, and scales the number of replicas up or down
accordingly to ensure optimal resource utilization and application performance.
The HPA provides a dynamic feedback loop that adapts to changing workloads,
helping Kubernetes clusters efficiently handle varying levels of demand without
manual intervention.

3.3 Docker

Docker is a platform for developing, shipping, and running applications using con-
tainerization technology. Containers are lightweight, portable, and self-sufficient envi-
ronments that package an application and all its dependencies. Docker provides tools
and a platform to manage these containers efficiently. It is widely used in software
development and deployment pipelines because it allows developers to package their
applications with everything they need to run consistently across different environ-
ments, from development to production. With Docker, you can create, deploy, and
manage containers easily using Docker Engine, which is a runtime and set of tools for
managing containers. Docker Compose is another tool that simplifies the process of
defining and running multi-container Docker applications.

3.3.1 DockerFile

A Dockerfile is a text file that contains a set of instructions used by the Docker engine
to automatically create a Docker image. These instructions define the steps needed
to assemble an image that includes everything needed to run a particular application
or service inside a Docker container. Here is a breakdown of what you might typically
find in a Dockerfile:

• Base Image: The Dockerfile usually starts with a “FROM” instruction that
specifies the base image to use. This base image provides the starting point for
your image and contains the operating system and basic runtime environment
for your application.

• Working Directory: The “WORKDIR” instruction sets the working directory
inside the container where subsequent commands will be executed.

• Copy Files: The “COPY” or “ADD” instructions copy files and directories from
your local machine into the Docker image. This is how you add your application

23

Chapter 3. Tecnologies

code, configuration files, and other necessary assets into the container.
• Install Dependencies: Using the “RUN” instruction, you can execute commands

inside the container to install any necessary dependencies or perform setup
tasks. This might include installing packages using package managers, down-
loading files, or running build scripts.

• Expose Ports: The “EXPOSE” instruction documents which port the container
listens on during runtime. It does not actually publish the ports; it is just
metadata to indicate which ports are intended to be exposed.

• Define Environment Variables: The “ENV” instruction sets environment vari-
ables inside the container. This can be useful for configuring the behavior of
your application or specifying runtime settings.

• Define Runtime Commands: The “CMD” or “ENTRYPOINT” instruction spec-
ifies the command that should be executed when the container starts. This is
typically the main command to run your application or service.

• Additional Instructions: Depending on your specific requirements, you might
include additional instructions in your Dockerfile for tasks like setting up user
permissions, cleaning up unnecessary files, or configuring startup behavior.

Here is a simple example of a generic Dockerfile for a Node.js application.

1 # Use a Node.js runtime as the base image
2 FROM node:14
3 # Set the working directory in the container
4 WORKDIR /usr/src/app
5 # Copy init.json to the working directory
6 COPY init.json ./
7 # Install dependencies
8 RUN npm install
9 # Copy the rest of the application code to the working directory

10 COPY . .
11 # Expose the port the app runs on
12 EXPOSE 1999
13 # Define the command to run the application
14 CMD [node, app.js]

Listing 3.3: Example of Dockerfile.

By writing a Dockerfile, you can define your application’s environment and dependen-

24

Chapter 3. Tecnologies

cies in a portable and reproducible way, allowing you to easily package and distribute
your application as a Docker image that can run consistently across different envi-
ronments.

3.4 Fluentd

Fluentd is an open-source data collection software that is designed to unify data col-
lection and consumption. It acts as a robust and flexible data collector, allowing you
to efficiently collect, process, and distribute logs, events, and other data across various
sources and destinations in real time. Fluentd follows a plugin-based architecture,
which means it can be extended with a wide range of plugins to support different
input sources, output destinations, and data processing functions. The “fluent.conf”
file is the configuration file used by Fluentd to define its behavior and settings. It is
typically written in a simple declarative language that specifies input sources, output
destinations, and any data processing steps that need to be applied. In the “flu-
ent.conf” file, you can configure various aspects of Fluentd, such as input plugins
(such as tailing log files, listening to TCP/UDP streams), output plugins (such as
writing to files, sending to databases), and filters (such as manipulating data, filter-
ing events). This file essentially serves as the roadmap for Fluentd, guiding how it
collects, processes, and forwards data within your system. Here is an example of the
“fluent.conf” file.

1 <source>
2 @type forward
3 port 24224
4 </source>
5

6 <match **>
7 @type stdout
8 </match>

Listing 3.4: Example of “fluent.conf”

25

Chapter 4

Amazon Web Services (AWS)

Amazon Web Services, a subsidiary of Amazon, provides flexible cloud computing
solutions and APIs to individuals, businesses, and government organizations. Users
only pay for what they use based on their usage. AWS offers a wide range of services
including computing power, storage, databases, machine learning, analytics, network-
ing, mobile development, developer tools, IoT, security, and enterprise applications.
It is one of the leading cloud service providers globally, known for its reliability, scal-
ability, and extensive feature set. With its cloud infrastructure, you have the freedom
to deploy your applications across various locations using Regions and Availability
Zones ensuring optimal accessibility and performance.

4.1 Region

AWS divides its global infrastructure into regions, which are geographic areas with
multiple availability zones. Each region is designed to be isolated from other regions
to provide fault tolerance and minimize the impact of regional disasters.

Scalability is one of the key benefits of AWS regions. Customers can deploy their
applications and resources in multiple regions to achieve geographic redundancy and
scale their infrastructure globally. This allows businesses to expand their operations
into new markets and serve customers in different parts of the world with low latency
and high performance.

It is important to note that AWS services are not uniformly available in all regions.
Some services may be launched initially in specific regions before being rolled out
globally. Therefore, the choice of region can have implications for service availability,
data residency, and compliance requirements.

4.2 Availability Zone

Within each AWS region, there are multiple availability zones (AZs), distinct loca-
tions with their own infrastructure and facilities. These AZs are interconnected with
high-speed, low-latency links, enabling synchronous replication and real-time data
processing between zones. The primary purpose of availability zones is to provide

26

Chapter 4. Amazon Web Services (AWS)

high availability and fault tolerance for applications and services deployed in the
cloud. By distributing resources across multiple AZs within the same region, cus-
tomers can ensure that their applications remain operational even in the event of
failures or disruptions in one zone. Each AZ is designed to be isolated from failures
in other zones, with redundant power, cooling, and networking infrastructure to min-
imize the risk of correlated failures. This fault isolation ensures that a problem in
one AZ does not cascade to affect the entire region, enhancing the overall resilience
of the AWS cloud.

4.3 Amazon Virtual Private Cloud (VPC)

Amazon Virtual Private Cloud (VPC) provides you with the capability to establish a
private segment within the AWS Cloud. Within this segment, you can deploy AWS
resources in a customized virtual network environment tailored to your specifications.
This provides you with control over your virtual networking environment, including
selection of your IP address range, creation of subnets, and configuration of route
tables and network gateways [11].

Figure 4.1: Example of VPC [12]

Below are some key components and features of AWS VPC:

• Subnets are the foundational building blocks of a VPC. They represent a seg-
mented portion of the IP address range that you define for your VPC. Each
subnet is associated with an Availability Zone within a specific region. Subnets

27

Chapter 4. Amazon Web Services (AWS)

can be categorized into public and private.
Public subnets have a route to the internet gateway and typically host resources
that need direct access to the internet, such as web servers or load balancers.
Private subnets do not have a route to the IGW and are isolated from the inter-
net. They are commonly used to deploy backend databases, application servers,
or other resources that should not be directly accessible from the internet.

• An Internet Gateway (IGW) enables the communication between instances in
your VPC and the Internet. It serves as a gateway for internet-bound traffic,
allowing resources in public subnets to send outbound traffic to the internet and
receive inbound traffic from the internet when necessary.

• Route tables are used to determine the path that network traffic takes within
your VPC. Each subnet in your VPC must be associated with a route table,
which contains rules, that specify where traffic should be directed. Key routes
include:

– Local Route: Automatically added by default, allows communication within
the same VPC.

– Internet Route: Points to the IGW for public subnets to access the internet.
– NAT Gateway Route: For private subnets to access the internet via a

Network Address Translation (NAT) gateway.
• Network Access Control Lists (NACLs) act as stateless firewalls at the subnet

level, controlling inbound and outbound traffic. They allow you to define rules
to permit or deny traffic based on IP addresses, protocols, and ports.

• Security groups act as virtual firewalls that manage inbound and outbound
traffic on an instance level. They are stateful and allow you to create rules
based on security groups, IP addresses, protocols, and ports. Security groups
are more granular than NACLs and provide additional security by restricting
access to resources based on their roles and requirements.

• An interface endpoint in AWS is a construct that allows resources within a VPC
to privately access AWS services without requiring an internet gateway or NAT
instances. It essentially creates a direct network connection between resources
within your VPC and the AWS service, bypassing the need to traverse the pub-
lic Internet.
When you create an interface endpoint, AWS provisions a network interface in
your VPC. This network interface resides in one or more of your VPC’s subnets.
The interface endpoint is assigned one or more private IP addresses from the
IP address range of the subnet(s) where it is deployed. Each interface endpoint

28

Chapter 4. Amazon Web Services (AWS)

is specific to a particular AWS service (such as S3, DynamoDB, etc.). AWS
provides different endpoint services for different AWS services. Any traffic des-
tined for the AWS service associated with the endpoint is routed to the interface
endpoint’s private IP address within the VPC. This traffic remains within the
AWS network and does not traverse the public internet. You can attach secu-
rity groups to the interface endpoint, allowing you to control the inbound and
outbound traffic to and from the endpoint. AWS automatically provides DNS
resolution for the endpoint’s private IP address. When your VPC resources
make requests to the AWS service, AWS’s DNS resolves the endpoint’s DNS
hostname to the private IP address of the endpoint.
In the first scenario, there is a VPC endpoint for Amazon CloudWatch with a
single network interface located in one Availability Zone. When any resource
within the VPC accesses CloudWatch through its public endpoint, the traffic
is directed to the IP address of this single network interface. However, if the
Availability Zone where this interface resides experiences issues, resources in
other Availability Zones lose access to CloudWatch.
In the second scenario, the VPC endpoint for CloudWatch has network in-
terfaces in two Availability Zones. When a resource in any subnet accesses
CloudWatch via its public endpoint, a healthy interface is selected using round-
robin selection. This ensures that traffic is evenly distributed between the two
interfaces, providing redundancy and maintaining access to CloudWatch even
if one Availability Zone encounters problems.

Figure 4.2: Examples of VPC Endpoint [13]

29

Chapter 4. Amazon Web Services (AWS)

4.4 AWS CodeCommit

CodeCommit is a fully managed Git repository hosting service by AWS that offers
secure and scalable storage for source code and development assets. It provides en-
cryption for data both at rest and in transit, ensuring the confidentiality and integrity
of your code. With fine-grained access control policies managed through IAM, you can
regulate user access and permissions. CodeCommit supports branching and merging,
allowing teams to work concurrently on different features. Collaboration features like
pull requests facilitate code review and discussion. Integration with AWS services
like CodeBuild and CodePipeline enables automated development workflows, includ-
ing CI/CD pipelines. Audit capabilities and compliance features ensure tracking,
monitoring, and adherence to security requirements. Cross-region replication ensures
high availability and durability, making CodeCommit suitable for enterprise-scale ap-
plications. The figure below illustrates how to create and manage repositories using
your development machine, the AWS CLI or CodeCommit console, and the Code-
Commit service [13].

Figure 4.3: Illustration of how to create and manage repositories [14]

First, create a CodeCommit repository using either the AWS CLI or the CodeCom-

30

Chapter 4. Amazon Web Services (AWS)

mit console. Then, on your local development machine, clone the repository using
Git. This sets up a connection between your local environment and the CodeCommit
repository.
Now, you can make changes to the files in your local repository: adding, editing,
or deleting them. After making changes, stage them using “git add”, commit them
locally with “git commit”, and push them to the CodeCommit repository using “git
push”.
To ensure you are working with the most up-to-date files, you can download changes
made by other users. Simply use “git pull” to synchronize your local repository with
the CodeCommit repository.

4.5 AWS CodePipeline

AWS CodePipeline is a service that handles the entire process of continuous integra-
tion and continuous delivery (CI/CD). It automates the build, test, and deployment
phases of your release process for software applications, enabling you to deliver up-
dates more reliably and rapidly.

The pipeline can be created through the AWS Management Console or the AWS
CLI. A pipeline consists of a series of stages, each representing a phase of your release
process, such as source, build, test, and deploy. Here are the main stages of a pipeline:

1. Source Stage: The first stage of the pipeline is typically the source stage, where
CodePipeline retrieves the source code from a version control system like AWS
CodeCommit, GitHub, or Amazon S3.

2. Build Stage: After the source code is retrieved, the next stage is the build
stage. Here, AWS CodePipeline invokes AWS CodeBuild or other build tools
to compile the source code, run tests, and produce deployable artifacts such as
executable binaries, Docker images, or static website files.

3. Test Stage: Once the build stage is complete, the pipeline can include a test
stage where automated tests are executed against the artifacts generated in the
build stage. These tests can include unit tests, integration tests, regression tests,
and other forms of automated validation to ensure the quality of the software.

4. Deploy Stage: After the code has been built and tested successfully, the pipeline
proceeds to the deploy stage. In this stage, AWS CodePipeline deploys the
artifacts to the target environment, which could be AWS Elastic Beanstalk,
Amazon ECS, AWS Lambda, EC2, or any other computing service supported
by AWS.

31

Chapter 4. Amazon Web Services (AWS)

Throughout the entire process, AWS CodePipeline monitors the execution of each
stage and provides real-time visibility into the progress of the pipeline through the
AWS Management Console or CloudWatch logs. If any stage fails, the pipeline stops
execution, and you receive notifications to investigate and resolve the issue. This
diagram illustrates an example release process using CodePipeline [15].

Figure 4.4: Illustration of how to create and manage repositories [15]

Developers make changes to the code and save them in a source repository. Code-
Pipeline detects the changes and proceeds to build the code, runs tests (if they were
set up), and deploys it to staging servers. Additional tests like integration or load
tests are then performed on the staging servers. Once the code passes these tests, it
requires manual approval before it can be deployed to production servers.

4.6 AWS CodeBuild

AWS CodeBuild is a fully managed continuous integration and continuous deployment
(CI/CD) service provided by AWS. It is designed to help you automate your software
development processes, from building and testing code to deploying it to various
environments. CodeBuild can be run either from the AWS CodeBuild console or
through AWS CodePipeline. Visualized in the diagram below, you can integrate
CodeBuild into your pipeline within AWS CodePipeline, seamlessly incorporating it
into either the build or test stage.

32

Chapter 4. Amazon Web Services (AWS)

Figure 4.5: CodeBuild integrates with CodePipeline [16].

The key codebuild components are:

• Source: This is where your application’s source code resides. CodeBuild sup-
ports various source code management systems such as AWS CodeCommit,
GitHub, Bitbucket, and Amazon S3. When you set up a build project in Code-
Build, you specify the location of your source code repository. The source code
is a buildspec.yml file which is a configuration file used to define the build
process for your application. Key Components:

1. Version: Specifies the version of the build specification syntax being used.
2. Phases: Defines the different build phases and the commands to be exe-

cuted within each phase. Phases typically include install, pre_build, build,
post_build, and post_deploy, but you can customize them according to
your project’s needs.

3. Artifacts: Specifies the files and directories to be packaged as build ar-
tifacts and the location where they should be stored. You can specify
individual files or directories to include, set a base directory, and choose

33

Chapter 4. Amazon Web Services (AWS)

whether to discard paths. Artifacts are typically uploaded to an Amazon
S3 bucket or another destination for further deployment.

• Environment: CodeBuild provides customizable build environments where your
code is built, tested, and packaged. You can choose from a variety of pre-
configured build environments that come with different combinations of oper-
ating systems, programming language runtimes, and build tools. You can also
create custom Docker container environments to meet your specific require-
ments. Each build environment consists of:

– Compute resources: These are the virtual machines or containers where
your build runs. You can choose the size and type of compute resources
based on the complexity and resource requirements of your build.

– Build tools and runtime: CodeBuild environments come with pre-installed
build tools and runtime environments for popular programming languages
such as Java, Python, Node.js, etc. You can also install additional depen-
dencies and tools as needed.

– Environment variables: You can define environment variables that are
available to your build process. These variables can be used to config-
ure your build, pass secrets securely, or provide other runtime information
to your build scripts.

• Artifacts: After the build process is complete, CodeBuild produces artifacts,
which are the output files generated by the build. Artifacts can include compiled
code, executable files, documentation, test results, or any other files generated
during the build process. CodeBuild can store artifacts in various locations such
as Amazon S3, AWS CodeArtifact, or any other compatible storage service. You
can specify the location and configuration of artifact storage when you define
your build project.

