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1 Introduction

1.1 Background and Significance

This thesis delves into the development of a robust profiling infrastructure, leverag-

ing the cutting-edge specifications of the RISC-V hardware performance counters,

to be implemented on a carefully selected RISC-V core. The primary objective

is to seamlessly integrate Performance Monitoring Counters (PMCs in following)

into the architecture. These PMCs furnish valuable aggregate data, such as the

count of memory transactions, which proves indispensable for real-time application

profiling, all while incurring minimal overhead.

The proposed profiling infrastructure brings forth a multitude of advantages,

enabling in-depth analysis of software behavior and facilitating the identification of

potentially malicious alterations. However, as software systems continue to evolve

in complexity, conventional approaches to identifying harmful software exhibit

inherent limitations that hamper their effectiveness. This disparity between the

intricacy of modern software and the constraints of traditional verification and

validation tools necessitates a paradigm shift in our methodology.

Enter the realm of Artificial Intelligence (AI). This research pivots towards

the integration of AI techniques to empower software developers in their pursuit

of anomaly detection. The wealth of data that can be harnessed through the

utilization of PMCs offers an expansive arena for the training and refinement

of specialized AI-driven anomaly detection models [6]. These models hold the

potential to discern not only software glitches but also security vulnerabilities,

rendering them a potent ally in the battle against harmful software behaviors.

Shifting our focus towards AI-driven prediction and anomaly detection entails

a multitude of benefits over conventional methods:
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1. Enhanced Precision and Recall: AI algorithms, particularly machine learning

and deep learning models, possess the capability to identify intricate patterns

and correlations within vast datasets. This empowers them to achieve higher

precision and recall rates in pinpointing potential harmful behaviors, out-

classing the relatively simplistic rule-based approaches of traditional tools.

2. Adaptability to Emerging Threats: The landscape of software threats is

continually evolving. AI-powered systems can swiftly adapt to new and

previously unseen threats by learning from historical data and recognizing

novel attack vectors, a feat that conventional methods struggle to accomplish.

3. Reduced False Positives: Traditional methods often generate a substantial

number of false positive alerts, leading to time-consuming and resource-

intensive investigations. AI-driven models, with their nuanced understanding

of software behavior, can significantly reduce the occurrence of false positives,

enabling developers to focus their efforts on genuine threats.

4. Real-time Detection: AI-powered systems can operate in near real-time, con-

tinuously analyzing software behavior and promptly flagging any aberrations.

This agility is crucial in swiftly identifying and mitigating potential harmful

actions.

5. Scalability: With the exponential growth in software complexity and the

sheer volume of applications, an AI-driven approach provides scalability, as

these models can be trained to handle diverse software types and scales

efficiently.

6. Reduced Human Effort: By automating the detection process, AI models can

significantly alleviate the manual labor involved in sifting through extensive

logs and reports, enabling developers to focus on higher-level tasks.
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Incorporating AI into the realm of harmful software behavior prediction not

only addresses the limitations of conventional methods but also embraces the op-

portunities presented by the ever-expanding landscape of software intricacy and

threats.Therefore, one where AI-driven anomaly detection becomes an integral and

indispensable component in the quest for secure and robust software systems.

1.1.1 Importance of AI-based Anomaly Detection in RISC-V Archi-

tecture

1. Rising Security Concerns: With the increasing adoption of RISC-V in critical

applications, from IoT devices to data centers, security becomes paramount.

AI-based anomaly detection offers a proactive approach to identifying and

mitigating potential threats before they can cause harm.

2. Flexibility and Customization: RISC-V’s open-source and extensible nature

allows for tailored implementations. However, this flexibility also introduces

unique vulnerabilities. AI-based systems can adapt to these custom config-

urations, offering bespoke security solutions.

3. Efficiency in Detection: Traditional security measures may not suffice for

the lightweight, resource-constrained environments where RISC-V operates.

AI techniques, with their ability to learn from data, can efficiently detect

anomalies even in such restricted settings.

4. Scalability: As RISC-V-based systems scale, manually monitoring for se-

curity breaches becomes impractical. AI-based detection systems can scale

alongside these architectures, maintaining security without compromising

performance.
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1.1.2 Current Gaps in AI-based Anomaly Detection on RISC-V

1. Lack of Tailored Solutions: While AI-based anomaly detection has been

explored in various contexts, there’s a scarcity of research specifically tailored

to the RISC-V architecture. This gap leaves potential security vulnerabilities

unaddressed.

2. Data Scarcity: Effective AI models require vast amounts of data. For RISC-

V, the specific data on anomalies is scarce, making it challenging to train

robust detection models.

3. Complexity of Integration: Integrating AI-based detection systems into

RISC-V architectures presents technical challenges, from resource constraints

to compatibility with the open-source ecosystem.

4. Evolving Threat Landscape: The rapidly evolving nature of cybersecurity

threats means that AI models must continuously learn and adapt. Currently,

there’s a lack of mechanisms to update these models in real-time as new

threats emerge.

5. Underexplored Potential of AI Techniques: While some AI techniques have

been applied to anomaly detection, the full spectrum, including deep learn-

ing, reinforcement learning, and unsupervised learning, remains underex-

plored in the context of RISC-V.

1.2 Objectives and research questions

This thesis aims at creating a powerful profiling infrastructure based on the latest

specifications of the RISC-V HPM on a selected RISC-V core in order to provide

PMCs in the architecture. This thesis focuses on applying AI to support software

developers in anomaly detection activities. The huge amount of data that can be
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collected resorting to PMCs is an important playground to train specific AI-based

anomaly detection models able to identify both software bugs and security threats.

1.2.1 Develop Tailored AI-based Anomaly Detection Models

• Specific: Design and implement AI models specifically tailored for anomaly

detection in RISC-V architectures, considering their unique security require-

ments and operational environments.

• Measurable: Evaluate the models’ effectiveness in detecting a comprehensive

range of anomalies, using metrics such as detection accuracy, false positive

rate, and detection speed.

• Achievable: Utilize existing AI frameworks and RISC-V simulation environ-

ments to develop and test the models.

• Relevant: This objective addresses the current gap in tailored anomaly de-

tection solutions for RISC-V, enhancing security in critical applications.

1.2.2 Overcome Data Scarcity for Model Training

• Specific: Create a synthetic dataset that accurately reflects the operational

conditions and potential anomalies within RISC-V architectures.

• Measurable: The dataset should be large enough to train AI models effec-

tively, with more than one kind of anomaly scenarios represented.

• Achievable: Collaborate with RISC-V developers and use generative AI tech-

niques to produce the dataset.

• Relevant: Solving the data scarcity problem is crucial for developing robust

AI-based detection systems.
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1.3 Structure Overview

This thesis is organized into six main chapters, each designed to systematically ex-

plore AI-based anomaly detection within RISC-V architecture, from foundational

theories to practical applications and future directions. Here’s what readers can

anticipate in each chapter:

Chapter 1, Introduction: Sets the stage by introducing the research context,

defining the problem statement, articulating the research objectives, and high-

lighting the contributions of this study to the field of AI-based anomaly detection

in RISC-V systems.

Chapter 2, Literature Review: Provides a comprehensive review of the existing

body of knowledge, tracing the evolution of anomaly detection techniques and the

advent of AI in this field. It critically analyzes current research, identifying gaps

that this thesis aims to address, particularly within RISC-V architecture.

Chapter 3, Experimental Design: Details the research methodology, including

the design, data collection, and processing approaches adopted. It elaborates on

the development and validation of the AI-based anomaly detection model, explain-

ing the selection of algorithms and evaluation criteria.

Chapter 4, Implementation and Results: Describes the practical implemen-

tation of the anomaly detection system, including system design and technical

challenges. It presents the experimental setup, followed by a thorough analysis of

the results obtained, benchmarking these against the research objectives.

Chapter 5, Conclusion and Future Work: Concludes the thesis by summarizing

the key findings and their significance. It provides a reflective commentary on

the research journey, offering recommendations for future research and suggesting

potential pathways for further exploration in the domain of AI-based anomaly

detection in RISC-V architecture.
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This structured approach ensures a comprehensive exploration of the subject

matter, facilitating a deep understanding of both the challenges and innovations in

AI-based anomaly detection for RISC-V systems. Through this journey, the thesis

aims to contribute valuable insights and methodologies to the field, encouraging

further research and development in enhancing the security and efficiency of RISC-

V architectures.
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2 Literature Review

2.1 Introduction to Anomaly Detection

In the realm of computer security, anomalies represent deviations from established

patterns or behaviors within a system. Malware, encompassing viruses, worms,

Trojans, and other malicious software [5] [3] , inherently introduces anomalies

by exhibiting behavior that contrasts with the normal operations of a computing

environment. These deviations can range from unauthorized access attempts to

unusual data access patterns or unexpected system modifications.

• Viruses: Programs that replicate themselves and infect other files or sys-

tems by attaching to legitimate programs. Viruses often cause damage by

corrupting or deleting files.

• Worms: Self-replicating malware that spreads across networks without user

intervention. Worms exploit vulnerabilities to replicate and spread rapidly,

consuming network bandwidth and causing system slowdowns.

• Trojans: Malware disguised as legitimate software, tricking users into in-

stalling them. Unlike viruses and worms, Trojans do not self-replicate but

can create backdoors for hackers, steal data, or perform other malicious ac-

tions.

• Ransomware: Encrypts files on a victim’s system and demands payment

(ransom) to decrypt them. Ransomware can severely disrupt operations for

individuals, organizations, or even entire networks.

• Spyware: Designed to spy on users’ activities without their knowledge. It

collects sensitive information such as keystrokes, browsing habits, or login

credentials, compromising user privacy.
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• Adware: Displays unwanted advertisements, often in the form of pop-ups or

banners, to generate revenue for the malware creators. While not as destruc-

tive, adware can be annoying and negatively impact system performance.

• Rootkits: Conceals malicious software within a system, allowing

unauthorized access and control while evading detection by antivirus pro-

grams. Rootkits can give attackers persistent access to compromised sys-

tems.

