
POLITECNICO DI TORINO
Master’s Degree in Electronic Engineering

Master’s Degree Thesis

Development of a High-Throughput
Floating-Point CORDIC Architecture for

Automotive Applications

Supervisors

Prof. Maurizio MARTINA

Prof. Guido MASERA

Dr. Luigi GIUFFRIDA

Candidate

Luigi TEDONE

April 2024

Abstract

The computation of complex functions such as the trigonometric and hyperbolic
ones is usually performed either implying large lookup tables or by long software
routines. However, the suitability of both solutions strongly depends on the
specific application. For example, the former one, storing the results inside a
memory, can be very fast and efficient when accuracy is not paramount, but it
can lead to prohibitive area occupations. On the other hand, the latter solution
exploits polynomial approximation to provide precise results, but it forces the
processor to spend a large amount of time waiting for its completion. As a
result, the two approaches cannot be adopted for high-accuracy and low-latency
applications. In this context, the integration of a dedicated accelerator can be very
effective, since it lets the processor offload the execution of such functions. This
work, therefore, presents the design and implementation of a unit that, exploiting
CORDIC algorithm, is able to reach a large variety of executable functions, albeit
maintaining high levels of accuracy and throughput. In its unified version, CORDIC
algorithm can compute trigonometric and hyperbolic functions, multiplications,
divisions and plane rotations by only performing, iteratively, shift operations and
additions. This makes clear its ability to reach low latencies, but also highlights the
need for a quite large number of iterations to ensure the desired accuracy. However,
being CORDIC architectures particularly prone to unrolling and pipelining, this
does not represent a major issue. The main drawback is, then, its strict bond with
fixed-point representation, which makes it unsuitable for high precision applications.
To overcome this limitation, the proposed design fuses CORDIC algorithm with
floating-point arithmetic, thus allowing it to reach the desired accuracy. This
extension can follow two strategies, that is either to adopt floating-point arithmetic
blocks or to opportunely convert inputs and outputs to have an internal fixed-point
pipeline. For this design, the latter solution has been chosen, since it allows to have
much faster stages. However, this choice led to the need for specific arrangements to
fuse floating-point-specific concepts (Infinities, NaNs) with fixed-point arithmetic.
In this work, two binary IEEE-754 formats have been considered, that is single and
half precision, since both of them represent a good trade-off between precision and
speed. The architecture description process has been carried out in SystemVerilog
starting from each computational stage and then moving to the whole system,
having high throughput and accuracy as main focuses. This let it not only satisfy
the required working frequency of 100 MHz, but also reach a maximum one above
1 GHz. The design has, then, been tested and synthesized, obtaining promising
results in terms of error, area, power and speed. In addition, the unit has been
integrated as a peripheral in the open-source X-HEEP platform, providing, as

expected, faster execution times, compared to the software-based routines, without
trading accuracy for performance. In conclusion, the proposed design has shown to
be a viable solution for low-power, high-performance and high-precision applications
and future works may focus on the further reduction of power consumption, for
example by means of clock gating, on the integration of other standard or custom
floating-point formats or on the execution of more complex functions obtained by
exploiting the existing ones.

ii

Summary

Trigonometric, hyperbolic and other complex mathematical functions are crucial for
several applications such as digital signal processing (DSP), software-defined radios,
machine learning algorithms or navigation systems and wireless communications,
but performing such computations in digital hardware has always been challenging.
There are two traditional approaches when dealing with these functions, that is
either to rely on long software routines or on lookup tables (LUTs), but both of
them come with trade-offs, since the former is flexible and accurate, but slow and
power-hungry, whereas the latter is fast, but trades area occupation for precision.
In this context, a third approach seems to be the most effective, that is to rely on
additional hardware that is specialized in performing such computations. There-
fore, this thesis project aims at designing a hardware accelerator that, following
the unified COordinate Rotation DIgital Computer (CORDIC) algorithm, can
compute, with constant latency and a target frequency of 100 MHz, a wide range
of functions (sine, cosine and arctangent, as well as their respective hyperbolic
versions, multiplication and division) with very low levels of error and latency and
with promising results in terms of area occupation and power consumption.
CORDIC algorithm is a fixed-point (FXP) iterative procedure that exploits Given’s
rotation to compute the desired functions by only implying a sequence of additions,
subtractions and shifts. In its unified version, it supports two working modes,
that is rotation and vectoring, each of which can use three coordinate systems (i.e.
circular, linear and hyperbolic) to perform the desired operations. It takes three
inputs, x, y and z, one for each branch, returns three outputs and, at each iteration,
it computes the new x, y and z based on their current values and on the selected
mode, with the underlying criterion of bringing z to zero in rotation mode and y to
zero in vectoring mode. Therefore, it could be now clear how its iterative nature can
both be a strength and a weakness, since it implies very straightforward operations,
but also requires a large number of iterations to achieve a reasonable accuracy.
However, this limitation can be easily overcome by unfolding and pipelining the
architecture, which allows to compute the desired functions in a single clock cycle
once the initial latency has been paid. In addition, also the drawback represented
by the restricted dynamic range of fixed-point arithmetic can be solved by adapting

ii

the algorithm to the floating-point (FLP) one, which is the most common format
used in scientific applications and which also ensures a higher precision.
In this work, after a preliminary analysis of the implementations proposed in
literature, it has been decided to rely on a traditional unfolded and pipelined
architecture, in order to support the whole set of functions and to deliver a high-
throughput unit. For what concerns, instead, the extension to floating-point
arithmetic, two possible strategies can be followed, that is global and local FLP.
The former directly implies floating-point adders and shifters within the internal
pipeline, which ensures the maximum accuracy, but it is also very likely to need
some fine-grain pipelining due to the large critical path caused by the intrinsic
complexity of floating-point blocks. On the other hand, the latter converts the
FLP inputs into a custom fixed-point format, which takes care of overflow and
precision loss by using additional padding bits, and then converts back the fixed-
point outputs into floating-point. As a result, although seeming to be less accurate,
this method can rely on much faster internal blocks able to reach higher frequencies
without the need for fine-grain pipelining. Therefore, after an error analysis of both
approaches, it has been decided to rely on global FLP, since it provided equivalent
results in terms of accuracy and it is more likely to reach higher frequencies.
Once the floating-point extension strategy has been chosen, the architecture has
been designed and implemented targeting single and half precision as the supported
FLP formats because of the popularity of the former in scientific applications
and of the latter in low-power and area-constrained systems. After an extensive
verification process, where several configurations of the internal fixed-point format
have been tested on 10000 random values and compared in terms of average relative
error, a number of 3 overflow bits (added to the left of the mantissa and in charge
of making the block overflow-proof) for x, y and z, 5 guard bits (added to the right
and responsible of minimizing precision loss) for x and y and 3 guard bits for z for
single precision, as well as 3 overflow bits for x, y and z, 4 guard bits for x and y
and 3 guard bits for z for half precision, seemed to be the best trade-off between
accuracy and area occupation. In fact, the obtained average relative error is roughly
equal to 0.031% for single precision and 0.223% for half precision, which is very
close to the error obtained with the maximum numbers of overflow and guard bits,
respectively equal to 0.029% and 0.216% for both precisions, but with an area
occupation around 30% smaller. For what concerns, instead, the total number
of iterations, namely the pipeline stages in an unfolded architecture, it has been
decided to rely on 37 stages for single precision and 21 for half precision, in order
to guarantee an optimal accuracy without increasing the area occupation too much.
Overall, the unit can be divided into three main areas, that is the pre-processing
block, where the conversion from FLP to FXP takes place, the fixed-point CORDIC
pipeline, which includes the core of the algorithm, as well as some scaling stages to
compensate for the effects of the algorithm itself, and the post-processing block,

iii

where the conversion from FXP back to FLP is performed. In order to provide full
floating-point compatibility, especially for what concerns special cases handling,
the pre and post-processing blocks communicate with each other through specific
control signals that highlight whenever a result is predictable and equal to zero,
infinity or NaN, which would otherwise lead to wrong computations in fixed-point
arithmetic. In such cases, since it is not necessary to evaluate the results, a
bubble is pushed into the pipeline to minimize switching activity, and, thus, power
consumption, by disabling the internal registers.
For what concerns the synthesis process, the unit has first been synthesized at the
target frequency of 100 MHz, obtaining an area occupation of roughly 0.11 mm2

for single precision and 0.04 mm2 for half precision, as well as a power consumption
of around 11 mW and 4 mW, respectively, and has, then, been pushed to the
maximum frequency, which turned out to be above 1 GHz for both precisions.
As a final step, in order to try it in a real application, the unit has been integrated
as an external peripheral into the X-HEEP microcontroller system, an open-source
platform based on a RISC-V core, and tested with a simple program that compares
the number of clock cycles required both by the accelerator and the CPU (using the
math.h library) for each of the 16 operations and for 1024 input combinations. In
particular, in order to let the CPU really offload the computation to the peripheral,
the CORDIC block has been surrounded by a wrapper that receives the control
signals from the CPU, manages read and write transfer requests to the DMA and
opportunely feeds the CORDIC unit with the correct input signals based on the
chosen operation. Given the presence of a single-port memory and of a 32-bit bus,
the implementation of such wrapper has been challenging because not only the
designed unit is pipelined, which means that, when active, it will always try to flush
its content, but it also requires and produces multiple inputs and outputs, which
forces the read and write transfers to be synchronized and performed in a specific
order. However, the final implementation, as expected, provided a remarkable
speedup, with a ratio between the number of clock cycles needed by the CPU and
by the accelerator that is equal to 838.83 for trigonometric functions, 1497.76 for
hyperbolic functions and 32.56 for multiplication and division.
Therefore, to sum up, the designed CORDIC unit has shown to be a viable
solution for the computation of complex mathematical functions, especially for
high-throughput, high-accuracy, low-power and low-area applications, and provided
feasible results in terms of speedup in a real application. However, it can be
considered as a starting point for future improvements, which could include the
implementation of low-power techniques, such as clock gating, the support for other
standard or custom floating-point formats, the integration as an internal peripheral
in a complex platform, such as a digital signal processor or a machine learning
accelerator, to improve the overall performance, as well as the support for more
operations that can be obtained combining the ones already supported.

iv

v

Acknowledgements

I would like first of all to thank Prof. Maurizio Martina and Prof. Guido Masera
for the valuable concepts learned during their course, which have been fundamental
for the development of the project.
I would also like to thank my family and my friends for their continuous presence,
as well as my girlfriend for her endless tolerance, support and encouragement.
Last but not least, I really want to thank Dr. Luigi Giuffrida for encouraging and
motivating me to always do my best and to never give up, which is something very
precious and laudable that I will not forget.

vi

Table of Contents

List of Tables x

List of Figures xi

1 Introduction 1

2 Background 3
2.1 Floating-Point representation . 3
2.2 Floating-Point addition and shift 6

2.2.1 Floating-Point addition . 6
2.2.2 Floating-Point shift . 8
2.2.3 Floating-Point status flags 9

2.3 CORDIC algorithm . 10
2.3.1 Traditional CORDIC algorithm 10
2.3.2 Unified CORDIC algorithm 13
2.3.3 Traditional hardware implementations of unified CORDIC . 16
2.3.4 Possible improvements . 18

2.4 Floating-Point extension for CORDIC algorithm 20
2.5 Related works . 20

2.5.1 Fixed-point CORDIC . 20
2.5.2 Floating-point CORDIC . 30
2.5.3 General comparison . 32

3 Proposed architecture 41
3.1 Preliminary choices . 41

3.1.1 Supported floating-point formats 41
3.1.2 Algorithm selection . 41
3.1.3 Floating-point extension strategy 42
3.1.4 Scaling factor compensation technique 42

3.2 Architecture overview . 47
3.3 Pre-processing block . 50

viii

3.3.1 FLP unpacking and FXP packing 52
3.3.2 Reference exponent computation, alignment and 2’s comple-

ment conversion . 54
3.3.3 z mapping . 56
3.3.4 Status flags generation . 57
3.3.5 Other arrangements . 67

3.4 Fixed-point CORDIC top module 67
3.4.1 Fixed-point CORDIC pipeline 68
3.4.2 Scaling pipeline . 72
3.4.3 Lookup table . 76

3.5 Post-processing block . 76
3.5.1 Zero detection . 77
3.5.2 Leading one detection, alignment and rounding 79
3.5.3 Exponent update and FLP packing 81
3.5.4 Outputs selection and status flags generation 82

4 X-HEEP platform 85
4.1 RTL files creation . 86
4.2 Wrapper design . 87

4.2.1 Interface signals . 87
4.2.2 Internal FSMs . 93
4.2.3 CORDIC unit management 95

5 Obtained results 100
5.1 Simulation results . 100

5.1.1 Preliminary choices . 100
5.1.2 Random numbers generation 103
5.1.3 Error analysis . 103

5.2 Synthesis results . 106
5.3 X-HEEP results . 109

6 Conclusions 114
6.1 Future works . 114

Bibliography 116

ix

List of Tables

2.1 IEEE-754 Floating-Point formats parameters. 7
2.2 Predictable results for floating-point addition 8
2.3 Shift sequences. 15
2.4 Angles and scaling coefficients for unified CORDIC. 15
2.5 CORDIC working modes summary. 17
2.6 Relation among the σi coefficients. 26
2.7 Algorithms comparison. 33
2.8 Architectures comparison. 34
2.9 Architectures comparison for 16, 24 and 32 bits. 40

3.1 Shift sequence for the fixed-point CORDIC pipeline [29]. 71
3.2 Scaling coefficients for the scaling pipeline 74
3.3 Rounding to the nearest even method. 81

4.1 Available configurations and their corresponding opcodes. 98

5.1 Minimum thresholds for the exponent difference. 102
5.2 Average relative error comparison. 106
5.3 Synthesis results for both precisions. 108
5.4 Synthesis results for both precisions with different configurations of

overflow and guard bits. 109
5.5 Performance comparison between the integrated CORDIC accelera-

tor and the CPU. 112

x

List of Figures

2.1 IEEE-754 Floating-Point format . 5
2.2 Two-dimension vector rotation . 10
2.3 Impact of the absence of the denominator 12
2.4 CORDIC algorithm among the various coordinates systems 16
2.5 Folded CORDIC architecture. 18
2.6 Unfolded and pipelined CORDIC architecture. 19
2.7 Unfolded and pipelined CORDIC architecture with local FLP. . . . 21
2.8 Unfolded and pipelined CORDIC architecture with global FLP. . . 22

3.1 Error comparison in rotation mode between global and local floating-
point for single precision . 43

3.2 Error comparison in vectoring mode between global and local floating-
point for single precision . 44

3.3 Error comparison in rotation mode between global and local floating-
point for half precision . 45

3.4 Error comparison in vectoring mode between global and local floating-
point for half precision . 46

3.5 Block diagram of the entire floating-point CORDIC unit. 48
3.6 Block diagram of the pre-processing block. 51
3.7 Fixed-point format for single and half precision 53
3.8 Block diagram of the z-map unit. 56
3.9 Block diagram of the fixed-point CORDIC top module. 69
3.10 Block diagram of the fixed-point CORDIC pipeline. 70
3.11 Block diagram of a CORDIC stage. 71
3.12 Scaling pipeline . 73
3.13 Block diagram of a scaling stage. 75
3.14 Block diagram of the post-processing block. 77
3.15 Example of what the post-processing block sees when an incoming

operand is formed by all zeros. 78
3.16 Internal fixed-point format for the rounding process. 80

xi

4.1 Block diagram of the X-HEEP microcontroller system [9]. 85
4.2 Block diagram of the wrapper for single precision. 88
4.3 Block diagram of the wrapper for half precision. 89
4.4 Block diagram of the wrapper for transprecision. 90

5.1 Relative error comparison for single precision in rotation and hyper-
bolic coordinates. 101

5.2 Relative error comparison for half precision in rotation and hyper-
bolic coordinates. 102

5.3 Error comparison among different configurations of the internal
fixed-point format for single precision. 104

5.4 Error comparison among different configurations of the internal
fixed-point format for half precision. 105

5.5 Example waveforms of the reference values and the outputs of the
CORDIC unit for both precisions and rotation mode. 107

5.6 Example waveforms of the reference values and the outputs of the
CORDIC unit for both precisions and vectoring mode. 108

5.7 Comparison of the area and power results for both precisions with
different configurations of overflow and guard bits. 110

xii

Chapter 1

Introduction

The computation of complex mathematical functions, such as the trigonometric
and hyperbolic ones, has always been challenging in digital hardware and is crucial
for several applications such as digital signal processing (DSP) [1], software-defined
radios [2], matrix arithmetic [3], machine learning algorithms [4], navigation systems
[5] and wireless communications [6]. Generally, these functions are computed either
adopting specific software solutions or relying on large lookup tables (LUTs) [7],
both of which come with trade-offs. By storing the results of operations in memory
and retrieving them based on the input value, the latter approach is the faster
one between the two, but the size of such memories can easily explode when high
accuracy is required. In fact, small LUTs can lead to a significant loss of precision,
whereas large ones can achieve low errors, but they are not efficient in terms of
area occupation. On the other hand, the computation of complex mathematical
functions through software routines is based on polynomial approximations (mainly
Taylor’s series), which makes this method more flexible and accurate, but forces
the system to perform a large number of operations, thus increasing latency and
power consumption.
However, as [1, 2, 3, 4, 5, 6] show, there is a third approach that seems to solve
the problems of both the aforementioned solutions. This method is based on
the COordinate Rotation DIgital Computer (CORDIC) iterative algorithm, which
represents a powerful and flexible tool for the computation of complex mathematical
functions. By performing a sequence of additions, subtractions and shifts, CORDIC
algorithm can compute a wide range of functions, such as sine, cosine, arctangent,
hyperbolic sine and cosine, as well as multiplication and division, with very high
precision and low latency, thus making it suitable for high-performance, high-
throughput and low-power applications. On the other hand, the main drawbacks of
CORDIC algorithm are its being inherently a fixed-point algorithm, which means
that it supports smaller dynamic ranges compared to floating-point arithmetic,

1

Introduction

and the need for a large number of iterations to achieve reasonable error levels.
However, these limitations can be easily overcome by adapting the algorithm to
floating-point arithmetic and by applying pipelining to the entire architecture,
respectively.
For such reasons, in this work it has been decided to design a CORDIC hardware
accelerator able to compute, at a frequency of 100 MHz, the whole set of functions
supported by the algorithm itself, while maintaining high levels of accuracy and
throughput, as well as low area occupation and power consumption. In addition,
the unit supports both single and half precision floating-point, since the former
is the most common format used in scientific applications, whereas the latter is
becoming more and more popular in embedded systems, thanks to its reduced
area occupation and power consumption. Therefore, after a preliminary analysis
of the implementations proposed in literature [8], it has been decided to rely on a
traditional unfolded and pipelined architecture that can be opportunely configured
to compute the desired functions and which showed the ability to reach a maximum
frequency above 1 GHz for both floating-point formats. In addition, the final
unit has, then, been integrated in the X-HEEP microcontroller system [9], an
open-source platform based on a RISC-V core, and tested in a real application,
showing that it can be used as an external accelerator capable of providing a
significant speedup, especially in the computation of trigonometric and hyperbolic
functions.
The rest of the text is organized as follows:

• Chapter 2 provides a brief overview of the IEEE-754 standard for floating-
point arithmetic and of CORDIC algorithm, as well as a summary of the most
relevant works in literature about CORDIC implementations.

• Chapter 3 describes the proposed architecture for the CORDIC unit, focusing
on explaining the strategies adopted within each structural block and the
overall design choices.

• Chapter 4 explains the integration process of the accelerator in the X-HEEP
microcontroller system.

• Chapter 5 presents the obtained results in terms of accuracy, area occupa-
tion, power consumption and maximum achievable frequency, as well as the
performance and achievable speedup of the unit in a real application.

• Chapter 6 draws the conclusions and suggests some possible future works.

2

Chapter 2

Background

2.1 Floating-Point representation
Performing arithmetic operations in digital electronics lays on the conversion of
numbers into a binary format. This can be generally pursued in two ways:

• fixed-point representation (FXP).

• floating-point representation (FLP).

Supposing to adopt a sign-magnitude form, in fixed-point representation a decimal
number n10 is described as

n10 = −1S ·
i=−nØ

i=m−1
di · 2−i (2.1)

where

• S is the sign bit, 0 for positive numbers and 1 for negative ones.

• di is the digit in position i.

• m is the number of bits needed to represent the integer part ni of n10.

• n is the number of bits needed to represent the fractional part nf of n10.

As a consequence, a number n10 = 10.25 becomes

n10 = 1 · 23 + 0 · 22 + 1 · 21 + 0 · 20 + 0 · 2−1 + 1 · 2−2 (2.2)
n2 = 1010.01 (2.3)

which implies

3

Background

• S = 0

• m = 4

• n = 2

The general rule for fixed-point arithmetic is to perform mathematical operations
after aligning the operands based on the position of the decimal point, without the
need for shifting them. This results in a rather straightforward procedure, given
that the steps are quite similar to the ones performed for decimal arithmetic, but
it comes at the cost of a limited range of representable values that is restricted by
the available number of bits m + n to 2−n ≤ |n10| ≤ 2m − 2−n. In order to cope
with this, floating-point representation was introduced.
The IEEE-754 standard [10] established the details about floating-point binary
representation and arithmetic. In order to be conform to the standard, each decimal
number n10 has to be described as

n10 = −1S · 2E−b · m (2.4)

where

• S is the sign bit, 0 for positive numbers and 1 for negative ones.

• E is the biased exponent and is described by w bits.

• b is the bias that has to be subtracted from the biased exponent to obtain the
effective one e. It is equal to 2w−1 − 1.

• m is the mantissa (significand) and is described by p bits. It represents the
absolute value of the number in a normalized form with respect to the exponent
e and, for this reason, the condition 0 ≤ m < 2 always holds. Among the p
bits, only the trailing p − 1 = t ones are actually used in the selected format,
representing the trailing significand T in Figure 2.1. The most significant
one is called hidden bit and is dropped since always equal to 1. Considering
T = {d1, d2, ..., dp−1}, where di indicates the digit of T in position i, this
results in

m = (1 +
tØ

i=1
tt−i · 2−i) < 2 (2.5)

Each floating-point format can represent three types of values:

• Normalized numbers: emin + b ≤ E ≤ emax + b, where

– emin = 1 − b = minimum exponent value = −(2w−1 − 1)

4

Background

Figure 2.1: IEEE-754 Floating-Point format [10].

– emax = b = maximum exponent value = 2w−1 − 1

For such values the hidden bit is 1.

• Subnormal numbers and zero: E = 0. For such values the hidden bit is
zero in order to extend the range of representable values. This causes a loss of
precision, since the number of bits available for the fractional part is being
reduced.

• Special values: E = 2w − 1

– T = 0: ±∞
– T /= 0: NaN (Not a Number)

∗ signaling NaN (sNaN): the most significant bit of the mantissa is fixed
to 0 and at least one of the following is 1.

∗ quiet NaN (qNaN): the most significant bit of the mantissa is equal
to 1 and the other ones are zeros.

The steps to convert a decimal number n10 into its floating-point representation
are the following:

1. Compute the sign bit S by looking at the sign of n10.

2. Represent n10 in fixed-point format, namely n2 = {ni, nf}, where ni is the
integer part and nf the fractional one.

3. Normalize the obtained number so that ni = 1. The unbiased exponent will
be equal to the w-bit representation obtained shift amount and the t most
significant bits of the final nf will be the trailing significand T.

4. Compute the biased exponent E by adding the bias b to e.

5. Drop the hidden bit (ni) and pack the obtained elements as shown in Figure
2.1.

5

Background

As an example, the procedure to convert n10 = 5.625 into the binary16 format is:

1. S = 0

2. n2 = 101.101, ni = 101, nf = 101

3. n2 = 1.01101 · 22, e = 2, T = 01101

4. E = 2 + 15 = 17 = 100012

5. n2, F LP = 0 10001 0110100000

Instead, to convert a floating-point number n2 into its decimal representation, the
following steps have to be performed:

1. Compute the unbiased exponent e by subtracting the bias b from E.

2. Construct the normalized fixed-point representation by adding the hidden bit
to the trailing significand T and convert it into the decimal format.

3. Compute the final value by multiplying the obtained fixed-point number by
2e.

4. Change the sign of the obtained number if S = 1.

As an example, the procedure to convert n2 = 0 10001 0110100000 into the decimal
format is:

1. e = 17 − 15 = 2

2. n2 = 1 + 0.01101000000 = 1.01101

3. n10 = 1.01101 · 22 = 5.625

Table 2.1 includes the main binary floating-point formats described in [10].
Floating-point arithmetic follows specific rules, in order to provide meaningful
results. Since CORDIC algorithm only relies on additions and shifts, these two
operations will be described in the following section.

2.2 Floating-Point addition and shift

2.2.1 Floating-Point addition
The IEEE-754 standard [10] defines the rules to be accomplished when performing
floating-point addition. In particular, the following steps have to be followed:

6

Background

Format w t b Total width

binary16 (half precision) 5 10 15 16

binary32 (single precision) 8 23 127 32

binary64 (double precision) 11 52 1023 64

binary128 (quad precision) 15 112 16383 128

Table 2.1: IEEE-754 Floating-Point formats parameters.

1. Check the presence of NaNs and infinities. If the result can be predicted
depending on Table 2.2, skip the computation.

2. Find the maximum exponent E between the two operands. This will be the
final one.

3. Isolate the trailing significand of the two operands and add the hidden bit to
obtain the mantissas.

4. Shift right the significand of the operand with the smaller exponent by an
amount equal to the difference E − Esmaller.

5. Find the effective operation (EOP) to be performed depending on the sign
bits of the two operands:

• S1 /= S2: subtraction
• S1 = S2: addition

6. Add or subtract the significands of the two operands according to the EOP.

7. Eventually normalize the obtained result based on its integer part ni:

• ni = 1: no shift operations are needed.
• ni = 0: shift left the result up to when the integer part is equal to 1 and

save this amount to decrease the final exponent by the same value.
• ni > 1: shift right the result up to when the integer part is equal to 1

and save this amount to increase the final exponent by the same value.
Perform rounding according to the rounding mode.

