
POLITECNICO DI TORINO
Master Degree in Electronic Engineering

Master Degree Thesis

The Analysis and Design of Embedded Software for Ethernet
Communication Protocol Standard in the Automotive sector

Supervisor Candidate
Prof. Massimo Violante Muhammad Haris Khan

Internship Tutor at Ideas&Motion
Ing. Marco Novaro

Academic Year 2020/202

2

3

Acknowledgments

I would like to express my deepest appreciation to all those who provided me the
possibility to complete this thesis. A special gratitude I give to my professor, Massimo
Violante, whose contribution in stimulating suggestions and encouragement, helped me
to coordinate my project especially in writing this thesis.

Furthermore, I would also like to acknowledge with much appreciation the crucial role of
Ideas&Motion S.r.l, who gave the permission to use all required equipment and the
necessary materials to complete the task. A special thanks to my manager, Marco Novaro,
for his understanding, patience, and immense knowledge. His guidance helped me in all
the time of research and writing of this thesis.

I also want to thank my family for the support they provided me through my entire life
and in particular, I must acknowledge my parents for providing me with unfailing support
and continuous encouragement throughout my years of study and through the process of
researching and writing this thesis. This accomplishment would not have been possible
without them.

Finally, I would like to thank my friends for supporting me through the difficult yet
rewarding process of writing this thesis. Their friendship made this journey more
enjoyable.

4

Abstract

This thesis investigates the development and analysis of an Ethernet driver tailored for the
S32K344 microcontroller, targeting automotive Ethernet applications. With the
automotive industry's shift towards more connected and autonomous vehicles, the need
for reliable, high-speed communication systems within vehicles has become increasingly
critical. This research aims to fill a gap in current research by providing a detailed
examination of the Ethernet protocol's implementation on the S32K344 microcontroller
and developing a driver that meets the strict requirements of automotive networks.

The methodology adopted in this study involves a combination of theoretical analysis and
practical development work. Initially, the Ethernet protocol, as applied to the S32K344,
was thoroughly analyzed to understand its capabilities and limitations within automotive
applications. This analysis informed the development phase, where a driver was created
to facilitate efficient communication over Ethernet within automotive systems. Key to the
development process was the use of loopback testing, which allowed for the validation of
data transmission and reception without external network dependencies. The PE Micro
board played a crucial role in debugging and testing the driver, ensuring its reliability and
performance.

Significant findings from this work include the successful implementation of the Ethernet
driver in loopback mode, demonstrating its effectiveness in handling automotive network
traffic effectively. Furthermore, the driver's design and testing have laid the groundwork
for future research, particularly in testing the driver across a network of multiple Electronic
Control Units (ECUs) using tools like Vector CANoe. This future work aims to simulate
more complex automotive network scenarios, essential for advancing the reliability and
efficiency of in-vehicle communication.

The integration of the Ethernet driver within the AUTOSAR software architecture is
another critical aspect of this thesis. By developing the kernel and configuration for the
Ethernet driver in line with AUTOSAR standards, this work ensures compatibility with a
broad range of automotive applications and highlights the importance of standardized
software development in the automotive industry.

In conclusion, this thesis contributes to the field of automotive Ethernet communication
by developing a robust, efficient Ethernet driver tailored for the S32K344 microcontroller.
The findings not only demonstrate the driver's immediate capabilities but also pave the
way for future advancements in automotive networking, emphasizing the critical role of
high-performance communication systems in the next generation of automotive
technology.