• Botnets: Networks of compromised computers (bots) controlled by a central

server or command center. Botnets can be used for various malicious activi-

ties like launching DDoS attacks, sending spam, or stealing data collectively.

• Fileless Malware: Operates in a system’s memory without leaving traces

on the hard drive. This type of malware is harder to detect by traditional

antivirus software as it doesn’t rely on files.

2.2 Evolution of Anomaly Detection Techniques

The prevalence and evolving sophistication of malware underscore the critical ne-

cessity for effective anomaly detection mechanisms. Traditional security measures,

while robust, often struggle to keep pace with the rapidly mutating landscape of

malicious software. As malware continuously evolves, adopting camouflage tech-

niques and obfuscation methods, the need for adaptive and intelligent anomaly

detection systems becomes paramount.

1. Early Techniques Statistical Methods: Begin with the earliest approaches

to anomaly detection, which were predominantly statistical. These methods

relied on statistical models to identify outliers based on deviations from ex-

pected patterns. Highlight key methods such as Z-score, statistical process
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control, and Bayesian networks. Limitations: Discuss the limitations of these

early methods, including their reliance on assumptions about data distribu-

tion and their difficulty in handling high-dimensional data or dynamically

changing environments.

2. Machine Learning Era Supervised Learning: With the advent of machine

learning, supervised learning techniques started being applied to anomaly

detection. Methods like support vector machines (SVM), decision trees, and

neural networks were adapted to identify anomalies by learning from labeled

datasets. [6] Unsupervised Learning: Unsupervised learning methods gained

popularity due to the scarcity of labeled anomaly data. Algorithms such as

k-means clustering, autoencoders, and principal component analysis (PCA)

were used to detect anomalies based on data patterns without requiring

labeled examples. [15] Semi-Supervised and Hybrid Methods: Discuss the

emergence of semi-supervised and hybrid methods that combine supervised

and unsupervised learning to improve detection accuracy, especially in situ-

ations with limited labeled data.

3. Integration of Big Data and IoT Big Data Analytics: With the explosion of

big data, anomaly detection techniques have evolved to process and analyze

vast amounts of information in real-time, using big data analytics tools and

distributed computing frameworks like Apache Hadoop and Apache Spark.

IoT and Edge Computing: Discuss the role of anomaly detection in the

Internet of Things (IoT) and edge computing, where detecting anomalies

at the source of data generation is crucial for timely responses to potential

threats or failures.

4. AI and Anomaly Detection Today AI-driven Approaches: In the current

landscape, AI-driven approaches are at the forefront of anomaly detection.
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These include the use of machine learning, deep learning, and data science

techniques to automatically identify and respond to anomalies in diverse

domains.

2.3 Limitations of Traditional Security Detection Methods

Limitations of Traditional Security Methods in the Context of RISC-V Traditional

security methods for computing architectures, including RISC-V, often rely on

predefined rules, signatures, or patterns to identify threats. These methods, while

effective against known threats, exhibit several limitations in a rapidly evolving

threat landscape:

1. Static Nature: Traditional methods are inherently static, requiring regular

updates to their databases to recognize new threats. This approach is less

effective against zero-day exploits or sophisticated attacks that have not been

previously encountered.

2. Scalability Issues: As RISC-V architectures are adopted across various do-

mains, from IoT devices to enterprise systems, the scalability of traditional

security solutions becomes a challenge. They may not efficiently handle the

vast, diverse datasets generated by these systems without significant resource

investment.

3. Limited Contextual Analysis: Traditional security mechanisms often lack

the ability to perform deep contextual analysis. They might identify anoma-

lies based on deviation from predefined patterns but fail to understand the

context behind these deviations, leading to high false positive rates.

4. Customization Challenges: Given the open-source nature of RISC-V, sys-

tems built on this architecture can vary widely. Traditional security solu-
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tions, which are generally designed for broad application, may not be easily

customizable to the specific needs of a particular RISC-V implementation.

2.4 Advantages of AI-based Approaches for RISC-V Secu-

rity

AI-based anomaly detection methods offer several advantages over traditional se-

curity solutions, especially in the context of the adaptable and open-source RISC-V

architecture [8]:

1. Dynamic Learning: AI models, particularly those based on machine learning

and deep learning, can continuously learn from new data. This capability

allows them to adapt to new threats over time without requiring manual

updates, making them highly effective against unknown or evolving attacks.

2. Scalability and Efficiency: AI algorithms can analyze vast quantities of data

in real-time, making them highly scalable and efficient for use in diverse

RISC-V-based applications, from small IoT devices to large-scale computing

systems.

3. Contextual Awareness: Through advanced data analysis techniques, AI-

based methods can understand the context of data and user behavior. This

understanding allows for more accurate detection of genuine anomalies, re-

ducing the rate of false positives and improving the overall security posture.

4. Customization: AI models can be trained on specific datasets relevant to

a particular RISC-V implementation. This training enables the models to

detect anomalies that are unique to that system’s normal operation, offering

a tailored security solution that traditional methods cannot provide.
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5. Proactive Threat Detection: AI can identify subtle patterns and correlations

that may indicate the early stages of a complex attack, enabling proactive

threat detection and mitigation before significant damage occurs.

In conclusion, while traditional security methods have played a crucial role in

protecting computing systems, the unique characteristics of RISC-V architectures

demand more adaptable, efficient, and intelligent security solutions. AI-based

anomaly detection represents a promising approach to meeting these demands,

offering the potential to significantly enhance the security of RISC-V systems in

an ever-evolving threat landscape.

2.5 Comparison of Anomaly Detection Techniques

Traditional Methods:

1. Statistical Methods: Rely on mathematical models to define normal behav-

ior and detect outliers. While effective for static datasets with well-defined

patterns, they struggle with the high variability and evolving nature of cy-

bersecurity threats.

2. Threshold-based Techniques: Set fixed values for metrics, above or below

which data is considered anomalous. This simplicity can be a drawback in

complex systems where anomalies are not easily defined by thresholds. An

important work about threshold using in hardware-based malware detection

is the work of Malone et. al. [12].

3. Signature-based Detection: Uses known patterns of malicious activity to

identify threats. Its major limitation is the inability to detect zero-day at-

tacks or novel anomalies not already in its database.

AI-based Methods:
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1. Machine Learning (ML): Utilizes algorithms that learn from data to identify

patterns and anomalies. Unlike static methods, ML can adapt to new data,

making it highly effective against evolving threats.

Supervised Learning: Requires labeled datasets to train models, excelling in

environments where historical attack data is available.

Unsupervised Learning: Detects anomalies by learning the normal distribu-

tion of data without needing labels, ideal for detecting unknown or zero-day

attacks.

2. Deep Learning (DL): A subset of ML that uses neural networks with multiple

layers. It’s particularly adept at processing large volumes of data and cap-

turing complex patterns that traditional methods might miss. Advantages

in Dynamic Landscapes: DL models can automatically feature engineer, ex-

tracting relevant features from raw data, which is crucial in cybersecurity

where threat indicators can be subtle and highly nuanced.

Hybrid Approaches:

Combining ML and Rule-based Systems: Some systems integrate ML with

traditional rule-based methods to leverage the strengths of both. This hybrid

approach can balance adaptability with the reliability of established rules,AI-based

anomaly detection offers several distinct advantages in handling dynamic, complex

threat landscapes.

AI’s Advantages:

• Adaptability: AI models continuously learn and adapt to new data, making

them more resilient to the evolving nature of cyber threats.

• Scalability: They can efficiently process and analyze vast amounts of data

from various sources, essential for monitoring extensive networks like those

based on RISC-V.
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• Sensitivity to Subtle Anomalies: AI techniques, especially DL, can detect

anomalies that might be too subtle for traditional detection methods, offering

a deeper layer of security.

• Automation and Efficiency: AI can automate the detection process, reducing

the need for manual intervention and enabling quicker responses to potential

threats.

In summary, while traditional anomaly detection methods have their place, AI-

based techniques stand out for their ability to adapt, scale, and sensitively respond

to the complex and dynamic nature of modern cybersecurity threats. This adapt-

ability is particularly critical for securing RISC-V architectures, where the open-

source nature and rapid innovation pace require robust, flexible security solutions.

2.6 AI-based Anomaly Detection Methods

Anomaly detection techniques encompass a diverse array of methodologies, in-

cluding statistical analysis, machine learning, and heuristic approaches. Statisti-

cal methods involve establishing patterns within data and flagging deviations that

fall outside predefined thresholds. Machine learning, on the other hand, leverages

algorithms trained on datasets to discern normal behavior from anomalies, adapt-

ing to evolving threats. Heuristic methods rely on predefined rules or models to

identify anomalies based on specific patterns or signatures associated with known

malware.

The fusion of artificial intelligence (AI) with anomaly detection has exhibited

promising results, enabling systems to learn and adapt in real-time, thereby en-

hancing the detection and mitigation of sophisticated, previously unseen malware.

This thesis delves into the exploration and evaluation of AI-based anomaly de-

tection methodologies specifically tailored for identifying and mitigating anomalies,
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particularly within the context of RISC-V architecture.

This section sets the stage by introducing the concept of anomalies, emphasiz-

ing the significance of detecting anomalies in the context of malware, and providing

a brief overview of the methodologies used for anomaly detection, paving the way

for the focus on AI-based anomaly detection within RISC-V architecture.

2.6.1 Classification algorithm

In sci-kit there’s a comparison of several classifiers. We selected part of them for

Figure 1: Comparison between various classification algorithms

our experiments.

• Logistic regression

The logistic regression is implemented in LogisticRegression. Despite its

name, it is implemented as a linear model for classification rather than re-

gression in terms of the scikit-learn/ML nomenclature. The logistic regres-

sion is also known in the literature as logit regression, maximum-entropy

classification (MaxEnt) or the log-linear classifier. In this model, the proba-

bilities describing the possible outcomes of a single trial are modeled using

a logistic function.
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This implementation can fit binary, One-vs-Rest, or multinomial logistic re-

gression with optional , or Elastic-Net regularization. The binary case can

be extended to K classes leading to the multinomial logistic regression. Let

yi ∈ 1, ..., K be the label (ordinal) encoded target variable for observation i .