7

Background

8. Compute the final exponent by adding the saved amount to E and check if
emin + b ≤ E ≤ emax + b. If it is outside this range, two cases are possible:

• E < emin + b (underflow): the result is zero.
• E > emax + b (overflow): the result is an infinity. The sign will be the

same as either of the two operands, given that this occurs if and only if
S1 = S2.

9. If neither underflow nor overflow occurred, drop the hidden bit and pack the
obtained elements as shown in Figure 2.1. The sign bit will be the same as
the result at point 7.

Operand 1 Operand 2 Result

±NaN ±NaN ±NaN

±NaN ±∞ ±NaN

±NaN ±n ±NaN

±∞ ±∞ ±∞

±∞ ∓∞ NaN

±∞ ±n ±∞

Table 2.2: Predictable results for floating-point
addition. n is a finite number.

2.2.2 Floating-Point shift
For what concerns the shift operation, thanks to the floating-point representation
itself, the procedure is rather straightforward. The shift amount has to be added
to or subtracted from the biased exponent, depending on the fact that the shift
direction is left or right, respectively. However, also in this case overflow and
underflow have to be taken into account:

• Efinal < emin + b (underflow): the result is zero.

• Efinal > emax + b (overflow): the result is an infinity.

8

Background

2.2.3 Floating-Point status flags
The IEEE-754 standard [10] defines five status flags that have to be set depending
on the result and the operands of the floating-point arithmetic operations:

1. Invalid Operation (NV): no useful definable results can be produced. This
happens for:

• General computations on NaNs.
• Multiplications between 0 and ∞.
• Magnitude subtraction of infinities.
• Divisions like 0

0 , ∞
∞ .

• Square root of a negative number.
• Remainder computation of x

y
when x is 0 or y is ∞.

The produced value is a NaN.

2. Division by Zero (DZ): an exact infinite result is produced by an operation
on finite numbers. This happens for:

• Divisions by 0. The produced value is an infinity whose sign is given by
the XOR of the sign bits of the two operands.

• Logarithm of 0. The result is −∞.

3. Overflow (OF): the result is finite but too large to be represented, that is
e > emax. Depending on the adopted rounding method, the final value will be:

• ±∞ if the rounding method is round to the nearest or to the nearest even.
• The maximum representable value if the rounding method is round towards

zero.

4. Underflow (UF): the result is too small to be represented, that is e < emin.
Depending on the implementation, the final value can be:

• Zero.
• A subnormal number.
• The minimum representable value, that is ±2emin .

5. Inexact (NX): the result differs from what it would have been if the precision
was unbounded. NX is raised whenever overflow or underflow occurs.

As stated in [10], only one flag can be set at a time. The only case in which two of
them can be raised is when overflow or underflow occurs, then also NX is being set.

9

Background

2.3 CORDIC algorithm

2.3.1 Traditional CORDIC algorithm
The COordinate Rotation Digital Computer (CORDIC) algorithm was first pre-
sented by J. E. Volder in 1959, when he proposed a special purpose digital computing
unit [11] whose aim was to evaluate trigonometric functions by means of plane
rotation.
Conventionally, performing the 2D vector rotation by an angle θ in Figure 2.2 lays
on the following Givens rotation equations:

xout = xin · cos(θ) − yin · sin(θ) (2.6)
yout = yin · cos(θ) + xin · sin(θ) (2.7)

where (xin, yin) are the initial coordinates and (xout, yout) the final ones.

Figure 2.2: Two-dimension vector rota-
tion [8].

However, albeit seeming straightforward, equations 2.6 and 2.7 are difficult to be
implemented in hardware, since they would need the allocation of two adders, four
multipliers and a lookup table to store all the possible values of the trigonometric
functions. CORDIC algorithm, instead, makes this process simpler by decomposing
the larger rotation angle θ into several smaller ones, so that, after performing all
these micro-rotations, the same outcome can be obtained. For such purpose, the
angle θ can be expressed as

10

Background

θ =
∞Ø

i=0
αi (2.8)

and equations 2.6 and 2.7 become, at iteration i,

xi+1 = xi · cos(αi) − yi · sin(αi) (2.9)
yi+1 = yi · cos(αi) + xi · sin(αi) (2.10)

By doing so, the same rotation of an angle θ can be achieved performing a series of
micro-rotations, each of them with angle αi.
According to trigonometric transformations, equations 2.9 and 2.10 can be rewritten
as follows:

xi+1 = xi − yi · tan(αi)ñ
1 + tan2(αi)

(2.11)

yi+1 = yi + xi · tan(αi)ñ
1 + tan2(αi)

(2.12)

However, it is still difficult to compute them in hardware due to the presence of the
complex denominator. To cope with this, CORDIC algorithm adopts the concept
of pseudo-rotations, where the term

ñ
1 + tan2(αi) is neglected and treated as a

scaling contribution to be compensated later. In fact, the amplitude of the final
vector will be larger by a quantity equal to the product of the reciprocals of all the
denominators. Thanks to this, the new equations become

xi+1 = xi − yi · tan(αi) (2.13)
yi+1 = yi + xi · tan(αi) (2.14)

and the inverse of the amount by which the amplitude of the vector is larger than
the original one, namely the scaling factor, is

K =
i=∞Ù
i=0

1ñ
1 + σ2

i · tan2(αi)
(2.15)

Hence, the final x and y coordinates have to be multiplied by K.
Since also the term tan(αi) causes some issues when dealing with hardware imple-
mentations, CORDIC algorithm further simplifies equations 2.13 and 2.14 by using
αi angles such that

11

Background

Figure 2.3: Impact of the absence of the
denominator [8].

tan(αi) = 2−i (2.16)
αi = tan−1(2−i) (2.17)
θ = σ0 · α0 + σ1 · α1 + ... + σn · αn (2.18)

where σi is the direction of rotation needed to achieve the result in equation 2.18
and is computed in specific ways depending on the CORDIC operational mode. It
can be either 1 or -1. At this point, equations 2.9 and 2.10 finally become

xi+1 = xi − σi · yi · 2−i (2.19)
yi+1 = yi + σi · xi · 2−i (2.20)

where

• xi+1 and yi+1 are the x and y coordinates of the vector found at iteration i
and used in iteration i + 1.

• xi and yi are the x and y coordinates of the vector found at iteration i − 1
and used in iteration i. Their initial value is equal to the input one of x and y.

• αi is the elementary rotation angle.

and equation 2.15 becomes

12

Background

K =
i=∞Ù
i=0

1ñ
1 + σ2

i · 2−2i
(2.21)

In addition to the x and y coordinates, another one, z, which tracks the remaining
angle at iteration i needed to satisfy equation 2.8, has to be included:

zi+1 = zi − σi · αi (2.22)

CORDIC algorithm provides for the presence of two operational modes, rotation and
vectoring, both based on equations 2.19-2.22. The main differences are (assuming
that the effects of the scaling coefficient K have been compensated):

1. Rotation mode

• xout = xin · cos(zin) − yin · sin(zin)
• yout = yin · sin(zin) + xin · sin(zin)
• zout → 0, hence the computation can be stopped as soon as zi ≈ 0
• σi = sign(zi) to have zout → 0

2. Vectoring mode

• xout = sign(xin) ·
ñ

x2
in + y2

in

• yout → 0, hence the computation can be stopped as soon as yi ≈ 0
• zout = zin + tan−1(yin

xin
)

• σi = −sign(xi) · sign(yi) to have yout → 0

It can be easily noticed that, neglecting the final multiplication by the scaling
factor K, only additions and right-shift operations are required to obtain the final
result, with the addition of a small lookup table to store the specific values of the
αi = tan−1(2−i) angles. This straightforwardness represents a remarkable result.

2.3.2 Unified CORDIC algorithm
The very turning point for CORDIC algorithm happened in 1971, when J. S.
Walther [12] included other coordinates systems in a unified algorithm capable of
computing several mathematical functions. Some of these are:

• sin(θ) and cos(θ)

• sinh(θ) and cosh(θ)

13

Background

• tan−1(θ)

• tanh−1(θ)

• Multiplication

• Division

• Two-dimension rotation of a vector

• Amplitude and phase computation of a complex number

It has to be noted that additional mathematical functions can be obtained by
executing the listed ones in a specific order [13] or by opportunely choosing the
inputs. As an example, the tangent function can be obtained by computing sin(θ)
and cos(θ) in rotation mode and circular coordinates (xin = 1

K1
, yin = 0) and then

performing a division.
In order to achieve this variety of functions, Walther developed a new form for
equations 2.19, 2.20 and 2.22, including a new variable, m, which represents the
coordinates system to be used

xi+1 = xi − m · σi · yi · 2−Sm,i (2.23)
yi+1 = yi + σi · xi · 2−Sm,i (2.24)
zi+1 = zi − m · σi · αm,i (2.25)

In this case,

1. m ∈ {−1, 0, 1}

• m = 1 for a circular coordinates system.
• m = 0 for a hyperbolic coordinates system.
• m = −1 for a linear coordinates system.

2. Sm,i is a specific shift sequence that depends on the coordinates system, as
shown in Table 2.3.

As a consequence, also equations 2.15 and 2.17 had to be modified

αm,i = 1√
m

· tan−1(
√

m · 2−Sm,i) (2.26)

Km =
∞Ù

i=Sm,0

1√
1 + m · 2−2·Sm,i

(2.27)

14

Background

Coordinates System
m

Shift Sequence

Sm,i

1 (Circular) 0, 1, 2, 3, ..., i

0 (Linear) 1, 2, 3, 4, ..., i+1

-1 (Hyperbolic) 1, 2, 3, 4, 4, 5, ... 1

Table 2.3: Shift sequences.

m αm,i
1

Km

2

1 (Circular) tan−1(2−S1,i) r ñ
1 + σ2

i · 2−S1,i ≈ 1.65

0 (Linear) 2−S0,i 1

-1 (Hyperbolic) tanh−1(2−S−1,i) r ñ
1 − σ2

i · 2−S−1,i ≈ 0.83

Table 2.4: Angles and scaling coefficients for unified CORDIC.

thus resulting in what is described in Table 2.4.
At this point, it should be clear how powerful CORDIC architectures are, since
the allocation of one unit can provide for the computation of several functions
with fewer resources compared to standalone solutions for each of them. However,
this comes at a cost, since the range of values that can produce a valid result
(Range Of Convergence, ROC) and, then, that can be accepted as inputs is rather
restricted. Table 2.5 summarizes the resulting values of each working mode and
the corresponding ROC for CORDIC algorithm.

1For m = −1 iterations with number i = 3·k+1, with k = 1, 2, ... have to be repeated twice.
2 1

Km
has been used to make the table cleaner.

15

Background

Figure 2.4: CORDIC algorithm among the various coordinates systems [8].

2.3.3 Traditional hardware implementations of unified
CORDIC

The traditional hardware implementations of CORDIC algorithm lay on fixed-point
arithmetic to perform all the required operations. This implies that, since the
operands’ description is limited to n bits, a finite number of iterations can be used.
As declared in [12], in order to obtain a n-bit precision, a final shift value Sm,i

equal to n is needed.
There are two types of architectures, folded and unfolded, each of which is focused
on optimizing a specific factor between area and timing. In this section the scaling
circuitry is not described, as it only consists of a multiplier.

Folded architecture

The typical folded architecture is shown in Figure 2.5.
The main pro of this implementation is the allocation of only three adders, two
Barrel shifters and a lookup table, which makes it very area-efficient. However,
this comes at a cost, given that each result will be available after n iterations, thus
making this architecture the slower one in terms of latency. The clock frequency,
instead, can be reasonably high, considering a relatively short critical path.

Unfolded and pipelined architecture

The previous solution can be improved in terms of timing performance by unfolding
it into n stages and pipelining them 1. These operations surely increase the required

1Unfolding without pipelining only increases the required area, without effectively reducing
the overall latency, since in this case a clock frequency fclk/n is needed

16

Background

Mode m Result ROC [14]

Rotation

Circular

xn = xin · cos(zin) − yin · sin(zin)

|zin| < 1.74yn = yin · cos(zin) + xin · sin(zin)

zn = 0

Hyperbolic

xn = xin · cosh(zin) + yin · sinh(zin)

|zin| < 1.11yn = yin · sinh(zin) + xin · cosh(zin)

zn = 0

Linear

xn = xin

|zin| < 1yn = yin + xin · zin

zn = 0

Vectoring

Circular

xn = sign(xin) ·
ñ

x2
in + y2

in

|tan−1(yin

xin
)| < 1.74yn = 0

zn = zin + tan−1(yin

xin
)

Hyperbolic

xn = sign(xin) ·
ñ

x2
in − y2

in

|tanh−1(yin

xin
)| < 1.11yn = 0

zn = zin + tanh−1(yin

xin
)

Linear

xn = xin

| yin

xin
| < 1yn = 0

zn = zin + yin

xin

Table 2.5: CORDIC working modes summary.

area by a factor equal to the number of iterations n, but also raise the throughput
by the same amount when the pipeline is completely full.
The typical unfolded architecture is shown in Figure 2.6.
As it can be easily noticed, the area occupation is now n times larger, but, after
waiting for the pipeline to be filled, a new result is available at each clock cycle. It
is also remarkable that shift operations can be hardwired here and, thus, no Barrel

17

Background

1 0 0 1

xi yix0 y0

xi+1 yi+1

REG REG

BS BS

0 1

ziz0

zi+1

REGalphai

LUTCONTROL

ctrlx ctrly ctrlz

Figure 2.5: Folded CORDIC architecture.

shifters are required for this type of circuit, since the iteration number is fixed and
known in advance for each stage i. The clock frequency can be considered equal to
the one of the folded solution.

2.3.4 Possible improvements
Apart from bare unfolding and pipelining, additional techniques can be used to
further decrease latency: redundant arithmetic and higher radices.

Redundant arithmetic

Thanks to carry propagation-free adders, so Carry Save (CS) Adders or Signed
Binary Digits (SBD) Adders, redundant arithmetic makes the delay of each stage
lower and independent on the size of the datapath. However, this causes the scale
factor of equation 2.21 to be variable, since σi = 0 becomes a feasible alternative
depending on intermediate results. This is a major drawback, since the computation
of K causes the presence of additional latency, whereas in non-redundant arithmetic
the scaling factor is known in advance. In addition, in redundant representations it
becomes difficult to find the sign of the coordinates within each iteration, causing
the need for considering not only one bit, generally the sign bit, but several ones
to compute σi.

18

Background

x0 y0

x1 y1

HW SHIFT HW SHIFT

z0

z1

alpha0

LUT

CONTROL0

ctrlx,0 ctrly,0 ctrlz,0

REG REG REG

x1 y1

x2 y2

HW SHIFT HW SHIFT

z1

z2

alpha1
CONTROL1

ctrlx,1 ctrly,1 ctrlz,1

REG REG REG

...

REG REG REG

xn-1 yn-1

xn yn

HW SHIFT HW SHIFT

zn-1

zn

alphan-1
CONTROLn-1

ctrlx,n-1

ctrly,n-1

ctrlz,n-1

...

Figure 2.6: Unfolded and pipelined CORDIC architecture.

Higher radices

Adopting a higher radix ρ helps reducing the number of iterations, thus requiring
fewer CORDIC stages, but causes the scaling factor K not to be constant anymore,
given that |σi| ∈ [0, ρ−1] and ρ−1 can be different from 1. In addition, it generally
introduces a noticeable overhead in terms of complexity.

19

Background

2.4 Floating-Point extension for CORDIC
algorithm

CORDIC algorithm was first developed to work with fixed-point arithmetic. How-
ever, this way of representing numbers results in a rather small range of values
that can be used once the number of integer and fractional bits has been chosen.
In order to cope with this, floating-point arithmetic can be adopted. To perform
this extension, two possible strategies can be used [15]:

• Local FLP: each micro-rotation performs floating-point operations, hence
adjusting the exponents and normalizing the result at each iteration.

• Global FLP: the floating-point inputs are converted into specific fixed-point
formats that include additional overflow and guard bits to take care of accuracy
loss throughout the iterations.

Although the local solution could seem to be the most promising one, in reality
it is very costly in terms of hardware and speed, since FLP adders and shifters
are needed for each stage. In addition, it leads to useless operations, because,
between two iterations, numbers are unnecessarily denormalized and normalized
again. With the latter approach, instead, CORDIC algorithm remains fixed-point
and FLP-specific operations are done only at the beginning and at the end of the
unit. This makes the second solution the most speed-effective.

2.5 Related works

2.5.1 Fixed-point CORDIC
Nonredundant Low Latency CORDIC [16]

The algorithm proposed in [16] improves conventional CORDIC by employing linear
approximation to rotation when the residual angle is small. This remaining angle,
θr, is chosen so that

sin(θr) ≈ θr (2.28)
cos(θr) ≈ 1 (2.29)

For the first n/2 + 1 micro-rotations equations 2.19, 2.20 and 2.22 are employed.
The σi values for the first n/3 rotations are determined iteratively, whereas, starting
from iteration n/3 + 1, they can be computed in parallel, since the relation

20

Background

x0 y0

x1 y1

SHIFT SHIFT

z0

z1

alpha0

LUT

CONTROL0

ctrlx,0
ctrly,0 ctrlz,0

REG REG REG

x1 y1

x2 y2

SHIFT SHIFT

z1

z2

alpha1
CONTROL1

ctrlx,1

ctrly,1
ctrlz,1

REG REG REG

...

REG REG REG

xn-1 yn-1

xn yn

SHIFT SHIFT

zn-1

zn

alphan-1
CONTROLn-1

ctrlx,n-1

ctrly,n-1 ctrlz,n-1

...

FLP ADDER FLP ADDER FLP ADDER

FLP ADDER FLP ADDER FLP ADDER

FLP ADDER FLP ADDER FLP ADDER

Figure 2.7: Unfolded and pipelined CORDIC architecture
with local FLP.

lim
k→∞

tan 2−k

2−k
= 1 (2.30)

holds. Thus, for (n/3 + 1) ≤ i ≤ (n/2 + 1), all the σi values are obtained from
the remaining angle zn/3+1 and are used to generate zn/2+1 from zn/3+1. For
i > (n/2 + 1), only a single rotation of an angle equal to the remaining one zn/2+1
is performed. Therefore, at the end,

21

Background

x0, FXP

x1, FXP

HW SHIFT HW SHIFT

alpha0

LUT

CONTROL0

ctrlx,0 ctrly,0 ctrlz,0

REG REG REG

HW SHIFT HW SHIFT

alpha1
CONTROL1

ctrlx,1 ctrly,1 ctrlz,1

REG REG REG

...

REG REG REG

xn, FXP

HW SHIFT HW SHIFT

alphan-1
CONTROLn-1

ctrlx,n-1

ctrly,n-1
ctrlz,n-1

...

yn, FXP zn, FXP

y0, FXP z0, FXP

y1, FXP z1, FXP

x2, FXP y2, FXP z2, FXP

xn-1, FXP yn-1, FXP zn-1, FXP

FLP TO FXP

FXP TO FLP

x0, FLP y0, FLP z0, FLP

xn, FLP yn, FLP zn, FLP

Figure 2.8: Unfolded and pipelined CORDIC architecture
with global FLP.

22

Background

xf = xn/2+2 = kn/2+1(xn/2+1 − θryn/2+1) (2.31)
yf = yn/2+2 = kn/2+1(θrxn/2+1 + yn/2+1) (2.32)

where θr = zn/2+1, kn/2+1 is the scale factor in iteration (n/2 + 1) (which is
constant, since σi ∈ {−1,1}, and whose compensation is done concurrently with
the computation of the x and y coordinates using two multipliers in parallel) and
xf and yf are the scaled final coordinates.
In [17] a unified architecture is proposed, but it supports both CORDIC rotation
and vectoring modes only in circular coordinates.

Pipeline FPGA Implementation of Unified CORDIC [18]

In [18] a recent and straightforward pipelined FPGA implementation of CORDIC
algorithm able to work in both rotation and vectoring mode and in circular and
hyperbolic coordinates is presented. The architecture does not rely on complex
algorithms to skip iterations or to predict the rotation directions, but simply puts
several pipeline stages (named STEPs) one after the the other, each of which is
in charge of computing equations 2.19, 2.20 and 2.22. In order to have a unified
implementation, proper control signals and multiplexers are used to choose the
working mode and coordinate system. The presented architecture is for 16 bits,
but can be easily extended to larger precisions.

Double Rotation Method CORDIC [19]

Albeit relying on redundant arithmetic, the double rotation mode performs two
rotations (each of them called sub-rotation) for each elementary angle during the
first n/2 iterations, in order to achieve a constant scale factor independently on the
operands. During the remaining n/2 iterations, instead, only one rotation is being
done. In order to satisfy equations 2.19, 2.20 and 2.22, the following workarounds
have been taken into account:

• A positive rotation (σi = 1) is made by two positive sub-rotations.

• A negative rotation (σi = −1) is made by two negative sub-rotations.

• A non-rotation (σi = 0) is made by a positive and a negative sub-rotations.

Therefore, compared to a basic redundant CORDIC algorithm where K is data-
dependent and has to be computed alongside with the iterations, 50% additional
iterations are required to make it constant.
Since [19] uses this method to compute sine and cosine functions, it has been
assumed that the algorithm is only suitable for CORDIC in rotation mode and
circular coordinates.

23

Background

Correcting Rotation Method CORDIC [19]

The correcting rotation method also relies on redundant arithmetic and achieves
a constant K. This is pursued by avoiding rotations corresponding to σi = 0 and
by performing extra rotations, at fixed intervals, to correct the errors introduced
by this choice. Assuming to use b bits to estimate the sign of zi, this correction
interval has to be lower or equal than (b − 2). If b = 3 or b = 4, this means that
also this method requires 50% additional iterations.
Since [19] uses this method to compute sine and cosine functions, it has been
assumed that the algorithm is only suitable for CORDIC in rotation mode and
circular coordinates.

Pipelined Low Latency Redundant CORDIC [20]

This algorithm reduces the latency of redundant CORDIC by following these rules
for each range of iterations:

• 0 ≤ i ≤ (n − 3)/4: σi = 0 is avoided and the correction rotation method [19]
is used for circular coordinates in rotation mode. The algorithm adopted for
hyperbolic coordinates has not been found (the paper is too old), whereas
linear coordinates have not been considered.

• (n − 3)/4 < i ≤ (n + 1)/2: σi = 0 is accepted and specific operations are
executed in this case:

– σi /= 0: execute the normal CORDIC equations 2.19, 2.20 and 2.22.
– σi = 0:

xi+1 = xi + m · 2−2i−1 · xi (2.33)
yi+1 = yi + m · 2−2i−1 · yi (2.34)
zi+1 = zi (2.35)

• i > (n + 1)/2: σi = 0 is accepted. If σi /= 0, equations 2.19, 2.20 and 2.22 are
executed, otherwise the coordinates are kept unchanged, since the scale factor
approaches 1.

Since, for the second group, the scale factor of each iteration ki can be assumed to
be equal to

√
1 + 2−2i = 1 + 2−2i within n-bit precision, when σi = 0 the vector is

not being rotated, even if its amplitude is increased by the scale factor ki of that
iteration. This is taken into account later, since the final coordinates are scaled
assuming a constant scale factor. For i > (n + 2)/2, no correcting factor is required,
as the scale factor becomes unity.

24

Background

[20] describes two architectures, a pipelined one and an unfolded one that parallelizes
the generation of the σi coefficients by using prediction. The first case can be
used for both rotation and vectoring CORDIC modes in circular and hyperbolic
coordinates.

Branching Method CORDIC [21]

Exploiting two modules (z+ and z−) that perform two conventional CORDIC
iterations in parallel, this method restricts σi to {-1,1} without the need for extra
rotations. Depending on the sign of zi, there can be two possibilities:

• If the sign of zi can be correctly determined, the two modules perform a
rotation in the same direction.

• If the sign of zi cannot be correctly found, a branching operation is performed,
where the z+ module executes a positive rotation (σi = 1), whereas z− performs
a negative one (σi = −1).

In both cases, only one result is chosen between the two paths and the direction of
the rotation in the next iteration is decided by analyzing the three most significant
bits of the smaller result between z+

i and z−
i . Since this method does not require

additional iterations to achieve a constant scale factor, it is faster with respect to
the double or correcting rotation ones [19]. However, the two branching paths that
work in parallel cause its its complexity to be higher.
This algorithm is only suitable to CORDIC algorithm in rotation mode and circular
coordinates.

DCORDIC [22]

In all the previous methods, half of the effort in the x, y and z datapaths is required
to correct possible errors deriving from the fact that the sign estimation is not perfect
(due to redundant arithmetic). To avoid this, the differential CORDIC algorithm
(DCORDIC) transforms the conventional CORDIC equations into partially fixed
ones:

| äzi+1| = || âzi| − αi| (2.36)
xi+1 = xi − sign(zi)2−iyi (2.37)
yi+1 = sign(zi)2−ixi + yi (2.38)

As it can be noticed, the sign of zi is only needed for the computation of x and y,
whereas the angle accumulator only requires the absolute value of âzi. The sign of
zi (and so σi in rotation mode) can be determined by tracking the sign changes

25

Background

with respect to the initial sign of z0 during the absolute value computation of âzi.
In DCORDIC, this technique is implemented through SBD arithmetic.
This algorithm can potentially support all the six modes of CORDIC algorithm.
However, rotation and vectoring modes rely on different architectures.

Pipelined Radix-4 CORDIC [23]

This algorithm performs the following iteration equations

xi+1 = xi + m · (σi,1 + σi,2) · 4−i · yi − m · σi,1 · σi,2 · 4−2i · xi (2.39)
yi+1 = yi − (σi,1 + σi,2) · 4−i · xi − m · σi,1 · σi,2 · 4−2i · yi (2.40)
zi+1 = zi + (σi,1 + σi,2) · αi,m (2.41)

where two successive radix-2 micro-rotations with the same angle are combined into
a single radix-4 one. σi,1 and σi,2 are redundant radix-2 coefficients used to build
the radix-4 one σi ∈ {−2, −1,0,1,2}, according to the relation σi = σi,1 +σi,2. Table
2.6 shows this relation. The value of αi is computed so that, for 1 ≤ i ≤ n − 1,
α0 = 2−1 and αi = 4−i. Since the architecture relies on redundant SBD arithmetic,
the selection function for σi uses the five most significant digits of the z coordinate,
which means that the scale factor K is data-dependent and needs to be computed
in each iteration with the expression

K =
n/2−1Ù

i=0
ki =

n/2−1Ù
i=0

ñ
1 + |σi,1|4−2i ·

ñ
1 + |σi,2|4−2i (2.42)

σi σi,1 σi,2

0 1 -1

±1 ±1 0

±2 ±1 ±1

Table 2.6: Relation among
the σi coefficients.