5

6

Table of Contents
Acknowledgments .. 3

Abstract .. 4

1 Company Overview and Background ... 12

1.1 Company History ... 12

1.2 Company Vision ... 12

1.3 Company Services .. 12

1.3.1 Engineering Services .. 12

1.3.2 Customized e-Motor Control .. 12

1.3.3 Customized ECUs (Electronic Control Units) ... 13

1.3.4 Customized Embedded Software ... 13

1.3.5 Virtual Prototyping ... 13

1.3.6 System on Chip (SoC) Design .. 13

1.3.7 High Performance Automotive Computational Platforms 13

1.3.8 EOL (End of Line) Testing .. 13

2 Conventional Communication Protocols .. 13

2.1 CAN - Controller Area Network .. 14

2.2 LIN - Local Interconnect Network ... 14

2.3 FlexRay .. 15

2.4 MOST - Media Oriented Systems Transport ... 15

2.5 Comparison with Automotive Ethernet .. 16

3 Automotive Ethernet ... 16

3.1 Introduction .. 16

3.2 Historical and Technical Overview .. 16

3.2.1 History of Ethernet Protocol ... 16

3.2.2 The IEEE 802 Standard and Ethernet Layers ... 17

3.2.3 Physical Layer (PL) .. 17

3.2.4 Data Link Layer (MAC & LLC) .. 17

3.2.5 Network and Transport Layers ... 17

3.2.6 Ethernet Frame Structure .. 18

4 Software Tools .. 18

4.1 Visual Studio .. 18

4.1.1 Key Features of Visual Studio in Embedded C Programming 19

7

4.1.2 Advanced Debugging Tools ... 19

4.1.3 IntelliSense and Code Analysis .. 19

4.1.4 Cross-platform Development Capabilities ... 19

4.1.5 Rich Libraries and APIs Access ... 19

4.1.6 Vibrant Community and Consistent Support ... 20

4.1.7 Customizability with Extensions .. 20

4.2 S32 Design Studio IDE: An In-depth Overview .. 20

4.2.1 Cross-Platform Compatibility .. 20

4.2.2 Comprehensive Development Toolkit .. 20

4.2.3 No-Cost Accessibility ... 20

4.2.4 Integration with NXP's Ecosystem ... 20

4.2.5 Embedded Software Development ... 21

4.2.6 Compatibility with Multiple Compilers and Debuggers 21

4.2.7 Specialized Tools for Advanced Projects ... 21

4.3 Wire shark .. 21

4.3.1 Key Details ... 21

4.3.2 History .. 21

4.3.3 Functionality ... 21

4.3.4 Data Analysis ... 22

4.3.5 VoIP Analysis and More .. 22

4.3.6 Compatibility .. 22

4.3.7 Security Considerations .. 22

4.3.8 Color Coding .. 22

5 Hardware ... 22

5.1 S32K344 EVB .. 22

5.1.1 Core .. 22

5.1.2 Debug Interface .. 22

5.1.3 Safety and Security Features .. 23

5.1.4 Connectivity and Power ... 23

5.1.5 Over-The-Air (OTA) Support .. 23

5.1.6 Expansion Options ... 23

5.1.7 CMSIS Drivers ... 23

5.1.8 Key Ethernet Features .. 23

8

5.1.8.1 Interface Support and Performance .. 23

5.1.8.2 Precision Timing and Data Rate ... 24

5.1.8.3 Memory and Storage Capacities ... 24

5.1.9 Usage .. 24

5.2 PE Micro Debugger .. 24

5.2.1 Development and Debugging Tools ... 25

5.2.2 Hardware Interfaces ... 25

5.2.3 Flash Programming Solutions .. 25

5.2.4 Custom PC Applications .. 25

6 Ethernet Media Access Controller (EMAC) Architecture .. 26

6.1 EMAC Core Features ... 26

6.1.1 MII and RMII Interfaces Support ... 26

6.1.2 Time-Sensitive Networking and AVB Support .. 26

6.1.3 AMBA 2.0 Interface Compatibility .. 26

6.2 EMAC Additional Features .. 27

6.2.1 Automatic CRC and Pad Generation/Stripping .. 27

6.2.2 CRC Checking Control .. 27

6.2.3 Packet Gap Control .. 27

6.2.4 Source Address Insertion or Replacement ... 27

6.2.5 VLAN Tagging and Processing ... 27

6.2.6 Packet Filtering and Address Filtering ... 27

6.2.7 Layer 3 and Layer 4 Filtering ... 27

6.2.8 Safety and Control Features ... 27

6.2.9 MDIO Interface .. 28

6.2.10 Network Statistics and Management .. 28

6.3 Microcontroller DMA .. 28

6.3.1 DMA Inclusions ... 28

6.3.2 DMA Descriptors ... 28

6.3.2.1 Descriptor Lists and Channels .. 28

6.3.2.2 Descriptor Ring Structure ... 29

6.3.2.3 Efficient Data Movement ... 29

6.3.2.4 Descriptor Memory Allocation .. 29

6.3.3 Data Buffers ... 29

9

6.3.4 Data and Buffer Status ... 29

6.3.5 Data Chaining and Packet Handling .. 29

6.3.6 DMA Controller Bus Burst Access .. 30

6.3.7 DMA Application Data Buffer Alignment ... 30

6.3.8 DMA Buffer Size Calculations .. 30

6.3.9 DMA Arbiter .. 30

6.4 MTL Block ... 31

6.4.1 MTL Overview ... 31

6.4.2 Transmit Path ... 31

6.4.3 Transmit Control Word .. 31

6.4.4 Transmit Operation Modes ... 32

6.4.5 Initialization Flow .. 32

6.4.6 MTL Receive Path .. 32

6.4.7 MTL Receive Operation ... 32

6.4.8 Threshold Mode ... 33

6.4.9 Store-and-Forward Mode ... 33

6.5 MAC Block .. 33

6.5.1 MAC Transmission Process ... 33

6.5.2 MAC Reception Process .. 34