Instead of a single coefficient vector, we now have a matrix of coefficients W

where each row vector WK corresponds to class K . We aim at predicting

the class probabilities P (yi = K|Xi) via Predict proba as:

p̂k(Xi) =
exp(XiWk +W0,k)∑K−1
l=0 exp(XiWl +W0,l)

(1)

The objective for the optimization becomes:

min
W

−C
n∑

i=1

K−1∑
k=0

[yi = k] log(p̂k(Xi)) + r(W ) (2)

Where [P ] represents the Iverson bracket which evaluates to 0 if P is false,

otherwise it evaluates to 1 We currently provide four choices for the reg-

ularization term r(W ) via the penalty argument, where is the number of

features:

penalty r(W )

None 0

ℓ1 ∥W∥1,1 =
∑m

i=1

∑K
j=1 |Wi,j|

ℓ2
1
2
∥W∥2F = 1

2

∑m
i=1

∑K
j=1W

2
i,j

ElasticNet 1−ρ
2
∥W∥2F + ρ∥W∥1,1

Table 1: Regularization penalties and their corresponding terms

• Linear SVC

SVC: C-Support Vector Classification.

The implementation is based on libsvm [4]. The fit time scales at least

quadratically with the number of samples and may be impractical beyond
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tens of thousands of samples. Due to the large datasets, we consider using

LinearSVC instead.

Linear SVC: Linear Support Vector Classification.

Similar to SVC with parameter kernel=’linear’, but implemented in terms of

liblinear rather than libsvm, so it has more flexibility in the choice of penalties

and loss functions and should scale better to large numbers of samples.

The main differences between LinearSVC and SVC lie in the loss function

used by default, and in the handling of intercept regularization between those

two implementations.

Figure 2: SVC and LinearSVC

• RandomForest

In random forests, each tree in the ensemble is built from a sample drawn

with replacement (i.e., a bootstrap sample) from the training set.

Furthermore, when splitting each node during the construction of a tree, the

best split is found through an exhaustive search of the features values of

either all input features or a random subset of size max features.

The purpose of these two sources of randomness is to decrease the variance

of the forest estimator. Indeed, individual decision trees typically exhibit
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high variance and tend to overfit. The injected randomness in forests yield

decision trees with somewhat decoupled prediction errors. By taking an

average of those predictions, some errors can cancel out. Random forests

achieve a reduced variance by combining diverse trees, sometimes at the

cost of a slight increase in bias. In practice the variance reduction is often

significant hence yielding an overall better model.

A competitive alternative to random forests are Histogram-Based Gradient

Boosting (HGBT) models:

Building trees: Random forests typically rely on deep trees (that overfit in-

dividually) which uses much computational resources, as they require several

splittings and evaluations of candidate splits. Boosting models build shallow

trees (that underfit individually) which are faster to fit and predict.

Sequential boosting: In HGBT, the decision trees are built sequentially,

where each tree is trained to correct the errors made by the previous ones.

This allows them to iteratively improve the model’s performance using rela-

tively few trees. In contrast, random forests use a majority vote to predict

the outcome, which can require a larger number of trees to achieve the same

level of accuracy.

Efficient binning: HGBT uses an efficient binning algorithm that can handle

large datasets with a high number of features. The binning algorithm can

pre-process the data to speed up the subsequent tree construction (see Why

it’s faster). In contrast, the scikit-learn implementation of random forests

does not use binning and relies on exact splitting, which can be computa-

tionally expensive.

Overall, the computational cost of HGBT versus RF depends on the specific

characteristics of the dataset and the modeling task [11].
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• DecisionTree

Decision Trees (DTs) are a non-parametric supervised learning method used

for classification and regression. The goal is to create a model that predicts

the value of a target variable by learning simple decision rules inferred from

the data features. A tree can be seen as a piecewise constant approximation.

For instance, in the example below, decision trees learn from data to approx-

imate a sine curve with a set of if-then-else decision rules. The deeper the

tree, the more complex the decision rules and the fitter the model.

Figure 3: DecisionTree

Some advantages of decision trees are [13]:

Simple to understand and to interpret. Trees can be visualized.

Requires little data preparation. Other techniques often require data normal-

ization, dummy variables need to be created and blank values to be removed.

Some tree and algorithm combinations support missing values.

The cost of using the tree (i.e., predicting data) is logarithmic in the number

of data points used to train the tree.
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Able to handle both numerical and categorical data.

Able to handle multi-output problems.

Uses a white box model. If a given situation is observable in a model, the

explanation for the condition is easily explained by boolean logic. By con-

trast, in a black box model (e.g., in an artificial neural network), results may

be more difficult to interpret.

Possible to validate a model using statistical tests. That makes it possible

to account for the reliability of the model.

Performs well even if its assumptions are somewhat violated by the true

model from which the data were generated.

The disadvantages of decision trees include:

Decision-tree learners can create over-complex trees that do not generalize

the data well. This is called overfitting. Mechanisms such as pruning, set-

ting the minimum number of samples required at a leaf node or setting the

maximum depth of the tree are necessary to avoid this problem.

Decision trees can be unstable because small variations in the data might re-

sult in a completely different tree being generated. This problem is mitigated

by using decision trees within an ensemble.

Predictions of decision trees are neither smooth nor continuous, but piecewise

constant approximations as seen in the above figure. Therefore, they are not

good at extrapolation.

The problem of learning an optimal decision tree is known to be NP-complete

under several aspects of optimality and even for simple concepts. Conse-

quently, practical decision-tree learning algorithms are based on heuristic

algorithms such as the greedy algorithm where locally optimal decisions are
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made at each node. Such algorithms cannot guarantee to return the globally

optimal decision tree. This can be mitigated by training multiple trees in

an ensemble learner, where the features and samples are randomly sampled

with replacement.

There are concepts that are hard to learn because decision trees do not

express them easily, such as XOR, parity or multiplexer problems.

Decision tree learners create biased trees if some classes dominate. It is there-

fore recommended to balance the dataset prior to fitting with the decision

tree.

• GaussianNB

GaussianNB implements the Gaussian Naive Bayes algorithm for classifica-

tion. The likelihood of the features is assumed to be Gaussian:

P (xi | y) =
1√
2πσ2

y

exp

(
−(xi − µy)

2

2σ2
y

)
(3)

This equation represents the density function of a Gaussian distribution,

where x i is a variable, y could be a condition or class, muy is the mean

of the distribution under condition y , and sigma2y is the variance of the

distribution under condition y.

The parameters µy and σy are estimated using maximum likelihood.

• Quadratic Discriminant Analysis

A classifier with a quadratic decision boundary, generated by fitting class

conditional densities to the data and using Bayes’ rule.

The model fits a Gaussian density to each class.

According to the model above, the log of the posterior is:
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logP (y = k|x) = logP (x|y = k) + logP (y = k) + Cst

= −1

2
log |Σk| −

1

2
(x− µk)

TΣ−1
k (x− µk) + logP (y = k) + Cst (4)

where the constant term Cst corresponds to the denominator P (x) , in addi-

tion to other constant terms from the Gaussian. The predicted class is the

one that maximises this log-posterior.

Linear Discriminant Analysis (LinearDiscriminantAnalysis) and Quadratic

Discriminant Analysis (QuadraticDiscriminantAnalysis) are two classic clas-

sifiers, with, as their names suggest, a linear and a quadratic decision surface,

respectively.

The plot 4 shows decision boundaries for Linear Discriminant Analysis and

Quadratic Discriminant Analysis. The bottom row demonstrates that Lin-

ear Discriminant Analysis can only learn linear boundaries, while Quadratic

Discriminant Analysis can learn quadratic boundaries and is therefore more

flexible.

2.6.2 Feature Selection Algorithm

Feature selection, also known as variable selection or attribute selection, involves

automatically selecting those features in our data that contribute most to the

prediction variable or output in which we are interested. Not only does this process

help in improving the performance of a model, but it also helps in faster training

times and better generalization by reducing overfitting. In this thesis we mainly

use 2 algorithm:

• Univariate feature selection [13]

Univariate feature selection works by selecting the best features based on

univariate statistical tests. It can be seen as a preprocessing step to an

estimator. SelectKBest: removes all but the highest scoring features
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Figure 4: LDA and QDA
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• Recursive feature elimination [13]

Given an external estimator that assigns weights to features (e.g., the coef-

ficients of a linear model), the goal of recursive feature elimination (RFE)

is to select features by recursively considering smaller and smaller sets of

features. First, the estimator is trained on the initial set of features and the

importance of each feature is obtained either through any specific attribute

(such as coef , feature importances ) or callable. Then, the least important

features are pruned from current set of features. That procedure is recur-

sively repeated on the pruned set until the desired number of features to

select is eventually reached.

2.6.3 Principal component analysis Algorithm

PCA [10] is used to decompose a multivariate dataset in a set of successive orthog-

onal components that explain a maximum amount of the variance. In scikit-learn,

PCA is implemented as a transformer object that learns n components in its fit

method, and can be used on new data to project it on these components.

PCA centers but does not scale the input data for each feature before applying

the SVD. The optional parameter whiten=True makes it possible to project the

data onto the singular space while scaling each component to unit variance. This

is often useful if the models down-stream make strong assumptions on the isotropy

of the signal: this is for example the case for Support Vector Machines with the

RBF kernel and the K-Means clustering algorithm.

2.6.4 Evaluation of Algorithmic Models

We analyze the results by these coefficient:

1. Confusion matrix
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Figure 5: PCA

A confusion matrix is a specific table layout used to visualize the performance

of a classification algorithm. It shows the number of correct and incorrect

predictions made by the model compared to the actual classifications. The

matrix is divided into four parts: true positives (TP), false positives (FP),

true negatives (TN), and false negatives (FN), allowing for detailed analysis

of the model’s performance, including metrics like accuracy, precision, recall,

and F1 score.