This algorithm is suitable for all the six CORDIC modes, whereas the proposed
architecture can only be applied to the three coordinate systems in rotation mode,
since for vectoring mode more complex modules are needed.

26

Background

Redundant Radix 2-4 CORDIC [17]

[17] proposes a unified architecture able to work in all CORDIC modes, apart from
linear coordinates, and to reduce the overall latency of about 25% with respect to
a redundant radix-2 CORDIC rotation unit. The algorithm exploits CS arithmetic
to solve different equations depending on the considered subset of iterations. In
particular:

• For 1 ≤ i < n/4 nonredundant radix-2 CORDIC algorithm with σi = {−1,1}
is employed.

• For n/4 ≤ i < (n/2 + 1) the correcting iteration method [19] is used.

• For i > n/2 + 1 redundant radix-4 CORDIC algorithm is adopted, halving
the number of iterations.

Since σi = 0 is avoided for i ≤ (n/2 + 1) and that, for i > (n/2 + 1), ki =√
1 + 4−2i ≈ 1, the scale factor remains constant.

Radix-4 CORDIC [24]

In [24] a redundant radix-4 CORDIC algorithm based on CS arithmetic is proposed
to reduce the latency compared to redundant radix-2. It uses the σi coefficients
using two different techniques:

• For 0 ≤ i < (n/6) σi is determined sequentially. Here micro-rotations are
pipelined to increase the throughput.

• For i > (n/6) the σi values are predicted using the remaining angle after the
first n/6 iterations.

The scale factors are computed in advance and stored inside a ROM. For σ2
i ∈

{0,1,4}, the number of possible scale factors is 3n/4+1, causing the size and access
time of the memory to increase with n. Therefore, only some scale factors are
saved in the ROM and the remaining ones are computed from the stored values.
This algorithm is only suitable for CORDIC in rotation mode and circular coordi-
nates.

Unfolded Low Latency Radix-2 CORDIC [20]

The algorithm described in [20] has also an unfolded version that parallelizes the
generation of the σi coefficients by using prediction, thus eliminating the sequential
dependency of the z path. The directions are computed only for a group of iterations
at a time, so that prediction error can be reduced. The convergence range is less

27

Background

than (π/2, −π/2) for this architecture, given that it does not allow rotations for
index i = 0,
The main bottleneck of this implementation are the redundant to binary conversions
of intermediate results within the z path, which limits the possible improvements
that could be brought by pipelining it. Therefore, in order to reduce the overall
latency, termination algorithm or Booth encoding method have been proposed in
[16].
This algorithm is only suitable for CORDIC in rotation mode and circular coordi-
nates.

P-CORDIC [25]

The P-CORDIC algorithm tries both to eliminate the sequential computation of
the directions of rotation in CORDIC algorithm and to maintain a constant scale
factor. To do so, it finds in advance the overall direction of micro-rotations before
the actual beginning of CORDIC iterations in the x and y paths. This is achieved
by relating the binary representation of the direction of rotations σ to the input
rotation angle θ, given by

σ = 0.5 · θ + 0.5 · c1 + sign(θ) · ϵ0 + δ (2.43)

where c1 = 2 − q∞
i=0(2−i − tan−1(2−i)), δ = qn/3

i=1(σiϵi), ϵ0 = 1 − tan−1(1) and
ϵi = 1 − tan−1(2−i). δ is computed using the partial offset ϵi and the corresponding
direction bit σi for the first n/3 iterations, since the value of ϵi decreases by a factor
of 8 for i > n/3. By taking δ from a ROM memory, the directions of rotations for
any input angle θ in binary form are obtained solving the aforementioned equation,
thus canceling the z path, reducing the occupied area and obtaining better latency
and hardware results than the radix-2 architecture proposed in [20].
This algorithm is only suitable for CORDIC in rotation mode and circular coordi-
nates.

Flat CORDIC [26]

The flat CORDIC algorithm cancels the iterative nature of the x and y paths by
transforming their recurrences into a parallelized version obtained by performing
successive substitution, so that the final vectors can be expressed in terms of the
initial ones, thus resulting only in a single equation. For example, for a precision
of 16 bits the final coordinates become

28

Background

x16 = [1 − {(σ1σ22−12−2 − ... − σ1σ232−12−23

− σ2σ32−22−3 − ... − σ9σ102−92−10)
+ (σ1σ2σ3σ42−12−22−32−4 + ...

+ σ2σ3σ4σ52−22−32−42−5 + ...

+ σ3σ4σ6σ72−32−42−62−7) + EC−X}]
y16 = [σ12−1 + σ22−2 + ... + σ162−16

− (σ1σ2σ32−12−22−3 − ... − σ5σ7σ82−52−72−8)
+ (σ1σ2σ3σ4σ52−12−22−32−42−5 + ...

+ σ2σ3σ4σ5σ62−22−32−42−52−6) + EC−Y]

(2.44)

where EC−X and EC−Y are the final error compensation factors and xin and yin

are initialized with 1/K and 0 respectively. The 16 sigma values (σ1, σ2, ..., σ16), for
16-bit precision, can be either 1 or -1, thus keeping the scale factor constant, and
represent the direction of each micro-rotation needed to achieve the target angle.
For the first n/3 iterations, they are obtained using the Split Decomposition Angle
(SDA) technique, which limits the input angle range to (0, π/4), whereas the last
2n/3 σi are predicted from the remaining angle after n/3 iterations.
This algorithm is only suitable for CORDIC in rotation mode and circular and
hyperbolic coordinates.

Para-CORDIC [27]

Employing the binary to bipolar representation (BBR) and micro-rotation angle
recoding (MAR) techniques, the Para-CORDIC algorithm parallelizes the genera-
tion of the direction of rotations σ from the binary value of the input angle θ. By
doing so, only the x and y coordinates datapaths remain iterative. In addition, the
input angle θ is divided into two parts, θH and θL. The binary representation of
the input angle θ is

θ = (−d0) +
l−1Ø
i=1

di2−i +
nØ

i=l

di2−i (2.45)

where di ∈ {0,1} and l = (n − log23)/3. The first (l − 1) bits of the input angle are
converted into BBR and the MAR technique is used to find the σ coefficients σ1 to
σl−1. The values from σl to σn+1 are obtained from BBR of the corrected θL, that
is the resulting angle obtained by adding to θL the remaining one after the first
(l − 1) rotations. By doing so, no ROMs are needed for storing the predetermined
direction of rotations. However, it requires an array of adders to compute the
corrected θL and some additional stages to perform correcting rotations.

29

Background

This algorithm is only suitable for CORDIC in rotation mode and circular and
hyperbolic coordinates.

Semi-Flat CORDIC [28]

The Semi-Flat CORDIC algorithm partially parallelizes the x, y and z paths to
improve latency without increasing the area requirements. For the first λ bits of σi,
the x and y recurrences are computed iteratively using the double rotation method,
resulting in xλ−1 and yλ−1. Then xn−1 and yn−1 can be expressed in terms of these
xλ−1 and yλ−1, if all the σi have been predicted. The σi for the nint/3 − λ bits of
the input angle, where nint is the internal precision chosen higher than the external
one to cope with quantization errors, are precomputed and stored in a ROM, which
is addressed by nint/3 − λ bits of the input angle. The remaining 2nint/3 number
of σi are predicted from the rotation angle. After λ iterations, all the terms of xn

and yn are then added using the Wallace tree, flattening the x and y paths. As a
natural consequence, computation time and area are affected by the choice of λ. In
[28] it is shown that the best trade-off is obtained by λ = 6 for a 16-bit precision
(nint = 22) and λ = 8 for a 32-bit one (nint = 39). This algorithm reaches constant
scale factor, as the σi are chosen between {-1,1}.
[28] does not provide any description or reference on how to precompute the
nint/3 − λ number of σi.
This algorithm is only suitable for CORDIC in rotation mode and circular, linear
and hyperbolic coordinates.

2.5.2 Floating-point CORDIC
Floating-point Vector-Arithmetic Unit [29]

[29] describes a floating-point arithmetic unit based on CORDIC algorithm. In
particular, it supports all its six available modes and this makes the proposed
implementation the most complete one. This can be done thanks to the availability
of control and selection logic circuits that decide which mode and which coordinate
system have to be employed. The proposed architecture uses global FLP normal-
ization, with an internal extended FXP format that takes care both of overflow
and loss of accuracy. This implies different formats for each datapath:

• x/y 32-bit datapath:

– 1 sign bit
– 3 overflow bits
– 23 mantissa bits
– 5 guard bits

30

Background

• z 29-bit datapath:

– 1 sign bit
– 2 overflow bits
– 23 mantissa bits
– 3 guard bits

The presented architecture is a 44-stage pipeline that has been created to work
with single-precision numbers and is structured as follows:

• Front stage: it converts the inputs from FLP to FXP, adapts them to the
operation to be executed and computes the reference exponent.

• CORDIC pipeline: it takes care of 29 iterations by performing standard
CORDIC equations. To cope with convergence issues when working with
hyperbolic coordinates, it uses a specific shifting sequence throughout the
execution.

• Scaling pipeline: it compensates the scaling factor K by performing, in 8
stages, successive multiplications by (1 ± 2−j).

• End stage: it performs the conversion from FXP to FLP by adjusting
exponent and mantissa and packing everything together.

It has to be noted that the scaling stages do not use a multiplier, but simply reuse
the same micro-rotation stages architecture, opportunely modified with multiplexers
to suit the variable shifts that depend on a variable a(m, i) described in the paper.

Unified reconfigurable CORDIC processor [30]

In [30] a CORDIC processor for floating-point arithmetic is proposed, able to a
variety of operations. In fact, among the six available modes for CORDIC algorithm,
only the rotation one in hyperbolic coordinates is not supported. This means that
the processor is capable of computing

• Sine/cosine (rotation mode and circular coordinates)

• Arctangent (vectoring mode and circular coordinates)

• Multiplication (rotation mode and linear coordinates)

• Division (vectoring mode and linear coordinates)

• Square-root (vectoring mode and hyperbolic coordinates).

31

Background

The proposed architecture uses global FLP normalization, with an internal 25-bit
FXP format (1-bit sign, 1-bit integer part, 23-bit mantissa), and exploits parallel
paths in the second half of iterations. To do so, the pipeline is divided as follows:

• Pre-processing module: it converts the inputs from FLP to FXP, adapts
them to the operation to be executed and computes the reference exponent.
In case of trigonometric functions in circular coordinates, it also extends the
range of convergence of θ, in order to cover {0, 2π}.

• Rotation Unit A: it takes care of half of the iterations by performing
standard CORDIC equations.

• Scaling circuit: it completes the compensation of the scaling factor K for
square-root operations.

• Rotation Unit B: exploiting the binary-to-bipolar recoding technique, it
computes the directions of the second half of rotations ([27]), so that parallel
computation of x and y can be made.

• Post-processing module: it performs the conversion from FXP to FLP by
adjusting exponent and mantissa and packing everything together.

It has to be noted that, apart from the Scaling circuit module, no scaling factor
compensation has been included for operations that are not square-root. This is
because the architecture has been structured to work with specific values of x0 and
y0 where K is already taken into account. Therefore, in order to generalize it, a
scaling circuit can also be included at the end of the iteration path. In addition,
since it does not compute hyperbolic functions, no iterations need to be repeated
to make the algorithm converge. As a result, the shifts in Rotation Unit A are
hardwired.

2.5.3 General comparison
Tables 2.7 and 2.8 briefly compare the most important characteristics of all the algo-
rithms analyzed up to now, focusing on aspects related to the algorithms themselves
and to the differences among the architectural implementations respectively. In
Table 2.7, SBD stands for Signed-Bit Digit arithmetic, CS for Carry-Save arithmetic
and 2’s comp. for nonredundant 2’s complement arithmetic (nonredundant).

32

Background

Algorithm Radix Arithmetic Range of θ Scale factor Iterative x/y path Iterative z path

Double rotation/Correcting [19] 2 SBD 0, π/4 Constant ✓ ✓

Low Latency [20] 2 CS −π/2, π/2 2 Constant ✓ ✓

Branching [21] 2 SBD −π/2, π/2 2 Constant ✓ ✓

DCORDIC [22] 2 SBD/CS −π/2, π/2 2 Constant ✓ ✓

Radix-4 [23] 4 SBD −π/2, π/2 2 Variable ✓ ✓

Radix2-4 [17] 2-4 CS −π/2, π/2 3 Constant ✓ ✓

Radix-4 [24] 4 CS −π/2, π/2 Variable ✓ n/6

PCORDIC [25] 2 SBD −π/2, π/2 2 Constant ✓ ×

Flat CORDIC [26] 2 SBD 0, π/4 Constant Combinational ×

Para-CORDIC [27] 2 CS −π/4, π/4 Constant ✓ ×

Semi-flat [28] 2 SBD −π/2, π/2 2 Constant λ/Combinational λ

Nonredundant low-latency [16] 2 2’s comp. −π/2, π/2 Constant (n/2 + 1)/Multiplier n/3

Pipelined unified [18] 2 2’s comp. −π/2, π/2 Constant ✓ ✓

Unified reconfigurable FLP [30] 2 2’s comp. 0, 2π Constant ✓ ✓

FLP Vector-Arithmetic unit [29] 2 2’s comp. −π/2, π/2 2 Constant ✓ ✓

Table 2.7: Algorithms comparison.

The following assumptions have been made:

1. Since most of the papers express latency and area in terms of full adders, this
has been used as comparison unit

2. [19]:

• The latency does not include the numbers conversion and the scale factor
compensation, as described in [22].

• Since the area details are not expressed, they have been taken from [28],

2The paper of the algorithm does not provide any information on the range of θ, so the
standard range of conventional CORDIC algorithm has been considered

3To reach this range, the micro-rotation with i = 1 has to be repeated

33

Background

Supported modes with
the same architecture

Algorithm Latency (tFA) Area (AFA) Error Rotation Vectoring

Circ Hyp Lin Circ Hyp Lin

Double rotation [19]
Correcting [19]

3.75n [22] 16.5n(n + log2n) + 2n [28] 2−n ✓

Low Latency
Nonpipelined [20] n + log3(n) + 3log2(n) − 2 6(n + log2n)(n + log3(n)) + 24n [28] 2−n ✓ ✓ ✓

Low Latency
Pipelined [20] (9n − 3)/8 2−n ✓ ✓ ✓ ✓

Branching [21] 2.5n 2 ∗ [16.5n(n + log2n) + 2n] 2−n ✓

DCORDIC [22]
3.5n + 1 (rot)

4n + log2n + 5 (vec)
n[10(n + log2n) + 2n] 2−n

Radix-4 [23] 4(3/4n + 1) 2n(3n + 3) + n2(log2n + 1)/2 + 1.7n2 2−n ✓ ✓ ✓

Radix2-4 [17]
(n/4 − 1)3.8 +

+ (n/4 + 2)4.3 +
+ (n/4)4.7

(n/4 − 1)(7.5n + 16.5) +
+ (n/4 + 2)(8.5n + 14) + (n/4)(7n + 10.5)

2−n ✓ ✓ ✓ ✓

Radix-4 [24] (2n/3 + 3)5 2(n + log2n)(2n + 14/6n + 6) 2−n ✓

PCORDIC [25] 1.7n + 1.25 + log2n

2⌈n/5−2⌉(0.83 + n/50)+
+ (7n/15 + 5)(2n/5 + 6)+

+ n(n/2 + 3)
2−n ✓

Flat CORDIC [26]
34 for 16-bit
39 for 24-bit
50 for 32-bit

1850 for 16-bit
3156 for 24-bit
5499 for 32-bit

2−n ✓ ✓

Para-CORDIC [27]
2(s(n) + n/2 − m + 2)+

+ log3/2(n + 2)

(n − m − 1)(m − 1)+
+ [4n(s(n) + n/2 − m + 2)+

+ 2n(n + 1)]
2−n ✓ ✓

Semi-flat [28] 33 for 16-bit, 49 for 32-bit 1622 for 16-bit, 4619 for 32-bit 2−n ✓ ✓ ✓

Nonredundant
Low Latency [16]

(n/2 + 3)[(log2b)/2 + 1]tFA+
+ tFA + tWallace

(n/2 + 6)[(blog2b − b + 1)/2 + b]AFA+
+ ⌈(n/2 + log2n)/2⌉[(n/2 + log2n) + 1]AFA+

+ AWallace + ACSD mult

2−n ✓ ✓

Pipelined unified [18] n(log2n + 1) n[2n2/7 + n(2log2n − 1/7) + 2] 10−2 for 16-bit ✓ ✓ ✓ ✓

Unified
Reconfigurable

FLP [30]
log2n(3/2 + n/2) + 3/2n + 2 [log2n(2 + 2n2 + n) + 4n2 + 6n + 77]AFA + Ascale

10−4 for 16-bit
10−6 for 24-bit

✓ ✓ ✓ ✓ ✓

FLP
Vector-Arithmetic

Unit [29]
20log2n + 76 + n/2 40nlog2n + 65n + 1.3n2 + 76 2−n ✓ ✓ ✓ ✓ ✓ ✓

Table 2.8: Architectures comparison.

where

Next = external precision = n (2.46)
Nint = internal precision = n + log2n (2.47)

ACP A = area of a carry propagating adder = nAF A (2.48)
AMUX = area of a 2-1 MUX ≈ AXOR ≈ AF A/2 (2.49)

ASS is the area for the sign estimation, which has been assumed to be
the same as a 4-1 MUX, hence ASS ≈ 1.5AF A.

3. [20] Nonpipelined:

34

Background

• The version with termination algorithm has been considered. The standard
one has a latency of (2n + log3(n) − 1 + log2(n))tF A.

• Since the area details are not expressed, they have been taken from [28].
The same considerations made for [19] hold.

4. [20] Pipelined:

• No area details have been found this implementation. Most of the papers
focus on its unfolded version.

• Only an algorithm to be used with redundant arithmetic that relies on
different implementations for different coordinate systems is proposed in
[20]. Hence, to have a unified architecture that implements this algorithm,
custom architectures of redundant adders and rotation direction selection
circuits need to be made.

5. [21]:

• It has only been found from [8] that the latency is ntstage, with tstage

unknown, since [21] only provides a latency in terms of an On-Line delay
of 6. Therefore, since [21] uses the same arithmetic as [20], it has been
assumed an iteration delay tstage = 2.5tF A. This similarity can also be
seen in [24].

• No area details have been found, but, due to its duplicated architecture
and thanks to the graphs in [24], it has been assumed that its area
occupation is roughly twice as [19] within 32 bits.

6. [22]:

• It supports all the modes, but it needs different architectures for rotation
and vectoring.

• Since the area details were not sufficient, they have been taken from
[26]. For [22], no details were given about the area for the absolute value
computation, which has then been assumed to be the one of two 4-1 MUXs
for each bit. Therefore Aabs ≈ 2nA4−1 MUX ≈ 4nAXOR ≈ 2nAF A.

7. [23]:

• Since the area details were not generalized, they have been interpolated
from the available data, assuming Ared. adder = nA4−2 comp = 2nAF A,
A2−1 MUX = AF A/2 and A3−1 MUX = AF A.

8. [17]:

35

Background

• In [17] the delays of each stage are expressed in terms of NAND gates.
Hence, it has been used tF A = 6TNAND. In addition, the delay due to the
path through registers (Treg = 8TNAND) has been ignored to consider the
combinational part only.

• Since the area details in [17] were not sufficient, they have been computed
looking at all the adopted stages and assuming

A4−bit CLA ≈ 6AF A (2.50)
A6−bit CLA ≈ 10.5AF A (2.51)
A7−bit CLA ≈ 14AF A (2.52)
A2−1 MUX ≈ AF A/2 (2.53)
A4−1 MUX ≈ AF A (2.54)

9. [24]:

• In [24] the delay of each stage is expressed in terms of unitary gate delay
tg and is equal to 21tg. Given that standard logic implementations for the
different hardware blocks have been considered in this paper, it has been
assumed tF A = 2tXOR = 4tg, where a 2-input XOR gate has a delay of
2tg. Therefore tstage ≈ 5tF A.

10. [27]:

• s(n) and m can be derived from [27]. In particular, s(16) = 5, s(24) = 10
and s(32) = 18, whereas m = ⌈(n − log23)/3⌉.

11. [16]:

• In [16] the total delay is (n/2 + 2)tadder + tmultiplier, where tadder is the
delay of a b-bit Kogge-Stone prefix adder, with b = 3 + n − 1 + log2n (b
is the internal datapath width), and tmultiplier the one of a n/2 + log2n
multiplier based on radix-4 recoding and 4-2 CSAs. For the KS adder, the
delay is log2b + TP G block, with TP G block = TAND + TOR = TXOR = tF A/2,
for the carry generation network and tF A for the final sum. Therefore,
tadder = log2b/2. For what concerns the multiplier, instead, depending on
the external precision and on the adder tree, its latency will be tW allace +
tadder + tENC+MUX . Assuming to use a KS adder for the redundant to
nonredundant conversion, tadder will be the same as the aforementioned
KS adder, whereas tENC+MUX can be assumed to be

tENC+MUX = tENC + tMUX = 2tAND + 2tOR + tXNOR ≈ tF A (2.55)

For n = 16 and n = 24, tW allace = 2t4−2 = 3tF A whereas for n = 32
tW allace = 3t4−2 comp = 4.5tF A.

36

Background

• The same considerations of previous point hold here. In particular, there
are a total of n/2 + 6 KS adders (including the ones at the end of the
multipliers) with

Aadder = (blog2b − b + 1)AP G block + bAF A

≈ [(blog2b − b + 1)/2 + b]AF A

(2.56)

assuming AP G block ≈ AXOR, two multiplier based on radix-4 recoding
and 4-2 CSAs with Amultiplier = AENC+MUX + AW allace + Aadder and
three CSD constant multipliers with ACSD mult. Assuming the number
of Booth encoders to be ⌈(n/2 + log2n)/2⌉, where (n/2 + log2n) is the
size of the multiplier, with AENC = 2AAND + AOR + AXOR ≈ AF A

[31] and the number of MUXs to be (⌈(n/2 + log2n)/2⌉)((n/2 + log2n)),
with AMUX = 2AAND + ANOR + AXNOR ≈ AF A [31], AENC+MUX =
(⌈(n/2 + log2n)/2⌉)((n/2 + log2n) + 1)AF A. AW allace, instead, can be
approximated to be between 150AF A and 300AF A. ACSD mult depends on
the specific constant to be multiplied.

12. [30]: no details are given about latency or area occupation, apart the ones
related to the implementation in FPGA. As a consequence, latency and area
have been computed according to the architecture block diagram and the
following assumptions:

• Latency (the architecture is assumed to be unpipelined to compute the
total latency. Pipelining can be applied):

– The pre-processing stage has a critical path

TP RE = 2Tadder + Tshifter + 2T4−1 MUX (2.57)

Assuming a KS (n + 2)-bit adder (n + 2 is the length of the used
FXP format) to emulate [16], Tadder = [(log2n)/2 + 1]tF A. Tshifter

and T4−1 MUX have been computed according to the model expressed
in [24], therefore Tshifter = (log2n)/2tF A and T4−1 MUX = tF A. So,
TP RE = (log2n + 2)tF A.

– The Rotation Unit A has a latency TRUA = Tadder + T4−1 MUX =
[(log2)n/2 + 2]tF A.

– The Rotation Unit B has a critical path TRUB = ⌈log2(n/2)⌉Tadder +
T2−1 MUX = ⌈log2(n/2)⌉[(log2n)/2 + 1]tF A.

– The scaling unit can be created ad hoc by using a constant multiplier
that depends in K and is not in the critical path. Hence, it has not
been included in the computation.

37

Background

– The post-processing unit has a latency TP OST = T4−1 MUX + TLOD +
2Tshifter = (n + log2n)/2tF A, assuming TLOD = (n − 2)T2−1 MUX +
TAND ≈ (n − 2)/2tF A.

– Since (n/2)TRUA > TRUB has been assumed for the second half of
iterations, the critical path lays in TCP = TP RE +nTRUA + TP OST .

• Area:
– The pre-processing unit has an area

AP RE = 4An−bit adder + 3A9−bit adder + 3Ashifter+
+ 8A4−1 MUX + ACOMP

(2.58)

Assuming again KS adders, An−bit adder = (nlog2n − n/2 + 1)AF A and
A9−bit adder = 25AF A. In addition, Ashifter = 1/7n2AF A ([24]) and
A4−1 MUX = 6/7AF A ([24]). Therefore,

AP RE = [4(nlog2n − n/2 + 1) + 75 + 3/7n2 + 48/7n]AF A (2.59)

– The Rotation Unit A occupies ARUA = 3An−bit adder + 2A4−1 MUX +
A2−1 MUX = (nlog2n − n/2 + 15/7n)AF A.

– The Rotation Unit B has an area ARUB = 2(n/2 − 1)(An−bit adder +
2A2−1 MUX) = (n − 2)(nlog2n − n/2 + 1 + 12/7n)AF A

– The scaling unit has not been included for the same reasons as for
latency.

– The post-processing unit occupies

AP OST = 2A4−1 MUX + An−bit adder + 3ALOD + 6Ashifter (2.60)

where

ALOD = (n − 2)A2−1 MUX + (n − 1)AAND

= [(n − 2)3/7 + (n − 1)/6]AF A

(2.61)

– The total area is AT OT = AP RE + nARUA + ARUB + Ascale + AP OST .

13. [18]: no details are given about latency or area occupation, apart the ones
related to the implementation in FPGA. As a consequence, latency and area
have been computed according to the architecture block diagram and the
following assumptions:

• Latency (the architecture is assumed to be unpipelined to compute the
total latency. Pipelining is applied in [18]):

38

Background

– Each STEP block has a latency TST EP = Tshifter+Tadder, where Tshifter

and Tadder have been computed in the same way as [30]. Therefore,
TST EP = (log2n + 1)tF A and TCP = nTST EP = n(log2n + 1)tF A.