CodeBuild is an AWS service for automating builds. You start by setting up a build
project, and defining your source code repository and build environment. When
triggered, CodeBuild retrieves the source code, runs build commands specified in
your configuration, and monitors the process. After completion, it produces artifacts
and uploads them to a specified location. Notifications or downstream actions can be
set based on the build outcome.

34

Chapter 4. Amazon Web Services (AWS)

4.7 AWS Elastic Container Registry (ECR)

AWS ECR is a managed Docker container registry service. It provides secure, scalable
storage for Docker container images, allowing developers to push, pull, and manage
their images in a central repository hosted on AWS infrastructure. ECR integrates
with AWS IAM for access control, supports lifecycle policies for automated image
cleanup, and encrypts images at rest and in transit for enhanced security. It seamlessly
integrates with other AWS services like Amazon ECS and Amazon EKS, facilitating
the deployment of containerized applications on AWS.

4.8 Amazon Elastic Kubernetes Service (EKS)

Amazon Elastic Kubernetes Service is a managed Kubernetes service provided by
AWS [17]. Amazon EKS abstracts away the complexities of managing Kubernetes
clusters, allowing developers to focus on building and deploying their applications
without worrying about the underlying infrastructure.

4.8.1 Amazon EKS Architecture

Amazon EKS conforms to the typical cluster structure found in Kubernetes.

4.8.1.1 Control Plane

In Amazon EKS, the control plane refers to the layer of management and orchestration
that handles the deployment, scaling, and management of Kubernetes clusters. This
layer includes components such as the API server, scheduler, controller manager, etcd,
and other supporting services required for the proper functioning of a Kubernetes
cluster. Amazon EKS takes care of managing the control plane for you, so you
do not need to install, operate, or maintain it yourself. You can interact with the
control plane through the Kubernetes API server, which exposes the functionality
of the cluster to users and applications. When you create an EKS cluster, AWS
automatically provisions and manages the control plane on your behalf, ensuring that
it is highly available and securely configured. This allows you to focus on deploying
and managing your containerized applications without worrying about the underlying
infrastructure.

4.8.1.2 Node

Aside from the control plane, an Amazon EKS cluster consists of worker machines
known as nodes. Choosing the right type of node for your Amazon EKS cluster is

35

Chapter 4. Amazon Web Services (AWS)

vital to tailor to your particular needs and make the most of your resource allocation.
Amazon EKS provides various options for managing the nodes within your Kubernetes
cluster:

• AWS Fargate: This serverless compute engine for containers simplifies infras-
tructure management by automatically handling provisioning, scaling, and main-
tenance based on your application’s resource needs. It is perfect for those who
prioritize simplicity and want to focus on application development rather than
infrastructure management.

• Karpenter: As a flexible Kubernetes cluster autoscaler, Karpenter dynamically
adjusts compute resources to match application demands, optimizing both avail-
ability and efficiency. It is capable of provisioning resources precisely when
needed, ensuring your workload requirements are met efficiently.

• Managed Node Groups: This option combines automation and customization
for managing Amazon EC2 instances within your EKS cluster. AWS takes care
of routine tasks like patching, updates, and scaling, while also supporting cus-
tom kubelet arguments for advanced resource management. Additionally, it
enhances security through IAM roles for service accounts, streamlining permis-
sions management across clusters.

• Self-managed Nodes: For users seeking complete control over their EC2 in-
stances within the EKS cluster, self-managed nodes provide the ultimate level
of customization. You are responsible for managing, scaling, and maintaining
these nodes, offering granular control over the underlying infrastructure. This
option suits those willing to invest time in infrastructure management to achieve
specific customization and control requirements.

4.9 AWS CloudFormation

AWS CloudFormation is a powerful service provided by AWS that enables users to
define and manage their infrastructure as code. This means that instead of manually
creating and configuring individual AWS resources, users can use CloudFormation
templates to describe the desired state of their infrastructure in a declarative manner.
These templates are written in either JSON or YAML format and can include a wide
range of AWS resources, including compute instances, storage buckets, databases,
networking components, and more. Key Features and Concepts:

• Templates: CloudFormation templates serve as blueprints for provisioning and
managing AWS resources. They provide a structured way to define the desired

36

Chapter 4. Amazon Web Services (AWS)

configuration of infrastructure components, including their properties, depen-
dencies, and relationships. Example of YAML template.

1 AWSTemplateFormatVersion: 2010-09-09
2 Description: Example
3 Resource:
4 EC2InstanceExample:
5 Type: AWS::EC2::Instance
6 Properties:
7 ImageId: ami-0ff8a91507f77f867
8 InstanceType: t3.micro
9

Listing 4.1: Example of CloudFormation YAML template

• Resources: Resources are the fundamental building blocks of CloudFormation
templates. They represent the various AWS services and components that make
up the infrastructure, such as EC2 instances, S3 buckets, RDS databases, IAM
roles, and more.

• Stacks: Stacks are logical groups of resources that are managed together as a
single unit by CloudFormation. When a template is deployed, it creates a stack
containing all the resources defined within it. Stacks can be created, updated,
and deleted as needed, providing a way to manage the lifecycle of infrastructure
components.

• Parameters: Parameters are customizable values that can be passed to Cloud-
Formation templates at runtime. They allow users to specify input values such
as instance types, storage sizes, and network configurations when creating or
updating stacks, making templates more flexible and reusable across different
environments.

• Mappings: Mappings provide a way to define conditional values within Cloud-
Formation templates based on input parameters or other criteria. They are
useful for specifying different configurations for different environments or re-
gions, allowing templates to adapt dynamically to changing requirements.

• Outputs: Outputs are values that are returned by CloudFormation after a stack
has been created or updated. They provide a way to retrieve important infor-
mation such as resource identifiers, endpoint URLs, or configuration settings
for use in other parts of the infrastructure or applications.

• Rollback: CloudFormation includes automatic rollback functionality to ensure
the integrity and consistency of stacks during deployment. If any resources fail

37

Chapter 4. Amazon Web Services (AWS)

to be provisioned or updated during a stack operation, CloudFormation will
automatically roll back the changes to their previous state, helping to prevent
downtime or data loss.

Here is an illustration of the CloudFormation workflow for creating stacks [18].

Figure 4.6: CloudFormation workflow for creating stacks [18].

When you want to make changes to your stack’s resources, you can simply update the
stack’s template instead of creating a new stack and deleting the old one. To do this,
you submit a modified version of the original stack template, adjust input parameter
values, or both, to create a change set. This change set reflects the differences between
the modified template and the original one, listing the proposed alterations. Once
you review these changes, you have the option to either proceed with updating the
stack using the change set or create a new change set. The following figure illustrates
the various steps to update a stack.

Figure 4.7: CloudFormation workflow for updating stacks [18].

38

Chapter 4. Amazon Web Services (AWS)

4.10 AWS Simple Storage Service (S3)

Amazon Simple Storage Service is a cornerstone of AWS, providing businesses and
developers with highly scalable and durable object storage in the cloud. At its core,
S3 allows users to store and retrieve virtually unlimited amounts of data, from small
text files to massive datasets, with high availability and low latency.

One of S3’s key features is its scalability. Users can start with small amounts of
storage and seamlessly scale up as their needs grow, without the need for upfront
provisioning or capacity planning. This scalability is essential for businesses dealing
with fluctuating data volumes or rapid growth.

S3 ensures the durability and availability of stored data through automatic replication
across multiple geographically dispersed data centers. This redundancy means that
even in the event of hardware failures or catastrophic events affecting one data center,
data remains accessible and intact.

Security is paramount in S3, with robust encryption options available for both data
in transit and at rest. Users can encrypt data using server-side encryption with keys
managed by AWS Key Management Service (KMS) or client-side encryption for added
security.

Access control mechanisms in S3 enable administrators to manage who can access
data and how they can interact with it. This includes bucket policies, access control
lists (ACLs), and integration with AWS Identity and Access Management (IAM),
allowing for fine-grained control over permissions.

S3 offers lifecycle management policies, allowing users to define rules for automatically
transitioning objects between storage classes or deleting them after a specified period.
This feature helps optimize storage costs by moving less frequently accessed data to
lower-cost storage tiers over time. Versioning support in S3 enables users to have
multiple versions of an object stored in the same bucket, protecting against accidental
deletion or modification of data.

Cross-region replication allows users to replicate data across different AWS regions,
providing additional resilience against regional outages and ensuring data availability
and continuity of operations.

S3 integrates seamlessly with other AWS services, enabling users to trigger events
based on changes to objects in S3 buckets. This integration facilitates real-time

39

Chapter 4. Amazon Web Services (AWS)

processing of data and automation of workflows, enhancing the agility and efficiency
of cloud-based applications.

Overall, Amazon S3 is a versatile and reliable storage solution that caters to a wide
range of use cases, including backup and restore, content distribution, data lakes,
and big data analytics. Its pay-as-you-go pricing model makes it cost-effective for
businesses of all sizes, from startups to enterprises.

4.11 AWS CloudWatch

AWS CloudWatch is a robust monitoring and observability service offered by AWS
for tracking the performance and health of applications and infrastructure deployed
on the AWS cloud. It provides a comprehensive suite of tools and features to collect,
visualize, analyze, and act upon data generated by various AWS resources and custom
applications.

With CloudWatch, users can monitor metrics, log files, and events in real-time, gain-
ing insights into the utilization, performance, and operational behavior of their AWS
resources. Metrics monitoring allows tracking of key performance indicators such
as CPU utilization, network traffic, and storage usage, while log monitoring enables
the analysis of log files generated by AWS services and applications to identify and
troubleshoot issues.

CloudWatch Events enables users to automate workflows by responding to system
events and triggering actions based on predefined rules. This facilitates the imple-
mentation of automated remediation and event-driven architectures. Additionally,
CloudWatch Alarms provide the capability to set thresholds on metrics and receive
notifications or initiate automated actions when thresholds are breached, ensuring
proactive monitoring and timely responses to performance issues. The service also of-
fers customizable dashboards for creating visual representations of metrics and alarms,
allowing users to monitor the health and performance of their AWS resources in a
single, centralized view. Advanced analytics features such as metric math expressions,
anomaly detection, and metric filters further enhance the ability to gain actionable
insights from monitoring data.

4.12 AWS Elastic Compute Cloud (EC2)

Amazon Elastic Compute Cloud (EC2) offers a flexible and scalable cloud comput-
ing platform. EC2 offers users the opportunity to lease virtual servers, commonly

40

Chapter 4. Amazon Web Services (AWS)

referred to as instances, where they can deploy and operate their applications. This
service is designed to provide developers with complete control over their computing
resources while minimizing the need for upfront investment in hardware. EC2 in-
stances come in various configurations to suit different workloads, ranging from small
instances suitable for testing and development to powerful instances optimized for
high-performance computing or memory-intensive tasks. Users can choose from a
wide selection of operating systems, including popular choices like Linux and Win-
dows, and customize their instances with additional software and configurations as
needed. One of the key features of EC2 is its scalability. Users can quickly scale
their compute capacity up or down based on demand, either manually or automat-
ically using features like Auto Scaling. This elasticity allows applications to handle
fluctuations in traffic or workload without the need for extensive capacity planning
or provisioning.

EC2 offers a range of purchasing options to accommodate different use cases and
budgetary requirements. On-demand instances provide flexibility with no long-term
commitments, while Reserved Instances offer significant cost savings for predictable
workloads with a one- or three-year commitment. Spot Instances allow users to bid for
unused capacity at reduced rates, making them ideal for cost-sensitive or time-flexible
workloads.

There are several types of EC2 instances tailored to different workloads and use cases,
each with varying combinations of CPU, memory, storage, and networking capacity.
Some common types include:

• General Purpose (e.g., t2, m5): Balanced CPU, memory, and network resources
suitable for a wide range of applications.

• Compute Optimized (e.g., c5): Optimal for tasks demanding substantial com-
putational power, particularly those reliant on high-performance CPUs.

• Memory Optimized (e.g., r5): Designed for memory-intensive applications such
as databases, in-memory caches, and real-time big data analytics.

• Storage Optimized (e.g., i3): Optimized for applications that require high I/O
performance, such as NoSQL databases, data warehousing, and Elasticsearch.

• Accelerated Computing (e.g., p3, g4): Equipped with specialized hardware ac-
celerators like GPUs for demanding computational tasks such as machine learn-
ing, graphics rendering, and high-performance computing.

• Burstable Instances (e.g., t3): Designed for workloads that do not consistently
require high CPU performance but may spike in usage.

41

Chapter 4. Amazon Web Services (AWS)

4.13 AWS EC2 Auto Scaling

EC2 Auto Scaling offers a dynamic solution for managing the compute resources
of EC2 instances. Its main goal is to automatically adjust the number of EC2 in-
stances based on changes in demand, ensuring that applications maintain optimal
performance without manual intervention. At the core of EC2 Auto Scaling are Auto
Scaling Groups (ASGs). These groups serve as logical containers that house a collec-
tion of EC2 instances, defining the boundaries within which scaling operations occur.
Users establish minimum, maximum, and desired instance counts within ASGs, pro-
viding guardrails for scaling actions.

Figure 4.8: Auto Scaling Group [19].

The effectiveness of EC2 Auto Scaling lies in its ability to respond to varying work-
load patterns through the implementation of scaling policies. These policies can be
categorized into two main types: dynamic scaling policies and scheduled scaling poli-
cies.

Dynamic scaling policies dynamically adjust the number of instances based on real-
time metrics, such as CPU utilization, network traffic, or custom CloudWatch metrics.
They enable the infrastructure to scale out during periods of increased demand and
scale in during periods of decreased demand, ensuring that resources are aligned with
workload requirements.

Scheduled scaling policies, on the other hand, allow users to define predetermined
scaling actions based on anticipated workload changes. For instance, organizations
can schedule scaling events to coincide with known traffic spikes or recurring opera-
tional patterns, preemptively adjusting instance capacity to accommodate expected

42

Chapter 4. Amazon Web Services (AWS)

changes in demand.

Integral to the functioning of EC2 Auto Scaling is its seamless integration with Ama-
zon CloudWatch. CloudWatch serves as the monitoring and alarm system, collecting
metrics from various AWS services, including EC2 instances. Users can configure
alarms based on specific thresholds or conditions, triggering Auto Scaling actions
when predefined criteria are met.

Furthermore, EC2 Auto Scaling incorporates health checks to maintain the overall
health and reliability of the fleet of instances. Instances undergo periodic health
checks to verify their status, and any instances deemed unhealthy are automatically
replaced to maintain the desired level of service availability.

4.14 AWS Lambda

AWS Lambda stands as a pioneering service in the realm of serverless computing,
offering developers an innovative approach to executing code without the need for
traditional server provisioning and management. At its core, AWS Lambda enables
event-driven execution, responding to a myriad of triggers from various AWS services
or custom events defined by developers. This event-driven paradigm empowers de-
velopers to build highly scalable and responsive applications that react to changes in
data, user actions, or system events in real-time.

Lambda functions, within the context of serverless computing, can be invoked in
either synchronous or asynchronous manners, each catering to specific needs and
architectural considerations. Synchronous invocation involves the direct triggering
of a lambda function by a caller, which then waits for the function to complete its
execution before proceeding further. This type of invocation is characterized by its
immediacy and deterministic behavior. It is well-suited for scenarios where the caller
requires an immediate response or relies on the result of the lambda function to
continue its operations seamlessly. For instance, synchronous invocation is commonly
employed in real-time processing tasks or when strict dependencies exist between the
caller and the lambda function.

43

Chapter 4. Amazon Web Services (AWS)

Figure 4.9: Synchronous Invocation of Lambda [20].

Conversely, asynchronous invocation does not entail immediate waiting for the com-
pletion of the lambda function. Instead, the caller initiates the function’s execution
and continues with its own tasks without blocking or waiting for the result. This asyn-
chronous approach is particularly advantageous in scenarios where the caller does not
need an instantaneous response or where parallel processing of tasks can enhance sys-
tem throughput and efficiency. Asynchronous invocation aligns well with event-driven
architectures, where lambda functions react to events generated by various sources,
such as HTTP requests, database modifications, or message queue notifications. Fur-
thermore, an asynchronous invocation is suitable for handling batch processing tasks
or long-running operations where the immediate return of results is unnecessary, al-
lowing resources to be utilized more efficiently.

Figure 4.10: Asynchronous Invocation of Lambda [21].

One of the key features of AWS Lambda is its support for multiple programming
languages, including Node.js, Python, Java, Go, Ruby, and .NET Core. This versa-
tility allows developers to leverage their existing skills and choose the language that
best suits their application requirements. Furthermore, AWS Lambda operates on a

44

Chapter 4. Amazon Web Services (AWS)

pay-per-use pricing model, where users are only charged for the compute time their
code consumes and the number of requests it handles.