Figure 6: Confusion Matrix
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2. Accuracy

In machine learning, accuracy is a metric used to measure the proportion of

correct predictions made by the model out of all predictions. It is calculated

as the ratio of the number of correct predictions (both true positives and

true negatives) to the total number of predictions (the sum of true positives,

true negatives, false positives, and false negatives). Accuracy is a straight-

forward way to assess a model’s performance, but it may not always provide

a complete picture, especially in cases of imbalanced datasets.

accuracy =
(TP + TN)

(TP + TN + FP + FN)
(5)

3. Precision

Precision in the context of classification models refers to the ratio of true

positive predictions to the total number of positive predictions (both true

positives and false positives). It measures the accuracy of the positive predic-

tions made by the model, indicating how many of the instances predicted as

positive are actually positive. Precision is particularly important in scenarios

where the cost of false positives is high.

Precision =
TP

TP + FP
(6)

4. TPR(recall)

The True Positive Rate (TPR), also known as sensitivity or recall, mea-

sures the proportion of actual positives correctly identified by a classifica-

tion model. It’s a key performance indicator in various domains, especially

in medical diagnostics and any field where the cost of missing a positive case

is high. TPR is crucial for evaluating the effectiveness of a model in predict-

ing positive outcomes, focusing on the model’s ability to capture all relevant
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instances.

TPR =
TP

TP + FN
(7)

5. F1 Score

The F1 score is a measure of a test’s accuracy. It considers both the precision

p and the recall r of the test to compute the score. The F1 score can be

interpreted as a weighted average of the precision and recall, where an F1

score reaches its best value at 1 (perfect precision and recall) and worst at

0. It’s especially useful for situations where the distribution of class labels

is imbalanced.

2.7 Platform

2.7.1 RISC-V: PULP

Figure 7: PULP-Family

PULPino is an open-source single-core microcontroller system, based on 32-bit
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RISC-V cores developed at ETH Zurich. PULPino is configurable to use either

the RISCY or the zero-riscy core. [14]

RISCY is an in-order, single-issue core with 4 pipeline stages and it has an IPC

close to 1, full support for the base integer instruction set (RV32I), compressed

instructions (RV32C) and multiplication instruction set extension (RV32M). It

can be configured to have single-precision floating-point instruction set extension

(RV32F). It implements several ISA extensions such as: hardware loops, post-

incrementing load and store instructions, bit-manipulation instructions, MAC op-

erations, support fixed-point operations, packed-SIMD instructions and the dot

product. It has been designed to increase the energy efficiency of in ultra-low-

power signal processing applications.zero-riscy is an in-order, single-issue core with

2 pipeline stages and it has full support for the base integer instruction set (RV32I)

and compressed instructions (RV32C). It can be configured to have multiplication

instruction set extension (RV32M) and the reduced number of registers exten-

sion (RV32E). It has been designed to target ultra-low-power and ultra-low-area

constraints. zero-riscy implementes a subset of the 1.9 privileged specification.

When the core is idle, the platform can be put into a low power mode, where

only a simple event unit is active and everything else is clock-gated and consumes

minimal power (leakage). A specialized event unit wakes up the core in case an

event/interrupt arrives.

For communication with the outside world, PULPino contains a broad set of

peripherals, including I2S, I2C, SPI and UART. The platform internal devices can

be accessed from outside via JTAG and SPI which allows pre-loading RAMs with

executable code. In standalone mode, the platform boots from an internal boot

ROM and loads its program from an external SPI flash.

The PULPino platform is available for RTL simulation as well FPGA. PULPino

has been taped-out as an ASIC in UMC 65nm in January 2016. It has full debug
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support on all targets. In addition we support extended profiling with source code

annotated execution times through KCacheGrind in RTL simulations.

2.7.2 SOC environment: GVSOC

The last few years have seen the emergence of IoT processors: ultra-low power

systems-on-chips (SoCs) combining lightweight and flexible micro-controller units

(MCUs), often based on open-ISA RISC-V cores, with application-specific acceler-

ators to maximize performance and energy efficiency. Overall, this heterogeneity

level requires complex hardware and a full-fledged software stack to orchestrate

the execution and exploit platform features. For this reason, enabling agile design

space exploration becomes a crucial asset for this new class of low-power SoCs.

In this scenario, high-level simulators play an essential role in breaking the speed

and design effort bottlenecks of cycle-accurate simulators and FPGA prototypes,

respectively, while preserving functional and timing accuracy. GVSoC is a highly

configurable and timing-accurate event-driven simulator that combines the effi-

ciency of C++ models with the flexibility of Python configuration scripts. GVSoC

is fully open-sourced, with the intent to drive future research in the area of highly

parallel and heterogeneous RISC-V based IoT processors, leveraging three founda-

tional features: Python-based modular configuration of the hardware description,

easy calibration of platform parameters for accurate performance estimation, and

high-speed simulation. Experimental results show that GVSoC enables practical

functional and performance analysis and design exploration at the full-platform

level (processors, memory, peripherals and IOs) with a speed-up of 2500x with re-

spect to cycle-accurate simulation with errors typically below 10% for performance

analysis. [1]
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3 Experimental Design

The system architecture for the AI-based anomaly detection in RISC-V environ-

ments is designed with flexibility, scalability, and performance in mind. At its

core, the architecture comprises 4 main components:

1. the Data generation Module: Including 2 sets of C application(malware and

benign), 1 random input generator.

2. the Data Collection Module: read output file and select target data.

3. the Anomaly Detection Module: Classification algorithm.

4. the Reporting Module: Matlab processing.

Based on the Pulp platform tool ”Pulp-SDK [2],” my overall approach involved

the following steps: first, I designed a normal program and a malicious program

with harmful behavior. Then, I used a series of registers called ”PMCs” provided

by the Pulp-SDK to monitor the behavior of the programs. Next, I collected 17

sets of data from the monitoring process and used machine learning techniques

to analyze the data. Finally, I tested the approach using a test dataset and used

the results to verify the effectiveness of this method. Each module is designed

with specific challenges in mind. The open-source RISC-V SDK is still in the

development stage and lacks a comprehensive library of C files. As a result, during

the application development process, we had to undertake the writing of some

header files ourselves, such as those for AES encryption. When generating random

numbers, we opted to use an external program to modify the data of the target

program, thereby gradually overcoming all difficulties encountered. To facilitate

a more intuitive evaluation of the final data, I employed MATLAB for real-time

analysis, aiming to derive the most direct insights from the data.
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3.1 Platform choices

Choice of RISC-V Platform: The selection of the RISC-V platform for anomaly

detection is driven by its growing adoption in embedded systems and the unique

security challenges it presents due to its open-source nature and architectural flex-

ibility. This choice aligns with our research objective to contribute to the safety

and reliability of RISC-V systems in the face of sophisticated cyber threats.

3.2 Benign and Malicious application design

Given the scarcity of publicly available datasets for anomaly detection in RISC-V,

we designed 2 applications: Benign application and malicious application design

to collect data.

For the benign program, we started with an existing C program that sorts 10

data elements. We modified the program such that instead of a fixed input of

10 data elements, the program now accepts a random sequence of data with a

length between 100 and 200. The data content is also randomized. However, since

the Pulp-SDK’s C library does not have a standard library function for generating

random numbers, we used an external program called ”random” that was designed

using the standard C library to provide the random length and content for the

program. Finally, we monitored the program’s PMCs.

For the malicious program, we added an encryption function called ”Caesar

cipher” to the main program(based on benign program),this function change en-

code the content of array(numbers) of benign application, which we considered to

be a harmful behavior. Then, we monitored the program’s PMCs to detect any

unusual behavior.

In addition, to ensure the reliability of the experiment, a control group was

added to this experiment: AES encryption was used as a benign program.
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Benign Program Malware Program

Program 1 Quiksort Quiksort + Ceaser

Program 2 AES Encription AES + Ceaser

Table 2: Benign and Malware Application

3.3 Scripts design

Given the scarcity of publicly available datasets for anomaly detection in RISC-V,

to collect sufficient data, I designed the following script(shell command): first,

the script runs the random program to generate a random input, then it modifies

the input of the benign program accordingly, and runs the benign program. The

output of the program is then saved to a file. This process is repeated in a loop

until 10,000 sets of data are collected. The same process is applied to the malicious

program.

3.3.1 Data Collection

After analyzing the results of the two programs (17 sets of register data), we found

that some of the data remained constant at 0, while some data remained unchanged

throughout the program’s execution. To improve the efficiency of the experiment,

we removed these data and collected only the effective 9 sets of register data.

3.3.2 Data Preprocessing

For the testing dataset, we created a one-dimensional dataset using the results

from a single register. We then randomly selected two sets of register data to

create a two-dimensional dataset. This process was repeated for three, four, and

five-dimensional datasets until we had a nine-dimensional dataset that included

all of the registers. Note that for each training and testing dataset, the data used
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came from the same set of registers.

(a) 1-D samples (b) 2-D samples

(c) 3-D samples (d) 4-D samples

(e) 5-D samples (f) 9-D samples

Figure 8: Sample data format

3.4 AI program design

To conduct machine learning, I designed a Python program based on the Sci-Kit

[13] platform. The program performs machine learning on two sets of data, each

consisting of 10,000 samples. The results from the malicious program are labeled
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as ”Malware.” The program then tests a separate set of data that is generated

from two programs，determine the percentage of this set of data from malicious

programs. The testing dataset is not used in the machine learning process, but

instead is used to evaluate the accuracy of the model’s predictions.

By analyzing the training results of different models on the same dataset, we

can assess the feasibility of this experiment. Then, by examining the training

outcomes of each model on various datasets, we ensure the reliability of the results.

My AI program design includes:

1. Data integration and preprocessing: creating combinations with 2, 3, 4, 5

registers, each providing one feature.

2. Data merging to form arrays required by the algorithm model.

3. Determining the model’s algorithm.

4. Using existing X, Y datasets to derive the confusion matrix, Accuracy, TPR

(True Positive Rate), and F1 Score.