• Area:
– Each STEP block has an area

AST EP = 2Ashifter + 2Aadder + 2A2−1 MUX (2.62)

where Ashifter, Aadder and A2−1 MUX have been computed in the same
way as [30]. Therefore,

AST EP = [2/7n2 + n(2log2n − 1/7) + 2]AF A (2.63)

AT OT = nAST EP

= n[2/7n2 + n(2log2n − 1/7) + 2]AF A

(2.64)

14. [29]: the architecture (assumed unpipelined to compute the total latency.
Pipelining is applied in [29]) is similar to the one [30], hence the latency and
area formulas have been computed with the following assumptions:

• The front-stage has the same area and latency as the pre-processing block
of [30] but without the part that extends the range of conversion of θ
(which is not in the critical path). Therefore, TF S = (log2n + 2)tF A and
AF S = [3(nlog2n − n/2 + 1) + 75 + 3/7n2 + 36/7n]AF A.

• The each stage of the CORDIC pipeline has the same area and delay as
Rotation Unit A, so TC−ST AGE = [(log2n)/2 + 2]tF A and AC−ST AGE =
(nlog2n−n/2+15/7n)AF A. As stated in [29], the scaling stages are pretty
similar to the CORDIC ones and, so, have been considered equivalent to
them.

• The end-stage has the same area and latency as the pre-processing block
of [30] but without the part that takes care of the range of θ. Therefore,
TES = (n + log2n)tF A and AES ≈ (2.6n − 1.8 + 6/7n2)AF A.

• The total latency and area are, then,

TCP = TF S + 37TC−ST AGE + TES

= (20log2n + 76 + n/2)tF A

(2.65)

AT OT = (40nlog2n + 65n + 1.3n2 + 76)AF A (2.66)
for single-precision (n = 32),

TCP = TF S + 25TC−ST AGE + TES

= (12.5log2n + 46 + n/2)tF A

(2.67)

39

Background

Latency (tFA) Area (AFA)

Algorithm 16 bits 24 bits 32 bits 16 bits 24 bits 32 bits

Double rotation/Correcting [19] 60 90 120 5312 11367 19600

Low Latency Nonpipelined [20] 26 39 48 2606 5188 8572

Low Latency Pipelined [20] 18 27 36

Branching [21] 40 60 80 10624 22734 39200

DCORDIC [22]
57 (rot)

73 (vec)

85 (rot)

126 (vec)

113 (rot)

158 (vec)
3712 8013 13888

Radix-4 [23] 52 76 100 2708 6188 11149

Radix2-4 [17] 56 82 107 1800 3798 6532

Radix-4 [24] 68 95 122 3014 6289 10705

PCORDIC [25] 33 47 61 334 622 1013

Flat CORDIC [26] 34 39 50 1850 3156 5499

Para-CORDIC [27] 28 1 32 2 31 3 1224 2841 5512

Semi-flat [28] 33 49 1622 4619

Nonredundant low-latency [16] 39 57 75
978AF A+

+ ACSD mult

1781AF A+
+ ACSD mult

2833AF A+
+ ACSD mult

Pipelined unified [18] 80 134 192 3213 9197 19520

Unified reconfigurable FLP [30] 27 39 51 3317 + Ascale 7926 + Ascale 14775 + Ascale

FLP Vector-Arithmetic unit [29] 103 304 2680 6786

Table 2.9: Architectures comparison for 16, 24 and 32 bits.

AT OT = (25nlog2n + 42n + 1.3n2 + 76)AF A (2.68)

for half-precision (n = 16).

1For 16 bits, s(16) = 5 and m = 5.
2For 24 bits, s(24) = 10 and m = 8.
3For 16 bits, s(32) = 18 and m = 11.

40

Chapter 3

Proposed architecture

3.1 Preliminary choices
In order to select the most suitable architecture for the final implementation, several
design choices have been made, based on the requirements and on the analysis
of the state of the art. In particular, the following aspects have been taken into
account.

3.1.1 Supported floating-point formats
Based on requirements, the architecture must support both single and half precision
floating-point. In particular, given the presence of a 32-bit datapath, the main focus
is on allowing the execution of operations either on a single set of 32-bit inputs or
on two sets of 16-bit ones in parallel. Therefore, even though the designed unit can
be easily adapted to other formats thanks to the use of parametric modules, the
main focus has been put on these two configurations.

3.1.2 Algorithm selection
In Section 2.5 several algorithms have been explained, each of which has its own
pros and cons. For this work, one major requirement is the possibility, for the
final architecture, to accomplish all the six CORDIC modes, in order to reach the
largest variety of executable functions. As a result, most of the approaches, as
much as efficient, have been discarded, since they are able only to perform a subset
of the available modes. In addition, also the idea of using two complementary
blocks that, at the end, reach the complete set of functions has been abandoned,
since it would lead to twice the area occupation. Therefore, it has been chosen to
follow the traditional algorithm implementation together with the unfolded and

41

Proposed architecture

pipelined architectural approach explained in Section 2.3.3, in order to combine
area-efficiency and high throughput with a large number of available functions. As
a result, the scaling factor is constant and known in advance, since nonredundant
arithmetic is being adopted, and there are no data dependencies among the various
stages, which means that, at each clock cycle, not only operations on new inputs
can start, but also valid results are available.

3.1.3 Floating-point extension strategy
As explained in Section 2.4, there are two ways to adapt CORDIC algorithm to
floating-point arithmetic: global FLP and local FLP. In order to compare the
strategies and select the most suitable one, a C code for both implementations
has been created and tested over 1000 random values. For what concerns global
floating-point, the approach proposed in [29] has been followed to build the model.
Figures 3.1-3.4 summarize the obtained results for both precisions and for all the
CORDIC working modes. In particular, Figures 3.1 and 3.3 refer to rotation mode
and, thus, plot the obtained absolute error over the ROC of the z input value1.
Figures 3.2 and 3.4, instead, are related to vectoring mode and, thus, represent the
variation of the absolute error over the range of the y input value. At first glance,
local FLP could seem to be the most suitable solution, since it adopts floating-point
arithmetic directly within the computational blocks, thus avoiding precision loss
due to fixed-point limitations. However, as clearly shown in Figures 3.1-3.4, both
strategies provided similar results in terms of error, with global floating-point
showing an even better behavior outside the range of convergence. As a result,
thanks to its simplicity and possibly higher speed, global FLP has been chosen
for the final architecture. In particular, [29] has been followed as first reference
for single precision, even though other configurations for the internal fixed-point
format have been explored. For what concerns half precision, instead, the number
of padding bits for the FXP datapath have been first interpolated from [12, 29]
and then evaluated through simulations.

3.1.4 Scaling factor compensation technique
Traditional CORDIC architectures lay on two main techniques to compensate for
the amplitude variation of the input vector during the iterations: pre-scaling and
post-scaling. The former consists of assigning to the input vector pre-scaled x and
y coordinates, whereas the latter multiplies the output vector by the inverse of the
scaling factor K.

1In order to make this preliminary comparison faster, it has been decided to make the input
that defines the ROC vary, that is z for rotation mode and y for vectoring mode

42

Proposed architecture

-2 0 2

Input value (z0)

0

0.1

0.2

0.3

E
rr

o
r

x

Global

Local

-2 0 2

Input value (z0)

0

0.05

0.1

E
rr

o
r

y

Global
Local

-2 0 2

Input value (z0)

-1

-0.5

0

0.5

1

E
rr

o
r

z

Global
Local

(a) Circular coordinates

-2 0 2

Input value (z0)

0

0.5

1

1.5

2

E
rr

o
r

x

Global
Local

-2 0 2

Input value (z0)

0

0.5

1

1.5

2

E
rr

o
r

y

Global
Local

-2 0 2

Input value (z0)

-1

-0.5

0

0.5

1

E
rr

o
r

z

Global

Local

(b) Hyperbolic coordinates

-2 0 2

Input value (z0)

-1

-0.5

0

0.5

1

E
rr

o
r

x

Global
Local

-2 0 2

Input value (z0)

0

0.5

1

1.5

2

E
rr

o
r

y

Global
Local

-2 0 2

Input value (z0)

-1

-0.5

0

0.5

1
E
rr

o
r

z

Global

Local

(c) Linear coordinates

Figure 3.1: Error comparison in rotation mode between
global (blue) and local (red) floating-point for single preci-
sion. The black vertical lines show the range of convergence
according to Table 2.5.

Thanks to the absence of a scaling circuitry, the first method provides a clear
advantage in terms of area occupation and latency, but it offers a lower adaptability,
since it forces the user to select already pre-scaled input values to obtain the
expected result. The second technique, instead, is far more flexible and, for this
reason, has been chosen for the final architecture.
According to [8], post-scaling can be implemented in two ways:

1. Multiplier-based: the output vector is scaled by 1/K through a dedicated

43

Proposed architecture

-10 0 10

Input value (y0

x0
)

0

1

2

3

4

E
rr

o
r

#10!6 x

Global
Local

-10 0 10

Input value (y0

x0
)

-1

-0.5

0

0.5

1

E
rr

o
r

y

Global
Local

-10 0 10

Input value (y0

x0
)

0

2

4

6

8

E
rr

o
r

#10!7 z

Global

Local

(a) Circular coordinates

-5 0 5
Reference output

value (zn)

0

0.1

0.2

0.3

E
rr

o
r

x

Global
Local

-5 0 5
Reference output

value (zn)

-1

-0.5

0

0.5

1

E
rr

o
r

y

Global
Local

-5 0 5
Reference output

value (zn)

0

1

2

3

E
rr

o
r

z

Global

Local

(b) Hyperbolic coordinates

-2 0 2
Reference output

value (y0

x0
)

-1

-0.5

0

0.5

1

E
rr

o
r

x

Global
Local

-2 0 2
Reference output

value (y0

x0
)

-1

-0.5

0

0.5

1

E
rr

o
r

y

Global
Local

-2 0 2
Reference output

value (y0

x0
)

0

0.5

1

E
rr

o
r

z

Global

Local

(c) Linear coordinates

Figure 3.2: Error comparison in vectoring mode between
global (blue) and local (red) floating-point for single preci-
sion. The black vertical lines show the range of convergence
according to Table 2.5.

multiplier, which, as suggested by [8] to improve latency, can be either based
on canonical signed digit (CSD) representation or on a Wallace tree. This
approach is the most straightforward one, but the required multiplier represents
a complex and area-consuming circuitry. In addition, since, in order to improve
the throughput, the final architecture will be an unfolded and pipelined one,
the multiplier constitutes a slow stage that limits the maximum achievable

44

Proposed architecture

-2 0 2

Input value (z0)

0

0.1

0.2

0.3

E
rr

o
r

x

Global

Local

-2 0 2

Input value (z0)

0

0.02

0.04

0.06

0.08

E
rr

o
r

y

Global
Local

-2 0 2

Input value (z0)

-1

-0.5

0

0.5

1

E
rr

o
r

z

Global
Local

(a) Circular coordinates

-2 0 2

Input value (z0)

0

0.5

1

1.5

2

E
rr

o
r

x

Global
Local

-2 0 2

Input value (z0)

0

0.5

1

1.5

2

E
rr

o
r

y

Global
Local

-2 0 2

Input value (z0)

-1

-0.5

0

0.5

1

E
rr

o
r

z

Global

Local

(b) Hyperbolic coordinates

-2 0 2

Input value (z0)

0

0.5

1

1.5

E
rr

o
r

#10!3 x

Global
Local

-2 0 2

Input value (z0)

0

0.5

1

1.5

2

E
rr

o
r

y

Global
Local

-2 0 2

Input value (z0)

-1

-0.5

0

0.5

1
E
rr

o
r

z

Global

Local

(c) Linear coordinates

Figure 3.3: Error comparison in rotation mode between
global (blue) and local (red) floating-point for half preci-
sion. The black vertical lines show the range of convergence
according to Table 2.5.

frequency and makes the pipeline unbalanced, thus requiring to be internally
pipelined as well.

2. Performing additional iterations: the output vector is scaled by 1/K by
performing additional iterations, which represents a more complex approach
than the previous one, since it requires a specific sequence of iterations that
accomplishes this task. On the other hand, based on what has been explained
in [29], each scaling stage can be almost identical to the traditional CORDIC

45

Proposed architecture

-10 0 10

Input value (y0

x0
)

0

0.005

0.01

0.015

E
rr

o
r

x

Global
Local

-10 0 10

Input value (y0

x0
)

-1

-0.5

0

0.5

1

E
rr

o
r

y

Global
Local

-10 0 10

Input value (y0

x0
)

0

0.5

1

1.5

2

E
rr

o
r

#10!3 z

Global

Local

(a) Circular coordinates

-5 0 5
Reference output

value (zn)

0

0.1

0.2

0.3

E
rr

o
r

x

Global
Local

-5 0 5
Reference output

value (zn)

-1

-0.5

0

0.5

1

E
rr

o
r

y

Global
Local

-5 0 5
Reference output

value (zn)

0

1

2

3

E
rr

o
r

z

Global

Local

(b) Hyperbolic coordinates

-2 0 2
Reference output

value (y0

x0
)

-1

-0.5

0

0.5

1

E
rr

o
r

x

Global
Local

-2 0 2
Reference output

value (y0

x0
)

-1

-0.5

0

0.5

1

E
rr

o
r

y

Global
Local

-2 0 2
Reference output

value (y0

x0
)

0

0.5

1
E
rr

o
r

z

Global

Local

(c) Linear coordinates

Figure 3.4: Error comparison in vectoring mode between
global (blue) and local (red) floating-point for half preci-
sion. The black vertical lines show the range of convergence
according to Table 2.5.

.

ones, thus allowing not only to increase the maximum achievable frequency,
but also to balance the pipeline.

In this work both strategies have been analyzed during simulation. However, since
the resulting average relative error for both of them was almost identical, the
second approach has been chosen for the final architecture, as it allows to improve

46

Proposed architecture

the maximum achievable frequency and to balance the pipeline. In particular, [29]
has been followed for the design of the scaling circuitry.

3.2 Architecture overview
As previously declared, the following choices have been taken:

• Single and half precision floating-point have been selected as supported formats.

• Global FLP has been chosen over the local one for the floating-point extension
of CORDIC algorithm.

• The unfolded and pipelined approach has been preferred over the folded one, in
order to maximize the throughput. Therefore, there are no data dependencies
among the various stages, which means that, at each clock cycle, not only
operations on new inputs can start, but also valid results is available.

• Post-scaling through additional iterations has been selected as scaling factor
compensation technique, since it is a good trade-off among pipeline balance,
maximum achievable frequency and flexibility of the architecture.

As a result, it has been decided to follow the architecture proposed in [29], since it
satisfies all these points. This leads to the following architectural choices:

• The entire design can be seen as a black box that receives and returns data in
IEEE-754 single and half precision formats.

• The internal pipeline adopts a specific fixed-point format to cope with precision
loss due the use of FXP arithmetic. This means that the original mantissa is
padded with additional overflow (left) and guard (right) bits. Therefore, no
floating-point blocks are being implied.

• The shift amount that is required during each CORDIC or scaling iteration is
known in advance, hence Barrel shifters can be replaced by hardwired shifts.

• The LUT stores the αm,i angles directly in the internal fixed-point format.

• When converting floating-point inputs to fixed-point numbers, they need to be
aligned to be correctly added or subtracted. For x and y this is dynamically
done depending on their respective exponents, whereas z is aligned to a fixed
exponent that is the maximum one among all the αm,i angles.

As it can be easily noticed from Figure 3.5, which shows the block diagram of
the entire floating-point CORDIC architecture, the unit can be divided in three
macro-blocks:

47

Proposed architecture

PRE-PROCESSING

FXP CORDIC TOP

POST-PROCESSING

xin yin zin m modein_ready

xout yout zout
out

valid

R
E
G

R
E
G

R
E
G

R
E
G

R
E
G

R
E
G

R
E
G

R
E
G

final_x
fnal_y
final_z

z_extension_ctrl

R
E
G

R
E
G

P
I
P
E

R
E
G

status_flags

P
I
P
E

P
I
P
E

P
I
P
E

P
I
P
E

P
I
P
E

P
I
P
E

xout yout zout
out

valid

x_out_is_special

y_out_is_special

z_out_is_special

xin yin zin in
ready

xout yout zout
out

valid

xin yin zin in
ready

inputs[0]

inputs[1]

inputs[2]

in_ready m mode

outputs[0]

outputs[1]

outputs[2]

out_is_special[2:0]

flp_cordic_topFLP

FXP

FLP

R
E
G

P
I
P
E

ref_exp

pipe
enable

R
E
G

pipe
enable

R
E
G

P
I
P
E

xin

inputs[0]

status
flags

status
flags

out
valid

Figure 3.5: Block diagram of the entire floating-point CORDIC unit.

• Pre-processing block: it is responsible for converting the input floating-
point numbers to the internal fixed-point format, as well as for aligning them

48

Proposed architecture

to the correct exponent and setting the status flags depending on the input
values.

• Fixed-point CORDIC top module: it is the core of the architecture,
since it performs the actual CORDIC iterations, as well as the scaling factor
compensation procedure. This block works on fixed-point numbers.

• Post-processing block: it is responsible for converting the output fixed-point
numbers to the IEEE-754 single or half precision format, as well as for setting
the status flags depending on the input ones and on specific conditions on the
output values.

In the following sections each of these blocks will be described in details.
Whenever the unit has to perform a new operation, it complies with these steps:

1. Pre-processing:

(a) Set the status flags according to specific input combinations.
(b) Unpack the floating-point inputs and isolate sign, exponent and mantissa.
(c) Find the reference exponent for the fixed-point pipeline.
(d) Build the internal fixed-point format by padding the mantissa with the

hidden bit and the additional guard and overflow bits.
(e) Align each operand depending on its initial exponent.
(f) Compute the 2’s complement of each number if its sign is negative.
(g) If the unit is working in rotation mode with circular coordinates, map the

original z angle from [0, 2π] to
è
0, π

2

é
to satisfy the ROC for such mode

(Table 2.5).

2. Fixed-point CORDIC algorithm execution: perform the CORDIC itera-
tions by executing equations 2.23-2.25 within each stage.

3. Scaling factor compensation: perform the scaling factor compensation
procedure according to [29].

4. Post-processing:

(a) Convert the operands into sign-magnitude form from 2’s complement.
(b) Detect if any of the numbers is zero.
(c) Find the position of leading one and use this amount to shift the values

in order to have a unitary integer part. Update the respective exponents
accordingly.

49

Proposed architecture

(d) Shift right each operand to remove the additional guard bits.
(e) Round the values according to the selected rounding mode.
(f) Eventually normalize the operands if there is a non-unitary integer part

and update the respective exponents accordingly.
(g) Pack the operands into the IEEE-754 single or half precision format.
(h) Select the final outputs based on the status flags coming from the input

section and on specific conditions on the output values.

In addition, throughout the execution a handshake system through a pair of signals
has been adopted for each of the macro-blocks. This is based on an in_ready
input signal and on an out_valid output one. The former is raised whenever
each module receives meaningful data, the latter when valid results are being
produced. For unpipelined blocks, this means that in_ready is simply forwarded
to out_valid, since computation takes zero time. For pipelined modules, instead,
in_ready is forwarded to out_valid through a delay pipeline whose depth is
equal to the module latency. In this way, the out_valid signal is raised only
when the module has completed its computation. As an obvious consequence, the
in_ready/out_valid pair of each macro-block is being cascaded, which means that
the out_valid coming from the pre-processing block is connected to the in_ready
of the fixed-point CORDIC top module, and so on.
As there is no need to have two separated elements to enable the computation and
to signal the availability of meaningful data, the in_ready signal also works as an
enable one. This means that, whenever it is low, all the internal registers are not
updating their content.
Finally, since, as explained later, only the fixed-point CORDIC top module and
the scaling factor compensation block are pipelined, the overall latency of the unit
is N_ITERATIONS + SCALING_STAGES, so:

• 37 clock cycles for single precision

• 21 clock cycles for half precision

which are large numbers for sure, but have to be compared to a throughput of 2
output values per clock cycle.

3.3 Pre-processing block
The pre-processing block is responsible for converting the floating-point inputs
into the internal fixed-point format, as well as for aligning them based on the
respective exponents and for setting the status flags depending on the input values.

50

Proposed architecture

In addition, in case of rotation mode with circular coordinates, it also maps the
original z angle from [0, 2π] to

è
0, π

2

é
to satisfy the ROC for such mode (Table 2.5).

The block diagram of this module is shown in Figure 3.6.

UNPACK UNPACK UNPACK

xin yin zin

x_exp x_sign x_mant y_exp y_sign y_mant z_exp z_sign z_mant

F
X
P

F
X
P

F
X
P

REFERENCE
EXPONENT

SHIFT

x_int y_int z_intx_shift
amnt

z_shift
amnt

2's COMP 2's COMP Z MAP

x_shifted y_shifted z_shifted

SPECIAL
FLAGS

final_x final_y final_z

status_flags

pipe_enable
P
I
P
E

in_ready

ref_exp

out_valid xout yout zout z_ext
ctrl

pipe
enable

status
flags

ref_exp final
x

final
y

final
z

m
mode

flp2fxp

SHIFT SHIFT

y_shift
amnt

Figure 3.6: Block diagram of the pre-processing block.

Four main operations are performed by this block:

1. FLP unpacking and FXP packing: unpack the floating-point inputs and
isolate sign, exponent and mantissa. Then, build the internal fixed-point
format by padding the mantissa with the hidden bit and the additional guard
and overflow bits.

2. Reference exponent computation, alignment and 2’s complement
conversion: find the reference exponent for the fixed-point pipeline. Then,
align each operand depending on its initial exponent and compute the 2’s
complement of each operand if its sign is negative.

51

Proposed architecture

3. z mapping: if the unit is working in rotation mode with circular coordinates,
map the original z angle from [0, 2π] to

è
0, π

2

é
to satisfy the ROC for such

mode (Table 2.5).

4. Status flags generation: set the status flags according to specific input
combinations.

The following subsections describe in details each of these steps.

3.3.1 FLP unpacking and FXP packing
The first operation to be performed whenever the CORDIC unit receives floating-
point inputs is to unpack them and isolate sign, exponent and mantissa. This is
done through the FLP unpack block shown in Figure 3.6, whose tasks are:

1. Forward the corresponding fields of the FLP format to specific internal signals
Considering the generic FLP input in_FLP (it could be any of x, y or z) with:

• WIDTH = width of in_FLP

• N_EXP = number of exponent bits
• N_MANTISSA = number of mantissa bits

this means that the following bits will be isolated:

• Sign = s = in_FLP[WIDTH-1]

• Biased exponent = E = in_FLP[N_MANTISSA+N_EXP-1:N_MANTISSA]

• Mantissa = m = in_FLP[N_MANTISSA-1:0]

2. Subtract the bias b from the exponent to obtain the unbiased one e = E − b =
E − 2(N_EXP−1).

3. Check if the input number is subnormal (e < emin = 1 − b) and set the hidden
bit accordingly:

• If e < emin, the input number is subnormal and the hidden bit is set to 0.
• If e ≥ emin, the input number is normal and the hidden bit is set to 1.

It has to be underlined that both the biased and unbiased exponents are described
using N_EXP+2 bits, in order to take into account both negative and large (overflow)
values and to perform meaningful comparisons.
When all the inputs have been unpacked, the FXP pack block is responsible for
building the internal fixed-point format by padding the mantissa with the hidden
bit and the additional guard and overflow bits. Since fixed-point arithmetic suffers

52

Proposed architecture

from a more limited range of representable values with respect to floating-point,
additional bits are required both to avoid overflow and to cope with precision loss
during CORDIC iterations. Starting from [29], the number of these bits has been
considered as follows for single precision:

• N_OVF_XY = number of overflow bits in the x and y datapaths = 3

• N_GUARD_XY = number of guard bits in the x and y datapaths = 5

• N_OVF_Z = number of overflow bits in the z datapath = 3

• N_GUARD_Z = number of guard bits in the z datapath = 3

The only parameter that differs from [29] is N_OVF_Z, since one additional overflow
bit has been considered to have a wider range of acceptable values for z. For what
concerns half precision, instead, the amount of padding bits has been found starting
from [12] and interpolating the values that have been previously chosen for single
precision:

• N_OVF_XY = 3

• N_GUARD_XY = 4

• N_OVF_Z = 3

• N_GUARD_Z = 3

GUARDMANTISSAOVERFLOWS

1 N_OVF_XY = 3 N_MANTISSA = 23 N_GUARD_XY = 5

x/y DATAPATH

z DATAPATH

GUARDMANTISSAOVERFLOWS

1 N_OVF_XY = 3 N_MANTISSA = 23 N_GUARD_XY = 3

(a) Single precision

GUARDMANTISSAOVERFLOWS

1 N_OVF_XY = 3 N_MANTISSA = 10 N_GUARD_XY = 4

x/y DATAPATH

z DATAPATH

GUARDMANTISSAOVERFLOWS

1 N_OVF_XY = 3 N_MANTISSA = 10 N_GUARD_XY = 3

(b) Half precision

Figure 3.7: Fixed-point format for single (a) and half (b) precision.

Assuming to allocate anyway three overflow bits also for half precision1, [12]
highlights the need for a total number of log2(w) (w is the fixed-point width)
additional ones to make precision loss negligible. Since for half precision

1As explained later, this especially helps to improve the range of acceptable inputs for z.

53

Proposed architecture

w = N_MANTISSA + N_OVF + 1 = 10 + 3 + 1 = 14

this means that log2(14) ≈ 3.8 ≈ 4 guard bits are required. This number has, then,
been reduced by one for z to follow what has been done in [29] for single precision.
The final fixed-point format number will be (following SystemVerilog syntax):

in_FXP = {0, {(N_OVF-1){1’b0}}, hb, m, {N_GUARD{1’b0}}}

with hb = hidden bit and m = mantissa. The sign bit is forced to zero because
the conversion from sign-magnitude form to 2’s complement is performed later for
negative numbers. The final width of in_FXP is, then,

w = N_MANTISSA + N_OVF + N_GUARD + 1 (3.1)

which leads to:

• wsingle, x/y = 23 + 3 + 5 + 1 = 32

• wsingle, z = 23 + 3 + 3 + 1 = 30

• whalf, x/y = 10 + 3 + 4 + 1 = 18

• whalf, z = 10 + 3 + 3 + 1 = 17

It has to be underlined that, since N_OVF_Z < 4, N_OVF_Z is temporarily forced
to 4 and restored after the mapping operation, in order to allow the fixed-point
representation of z to span over the entire extended ROC for rotation mode with
circular coordinates. This will be more clear in the following section.