6.6 Interrupts .. 34

6.6.1 Interrupt Coalescing ... 34

6.6.2 Interrupt Requests ... 35

6.6.3 DMA Channel Interrupts .. 35

6.6.4 Transfer Complete Interrupt Behaviour ... 35

6.7 External Module Signals .. 35

6.7.1 MII_RMII_TXCLK (Clock) .. 35

6.7.2 MII_RX_CLK (Clock) ... 36

6.7.3 EMAC_PPS[3:0] (Signals) ... 36

6.7.4 MII_RMII_TX_EN (Signal) .. 36

6.7.5 MII_RMII_TXD[3:0] (Signals) ... 36

6.7.6 MII_CRS (Signal) .. 37

6.7.7 MII_COL (Signal) .. 37

6.7.8 MII_RMII_RX_DV (Signal) .. 37

10

6.7.9 MII_RMII_RX_ER (Signal) .. 37

6.7.10 MII_RMII_RXD[3:0] (Signals) ... 38

6.7.11 MII_RMII_MDC .. 38

6.7.12 MII_RMII_MDIO (Signal) .. 38

6.8 PHY Interfaces ... 38

6.8.1 Supported Modes .. 38

6.8.1.1 RMII 10/100 Mbps Interface: ... 38

6.8.1.2 MII 10/100 Mbps Interface: ... 39

6.8.2 Interface Selection .. 39

6.8.3 RMII Reference Clock ... 39

6.8.4 PHY Register Access ... 39

7 Microcontroller Clocks and Port Configuration and Pin Assignments 39

8 Firmware Development ... 42

8.1 Initializing ENET ... 42

8.2 Initializing DMA .. 43

8.3 Initializing MTL registers .. 45

8.4 Initializing MAC .. 45

8.5 Setting ENET MAC Address ... 46

8.6 Enabling ENET .. 47

8.7 Data Transmission .. 48

8.8 Data Reception ... 49

9 Firmware Testing in Loopback Mode ... 49

9.1 Loopback Mode .. 49

9.2 Firmware Testing ... 50

9.2.1 Objectives of Loopback Testing ... 50

9.2.2 Test Setup ... 50

9.2.3 Test Results .. 51

10 Conclusion ... 52

11

List of Figures

Figure 3.1: Ethernet II Frame ... 18
Figure 4.1: VS Code Flow .. 19
Figure 5.1: PE Micro Hardware Debugger .. 24
Figure 6.1: EMAC System Level Block Diagram ... 26
Figure 7.1: EMAC Clock Configuration 1 ... 40
Figure 7.2: EMAC Clock Configuration 2 ... 40
Figure 7.3: EMAC Clock Configuration 3 ... 41
Figure 7.4: Port Configuration ... 41
Figure 7.5: Pin Assignments 1 ... 42
Figure 7.6: Pin Assignments 2 ... 42
Figure 9.1: Memory contents showing “Hello Haris Khan” in TX Ring Data Buffer in Hex

 .. 51
Figure 9.2: Memory contents showing “Hello Haris Khan” in TX Ring Data Buffer in

ASCII .. 51
Figure 9.3: Memory contents showing “Hello Haris Khan” in RX Ring Data Buffer in Hex

 .. 51

12

1 Company Overview and Background

1.1 Company History

Ideas & Motion commenced its journey in 2013, emerging from the visionary foresight of
a cadre of engineers. Over the past twenty years, this team has skillfully blended technical
prowess and innovative approaches, leading to the creation of globally acclaimed
automotive systems. Since its establishment in 2013, Ideas & Motion has consistently
demonstrated a steadfast commitment to its mission: supporting the unique growth
trajectories of its clients through innovative and tailored solutions. This mission is brought
to life through two key approaches. Firstly, the company specializes in the development
of bespoke smart systems, intricately designed to align with the specific needs of each
customer. This personalized approach is crucial for the effective testing, validation, and
assessment of new ideas and algorithms, ensuring their technical feasibility and
practicality. Secondly, Ideas & Motion prides itself on its ability to rapidly transition from
conceptual designs to fully-realized, engineered solutions. This swift and efficient
progression is made possible by the company's reliance on a proprietary, flexible, and
modular hardware and software architecture. Together, these strategies not only underline
the company's dedication to its mission but also cement its role as a dynamic and
innovative leader in the automotive systems industry.

1.2 Company Vision

 “The company intends to support and, where required, assist the customer in

the design, development and realization of a smart system in automotive,
transportation, e-mobility, e-vehicle, etc. applications domain.”

1.3 Company Services

Ideas & Motion has established itself as a versatile and innovative player in the
automotive systems industry, offering a broad spectrum of services tailored to meet the
evolving needs of the sector. These services include:

1.3.1 Engineering Services

Providing comprehensive engineering solutions that encompass the entire lifecycle of
automotive system development.

1.3.2 Customized e-Motor Control

Developing specialized electronic motor control systems, tailored to enhance performance
and efficiency.

13

1.3.3 Customized ECUs (Electronic Control Units)

Integral for modern automotive systems, tailored to client specifications.