This section details the training and evaluation of several machine learning

models to identify anomalies in RISC-V based systems, utilizing two distinct sets

of data generated from programs based on sorting algorithms and AES encryp-

tion. The models selected for this study include Logistic Regression, SVC-linear,

Decision Tree Classifier, RandomForestClassifier, GaussianNB, and Quadratic Dis-

criminant Analysis, as implemented in scikit-learn. Following model training and

initial evaluation, Principal Component Analysis (PCA) was employed to enhance

data processing and potentially improve model performance.

1. Data Preparation: The datasets were prepared from synthetic logs generated

by simulating the execution of sorting algorithms and AES encryption on a
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RISC-V architecture. This approach ensured the inclusion of diverse and

representative patterns of normal and anomalous behavior.

2. Model Selection and Training: Each model was chosen for its unique strengths

in classification tasks, providing a broad perspective on anomaly detection

performance across different algorithms. Two rounds of training and eval-

uation were conducted for each model to assess consistency and reliability

across varying data characteristics.

3. Feature Reduction with Feature Selection: To address potential issues of high

dimensionality and improve model efficiency, Feature selection algorithm was

applied to the datasets post-initial training. This step aimed to reduce the

feature space while retaining the most informative aspects of the data.

4. Impact of PCA: The application of PCA resulted in noticeable improvements

in model performance, particularly for Logistic Regression and Quadratic

Discriminant Analysis, which benefited from the reduced feature space and

enhanced generalization capabilities.

3.5 Experimental procedures

Then we did feature selection:

1. Malware Design: Using examples provided by the Pulp-SDK, I modified

designs to create two sets of ”benign” C programs focused on sorting and

AES encryption (6). Then, I introduced modifications to segments of these

datasets to alter data processing in a manner consistent with the definition

of a ”virus”, referring to these as ”malicious programs”. Subsequently, data

recorded by PMCs registers was printed out.
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Figure 9: Flowchart of Classification
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Figure 10: Flowchart of Feature Selec-

tion

Figure 11: Flowchart of PCA

2. Input Variation through External C Program: The inputs to the programs

were varied using an external C program random number generator, ensuring

that each run of the programs had unique inputs and outputs.

3. Automated Execution via Shell Script: Programs were executed in a blocking

loop through a shell script, with output files being saved for further analysis.
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4. Register Data Extraction: I extracted the corresponding register data from

the output files for analysis.

5. Model Training with scikit-learn: Utilizing various Python algorithms pro-

vided by scikit-learn, I trained models on the extracted data to determine

their accuracy. These models were then used to identify newly generated

data, validating the models’ performance.

6. Dimensionality Reduction with PCA: I applied Principal Component Anal-

ysis (PCA) to the data for dimensionality reduction, followed by retraining

the models.

7. Feature Ranking of Registers: I identified and ranked the features of the

registers to determine their significance.

This summary encapsulates the methodology and steps taken to design, imple-

ment, and evaluate an AI-based approach for malware detection within the context

of PMCs data, leveraging machine learning techniques and PMCs for enhanced

analysis and model optimization.
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4 Experimental Results

There are 17 sets of registers in total, 8 of which have no valid data, so we only

analyze the remaining 9 sets.

Register Availability

PERF CYCLES √

PERF INSTR √

PERF ACTIVE CYCLES ×

PERF LD STALL √

PERF JR STALL ×

PERF JR IMISS ×

PERF LD √

PERF ST √

PERF JUMP √

PERF BRANCH √

PERF BTAKEN √

PERF RCV √

PERF LD EXT ×

PERF ST EXT ×

PERF LD EXT CYC ×

PERF ST EXT CYC ×

PERF TCDM CONT ×

Table 3: PMCs list



AI-based anomaly detection on RISC-V 45

4.1 Experiment 1: Classification

4.1.1 Classification with Program.1

First of all, I would like to report that I started with one-dimensional data as

the learning set(use one of all 9 registers as a learning set)，and one ML classi-

fication method ”LogisticRegression”. and then test the random combination of

registers,from groups of 2 up to groups of 9. After using every single one of these

nine registers, I found that all Machine Learning models had an accuracy close to

50%. When testing on the test set, the results were all incorrect.

Here is one of the results，In this test, we input the sample 100% from the benign

application，but the testing and predicting are the exact opposite, so we can say

that we can’t do malware detection by a single set of PMCs:

Accuracy: 0.49241666666666667

Percentage of data from malware: 1.0

Next, I proceeded to use 2-D, 3-D, 4-D, 5-D, and finally 9-D data sets to complete

all the tests, for testing use the registers same as training. The results obtained

from the tests are as follows: In these charts, x-axis corresponding to each combina-

tion of registers. For example, for ”Accuracy Data for 2-D”, x-axis corresponding

to 36 different set of registers. The accuracy charts presented above are obtained

from 2-D, 3-D, 4-D, and 5-D data, respectively. The four bar charts present the

increasing of accuracy, as the sample dimension increases, the accuracy shows a

significant improvement, and the accuracy reaches 100% in 5-D. One thing to note

is that，in 3-D accuracy, there are there combination of registers reach to 100%,

I report these 3 accuracy with a test of 100% samples from benign application:

branch_cnt.txt jump_cnt.txt ls_cnt.txt

Accuracy: 1.0
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Figure 12: Accuracy of Machine Learning
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Percentage of malware from data of benign programs: 0.0

btaken_cnt.txt clk_cnt.txt ld_cnt.txt

Accuracy: 0.992

Percentage of malware from data of benign programs: 0.0

instr_cnt.txt ld_cnt.txt rcv_cnt.txt

Accuracy: 1.0

Percentage of malware from data of benign programs: 0.0

After that, I verified the accuracy of the model:

Figure 13: Percentage of Malware, data from benign application

Finally, we found that when the sample reaches 5 dimensions, the accuracy reaches

100%.
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Figure 14: Percentage of malware, data from malicious application

In the previous section, we conducted a feasibility test from which we selected

two models that showed the most promising results: ”Logistic Regression” and

”Quadratic Discriminant Analysis (QDA).” We aimed to explore the relationship

among four key performance metrics: Accuracy, Precision, Recall (also known as

True Positive Rate, TPR), and F1 Score.

Firstly, it’s important to note that these metrics align with the mathematical

relationships presented in the confusion matrix, a table used to describe the per-

formance of a classification model. This alignment underscores the coherence and

reliability of our evaluation approach.

Upon a horizontal comparison between the two models, we observed that QDA

slightly outperformed Logistic Regression in terms of Precision. This suggests

that the QDA model exhibits a higher reliability in classifying instances correctly

within the specific context of the ’qsort’ program. Precision, in this sense, mea-
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Figure 15: Logistic matrix Figure 16: QDA matrix

Figure 17: Logistic Precision Figure 18: QDA Precision

sures the model’s ability to return only relevant instances, making this finding

particularly significant. However, the margin of difference between the two models

is not substantial, indicating that both models perform comparably well under the

conditions tested.

This analysis provides valuable insights into the performance characteristics

of Logistic Regression and QDA models, specifically in their application to the

’qsort’ program. The nuanced difference in Precision highlights the importance

of selecting the appropriate model based on the specific criteria and context of

the task at hand. To make the data more visually intuitive, we can observe by
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Figure 19: Logistic TPR Figure 20: QDA TPR

Figure 21: Logistic F1 Score Figure 22: QDA F1 Score

comparing the mean values of two groups of algorithms.

Logistic Quadratic Discriminant Analysis

Accurancy Precision TPR F1 Accurancy Precision TPR F1

2-D 0.51 0.46 0.42 0.43 0.51 0.51 0.41 0.45

3-D 0.55 0.55 0.61 0.58 0.58 0.55 0.56 0.56

4-D 0.97 0.97 0.97 0.97 1.00 1.00 1.00 1.00

5-D 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table 4: Program.1, The mean values of two groups of algorithms.

From this data, we can also verify the correspondence between matrices and
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data, as well as evaluate the strengths and weaknesses of algorithm models, as

mentioned above.

Afterwards, we tried several other classification methods provided by sci-kit：

By observing the form, there are three were viable. However, it should be noted

2 3 4 5 9

LogisticRegression 50 55 97 100 100

(*)SVC-linear 50 50 100 100 100

DecisionTreeClassifie 50 50 50 50 50

RandomForestClassifier 50 50 50 50 50

GaussianNB 50 50 50 50 50

QuadraticDiscriminantAnalysis 50 60 99 100 100

Table 5: Accuracy of Program.1

that the SVC-linear method showed a very high accuracy rate, but its speed was

extremely slow, approaching 1% of other methods. We had difficulty testing all the

data with this method. Interestingly, when using the QuadraticDiscriminantAnal-

ysis method for machine learning on the training set, there was often a warning

message saying ”Variables are collinear.” We can assume that some of the register

data in this experiment are linearly related, and we may only need to use one of

them when creating the training set.

4.1.2 Controlled experiment: Classification with program.2

We changed the benign program, as a control experiment.

In this experiment, I employed two sets of programs as controls: one group

consisted of a benign program called ”AES Encryption/Decryption,” while the

other group consisted of a malicious program named ”AES Encryption/Decryption

+ Caesar Encryption.”
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Using PMCs, I observed that the size of the AES Encryption/Decryption pro-

gram was approximately 100 times larger than the size of the Caesar Encryption

program. Additionally, both programs were tested with randomly generated inputs

of varying lengths.

Figure 23: AES:LogisticRegression

2 3 4 5

LogisticRegression 70 84 97 99

QuadraticDiscriminantAnalysis 87 99 100 100

RandomForestClassifier 100 100 100 100

DecisionTreeClassifier 100 100 100 100

GaussianNB 57 59 60 61

Table 6: results average of 4 machine learning methods

In our study, we made several key observations through the control experi-
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Figure 24: AES:QuadraticDiscriminantAnalysi

ments:

1.Different data sources yield different results for various machine learning anal-

ysis methods. For instance, the LogisticRegression and QuadraticDiscriminant-

Analysis, which previously did not demonstrate the ability to analyze malicious

programs effectively in the quicksort program, exhibited excellent performance in

this experiment. Even with just two sets of registers, they were able to accurately

distinguish harmful programs.