3.3.2 Reference exponent computation, alignment and 2’s
complement conversion

As explained in Section 2.2.1, a floating-point addition can be considered as a
fixed-point one that uses opportunely shifted operands, so that each number is
aligned to the larger exponent between the two. Since the proposed CORDIC
unit lays on global FLP, the operations that are being performed internally to
the fixed-point pipeline have to be compliant with floating-point arithmetic. As
a consequence, before entering the pipeline itself, the FXP representations of the
input operands have to be aligned to the same larger exponent, which is, then,
called reference exponent. This reference exponent is, therefore, the larger between
the exponents of the two operands to be added or subtracted together. This leads
to:

54

Proposed architecture

• Reference exponent for x and y:

eREF, xy = max(ex, ey) (3.2)

where ex and ey are the exponents of x and y, respectively. This is dynamically
done depending on each new set of inputs x and y.

• Reference exponent for z and the αm,i angles:

eREF, z = max(ez, eα) (3.3)

where ez is the exponent of z and eα is the exponent of the αm,i angle. Since,
throughout the execution of the algorithm, each stage i refers to a specific
angle αm,i, aligning z and αm,i at each iteration would lead to the loss of
all the advantages of global FLP. Hence, it has been decided to choose the
maximum exponent among all the αm,i angles of all working modes, namely
-1, as the reference one for both z and each αm,i.

Once eREF has been computed, the amount by which each operand has to be
shifted is:

ax = ex − eREF (3.4)
ay = ey − eREF (3.5)
az = ez − (−1) (3.6)

Depending on the sign of a and on the considered pipeline, each FXP representation
of the inputs will be shifted left or right by |a| bits as follows:

x and y → in_shifted =
in_FXP if a = 0

in_FXP >> |a| if a < 0
(3.7)

z → in_shifted =
in_FXP << a if a ≥ 0

in_FXP >> |a| if a < 0
(3.8)

As previously mentioned, z will always be aligned to exponent -1, which means
that, with the availability of N_OVF_Z bits for its integer part, only input numbers
up to 2(N_OVF_Z−2) can be correctly converted. Assuming three overflow bits, the
maximum acceptable input value for z is 2(3−2) = 2, which is enough to cover the
entire range of convergence of most working modes apart from rotation mode with
circular coordinates, whose larger limit is 2π ≈ 6.28 > 2. To cope with this, it has
been decided to temporarily force N_OVF_Z to 4 and restore it after the mapping
operation, which brings back z to be at most π

2 .

55

Proposed architecture

The last step to be performed before letting the inputs exit the pre-processing
block is the conversion from sign-magnitude form to 2’s complement for negative
numbers, in order to permit the execution of additions and subtraction in the
standard way.

3.3.3 z mapping
The z-map unit is responsible for:

• Mapping the original z angle from [0, 2π] to
è
0, π

2

é
, in order to combine the

ROC limits with a wider range of acceptable angles in rotation mode with
circular coordinates.

• Compute the 2’s complement of z, if its sign is negative, for the other working
modes.

Figure 3.8 shows the block diagram of this module.

20 1

π/4

3

π/20 3π/2

SELECT

z_extension_ctrl

01

zin
z

sign

z_effective

z_mapped

z_finalz_extension_ctrl

z_map

is
rot
circ

Figure 3.8: Block diagram of the z-map unit.

56

Proposed architecture

Whenever the pre-processing block detects that the unit has to perform an operation
in rotation mode with circular coordinates, it checks which is the angular range
that includes z and subtracts a specific value according to equation 3.9. The values
π
2 , π, 3π

2 and 2π are being directly considered in the fixed-point representation
shown in Figure 3.7, with the number of overflow bits set to four.

zfinal =

z if 0 ≤ z < π

2
z − π

2 if π
2 ≤ z < π

z − π if π ≤ z < 3π
2

z − 3π
2 if 3π

2 ≤ z < 2π

(3.9)

If, instead, the unit is working in any of the other modes, the 2’s complement of
z is computed if its sign is negative. In either of the two cases, the final value is
brought back to the original fixed-point format with N_OVF_Z overflow bits.
In addition to this, the unit also sets a specific control signal, z_extension_ctrl,
which travels through the pipeline and suggests the post-processing block which
output it has to select. Its encodings are:

• NO_MAP: the unit is not working in rotation mode with circular coordinates or
the z angle is already within the ROC.

• FIRST_RANGE: the unit is working in rotation mode with circular coordinates
and the z angle is in the range

è
π
2 , π

é
.

• SECOND_RANGE: the unit is working in rotation mode with circular coordinates
and the z angle is in the range

è
π, 3π

2

é
.

• THIRD_RANGE: the unit is working in rotation mode with circular coordinates
and the z angle is in the range

è
3π
2 , 2π

é
.

3.3.4 Status flags generation
The last operation to be performed by the pre-processing module is the generation,
for each operand, of the status flags described in Section 2.2.3, which are:

• Invalid operation (NV)

• Division by zero (DZ)

• Overflow (OF)

• Underflow (UF)

• Inexact (NX)

57

Proposed architecture

The purpose of this unit is not only to let the post-processing block know which
output it has to select to provide a meaningful result, but also to disable the pipeline
whenever the outcome of an operation can be predicted, so that a lower power
consumption can be achieved. Each of the flags is set to 1 or to 0 according both
to the combinations explained in Section 2.2.3 and to algorithm-specific conditions.
In particular,

1. Invalid operation (NV): in addition to the cases in Section 2.2.3, this
flag is set to 1 also if the range of convergence is not being respected. This
can be easily predicted for all modes but the vectoring one with hyperbolic
coordinates, where the ROC depends on the computation of the hyperbolic
arctangent. In this case, the flag is raised if the absolute value of the ratio
between y and x is greater than or equal to 1, which means that atanh

1
y
x

2
is

not defined, thus not valid. In particular, the conditions that cause NV to be
set are:

(a) Rotation mode:
i. Circular coordinates:

• xn = xin · cos(zin) − yin · sin(zin)
– Any of the inputs is a NaN .
– |xin| = ∞ and cos(zin) = 0
– |yin| = ∞ and sin(zin) = 0
– |xin| = |yin| = ∞ and sign(xin · cos(zin)) = sign(yin · sin(zin))
– zin outside the ROC

• yn = xin · sin(zin) + yin · cos(zin)
– Any of the inputs is a NaN .
– |xin| = ∞ and sin(zin) = 0
– |yin| = ∞ and cos(zin) = 0
– |xin| = |yin| = ∞ and sign(xin · sin(zin)) /= sign(yin · cos(zin))
– zin outside the ROC

• zn = 0
– zin is a NaN

– zin outside the ROC
ii. Hyperbolic coordinates:

• xn = xin · cosh(zin) + yin · sinh(zin)
– Any of the inputs is a NaN .
– |yin| = ∞ and sinh(zin) = 0
– |xin| = |yin| = ∞ and sign(xin · cosh(zin)) /= sign(yin · sinh(zin))

58

Proposed architecture

– zin outside the ROC
• yn = xin · sinh(zin) + yin · cosh(zin)

– Any of the inputs is a NaN .
– |xin| = ∞ and sinh(zin) = 0
– |xin| = |yin| = ∞ and sign(xin · sinh(zin)) /= sign(yin · cosh(zin))
– zin outside the ROC

• zn = 0
– zin is a NaN

– zin outside the ROC
iii. Linear coordinates:

• xn = xin

– Any of the inputs is a NaN .
– zin outside the ROC

• yn = yin + xin · zin

– Any of the inputs is a NaN .
– |xin| = ∞ and zin = 0
– |xin · zin| = ∞, |yin| = ∞ and sign(xin · zin) /= sign(yin)
– |xin| = |yin| = ∞ and sign(xin) /= sign(yin)
– zin outside the ROC

• zn = 0
– zin is a NaN

– zin outside the ROC
(b) Vectoring mode:

i. Circular coordinates:
• xn = sign(xin) ·

ñ
x2

in + y2
in

– Either xin or yin is a NaN .
• yn = 0

– Either xin or yin is a NaN .
• zn = zin + tan−1

1
yin

xin

2
– Any of the inputs is a NaN .
– |xin| = ∞ and |yin| = ∞
– xin = 0 and yin = 0

ii. Hyperbolic coordinates:
• xn =

ñ
x2

in − y2
in

– Either xin or yin is a NaN .

59

Proposed architecture

– |xin| < |yin|
– |xin| = ∞ and |yin| = ∞
– tanh−1

1
yin

xin

2
is not defined (|xin| ≤ |yin|)

• yn = 0
– Either xin or yin is a NaN .
– tanh−1

1
yin

xin

2
is not defined (|xin| ≤ |yin|)

• zn = zin + tanh−1
1

yin

xin

2
– Any of the inputs is a NaN .
– |xin| = ∞ and |yin| = ∞
– xin = 0 and yin = 0
– |zin| = tanh−1

1
yin

xin

2
= ∞ and sign(zin) /= sign

1
tanh−1

1
yin

xin

22
– tanh−1

1
yin

xin

2
is not defined (|xin| ≤ |yin|)

iii. Linear coordinates:
• xn = xin

– xin is a NaN .
– yin

xin
is outside the ROC

• yn = 0
– Either xin or yin is a NaN .
– yin

xin
is outside the ROC

• zn = zin + yin

xin

– Any of the inputs is a NaN .
– xin = 0 and yin = 0
– |xin| = ∞ and |yin| = ∞
– |zin| = ∞, yin

xin
= ∞ and sign(zin) /= sign

1
yin

xin

2
– yin

xin
is outside the ROC

2. Division by zero (DZ): this flag is being set to 1 only when x is zero in
vectoring mode with linear coordinates, since it is the only case in which a
division by zero that leads to an infinite result can occur.

3. Overflow (OF), Underflow (UF) and Inexact (NX): these flags cannot
be usefully predicted at the input side, since operands combinations that make
a result overflow or underflow could be valid only for one of the three values
exiting the unit. Therefore, since the pipeline cannot be deactivated to save
power, there is no advantage in trying to set them here. Further checks are
left to the output side.

The status flags encodings are:

60

Proposed architecture

• NO_EXCEPTIONS: all the flags are 0.

• INVALID: NV is set.

• DIVISION_BY_ZERO: DZ is set.

• OVERFLOW: OF and NX are set.

• UNDERFLOW: UF and NX are set.

The disabling mechanism to decrease power consumption is based on a control
signal, pipe_enable, which enables the pipeline registers. Whenever the final
result can be predicted (NaN , Inf or 0), pipe_enable is set to 0, thus preventing
the data registers content from being updated and avoiding further and useless
switching activity. The other control signals, however, are still propagated through
the pipeline, since they are required by the post-processing block. In addition to
pipe_enable, another signal is used, for each operand, to communicate to the
post-processing block which value it has to select for the corresponding output.
These signals are called final_x, final_y and final_z and travel through the
pipeline alongside the operands. Whenever NVx = NVy = NVz = 1 holds, the final
outputs are forced to be NaNs, otherwise their value is set depending on specific
combinations of the NV status flag:

1. Rotation mode:

(a) Circular coordinates:
• NVx = NVy = 0

– final_x:
∗ If |xin| = ∞, final_x = PLUS_INF_FLAG or final_x = MINUS_

INF_FLAG depending on the sign of xin · cos(zin).
∗ If |yin| = ∞, final_x = PLUS_INF_FLAG or final_x = MINUS_

INF_FLAG depending on the sign of yin · sin(zin).
∗ If xin = yin = 0, final_x = ZERO_FLAG.
∗ final_x = NORMAL_FLAG otherwise.

– final_y:
∗ If |xin| = ∞, final_y = PLUS_INF_FLAG or final_y = MINUS_

INF_FLAG depending on the sign of xin · sin(zin).
∗ If |yin| = ∞, final_y = PLUS_INF_FLAG or final_y = MINUS_

INF_FLAG depending on the sign of yin · cos(zin).
∗ If xin = yin = 0, final_y = ZERO_FLAG.
∗ final_y = NORMAL_FLAG otherwise.

61

Proposed architecture

– final_z is always equal to ZERO_FLAG, given that, in rotation
mode, zin = 0.

– pipe_enable is 1 only when both final_x and final_y are equal
to NORMAL_FLAG, otherwise it is 0, since the results can be predicted.

• NVx = 0 and NVy = 1:
– final_x:

∗ If |xin| = ∞, final_x = PLUS_INF_FLAG or final_x = MINUS_
INF_FLAG depending on the sign of xin · cos(zin).

∗ If |yin| = ∞, final_x = PLUS_INF_FLAG or final_x = MINUS_
INF_FLAG depending on the sign of yin · sin(zin).

∗ final_x = NORMAL_FLAG otherwise.
– final_y is always equal to POS_NAN_FLAG, given that NVy = 1,

which means that the y result is not valid.
– final_z is always equal to ZERO_FLAG, given that, in rotation

mode, zin = 0.
– pipe_enable is 1 when final_x is equal to NORMAL_FLAG, other-

wise it is 0, since the results can be predicted.
• NVx = 1 and NVy = 0:

– final_x is always equal to POS_NAN_FLAG, given that NVx = 1,
which means that the x result is not valid.

– final_y:
∗ If |xin| = ∞, final_y = PLUS_INF_FLAG or final_y = MINUS_

INF_FLAG depending on the sign of xin · sin(zin).
∗ If |yin| = ∞, final_y = PLUS_INF_FLAG or final_y = MINUS_

INF_FLAG depending on the sign of yin · cos(zin).
∗ final_y = NORMAL_FLAG otherwise.

– final_z is always equal to ZERO_FLAG, given that, in rotation
mode, zin = 0.

– pipe_enable is 1 when final_y is equal to NORMAL_FLAG, other-
wise it is 0, since the results can be predicted.

(b) Hyperbolic coordinates:
• NVx = NVy = 0

– final_x:
∗ If |xin| = ∞, final_x = PLUS_INF_FLAG or final_x = MINUS_

INF_FLAG depending on the sign of xin.
∗ If |yin| = ∞, final_x = PLUS_INF_FLAG or final_x = MINUS_

INF_FLAG depending on the sign of yin · sinh(zin).

62

Proposed architecture

∗ If xin = yin = 0, final_x = ZERO_FLAG.
∗ final_x = NORMAL_FLAG otherwise.

– final_y:
∗ If |xin| = ∞, final_y = PLUS_INF_FLAG or final_y = MINUS_

INF_FLAG depending on the sign of xin · sinh(zin).
∗ If |yin| = ∞, final_y = PLUS_INF_FLAG or final_y = MINUS_

INF_FLAG depending on the sign of yin.
∗ If xin = yin = 0, final_y = ZERO_FLAG.
∗ final_y = NORMAL_FLAG otherwise.

– final_z is always equal to ZERO_FLAG, given that, in rotation
mode, zin = 0.

– pipe_enable is 1 when both final_x and final_y are equal to
NORMAL_FLAG, otherwise it is 0, since the results can be predicted.

• NVx = 0 and NVy = 1:
– final_x:

∗ If |xin| = ∞, final_x = PLUS_INF_FLAG or final_x = MINUS_
INF_FLAG depending on the sign of xin.

∗ If |yin| = ∞, final_x = PLUS_INF_FLAG or final_x = MINUS_
INF_FLAG depending on the sign of yin · sinh(zin).

∗ final_x = NORMAL_FLAG otherwise.
– final_y is always equal to POS_NAN_FLAG, given that NVy = 1,

which means that the y result is not valid.
– final_z is always equal to ZERO_FLAG, given that, in rotation

mode, zin = 0.
– pipe_enable is 1 when final_x is equal to NORMAL_FLAG, other-

wise it is 0, since the results can be predicted.
• NVx = 1 and NVy = 0:

– final_x is always equal to POS_NAN_FLAG, given that NVx = 1,
which means that the x result is not valid.

– final_y:
∗ If |xin| = ∞, final_y = PLUS_INF_FLAG or final_y = MINUS_

INF_FLAG depending on the sign of xin · sinh(zin).
∗ If |yin| = ∞, final_y = PLUS_INF_FLAG or final_y = MINUS_

INF_FLAG depending on the sign of yin.
∗ final_y = NORMAL_FLAG otherwise.

– final_z is always equal to ZERO_FLAG, given that, in rotation
mode, zin = 0.

63

Proposed architecture

– pipe_enable is 1 when final_y is equal to NORMAL_FLAG, other-
wise it is 0, since the results can be predicted.

(c) Linear coordinates:
• NVx = NVy = 0

– final_x is always equal to NORMAL_FLAG, given that, in linear
coordinates, the post-processing block directly sets xout to xin.

– final_y:
∗ If |xin · zin| = ∞, final_y = PLUS_INF_FLAG or final_y = MI

NUS_INF_FLAG depending on the sign of xin · zin.
∗ If |yin| = ∞, final_y = PLUS_INF_FLAG or final_y = MINUS_

INF_FLAG depending on the sign of yin.
∗ final_y = NORMAL_FLAG otherwise.

– final_z is always equal to ZERO_FLAG, given that, in rotation
mode, zin = 0.

– pipe_enable is 1 when final_y is equal to NORMAL_FLAG, other-
wise it is 0, since the results can be predicted.

• NVx = 0 and NVy = 1:
– final_x is always equal to NORMAL_FLAG, given that, in linear

coordinates, the post-processing block directly sets xout to xin.
– final_y is always equal to POS_NAN_FLAG, given that NVy = 1,

which means that the y result is not valid.
– final_z is always equal to ZERO_FLAG, given that, in rotation

mode, zin = 0.
– pipe_enable is always equal to 0, given that the results can be

predicted.
• NVx = 1 and NVy = 0: this combination cannot take place.

2. Vectoring mode:

(a) Circular coordinates:
• NVx = NVz = 0

– final_x:
∗ If |xin| = ∞ or |yin| = ∞, final_x = PLUS_INF_FLAG or

final_x = MINUS_INF_FLAG depending on the sign of xin.
∗ final_x = NORMAL_FLAG otherwise.

– final_y is always equal to ZERO_FLAG, given that, in vectoring
mode, yin = 0.

– final_z:

64

Proposed architecture

∗ If |xin| = ∞ or |yin| = ∞ or |zin| = ∞, final_z = PLUS_INF_
FLAG or final_z = MINUS_INF_FLAG depending on the sign of
zin.

∗ final_z = NORMAL_FLAG otherwise.
– pipe_enable is 1 when both final_x and final_z are equal to

NORMAL_FLAG, otherwise it is 0, since the results can be predicted.
• NVx = 0 and NVz = 1:

– final_x:
∗ If |xin| = ∞ or |yin| = ∞, final_x = PLUS_INF_FLAG or

final_x = MINUS_INF_FLAG depending on the sign of xin.
∗ final_x = NORMAL_FLAG otherwise.

– final_y is always equal to ZERO_FLAG, given that, in vectoring
mode, yin = 0.

– final_z is always equal to POS_NAN_FLAG, given that NVz = 1,
which means that the z result is not valid.

– pipe_enable is 1 when final_x is equal to NORMAL_FLAG, other-
wise it is 0, since the results can be predicted.

• NVx = 1 and NVz = 0: this combination cannot take place.
(b) Hyperbolic coordinates:

• NVx = NVz = 0
– final_x:

∗ If |xin| = ∞ and |zin| = ∞, final_x = PLUS_INF_FLAG or
final_x = MINUS_INF_FLAG depending on the sign of xin.

∗ If |xin| = |yin|, final_x = ZERO_FLAG.
∗ final_x = NORMAL_FLAG otherwise.

– final_y is always equal to ZERO_FLAG, given that, in vectoring
mode, yin = 0.

– final_z:
∗ If |xin| = ∞ and |zin| = ∞, final_z = PLUS_INF_FLAG or

final_z = MINUS_INF_FLAG depending on the sign of zin.
∗ If |zin| = ∞, final_z = PLUS_INF_FLAG or final_z = MINUS_

INF_FLAG depending on the sign of zin.
∗ If |xin| = |yin|, final_z = PLUS_INF_FLAG or final_z = MINU

S_INF_FLAG depending on the sign of yin

xin
.

∗ final_z = NORMAL_FLAG otherwise.
– pipe_enable is 1 when both final_x and final_z are equal to

NORMAL_FLAG, otherwise it is 0, since the results can be predicted.

65

Proposed architecture

• NVx = 0 and NVz = 1:
– final_x:

∗ If |xin| = |yin|, final_x = ZERO_FLAG.
∗ final_x = NORMAL_FLAG otherwise.

– final_y is always equal to ZERO_FLAG, given that, in vectoring
mode, yin = 0.

– final_z is always equal to POS_NAN_FLAG, given that NVz = 1,
which means that the z result is not valid.

– pipe_enable is 1 when final_x is equal to NORMAL_FLAG, other-
wise it is 0, since the results can be predicted.

• NVx = 1 and NVz = 0: this combination cannot take place.
(c) Linear coordinates:

• NVx = NVz = 0
– final_x is always equal to NORMAL_FLAG, given that, in linear

coordinates, the post-processing block directly sets xout to xin.
– final_y is always equal to ZERO_FLAG, given that, in vectoring

mode, yin = 0.
– final_z:

∗ If |zin| = ∞, final_z = PLUS_INF_FLAG or final_z = MINUS_
INF_FLAG depending on the sign of zin.

∗ If |xin| = 0 or |yin| = ∞, final_z = PLUS_INF_FLAG or final_z
= MINUS_INF_FLAG depending on the sign of yin

xin
.

∗ final_z = NORMAL_FLAG otherwise.
– pipe_enable is 1 when final_z is equal to NORMAL_FLAG, other-

wise it is 0, since the results can be predicted.
• NVx = 0 and NVz = 1:

– final_x is always equal to NORMAL_FLAG, given that, in linear
coordinates, the post-processing block directly sets xout to xin.

– final_y is always equal to ZERO_FLAG, given that, in vectoring
mode, yin = 0.

– final_z is always equal to POS_NAN_FLAG, given that NVz = 1,
which means that the z result is not valid.

– pipe_enable is always equal to 0, given that the results can be
predicted.

• NVx = 1 and NVz = 0: this combination cannot take place.

As an obvious consequence, whenever NVx = NVy = 1 in rotation mode or
NVx = NVz = 1 in vectoring mode, the pipeline is disabled and the final results
are directly set to NaNs.

66

Proposed architecture

The adopted notation for the final_x, final_y and final_z signals is the follow-
ing:

• PLUS_INF_FLAG: the final result is +∞.

• MINUS_INF_FLAG: the final result is −∞.

• POS_NAN_FLAG: the final result is a positive NaN .

• ZERO_FLAG: the final result is zero.

• NORMAL_FLAG: the final result is equal to the value produced the CORDIC
unit.

3.3.5 Other arrangements
Since the IEEE-754 standard includes the representation of infinities, specific ar-
rangements have been developed to correctly handle them in fixed-point arithmetic.
In particular, depending on the couple of operands to be added or subtracted
together, namely x/y and z/αm,i, the following cases have been considered:

• Whenever only one operand between xin and yin is infinite, the other one is
directly set to zero before entering the pipeline, since the result of the sum
would always lead to the same infinite value. However, this solution causes
some issues when yin is an infinity and xin is not in linear coordinates, given
that the resulting xn has to be equal to the input one (set to zero). To cope
with this, the post-processing module can directly see the value of xin and
forward it to the output in such cases. If, instead, both operands are infinities,
nothing is changed and their FXP representation is used to feed the CORDIC
pipeline with new values.

• If z is infinite, the z_is_inf control signal is raised and pushed inside the
pipeline, so that no αm,i is being added to or subtracted from z.

3.4 Fixed-point CORDIC top module
The fixed-point CORDIC top module, which is shown in Figure 3.9, is in charge of
providing the final and scaled results of CORDIC algorithm. It is pipeline-structured
and composed of three main blocks:

• Fixed-point CORDIC pipeline, where the actual execution of CORDIC
algorithm, namely equations 2.23-2.25, takes place. It includes N_ITERATIONS
computational stages, each followed by a register to break the critical path.

67

Proposed architecture

• Scaling pipeline, where the scaling factor compensation is performed. It
includes SCALING_STAGES execution stages, each followed by a register to
break the critical path.

• Lookup table, which is used to provide all the stages with the values of the
αm,i angles and of the ai coefficients used by the scaling pipeline 1. The stored
data follows the internal custom FXP format.

3.4.1 Fixed-point CORDIC pipeline
The fixed-point CORDIC pipeline shown in Figure 3.10 is composed by N_ITERATIO
NS computational stages. According to [12], in order to ensure a n-bit precision, the
last CORDIC iteration has to perform a n-bit right-shift when executing equations
2.23-2.25, which means that, assuming the availability of N_MANTISSA mantissa
bits, at least a shift amount equal to

• 23 for single precision

• 10 for half precision

has to be reached. Therefore, based on [29], these values have been increased by
one, leading to 24 and 11 respectively.
As shown in Table 3.1, in order to allow the actuation of scaling factor compensation
through additional iterations, [29] developed a specific shift sequence for the entire
execution of CORDIC algorithm, which takes the actual number of iterations, and
therefore of pipeline stages in an unfolded implementation, to

• N_ITERATIONS = 29 for single precision

• N_ITERATIONS = 15 for half precision

Since the architecture in [29] has been designed for single precision only, the value
for half precision has been obtained by simply cutting the shift sequence to the
required value 11. A remarkable result is that a unique shift sequence can be used
for all coordinates systems, instead of dealing with different ones for each of them.

CORDIC stage

Apart from registers, the fixed-point CORDIC pipeline is composed by N_ITERATI
ONS computational stages which execute equations 2.23-2.25. The block diagram of
a generic stage is shown in Figure 3.11.

1As anticipated, scaling factor compensation is performed by including additional iterations,
instead of allocating a multiplier [29].