1.3.4 Customized Embedded Software

Delivering software solutions embedded in automotive systems, designed for specific
functionalities and performance criteria.

1.3.5 Virtual Prototyping

Utilizing advanced simulation techniques to create virtual prototypes, enabling efficient
design and testing of automotive systems.

1.3.6 System on Chip (SoC) Design

Designing integrated circuits that consolidate all components of a computer or other
electronic systems on a single chip.

1.3.7 High Performance Automotive Computational Platforms

Developing advanced computational platforms that drive high-performance automotive
applications.

1.3.8 EOL (End of Line) Testing

Providing comprehensive testing services at the end of the production line to ensure
product quality and performance.

2 Conventional Communication Protocols

This section discusses conventional automotive communication protocols, providing an
overview of each popular protocol, which form the basis of modern vehicle
communication architectures, enabling the exchange of data and control commands among
electronic control units (ECUs), sensors, actuators, and other automotive components, and
understanding these protocols are important to understand automotive Ethernet.

Collectively, these protocols serve a wide range of automotive communication needs, from
basic functions like lighting and window control to more complex systems such as
powertrain management, safety features, and infotainment systems, highlighting the
critical role of communication technologies in the modern automotive industry.

14

2.1 CAN - Controller Area Network

The Controller Area Network (CAN) protocol is the most widely used and reliable
protocol. Developed in the 1980s, it is utilized in powertrain, chassis and body domain
communications for automotive applications.

The CAN design is based upon a shared bus architecture, where each node can
communicate on the network without the risk of data collision utilizing an arbitration
mechanism. This mechanism ensures that in the event of simultaneous communication
attempts, the message with the highest priority, indicated by the lowest identifier value, is
transmitted first, effectively managing access to the network.

The CAN protocol operates on a principle that combines non-return-to-zero (NRZ) bit
representation with 5-bit stuffing to ensure signal integrity and error detection. The
physical layer of CAN utilizes unshielded twisted pair cables (UTP), with CAN High and
CAN Low lines carrying differential signals, providing resilience against electrical noise
and ensuring reliable data transmission. The exact voltage levels for logic 0 and 1 depend
on the implementation of the physical layer.

Traditional CAN provides a data transmission speed between 125 to 500 Kbps depending
on the number of connected nodes, with the last version CAN-FD enabling transmission
rates up to 2-5 Mbps.

2.2 LIN - Local Interconnect Network

LIN is specifically engineered to address the need for a cost-efficient communication
network for non-critical automotive systems where high data rates and safety are not
important and CAN is too expensive to implement. LIN is a serial network protocol
designed to support communication between components in vehicles without requiring a
microcontroller for every node in the network, significantly reducing the overall associated
cost.

LIN operates at a lower data transfer rate compared to CAN, typically up to 20 Kbps,
which is sufficient for the simple control tasks. This network protocol employs a single
master with multiple slaves architecture, which simplifies the communication protocol and
also reduces wiring complexity and cost. The master controller in a LIN network is
responsible for scheduling communication and ensuring that data transmission occurs
without conflict or collision, leveraging a predictable and controlled communication
environment.

One of the key attributes of LIN is its support for a low-cost communication medium. It
utilizes a single-wire bus, minimizing the physical infrastructure required for data
transmission between nodes.

15

2.3 FlexRay

FlexRay is another network protocol engineered for higher data rates, reliability, and
determinism. The development of FlexRay was motivated by the limitations of existing
protocols like CAN and LIN in handling increasingly complex and safety-critical
applications such as advanced driver-assistance systems (ADAS) and x-by-wire
technologies.

FlexRay offers fault tolerance and redundancy features that are critical for safety-relevant
applications and the protocol allows for dual-channel communication, where two
independent channels can be used for the same data transmission, enhancing the reliability
of critical message exchanges. This redundancy is essential for critical applications where
failure of communication can be very hazardous. It also provides a significantly higher
data transfer rate compared to CAN and LIN, with bandwidths up to 10 Mbps, which
enables it to support the transmission of large volumes of data required by advanced
vehicle functions.

The network architecture of FlexRay supports various topologies, including bus, star, and
hybrid configurations, offering flexibility in network design to meet specific application
requirements. FlexRay's design supports time-triggered and event-triggered data
transmission. This hybrid approach ensures that critical messages can be transmitted at
predetermined times (time-triggered) while also allowing for spontaneous message
transmission when specific events occur (event-triggered).

2.4 MOST - Media Oriented Systems Transport

MOST (Media Oriented Systems Transport) protocol is specifically designed for
multimedia and infotainment systems. It addresses the increasing demand for high-
bandwidth, reliable multimedia data transmission, and is engineered to efficiently handle
audio, video, and data streams. Since the protocol is designed to support high data rates, it
enables the transmission of multimedia content at speeds up to 150 Mbps in the latest
MOST150 iteration. This makes it an ideal solution for incorporating features such as
satellite navigation, live traffic updates, and connectivity with mobile devices.