AWS Lambda’s automatic scaling capabilities further enhance its appeal, dynamically
provisioning resources to match the workload demands and scaling down to zero when
idle. Lambda functions on AWS are designed to scale effortlessly based on incom-
ing invocations. As more requests pour in, AWS automatically allocates additional
resources to handle the load, ensuring optimal performance without any manual in-
tervention. However, this scalability is not limitless. AWS imposes certain limits,
one of which is the concurrency limit. This limit determines how many instances of
a function can run simultaneously. When the number of incoming invocations sur-
passes this limit, AWS throttles the requests, preventing new invocations from being
processed immediately. This inherent scalability ensures optimal performance and
cost-efficiency, as users only pay for the resources they actually use. Additionally,
AWS Lambda functions execute in stateless environments, eliminating the need to
manage server state and facilitating seamless horizontal scaling.

Moreover, AWS Lambda integrates smoothly with an extensive array of AWS services,
enabling developers to create complex serverless architectures that leverage the capa-
bilities of other AWS offerings. Whether it’s building data processing pipelines, web
applications, or microservices, AWS Lambda provides the flexibility and scalability
to support diverse use cases.

45

Chapter 5

AWS Security Lake

Amazon Security Lake is a fully managed service designed to streamline the cen-
tralization of security data from various sources, including AWS environments, SaaS
providers, on-premises setups, cloud platforms, and third-party providers. The service
creates a specialized data lake within your AWS account, utilizing Amazon Simple
Storage Service buckets to store the information securely. All data stored in Security
Lake follows the OCSF scheme.

Security Lake facilitates a comprehensive analysis of security data, offering a holistic
view of the organization’s security posture. This aids in enhancing the protection of
workloads, applications, and data. The service can be centrally enabled across all
available regions and multiple AWS accounts.

Data consumers referred to as subscribers, can access the stored data based on the
level of access granted by the data owner.

Figure 5.1: Overview of Security Lake.

46

Chapter 5. AWS Security Lake

5.1 Source of Amazon Security Lake

The Amazon Security Lake can gather data from various origins, such as natively
supported AWS services, integrated vendors with AWS Security Lake, and custom
sources from third-party providers.

5.1.1 AWS Service Sources

Amazon Security Lake is capable of natively ingesting logs and events from various
AWS services. It converts the Data into the OCSF scheme and saves them in the
Security Lake in the efficient Parquet format. These services are:

• AWS CloudTrail is a service that tracks and records AWS API calls made
within your account, capturing information from various sources such as AWS
Management Console, SDK, command line tools, and specific AWS services. It
provides a detailed history of who made API calls, what services were accessed,
source IP addresses, and timestamps. Security Lake is capable of collecting
logs for CloudTrail Management and CloudTrail Data events related to S3 and
Lambda. These three types of events are treated as separate sources within
Security Lake, each with a different source name.

• AWS Security Hub provides insights into your AWS security status and lets
you assess your environment against security standards. It collects information
from various sources, such as AWS services, third-party integrations, and checks
against Security Hub controls, all presented in a standard format called AWS
Security Finding Format (ASFF). When you link Security Hub findings with
Security Lake, the platform instantly starts collecting these findings directly
from Security Hub through an independent and duplicated stream of events.
Furthermore, Security Lake converts the findings from ASFF to the OCSF. Im-
portantly, Security Lake does not manage or alter your Security Hub findings or
settings. It simply enables the collection and transformation of these findings for
analysis, seamlessly integrating with your existing Security Hub configuration.

• Route 53 resolver query logs offer insights into the DNS activities of resources
in your Amazon VPC, aiding in application performance analysis and security
threat detection. By incorporating these logs into Security Lake, the plat-
form efficiently acquires them directly from Route 53 through a redundant and
independent event stream. Importantly, Security Lake’s integration does not
interfere with your existing Route 53 resolver query logging configurations. It
smoothly collects and manages logs, adding an extra layer of security monitoring
without disrupting your established setup.

47

Chapter 5. AWS Security Lake

• Amazon VPC Flow Logs is a feature that captures details about the IP traf-
fic moving through network interfaces within your Amazon VPC environment.
When you integrate VPC Flow Logs with Security Lake, the platform promptly
begins gathering this information directly from Amazon VPC. It does so through
a separate and duplicative stream of Flow Logs, without influencing the man-
agement of your VPC Flow Logs or making any changes to your Amazon VPC
settings.

5.1.2 Integrated vendors

Amazon Security Lake integrates with several external vendors. Vendors implement
one or more features among source integration, subscriber integration, or service
integration. Source integrations send data to Security Lake in Apache Parquet format,
adhering to the OCSF schema. Subscriber integrations can access source data from
Security Lake via HTTPS endpoints, Amazon SQS queues, or directly query AWS
Lake Formation. They are capable of reading data in Apache Parquet format and
according to the OCSF schema. Examples of integrated vendors are CrowdStrike –
Falcon Data Replicator, CyberArk – Unified Identify Security Platform, and Palo
Alto Networks – Prisma Cloud.

5.1.3 Custom sources

Amazon Security Lake facilitates the integration of logs and events from external
custom sources. It streamlines the process by assigning a unique prefix for each source
in your Amazon S3 bucket and establishing an IAM role, granting the custom source
the necessary permissions to deposit data into the security lake. Additionally, the
service automatically creates an AWS Lake Formation table to efficiently organize the
incoming data and configures an AWS Glue crawler. This crawler not only partitions
the source data but also populates the AWS Glue Data Catalog with relevant table
information, facilitating schema discovery for new source data.

To integrate a custom source with Security Lake, it must have the capability to write
data as S3 objects under the assigned prefix. For sources with diverse data categories,
each distinct OCSF event class should be treated as a separate source. Objects need to
be partitioned based on source location, AWS Region, AWS account, and date, follow-
ing a specific path format: “bucket-name/source-location/region=region/accountId=
accountID/eventDay=YYYYMMDD”. The data in S3 objects should be formatted
in Apache Parquet files, with a 1 MB limit for uncompressed data page size and a
compressed row group size not exceeding 256 MB. Zstandard compression is preferred
for Parquet objects. To maintain consistency, the same OCSF event class should be

48

Chapter 5. AWS Security Lake

applied to all records within a Parquet-formatted object, and records should be or-
dered by time within the object to optimize data querying costs. When adding a
custom source using Security Lake API or AWS CLI, it is essential to associate a
specific IAM role to grant AWS Glue the authority to crawl the custom source data,
identifying partitions for effective data organization and table management in the
Data Catalog.

5.2 Subscriber of Amazon Security Lake

Amazon Security Lake enables subscribers to access logs and events with a focus on
cost control and least privilege access. Subscribers can obtain Data access, receiving
notifications of new source data in the S3 bucket. This access type, identified as
“S3” in the CreateSubscriber API, allows notification through an HTTPS endpoint
or polling an SQS queue. Alternatively, subscribers can have Query access, enabling
direct querying of AWS Lake Formation tables using services like Amazon Athena.
While Athena is the primary engine, other services like Amazon Redshift Spectrum
and Spark SQL can also be used.

Subscribers are granted access to source data only in the selected AWS Region during
subscriber creation. To extend access to multiple Regions, a roll-up Region can be
specified, allowing contributions of data from other Regions. This approach ensures
cost control and aligns with the principle of least privilege access.

5.3 Lifecycle of buckets S3

Security Lake allows users to customize data storage preferences in their preferred
AWS Regions and set retention settings for cost-effective management. The data is
stored as objects in Amazon S3 buckets, and retention settings correspond to Amazon
S3 Lifecycle configurations. Users can specify the S3 storage class and time period
for objects to stay in that class before transitioning or expiring at the Region level. If
not configured, Security Lake defaults to storing data indefinitely in the S3 Standard
storage class. Note that Security Lake does not support Amazon S3 Object Lock,
and enabling it with default retention mode can disrupt data delivery.

A roll-up Region serves as a central hub that consolidates data from multiple con-
tributing Regions. This consolidation is beneficial for ensuring compliance with re-
gional data requirements. It helps gather information from various locations to meet
specific regional data compliance standards.

49

Chapter 6

Design of Security Lake platform

In the realm of cybersecurity, the landscape is populated with various vendors and
tools, some utilizing the OCSF language while others employ their own schemes.
This diversity requires transformation and mapping in the OCSF format of data from
sources that use their schemes, to enable seamless integration and interoperability.
This process ensures that different tools can work together effectively, maximizing
their collective potential in safeguarding digital environments against evolving threats.

6.1 Challenges

The challenge is to expand the Security Lake service of AWS, a service that allows
you to already integrate tools that use OCSF, creating a platform that facilitates and
speeds up the integration of third parties that use their scheme. This platform will
streamline the process of transforming messages from various formats into OCSF,
facilitating seamless integration with Security Lake.

Our objective is to implement Terraform code capable of deploying this platform,
customizable according to the integrator’s preferences. Integrators will have the
flexibility to select the specific integrations they require and define the integration
methods, inputting these specifications into designated fields within the Terraform
configuration file.

The platform will offer the following key features:

• Message Transformation: Enable the conversion of messages from proprietary
formats to OCSF, ensuring compatibility with Security Lake.

• Integration Flexibility: Empower integrators to choose the desired integrations
and customize integration methods to suit their requirements.

• Efficient Deployment: Utilize Terraform automation to swiftly deploy the plat-
form, minimizing manual configuration efforts and optimizing deployment effi-
ciency.

• Scalability and Reliability: Design the platform to scale seamlessly with growing
data volumes and maintain high levels of reliability and availability.

50

Chapter 6. Design of Security Lake platform

By developing this comprehensive platform, we aim to enhance the accessibility and
usability of AWS’s Security Lake service, empowering organizations to seamlessly
integrate diverse security tools and maximize the effectiveness of their cybersecurity
operations.

6.2 Platform’s Overview

The platform is designed to have three different types of input sources and integrate
the messages from these sources into the Security Lake, as illustrated in the yellow
rectangle in Figure 6.1. Conceptually, the platform consists of two main parts:

• Catching part: This component, represented by the blue rectangle in Figure
6.1, manages the data acquisition process from various sources.

• Ingestion Pipeline [Normalization]: Highlighted by the red rectangle in Figure
6.1, this component normalizes data in the OCSF format and loads them into
the Security Lake.

The platform provides a repository, “ADMIN Repository”, for the administrator to
define the integrations he wants to do. He can indicate the source, type of source,
and details and methods related to each integration. Additionally, the administrator
must indicate the mapping of messages from the original format to the OCSF format
within this repository.

For each integration, the platform creates another repository, “Integration Reposi-
tory”, that allows for quick adjustments of mappings or to write of custom mapping
functions tailored to specific integration needs.

By dividing the platform into these components and providing customizable inte-
gration options, the platform offers flexibility and efficiency in managing data from
different sources.

51

Chapter 6. Design of Security Lake platform

Figure 6.1: Platform’s Design.

6.2.1 Catching part

The platform can have three different source types:

• AWS S3 integrated Vendors: refer to third-party companies or service providers
whose products or solutions have been designed to work seamlessly with Amazon
S3. Integration in this context means that these vendors have developed their
software, tools, or services to interact with S3, going to load messages and logs
into an S3 bucket.

• An application with custom integration with S3 typically refers to a software
application that interacts with Amazon S3 in a customized or tailored manner.
In this case, an application that uploads logs or messages inside to an S3 bucket.

• Syslog integrated vendors: Common objects that utilize Syslog protocol. They
include network devices like routers and switches, servers, operating systems,
applications, and security devices.

For the first two sources, the platform develops only the Ingestion Pipeline part,
because the messages are loaded directly into an S3 bucket.

As for the third source, the platform not only handles the mapping part but also facil-
itates the capture process. This involves generating a public IP for each integration,
allowing external sources to transmit messages in syslog format.

52

Chapter 6. Design of Security Lake platform

6.2.1.1 Ingestion VPC

The platform has been created to offer an environment where each integration can
have an application capable of providing a public IP. This allows the external source
to send messages to the IP address, such messages are then normalized and integrated
into the Security Lake. The application must buffer these messages and load them
into a storage environment to make them available to the Normalization pipeline. It is
essential that this application is scalable and always available. To do this, the platform
creates a Virtual Private Cloud (VPC) consisting of three public subnets and three
private subnets - one public and one private for each area of availability. Additionally,
a Kubernetes EKS cluster is created for the three private subnets. The cluster contains
nodes and pods that the application runs on, based on the integration specifications.
This ensures that the application meets the requirements for scalability, redundancy,
and availability.

Figure 6.2: Ingestion VPC

53

Chapter 6. Design of Security Lake platform

6.2.2 Ingestion Pipeline [Normalization]

The platform employs an ingestion pipeline for each integration, designed to seam-
lessly handle the processing of incoming messages as they are deposited into storage
containers. This pipeline is equipped to receive objects containing messages and
convert each message into the OCSF format before uploading them to the Security
Lake. This pipeline must be capable of efficiently handling high volumes of traffic
and scaling in response to fluctuations in incoming data.

To achieve this, the platform leverages the Lambda service, creating a dedicated func-
tion for each integration. These functions are designed to be triggered automatically
whenever a new object is created within the corresponding S3 bucket. Based on
pre-defined configurations, each Lambda function processes the messages contained
within the object, mapping into OCSF, intelligently grouping them before loading
them into the Security Lake with the appropriate prefix.

Figure 6.3: Ingestion Pipeline [Normalization].

6.2.3 Admin Repository

The idea is to create a centralized repository that allows the administrator to metic-
ulously configure the integration, adapting it to specific requirements across different
fields.

Key parameters include integration nomenclature, type (ranging from suppliers in-
tegrated in Syslog, applications with custom integrations, to vendors integrated in
S3), the name of the Buckets S3 that the Security Lake uses to integrate logs, and
JSON structures that host the mappings (where each key indicates a new field, OCSF
format, and its value indicates how to extract the value from the original data to be
assigned to the new field).

Administrators using “S3Integrated” integrations are required to provide the source
S3 bucket name.

54

Chapter 6. Design of Security Lake platform

For the Syslog integration, administrators can fill in other attributes including:

• Dedicated nodes
• The desired number of nodes, together with minimum and maximum thresholds.
• Specifications such as image, disk size, and node instance type.
• Percentile consumption of cumulative CPU between nodes for dynamic scaling.
• Limits and requirements for CPU and memory per pod.
• Average CPU usage between pods for scaling purposes.
• Exposed port for communication.
• Application-specific parameters such as buffer size and flush interval inside pods.
• IP source

This approach provides granular control over integration configurations, facilitating
custom configurations that support different operational needs.

6.2.4 Integration Repository

For each integration, the platform creates a dedicated repository. Its purpose is to
facilitate and expedite mapping-related changes, such as reassigning specific fields
to different attributes. It contains two JSON files identical to the JSONs that were
placed in the previous repository during the initialization phase. These files are ed-
itable, allowing integrators to modify mappings as needed. When edited, the lambda
function updates the mapping accordingly.

Moreover, integrators can directly write or modify the Python functions utilized by
the lambda. This grants them the ability to create customized configurations for each
integration, providing a powerful and flexible setup.

55

Chapter 7

Platform’s Implementation

The implementation of the platform was crafted using Terraform code, a tool renowned
for its prowess in orchestrating infrastructure as code. This choice was made with the
intention of giving the platform flexibility and agility, enabling seamless configura-
tion and swift deployment processes. By leveraging Terraform, we aimed to streamline
the setup and management of our platform, allowing for rapid adjustments to meet
evolving requirements. In addition, the adoption of Terraform represents a strategic
investment in the scalability, reliability, and maintainability of our platform.

The construction of the platform unfolds through three primary steps:

1. In the first step, the builder of the platform launches the creation folder. This
creates a repository dedicated to the platform administrator, where there is
a platform bootstrap configuration, an administrator-configurable file, and a
folder containing the files used for subsequent platform implementations. It
also creates a pipeline that every time a commit is made, reads the files into
the Admin Repository and, based on the previous configuration, updates/cre-
ates/deletes the resources. The first time, the pipeline reads the bootstrap file
and creates the basic platform configuration.

2. In the second step, the platform integrator/administrator creates and config-
ures preset modules within the repository. He specifies the type and method
of integration desired. Once committed, the pipeline creates the infrastructure
for the catching part. In addition, an Integration Repository and a pipeline
are created for each integration. These repositories house essential data for the
creation of the normalization ingestion phase, while the pipeline is equipped to
interpret the repository files, constructing the normalization ingestion compo-
nents accordingly.

3. The third step is predominantly automated. The Integration Pipeline seamlessly
processes files uploaded by the initial pipeline into the Integration Repository.
It then proceeds to develop the normalization component. However, users retain
the flexibility to utilize the Integration Repository for swift mapping alterations
(from raw data to OCSF) or to create a custom function to be used by the
lambda instead of the basic one.