68

Proposed architecture

FXP CORDIC PIPE

SCALING PIPE

xin yin zin
in

ready mode m

xout yout mout
out

valid

xin yin m
in

ready

P
I
P
E

LUT

zout

alpha_circ

alpha_hyp

a_lin

a_hyp

a_circ

z_out xout yout
out

valid

fxp_cordic_top

xin yin zin
in

ready m

z_out xout yout
out

valid

pipe
enable

mode
pipe

enable

Figure 3.9: Block diagram of the fixed-point CORDIC top module.

The main components are:

• Three fixed-point adders, one for each variable x, y and z.

• Several multiplexers to choose the correct operands

• A control unit to drive the selection signals:

69

Proposed architecture

CORDIC STAGE
0

R
E
G

R
E
G

R
E
G

x_cordic_pipe_in[0] y_cordic_pipe_in[0] z_cordic_pipe_in[0]

x_cordic_pipe_out[0] y_cordic_pipe_out[0] z_cordic_pipe_out[0]

x_cordic_pipe_in[1] y_cordic_pipe_in[1] z_cordic_pipe_in[1]

CORDIC STAGE
N_ITERATIONS-1

R
E
G

R
E
G

R
E
G

x_cordic_pipe_in

[N_ITERATIONS-1]

x_cordic_pipe_out

[N_ITERATIONS-1]

y_cordic_pipe_out

[N_ITERATIONS-1]

z_cordic_pipe_out

[N_ITERATIONS-1]

x_cordic_pipe_in

[N_ITERATIONS]

y_cordic_pipe_in

[N_ITERATIONS]

z_cordic_pipe_in

[N_ITERATIONS]

y_cordic_pipe_in

[N_ITERATIONS-1]

z_cordic_pipe_in

[N_ITERATIONS-1]

R
E
G

m_cordic_pipe[1]

m_cordic_pipe

[N_ITERATIONS-1]

m_cordic_pipe[0]

R
E
G

m_cordic_pipe

[N_ITERATIONS]

R
E
G

mode_cordic_pipe[1]

mode_cordic_pipe

[N_ITERATIONS-1]

mode_cordic_pipe[0]

R
E
G

mode_cordic_pipe

[N_ITERATIONS]

R
E
G

inout_ctrl
cordic_pipe[1]

R
E
G

inout_ctrl
cordic_pipe[0]

inout_ctrl
cordic_pipe

[N_ITERATIONS-1]

inout_ctrl
cordic_pipe

[N_ITERATIONS]

xin yin zin m mode in_ready

xout yout zout mout out_valid

f
x
p
_
c
o
r
d
i
c
_
p
i
p
e

alpha_circ[0]

alpha_hyp[0]

alpha_lin[0]

alpha_circ
[N_ITERATIONS-1]

alpha_hyp
[N_ITERATIONS-1]

alpha_lin
[N_ITERATIONS-1]

R
E
G

pipe_enable
cordic_pipe[1]

R
E
G

xy_enable
cordic_pipe[0]

pipe_enable
cordic_pipe

[N_ITERATIONS-1]

pipe_enable
cordic_pipe

[N_ITERATIONS]

pipe
enable
in

pipe
enable
out

Figure 3.10: Block diagram of the fixed-point CORDIC pipeline.

– add_sub_x, add_sub_y and add_sub_z select the correct operation to be
performed by the adders, depending on the sign of the input operands
and on the working mode. A low value means addition, while a high one
subtraction.

– In linear coordinates is_linear keeps xi+1 unchanged, so that xn = xin.
In such case, is_linear is set to 1, otherwise it is set to 0.

70

Proposed architecture

Iteration
(stage number)

Shift amount
Sm,i

1 1

2 2

3 2

4 2

5 2

6 3

7 4

8 5

9 6

10 6

Iteration
(stage number)

Shift amount
Sm,i

11 7

12 8

13 9

14 10

15 11

16 12

17 13

18 13

19 14

20 15

Iteration
(stage number)

Shift amount
Sm,i

21 16

22 17

23 18

24 19

25 20

26 21

27 22

28 23

29 24

Table 3.1: Shift sequence for the fixed-point CORDIC pipeline [29].

CORDIC
CTRL

10

y_selected

y_shifted
0

0 1

1 0
x_addend y_addend

1 0
z_addend

20 1
alpha

y_in alpha
lin

alpha
circ

alpha
hypz_in

x_out y_out z_out

sel_alpha

is_linear

add
sub
x

add
sub
y

add
sub
z

xin

m

mode

cordic_stage

yin zin xin

x_shifted

Figure 3.11: Block diagram of a CORDIC stage.

71

Proposed architecture

– sel_alpha chooses the correct αm,i angle based on the coordinates system.

As anticipated, no Barrel shifters are required, since shift operations are hardwired.
Even if not represented in Figure 3.11, each CORDIC stage also receives the
z_is_inf control signal described in Section 3.3.5. If it is set to 1, the αm,i angle
is not added to or subtracted from z, which is directly forwarded to the output.
This helps to properly handle infinities in fixed-point arithmetic.

3.4.2 Scaling pipeline
The scaling pipeline is shown in Figure 3.12.
As anticipated in the previous sections, scaling factor compensation is performed
by including additional iterations at the end of the CORDIC pipeline. According
to [29], this procedure pursues its task by executing, iteratively, the following
equations:

xi+1 = xi + xi · sign(am,i) · 2|am,i| (3.10)
yi+1 = yi + yi · sign(am,i) · 2|am,i| (3.11)

where am,i is the coefficient, taken from Table 3.2, for iteration i and coordinates
system m. At the end, the final results will be scaled by a factor

1
K1

= 0.784039965 for circular coordinates (3.12)

1
K−1

= 1.327798882 for hyperbolic coordinates (3.13)

As expressed in equations 2.11 and 2.12, only the x and y have to be scaled, whereas
the z one can be accepted as is.
In order to be compliant with the fixed-point CORDIC pipeline implementation,
also the scaling one is unfolded and pipelined, which means that equations 3.10
and 3.11 refer to a generic stage i rather than to single iterations. This leads to
the presence of a total number of SCALING_STAGES blocks, with

• SCALING_STAGES = 8 for single precision

• SCALING_STAGES = 6 for half precision

Also in this case, [29] only provides an architecture that is suitable for single
precision. Therefore, the value of SCALING_STAGES for half precision has been
obtained by simply cutting the sequence in Table 3.2 to the maximum shift amount

72

Proposed architecture

SCALING STAGE
0

R
E
G

R
E
G

x_scaling_pipe_in[0] y_scaling_pipe_in[0]

x_scaling_pipe_out[0] y_scaling_pipe_out[0]

x_scaling_pipe_in[1] y_scaling_pipe_in[1]

SCALING STAGE
SC_ST-1

R
E
G

R
E
G

x_scaling_pipe_in

[SC_ST-1]

x_scaling_pipe_out

[SC_ST-1]

y_scaling_pipe_out

[SC_ST-1]

x_scaling_pipe_in

[SC_ST]

y_scaling_pipe_in

[SC_ST]

y_scaling_pipe_in

[SC_ST-1]

R
E
G

inout_ctrl
scaling_pipe[1]

R
E
G

inout_ctrl
scaling_pipe[0]

inout_ctrl
scaling_pipe
[SC_ST-1]

inout_ctrl
scaling_pipe

[SC_ST]

xin yin
in

ready

x_out y_out out_valid

s
c
a
l
i
n
g
_
p
i
p
e

a_circ[0]

a_hyp[0]

a_lin[0]

a_circ
[SC_ST-1]

a_hyp
[SC_ST-1]
a_lin

[SC_ST-1]

R
E
G

pipe_enable
scaling_pipe[1]

R
E
G

pipe_enable
scaling_pipe[0]

pipe_enable
scaling_pipe

[N_ITERATIONS-1]

pipe_enable
scaling_pipe
[N_ITERATIONS]

pipe
enable
in

pipe
enable
out

Figure 3.12: Scaling pipeline. SC_ST stands for SCALING_STAGES.

73

Proposed architecture

that can fit the internal fixed-point representation for such format. Being it equal
to 18 for x and y in half precision (Section 3.3.1), the maximum acceptable shift
amount is 17, leading to SCALING_STAGES = 6.
For what concerns z, instead, no scaling factor compensation is required and, hence,
it is only delayed by SCALING_STAGES clock cycles before arriving at the output
section.

Iteration
(stage number)

Circular
coordinates

a1,i

Hyperbolic

coordinates
a−1,i

1 -2 2

2 4 4

3 -5 0

4 6 6

5 0 -6

6 17 0

7 -20 -20

8 0 -21

Table 3.2: Scaling coefficients for the scaling pipeline
[29]. No coefficients are described for linear coordinates,
since no scaling factor compensation is required.

Scaling stage

The block diagram of a generic scaling stage is shown in Figure 3.13. The main
components are:

• Two fixed-point adders, one for each variable x and y.

• Several multiplexers to choose the correct operands

• A control unit to drive the selection signals:

74

Proposed architecture

– add_sub selects the correct operation to be performed by the adders,
depending on the sign of the am,i coefficient and on the working mode. A
low value means addition, while a high one subtraction.

– Based on the coordinates system, sel chooses the correct value of x and
y shifted right by |am,i| bits. Once again, since all the am,i coefficients
are known in advance, shift operations are hardwired. Hence, no Barrel
shifters are required.

– is_zero is set to 1 whenever am,i is equal to zero, which means that no
addition or subtraction has to be performed by the internal adders. In
such case, the incoming operand is added to zero.

SCALING
CTRL

xout

sel

is_zero

add_sub

a
circ

a
hyp

a
lin

m

scaling_stage

20 1
x_shifted

x_selected
0 1

0

xin

x_shifted_circ
x_shifted_hyp
x_shifted_lin

20 1
y_shifted

y_selected
0 1

0

yin

y_shifted_circ

y_shifted_hyp
y_shifted_lin

10
x_addend

yout

10
y_addend

Figure 3.13: Block diagram of a scaling stage.

At this point, it can now be easily noticed how adopting this scaling strategy
instead of the multiplier-based one leads to pipeline balance, since Figures 3.11
and 3.13 clearly show how similar the two types of stages are in terms of delay.

75

Proposed architecture

3.4.3 Lookup table
The last block that completes the fixed-point CORDIC top module is the lookup
table, whose purpose is to store the values of the αm,i angles and of the am,i

coefficients and to provide each stage with the required constants. In order to
be consistent with the operations performed by the CORDIC pipeline, the stored
angles follow the internal custom fixed-point format. This means that

wsingle, z · N_ITERATIONS · 3 = 30 · 29 · 3 = 2610 bits
whalf, z · N_ITERATIONS · 3 = 18 · 15 · 3 = 810 bits

are required to store the αm,i angles for single and half precision respectively.
For what concerns, instead, the am,i coefficients, they are described by six bits,
because their largest absolute value is 211. As a consequence,

SCALING_STAGES · 6 · 2 = 8 · 6 · 2 = 96 bits
SCALING_STAGES · 6 · 2 = 6 · 6 · 2 = 72 bits

are required to store the am,i coefficients for single and half precision respectively.

3.5 Post-processing block
The post-processing block, which is shown in Figure 3.14, is in charge of converting
back the fixed-point results into floating-point ones, as well as managing special
cases and producing the output status flags.
The main operations performed by this block are:

1. Zero detection: check if the CORDIC algorithm execution led to a zero
result.

2. Leading one detection, alignment and rounding: after converting each
number in sign-magnitude form, find the position of the leading one and align
the mantissas, in order to have a unitary integer part.

3. Exponent update and FLP packing: update the reference exponent based
on the alignment outcome and pack the floating-point result.

4. Outputs selection and status flags generation: select the correct output
to be provided and generate the output status flags based on both the input
ones and on specific conditions on the results.

In the following sections, each of these operations will be described in detail.

1One additional bit is required to represent signed values.

76

Proposed architecture

LZDC

SM CONV
x_pre_shrnd

LZDC LZDC

SM CONV SM CONV
x_shift_amnt y_pre_shrnd y_shift_amnt z_pre_shrnd z_shift_amnt

SHIFT AND
ROUND

SHIFT AND
ROUND

SHIFT AND
ROUND

x_pre_shrnd x_shift_amnt y_pre_shrnd y_shift_amnt z_pre_shrnd z_shift_amnt

P
I
P
E

NORMALIZE NORMALIZE NORMALIZE
EXPONENT

COMPUTATION

y_shift_amnt
x_shift_amnt z_shift_amnt

PACK PACK PACK

x_shrnd y_shrnd z_shrnd

x_shrnd_norm y_shrnd_norm z_shrnd_norm

SELECT
OUTPUTS

x_packed y_packed z_packed

y_expx_exp z_exp

ZERO
DETECTION

x_not_zero y_not_zeroz_not_zero

xin yin zinref_exp in_ready

xout yout zoutxout
is

special

m

mode

final_x

final_y

final_z

x_in_delayed

out_valid

fxp2flp

yout
is

special

zout
is

special

status_flags

z_extension_ctrl

Figure 3.14: Block diagram of the post-processing block.

3.5.1 Zero detection
The first step to be performed is the conversion of each number from 2’s complement
to sign-magnitude form, in order to properly analyze the results. The sign bit,
however, is saved and used later to correctly fill the sign field of the final floating-
point value. Once this has been done, zero detection is conducted to all the incoming

77

Proposed architecture

operands to tell the output selection block if any of them has to be considered as
zero. In fact, assuming to receive a number whose fixed-point representation is
formed by all zeros, if no zero detection is carried out, the post-processing block
would consider it as 2(eref −N_MANTISSA−N_GUARD)1, since, assuming an infinite accuracy,
it would seem that the leading one is to the right of the least significant bit, thus
outside the available precision. This can be easily avoided by forcing the output to
zero whenever certain conditions are met.

000...000000...000000...0000

1 N_OVF N_MANTISSA N_GUARD

1

WITHIN THE AVAILABLE PRECISION
OUTSIDE THE
AVAILABLE
PRECISION

Figure 3.15: Example of what the post-processing block
sees when an incoming operand is formed by all zeros.

Two strategies have been analyzed:

1. Zero detection without zero-forcing: each operand is considered as is,
checking if all the bits are equal to zero. This means that the threshold is
set to 1 LSB, because the least significant bit is the one that decides if the
number is zero or not. However, albeit seeming effective, this approach led to
a slightly larger average error when considering results that, independently
on the input values, have to be zero at the end of the algorithm, namely z in
rotation mode and y in vectoring mode. To cope with this, it has been found
that moving the decision threshold to bit in position N_GUARD + 1 brought to
a lower error.

2. Zero detection with zero-forcing: the operands that have to be zero
anyway, namely z in rotation mode and y in vectoring mode, are directly set
to zero, whereas for the other ones a threshold equal to 1 LSB is adopted.
This approach led to a lower average error, since the results that have to be
zero are forced to be so, thus canceling their error contribution.

Considering that z in rotation mode and y in vectoring mode are not actually useful
results, the second approach has been adopted, because it permits to increase the

1Further details on why this would be the result will be more clear in the following alignment-
dedicated section.

78

Proposed architecture

accuracy when very small numbers, which would directly go to zero in the first
strategy, are involved.
The zero detection block communicates with the output selection one by means of
three signals, x_not_zero, y_not_zero and z_not_zero, which are raised whenever
the corresponding operand has to be considered nonzero.

3.5.2 Leading one detection, alignment and rounding
When dealing with floating-point representation, the fixed-point number to be
converted has to be aligned, in order to have a unitary integer part. This means
that:

• If the integer part is greater than 1, the number has to be right-shifted until
it become so.

• If the integer part is equal to zero, the number has to be left-shifted to have a
unitary hidden bit.

This process is performed by finding the position of the leading one, which will, at
the end, represent the hidden bit, and by shifting the number accordingly. The
LZDC block1 is in charge of taking care of this task. It receives the operands in
sign-magnitude form, which permits to neglect sign bits for negative numbers, and
returns the amount by which the number has to be adjusted, that is x_shift_amnt,
y_shift_amnt and z_shift_amnt. In particular, the following criteria have been
adopted to make later operations easier:

shift_amnt < 0 =⇒ left-shift
shift_amnt > 0 =⇒ right-shift

Given the availability of N_OVF bits for the integer part and of N_MANTISSA +
N_GUARD bits for the fractional one, the maximum amounts of shift that can be
performed are

• N_OVF - 1 for the largest number

• - (N_MANTISSA + N_GUARD) for the smallest one.

1The name LZDC stands for Leading Zero Detection and Counting, even if the module
basically looks for the leading one. In order to follow [29], it has been decided to leave the same
name.

79

Proposed architecture

Being N_MANTISSA + N_GUARD very likely to be larger than N_OVF, the output
signals of the LZDC block can be correctly described by a number of bits equal
to log2(N_MANTISSA + N_GUARD) + 1, where the additional bit takes into account
negative amounts.
Once x_shift_amnt, y_shift_amnt and z_shift_amnt have been computed, they
are read by the block in charge of adjusting and rounding the operands accordingly.
Given the presence of N_GUARD bits, this operation has to be mixed with a fixed
right-shift by N_GUARD position, so that, at the end, the fractional part is only
N_MANTISSA bits wide. Hence, the incoming adjustment amounts are increased by
such number to obtain the effective shift ones shift_amnt_eff, which complies
with the same rules as before, namely a left adjustment for negative values and
a right one for positive values. Once this quantity is known, the actual shift
operation can take place and the exponent of each operand can be updated by
adding shift_amnt_eff to the corresponding reference one.
For what concerns rounding, it is actually carried out only when a number has been
right-shifted, since some bits are being lost when going outside the available width.
Therefore, in order to achieve the maximum possible accuracy, additional padding
bits are temporarily added to the right of each operand to store the outgoing ones.
Being the maximum right-shift equal to N_GUARD + (N_OVF - 1), such value has
been used to determine the number of padding bits.

GUARDMANTISSAOVERFLOWS

1 N_OVF N_MANTISSA N_GUARD

ROUND AND STICKY BITS

N_GUARD + (N_OVF - 1)

Figure 3.16: Internal fixed-point format for the rounding process.

In order to obtain better performance, the rounding to the nearest even method
has been implied, since it promises to cancel the rounding bias. This approach
exploits two bits, the round and sticky ones, to take decisions on the rounding
direction. Assuming to have the ideal number

x = 1 . x−1x−2...x−nx−(n+1)...x−∞

and only a n-bit precision, it means that all the digits after x−n have to be dropped.
Among these lost bits, the most significant one is called round bit and the others
are ORed together to form the sticky bit. Then, the following rules are applied:

• If the sticky bit is 1, the round bit is added to the truncated number.

• If the sticky bit is 0, two cases are possible:

– If the round bit is 0, the truncated number is left unchanged.

80

Proposed architecture

– If the round bit is 1, the LSB of the truncated number is added to it, in
order to obtain an even final result.

Sticky bit

S
Round bit

R
Bit to be

added

0 0 0

0 1 x−(n+1)

1 X R

Table 3.3: Rounding to the nearest even method.

Being the signal extended with the additional padding bits in_ext_shifted, the
round and sticky bits are:

• R = in_ext_shifted[N_GUARD+N_OVF-2]

• S = |in_ext_shifted[(N_GUARD+N_OVF-3):0]1

After rounding, the last operation to be carried out before having the final mantissa
is normalization, whose need could rise whenever rounding led to a value with an
integer part greater than one. In such case, the number has to be right-shifted by
one position and the exponent has to be further increase by one.
At the end of all these steps, all the operands have N_MANTISSA fractional bits and
a unitary integer part, which means that they are ready to be packed together to
form the final result.

3.5.3 Exponent update and FLP packing
The last operations to be performed before obtaining the final results in floating-
point are the exponent update by the shift quantities and the FLP packing of the
three fields.
Thanks to the criteria that have been explained in the previous section, the first step
basically adds the signed effective shift amount of each operand to the respective

1In SystemVerilog, the reducing OR is performed by putting | before the involved signal.

81

Proposed architecture

reference exponent. In fact, a left direction (negative amount) means that the
received number is smaller than 2eref , causing eref to be reduced, whereas a right
direction (positive amount) is associated to a number greater than 2eref , bringing an
increase of eref . In addition to this, normalization potentially leads to an additional
increment of the exponent by one, whenever the operand has been right-shifted by
one position. Finally, the corresponding bias of the FLP format is added to each
exponent to obtain the final values.
At this point the three floating-point fields are ready to be packed together to form
the final result. The sign field is directly taken from the sign bit of the fixed-point
representation, the mantissa one is obtained by dropping the hidden bit and by
taking the N_MANTISSA fractional ones and the exponent bits are taken from the
outcome of the previous operation.

3.5.4 Outputs selection and status flags generation
Before providing meaningful results, some additional checks have to be carried
out to ensure that the output values are correct and to set the output status
flags accordingly. These are done by opportunely looking at the received final_x,
final_y and final_z signals that, created by the pre-processing block, traveled
through the entire pipeline and reached the post-processing one. However, prior
to this, the incoming operands have first to be remapped based on the decisions
taken by the z mapping block. Being x_in and y_in the received numbers and
x_int and y_int the internally remapped ones, this leads to:

• z_extension_ctrl = NO_MAP:

– x_int = x_in

– x_not_zero = x_not_zero

– y_int = y_in

– y_not_zero = y_not_zero

• z_extension_ctrl = FIRST_RANGE:

– x_int = -y_in

– x_not_zero = y_not_zero

– y_int = x_in

– y_not_zero = x_not_zero

• z_extension_ctrl = SECOND_RANGE:

– x_int = -x_in

82

Proposed architecture

– x_not_zero = x_not_zero

– y_int = -y_in

– y_not_zero = y_not_zero

• z_extension_ctrl = THIRD_RANGE:

– x_int = y_in

– x_not_zero = y_not_zero

– y_int = -x_in

– y_not_zero = x_not_zero

Assuming to consider the generic signals final_sig, status_flags and sig_is_
special (the sig word stands for any among x, y and z), the following conditions
have to be met to provide valid outputs:

1. final_sig = NORMAL_FLAG:

• If the reference exponent is equal to the one related to infinities, it means
that the result can either be ±∞ or zero (NaNs can be excluded because
of the presence of NORMAL_FLAG).

– If the zero detection block has found a zero operand, the corresponding
output is forced to zero and the sig_is_special signal is set to
NORMAL_FLAG, given that the result is not a special value.

– If the zero detection block has not found a zero operand, the corre-
sponding output is set to ±∞ and the sig_is_special signal is set
to PLUS_INF_FLAG or MINUS_INF_FLAG depending on the sign of the
result.

In either of the two cases, the status_flags signal is set to NO_EXCEPTI
ONS, since the presence of NORMAL_FLAG assumes that no status flags have
been raised at the input section for the considered operand.

• If the final biased exponent is larger than the maximum admitted one,
namely emax+b, it means that overflow occurred. Hence, the corresponding
output is forced to ±∞ based on its sign, the sig_is_special signal is
set to PLUS_INF_FLAG or MINUS_INF_FLAG and the status_flags signal
is equal to OVERFLOW.

• If the final biased exponent is smaller than the minimum admitted one,
namely emin + b, it means that underflow occurred. Hence, the corre-
sponding output is forced to zero, the sig_is_special signal is set to
NORMAL_FLAG and the status_flags signal is equal to UNDERFLOW.

83

Proposed architecture

• In any other case, the incoming operand is forwarded to the output section,
the sig_is_special signal is set to NORMAL_FLAG and the status_flag
s signal is set to NO_EXCEPTIONS.

2. final_sig = POS_NAN_FLAG: the corresponding output is forced to be a NaN
and sig_is_special is set to POS_NAN_FLAG. The status_flags signal is set
to INVALID.

3. final_sig = PLUS_INF_FLAG: the corresponding output is forced to be +∞
and sig_is_special is set to PLUS_INF_FLAG. The status_flags signal is
set to NO_EXCEPTIONS.

4. final_sig = MINUS_INF_FLAG: the corresponding output is forced to be −∞
and sig_is_special is set to MINUS_INF_FLAG. The status_flags signal is
set to NO_EXCEPTIONS.

5. final_sig = ZERO_FLAG: the corresponding output is forced to be zero and
sig_is_special is set to NORMAL_FLAG. The status_flags signal is set to N
O_EXCEPTIONS.

It has to be noted that, as anticipated in Section 3.3.5, in order to properly handle
floating-point infinities in fixed-point computations, the x input travels through
the pipeline and reaches the post-processing block. Therefore, the arrangements
that have just been described are valid for x only if the unit is not working in
linear coordinates. In such case, whenever final_x is equal to NORMAL_FLAG, the
original input value is forwarded to the output section, the status_flags signal is
set to NO_EXCEPTIONS and the x_is_special signal can be:

• NORMAL_FLAG: the input value is not an infinity.

• PLUS_INF_FLAG: the input value is +∞.

• MINUS_INF_FLAG: the input value is −∞.

84

Chapter 4

X-HEEP platform

As a final work, the CORDIC architecture has been integrated into X-HEEP [9], an
open-source 32-bit RISC-V microcontroller system whose block diagram is shown
in Figure 4.1. The considered typical usage implies it as an autonomous external
peripheral that, once configured, directly transfers data to and from the memory.

Figure 4.1: Block diagram of the X-HEEP microcontroller system [9].

85

X-HEEP platform

4.1 RTL files creation
The X-HEEP platform is highly configurable and lets the users select the system
parameters that best fit their needs. This choice includes:

1. CPU type, all of which are based on the RISC-V CPU and have a 32-bit
datapath:

• CV32E20, a 2-stage pipeline and low cost-oriented fork of the Ibex core.
It supports a reduced set of instructions, which include the Integer (I),
Integer Multiplication and Division (M) and Compressed (C) extensions.

• CV32E40P, a 4-stage pipeline which supports the Integer (I), Integer
Multiplication and Division (M), Single-Precision Floating-Point (F) and
Compressed (C) extensions. It was previously known as RI5CY.

• CV32E40X, a fork of the CV32E40P core that includes a general purpose
extension interface by which the support for custom instructions can be
added.

2. BUS type:

• onetoM: only one master at a time can access the bus.
• NtoM: multiple masters can access the bus at the same time.

3. Number of interleaved memory banks, from 0 to 8.

4. Number of memory banks, from 2 (one for code and one for data) to 16 minus
the number of interleaved ones. Each of them is 32 kB wide.