MOST employs a ring topology for its network architecture. In this configuration, devices
are connected in a closed loop, allowing data to be transmitted in a continuous cycle
through the network. This topology ensures that even if one connection in the ring is
compromised, data can still be routed through the network without loss of functionality.
At the core of MOST's operational efficiency is its synchronous data transmission
mechanism. The protocol uses Time Division Multiple Access (TDMA) to allocate
bandwidth, ensuring that each device on the network has a dedicated time slot for data
transmission. This method eliminates the risk of data collision and ensures that time-
sensitive multimedia content is delivered with precise timing, which is critical for
maintaining audio and video synchronization and achieving high-quality playback.

16

2.5 Comparison with Automotive Ethernet

Features Automotive
Ethernet CAN LIN MOST FlexRay

Speed Up to 10 Gbps Up to 5 Mbps Up to 20 Kbps Up to 150 Mbps Up to 20 Mbps

Data Handling

Packet-switched,
supports large

and variable size
packets

Message-based,
fixed length

Message-based,
fixed and small

length

Packet-based,
optimized for

audio and video

Message-based,
fixed and

variable length

Advantages

High bandwidth,
scalability,
supports
advanced

applications

Reliability, low
cost, wide
adoption

Very low cost,
simple

High-quality
A/V streaming,

robust

Deterministic,
fault tolerance,

suitable for
safety-critical
applications

Disadvantages Higher cost,
complexity

Limited
bandwidth, not

suitable for data-
intensive

applications

Very limited
bandwidth, only

for simple
applications

Primarily for
infotainment,

limited outside
A/V applications

More expensive
than CAN and
LIN, complex

setup

Table 2.1: Comparison of conventional communication protocols and automotive Ethernet

3 Automotive Ethernet

3.1 Introduction

In the rapidly advancing field of automotive technology, Ethernet has emerged as a pivotal
element in the network architecture of modern vehicles. Originally designed for general
data communication, Ethernet has been adapted to meet the stringent requirements of the
automotive industry, offering a robust and scalable solution for in-vehicle communication.
This section introduces Automotive Ethernet, highlighting its significance in enhancing
vehicle functionalities, providing high-speed data transmission, and enabling features such
as infotainment systems, advanced driver assistance systems (ADAS), and autonomous
driving. The adoption of Automotive Ethernet marks a transformative step in the evolution
of vehicle network infrastructure, promising improved performance, scalability, and
flexibility.

3.2 Historical and Technical Overview

3.2.1 History of Ethernet Protocol

The Ethernet protocol, a brainchild of Xerox PARC in the 1970s, has evolved significantly
from its inception. Initially designed as a local area networking technology, it quickly
gained prominence due to its simplicity, efficiency, and reliability. The standardisation of

17

Ethernet by the IEEE 802 committee further bolstered its widespread adoption, setting the
stage for its dominance in network communications.

3.2.2 The IEEE 802 Standard and Ethernet Layers

The IEEE 802 standard, a comprehensive set of networking protocols, has been
instrumental in shaping Ethernet technology. This standard delineates various layers of
network communication, ensuring interoperability and system robustness. Each layer,
from the physical medium to the network interface, plays a pivotal role in the transmission
of data, defining the operational parameters and interaction mechanisms.

3.2.3 Physical Layer (PL)
This layer is responsible for the physical transmission of data, defining the electrical and
physical specifications for devices. It includes the layout of pins, voltages, line impedance,
cable specifications, signal timing, and frequency. The PHY layer's primary purpose is to
establish, maintain, and deactivate the physical link between communicating network
systems.

3.2.4 Data Link Layer (MAC & LLC)

Divided into two sub-layers – the Logical Link Control (LLC) and the Media Access
Control (MAC), the data link layer is responsible for node-to-node data transfer and error
detection and correction. The MAC sub-layer manages protocol access to the physical
network medium, while the LLC provides flow and error control.

● Media Access Control (MAC): MAC is a sub-layer that controls protocol access
to the physical network medium. It addresses devices uniquely at the hardware
level and facilitates multiple devices to communicate within a network. MAC
addresses are unique 6-byte codes assigned to every device on an Ethernet
network.

● Logical Link Control (LLC): This sub-layer manages communication between

devices over a single link of a network. LLC provides multiplexing mechanisms
that allow different network protocols to coexist within a multipoint network and
offers flow control, error checking, and synchronization.

3.2.5 Network and Transport Layers

Although not defined explicitly in the IEEE 802 standard for Ethernet, these layers are
crucial in broader networking contexts. They manage data routing, delivery, and integrity
across complex networks.

18

3.2.6 Ethernet Frame Structure

The Ethernet frame is the fundamental unit of data transmission in Ethernet networks. It
consists of several fields, each serving a specific purpose in the communication process.
The frame starts with a preamble and SFD (Start Frame Delimiter), followed by
destination and source MAC addresses, type/length field, payload, and ends with a Frame
Check Sequence (FCS) for error checking.