56

Chapter 7. Platform’s Implementation

Figure 7.1: Platform’s implementation.

57

Chapter 7. Platform’s Implementation

7.1 STEP 1 of Platform’s construction

Step 1 comprises two distinct sections:

• The initial part delineates the Terraform files in the creation folder and describes
the resources defined within them.

• The subsequent segment delineates the services and architectures instantiated
within the AWS Cloud subsequent to deploying the construction folder.

7.1.1 Platform creation folder

The platform creation folder contains multiple Terraform files and one subfolder:

• main.tf: This file contains the primary Terraform configuration for initiating the
first step of building the platform. It includes resource definitions, providers,
and other necessary configurations.

• variable.tf: This file contains variables related to where to create the platform.
• Subfolder: This subfolder contains additional Terraform files specifically dedi-

cated to the second step of the platform creation process.

Organizing the Terraform project in this manner maintains a structured approach,
separating different stages or components of the infrastructure deployment process to
improve the clarity, versatility, and scalability of the platform.

7.1.1.1 File variable.tf

In this document, you can find the section where you can configure variables that
match the location where you want to create the platform. Specifically, you will need
to populate the default field pertaining to the account and region where you intend
to establish the platform.

Listing 7.1: File variable.tf of creation folder

1 #region
2 variable "region" {
3 type = string
4 default = "eu-west-1"
5 }
6 #account id
7 variable "account_id" {
8 type = string

58

Chapter 7. Platform’s Implementation

9 default = "224106000250"
10 }

7.1.1.2 File main.tf

The first configuration block is used to define the project requirements in detail:

• required_providers: This section instructs Terraform on which cloud service
providers are needed to manage infrastructure resources. In this case, the
project specifies the AWS provider provided by HashiCorp. The version key
sets a restriction on the provider’s version to use, indicating an approximate
range of allowed versions.

• required_version: This section specifies the minimum version of Terraform re-
quired to run the project correctly.

Listing 7.2: Terraform configuration, into file main.tf of creation folder

1 terraform {
2 required_providers {
3 aws = {
4 source = "hashicorp/aws"
5 version = "~>!4.16"
6 }
7 }
8 required_version = ">=!1.2.0"
9 }

Next, it proceeds to configure the AWS provider by setting up the block. Within this
block, the region is specified utilizing a variable named “region”.

Listing 7.3: AWS Provider configuration, into file main.tf of creation folder

1 provider "aws" {
2 region = var.region
3 }

The source code to establish the CodeCommit repository is delineated. This repos-
itory will serve as the container for the Terraform code required for the subsequent
phase of platform creation. Additionally, it offers the admin the flexibility to configure
desired integrations seamlessly.

59

Chapter 7. Platform’s Implementation

Listing 7.4: AWS CodeCommit Repository, into file main.tf of creation folder

1 #create an Admin repository
2 resource "aws_codecommit_repository" "codecommit_repository_admin" {
3 repository_name = "repositoryNameAdmin"
4 description = "This!is!the!Repository!of!Admin"
5 }

To set up a CodePipeline, you need to configure some components:

1. S3 Bucket for Pipeline Artifacts: This resource establishes an S3 bucket dedi-
cated to housing pipeline artifacts, facilitating storage and retrieval throughout
the pipeline’s lifecycle.

2. IAM Role for CodePipeline: This role allows CodePipeline to assume a role with
the necessary permissions to perform pipeline actions. At role is associated also
with policy as permissions for access to the S3 bucket of Pipeline Artifacts
(“s3:GetObject”, “s3:PutObject”, etc), permissions related to CodeCommit
that is defined before (“codecommit:GetBranch”, “codecommit:GetCommit”,
etc), and permissions for CodeBuild (“codebuild:BatchGetBuilds”, “codebuild:-
StartBuild”).

3. AWS CodeBuild project: The goal of the AWS CodeBuild project is to au-
tomate infrastructure construction by launching Terraform code, using AWS
CodePipeline for source and artifact management.

Listing 7.5: AWS CodeBuild, into file main.tf of creation folder

1 resource "aws_codebuild_project" "create_project" {
2 name = "project"
3 description = "create_codebuild_project"
4 build_timeout = "40"
5 service_role = aws_iam_role.create_project_role.arn
6
7 artifacts {
8 type = "CODEPIPELINE"
9 }

10
11 environment {
12 compute_type = "BUILD_GENERAL1_SMALL"
13 image = "aws/codebuild/standard:5.0"
14 type = "LINUX_CONTAINER"
15 privileged_mode = true
16 }
17

60

Chapter 7. Platform’s Implementation

18 source {
19 type = "CODEPIPELINE"
20 buildspec = buildspec−tf−create.yaml
21 }
22 }

Within the “aws_codebuild_project” resource block, various attributes are
specified, including project name, description, build timeout, service role, and
build environment settings. Notably, it is configured to utilize AWS Code-
Pipeline for both source and artifact management, while also defining the build
environment with specifics like processing type, Docker image, and privileged
mode.

The source block within this resource configures how the source code is fetched
for the build process, opting for CodePipeline as the source type and referencing
a local YAML file known as “buildspec-tf-create.yaml”. This file delineates
the version and steps of the build process, consisting of three stages: install,
pre_build, and build.

During the installation phase, the necessary dependencies are installed, includ-
ing the download and installation of Terraform. The pre_build phase initializes
Terraform, preparing it for subsequent actions. Finally, the build phase executes
the Terraform commands to schedule and apply changes to the infrastructure.
Generate a Terraform execution plan and apply it to make the desired changes
to your infrastructure.

1 version: 0.2
2 phases:
3 install:
4 commands:
5 - "curl -s https://releases.hashicorp.com/terraform/1.3.6/

terraform_1.3.6_linux_amd64.zip -o terraform.zip"
6 - "unzip terraform.zip -d /usr/local/bin"
7 - "chmod 755 /usr/local/bin/terraform"
8 pre_build:
9 commands:

10 - "terraform init"
11 build:
12 commands:
13 - "terraform plan -out=terraform.tfplan"
14 - "terraform apply terraform.tfplan"

61

Chapter 7. Platform’s Implementation

15

Listing 7.6: File buildspec-tf-create.yaml of creation folder

Start by configuring the pipeline with a distinguished name and specifying the IAM
role ARN for performing the actions. Set up the artifact store using an S3 bucket to
safely store the pipeline artifacts. Next, define the “Source” step to retrieve the source
code. Use CodeCommit as the source provider and configure it with the repository
name and branch name. Stores artifacts generated at this stage in the designated
location are typically referred to as “source_output”.

Listing 7.7: Source stage CodePipeline, into file main.tf of creation folder

1 stage {
2 name = "Source"
3
4 action {
5 name = "Source"
6 category = "Source"
7 owner = "AWS"
8 provider = "CodeCommit"
9 version = "1"

10 output_artifacts = ["source_output"]
11
12 configuration = {
13 RepositoryName = aws_codecommit_repository.

codecommit_repository_admin.repository_name
14 BranchName = "main"
15 }
16 }
17 }

Finally, set the Terraform deployment phase to run Terraform files to advance the
platform creation. Use CodeBuild for this step, specifying the input artifacts from the
previous step and referring to the CodeBuild project with its name. This structured
approach ensures a smooth flow from source code recovery to Terraform execution,
facilitating an automated distribution process.

Listing 7.8: Build stage CodePipeline, into file main.tf of creation folder

1 stage {
2 name = "terraform_create"

62

Chapter 7. Platform’s Implementation

3
4 action {
5 name = "terraform_create"
6 category = "Build"
7 owner = "AWS"
8 provider = "CodeBuild"
9 input_artifacts = ["source_output"]

10 version = "1"
11
12 configuration = {
13 ProjectName = aws_codebuild_project.create_project.name
14 }
15 }
16 }

Then a “null_resource” called “push_to_codecommit_admin” is defined. This re-
source uses a local-exec provisioner to run a series of Git commands within the sub-
directory with files to load into the repository. Commands include setting the default
branch to “main”, configuring Git credentials to interact with AWS CodeCommit,
initializing a new Git repository, adding all files in the directory to the repository,
committing the changes with a message indicating the addition of Terraform files and
push the changes to the CodeCommit repository created earlier.
It also uses the “depends_on” attribute to specify that this resource depends on the
creation of an AWS CodeCommit repository and an AWS CodePipeline. This en-
sures that Git commands run only after these resources have been created or updated
successfully.

7.1.2 Architectural landscape after launched creation folder

Once you have navigated to the directory containing the Terraform files and executed
the necessary commands (terraform init, terraform plan, terraform apply), an Amazon
CodeCommit repository will be created in your AWS account. This repository will
contain:

1. Modules Folder: This directory will house various files essential for building the
second stage of the platform.

2. bootstrap.tf File: Within this file, you will find modules referencing Terraform
files from the “modules” folder. These modules are designed to establish a
common architecture present in any integration you wish to undertake.

3. main.tf File: Here, integrators or administrators can specify preset Terraform
modules, detailing the type of integration they wish to implement and their

63

Chapter 7. Platform’s Implementation

preferred configuration.

Additionally, a CodePipeline will be set up to read the Terraform files within the
repository. This pipeline will automatically create AWS resources as specified in
those files whenever a commit occurs. This ensures seamless deployment and resource
management in response to changes made to the infrastructure configuration.

After the repository and pipeline are created, the pipeline will read the bootsrap.tf
file and create the basic platform architecture. The next section describes the config-
uration of the bootstap.tf file and what resources it creates.

The following figure shows the architecture created by launching the creation folder.

Figure 7.2: Architectural landscape after launched creation folder

64

Chapter 7. Platform’s Implementation

7.1.2.1 File bootstrap.tf into Repository-Admin

The bootstrap file encompasses a Terraform module designed to orchestrate the cre-
ation of default platform resources. These resources include:

• VPC Configuration: Formation of a Virtual Private Cloud with a well-architected
setup. Division into three public subnets and three private subnets, ensuring
redundancy and fault tolerance. Allocation of one public and one private subnet
for each availability zone. Establishment of a Kubernetes EKS cluster within
the three private subnets for enhanced container orchestration capabilities.

• Elastic Container Registry: Creation of an Amazon ECR tailored to house the
Fluentd image for seamless integration with Kubernetes Pods.

• Lambda Function: Implementation of a Lambda function specifically designed
for the purpose of dismantling CloudFormation stacks. This function is pivotal
in the third phase of the implementation, providing a streamlined and auto-
mated approach to stack termination.

Ingestion VPC

The platform creates a Virtual Private Cloud. It is a virtual network environment that
provides and manages the isolated section of the AWS cloud. A VPC provides a high
degree of control over network configuration, including the ability to define the range
of IP addresses, create subnets, configure route tables, and manage security settings.
Since there are no additional costs associated with using VPC, it is automatically
generated as a default configuration.

In VPC configuration, the platform defines an IPv4 CIDR block, which specifies the
range of private IP addresses that can be used within the VPC.

The platform activates DNS hostnames in the VPC, which on AWS automatically as-
signs user-friendly names to instances, simplifying identification and communication.
This feature supports internal DNS resolution for service discovery and communica-
tion within the VPC. It is also critical for services like AWS Elastic Load Balancing
that require DNS hostnames for proper resolution.

The platform activates DNS support in the VPC, which is crucial for smooth com-
munication with external resources and services. Allows instances to resolve domain
names, ensuring proper functionality, software updates, and access to AWS services.

65

Chapter 7. Platform’s Implementation

The platform assigns the VPC a Tag that provides a way to facilitate identification
within the AWS environment.

Listing 7.9: Virtual Private Cloud

1 #create vpc
2 resource "aws_vpc" "vpc" {
3 cidr_block = "10.0.0.0/16"
4 instance_tenancy = "default"
5
6 enable_dns_hostnames = true
7 enable_dns_support = true
8 tags = {
9 Name = var.tags_vpc_name

10 }
11 }

Now we go to describe one by one the components created within the VPC from the
bootstrap Terraform code.

Subnet

In the VPC there are 3 private subnets and 3 public subnets. Subnet is a logical
division of an Amazon Virtual Private Cloud. To specify the VPC to which a subnet
belongs, you typically provide the “vpc_id” attribute in your AWS subnet resource
definition.

The IPv4 CIDR block specifies the IP address range for the subnet.

Availability Zone for the subnet designates the specific availability zone in which the
subnet will be created. Usually, there are 3 zones available for each region, in my
implementation, it goes to create a public subnet and a private one for each zone.

In the public subnet the field “map_public_ip_on_launch” is set to true, to indicate
that instances launched into the subnet should be assigned a public IP address [22].
To enable Kubernetes to provision a network load balancer on public subnets, those
subnets need specific tags. These tags include “kubernetes.io/cluster/my-cluster” set
to “shared” and “kubernetes.io/role/elb” set to 1.

66

Chapter 7. Platform’s Implementation

Listing 7.10: Public Subnet

1 resource "aws_subnet" "DMZ-primary" {
2 vpc_id = aws_vpc.vpc.id
3 cidr_block = "10.0.6.0/24"
4 tags = {
5 Name = "DMZ-a"
6 "kubernetes.io/cluster/${var.eks_name}" = "shared"
7 "kubernetes.io/role/elb" = 1
8 }
9 map_public_ip_on_launch = true

10 availability_zone = data.aws_availability_zones.available.
names[0]

11 }

Internet Gateway

Into VPC, there is an Internet Gateway to facilitate bidirectional communication
between resources within the VPC and the Internet.

Listing 7.11: Internet Gateway

1 resource "aws_internet_gateway" "gw" {
2 vpc_id = aws_vpc.vpc.id
3 }

Route Table

A route table is created and configured to create a default location for an Internet
Gateway. It is associated with each public subnet (DMZ-1, DMZ-2), thus facilitating
the flow of network traffic, especially for public elements.

Listing 7.12: Route table and its association

1 resource "aws_route_table" "route_table_vpc" {
2 vpc_id = aws_vpc.vpc.id
3
4 route {
5 cidr_block = "0.0.0.0/0"
6 gateway_id = aws_internet_gateway.gw.id
7 }
8 }
9

67

Chapter 7. Platform’s Implementation

10 resource "aws_route_table_association" "assoc-DMZ-1" {
11 subnet_id = aws_subnet.DMZ−primary.id
12 route_table_id = aws_route_table.route_table_vpc.id
13 }

Endpoints

Each private subnet has two endpoints: one relative to S3, to load messages into
buckets of staging, and another to ECR service to download a image to Pod.

Elastic Kubernetes Service

An Amazon Elastic Kubernetes Service (Amazon EKS) is established, within these
three private subnets. An IAM role is generated specifically for the Amazon EKS
cluster, accompanied by a tailored policy. This IAM policy document authorizes the
EKS service to assume the designated role. Furthermore, the “AmazonEKSCluster-
Policy” policy is linked to the IAM role, endowing it with the essential permissions
required for operation.

Listing 7.13: Elastic Kubernetes Service

1 resource "aws_eks_cluster" "aws_eks_cluster" {
2 name = var.eks_name
3 role_arn = aws_iam_role.aws_iam_role_cluster.arn
4 vpc_config {
5 endpoint_private_access = true
6 endpoint_public_access = true
7 subnet_ids = [aws_subnet.AS−primary.id, aws_subnet

.AS−secondary.id, aws_subnet.AS−tertiary.id]
8 }
9 }

The platform also configures a Kubernetes provider for the Amazon EKS cluster.
Specifies the cluster endpoint and CA certificate, and uses the AWS CLI to authen-
ticate with the cluster and retrieve a token.

Listing 7.14: Provider Kubernetes

1 provider "kubernetes" {
2 host = aws_eks_cluster.aws_eks_cluster.endpoint
3 cluster_ca_certificate = base64decode(aws_eks_cluster.aws_eks_cluster.

certificate_authority[0].data)

68

Chapter 7. Platform’s Implementation

4 exec {
5 api_version = "client.authentication.k8s.io/v1beta1"
6 args = ["eks", "get-token", "--cluster-name", aws_eks_cluster.

aws_eks_cluster.name]
7 command = "aws"
8 }
9 }

Creation and setup of ECR

The platform creates an Elastic Container Repository where to contain the image
used in Pods, in the integration with the Syslog source. To create such an image, the
subfolder contains the files Dockerfile and fluent.conf used its creation. The platform
takes care of launching the “docker build” commands to create the appropriate image
and “docker push” to load it into the repository.