In order to efficiently integrate and test the CORDIC accelerator, it has been
decided to rely on:

• The CV32E40P CPU, since it supports single precision floating-point.

• The NtoM BUS type, since, working in pipeline, the accelerator has to issue
simultaneous read and write requests, if possible.

• 3 memory banks to fit the input and output data, as well as the reference
values. In fact, assuming 1024 32-bit elements for each of the three inputs and
outputs, the total amount of needed bytes is:

nbytes = 4 · (ninputs + noutputs + nref)
= 4 · (3 · 1024 + 3 · 1024 + 3 · 1024)
= 36 · 1024 = 36 kB

(4.1)

86

X-HEEP platform

which means that 2 banks of 32 kB are enough for data. Even if no check
is being done, thus not storing the reference values, two banks are still not
sufficient, since the test application compilation gives memory space errors.

Once all the parameters have been set, the RTL modules can be generated by
running the make mcu-gen command, which will exploit the provided templates to
create the necessary files.

4.2 Wrapper design
The accelerator interface and its intrinsic behavior made necessary the implemen-
tation of a wrapper, which is responsible for the management of the CORDIC
unit configuration and data transfers. Its block diagram is shown in Figure 4.2
for single precision, 4.3 for half precision and 4.4 for transprecision. The behavior
of the wrappers supporting only one floating-point format is practically the same,
except for the fact that the half precision one implies two parallel CORDIC units,
one for the lower and one for the upper part of the 32-bit input and output data.
For what concerns the third one, instead, it follows the transprecision concept [32],
which implies the possibility to work with either of the two supported precisions.
In fact, depending on the tp_bit signal, the wrapper will send the right data to
the respective CORDIC unit and will opportunely take care of the produced results.
When tp_bit is high, the behavior of the wrapper is the same as Figure 4.3, thus
splitting the inputs and outputs into two 16-bit parts and forwarding them to the
half precision CORDIC units, whereas, when it is low, the behavior is the same
as Figure 4.2, thus sending the data to the single precision CORDIC unit. Since,
apart from this, the other blocks (FSMs, OBI interface managers) are identical,
the following sections, which describe each part of the wrapper, will not take care
of specifying which one is being referred to.

4.2.1 Interface signals
As anticipated earlier, the considered test case implies the CORDIC accelerator as
an external peripheral that, once configured, can work autonomously. To achieve
this, it was necessary to include in the wrapper:

• A slave port for configuration purposes through the register interface. This
will be connected to the ext_peripheral_slave port of X-HEEP.

• Two master ports to issue read and write requests to the internal DMA. They
will be packed into a 2-element array and connected to the ext_xbar_master
port of X-HEEP.

87

X-HEEP platform

LOAD FSM

xin
REG

yin
REG

zin
REG

SELECT

OBI
READ

REQUEST

OBI
READ

RESPONSE

OBI
WRITE
REQUEST

OBI
WRITE

RESPONSE

READ
ADDR

COUNTER

READ FSM

CTRL
REG

FLP
CORDIC
TOP

STORE FSM

WRITE FSM

READ
ADDR
REG

NUM
VALUES
REG

NUM
VALUES
READ

COUNTER

NUM
VALUES
WRITE
COUNTER

WRITE
ADDR

COUNTER

WRITE
ADDR
REG

freeze

xin

yin

zin

m

mode

in_ready

xout

yout

zout

opcode

start

REGISTER
INTERFACEreg

req

reg
rsp

cordic
read
req

cordic
read
resp

cordic
write
resp

cordic
write
req

flp
cordic
int

flp_cordic_wrapper

Figure 4.2: Block diagram of the wrapper for single precision.

Since the accelerator interface differs from the exposed ones of X-HEEP, some
arrangements have been made to ensure a proper integration. In order to make this
efficiently, thus letting the CPU really offload the execution of the CORDIC unit
supported functions, it has been decided to rely on the register interface only to
set the control and start signals. As a result, data is transferred autonomously by
issuing read and write requests directly to the internal DMA through the exposed
master ports. This choice led to the following interface signals:

• clk_i: the system clock, to be directly forwarded to the CORDIC unit.

• rst_n_i: the reset signal, to be directly forwarded to the CORDIC unit.

• reg_req_i: the register interface request signals. It uses the Register Interface
[33] and is of type reg_req_t.

• reg_rsp_o: the register interface response signals. It uses the Register
Interface and is of type reg_rsp_t.

88

X-HEEP platform

Figure 4.3: Block diagram of the wrapper for half precision.

• cordic_read_ch0_req_o: the read request signals for the DMA channel 0.
It uses the Open Bus Interface (OBI) [34] and is of type obi_req_t.

• cordic_read_ch0_resp_i: the read response signals for the DMA channel 0.
It is OBI-compliant and of type obi_resp_t.

• cordic_write_ch0_req_o: the write request signals for the DMA channel 0.
It is OBI-compliant and of type obi_req_t.

• cordic_write_ch0_resp_i: the write response signals for the DMA channel
0. It is OBI-compliant and of type obi_resp_t.

• flp_cordic_int_o: the interrupt signal, raised when the CORDIC unit has
completed the computation.

The reg_req_t and reg_rsp_t types include the following signals:

1. reg_req_t:

89

X-HEEP platform

LOAD FSM

xin
REG

yin
REG

zin
REG

SELECT

OBI
READ

REQUEST

OBI
READ

RESPONSE

OBI
WRITE
REQUEST

OBI
WRITE

RESPONSE

READ
ADDR

COUNTER

READ FSM

CTRL
REG

STORE FSM

WRITE FSM

READ
ADDR
REG

NUM
VALUES
REG

NUM
VALUES
READ

COUNTER

NUM
VALUES
WRITE
COUNTER

WRITE
ADDR

COUNTER

WRITE
ADDR
REG

freeze

xin

yin

zin

m

mode

in
ready

opcode

start

REGISTER
INTERFACEreg

req

reg
rsp

cordic
read
req

cordic
read
resp

cordic
write
resp

cordic
write
req

flp
cordic
int

flp_cordic_wrapper

FLP CORDIC TOP
HALF 1

FLP CORDIC TOP
SINGLE

FLP CORDIC TOP
HALF 2

TP
BIT
REG

Figure 4.4: Block diagram of the wrapper for transprecision.

• logic valid: valid request signal.
• logic write: write enable signal, high for write transactions and low for

read ones.
• logic [3:0] wstrb: write strobe signal, to select the number of bytes

to be written.
• logic [31:0] addr: address of the transfer.
• logic [31:0] wdata: data to be written.

2. reg_rsp_t:

• logic error: error signal, high if the transaction has failed.

90

X-HEEP platform

• logic ready: ready signal, high if the transaction has been completed.
• logic [31:0] rdata: data read from the address.

As described in [33], in order to efficiently implement the register interface, its
creation process is based on the compilation of a .hjson file with the description
of the registers and of their internal fields. Then, the regtool.py Python script
will take care of generating the necessary RTL files, as well as the C headers and
SystemVerilog packages that collect the internal offsets of the registers. As a result,
no address decoder is needed, since the register interface itself will directly forward
the requests to the right element. It has been chosen to allocate the following
control registers:

• ctrl_reg: it sets the opcode, the start signal and the transprecision bit.

• read_address_reg: it sets the initial address for the read requests.

• write_address_reg: it sets the initial address for the write requests.

• n_values_reg: it sets the number of values to be processed.

• int_en_reg: it enables the interrupt signal.

For what concerns status registers, it has been decided not to include them, since
they would be mainly related to the floating-point status flags of the outputs. Given
that the produced results are directly written to memory and are not transferred
through the register interface, it would cause the CPU to continuously read and
check the status flags before that the output values can actually be stored in
memory. This would lead to a waste of time and, therefore, has been avoided.
For a single-input/single-output use, instead, thus where data is only transferred
through the register interface, it would be meaningful to include status registers
storing the produced outputs and the status flags.
The obi_req_t and obi_resp_t types include the following signals:

1. obi_req_t:

• logic req: transfer request signal.
• logic we: write enable signal, high for write transactions and low for

read ones.
• logic [3:0] be: byte enable signal, to select the number of bytes to be

transferred.
• logic [31:0] addr: address of the transfer.
• logic [31:0] wdata: data to be written.

91

X-HEEP platform

2. obi_resp_t:

• logic gnt: transfer grant signal.
• logic rvalid: valid response signal, to signal the availability of mean-

ingful signals in the response phase.
• logic [31:0] rdata: data read from the address.

Given that no framework is available to automatically manage the OBI signals, this
has to be done manually. As a result, whenever the read FSM 1 is in the RUNNING
state and the load one is not in the SEND_INPUTS state, the following signals have
to be set for the read request:

• cordic_read_ch0_req_o.req = 1’b1

• cordic_read_ch0_req_o.we = 1’b0

• cordic_read_ch0_req_o.be = 4’b1111

• cordic_read_ch0_req_o.addr = read_address

• cordic_read_ch0_req_o.wdata = 32’b0

where read_address comes from a counter that updates the read address by 4
each time that the read request received a positive grant and that the next state of
the load FSM is not SEND_INPUTS. For what concerns write operations, instead,
the following signals have to be set when the write FSM is in the RUNNING state
and the store one is not in the NO_STORE state:

• cordic_write_ch0_req_o.req = 1’b1

• cordic_write_ch0_req_o.we = 1’b1

• cordic_write_ch0_req_o.be = 4’b1111

• cordic_write_ch0_req_o.addr = write_address

• cordic_write_ch0_req_o.wdata will be equal to any among x_out, y_out
and z_out depending on the state of the store FSM 1.

1Further explanations about the internal Finite State Machines are provided in the following
section.

92

X-HEEP platform

Once again, write_address comes from a counter that updates the write address
by 4 each time that the write request received a positive grant.
For what concerns, instead, the interrupt line, this is raised whenever the int_en_
reg enables it and the accelerator has completed all the write operations. This is
done by checking that the write FSM is in the RUNNING state and that the total
number of remaining values to be stored in memory reached zero.

4.2.2 Internal FSMs
The wrapper includes four Finite State Machines (FSMs) that take care of solving
the main issue that rises when dealing with data transfers. In fact, at each clock
cycle, the CORDIC pipeline, when full, requires three inputs and produces three
outputs, but the integrated DMA has only one channel for read operations and one
for write operations. This means that only up to two elements can be contemporarily
moved from and to the memory, which would cause the other four values to be lost.
Therefore, four Finite State Machines (FSMs) have been created to take care of
this:

• Read FSM: it takes care of starting and finishing the inputs read operation.

• Load FSM: it selects which register has to sample the incoming data.

• Write FSM: it takes care of starting and finishing the outputs write operation.

• Store FSM: it selects which output has to be forwarded for writing.

The read and write FSMs are very simple ones and include three states:

• READY: the accelerator is either ready to start issuing transfer requests or has
completed its work. Both FSMs start from this state at reset and go back to
it when the computation has been completed. They can go to next state only
when the start signal field of the control register becomes high.

• STARTED: the unit uploads the initial address for both read and write operations
and is ready to issue transfer requests. It directly goes to next state in the
following clock cycle.

• RUNNING: the accelerator is actually transferring data by issuing or not requests
depending on the actual state of the load and store FSMs.

The load FSM is, instead, a bit more complex and includes five states:

93

X-HEEP platform

• NO_LOAD: the unit is not asking for data to be loaded. This is the initial state
and the one to which the FSM goes back when the computation has been
completed. It goes to next state when the read FSM is in the RUNNING state,
since this means that the first input is being read and can be sampled during
the next clock cycle.

• LOAD_X: the unit is loading the first input into the corresponding register.
It goes to next state only when the read transaction has been completed
successfully, which only happens when the rvalid signal of the read response
is high.

• LOAD_Y: the unit is loading the second input into the corresponding register.
It goes to next state only when the read transaction has been completed
successfully.

• LOAD_Z: the unit is loading the third input into the corresponding register.
It goes to next state only when the read transaction has been completed
successfully.

• SEND_INPUTS: all the inputs have been correctly loaded, so the computation
can start by setting the in_ready signal to 1. In order to synchronize read
and write operations, thus avoiding to produce further outputs when it is
not possible to write them, in_ready goes high only if the load FSM is
in the SEND_INPUTS state and write requests are not being stalled, which
happens when both the req signal of the write request and the gnt one of
the write response are high. It goes again to LOAD_X when in_ready has been
successfully set or to NO_LOAD if the number of inputs to be read reaches zero.

The store FSM is includes four states:

• NO_STORE: the unit is not asking for data to be stored. This is the initial
state and the one to which the FSM goes back when the computation has
been completed or when it is waiting for a new set of outputs. It goes to next
state when the out_valid signal is high, which means that new results are
available.

• STORE_X: the unit is storing the first output. It goes to next state only when
the write transaction has been completed successfully, which happens when
the gnt signal of the write response is high.

• STORE_Y: the unit is storing the second output. It goes to next state only
when the write transaction has been completed successfully.

94

X-HEEP platform

• STORE_Z: the unit is storing the third output. It goes again to STORE_X only
if, in this cycle, both gnt and out_valid are high. Otherwise, it goes to
NO_STORE to wait for the next set of outputs.

It has to be noted that synchronization between read and write operations is
obtained by exploiting the in_ready, out_valid and freeze signals. In fact,
whenever read operations are stalled, in_ready cannot go high because the load
FSM will not be able to reach the SEND_INPUTS state. This causes out_valid to
be kept low, which, in turn, prevents write requests from being issued. If, instead,
the unit cannot write to memory, the freeze signal is raised, thus causing:

• The load FSM to be kept in the SEND_INPUTS state, thus preventing new
inputs from being sampled.

• in_ready to be kept low, therefore not allowing the computation to start.

• The entire CORDIC pipeline to be frozen and, therefore, not producing new
outputs.

To accomplish this last point, an input signal, called ext_freeze, has been added
to the CORDIC unit to disable all its internal registers.

4.2.3 CORDIC unit management
In order to transform the raw setting of the mode and m signals of the CORDIC unit
into something more user-friendly, it has been decided to rely on a set of predefined
working modes taken from [29] and accessible through an opcode. To maximize
variety, a total number of 17 configurations have been made available, including
both generic and specific ones. For the latter, an input selection stage has been
added to obtain the desired functions. Table 4.1 shows the available configurations,
their corresponding opcodes and the chosen inputs to achieve the final results.

Configuration Opcode Inputs Outputs

NOP 00000

x = 0

y = 0

z = 0

mode = 0

m = 0

x = 0

y = 0

z = 0

Continued on next page

95

X-HEEP platform

Configuration Opcode Inputs Outputs

SIN_COS 00001

x = 1

y = 0

z = zin

mode = ROTATION

m = CIRCULAR

x = cos(zin)

y = sin(zin)

z = 0

ROT_CIRC 00010

x = xin

y = yin

z = zin

mode = ROTATION

m = CIRCULAR

x = xin · cos(zin) − yin · sin(zin)

y = xin · sin(zin) + yin · cos(zin)

z = 0

SINH_COSH 00011

x = 1

y = 0

z = zin

mode = ROTATION

m = HYPERBOLIC

x = cosh(zin)

y = sinh(zin)

z = 0

ROT_HYP 00100

x = xin

y = yin

z = zin

mode = ROTATION

m = HYPERBOLIC

x = xin · cosh(zin) + yin · sinh(zin)

y = xin · sinh(zin) + yin · cosh(zin)

z = 0

ROT_HYP_M 00101

x = xin

y = yin

z = −zin

mode = ROTATION

m = HYPERBOLIC

x = xin · cosh(zin) − yin · sinh(zin)

y = yin · cosh(zin) − xin · sinh(zin)

z = 0

ROT_LIN 00110

x = xin

y = yin

z = zin

mode = ROTATION

m = LINEAR

x = xin

y = yin + zin · xin

z = 0

Continued on next page

96

X-HEEP platform

Configuration Opcode Inputs Outputs

ROT_LIN_M 00111

x = xin

y = yin

z = −zin

mode = ROTATION

m = LINEAR

x = xin

y = yin − zin · xin

z = 0

VEC_CIRC 01000

x = xin

y = yin

z = zin

mode = VECTORING

m = CIRCULAR

x = sign(xin) ·
ð

x2
in + y2

in

y = 0

z = zin + tan−1(yin/xin)

VEC_CIRC_M 01001

x = xin

y = −yin

z = zin

mode = VECTORING

m = CIRCULAR

x = sign(xin) ·
ð

x2
in + y2

in

y = 0

z = zin − tan−1(yin/xin)

VEC_HYP 01010

x = xin

y = yin

z = zin

mode = VECTORING

m = HYPERBOLIC

x = sign(xin) ·
ð

x2
in − y2

in

y = 0

z = zin + tanh−1(yin/xin)

VEC_HYP_M 01011

x = xin

y = −yin

z = zin

mode = VECTORING

m = HYPERBOLIC

x = sign(xin) ·
ð

x2
in − y2

in

y = 0

z = zin − tanh−1(yin/xin)

VEC_LIN 01100

x = xin

y = yin

z = zin

mode = VECTORING

m = LINEAR

x = xin

y = 0

z = zin + yin/xin

Continued on next page

97

X-HEEP platform

Configuration Opcode Inputs Outputs

VEC_LIN_M 01101

x = xin

y = −yin

z = zin

mode = VECTORING

m = LINEAR

x = xin

y = 0

z = zin − yin/xin

EXPONENTIAL 01110

x = xin

y = xin

z = zin

mode = ROTATION

m = HYPERBOLIC

x = xin · ezin

y = xin · ezin

z = 0

ARCCOTANH 01111

x = xin

y = 1

z = 0

mode = VECTORING

m = HYPERBOLIC

x =
√

x2 − 1

y = 0

z = cotanh−1(xin)

ARCCOTAN 10000

x = 1
y = yin

z = π
2

mode = VECTORING

m = CIRCULAR

x =
ð

1 + y2
in

y = 0

z = cotan−1(yin)

Table 4.1: Available configurations and their corresponding opcodes.

As it can be noticed from Table 4.1, based on the received opcode, the wrapper
will take care of setting the actual inputs to be forwarded to the CORDIC module,
without any need from the user to do so.
The last arrangement that has been made came from the aforementioned issue
related to stalled write operations. In fact, whenever read requests cannot be
satisfied, this can be easily handled by exploiting the handshake signals of the
CORDIC unit and, thus, by keeping in_ready low, which will prevent the com-
putation from starting. However, the same solution cannot be adopted for write
operations, since the CORDIC module will continue to fetch new data and produce
new results at each clock cycle as long as the pipeline is kept active. Furthermore,
even blocking read requests is not sufficient, because the CORDIC unit will try
to flush its pipeline anyway. In this context two solutions were possible, that is

98

X-HEEP platform

either to temporarily store the results in a FIFO or to freeze the whole CORDIC
pipeline. For this integration process, the latter method has been chosen as the
most effective, since it both does not require any additional resources and does
not cause any delay. To do so, the ext_freeze input signal has been added to the
CORDIC module to disable, when high, all its internal registers, thus preventing
them from being updated. This has, then, been connected to the freeze one of
the wrapper, which is raised whenever the write FSM is in the RUNNING state and
a write request received a negative grant.

99

Chapter 5

Obtained results

This chapter highlights the obtained results in terms of precision, timing, area
occupation, power consumption and speedup.

5.1 Simulation results
The whole CORDIC architecture has been tested using QuestaSim and implying
10000 random values, which made it possible to obtain variegated outputs to perform
comparisons, in terms of relative error, among the different internal fixed-point
formats.

5.1.1 Preliminary choices
Before starting the extensive tests, it has been noted that, whenever the exponents
difference between the xin and yin floating-point input operands is too large, the
overall error starts to increase significantly. However, nothing related to this issue
has been found in literature and, thus, a hypothesis has been made. In fact,
assuming to be in single precision floating-point and to have, for example:

• xin = 1 = 32’h3F800000, with exponent ex = 0

• yin = 2−23 = 32’h34000000, with exponent ey = −23

the alignment and fixed-point conversion processes lead to the following results:

• x = 32’h10000000

• y = 32’h00000010

100

Obtained results

which means that, throughout the pipeline, the initial y operand will be practically
considered as zero and the final result will be wrong. In addition, in order to
double-check that this issue is not related to the global floating-point strategy of
Section 3.1.3, also the C model that uses local FLP has been tested with the same
values and provided similar results. As a consequence, a threshold has been set
to the difference between the exponents of xin and yin, in order to overcome this
problem.
The selection process of such threshold laid on the creation of a C code that,
keeping the absolute value of x fixed to 1.99999991 and varying the one of y from
2emin · 1.9999999 to 2emax · 1.9999999, checks the obtained relative error for both
precisions. An example of the obtained results is shown in Figures 5.1 and 5.2,
where the relative error is plotted against the exponent difference for single and
half precision in rotation mode and hyperbolic coordinates.

-100 -50 0 50 100

Exponents di,erence

100

1020

1040

R
e
la

ti
v
e

e
rr

o
r

xin < 0; yin < 0

rel error x
rel error y

-100 -50 0 50 100

Exponents di,erence

100

1020

1040

R
e
la

ti
v
e

e
rr

o
r

xin < 0; yin > 0

rel error x
rel error y

-100 -50 0 50 100

Exponents di,erence

100

1020

1040

R
e
la

ti
v
e

e
rr

o
r

xin > 0; yin < 0

rel error x
rel error y

-100 -50 0 50 100

Exponents di,erence

100

1020

1040

R
e
la

ti
v
e

e
rr

o
r

xin > 0; yin > 0

rel error x
rel error y

Figure 5.1: Relative error comparison for single precision
in rotation and hyperbolic coordinates. The y axis is in
logarithmic scale.

Table 5.1 shows the obtained minimum thresholds for both precisions to guarantee

11.9999999 makes the mantissa equal to 1.111...1, which should emphasize the loss of data
during the alignment.

101

Obtained results

-20 -10 0 10 20

Exponents di,erence

10!2

100

102

R
e
la

ti
v
e

e
rr

o
r

xin < 0; yin < 0

rel error x
rel error y

-20 -10 0 10 20

Exponents di,erence

10!2

100

102

R
e
la

ti
v
e

e
rr

o
r

xin < 0; yin > 0

rel error x
rel error y

-20 -10 0 10 20

Exponents di,erence

10!2

100

102

R
e
la

ti
v
e

e
rr

o
r

xin > 0; yin < 0

rel error x
rel error y

-20 -10 0 10 20

Exponents di,erence

10!2

100

102

R
e
la

ti
v
e

e
rr

o
r

xin > 0; yin > 0

rel error x
rel error y

Figure 5.2: Relative error comparison for half precision
in rotation and hyperbolic coordinates. The y axis is in
logarithmic scale.

a relative error lower than 10% and 20%. As it can be noticed, the obtained values
are close to the number of mantissa bits, 23 for single precision and 10 for half
precision, which is a non-negligible constraint. However, simulations have shown
that values equal to 18 for single precision and 7 for half precision have to be
considered to guarantee a very low error.

FLP format 10% threshold 20% threshold

Single precision 20 21

Half precision 7 8

Table 5.1: Minimum thresholds for the exponent difference.

It has to be noted that this procedure has not to be applied to z, since the restricted
amount of overflow bits guarantees an exponents difference with respect to the α
angles that is already lower than the considered thresholds.

102

Obtained results

5.1.2 Random numbers generation
To efficiently test the design, it has been decided to mix fixed and random values.
In particular, the fixed inputs have been chosen to cover specific cases, such as the
maximum and minimum representable numbers, as well as infinities and NaNs,
whereas the random ones have been used to cover the largest possible number of
values within the range of convergence. For such purpose, it has been decided
to rely on the randomize() method provided by SystemVerilog and to fix some
constraints through the dedicated class flp_rand_class. In particular, these
constraints guarantee that:

• Only normalized values are used, thus forcing the inputs exponent to be
between emin and emax.

• The exponents difference is at most equal to the threshold.

• The inputs are within the range of convergence, which is dynamically set
depending on the considered working mode.

In order to use the same module for both precision, the flp_rand_class will, each
time, generate random values for both formats.
At this point, the extensive test procedure can start and, each time, the inputs
generator performs the following steps:

1. Select the working mode by setting mode and m. This will tell the flp_rand_
class which range of convergence has to be used.

2. Launch the randomize() method.

3. Select which values have to be forwarded to the CORDIC unit based on the
adopted floating-point precision.

5.1.3 Error analysis
Figures 5.3 and 5.4 compare the results obtained from various configurations of
overflow and guard bits. In particular, the former range from 1 to 5, while the
latter from 0 to 161 for single precision and from 0 to 8 for half precision. The
error metric is computed as the average among the relative errors obtained for each
output variable x, y and z, where the relative error is defined as the ratio between
the absolute error and the absolute value of the reference output.

1Values of guard bits that are larger than the chosen ones for both precision did not provide
noticeable improvements and, hence, have been avoided to make the number of configurations to
be tested lower.

103

Obtained results

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Guard bits

2:73623%

2:736235%

2:73624%

2:736245%

2:73625%

2:736255%

R
e
la

ti
v
e

e
rr

o
r

#104 1 over.ow bit

(a) 1 overflow bit

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Guard bits

0%

0:05%

0:1%

0:15%

0:2%

0:25%

0:3%

R
e
la

ti
v
e

e
rr

o
r

2 over.ow bits

(b) 2 overflow bits

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Guard bits

0%

0:05%

0:1%

0:15%

0:2%

0:25%

0:3%

R
e
la

ti
v
e

e
rr

o
r

3 over.ow bits

(c) 3 overflow bits

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Guard bits

0%

0:05%

0:1%

0:15%

0:2%

0:25%

0:3%

R
e
la

ti
v
e

e
rr

o
r

4 over.ow bits

(d) 4 overflow bits

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Guard bits

0%

0:05%

0:1%

0:15%

0:2%

0:25%

0:3%

R
e
la

ti
v
e

e
rr

o
r

5 over.ow bits

(e) 5 overflow bits

Figure 5.3: Error comparison among different configurations of the
internal fixed-point format for single precision.