● Preamble and Start Frame Delimiter (SFD): The frame starts with an 8-byte
preamble (7 bytes) and SFD (1 byte). The preamble helps in synchronizing the
receiver before actual data is sent.

● Destination MAC Address: This 6-byte field specifies the recipient of the frame.

● Source MAC Address: This 6-byte field specifies the sender of the frame.

● Type/Length: A 2-byte field indicating the type of protocol or the length of the

payload.

● Payload/Data: The actual data being transmitted, which varies in size.

● Pad: It guarantees a minimum length.

● Frame Check Sequence (FCS): A 4-byte field used for error checking. The
sender calculates the FCS based on the frame's data and adds it to the frame. The
receiver recalculates it for error detection.

Figure 3.1: Ethernet II Frame

4 Software Tools

4.1 Visual Studio

Visual Studio is an advanced integrated development environment (IDE) developed by
Microsoft, primarily known for its efficiency and versatility in various programming
domains, including embedded C programming. It stands out as a popular choice among
developers for creating, testing, and deploying embedded systems.

19

Figure 4.1: VS Code Flow

4.1.1 Key Features of Visual Studio in Embedded C Programming
Comprehensive Integrated Development Environment: Visual Studio integrates essential
tools like a code editor, debugger, and project management utilities into one platform,
streamlining the development process for embedded systems.

4.1.2 Advanced Debugging Tools

The IDE excels with its sophisticated debugging features, which are crucial for the
complex troubleshooting required in embedded C programming.

4.1.3 IntelliSense and Code Analysis
With IntelliSense for smart code completions and powerful code analysis tools, Visual
Studio aids in writing efficient and error-free code, a critical aspect in resource-constrained
embedded environments.

4.1.4 Cross-platform Development Capabilities

Its support for cross-platform development enables programmers to create code
compatible with various hardware and operating systems, a common necessity in the
embedded systems landscape.

4.1.5 Rich Libraries and APIs Access

The IDE offers extensive libraries and APIs, simplifying many tasks in embedded
programming and providing robust solutions for common challenges.

20

4.1.6 Vibrant Community and Consistent Support

A strong community and continuous support from Microsoft ensure that developers have
access to help, new trends, and regular updates, keeping the tool relevant and effective.

4.1.7 Customizability with Extensions

The ability to customize Visual Studio with various plugins and extensions allows
developers to tailor the environment to the specific needs of their embedded projects.

4.2 S32 Design Studio IDE: An In-depth Overview

S32 Design Studio IDE stands as a comprehensive development environment tailored
specifically for the demands of automotive applications and high-reliability
microcontrollers and processors. This robust software platform offers extensive support
across multiple operating systems including Windows, Ubuntu, Debian, and CentOS. It is
made available to users at no financial cost, embodying an accessible solution for
developers worldwide.

4.2.1 Cross-Platform Compatibility

One of the key features of S32 Design Studio IDE is its cross-platform compatibility. This
flexibility allows developers to seamlessly operate across various systems, catering to
diverse development environments and requirements.

4.2.2 Comprehensive Development Toolkit

At its core, S32 Design Studio IDE amalgamates essential development tools within a
single package. It incorporates the functionality of the Eclipse IDE for editing, the GCC
for compiling, and the GDB for debugging, streamlining the development workflow. This
integration facilitates a cohesive and efficient development experience, from writing code
to troubleshooting and optimization.

4.2.3 No-Cost Accessibility

The IDE's free availability stands as a testament to its commitment to democratizing
development resources. By removing financial barriers, it ensures that developers and
organizations, regardless of size or budget, can access high-quality development tools.
This approach fosters innovation and development within the automotive and
microcontroller sectors.

4.2.4 Integration with NXP's Ecosystem

Enhancing its utility, S32 Design Studio IDE is intricately integrated with NXP's suite of
tools and software. This integration provides a seamless development experience, enabling
users to leverage NXP's advanced technologies and solutions efficiently. It supports a
broad spectrum of NXP products, accommodating various architectures and facilitating
versatile project development.

21

4.2.5 Embedded Software Development

Designed with embedded software in mind, the IDE supports the S32 Software
Development Kit (SDK), FreeRTOS, among other tools, offering a robust foundation for
embedded software creation. This comprehensive support ensures developers have access
to the necessary resources to develop, test, and deploy embedded systems efficiently.

4.2.6 Compatibility with Multiple Compilers and Debuggers
Acknowledging the diversity in development preferences, S32 Design Studio IDE is
compatible with a variety of compilers and debuggers. It supports NXP GCC, Green Hills,
IAR compilers, and features a GDB interface for debugging. This compatibility allows
developers to choose the tools that best fit their project needs and preferences.