Dockerfile

The Dockerfile provided sets up Fluentd within a Docker container on a Linux plat-
form using the base image “fluent/fluentd:v1.16-1”. It employs the “USER root”
directive to switch to the root account within the container, allowing subsequent
commands to be executed with elevated privileges. Following this, two RubyGems
packages (“fluent-plugin-s3” and “fluent-plugin-cloudwatch-logs”) are installed using
the gem install command. These plugins extend Fluentd’s capabilities by enabling it
to interact with Amazon S3 and CloudWatch Logs services, respectively. The “--no-
document” flag is used to skip the generation of documentation during the installation
process, reducing unnecessary overhead. Then, the Dockerfile copies a configuration
file named “fluent.conf” into the “/fluentd/etc/” directory within the container. This
configuration file will be described in the next section. Finally, the Dockerfile switches
the user context back to fluent. This is typically done for security reasons, as running
the application with root privileges can pose security risks.

1 FROM --platform=linux/amd64 fluent/fluentd:v1.16-1
2 USER root
3 RUN gem install fluent-plugin-s3 --no-document
4 RUN gem install fluent-plugin-cloudwatch-logs --no-document
5 COPY fluent.conf /fluentd/etc/
6 USER fluent

Listing 7.15: Dockerfile Fluentd

69

Chapter 7. Platform’s Implementation

Fluentd Configuration (fluent.conf)

The fluent.conf file contains the configuration for Fluentd, specifying how it should
handle incoming log data and where it should route it. Let’s break down the key
components:

• <source> block: This section defines a syslog source, indicating that Flu-
entd should listen for incoming syslog messages on a port specified by the
“PORT_EXPOSE_SERVICE” environment variable. The messages are ex-
pected to arrive via TCP transport. Additionally, it binds to all available net-
work interfaces specified by the “ADDRESS_SOURCES” environment variable.
The <tags> block the incoming messages as system. The tag itself is generated
by the tag prefix, facility level, and priority. tag = @tag.facility.priority. The
<parse> block specifies that the message format should be detected. Supported
values are rfc3164, rfc5424 and auto. Auto is useful when in_syslog receives
both rfc3164 and rfc5424 messages per source. in_syslog detects message format
by using message prefix and parses it [23].

• <match> block: This section matches log records with the tag “system.*.*”.
Log records matching this tag are then sent to an S3 bucket specified by the
“STAGING_BUCKET” environment variable. The S3 bucket’s region is de-
fined by the “REGION” environment variable. Logs are stored under a path
determined by the “POD_NAME” environment variable. To optimize perfor-
mance and reliability, a <buffer> block is included, configuring buffering set-
tings for the S3 output plugin. Logs are buffered to the local disk with a chunk
limit size, determined by the “CHUNCK_SIZE” environment variable, and a
flush interval, determined by the “FLUSH_INTERVAL” environment variable.

1 <source>
2 @type syslog
3 port "#{ENV[’PORT_EXPOSE_SERVICE’]}"
4 <transport tcp>
5 </transport>
6 bind "#{ENV[’ADDRESS_SOURCES’]}"
7 tag system
8 <parse>
9 message_format auto

10 </parse>
11 </source>
12

13 <match system.*.*>

70

Chapter 7. Platform’s Implementation

14 @type s3
15 slow_flush_log_threshold 30.0
16 s3_bucket "#{ENV[’STAGING_BUCKET’]}"
17 s3_region "#{ENV[’REGION’]}"
18 path "#{ENV[’POD_NAME’]}"
19 <buffer tag>
20 @type file
21 path /fluentd/log/
22 chunk_limit_size "#{ENV[’CHUNCK_SIZE’]}"
23 flush_interval "#{ENV[’FLUSH_INTERVAL’]}"
24 </buffer>
25 </match>

Listing 7.16: fluent.conf

Lambda to destroy a CloudFormation Stack

The platform creates a Lambda feature capable of destroying the CloudFormation
Stack, created in the third phase of the implementation of the platform. This function
is invoked when an integration has been discontinued.

Configure the AWS Lambda function, it begins by creating a zip file named “deleteS-
tack.zip” using the “archive_file” block. This zip file contains the code from the
file “modules/bootstrap/deleteStack.py”. The “source_file” attribute specifies the
path to the Python file, while the type attribute specifies that it is a zip file. The
“output_path” attribute determines where the resulting zip file will be saved.

Next, the “aws_lambda_function” block is used to define the Lambda function itself.
It sets various properties:

• function_name: This is the name of the Lambda function.
• role: This role grants necessary permissions to the Lambda function, such as

“cloudformation:DeleteStack”, “cloudformation:DescribeStacks”.
• handler: This specifies the entry point to the Lambda function within the zip

file.
• runtime: The runtime environment for the Lambda function is specified as

Python 3.8.
• filename: The name of the zip file containing the Lambda function code is set

to “deleteStack.zip”.

71

Chapter 7. Platform’s Implementation

• environment: This block allows you to set environment variables for the Lambda
function. Here, a variable named “region_name” is defined with the value of
the Terraform variable “var.region”.

Listing 7.17: AWS Lambda: Delete Stack

1 data "archive_file" "lambda" {
2 type = "zip"
3 source_file = "modules/bootstrap/deleteStack.py"
4 output_path = "deleteStack.zip"
5 }
6 resource "aws_lambda_function" "remove_stack" {
7 function_name = "deleteStack"
8 role = aws_iam_role.role_lambda_deleteStack.arn
9 handler = "deleteStack.lambda_handler"

10 runtime = "python3.8"
11 filename = "deleteStack.zip"
12 environment {
13 variables = {
14 region_name = var.region
15 }
16 }
17 }

Listing 7.18: deleteStack.py

1 import boto3
2 import os
3 import json
4 region_name = os.environ[’region_name’]
5 def lambda_handler(event, context):
6 try:
7 s = event[’detail’][’requestParameters’][’name’]
8 t = s.split(’-’, 1)
9 print(t[1])

10 cloudformation = boto3.client(’cloudformation’, region_name=
region_name)

11 response = cloudformation.delete_stack(StackName=t[1])
12 print(response)
13 return response
14 except Exception as e:
15 return f"An!error!occurred:!{str(e)}"

72

Chapter 7. Platform’s Implementation

7.2 STEP 2 of Platform’s construction

During the second stage of platform construction, the description is divided into two
parts. The first part explains how administrators can compile the main.tf file in
the Admin-Repository. It describes the various fields that can be filled out based
on the three types of integration. The second part covers the Terraform code used
to implement the catching part and the architecture that creates the normalization
pipeline part.

7.2.1 Modules to declare an integration

In the “main.tf” file in the Admin-Repository, the administrator can write terraform
modules with the preset fields, to declare the integrations he wants to do. One module
for each integration. The modules can be of different types depending on the type of
integration you want to do:

• Integration S3 integrated vendors/Applications with custom integration S3
• Syslog integrated vendors
• Syslog integrated vendors with dedicated nodes

All modules have common fields that are:

• type (string): the type of integration (“S3Integrated”, “SyslogIntegrated”, “Sys-
logIntegratedDedicatedNodes”)

• integration_name (string): integration name
• source(string): consisting of “./modules/<type>”, in the field between “< >”

enter the integration type.
• buckets_security_lake (string): name of buckets security lake
• mapping_json: The JSON describes the mapping must do the lambda function.

Keys can be in the simple case in the format “attribute_OCSF” or in the case of
an object attribute in the format “attribute_OCSF.attribute_1_OCSF. ...”. In
the case of object attributes with multiple fields to be entered, the administrator
must write an association line for each field. In JSON, such fields associated
with the same object attribute must be written sequentially. The JSON can
contain structured data in a variety ways:

1. Simple value {“attribute_OCSF” : “field_initial_format”}: Where key
is the OCSF attribute and value is the field name in the format to be

73

Chapter 7. Platform’s Implementation

converted.
2. The extracted value corresponding to “field_initial_format” is compared

with the keys of an enum dictionary to choose the appropriate OCSF value.

{

“attribute_OCSF”: {

“field_initial_format”: {

“val_1”: “OCSF_value_1”,

“val_2”: “OCSF_value_2”,

...

}

}

}

Where “attribute_OCSF” is the OCSF attribute and “field_initial_format”
is the field name in the format to be converted. “OCSF_val_1” is the value
to be entered in the field if the value “value_1” corresponds to the value
in the field “field_initial_format” of the log to be converted.

3. Extract a specific value within the value associated with the “field_initial_
format” field.

{

“attribute_OCSF”: {

“field_initial_format”: “regex”

}

}

Where “attribute_OCSF” is the OCSF attribute, “field_initial_format”
is the field name in the message to be converted, and “regex” is the regular
expression used to capture the right value in the value associated with the
“field_initial_format” key.

4. Extract a value through a regular expression from the value of a message
field to be mapped. The extracted value is compared with the keys of an
enum dictionary to choose the appropriate OCSF value.

{

“attribute_OCSF”: {

“field_initial_format”: {

74

Chapter 7. Platform’s Implementation

"regex": {

“val_1”: “OCSF_value_1”,

“val_2”: “OCSF_value_2”,

...

}

}

}

}

Where “attribute_OCSF” is the OCSF attribute and “field_initial_format”
is the field name in the format to be converted, and “regex” is the regular
expression used to capture the right value in the value associated with the
“field_initial_format” key. Once the value is extracted from the regex, it
searches the dictionary for the key “val_n” corresponding to this value.
And it assigns the “OCSF_value_n” to “attribute_OCSF”.

• add_field_static: JSON that contains all attributes in OCSF format with the
same value in the integration. Examples are classification attributes and those
that identify the source.

7.2.1.1 Modules type “S3Integrated”

In the integrations of type “S3Integrated” the platform does not develop the catching
part as the logs to be converted are already loaded directly into a bucket S3. As
a result, the module for these integrations must include the “buckets_source” field
(string) to specify where the platform can obtain the input data.

Listing 7.19: Example of module with type “S3Integrated”

1 module "integrationWAF" {
2 type = "S3Integrated"
3 integration_name = "integrationWAF"
4 source = "./modules/S3Integrated"
5 bucket_destination_ocsf = "aws-security-data-lake-eu-west-1-kgie"
6 buckets_source = "waf-1"
7 mapping_json = { "dst_endpoint.ip" : "dest_ip", ...}
8 add_field_static = {"class_name" : "Web!Resources!Activity", ...}
9 }

75

Chapter 7. Platform’s Implementation

7.2.1.2 Modules type “SyslogIntegrated”/ “SyslogIntegratedDedicatedNodes”

Syslog integration can be done in two ways, using common nodes (“SyslogInte-
grated”) between multiple integrations or dedicated nodes (“SyslogIntegratedDedicat-
edNodes”). For this last type the fields can be filled in the form: “desired_size_nodeGroup”
(int), “max_size_nodeGroup” (int), “min_size_nodeGroup” (int), “ami_type” (string),
“disk_size” (int), instance_types ([string]), “average_CPU_usage_nodes” (int).

The fields common to both types of integrations are:

• “min_replicas” (int): minimum number of replicates in pods
• “max_replicas” (int): maximum number of replicates in pods
• “port_expose_service” (int): port where the service is exposed
• “pod_limits_cpu” (“milliCPU”)
• “pod_limits_memory” (“Mebibyte”)
• “pod_requests_cpu” (“milliCPU”)
• “pod_requesta_memory” (“Mebibyte”)
• “average_CPU_usage_pods” (int)
• “IP_source” (String <0.0.0.0>)
• “buffer_size” (kilobyte/kibibyte/megabyte/mebibyte)
• “flush_interval” (seconds/minutes)

Listing 7.20: Example of module with type “SyslogIntegratedDedicatedNodes”

1 module "integrationWAF" {
2 type = "!SyslogIntegratedDedicatedNodes"
3 integration_name = "integrationSyslog"
4 source = "./modules/!SyslogIntegratedDedicatedNodes"
5 bucket_destination_ocsf = "aws-security-data-lake-eu-west-1-kohg"
6 mapping_json = { "actor.invoked_by" : "ident", ...}
7 add_field_static = {"class_name" : "!Process!Activity", ...}
8 desired_size_nodeGroup = 3
9 max_size_nodeGroup = 7

10 min_size_nodeGroup = 2
11 ami_type = "AL2_x86_64"
12 disk_size = 5
13 instance_types = ["t2.micro"]
14 average_CPU_usage_nodes = 60
15 min_replicas = 4
16 max_replicas = 50

76

Chapter 7. Platform’s Implementation

17 port_expose_service = 5140
18 pod_limits_cpu = 1000m
19 pod_limits_memory = "1024Mi"
20 pod_requests_cpu = 1000m
21 pod_requests_cpu = "1024Mi"
22 average_CPU_usage_pods = 50
23 IP_source = "23.0.0.23"
24 buffer_size = 256k
25 flush_interval = 1m
26 }

7.2.2 Implementation Catching Part

This section specifically caters to sources categorized under the “Syslog” type. This
differentiation is necessary as sources labeled as “S3 integrated Vendors” and “Appli-
cation with custom integration” already deposit data directly into S3 buckets. Con-
sequently, the Ingestion Pipeline can seamlessly retrieve data from these containers.

The following constructs are built on the foundation of the Ingestion VPC and its
components.

7.2.2.1 Node Group and Autoscaling policy

The administrator has the flexibility to choose between utilizing shared nodes, which
are used by multiple integrations, or dedicated nodes, exclusive to their integration. If
there are one or more integrations opting for shared nodes, the platform will generate
a Node Group resource and associate it with an Autoscaling policy. Alternatively,
for integrations requiring dedicated nodes, the platform will create a separate Node
Group resource and Autoscaling policy for each integration. This allows the admin-
istrator to customize the configuration for each integration as needed. Nodes are
provisioned within the private subnets of the cluster. Configuration parameters in-
clude the desired number of nodes, along with specified minimum and maximum
thresholds. Additionally, settings for Amazon Machine Image type, instance type,
and disk size are defined. Each group node is allocated a role governed by the follow-
ing policies: “AmazonEKSWorkerNodePolicy”, “AmazonEKS_CNI_Policy”, “Ama-
zonEC2ContainerRegistryReadOnly”, and “CloudWatchAgentServerPolicy”. Further-
more, a label is assigned to ensure pods are deployed on the appropriate nodes.

Listing 7.21: AWS EKS Node Group for dedicate Nodes

1 resource "aws_eks_node_group" "aws_eks_node_group" {
2 cluster_name = var.global_params["eks_name"]

77

Chapter 7. Platform’s Implementation

3 node_group_name = var.node_group_name
4 node_role_arn = aws_iam_role.role_node_group.arn
5 subnet_ids = [var.global_params["subenet_1_id"], var.global_params

["subenet_2_id"], var.global_params["subenet_3_id"]]
6 scaling_config {
7 desired_size = var.desired_size_nodeGroup
8 max_size = var.max_size_nodeGroup
9 min_size = var.min_size_nodeGroup

10 }
11 ami_type = var.ami_type
12 disk_size = var.disk_size
13 instance_types = var.instance_types
14
15 update_config {
16 max_unavailable = 1
17 }
18 labels = {
19 nodegroup = "${var.node_group_name}-label"
20 }
21 }

AWS Autoscaling Policy utilizes the Target Tracking Scaling methodology and seam-
lessly integrates with an existing AWS EKS node group configuration. The essence of
this policy lies in its proactive management of resource scaling based on the average
CPU utilization metric obtained from CloudWatch. By setting a target value, the
policy orchestrates adjustments to the capacity of the autoscaling group, ensuring
a balanced and optimal utilization of resources within the infrastructure. This ad-
justment, performed under the “ChangeInCapacity” adjustment type, facilitates the
addition or removal of instances as necessary to maintain the desired CPU utiliza-
tion target. Furthermore, the configuration incorporates an instance warm-up period.
This temporal allowance enables newly launched instances to initialize and stabilize
their operations before being factored into the scaling decisions, thereby enhancing
the reliability and accuracy of the scaling mechanism.

Listing 7.22: AWS autoscaling policy for dedicate Nodes

1 resource "aws_autoscaling_policy" "example" {
2 name = "cpu-scaling-policy"
3 policy_type = "TargetTrackingScaling"
4 adjustment_type = "ChangeInCapacity"
5 autoscaling_group_name = aws_eks_node_group.aws_eks_node_group.

resources[0].autoscaling_groups[0].name
6 estimated_instance_warmup = var. instance_warmup
7 target_tracking_configuration {

78

Chapter 7. Platform’s Implementation

8 predefined_metric_specification {
9 predefined_metric_type = "ASGAverageCPUUtilization"

10 }
11 target_value = var.target_value
12 }
13 }

7.2.2.2 Kubernetes components

Namespace

The platform sets up a dedicated namespace for each integration, giving it a name
relevant to that integration.