104

Obtained results

0 1 2 3 4 5 6 7 8

Guard bits

42:3%

42:35%

42:4%

42:45%

42:5%

42:55%

42:6%

42:65%

42:7%

R
e
la

ti
v
e

e
rr

o
r

1 over.ow bit

(a) 1 overflow bit

0 1 2 3 4 5 6 7 8

Guard bits

0:2%

0:3%

0:4%

0:5%

0:6%

0:7%

0:8%

0:9%

1%

1:1%

R
e
la

ti
v
e

e
rr

o
r

2 over.ow bits

(b) 2 overflow bits

0 1 2 3 4 5 6 7 8

Guard bits

0:2%

0:3%

0:4%

0:5%

0:6%

0:7%

0:8%

0:9%

1%

1:1%

R
e
la

ti
v
e

e
rr

o
r

3 over.ow bits

(c) 3 overflow bits

0 1 2 3 4 5 6 7 8

Guard bits

0:2%

0:3%

0:4%

0:5%

0:6%

0:7%

0:8%

0:9%

1%

1:1%

R
e
la

ti
v
e

e
rr

o
r

4 over.ow bits

(d) 4 overflow bits

0 1 2 3 4 5 6 7 8

Guard bits

0:2%

0:3%

0:4%

0:5%

0:6%

0:7%

0:8%

0:9%

1%

1:1%

R
e
la

ti
v
e

e
rr

o
r

5 over.ow bits

(e) 5 overflow bits

Figure 5.4: Error comparison among different configurations of the
internal fixed-point format for half precision.

105

Obtained results

From the figures, it can be easily noticed that the graphs of both floating-point
formats share the same behavior. The main contribution is given by the number of
overflow bits, whereas the guard bits have a minor impact. For both precisions, the
error becomes reasonable and almost constant starting from a number of overflow
bits equal to 2. This is due to the fact that the lower their number, the higher
the probability to have overflow, and thus wrong outputs, throughout the pipeline.
Therefore, in order to be on the safe side, the best choice is to set the number of
overflow bits to 3 for both floating-point formats. For what concerns, instead, the
guard bits, in the graphs related to a number of overflow bits equal to 3, the error
becomes almost constant as soon as their number approaches 4 for half precision
and 5 for single precision, which validates the choice of such values in Section 3.3.1.
Table 5.2 compares the obtained average error for both precisions with the lowest
reached one, that is with maximum number of both overflow and guard bits. As
it can be noticed, not only the adopted format provided positive results, but also
highlighted the fact that this design is suitable for high-accuracy applications, given
that the obtained error is spread over a range of 10000 random values.

FLP format Obtained error Best error

Single precision 0.030364% 0.029330%

Half precision 0.223205% 0.216155%

Table 5.2: Average relative error comparison.

A proof of this can be seen in Figures 5.5 and 5.6, which show the obtained
waveforms considering the reference values and the outputs of the CORDIC unit
for both precisions.

5.2 Synthesis results
Once the unit has been tested, simulation left the place to synthesis. The main
goal was to satisfy a target frequency of 100 MHz, which is a reasonable value
since, given that two useful outputs are available at each clock cycle, the final
theoretical throughput would be 200 Msamples/s. However, it has also been tried
to find the maximum achievable frequency, which went above 1 GHz for both
precisions. The logical synthesis procedure has been performed using Synopsys
Design Compiler and issuing the compile_ultra command, which forces the tool

106

Obtained results

0 :=2 : 3:=2 2:

Input angle (z0)

-1

-0.5

0

0.5

1

si
n
(z

0
)

Sine comparison

Reference
CORDIC unit FLP32

0 :=2 : 3:=2 2:

Input angle (z0)

-1

-0.5

0

0.5

1

si
n
(z

0
)

Reference
CORDIC unit FLP16

(a) sin(z)

0 :=2 : 3:=2 2:

Input angle (z0)

-1

-0.5

0

0.5

1

c
o
s(

z
0
)

Cosine comparison

Reference
CORDIC unit FLP32

0 :=2 : 3:=2 2:

Input angle (z0)

-1

-0.5

0

0.5

1

c
o
s(

z
0
)

Reference
CORDIC unit FLP16

(b) cos(z)

-1.5 -1 -0.5 0 0.5 1 1.5

Input value (z0)

-1

-0.5

0

0.5

1

si
n
h
(z

0
)

Hyperbolic sine comparison

Reference
CORDIC unit FLP32

-1.5 -1 -0.5 0 0.5 1 1.5
Input value (z0)

-1

-0.5

0

0.5

1

si
n
h
(z

0
)

Reference
CORDIC unit FLP16

(c) sinh(z)

-1.5 -1 -0.5 0 0.5 1 1.5

Input value (z0)

1

1.2

1.4

1.6

c
o
sh

(z
0
)

Hyperbolic cosine comparison

Reference
CORDIC unit FLP32

-1.5 -1 -0.5 0 0.5 1 1.5
Input value (z0)

1

1.2

1.4

1.6

c
o
sh

(z
0
)

Reference
CORDIC unit FLP16

(d) cosh(z)

Figure 5.5: Example waveforms of the reference values (black) and the outputs
of the CORDIC unit (red) for both precisions and rotation mode.

to perform aggressive optimizations and gives overall better results compared to
the basic compile command. The obtained results are shown in Table 5.3.
As it can be noticed, at the target frequency the synthesis procedure provided
promising results in terms of area occupation and power consumption. In particular,
it is curious to notice that the design for half precision, which, as Table 5.2 shows,
is already quite accurate, provided area and power results that are almost one
third of the ones obtained for single precision. This is a clear proof of the fact that
this floating-point format can be a very good choice for low-power and low-area
applications when the values range does not need to be too large. On the other
hand, the maximum achievable frequency is quite high for both precisions, which

107

Obtained results

-10 -8 -6 -4 -2 0 2 4 6 8 10

Input value (y0

x0
)

-2

-1

0

1

2
O

u
tp

u
t

v
a
lu

e
(t

a
n
!

1
(
y

0

x
0
))

Arctangent comparison

Reference
CORDIC unit FLP32

-10 -8 -6 -4 -2 0 2 4 6 8 10

Input value (y0

x0
)

-2

-1

0

1

2

O
u
tp

u
t

v
a
lu

e
(t

a
n
!

1
(
y

0

x
0
))

(a) tan−1(y
x)

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

Input value (y0

x0
)

-1

-0.5

0

0.5

1

O
u
tp

u
t

v
a
lu

e
(t

a
n
h
!

1
(
y

0

x
0
)) Hyperbolic arctangent comparison

Reference
CORDIC unit FLP32

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

Input value (y0

x0
)

-1

-0.5

0

0.5

1

O
u
tp

u
t

v
a
lu

e
(t

a
n
h
!

1
(
y

0

x
0
))

Reference
CORDIC unit FLP16

(b) tanh−1(y
x)

Figure 5.6: Example waveforms of the reference values (black) and the outputs
of the CORDIC unit (red) for both precisions and vectoring mode.

FLP format
Period

[ns]
Frequency

[MHz]

Area
[µm2]

Power
[mW]

Single precision 10 100 109485.36 11.12

Single precision 0.85 1176.47 (max) 185828.76 63.24

Half precision 10 100 38977.56 3.90

Half precision 0.75 1333.33 (max) 62600.40 27.44

Table 5.3: Synthesis results for both precisions.

is a good result since it means that the design is quite fast and can be used in
high-speed applications. However, it has to be noted that area occupation and
power consumption are quite high at such frequency, which is a common trade-off
in digital design.
In addition to the chosen internal fixed-point format, it has been decided to also
compare the values in Table 5.3 and 5.2 with the ones obtained by synthesizing

108

Obtained results

the design using a minimum 1 and maximum number of overflow and guard bits.
The results are shown in Table 5.4 and in Figure 5.7.

FLP format Overflow
bits

Guard
bits

Area
[µm2]

Power
[mW]

Relative
error

Single precision 3 5 109485.36 11.12 0.031%

Single precision 2 0 94343.04 9.66 0.281%

Single precision 5 16 144047.88 14.49 0.029%

Half precision 3 4 38977.56 3.90 0.223%

Half precision 2 0 30121.92 3.04 1.062%

Half precision 5 8 52339.68 5.10 0.216%

Table 5.4: Synthesis results for both precisions with different configurations of
overflow and guard bits. The frequency is 100 MHz.

As expected, the chosen format is the best compromise between area occupation,
power consumption and accuracy. In fact, the results in Table 5.4 show that the
design with the minimum number of overflow and guard bits provides the best area
and power results, but the worst accuracy. On the other hand, the largest format
gives the best accuracy, which is, however, very close to the one obtained with the
chosen format, while the area and power results are the worst.

5.3 X-HEEP results
As anticipated, the X-HEEP platform has been used to obtain feasible results in
terms of speed improvements on a typical application. In particular, the design
has been integrated as a custom accelerator and tested through a simple C code
that performs the following operations:

1. Set the CORDIC accelerator control registers, such as the number of inputs
to be processed, the starting address of the input and output buffers and the
opcode.

1A minimum number of two overflow bits has been considered, in order to have error values
that can be compared.

109

Obtained results

0% 0:1% 0:2% 0:3%

Relative error

0.9

1

1.1

1.2

1.3

1.4

1.5

A
re

a
(7

m
2
)

#105 Error vs Area

Max

Default

Min

0% 0:1% 0:2% 0:3%

Relative error

8

9

10

11

12

13

14

P
o
w

e
r

(m
W

)

Error vs Power

Max

Default

Min

(a) Single precision

0:2% 0:4% 0:6% 0:8% 1%

Relative error

3

3.5

4

4.5

5

5.5

A
re

a
(7

m
2
)

#104 Error vs Area

Max

Default

Min

0:2% 0:4% 0:6% 0:8% 1%

Relative error

2.5

3

3.5

4

4.5

5

5.5

P
o
w

e
r

(m
W

)

Error vs Power

Max

Default

Min

(b) Half precision

Figure 5.7: Comparison of the area and power results for
both precisions with different configurations of overflow
and guard bits.

2. Start the accelerator.

3. Wait for the accelerator to finish, which will be signaled by an interrupt.

4. Compare the obtained results with the reference ones obtained by the stan-
dalone CORDIC model.

Once the test for each opcode ensured a correct behavior, a performance comparison
between the integrated CORDIC accelerator and the corresponding operations
performed by the CPU with the math.h library has been carried out. However,
given the absence of a native support for half precision floating-point arithmetic
in the CPU, the comparison has been performed only for single precision. This

110

Obtained results

has been done by opportunely initializing the performance counter and measuring
the time taken by the accelerator and the CPU to perform the same operations.
The obtained results for 1024 input combinations (so 3072 values to be read from
memory and written to it) and single precision are shown in Table 5.5. It has to
be underlined that, in order to use the same inputs for both the accelerator and
the CPU, they have to be converted from hexadecimal integers to floating-point
numbers. After several trials, it has been noticed that performing this step before
actually starting the CPU computation produced wrong results in terms of number
of cycles, whereas carrying it out just before issuing each operation provided results
that seem to be correct. Therefore, the number of cycles that are needed to perform
such conversion has been subtracted from the obtained values.

Configuration Accelerator
time

CPU
time

Time
ratio

SIN_COS 7.292 6.475.034 887.96

ROT_CIRC 7.292 7.703.830 1056.48

SINH_COSH 7.950 11.268.731 1417.45

ROT_HYP 7.951 23.432.989 2947.18

ROT_HYP_M 7.951 23.444.066 2948.57

ROT_LIN 7.926 219.902 27.74

ROT_LIN_M 7.927 228.625 28.84

VEC_CIRC 7.967 6.947.438 872.03

VEC_CIRC_M 7.967 6.954.583 872.92

VEC_HYP 7.952 7.851.883 987.41

VEC_HYP_M 7.952 7.856.970 988.05

VEC_LIN 7.946 292.603 36.82

Continued on next page

111

Obtained results

Configuration Accelerator
time

CPU
time

Time
ratio

VEC_LIN_M 7.946 292.603 36.82

EXPONENTIAL 7.950 7.236.055 910.19

ARCCOTANH 7.951 2.269.557 285.45

ARCCOTAN 7.173 3.620.719 504.77

Table 5.5: Performance comparison between the integrated CORDIC
accelerator and the CPU. The latency values are expressed in number
of cycles and the time ratio is the ratio between the CPU time and the
accelerator time.

As it can be noticed, on average, compared to the CPU the accelerator is:

• 838.83 times faster for trigonometric functions,

• 1497.76 times faster for hyperbolic functions,

• 32.56 times faster for multiplications and divisions.

In addition, thanks to the fact that each computation takes the same time, the
number of cycles needed by the CORDIC unit remains almost constant for each
function, which is a remarkable result given that latency will be always constant
and predictable, no matter what type of operation is being performed. The average
number of needed cycles is 7.6 for each input set, which leads to a throughput of
26.3 Msamples/s. Actually, this number is strongly affected by the presence of a
single-port memory, which forces read and write accesses to be interleaved, and of
a 32-bit data bus, which makes the number of cycles needed to read and write a
single set of inputs and outputs equal to 4. As a consequence, the throughput is far
from the theoretical value of 200 Msamples/s, which can be obtained by adopting a
dual-port memory, a larger data bus or other arrangements (e.g. input and output
FIFOs).
For what concerns half precision, instead, the functional correctness test part
provided an overall number of cycles equal to 5455, which means that, on average,
5.3 cycles are needed for each 32-bit input set. Even if the results are quite

112

Obtained results

close to the ones obtained for single precision, it has to be taken into account
both that the unit is not completely exploiting pipeline parallelism due to the
aforementioned memory limitations and that the throughput is now doubled because
of the presence of two units working in parallel and producing four useful outputs at
a time. Therefore, the throughput becomes now equal to 75.5 Msamples/s, which
is a good result given the fact that the design is quite small and low-power, but is
far from the theoretical value of 400 Msamples/s.

113

Chapter 6

Conclusions

In this work, the CORDIC algorithm has been first described and then implemented
in a hardware accelerator able both to be used in all its six working modes and to
support the half and single precision FLP formats. In particular, two strategies
have been at first analyzed to adapt its fixed-point nature to the floating-point
arithmetic, that is global and local FLP, and their overall accuracy has been
compared. However, being high-throughput the main goal of the project, local
FLP has been chosen for its capability to reach higher frequencies without the need
for fine-grain pipelining. In order to minimize latency, an unfolded and pipelined
architecture has been designed and the final implementation has been synthesized at
the target frequency of 100 MHz, providing promising results in terms of accuracy,
area occupation and power consumption. In addition, it has also been tried to
find the maximum achievable frequency, which turned out to be above 1 GHz for
both floating-point formats. Finally, the unit has been integrated in the X-HEEP
microcontroller system and tested in a real application, showing that not only it
can be used as an external accelerator capable of providing a significant speedup,
especially in the computation of trigonometric and hyperbolic functions, but also
that it offers constant latency independently from the operation to be computed.

6.1 Future works
Even if this work provided remarkable results and can be considered complete,
there are still some aspects that could be improved or further investigated. First
of all, in addition to the integrated register disabling mechanism that prevents
the unit from increasing the switching activity when it is not in use or the final
result can be predicted, other low-power techniques, such as clock gating, could
be implemented to further reduce the power consumption. Furthermore, since the

114

Conclusions

CORDIC unit is fully parametrized, other standard or custom floating-point formats
can be supported with very little effort. The unit can also be integrated as an
internal peripheral in a microcontroller system, together with specific arrangements
to improve data transfers that could significantly increase the throughput. For
example, the unit could be connected either to a dedicated dual-port memory
through a larger bus or to input and output FIFOs, so that all the inputs are
available at once and the outputs can be stored in one clock cycle, thus achieving
the maximum throughput. Finally, the unit could be used in a more complex
platform, such as a digital signal processor, a software-defined radio or a machine
learning accelerator, to improve the overall performance of the system, or the
support for more operations that can be obtained combining the ones already
supported could be added.

115

Bibliography

[1] Chih-Hsiu Lin and An-Yeu Wu. «Mixed-scaling-rotation CORDIC (MSR-
CORDIC) algorithm and architecture for high-performance vector rotational
DSP applications». In: IEEE Transactions on Circuits and Systems I: Regular
Papers 52.11 (2005), pp. 2385–2396 (cit. on p. 1).

[2] J. Valls, T. Sansaloni, A. Perez-Pascual, V. Torres, and V. Almenar. «The use
of CORDIC in software defined radios: a tutorial». In: IEEE Communications
Magazine 44.9 (2006), pp. 46–50 (cit. on p. 1).

[3] N.D. Hemkumar and J.R. Cavallaro. «Efficient complex matrix transforma-
tions with CORDIC». In: Proceedings of IEEE 11th Symposium on Computer
Arithmetic. 1993, pp. 122–129 (cit. on p. 1).

[4] Vipin Tiwari and Ashish Mishra. «Neural network-based hardware classifier
using CORDIC algorithm». In: Modern Physics Letters B 34.15 (2020),
pp. 2050161-1–2050161-11 (cit. on p. 1).

[5] Shoaib Bhuria and P. Muralidhar. «FPGA implementation of sine and cosine
value generators using Cordic Algorithm for Satellite Attitude Determination
and calculators». In: 2010 International Conference on Power, Control and
Embedded Systems. 2010, pp. 1–5 (cit. on p. 1).

[6] Debaprasad De, Archisman Ghosh, K Gaurav Kumar, Anurup Saha, and
Mrinal Kanti Naskar. «Multiplier-less Hardware Realization of Trigonomet-
ric Functions for High Speed Applications». In: 2018 IEEE Applied Signal
Processing Conference (ASPCON). 2018, pp. 149–152 (cit. on p. 1).

[7] Raimund Kirner, Markus Grössing, and Peter Puschner. «Comparing WCET
and Resource Demands of Trigonometric Functions Implemented as Iterative
Calculations vs. Table-Lookup». In: 6th International Workshop on Worst-
Case Execution Time Analysis (WCET’06). Open Access Series in Informatics
(OASIcs). 2006, pp. 1–6 (cit. on p. 1).

[8] B. Lakshmi and A. S. Dhar. «CORDIC Architectures: A Survey». In: VLSI
Design 2010 (2010) (cit. on pp. 2, 10, 12, 16, 35, 43, 44).

116

BIBLIOGRAPHY

[9] Simone Machetti, Pasquale Davide Schiavone, Thomas Christoph Müller,
Miguel Peón-Quirós, and David Atienza. X-HEEP: An Open-Source, Config-
urable and Extendible RISC-V Microcontroller for the Exploration of Ultra-
Low-Power Edge Accelerators. 2024. arXiv: 2401.05548 [cs.AR] (cit. on
pp. 2, 85).

[10] «IEEE Standard for Floating-Point Arithmetic». In: IEEE Std 754-2008
(2008), pp. 1–70 (cit. on pp. 4–6, 9).

[11] J. E. Volder. «The CORDIC trigonometric computing technique». In: IRE
Transactions on Electronic Computers 8.3 (1959), pp. 330–334 (cit. on p. 10).

[12] J. S.Walther. «A Unified Algorithm for Elementary Functions». In: Proceedings
of the May 18-20, 1971, Spring Joint Computer Conference. AFIPS ’71
(Spring). 1971, pp. 379–385 (cit. on pp. 13, 16, 42, 53, 68).

[13] J. Mack, S. Bellestri, and D. Llamocca. «Floating Point CORDIC-based
Architecture For Powering Computation». In: 2015 International Conference
on ReConFigurable Computing and FPGAs (ReConFig). 2015, pp. 1–6 (cit. on
p. 14).

[14] X. Hu, R. G. Harber, and S. C. Bass. «Expanding the range of convergence of
the CORDIC algorithm». In: IEEE Transactions on Computers 40.1 (1991),
pp. 13–21 (cit. on p. 17).

[15] A.A.J. de Lang and E.F. Deprettere. «Design and implementation of a
floating-point quasi-systolic general purpose CORDIC rotator for high-rate
parallel data and signal processing». In: Proceedings 10th IEEE Symposium
on Computer Arithmetic. 1991, pp. 272–281 (cit. on p. 20).

[16] E. Antelo, J. Villalba, and E. L. Zapata. «A low-latency pipelined 2D and
3D CORDIC processors». In: IEEE Transactions on Computers 57.3 (2008),
pp. 404–407 (cit. on pp. 20, 28, 33, 34, 36, 37, 40).

[17] J. D. Bruguera, E. Antelo, and E. L. Zapata. «Unified mixed Radix 2–4
redundant CORDIC processor». In: IEEE Transactions on Computers 45.9
(1996), pp. 1068–1073 (cit. on pp. 23, 27, 33–36, 40).

[18] W. J. Peréz-Holguín and R. A. Limas-Sierra. «Pipeline Implementation of the
Unified CORDIC Algorithm in FPGA». In: Revista Facultad de Ingeniería
Universidad de Antioquia 107 (2022), pp. 66–79 (cit. on pp. 23, 33, 34, 38,
40).

[19] N. Takagi, T. Asada, and S. Yajima. «Redundant CORDIC methods with a
constant scale factor for sine and cosine computation». In: IEEE Transactions
on Computers 40.9 (1991), pp. 989–995 (cit. on pp. 23–25, 27, 33–35, 40).

117

https://arxiv.org/abs/2401.05548

BIBLIOGRAPHY

[20] D. Timmermann, H. Hahn, and B. J. Hosticka. «Low latency time CORDIC
algorithms». In: IEEE Transactions on Computers 41.8 (1992), pp. 1010–1015
(cit. on pp. 24, 25, 27, 28, 33–35, 40).

[21] J. Duprat and J.M. Muller. «The CORDIC algorithm: new results for fast
VLSI implementation». In: IEEE Transactions on Computers 42.2 (1993),
pp. 168–178 (cit. on pp. 25, 33–35, 40).

[22] H. Dawid and H. Meyr. «The differential CORDIC algorithm: constant scale
factor redundant implementation without correcting iterations». In: IEEE
Transactions on Computers 45.3 (1996), pp. 307–318 (cit. on pp. 25, 33–35,
40).

[23] J. D. Bruguera, E. Antelo, and E. L. Zapata. «Design of a pipelined Radix 4
CORDIC processor». In: Parallel Computing 19.7 (1993), pp. 729–744 (cit. on
pp. 26, 33–35, 40).

[24] E. Antelo, J. Villalba, J. D. Bruguera, and E. L. Zapata. «High performance
rotation architectures based on the Radix-4 CORDIC algorithm». In: IEEE
Transactions on Computers 46.8 (1997), pp. 855–870 (cit. on pp. 27, 33–38,
40).

[25] M. Kuhlmann and K. K. Parhi. «P-CORDIC: a precomputation based rotation
CORDIC algorithm». In: EURASIP Journal on Applied Signal Processing
2002.9 (2002), pp. 936–943 (cit. on pp. 28, 33, 34, 40).

[26] B. Gisuthan and T. Srikanthan. «Pipelining flat CORDIC based trigonometric
function generators». In: Microelectronics Journal 33.1–2 (2002), pp. 77–89
(cit. on pp. 28, 33–35, 40).

[27] T.-B. Juang, S.-F. Hsiao, and M.-Y. Tsai. «Para-CORDIC: parallel CORDIC
rotation algorithm». In: IEEE Transactions on Computers 51.8 (2004),
pp. 1515–1524 (cit. on pp. 29, 32–34, 36, 40).

[28] H. S. Kebbati, J. Ph. Blonde, and F. Braun. «A new semi-flat architecture
for high speed and reduced area CORDIC chip». In: Microelectronics Journal
37.2 (2006), pp. 181–187 (cit. on pp. 30, 33–35, 40).

[29] D. Timmermann, B. Rix, H. Hahn, and B. J. Hosticka. «A CMOS Floating-
Point Vector-Arithmetic Unit». In: IEEE Journal of Solid-State Circuits 29.5
(1994), pp. 634–639 (cit. on pp. 30, 33, 34, 39, 40, 42, 45, 47, 49, 53, 54, 68,
71, 72, 74, 79, 95).

[30] L. Fang, B. Li, Y. Xie, H. Chen, and L. Pang. «A Unified Reconfigurable
CORDIC Processor for Floating-Point Arithmetic». In: International Journal
of Electronics 107 (2018), pp. 1436–1450 (cit. on pp. 31, 33, 34, 37, 39, 40).

118

BIBLIOGRAPHY

[31] O.A. Pfander ad R. Nopper and al. «Comparison of reconfigurable structures
for flexible word-length multiplication». In: Advances in Radio Science 6
(2008), pp. 113–118 (cit. on p. 37).

[32] A. Cristiano I. Malossi et al. «The transprecision computing paradigm: Con-
cept, design, and applications». In: 2018 Design, Automation & Test in Europe
Conference & Exhibition (DATE). 2018, pp. 1105–1110 (cit. on p. 87).

[33] OpenHW Group. Register Interface. https://github.com/pulp-platform/
register_interface (cit. on pp. 88, 91).

[34] OpenHW Group. Open Bus Interface. https://github.com/pulp-platfor
m/obi (cit. on p. 89).

119

https://github.com/pulp-platform/register_interface
https://github.com/pulp-platform/register_interface
https://github.com/pulp-platform/obi
https://github.com/pulp-platform/obi

	List of Tables
	List of Figures
	Introduction
	Background
	Floating-Point representation
	Floating-Point addition and shift
	Floating-Point addition
	Floating-Point shift
	Floating-Point status flags

	CORDIC algorithm
	Traditional CORDIC algorithm
	Unified CORDIC algorithm
	Traditional hardware implementations of unified CORDIC
	Possible improvements

	Floating-Point extension for CORDIC algorithm
	Related works
	Fixed-point CORDIC
	Floating-point CORDIC
	General comparison

	Proposed architecture
	Preliminary choices
	Supported floating-point formats
	Algorithm selection
	Floating-point extension strategy
	Scaling factor compensation technique

	Architecture overview
	Pre-processing block
	FLP unpacking and FXP packing
	Reference exponent computation, alignment and 2's complement conversion
	z mapping
	Status flags generation
	Other arrangements

	Fixed-point CORDIC top module
	Fixed-point CORDIC pipeline
	Scaling pipeline
	Lookup table

	Post-processing block
	Zero detection
	Leading one detection, alignment and rounding
	Exponent update and FLP packing
	Outputs selection and status flags generation

	X-HEEP platform
	RTL files creation
	Wrapper design
	Interface signals
	Internal FSMs
	CORDIC unit management

	Obtained results
	Simulation results
	Preliminary choices
	Random numbers generation
	Error analysis

	Synthesis results
	X-HEEP results

	Conclusions
	Future works

	Bibliography