4.2.7 Specialized Tools for Advanced Projects

For projects with specific requirements, such as vision and radar applications, the IDE
includes specialized tools like the NXP APU Compiler. These tools address the unique
needs of advanced projects, enabling developers to tackle complex tasks with precision
and efficiency.

4.3 Wire shark

Wireshark is a highly versatile and powerful network packet analyzer. It is used for
network troubleshooting, analysis, software and communications protocol development,
and education.

4.3.1 Key Details

4.3.2 History

Wireshark was initially released around 1998 by Gerald Combs as "Ethereal." When
Combs joined CACE Technologies in 2006, he renamed the project Wireshark due to
trademark issues. Over the years, Wireshark has been supported and sponsored by various
organizations, with Sysdig becoming its primary sponsor in 2022 and establishing the
Wireshark Foundation in 2023

4.3.3 Functionality

Wireshark captures and analyzes network packets in real time. It can dissect and display
the contents of packets, with detailed information about each packet's structure and
content. Wireshark supports a wide range of network protocols and can read packets from
various types of networks, including Ethernet, IEEE 802.11 (Wi-Fi), PPP, and loopback
networks.

22

4.3.4 Data Analysis

It allows users to browse captured network data using a graphical user interface or via a
command-line utility called TShark. Users can apply filters to focus on specific types of
traffic, and it's possible to edit or convert captured files programmatically.

4.3.5 VoIP Analysis and More

Wireshark can detect VoIP calls in the traffic and, in some cases, play the media flow. It
also supports capturing raw USB traffic and wireless connections.

4.3.6 Compatibility

Wireshark uses pcap (packet capture) to capture packets, meaning it can capture packets
on networks supported by pcap. Its native file formats are the libpcap format and pcapng
format, which are compatible with other network analyzers and tools.

4.3.7 Security Considerations

Capturing raw network traffic can require elevated privileges on some platforms. Earlier
versions of Wireshark often ran with superuser privileges, but newer versions use
dumpcap for traffic capture, reducing the need for elevated privileges.

4.3.8 Color Coding

To assist in analysis, Wireshark can color-code packets based on user-defined rules,
making it easier to identify different types of traffic.

5 Hardware

5.1 S32K344 EVB

The S32K344 EVB is an evaluation and development board designed for general-purpose
industrial and automotive applications. It's based on the 32-bit Arm Cortex®-M7 S32K3
MCU in a 172 MaxQFP package.

5.1.1 Core

The board features the Cortex-M7 core, which is a high-performance processor designed
for a variety of applications.

5.1.2 Debug Interface

It supports JTAG/SW (Serial Wire) for debugging, which is a standard method for
connecting a debugger to a device.

23

5.1.3 Safety and Security Features

It offers dual cores configured in lockstep mode, ASIL D safety hardware, and HSE
security engine. ASIL D is the highest level of automotive safety integrity, and HSE (High
Security Engine) indicates advanced security features.

5.1.4 Connectivity and Power

The board supports advanced connectivity options and is designed for low power
consumption, which is crucial for automotive and industrial applications.

5.1.5 Over-The-Air (OTA) Support

This feature allows for remote updating of the software running on the device, which is
particularly useful in automotive applications where direct physical access to the control
units can be challenging.

5.1.6 Expansion Options

The board is compatible with the Arduino® UNO pin layout, allowing for a broad range
of expansion board options. This makes it suitable for quick application prototyping and
demonstrations.

5.1.7 CMSIS Drivers

It includes a CMSIS-Driver for the VIO interface, an abstraction for peripherals typically
used in example projects. For instance, the Blinky example uses this interface to create a
blinking light with the USER LED on the board.

5.1.8 Key Ethernet Features
The chip we are examining exhibits versatile Ethernet capabilities, primarily through its
support for both MII and RMII interfaces. Below are the salient features of its Ethernet
functionalities:

5.1.8.1 Interface Support and Performance

● The chip is equipped with a 4-bit Media Independent Interface (MII),
capable of operating at frequencies of 2.5, 25, or 50 MHz. This allows the
MII to facilitate data transmission speeds of 10, 100, or 200 Mbps.

● It also includes a 2-bit Reduced Media Independent Interface (RMII),
operating at a steady frequency of 50 MHz, and capable of handling speeds
of 10 or 100 Mbps.

● Additionally, the chip features a 4-bit MII-Lite interface, designed to
function at lower frequencies of 2.5 or 25 MHz.

24

5.1.8.2 Precision Timing and Data Rate

● The chip supports four Precision Time Protocol (PTP) outputs, which can
be effectively utilised through Direct Memory Access (DMA) triggering.

● It boasts a substantial data rate capacity, supporting up to 200 Mbps on the
Ethernet MII interface.