2.The ”disguise” capability of malicious software is not only reflected in the

program’s size but also in its similarity to benign programs. Further experiments

are needed to validate this hypothesis.

To summarize, our findings highlight the importance of considering different

data sources and analysis methods for effective detection of malicious programs.

Furthermore, we emphasize the need for further research to explore the relationship
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Figure 25: AES:RandomForestClassifier

between program size, similarity to benign programs, and the ability to evade

detection.

4.2 Experiment 2: Feature selection

In this section, we have decided to employ feature detection to rank the features

we are utilizing.

In the previous two sets of experiments, the control group utilized very low

dimensions (e.g., randomly generated 2-dimensional data, figure:25, 27), and the

dataset exhibited high discriminability. Consequently, we have chosen to leverage

the results from the first set of experiments for feature detection.
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Figure 26: AES:GaussianNB

4.2.1 Selection of experimental subjects

We have two experiments. The benign software in the first experiment is the qsort

program, and the benign program in the second experiment is the AES encryption

program. Why was the first program chosen as the experimental subject for this

feature selection? Because of the results of the first experiment, when classifying

the data, the second experiment has shown a high recognition rate in the combi-

nation of the two sets of data, and the result I hope to get is that only a few target

registers are our The desired result, if the results all have a success rate of 100, we

cannot determine whether the feature selection result is right or wrong. We need

a ”unique answer”if the target register can be found using feature selection, then

we can say that the experiment was successful.

In the first experiment (29), we saw that among the three sets of data, three

combinations showed a success rate of 100. We assumed that these three combi-
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Figure 27: AES:DecisionTreeClassifier

nations were our ”unique answer”.

So, our ”unique answer” is these three sets of registers： According to the

comparison table below, we can express it as: (2, 4, 6), (1, 3, 5), (0, 5, 7)

4.2.2 Experiment procedure

0 1 2 3 4 5 6 7 8

instr cnt clk cnt branch cnt btaken cnt jump cnt ld cnt ls cnt rcv cnt st cnt

Table 7: Number of registers for PMCs

I collected research on feature selection on the sci-kit official website. There

are three ways:

• Feature Importance Scores Tree-based models such as Random Forest and

Decision Trees can provide feature importance scores.
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(a) accuracy of 1st experiment (b) accuracy of 2nd experiment

Figure 28: The accuracy of 2 experiments

(a) Combination 1 (b) Combination 2

(c) Combination 3

Figure 29: 3 register combinations that can achieve 100% accuracy



AI-based anomaly detection on RISC-V 58

• Recursive Feature Elimination (RFE) RFE is a method that reduces the

number of features incrementally by repeatedly training the model and elim-

inating the least important features.

• SelectKBest SelectKBest is a method for selecting the top k best features.

Based on these three procedures, we ranked the features of the data： As we

can see though the figure (30), there is no unique ordering, every time it’s different,

and none of the answers are our correct answers.

Figure 30: Feature Importance Scores

Figure 31: RFE

Figure 32: SelectKBest
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By comparing the results, we can find that none of them are correct. Interest-

ingly, most of the results had two items that were close to the correct answer.

Possible outcomes:

1. Feature selection may have other ways to find out the rankings, except for

the three methods I used.

2. For successful identification of harmful programs, in this case, a single

register cannot give an exact ranking. That is to say, a feature of a single data

cannot be found without feature selection, and a combination of at least two

registers is required.

4.3 Experiment 3: Feature ranking

The primary objective of this phase of our study is to methodically rank the

features within our dataset based on their contributions to the model’s predictive

capabilities. This ranking not only aims to identify the most influential features

but also sets the stage for a deeper investigation into how these features interact

with one another. We defined these specific feature groupings (2, 4, 6), (1, 3, 5),

and (0, 5, 7) based on previous experiments(4.2.1). Following the establishment

of these rankings, our analysis will extend to examining the correlations between

features within these identified groupings.

In the pursuit of understanding the varying contributions of features within our

dataset, we have ventured into utilizing Principal Component Analysis (PCA) as

a method for dimensionality reduction [7]. The rationale behind this choice stems

from our observations in previous experiments, where PCA’s inherent mechanism

of discarding less contributive data highlighted its potential for our objective.

The process begins with the application of PCA to reduce the dataset’s di-

mensions. This reduction is not arbitrary; it is a calculated procedure where

components with minimal contribution towards the variance in the dataset are
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systematically removed. By setting different principal components, we aim to

dissect the variance each feature contributes to the overall dataset.

With nine features under scrutiny, our method involves calculating the weight

of each feature within the PCA-transformed space. These weights serve as indica-

tors of the features’ relative importance or contribution to the dataset’s variance.

The underlying assumption is that features with higher weights are of greater

significance, thereby meriting a higher rank.

The following table 8 shows the feature weights corresponding to different prin-

cipal component settings.

Analysis：

• Low Model Accuracy with 1 to 3 Principal Components: Further analysis re-

vealed that models derived with principal component settings ranging from 1

to 3 exhibited lower accuracy. This reduction in model performance indicates

a potential loss of critical information, making these settings unsuitable for

effective feature ranking. As a result, configurations within this range were

also set aside.

• Focus on Principal Component Settings Above 3: Based on the aforemen-

tioned insights, the analysis has been refined to consider only scenarios where

the number of principal components exceeds 3. This decision is underpinned

by the aim to ensure a balance between dimensionality reduction and the

retention of significant information necessary for accurate feature ranking.

• Variance verification: finally we verified the results by variance calculation.

When the component of PCA set to 1, the ranking is same as variance of

feature.
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Components Weights ranking

1 1,0,7,2,5,3,8,4,6

2 1,0,7,8,3,5,2,4,6

3 0,7,1,8,3,2,6,5,4

4 7,0,1,2,3,5,8,4,6

5 0,7,1,8,3,2,5,6,4

6 0,7,2,5,1,3,8,6,4

7 8,0,3,5,4,7,2,1,6

Table 8: PCA feature ranking

Feature Variance

1 156892296.43453774

0 11738311.840617886

7 2373639.2341436697

2 409135.59637775

5 338026.62665397907

3 232575.15949103888

8 173336.34102604105

4 154121.04762287906

6 83571.75457247745

Table 9: Variance ranking
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5 Conclusion and Future Work

5.1 Research Contributions and Limitations

This study aimed to enhance AI-based anomaly detection in RISC-V architectures

by exploring various machine learning methods and their effectiveness in identi-

fying malicious software activities. Our investigation utilized a diverse dataset,

focusing on the analysis of performance metrics collected from RISC-V processors.

Among the methods tested, the DecisionTreeClassifier and RandomForestClassifier

demonstrated exceptional accuracy in detecting anomalies, showcasing the poten-

tial of machine learning techniques in cybersecurity applications within RISC-V

environments.

However, the study also identified limitations：

• Due to the limitations of RISC-V SDK library functions and file systems,

many malware samples are difficult to simulate, making it challenging to

conduct further testing.

• For some classification algorithm, such as the SVC-linear method’s slow per-

formance and challenges in handling collinear variables, which could affect

the scalability and efficiency of these anomaly detection systems.

• We didn’t find the rank for the single register.

5.2 Areas for Improvement and Future Work

• Analyze the registers that present useful data and identify which registers

have a higher contribution to the experiment.

• Analyze the registers that present useful data and determine which registers

are correlated in this experiment.
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• Exploration of Additional Data Sources and Features: Expanding the dataset

to include a wider range of performance metrics and exploring the use of

feature selection techniques could improve the models’ ability to distinguish

between benign and malicious activities.

• Optimization of Machine Learning Algorithms: Further research should aim

to enhance the efficiency and accuracy of machine learning models, particu-

larly in handling large datasets and reducing computational overhead.

• Some papers [9] suggest that imposing a time constraint on data collection on

HPCs without using machine learning can provide more information about

harmful software. In this experiment, we can try to add a time constraint.

However, we have not validated the feasibility of this method due to limita-

tions of the SDK tools.

• Development of Real-Time Anomaly Detection Systems: Future studies could

focus on implementing these machine learning models in real-time detection

systems, assessing their practicality and effectiveness in live RISC-V envi-

ronments.

• Cross-Architecture Validation: Validating the effectiveness of the proposed

anomaly detection methods across different RISC-V architectures and com-

paring their performance with other processor architectures could provide

insights into the generalizability of these techniques.

• This research contributes to the growing body of knowledge in cybersecurity

for RISC-V architectures, providing a foundation for further exploration and

development in this critical area. By addressing the challenges and exploring

the suggested future directions, the field can move closer to realizing robust,
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AI-driven security solutions that can protect against increasingly sophisti-

cated threats.
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6 Appendix

1. AES encryption

1 #include <string.h> // CBC mode, for memset

2 #include "aes.h"

3 #include "pmsis.h"

4

5 #define Nb 4

6

7 #if defined(AES256) && (AES256 == 1)

8 #define Nk 8

9 #define Nr 14

10 #elif defined(AES192) && (AES192 == 1)

11 #define Nk 6

12 #define Nr 12

13 #else

14 #define Nk 4 // The number of 32 bit words in a key.

15 #define Nr 10 // The number of rounds in AES Cipher.