Association IAM role to service-account

Applications running within the containers of a Pod can leverage either the AWS SDK
or the AWS CLI to interact with AWS Services via API calls, using IAM permissions
for authorization. These applications are required to sign their API requests to AWS
with appropriate AWS credentials. This signing process involves associating an IAM
role with a Kubernetes service account and configuring the Pods to utilize this ser-
vice account. Establishing this association necessitates the creation of an OIDC IAM
identity provider for the cluster. This OIDC IAM provider enables users to authenti-
cate themselves with AWS using their credentials from an external identity provider,
simplifying the integration of AWS with existing authentication systems and enabling
access to AWS resources based on the authenticated user’s identity.

Deployment

The platform creates Kubernetes Deployment intended for orchestrating Fluentd pods
within a Kubernetes cluster environment. The deployment specification encapsulates
various parameters crucial for the successful deployment and management of these
pods. At its core, this configuration orchestrates the deployment of Fluentd pods,
with the number of replicas specified by the variable “min_replicas”. The Docker
image utilized by the Fluentd container is sourced from an ECR repository. Resource
constraints are imposed on the container to regulate its CPU and memory consump-
tion, ensuring efficient resource utilization within the Kubernetes cluster. Port con-
figuration is established to expose the necessary network interface for communication
with the Fluentd pods. Environment variables are pivotal in configuring the Flu-
entd pods. Variables like “STAGING_BUCKET”, “PORT_EXPOSE_SERVICE”,

79

Chapter 7. Platform’s Implementation

“REGION”, “POD_NAME”, “CHUNCK_SIZE”, and “FLUSH_INTERVAL” are
meticulously set to ensure the creation of the appropriate image. Additionally, node
affinity is employed to dictate the scheduling behavior of Fluentd pods. By specify-
ing node selectors based on specific node labels, the deployment ensures that Fluentd
pods are distributed across nodes in alignment with predefined criteria.

Listing 7.23: Deployment

1 resource "kubernetes_deployment" "rsyslog" {
2 metadata {
3 name = "fluentd-${var.kubernetes_namespace}"
4 namespace = kubernetes_namespace.rsyslog.metadata.0.name
5 }
6 spec {
7 replicas = var.min_replicas
8 selector {
9 match_labels = {

10 app = "Fluentd"
11 }
12 }
13 template {
14 metadata {
15 labels = {
16 app = "Fluentd"
17 }
18 }
19 spec {
20 service_account_name = var.service_account_name
21 container {
22 image = "${var.account_id}.dkr.ecr.${var.region}.amazonaws.com/${var.

ecr}:latest"
23 name = "fluentd-container"
24 resources {
25 limits = {
26 cpu = var.cpu_limits
27 memory = var.memory_limits
28 }
29 requests = {
30 cpu = var.cpu_requests
31 memory = var.memory_requests
32 }
33 }
34 port {
35 container_port = var.port_pod
36 }
37 env{

80

Chapter 7. Platform’s Implementation

38 name = "STAGING_BUCKET"
39 value = var.bucket_fluentd_staging
40 }
41 env{
42 name = "PORT_EXPOSE_SERVICE"
43 value = var.port_expose_service
44 }
45 env{
46 name = "REGION"
47 value = var.region
48 }
49 env{
50 name = "FLUSH_INTERVAL"
51 value = var.region
52 }
53 env{
54 name = "CHUNCK_SIZE"
55 value = var.region
56 }
57
58 env {
59 name = "POD_NAME"
60 value_from {
61 field_ref {
62 field_path = "metadata.name"
63 }
64 }
65 }
66 }
67 affinity {
68 node_affinity {
69 required_during_scheduling_ignored_during_execution {
70 node_selector_term {
71 match_expressions {
72 key = "nodegroup"
73 operator = "In"
74 values = ["${var.node_group_name}-label"]
75 }
76 }
77 }
78 }
79 }
80
81 }
82 }
83 }
84 depends_on = [kubernetes_namespace.rsyslog, kubernetes_config_map.

pod_info]

81

Chapter 7. Platform’s Implementation

85 }

Service LoadBalancer

The platform defines a Kubernetes service resource tailored for a Fluentd deployment.
Within the “metadata” block, the service is assigned a name and the namespace for
this service is obtained from the metadata of another Kubernetes resource. Moving to
the “spec” block, the selector attribute designates the pods to which incoming traffic
will be directed. The port configuration is meticulously defined within the “port”
block. Here, the service is exposed on a specified port (“var.port_expose_service”)
and forwards incoming traffic to pods via the target port. Lastly, the service type
is specified as “LoadBalancer”, indicating that the Kubernetes platform should allo-
cate an external IP address to enable access to the service from outside the cluster.
This allows external clients to communicate with Fluentd seamlessly, enhancing the
service’s accessibility and utility.

Listing 7.24: LoadBalancer Service

1 resource "kubernetes_service" "rsyslog" {
2 metadata {
3 name = "service-fluentd-${var.kubernetes_namespace}"
4 namespace = kubernetes_namespace.rsyslog.metadata.0.name
5 }
6 spec {
7 selector = {
8 app = kubernetes_deployment.rsyslog.spec.0.template.0.metadata.0.

labels.app
9 }

10 port {
11 port = var.port_expose_service
12 target_port = var.port_expose_service
13 }
14 external_traffic_policy = "Cluster"
15 type = "LoadBalancer"
16 }
17 depends_on = [kubernetes_deployment.rsyslog]
18 }

Horizontal Pod Autoscaler

The platform creates a Horizontal Pod Autoscaler resource. This resource is config-
ured to manage the scaling behavior of pods within a Kubernetes cluster. Within

82

Chapter 7. Platform’s Implementation

the spec section, parameters such as “max_replicas” and “min_replicas” are spec-
ified, indicating the upper and lower bounds for the number of pod replicas that
can be created or terminated respectively. The “scale_target_ref” section speci-
fies the target resource type (in this case, a Deployment) and the specific name
of the deployment to which the autoscaler will be applied. Additionally, the “tar-
get_cpu_utilization_percentage” parameter is set, indicating that the autoscale will
adjust the number of pod replicas based on the CPU utilization of the specified
deployment. This setup allows for automatic scaling of pods to efficiently manage re-
source utilization within the Kubernetes cluster. The platform also installs a Metrics
Server to collect Pod metrics used by Horizontal Pod Autoscaler.

Listing 7.25: Horizontal pod autoscaler

1 resource "kubernetes_horizontal_pod_autoscaler" "example" {
2 metadata {
3 name = "autoscaler-${var.kubernetes_namespace}"
4 }
5 spec {
6 max_replicas = var.max_replicas
7 min_replicas = var.min_replicas
8
9 scale_target_ref {

10 kind = "Deployment"
11 name = kubernetes_deployment.rsyslog.metadata[0].name
12 }
13 target_cpu_utilization_percentage = var.

target_cpu_utilization_percentage
14 }
15 }

7.2.3 Implementation of architecture that creates the normalization

pipeline part.

For each integration, an integration CodeCommit repository is created specifically for
the Ingestion Pipeline normalization process. Within this repository, several key files
are loaded:

• “mappingFiled.json”: This file houses the JSON configuration that the ad-
ministrator loads into the “mapping_json” field within the integration module
declaration in the administrator repository.

• “addFieldStatic.json”: Here lies the JSON data that the administrator loads
into the “add_field_static” field within the integration module declaration in

83

Chapter 7. Platform’s Implementation

the administrator repository.
• “template.yml”: This YAML file serves as a template for the cloud infrastruc-

ture needed to establish an ingestion normalization pipeline. CloudFormation
uses this file to orchestrate the creation of the Stack responsible for the creation
of the part of mapping and uploading data in the Security Lake

• “mappingFunction.py”: A Python script containing the code utilized by the
lambda function for transforming logs into the OCSF format.

By organizing and labeling these files clearly, the integration process becomes more
streamlined and manageable.

In addition, for each integration, it creates a Codepipeline that can read files in the
Integration Repository and depending on the file configuration deploy a Serverless
Application Model through AWS CloudFormation.

To begin, establish the pipeline configuration by assigning it a distinct name and
specifying the IAM ARN role responsible for executing its actions. Then, establish
the artifact store using an S3 bucket, ensuring the safe storage of pipeline artifacts.

Proceed by defining the “Source” stage to fetch the source code. Utilize CodeCom-
mit as the source provider, configuring it with the relevant repository and branch
names. Artifacts produced during this stage will be stored in the designated location
commonly referred to as “source_output”.

Finally, set the build stage to run the deployment of a SAM model through Cloud-
Formation. CodeBuild is used for this step, specifying the input artifacts from the
previous step. CodeBuild’s goal is to automate the build and deployment of a server-
less application developed with AWS SAM. The CodeBuild project is configured with
specific environment variables, including the stack name, source bucket, destination
buckets, region, and AWS account ID. The build process is set to run the commands
defined in a “buildspec_integration_create.yaml”. This YAML file orchestrates the
build process in three steps:

• During Installation, the necessary dependencies, such as AWS SAM CLI, are
installed.

• Pre_build bundles the SAM application and loads the artifacts into an S3
bucket.

• Finally, the Build phase deploys the packaged SAM application using Cloud-

84

Chapter 7. Platform’s Implementation

Formation with specified parameters and features.

Listing 7.26: Codepipeline-integration

1 resource "aws_codepipeline" "codepipeline-integration" {
2 name = "pipeline-${var.integration_name}"
3 role_arn = aws_iam_role.codepipeline_role.arn
4 artifact_store {
5 location = aws_s3_bucket.codepipeline_bucket.bucket
6 type = "S3"
7 }
8 stage {
9 name = "Source"

10 action {
11 name = "Source"
12 category = "Source"
13 owner = "AWS"
14 provider = "CodeCommit"
15 version = "1"
16 output_artifacts = ["source_output"]
17
18 configuration = {
19 RepositoryName = var.name_repository_user
20 BranchName = "main"
21 }
22 }
23 }
24 stage {
25 name = "build_stage"
26 action {
27 name = "terraform_create"
28 category = "Build"
29 owner = "AWS"
30 provider = "CodeBuild"
31 input_artifacts = ["source_output"]
32 version = "1"
33 configuration = {
34 ProjectName = aws_codebuild_project.create_project.name
35 }
36 }
37 }
38 }

Listing 7.27: Codebuild SAM model

1 resource "aws_codebuild_project" "create_project" {

85

Chapter 7. Platform’s Implementation

2 name = "create_project-${var.integration_name}"
3 description = "create_codebuild_project"
4 build_timeout = "40"
5 service_role = aws_iam_role.create_project_role.arn
6 artifacts {
7 type = "CODEPIPELINE"
8 }
9 environment {

10 compute_type = "BUILD_GENERAL1_SMALL"
11 image = "aws/codebuild/standard:5.0"
12 type = "LINUX_CONTAINER"
13 privileged_mode = true
14
15 environment_variable {
16 name = "STACK_NAME"
17 value = var.integration_name
18 }
19 environment_variable {
20 name = "BUCKET_LAMBDA"
21 value = aws_s3_bucket.lambda_buckets.bucket
22 }
23 environment_variable {
24 name = "INTEGRATION_NAME"
25 value = var.integration_name
26 }
27 environment_variable {
28 name = "SOURCE_BUCKET"
29 value = var.bucket_fluentd_staging
30 }
31 environment_variable {
32 name = "DESTINATION_BUCKET"
33 value = var.bucket_destination_ocsf
34 }
35 environment_variable {
36 name = "REGION"
37 value = var.region
38 }
39 environment_variable {
40 name = "ACCOUNT_ID"
41 value = var.account_id
42 }
43 }
44 source {
45 type = "CODEPIPELINE"
46 buildspec = "buildspec-user-create.yaml"
47 }
48 }

86

Chapter 7. Platform’s Implementation

1 version: 0.2
2 phases:
3 install:
4 commands:
5 - ls
6 - unzip aws-sam-cli-linux-x86_64.zip -d sam-installation
7 - sudo ./sam-installation/install
8 - sam --version
9 pre_build:

10 commands:
11 - cd SAM
12 - sam package --template-file template.yml --output-template-file

package.yml --s3-bucket "$BUCKET_LAMBDA"
13 build:
14 commands:
15 - sam deploy --template-file package.yml --stack-name "$STACK_NAME"

--parameter-overrides "StackName=$STACK_NAME IntegrationName=
$INTEGRATION_NAME SourceBucket=$SOURCE_BUCKET DestinationBucket=
$DESTINATION_BUCKET Region=$REGION AccountId=$ACCOUNT_ID" --
capabilities CAPABILITY_IAM CAPABILITY_NAMED_IAM

Listing 7.28: buildspec-user-create.yaml

7.3 STEP 3 of Platform’s construction

This final stage delineates the implementation of the Normalization Ingestion Pipeline.
The initial segment describes the contents of the Integration Repository files, while
the subsequent part elucidates the internal workflow of the ingestion pipeline.

7.3.1 Integration Repository files

The Integration Repository comprises four key files:

• “mappingField.json”: This file contains the JSON configuration that the ad-
ministrator loads in the “mapping_json” field within the integration module
statement in the Administrator Repository.

• “addFieldStatic.json”: Herein lies JSON data used by administrators for pop-
ulating the “add_field_static” field within the integration module declaration
in the Administrator Repository.

87

Chapter 7. Platform’s Implementation

• “template.yml”: A YAML file functioning as a blueprint for the cloud infras-
tructure required to establish Ingestion Pipeline normalization. CloudForma-
tion leverages this file to orchestrate the creation of the Stack responsible for
the mapping segment.

• “mappingFunction.py”: A Python script comprising the code executed by the
lambda function for transforming logs into the OCSF format.

These JSON files facilitate adjustments to message mappings in the OCSF format,
providing a streamlined approach for automation. Modifications made within these
files can significantly expedite automation processes.

7.3.1.1 template.yaml

The configuration in the “template.yaml” file delineates the structure of an AWS
CloudFormation template. This template orchestrates the creation and configuration
of various AWS resources.

The configuration starts by specifying the version of the AWS CloudFormation tem-
plate format being used, which is ’2010-09-09’. It then employs the ’AWS::Serverless-
2016-10-31’ transform to utilize AWS Serverless Application Model (SAM) features.
The description provides an overview of the purpose of the template, which is to
Create Ingestion Pipeline.

Parameters section defines input parameters required for the template. These parame-
ters include StackName, IntegrationName, SourceBucket, DestinationBucket, Region,
and AccountId, allowing customization and flexibility during deployment.

Resources section defines the AWS resources to be created and configured by the
template. Notably:

1. MappingFunction:

• Type: This resource is of type AWS::Serverless::Function, indicating it is
a serverless function managed by AWS Lambda.

• Properties:

– Runtime: Specifies the runtime environment for the Lambda function,
which in this case is Python 3.10.

– Handler: Indicates the entry point for the Lambda function code (map-

88

Chapter 7. Platform’s Implementation

pingFunction.handler).
– FunctionName: Dynamically generates a name for the Lambda func-

tion using the IntegrationName parameter. This allows for unique
naming based on the integration.

– Architectures: Defines the architecture for the Lambda function, en-
suring compatibility with the specified architecture.

– Layers: Specifies additional layers to be attached to the Lambda func-
tion. In this case, it includes an AWS SDK layer for Pandas, possibly
indicating the function’s dependence on Pandas for data processing.

– Timeout: Sets the maximum execution time for the Lambda function.
– MemorySize: Defines the amount of memory allocated to the Lambda

function during execution.
– Environment: Provides environment variables to the Lambda function,

including parameters and integration-specific values required for its
operation.

– Policies: Grants necessary permissions to the Lambda function through
IAM policies. Here, permissions for accessing specified S3 buckets are
configured.

2. IAMRole3: An IAM role used by the Lambda functions, CreateTrigger. It
includes policies for S3 access, CloudWatch Logs, and Lambda permissions.

3. CustomResource: This resource type defines a custom resource that extends
CloudFormation’s capabilities. With “ServiceToken: !GetAtt CreateTrigger.Arn”,
it specifies the ARN of the Lambda function that handles the custom resource’s
logic. This Lambda function is invoked when the custom resource is created.

4. CreateTrigger Lambda Function:

• It specifies that the Lambda function depends on another resource named
“MappingFunction”.

• The function’s properties include:

– Handler: Specifies the entry point for the Lambda function code.
– Runtime: Specifies the runtime environment for the function, in this

case, Python 3.8.
– Role: Specifies the IAM role used by the Lambda function. This role

is referenced from another resource named “IAMRole3”.

89

Chapter 7. Platform’s Implementation

– Timeout: Specifies the maximum execution time for the Lambda func-
tion.

– Environment: Defines environment variables accessible to the Lambda
function.

– Code: This section contains the actual code that will be executed by
the Lambda function. The code is provided as a ZIP archive under the
“ZipFile” property. The function code is written in Python and in-
cludes imports for necessary libraries such as boto3, cfnresponse, and
json. The code retrieves environment variables using the “os.environ”
dictionary and defines a handler function named “handler” that pro-
cesses events passed to the function by AWS Lambda. It associates an
S3 bucket event trigger with the Lambda function, MappingFunction,
by adding permission and configuring S3 bucket notifications.