16 #endif

17

18 #ifndef MULTIPLY_AS_A_FUNCTION

19 #define MULTIPLY_AS_A_FUNCTION 0

20 #endif

21

22

23 typedef uint8_t state_t[4][4];

24

25
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26 static const uint8_t sbox[256] = {

27 //0 1 2 3 4 5 6 7 8 9 A B

C D E F

28 0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01,

0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76,

29 0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4,

0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0,

30 0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5,

0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15,

31 0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12,

0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75,

32 0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b,

0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84,

33 0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb,

0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf,

34 0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9,

0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8,

35 0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6,

0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2,

36 0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7,

0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73,

37 0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee,

0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb,

38 0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3,

0xac, 0x62, 0x91, 0x95, 0xe4, 0x79,

39 0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56,

0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08,

40 0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd,

0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a,
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41 0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35,

0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e,

42 0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e,

0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf,

43 0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99,

0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16 };

44

45 #if (defined(CBC) && CBC == 1) || (defined(ECB) && ECB == 1)

46 static const uint8_t rsbox[256] = {

47 0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0xbf, 0x40,

0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb,

48 0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87, 0x34, 0x8e,

0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb,

49 0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d, 0xee, 0x4c,

0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e,

50 0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2, 0x76, 0x5b,

0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25,

51 0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xd4, 0xa4,

0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92,

52 0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda, 0x5e, 0x15,

0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84,

53 0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a, 0xf7, 0xe4,

0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06,

54 0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02, 0xc1, 0xaf,

0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b,

55 0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea, 0x97, 0xf2,

0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73,

56 0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, 0xe2, 0xf9,

0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e,
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57 0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89, 0x6f, 0xb7,

0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b,

58 0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20, 0x9a, 0xdb,

0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4,

59 0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31, 0xb1, 0x12,

0x10, 0x59, 0x27, 0x80, 0xec, 0x5f,

60 0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d, 0x2d, 0xe5,

0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef,

61 0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0, 0xc8, 0xeb,

0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61,

62 0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, 0xe1, 0x69,

0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d };

63 #endif

64

65 static const uint8_t Rcon[11] = {

66 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36

};

67

68

69 static uint8_t getSBoxValue(uint8_t num)

70 {

71 return sbox[num];

72 }

73

74 #define getSBoxValue(num) (sbox[(num)])

75

76 static void KeyExpansion(uint8_t* RoundKey, const uint8_t* Key)

77 {

78 unsigned i, j, k;
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79 uint8_t tempa[4]; // Used for the column/row operations

80

81 // The first round key is the key itself.

82 for (i = 0; i < Nk; ++i)

83 {

84 RoundKey[(i * 4) + 0] = Key[(i * 4) + 0];

85 RoundKey[(i * 4) + 1] = Key[(i * 4) + 1];

86 RoundKey[(i * 4) + 2] = Key[(i * 4) + 2];

87 RoundKey[(i * 4) + 3] = Key[(i * 4) + 3];

88 }

89

90 // All other round keys are found from the previous round keys.

91 for (i = Nk; i < Nb * (Nr + 1); ++i)

92 {

93 {

94 k = (i - 1) * 4;

95 tempa[0]=RoundKey[k + 0];

96 tempa[1]=RoundKey[k + 1];

97 tempa[2]=RoundKey[k + 2];

98 tempa[3]=RoundKey[k + 3];

99

100 }

101

102 if (i % Nk == 0)

103 {

104 // [a0,a1,a2,a3] becomes [a1,a2,a3,a0]

105

106 // Function RotWord()

107 {
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108 const uint8_t u8tmp = tempa[0];

109 tempa[0] = tempa[1];

110 tempa[1] = tempa[2];

111 tempa[2] = tempa[3];

112 tempa[3] = u8tmp;

113 }

114

115

116 // Function Subword()

117 {

118 tempa[0] = getSBoxValue(tempa[0]);

119 tempa[1] = getSBoxValue(tempa[1]);

120 tempa[2] = getSBoxValue(tempa[2]);

121 tempa[3] = getSBoxValue(tempa[3]);

122 }

123

124 tempa[0] = tempa[0] ^ Rcon[i/Nk];

125 }

126 #if defined(AES256) && (AES256 == 1)

127 if (i % Nk == 4)

128 {

129 // Function Subword()

130 {

131 tempa[0] = getSBoxValue(tempa[0]);

132 tempa[1] = getSBoxValue(tempa[1]);

133 tempa[2] = getSBoxValue(tempa[2]);

134 tempa[3] = getSBoxValue(tempa[3]);

135 }

136 }
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137 #endif

138 j = i * 4; k=(i - Nk) * 4;

139 RoundKey[j + 0] = RoundKey[k + 0] ^ tempa[0];

140 RoundKey[j + 1] = RoundKey[k + 1] ^ tempa[1];

141 RoundKey[j + 2] = RoundKey[k + 2] ^ tempa[2];

142 RoundKey[j + 3] = RoundKey[k + 3] ^ tempa[3];

143 }

144 }

145

146 void AES_init_ctx(struct AES_ctx* ctx, const uint8_t* key)

147 {

148 KeyExpansion(ctx->RoundKey, key);

149 }

150 #if (defined(CBC) && (CBC == 1)) || (defined(CTR) && (CTR == 1))

151 void AES_init_ctx_iv(struct AES_ctx* ctx, const uint8_t* key,

const uint8_t* iv)

152 {

153 KeyExpansion(ctx->RoundKey, key);

154 memcpy (ctx->Iv, iv, AES_BLOCKLEN);

155 }

156 void AES_ctx_set_iv(struct AES_ctx* ctx, const uint8_t* iv)

157 {

158 memcpy (ctx->Iv, iv, AES_BLOCKLEN);

159 }

160 #endif

161

162

163 static void AddRoundKey(uint8_t round, state_t* state, const

uint8_t* RoundKey)
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164 {

165 uint8_t i,j;

166 for (i = 0; i < 4; ++i)

167 {

168 for (j = 0; j < 4; ++j)

169 {

170 (*state)[i][j] ^= RoundKey[(round * Nb * 4) + (i * Nb) + j];

171 }

172 }

173 }

174

175

176 static void SubBytes(state_t* state)

177 {

178 uint8_t i, j;

179 for (i = 0; i < 4; ++i)

180 {

181 for (j = 0; j < 4; ++j)

182 {

183 (*state)[j][i] = getSBoxValue((*state)[j][i]);

184 }

185 }

186 }

187

188 static void ShiftRows(state_t* state)

189 {

190 uint8_t temp;

191

192 // Rotate first row 1 columns to left
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193 temp = (*state)[0][1];

194 (*state)[0][1] = (*state)[1][1];

195 (*state)[1][1] = (*state)[2][1];

196 (*state)[2][1] = (*state)[3][1];

197 (*state)[3][1] = temp;

198

199 // Rotate second row 2 columns to left

200 temp = (*state)[0][2];

201 (*state)[0][2] = (*state)[2][2];

202 (*state)[2][2] = temp;

203

204 temp = (*state)[1][2];

205 (*state)[1][2] = (*state)[3][2];

206 (*state)[3][2] = temp;

207

208 // Rotate third row 3 columns to left

209 temp = (*state)[0][3];

210 (*state)[0][3] = (*state)[3][3];

211 (*state)[3][3] = (*state)[2][3];

212 (*state)[2][3] = (*state)[1][3];

213 (*state)[1][3] = temp;

214 }

215

216 static uint8_t xtime(uint8_t x)

217 {

218 return ((x<<1) ^ (((x>>7) & 1) * 0x1b));

219 }

220

221 static void MixColumns(state_t* state)
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222 {

223 uint8_t i;

224 uint8_t Tmp, Tm, t;

225 for (i = 0; i < 4; ++i)

226 {

227 t = (*state)[i][0];

228 Tmp = (*state)[i][0] ^ (*state)[i][1] ^ (*state)[i][2] ^

(*state)[i][3] ;

229 Tm = (*state)[i][0] ^ (*state)[i][1] ; Tm = xtime(Tm);

(*state)[i][0] ^= Tm ^ Tmp ;

230 Tm = (*state)[i][1] ^ (*state)[i][2] ; Tm = xtime(Tm);

(*state)[i][1] ^= Tm ^ Tmp ;

231 Tm = (*state)[i][2] ^ (*state)[i][3] ; Tm = xtime(Tm);

(*state)[i][2] ^= Tm ^ Tmp ;

232 Tm = (*state)[i][3] ^ t ; Tm = xtime(Tm);

(*state)[i][3] ^= Tm ^ Tmp ;

233 }

234 }

235

236 #if MULTIPLY_AS_A_FUNCTION

237 static uint8_t Multiply(uint8_t x, uint8_t y)

238 {

239 return (((y & 1) * x) ^

240 ((y>>1 & 1) * xtime(x)) ^

241 ((y>>2 & 1) * xtime(xtime(x))) ^

242 ((y>>3 & 1) * xtime(xtime(xtime(x)))) ^

243 ((y>>4 & 1) * xtime(xtime(xtime(xtime(x)))))); /* this last

call to xtime() can be omitted */

244 }
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245 #else

246 #define Multiply(x, y) \

247 ( ((y & 1) * x) ^ \

248 ((y>>1 & 1) * xtime(x)) ^ \

249 ((y>>2 & 1) * xtime(xtime(x))) ^ \

250 ((y>>3 & 1) * xtime(xtime(xtime(x)))) ^ \

251 ((y>>4 & 1) * xtime(xtime(xtime(xtime(x)))))) \

252

253 #endif

254

255 #if (defined(CBC) && CBC == 1) || (defined(ECB) && ECB == 1)

256

257 #define getSBoxInvert(num) (rsbox[(num)])

258

259 static void InvMixColumns(state_t* state)

260 {

261 int i;

262 uint8_t a, b, c, d;

263 for (i = 0; i < 4; ++i)

264 {

265 a = (*state)[i][0];

266 b = (*state)[i][1];

267 c = (*state)[i][2];

268 d = (*state)[i][3];

269

270 (*state)[i][0] = Multiply(a, 0x0e) ^ Multiply(b, 0x0b) ^

Multiply(c, 0x0d) ^ Multiply(d, 0x09);

271 (*state)[i][1] = Multiply(a, 0x09) ^ Multiply(b, 0x0e) ^

Multiply(c, 0x0b) ^ Multiply(d, 0x0d);



AI-based anomaly detection on RISC-V 79

272 (*state)[i][2] = Multiply(a, 0x0d) ^ Multiply(b, 0x09) ^

Multiply(c, 0x0e) ^ Multiply(d, 0x0b);