1 AWSTemplateFormatVersion: ’2010-09-09’
2 Transform: ’AWS::Serverless-2016-10-31’
3 Description: Create Ingestion Pipeline
4

5 Parameters:
6 StackName:
7 Type: String
8 IntegrationName:
9 Type: String

10 SourceBucket:
11 Type: String
12 DestinationBucket:
13 Type: String
14 Region:
15 Type: String
16 AccountId:
17 Type: String
18

19 Resources:
20 MappingFunction:
21 Type: AWS::Serverless::Function
22 Properties:
23 Runtime: python3.10
24 Handler: mappingFunction.handler
25 FunctionName: !Sub ’MappingFunction-${IntegrationName}’
26 Architectures:
27 - "x86_64"

90

Chapter 7. Platform’s Implementation

28 Layers:
29 - "arn:aws:lambda:eu-west-1:336392948345:layer:AWSSDKPandas-

Python310:3"
30 Timeout: 900
31 MemorySize: 2048
32 Environment:
33 Variables:
34 IntegrationName: !Sub ’${IntegrationName}’
35 DestinationBucket: !Sub ’${DestinationBucket}’
36 Region: !Sub ’${Region}’
37 AccountId: !Sub ’${AccountId}’
38 Policies:
39 - Version: "2012-10-17"
40 Statement:
41 - Effect: "Allow"
42 Action:
43 - "s3:*"
44 Resource:
45 - !Sub "arn:aws:s3:::${SourceBucket}"
46 - !Sub "arn:aws:s3:::${SourceBucket}/*"
47 - !Sub "arn:aws:s3:::${DestinationBucket}"
48 - !Sub "arn:aws:s3:::${DestinationBucket}/*"
49

50 CreateTrigger:
51 Type: ’AWS::Lambda::Function’
52 DependsOn: MappingFunction
53 Properties:
54 Handler: index.handler
55 Runtime: python3.8
56 Role: !GetAtt IAMRole3.Arn
57 Timeout: 10
58 Environment:
59 Variables:
60 IntegrationName: !Sub ’${IntegrationName}’
61 SourceBucket: !Sub ’${SourceBucket}’
62 Region: !Sub ’${Region}’
63 AccountId: !Sub ’${AccountId}’
64 Code:
65 ZipFile: |
66 import boto3
67 import cfnresponse
68 import json

91

Chapter 7. Platform’s Implementation

69 import os
70 IntegrationName = os.environ[’IntegrationName’]
71 SourceBucket = os.environ[’SourceBucket’]
72 Region = os.environ[’Region’]
73 AccountId = os.environ[’AccountId’]
74 def handler(event, context):
75 try:
76 if event[’RequestType’] in [’Create’]:
77 lambda_client = boto3.client(’lambda’)
78 lambda_client.add_permission(
79 FunctionName=f’MappingFunction-{IntegrationName}’,
80 StatementId=’ID-1’,
81 Action=’lambda:InvokeFunction’,
82 Principal=’s3.amazonaws.com’,
83 SourceArn=f’arn:aws:s3:::{SourceBucket}’
84)
85 s3 = boto3.client(’s3’)
86 s3.put_bucket_notification_configuration(
87 Bucket=f’{SourceBucket}’,
88 NotificationConfiguration= {’LambdaFunctionConfigurations

’:[{’LambdaFunctionArn’: f’arn:aws:lambda:{Region}:{AccountId}:function
:MappingFunction-{IntegrationName}’, ’Events’: [’s3:ObjectCreated:*’
]}]}

89)
90 responseData = {"Success": "Good"};
91 cfnresponse.send(event, context, cfnresponse.SUCCESS,

responseData)
92 except Exception as e:
93 print(f"Error: {e}")
94 cfnresponse.send(event, context, cfnresponse.FAILED, {"Error"

: str(e)})
95

96 IAMRole3:
97 Type: "AWS::IAM::Role"
98 Properties:
99 Path: "/"

100 RoleName: !Sub ’custom-resource-iam-role-${IntegrationName}’
101 AssumeRolePolicyDocument: "{\"Version\":\"2012-10-17\",\"Statement\"

:[{\"Sid\":\"\",\"Effect\":\"Allow\",\"Principal\":{\"Service\":\"
lambda.amazonaws.com\"},\"Action\":\"sts:AssumeRole\"}]}"

102 MaxSessionDuration: 3600
103 Policies:

92

Chapter 7. Platform’s Implementation

104 - PolicyName: "Policy-s3"
105 PolicyDocument:
106 Version: "2012-10-17"
107 Statement:
108 - Effect: "Allow"
109 Action:
110 - "s3:*"
111 Resource: ’arn:aws:s3:::*’
112 - PolicyName: "Policy-logs"
113 PolicyDocument:
114 Statement:
115 - Effect: "Allow"
116 Action:
117 - "logs:CreateLogGroup"
118 Resource: !Sub ’arn:aws:logs:${Region}:${AccountId}:*’
119 - Effect: "Allow"
120 Action:
121 - "logs:CreateLogStream"
122 - "logs:PutLogEvents"
123 Resource: !Sub ’arn:aws:logs:${Region}:${AccountId}:log-

group:/aws/lambda/*’
124 - PolicyName: "Policy-lambda"
125 PolicyDocument:
126 Statement:
127 - Effect: "Allow"
128 Action:
129 - "lambda:AddPermission"
130 Resource: !Sub ’arn:aws:lambda:${Region}:${AccountId}:

function:*’
131

132 CustomResource:
133 Type: ’AWS::CloudFormation::CustomResource’
134 Properties:
135 ServiceToken: !GetAtt CreateTrigger.Arn

Listing 7.29: Codebuild SAM model

7.3.1.2 mappingFunction.py

The “mappingFunction.py” script differs between the “SyslogIntegrated” and “S3Inte-
grated” integrations due to the distinct formats of the incoming messages. For “Sys-
logIntegrated”, messages are loaded into the staging buckets of Fluentd pods in the

93

Chapter 7. Platform’s Implementation

format <data><tag.facility.severity><data(JSON)>, like this example: “2023-11-
29T13:51:00+00:00 system.authpriv.notice {“host”:“VRECDFE6B3505”, “ident”:
“sudo”, “message”:“...”}”. In contrast, for “S3Integrated”, there is only a single JSON
format. While the overall structure of mappingFunction.py remains mostly similar,
there is an additional part specifically tailored for the “SyslogIntegrated” integration.
This extra part analyzes the first two fields <data> and <tag.facility.severity>. In
the following part, we describe the Syslog integration script, in order to describe also
the additional part.

The Python script first initializes the AWS S3 client using “boto3.client(’s3’)” and
then retrieves environment variables such as IntegrationName, DestinationBucket,
Region, and AccountId. The code defines a Python feature called “handler” that
handles events triggered by changes in an Amazon S3 bucket within a Lambda AWS
feature. Extracts S3 event information such as the bucket name and object key from
the event parameter. It also uses the “urllib.parse.unquote_plus()” function to decode
the encoded key.

The function initializes an empty “vector_OCSF” vector, intended to store objects
in OCSF format before they are loaded into the Security Lake. It then proceeds to
make a request to the S3 service, providing the previously obtained bucket and key,
to retrieve the object for conversion.

Utilizing “gzip.GzipFile” as a context manager, the code efficiently unzips the content
of the file received from the S3 bucket. Subsequently, a for loop iterates through each
line of this unzipped file, representing one log entry per line.

The code below divides a line into a list using the tab character as the delimiter. The
resulting list is stored in the variable s. A new empty dictionary called “new_ocsf”
is then created to store the processed information for this line. The first item in the
list, namely the date and time in the ISO format, is extracted. This code calculates
the data path for the key in the buckets of Security Lake. It does so by converting
the date and time string to a datetime object and then formats the extracted date
to “YYYYMMDD” format. The Unix timestamp date is then converted to millisec-
onds. The processed time is stored in the “new_ocsf” dictionary. The second field,
<tag.facility.severity>, is analyzed to determine the severity level. The code exam-
ines the third part of this field and, depending on the value found, assigns the right
value to the OCSF attribute “severity_id” and its associated attribute “severity”.
These fields are then stored in the dictionary.

The code then loads the JSON file data “addFieldStatic.json” and adds it to the

94

Chapter 7. Platform’s Implementation

“new_ocsf” dictionary.

The code takes the element at position 2 from the list, saves it in a variable, “in-
put_string”. Then loads the data from the JSON file “mappingField.json” and calls
the function “process_json()” passing as arguments the loaded JSON, the dictionary
“new_ocsf” and the JSON string “input_string”.

The “process_json()” function, driven by the mapping parameters specified in the
“mappingField.json” file, orchestrates the analysis and mapping of the log “input_
string” into corresponding fields within the OCSF. These mappings are stored within
a dictionary.

Once a line’s mapping is completed, the dictionary is appended to the “vector_OCSF”.
Upon reaching a threshold of 75,000 elements in “vector_OCSF”, or after analyzing
all rows in the file, a Pandas DataFrame is constructed using the data from “vec-
tor_OCSF”. Subsequently, this data frame is converted into Parquet format and
stored within a byte buffer. The Parquet file’s name is dynamically generated uti-
lizing key components. A path within the S3 bucket is then formed, incorporating
details such as integration name, region, account ID, and event date. Finally, the
Parquet file is uploaded to the designated S3 bucket using the previously created
path.

Fuction “process_json(mappingField, new_ocsf, input_string)”

The function “process_json(...)” uses another function called “extract_value(json_
string, key)”. The “extract_value(json_string, key)” function takes a JSON string
and a key as input. The JSON string is loaded into a Python object using JSON.loads()
method. The “json_data.get(key)” method is used to retrieve the value associated
with the provided key. If the key is not found in the JSON string, the function returns
None.

The “process_json(mappingField, new_ocsf, input_string)” function is the main
function for processing. It takes three arguments: “mappingField”, which is a dictio-
nary containing the mappings, “new_ocsf”, which is a dictionary used to store the
results, and “input_string”, which is the input JSON string.

Two variables, “key_with_point” and “json_key”, are initialized in the function.

To perform the task, begin by iterating through the keys and values of the “mapping-
Field” dictionary.

95

Chapter 7. Platform’s Implementation

• If the key is in the format “key1_OSCF.Key2_OSCF.Key3_OSCF...”, save
“key1_OSCF” in the “key_with_point” variable, and the second piece of “Key2
_OSCF.Key3_OSCF...” with the value associated in the “json_key” dictionary.
If the iteration after the key starts with “key1_OSCF”, the json_key dictionary
continues to be filled. However, if it is different, create a dictionary variable
“json_new = {}” to save new fields within the object. Then, recursively call
the “process_json(json_key, json_new, input_string)”, passing as the first pa-
rameter the dictionary “json_key” and the dictionary “json_new” to fill.

• If the key and value are in the format “key1_OSCF” and “key_oldFormat”, call
the function “extract_value(. . .)” with “input_string” and the value “key_old-
Format” as arguments. This function returns the value to be saved. Save this
value in the “new_ocsf” dictionary using the key “key1_OSCF”.

• If the key and value are in the format “key1_OSCF” and {“key_oldFormat”:
{“value_1_oldFormat”: “value_1_OCSF”, ... }}, the code will call the func-
tion “extract_value(. . .)” by passing input_string and the value “key_oldFor-
mat” as arguments. This function returns the value to the old format. To con-
vert it to the OCSF value, the “extract_value(. . .)” function is invoked again by
passing the JSON {“value_1_oldFormat”: “value_1_OCSF”, ... } along with
the value in the old “value_n_oldFormat” format as arguments. This func-
tion returns the value to be saved. The value is then saved in the “new_ocsf”
dictionary using the key “key1_OSCF”.

• If the key and value are in the format “key1_OSCF” and {“key_oldFormat”:
“regular expression”}, the code will call the function “extract_value(. . .)” by
passing “input_string” and the value “key_oldFormat” as arguments. This
function returns the full value. Inside this value, the code extracts the relative
value indicated by the regular expression. If this value is present, it is saved in
the “new_ocsf” dictionary using the key “key1_OSCF

• If the key and value are in the format “key1_OSCF” and {“key_oldFormat”:{“re-
gular expression”:{value_1_oldFormat”:“value_1_OCSF”, ... }}}, the code
will call the function “extract_value(. . .)” by passing “input_string” and the
value “key_oldFormat” as arguments. This function returns the full value. In-
side this value, the code extracts the relative value indicated by the regular
expression. If this value is present, the “extract_value(. . .)” function is in-
voked again by passing the JSON {“value_1_oldFormat”: “value_1_OCSF”,
... } along with the relative value as arguments. This function returns the value
to be saved. The value is then saved in the “new_ocsf” dictionary using the
key “key1_OSCF”.

96

Chapter 7. Platform’s Implementation

Once the iteration is complete, the function will return and the “new_ocsf” dictionary
will be complete.

7.3.2 Ingestion Pipeline

The platform integration architecture uses S3 buckets to store messages awaiting
conversion to OCSF format. Messages from different sources are deposited into these
buckets either directly by S3-integrated vendors or applications with custom integra-
tions or via Fluentd Pods for Syslog-integrated sources. Lambda functions, scripted
in Python, are pivotal in handling integrations. Triggered by the uploading of objects
into specific S3 buckets, these functions meticulously analyze messages, transforming
them into the standardized OCSF format. Once a predefined threshold of converted
logs is reached, the Lambda function orchestrates the creation of a DataFrame, which
is then converted into the Parquet format. Finally, the Parquet-formatted data is up-
loaded into the Security Lake with a structured key format for efficient organization,
including metadata such as integration name, region, account ID, and event date.

97

Chapter 8

Platform’s Validation

In this chapter, we analyze the maximum traffic ingestion capacity measured in mes-
sages per second of the platform, evaluating possible bottlenecks and studying possible
optimizations. This platform is created within an AWS account, subject to constraints
such as the maximum use of EC-2’s vCPUs, the limit of parallel execution of Lambda
functions, and the maximum frequency of requests to S3 buckets. Let’s examine in
particular the integration of Linux events in Syslog format from external sources in
Security Lake.

8.1 Environment where the platform is created

The platform is created within an AWS account, that account has several limits that
affect the functionality of our platform. First, there is a cap on total CPU allocation
for EC2 instances, fixed at 64 vCPUs. This means that the sum of vCPUs on all
nodes cannot exceed 64.

Secondly, there is a constraint on the performance of Lambda functions. We are al-
lowed a maximum of 50 simultaneous runs of Lambda. When this limit is reached,
subsequent Lambda invocations are queued, leading to limitation. Lambda will at-
tempt to run these events in the queue twice, with delays between attempts. However,
if the event fails all attempts or stays in the queue too long, Lambda discards it. The
throttle phenomenon indicates the maximum ingestion capacity of the platform.

In addition, for buckets S3, we are limited to 3500 PUT requests per second for the
same prefix. In addition, files uploaded in the Parquet format Security Lake must
be less than 50 MB. To ensure that Lambda remains within the limit of 3500 PUT
requests per second, we aim to aggregate multiple messages in the same Parquet file
without exceeding the 50MB size limit.

8.2 Linux events’ integration (Syslog)

The integration of the Linux events in Syslog format in Security Lake was done using
the platform with the catching part having nodes with instance type “t3.2xlarge”,
(8vcpu and 32 of GiB of memory). The nodes are 3 and then scale up to a maximum

98

Chapter 8. Platform’s Validation

of 7 when the average total CPU consumption exceeds 50%.

The module created to configure the integration in the “main.tf” file of the Admin
Repository is represented in the following code section.