273 (*state)[i][3] = Multiply(a, 0x0b) ^ Multiply(b, 0x0d) ^

Multiply(c, 0x09) ^ Multiply(d, 0x0e);

274 }

275 }

276

277

278 static void InvSubBytes(state_t* state)

279 {

280 uint8_t i, j;

281 for (i = 0; i < 4; ++i)

282 {

283 for (j = 0; j < 4; ++j)

284 {

285 (*state)[j][i] = getSBoxInvert((*state)[j][i]);

286 }

287 }

288 }

289

290 static void InvShiftRows(state_t* state)

291 {

292 uint8_t temp;

293

294 // Rotate first row 1 columns to right

295 temp = (*state)[3][1];

296 (*state)[3][1] = (*state)[2][1];

297 (*state)[2][1] = (*state)[1][1];

298 (*state)[1][1] = (*state)[0][1];
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299 (*state)[0][1] = temp;

300

301 // Rotate second row 2 columns to right

302 temp = (*state)[0][2];

303 (*state)[0][2] = (*state)[2][2];

304 (*state)[2][2] = temp;

305

306 temp = (*state)[1][2];

307 (*state)[1][2] = (*state)[3][2];

308 (*state)[3][2] = temp;

309

310 // Rotate third row 3 columns to right

311 temp = (*state)[0][3];

312 (*state)[0][3] = (*state)[1][3];

313 (*state)[1][3] = (*state)[2][3];

314 (*state)[2][3] = (*state)[3][3];

315 (*state)[3][3] = temp;

316 }

317 #endif // #if (defined(CBC) && CBC == 1) || (defined(ECB) && ECB

== 1)

318

319 // Cipher is the main function that encrypts the PlainText.

320 static void Cipher(state_t* state, const uint8_t* RoundKey)

321 {

322 uint8_t round = 0;

323

324 // Add the First round key to the state before starting the

rounds.

325 AddRoundKey(0, state, RoundKey);
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326

327 // There will be Nr rounds.

328 // The first Nr-1 rounds are identical.

329 // These Nr rounds are executed in the loop below.

330 // Last one without MixColumns()

331 for (round = 1; ; ++round)

332 {

333 SubBytes(state);

334 ShiftRows(state);

335 if (round == Nr) {

336 break;

337 }

338 MixColumns(state);

339 AddRoundKey(round, state, RoundKey);

340 }

341 // Add round key to last round

342 AddRoundKey(Nr, state, RoundKey);

343 }

344

345 #if (defined(CBC) && CBC == 1) || (defined(ECB) && ECB == 1)

346 static void InvCipher(state_t* state, const uint8_t* RoundKey)

347 {

348 uint8_t round = 0;

349

350 // Add the First round key to the state before starting the

rounds.

351 AddRoundKey(Nr, state, RoundKey);

352

353 // There will be Nr rounds.
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354 // The first Nr-1 rounds are identical.

355 // These Nr rounds are executed in the loop below.

356 // Last one without InvMixColumn()

357 for (round = (Nr - 1); ; --round)

358 {

359 InvShiftRows(state);

360 InvSubBytes(state);

361 AddRoundKey(round, state, RoundKey);

362 if (round == 0) {

363 break;

364 }

365 InvMixColumns(state);

366 }

367

368 }

369 #endif // #if (defined(CBC) && CBC == 1) || (defined(ECB) && ECB

== 1)

370

371 #if defined(ECB) && (ECB == 1)

372

373

374 void AES_ECB_encrypt(const struct AES_ctx* ctx, uint8_t* buf)

375 {

376 Cipher((state_t*)buf, ctx->RoundKey);

377 }

378

379 void AES_ECB_decrypt(const struct AES_ctx* ctx, uint8_t* buf)

380 {

381 InvCipher((state_t*)buf, ctx->RoundKey);
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382 }

383

384

385 #endif // #if defined(ECB) && (ECB == 1)

386

387

388

389

390

391 #if defined(CBC) && (CBC == 1)

392

393

394 static void XorWithIv(uint8_t* buf, const uint8_t* Iv)

395 {

396 uint8_t i;

397 for (i = 0; i < AES_BLOCKLEN; ++i) // The block in AES is always

128bit no matter the key size

398 {

399 buf[i] ^= Iv[i];

400 }

401 }

402

403 void AES_CBC_encrypt_buffer(struct AES_ctx *ctx, uint8_t* buf,

size_t length)

404 {

405 size_t i;

406 uint8_t *Iv = ctx->Iv;

407 for (i = 0; i < length; i += AES_BLOCKLEN)

408 {
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409 XorWithIv(buf, Iv);

410 Cipher((state_t*)buf, ctx->RoundKey);

411 Iv = buf;

412 buf += AES_BLOCKLEN;

413 }

414

415 memcpy(ctx->Iv, Iv, AES_BLOCKLEN);

416 }

417

418 void AES_CBC_decrypt_buffer(struct AES_ctx* ctx, uint8_t* buf,

size_t length)

419 {

420 size_t i;

421 uint8_t storeNextIv[AES_BLOCKLEN];

422 for (i = 0; i < length; i += AES_BLOCKLEN)

423 {

424 memcpy(storeNextIv, buf, AES_BLOCKLEN);

425 InvCipher((state_t*)buf, ctx->RoundKey);

426 XorWithIv(buf, ctx->Iv);

427 memcpy(ctx->Iv, storeNextIv, AES_BLOCKLEN);

428 buf += AES_BLOCKLEN;

429 }

430

431 }

432

433 #endif // #if defined(CBC) && (CBC == 1)

434

435

436
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437 #if defined(CTR) && (CTR == 1)

438

439

440 void AES_CTR_xcrypt_buffer(struct AES_ctx* ctx, uint8_t* buf,

size_t length)

441 {

442 uint8_t buffer[AES_BLOCKLEN];

443

444 size_t i;

445 int bi;

446 for (i = 0, bi = AES_BLOCKLEN; i < length; ++i, ++bi)

447 {

448 if (bi == AES_BLOCKLEN) /* we need to regen xor compliment in

buffer */

449 {

450

451 memcpy(buffer, ctx->Iv, AES_BLOCKLEN);

452 Cipher((state_t*)buffer,ctx->RoundKey);

453

454 /* Increment Iv and handle overflow */

455 for (bi = (AES_BLOCKLEN - 1); bi >= 0; --bi)

456 {

457 /* inc will overflow */

458 if (ctx->Iv[bi] == 255)

459 {

460 ctx->Iv[bi] = 0;

461 continue;

462 }

463 ctx->Iv[bi] += 1;
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464 break;

465 }

466 bi = 0;

467 }

468

469 buf[i] = (buf[i] ^ buffer[bi]);

470 }

471 }

472

473 #endif // #if defined(CTR) && (CTR == 1)

2. format of HPCs

Number of Instructions: 469764456

Clock Cycles: 8454

Number of cycles the core was active: 29265

Number of load data hazards:29264

Number of jump register data hazards:591

Cycles waiting for instruction fetches:0

Number of data memory loads executed:0

Number of data memory stores executed:1442

Number of unconditional jumps:1068

Number of branches:947

Number of taken branches:1394

Number of compressed instructions executed:968

Number of memory loads to EXT executed:0

Number of memory stores to EXT executed:0

Cycles used for memory loads to EXT:0
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Cycles used for memory stores to EXT:0

Cycles wasted due to TCDM/log-interconnect contention:0

3. random combination of data and run(2-D example)

1 import subprocess

2

3 # Define the list of file names

4 file_names = ["branch_cnt.txt", "btaken_cnt.txt", "clk_cnt.txt",

"instr_cnt.txt", "jump_cnt.txt", "ld_cnt.txt", "ls_cnt.txt",

"rcv_cnt.txt", "st_cnt.txt"]

5

6 # Define the paths

7 path_local =

"/home/cristiano/Documents/pulp-sdk/tests/qsort/scripts/"

8 path_encrypt_learn =

"/home/cristiano/Documents/pulp-sdk/tests/qsort

9 /encrypt/parameters_learn/"

10 path_noencrypt_learn =

"/home/cristiano/Documents/pulp-sdk/tests/qsort

11 /noencrypt/parameters_learn/"

12 path_encrypt_test = "/home/cristiano/Documents/pulp-sdk/tests/qsort

13 /encrypt/parameters/"

14 path_noencrypt_test =

"/home/cristiano/Documents/pulp-sdk/tests/qsort

15 /noencrypt/parameters/"

16 path_results =

"/home/cristiano/Documents/pulp-sdk/tests/qsort/results_benign/"

17

18 # Open a log file to record the results
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19 # with open("2_reg_machine_learning_benign_results.log", "w") as

log_file:

20 with open(path_results +

"2_reg_machine_learning_benign_results.log", "w") as log_file:

21

22 # Loop through all pairs of files

23 for i in range(len(file_names)):

24 for j in range(i+1, len(file_names)):

25

26 # Print the file names to the log

27 log_file.write(f"{file_names[i]} {file_names[j]}\n")

28

29 # Run the first command : encrypt learn

30 subprocess.check_call([path_encrypt_learn + "2d10000sel_enc",

path_encrypt_learn + file_names[i], path_encrypt_learn +

file_names[j]])

31

32 # Run the second command : noencript learn

33 subprocess.check_call([path_noencrypt_learn +

"2d10000sel_noenc", path_noencrypt_learn + file_names[i],

path_noencrypt_learn + file_names[j]])

34

35 # Run the third command : encrypt test

36 subprocess.check_call([path_encrypt_test + "2d_test_enc",

path_encrypt_test + file_names[i], path_encrypt_test +

file_names[j]])

37

38 # Run the next command

39 subprocess.check_call([path_noencrypt_test + "2d_test_noenc",
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path_noencrypt_test + file_names[i], path_noencrypt_test

+ file_names[j]])

40

41 # Print the results of the last command to the log

42 result = subprocess.check_output(["python3", path_local +

"ml_benign.py"])

43 log_file.write(result.decode("utf-8"))

44 log_file.write("\n")
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