Listing 8.1: Module of integration Linux Syslog into Admin Repository

1 module "integrationLinuxSyslog" {
2 type = "SyslogIntegrate"
3 integration_name = "integrationLinuxSyslog"
4 source = "./modules/SyslogIntegrated"
5 bucket_destination_ocsf = "aws-security-data-lake-eu-west-1-kohgjkhjbvg"
6 mapping_json = {
7 "category_name2":"System!Activity",
8 "category_id":1,
9 "class_name":"Process!Activity",

10 "class_uid":1007,
11 "metadata":{"version":"v1.0.0","profiles":["host"], "product":{"name":"

VM"}}}
12 }
13 add_field_static = {
14 "actor.process.cmd_line":"ident",
15 "actor.user.name":"host",
16 "device.host":"host",
17 "process.cmd_line":{"message" : "COMMAND=(.+)"},
18 "process.lineage":{"message" : "COMMAND=([^!]+)"},
19 "process.xattributes.pwd":{"message" : "PWD=([^!]+)"},
20 "process.user.name":{"message" : "USER=([^!]+)"},
21 "process.user.type_id":{"message":{"USER=([^!]+)":{"user":1, "root":2,

"system":3, "None":0}}},
22 "process.user.type":{"message":{"USER=([^!]+)":{"user":"User", "root":"

Admin", "system":"System", "None":"Unknown"}}},
23 "activity_id":{"message":{"COMMAND=":{"COMMAND=":1, "None":0}}},
24 "activity":{"message":{"COMMAND=":{"COMMAND=":"Launch", "None":"Unknown

"}}},
25 "raw_data":"message"
26 }
27 port_expose_service = 5140
28 min_replicas = 9
29 max_replicas = 200
30 pod_limits_cpu = "1000m"
31 pod_limits_memory = "1024Mi"
32 pod_requests_cpu = "1000m"
33 pod_requests_cpu = "1024Mi"
34 average_CPU_usage_pods = 50
35 IP_source = "123.23.1.21"
36 buffer_size = 256k

99

Chapter 8. Platform’s Validation

37 flush_interval = 1m
38 }

8.3 Test 0

In the initial test, we utilized the configuration outlined in the preceding chapter.
The scalability of the system was examined, in particular in relation to the incoming
flow of messages per second. Initially, in the catching part, the system uses 9 pods,
a number that remained consistent until the message flow reached 28,000 messages
per second. As the message flow increased beyond this threshold, the number of
pods dynamically scaled up, reaching its maximum allocation when the incoming
flow surpassed 260,000 messages per second.

Similarly, the number of nodes in the system remained constant until the message
flow reached 100,000 messages per second. Beyond this point, the system dynamically
scaled up the number of nodes, again capping at the maximum when the incoming
flow exceeded 260,000 messages per second.

Graphs 8.1 and 8.2 depict the relationship between incoming message flow and the
corresponding resource allocation in two different aspects of the system. In both
graphs, the left vertical axis represents the rate of incoming messages per second,
while the horizontal axis denotes the passage of time. On the right vertical axis, the
resource allocation is illustrated, with Graph 8.1 showing the number of pods and
Graph 8.2 displaying the number of nodes. This visualization helps us understand
how the system dynamically scales its resources in response to varying message loads
over time.

Figure 8.1: Results Test-0: pods. Figure 8.2: Results Test-0: nodes

In the Normalization ingestion pipeline, we observe a direct correlation between in-

100

Chapter 8. Platform’s Validation

coming traffic and the number of lambda invocations and concurrent executions.
Once the incoming traffic surpasses 260,000 messages per second, Lambda becomes
saturated, resulting in queued invocation requests and increased throttling instances.

Three graphs, numbered 8.3, 8.4, and 8.5, intricately illustrate the behavior of our nor-
malization pipeline, focusing notably on the constraint of parallel executions. Within
each graph, the blue line signifies the influx of data into the platform, correlating
with the left ordinate axis. In the initial graph (8.3), the green line portrays the
frequency of Lambda function invocations. Moving to the subsequent depiction (8.4),
the yellow line showcases the concurrent execution of Lambda functions, highlighting
the operational capacity of our infrastructure. Finally, in the third graph (8.5), the
red line delineates instances of throttling, identifying operational bottlenecks that
may impede performance. These visualizations offer a comprehensive understanding
of our normalization pipeline’s dynamics, shedding light on both its strengths and
limitations in managing parallel executions.

Figure 8.3: Results Test-0: invocations

101

Chapter 8. Platform’s Validation

Figure 8.4: Results Test-0: concurrent execution

Figure 8.5: Results Test-0: throttles

With this test configuration, the platform demonstrates its capability to process
260,000 messages per second. This achievement stands out significantly, surpass-
ing the EPS (events per second) of a large SIEM by threefold and exceeding the
C-SOC (Central Directorate of Criminal Police, Italy [24]) by an impressive 34 times.

8.4 Optimization of lambda

To optimize ingestion capacity, it is crucial to control the invocation frequency of
the Lambda function. This frequency directly correlates with the number of data
loads initiated by Pods accessing staging buckets. One approach to reduce loads is by

102

Chapter 8. Platform’s Validation

extending the buffering time within the Pods. This adjustment prompts the Pods to
handle larger files but with reduced frequency, effectively decreasing the overall load
on the system.

Another change to decrease loads is to reduce the number of pods. Fewer pods with
a larger cpu that absorb more data.

Our research focuses on analyzing two key factors: the buffering time (flush_t inter-
val) within Fluentd Pods and the vCPU size assigned to each Pod. By adjusting these
parameters, we aim to gauge their impact on the platform’s ability to handle traf-
fic ingestion effectively. This investigation will provide valuable insights for refining
optimization strategies to enhance platform performance.

8.4.1 Test: flush_interval‘s variations

In these tests, we maintain a constant value of “1000m” for the variables “pod_limits_
cpu” and “pod_requests_cpu”. Our focus is then directed towards assessing the
platform’s capacity to ingest incoming traffic by varying the buffer’s time, known as
“flush_interval”, within the pods. The tests we conducted varied the “flush_interval”
parameter across different time intervals: 1s, 5s, 10s, 30s, 60s, 90s, 120s, 180s, and
240s.

The graph presented in Figure 3.4 illustrates the relationship between ingestion ca-
pacity (messages per second) and the flow rate (measured in seconds). Initially, the
curve exhibits a sharp incline from 1s to 10s, indicating rapid growth in ingestion
capacity. Subsequently, from 10s to 120s, the curve demonstrates a more gradual
ascent, suggesting a milder increase in ingestion capacity over time. Beyond 120s,
the growth rate of the curve diminishes progressively, eventually converging towards
an ingestion capacity of approximately 310,000 messages per second.

103

Chapter 8. Platform’s Validation

Figure 8.6: Graph of ingestion capacity at flush_interval variation

8.4.2 Test: Pod CPU variations

The tests maintained a constant 60-second flush buffer while adjusting the “pod_requ-
ests_cpu” and “pod_limits_cpu” fields. Pod CPU resources were incrementally in-
creased from 0.25 up to 1.5, with a deliberate decision not to exceed 1.5 CPUs to
maintain adequate redundancy. This adjustment resulted in fewer pods within the
EKS cluster but with enhanced computational power.

The aim of this CPU increment was to assess the platform’s ingestion capacity con-
cerning pod vCPU variations. Graph 8.4 illustrates a notable growth trend, particu-
larly pronounced from 0.25 to 0.5 CPU, followed by continued growth from 0.5 to 1
CPU. However, the growth trajectory starts to diminish beyond 1 CPU, particularly
evident from 1 to 1.5 CPUs.

Figure 8.7: Graph of ingestion capacity at pod CPU variation

104

Chapter 8. Platform’s Validation

8.4.3 Test: unifying the results of previous studies

We combined the results of previous studies to create an optimized platform. We
chose a flush interval of 120 seconds because increasing the value does not improve
the gain significantly. We also used 1.5 CPU pods, as it provided the greatest gain
without decreasing redundancy too much.

Figures 8.8, 8.9, and 8.10 describe the behavior of the ingestion pipeline within the
platform concerning the influx of incoming messages. The y-axis represents the input
flow in messages per second, while the x-axis denotes time. In all graphs, the blue line
signifies the flow entering the platform. In the first figure, the green line represents
the invocation count of the lambda function, while in the second figure, the yellow
line indicates the number of concurrent executions. In the third graph, the red line
depicts the occurrences of throttling.

The platform demonstrated its capability to efficiently ingest traffic up to 375,000
messages per second. However, as illustrated in the figures, when the message flow
surpasses 400,000 messages per second, the parallel executions of the lambda function
reach the maximum of 50, resulting in the first instances of throttling.

Figure 8.8: Results of the optimized test: invocations.

105

Chapter 8. Platform’s Validation

Figure 8.9: Results of the optimized test: concurrent executions.

Figure 8.10: Results of the optimized test: throttles.

106

Chapter 9

Conclusions

The developed platform enhances Security Lake functionality by seamlessly integrat-
ing external third-party sources. Specifically, it can incorporate three types of sources:
S3 integrated Vendors, Applications with custom S3 integration, and Syslog inte-
grated Vendors.

This platform streamlines and expedites integration through a semi-automated pro-
cess: integrators utilize pre-configured Terraform modules for each integration, de-
tailing the integration method and the mapping from the original format to OSCF.
Leveraging this information, the platform autonomously constructs an infrastructure
capable of collecting external source logs, transforming and mapping them to the
OSCF format, and efficiently uploading them into the Security Lake. Developed
using the Terraform language, the platform is easily extensible, requiring minimal
additional code to accommodate new integration types.

Notably, the platform is capable of scaling in relation to the incoming message flow
that it has to enter into the Security Lake. Following optimization, it can ingest up
to 375,000 messages per second, a performance level five times higher than that of
large SIEMs and fifty times greater than the C-SOC of the Central Directorate of
Criminal Police (ITALY).

OCSF is an expanding and increasingly used Schema Framework. In the future it
could also be extended in a wider context and not only that related to Cybersecurity.

107

Bibliographic references

1. https : / / www . splunk . com / en _ us / blog / security / overcome - cybersecurity -
challenges-to-improve-digital-resilience.html.

2. https://schema.ocsf.io/1.0.0/base_event?extensions=.

3. https://github.com/ocsf/ocsf-docs/blob/main/Understanding%20OCSF.md.

4. https://schema.ocsf.io/1.1.0/classes/scheduled_job_activity?extensions=.

5. https://github.com/ocsf/ocsf-schema/blob/main/extensions.md.

6. https://geekflare.com/devops-tools-ansible-and-terraform//.

7. https://www.qovery.com/blog/what-is-kubernetes/.

8. https://kubernetes.io/docs/concepts/overview/components/.

9. https://kubernetes.io/docs/concepts/workloads/controllers/deployment/.

10. https://kubernetes.io/docs/concepts/services-networking/service/.

11. https://aws.amazon.com/getting-started/aws-networking-essentials/?nc1=h_
ls.

12. https://docs.aws.amazon.com/it_it/vpc/latest/userguide/what- is-amazon-
vpc.html.

13. https://docs.aws.amazon.com/it_it/vpc/latest/privatelink/privatelink-access-
aws-services.html.

14. https://docs.aws.amazon.com/codecommit/latest/userguide/welcome.html.

15. https : / / docs . aws . amazon . com / codepipeline / latest / userguide / welcome -
introducing.html.

16. https://docs.aws.amazon.com/codebuild/latest/userguide/welcome.html.

108

https://www.splunk.com/en_us/blog/security/overcome-cybersecurity-challenges-to-improve-digital-resilience.html
https://www.splunk.com/en_us/blog/security/overcome-cybersecurity-challenges-to-improve-digital-resilience.html
https://schema.ocsf.io/1.0.0/base_event?extensions=
https://github.com/ocsf/ocsf-docs/blob/main/Understanding%20OCSF.md
https://schema.ocsf.io/1.1.0/classes/scheduled_job_activity?extensions=
https://github.com/ocsf/ocsf-schema/blob/main/extensions.md
https://geekflare.com/devops-tools-ansible-and-terraform//
https://www.qovery.com/blog/what-is-kubernetes/
https://kubernetes.io/docs/concepts/overview/components/
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/services-networking/service/
https://aws.amazon.com/getting-started/aws-networking-essentials/?nc1=h_ls
https://aws.amazon.com/getting-started/aws-networking-essentials/?nc1=h_ls
https://docs.aws.amazon.com/it_it/vpc/latest/userguide/what-is-amazon-vpc.html
https://docs.aws.amazon.com/it_it/vpc/latest/userguide/what-is-amazon-vpc.html
https://docs.aws.amazon.com/it_it/vpc/latest/privatelink/privatelink-access-aws-services.html
https://docs.aws.amazon.com/it_it/vpc/latest/privatelink/privatelink-access-aws-services.html
https://docs.aws.amazon.com/codecommit/latest/userguide/welcome.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/welcome-introducing.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/welcome-introducing.html
https://docs.aws.amazon.com/codebuild/latest/userguide/welcome.html

Bibliographic references

17. https://aws.amazon.com/eks//.

18. https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-
whatis-howdoesitwork.html.

19. https://docs.aws.amazon.com/autoscaling/ec2/userguide/what-is-amazon-ec2-
auto-scaling.html.

20. https://docs.aws.amazon.com/it_it/lambda/latest/dg/invocation-sync.html.

21. https://docs.aws.amazon.com/it_it/lambda/latest/dg/invocation-async.html.

22. https://registry.terraform.io/providers/hashicorp/aws/latest/docs/resources/
subnet.

23. https://docs.fluentd.org/input/syslog.

24. https://www.cybersecitalia.it/polizia-di-stato-cosi-funziona-il-cyber-security-
operations- center- c- soc-di- roma-a- tutela-delle- banche-dati- delle- forze-di-
polizia/13082/.

109

https://aws.amazon.com/eks//
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-whatis-howdoesitwork.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-whatis-howdoesitwork.html
https://docs.aws.amazon.com/autoscaling/ec2/userguide/what-is-amazon-ec2-auto-scaling.html
https://docs.aws.amazon.com/autoscaling/ec2/userguide/what-is-amazon-ec2-auto-scaling.html
https://docs.aws.amazon.com/it_it/lambda/latest/dg/invocation-sync.html
https://docs.aws.amazon.com/it_it/lambda/latest/dg/invocation-async.html
https://registry.terraform.io/providers/hashicorp/aws/latest/docs/resources/subnet
https://registry.terraform.io/providers/hashicorp/aws/latest/docs/resources/subnet
https://docs.fluentd.org/input/syslog
https://www.cybersecitalia.it/polizia-di-stato-cosi-funziona-il-cyber-security-operations-center-c-soc-di-roma-a-tutela-delle-banche-dati-delle-forze-di-polizia/13082/
https://www.cybersecitalia.it/polizia-di-stato-cosi-funziona-il-cyber-security-operations-center-c-soc-di-roma-a-tutela-delle-banche-dati-delle-forze-di-polizia/13082/
https://www.cybersecitalia.it/polizia-di-stato-cosi-funziona-il-cyber-security-operations-center-c-soc-di-roma-a-tutela-delle-banche-dati-delle-forze-di-polizia/13082/

	Abstract
	Dedication
	Acknowledgment
	Listings
	List of Figures
	Acronyms
	Introduction
	Goal of the thesis

	OCSF
	OCSF Taxonomy
	Data Types
	Attributes
	Event Class
	Group
	Requirement
	Base Event Class
	Classification Attributes of Base Event
	Occurrence Attributes of Base Event
	Primary attributes of Base Event
	Context Attributes of Base Event

	Constraints
	Associations

	Categories
	From Categories to Profiles

	Profiles
	Extensions

	Tecnologies
	Terraform
	Kubernetes
	Kubernetes architecture
	Kubernetes Control Plane
	Kubernetes Node

	Kubernetes Objects

	Docker
	DockerFile

	Fluentd

	Amazon Web Services (AWS)
	Region
	Availability Zone
	Amazon Virtual Private Cloud (VPC)
	AWS CodeCommit
	AWS CodePipeline
	AWS CodeBuild
	AWS Elastic Container Registry (ECR)
	Amazon Elastic Kubernetes Service (EKS)
	Amazon EKS Architecture
	Control Plane
	Node

	AWS CloudFormation
	AWS Simple Storage Service (S3)
	AWS CloudWatch
	AWS Elastic Compute Cloud (EC2)
	AWS EC2 Auto Scaling
	AWS Lambda

	AWS Security Lake
	Source of Amazon Security Lake
	AWS Service Sources
	Integrated vendors
	Custom sources

	Subscriber of Amazon Security Lake
	Lifecycle of buckets S3

	Design of Security Lake platform
	Challenges
	Platform’s Overview
	Catching part
	Ingestion VPC

	Ingestion Pipeline [Normalization]
	Admin Repository
	Integration Repository

	Platform’s Implementation
	STEP 1 of Platform’s construction
	Platform creation folder
	File variable.tf
	File main.tf

	Architectural landscape after launched creation folder
	File bootstrap.tf into Repository-Admin

	STEP 2 of Platform’s construction
	Modules to declare an integration
	Modules type “S3Integrated”
	Modules type “SyslogIntegrated”/ “SyslogIntegratedDedicatedNodes”

	Implementation Catching Part
	Node Group and Autoscaling policy
	Kubernetes components

	Implementation of architecture that creates the normalization pipeline part.

	STEP 3 of Platform’s construction
	Integration Repository files
	template.yaml
	mappingFunction.py

	Ingestion Pipeline

	Platform’s Validation
	Environment where the platform is created
	Linux events' integration (Syslog)
	Test 0
	Optimization of lambda
	Test: flush_interval‘s variations
	Test: Pod CPU variations
	Test: unifying the results of previous studies

	Conclusions
	Bibliographic references