5.1.8.3 Memory and Storage Capacities
● The chip is designed with a sizable Media Transfer Layer (MTL) Receive

FIFO (First In, First Out), which has a capacity of 8192 bytes.
● Similarly, the MTL Transmit FIFO also holds 8192 bytes, ensuring

efficient data handling during transmission processes.

These features collectively enhance the chip's Ethernet performance, making it suitable
for various applications that require reliable and high-speed data communication.

5.1.9 Usage

The S32K344 EVB is used primarily in industrial and automotive applications, where high
performance, safety, security, and low power consumption are critical. It is used for
developing, testing, and prototyping applications before they are deployed in actual
automotive or industrial systems.

This board to write and test software that will run on the S32K3 microcontrollers. It can
be used to simulate real-world scenarios and ensure that software behaves as expected in
various conditions.

In summary, the S32K344 EVB is a versatile, high-performance development board suited
for demanding applications in the automotive and industrial sectors, providing developers
with a platform for creating, testing, and prototyping sophisticated applications.

5.2 PE Micro Debugger

Figure 5.1: PE Micro Hardware Debugger

25

PEmicro, or P&E Microcomputer Systems, is known for its embedded tools for flash
programming and development. They offer a range of tools and solutions for different
development and debugging needs.

5.2.1 Development and Debugging Tools

PEmicro provides tools that support both C-level and assembly-level development. This
includes debugger software, hardware interfaces, and complete packages that integrate
additional software tools into a cohesive development environment. For high-level
devices, such as ColdFire and Power PC Nexus, their full C-level development packages
include the GNU C compiler.

5.2.2 Hardware Interfaces

They offer hardware interfaces for a variety of project needs, whether for cost-sensitive
projects or those requiring increased flexibility. These interfaces can transition seamlessly
to production, making them versatile for different stages of product development.

5.2.3 Flash Programming Solutions

PEmicro also caters to users who need to program the FLASH memory of their target
system. This is particularly useful for those who already have a debugger and need a fast
and affordable programming solution. Their solutions include both the 'PROG' line of flash
programming software and hardware solutions like Cyclone and Multilink.

5.2.4 Custom PC Applications

PEmicro has created libraries (like DLLs for Windows and SOs for Linux) that allow users
to access the low-level functionality of PEmicro hardware interfaces. This feature is useful
for custom programming solutions, test and verification procedures, or any application
that requires interfacing with a microcontroller target from a PC.

PEmicro debuggers are used in various stages of product development, from initial design
and development to production. They are essential tools for developers working with
embedded systems, offering a range of solutions for programming, debugging, and
interfacing with microcontrollers and other embedded devices.

26

6 Ethernet Media Access Controller (EMAC) Architecture

Figure 6.1: EMAC System Level Block Diagram

Below is a detailed overview of the important blocks of the microcontroller or the EMAC
architecture that are necessary to understand for Ethernet firmware development, based on
the information from the reference manual of the S32K3xx microcontroller.

6.1 EMAC Core Features

6.1.1 MII and RMII Interfaces Support

● These interfaces provide 10/100 Mbps application support in compliance with the
IEEE802.3-2015 specifications.

● MII (Media Independent Interface) and RMII (Reduced Media Independent
Interface) are standards for connecting MAC to PHY (Physical Layer).

6.1.2 Time-Sensitive Networking and AVB Support

● Supports advanced applications such as time-aware shaping (IEEE802.1bv), time
synchronization (IEEE802.1AS-rev), and frame preemption (IEEE802.1Qbu) for
time-sensitive networking.

● Also supports media clock recovery and generation for Audio Video Bridging
(AVB).

6.1.3 AMBA 2.0 Interface Compatibility

● Provides compatibility with AMBA 2.0 for the AHB master and APB3 interface.

27

6.2 EMAC Additional Features

6.2.1 Automatic CRC and Pad Generation/Stripping

● The MAC can automatically generate and strip CRC (Cyclic Redundancy Check)
and padding in packets.

6.2.2 CRC Checking Control

● Provides the option to disable CRC checking.

6.2.3 Packet Gap Control

● Includes a programmable insert packet gap feature.

6.2.4 Source Address Insertion or Replacement

● Allows for the insertion or replacement of the source address in transmitted
packets.

6.2.5 VLAN Tagging and Processing

● Supports VLAN (Virtual Local Area Network) insertion, replacement, and
deletion in transmitted packets. It includes control for up to two VLAN tags and
queue or channel-based VLAN tags.

● Detects IEEE802.1Q VLAN tags in received packets with an option to delete these
tags.

6.2.6 Packet Filtering and Address Filtering

● Offers flexible address filtering modes, including up to two additional 48-bit
perfect DA (Destination Address) filters with masks for each byte, up to two 48-
bit SA (Source Address) comparison checks with masks for each byte, and a 64-
bit hash filter for multicast and unicast DA addresses.

● Provides options for promiscuous mode and passing all multi-cast addressed
packets.

6.2.7 Layer 3 and Layer 4 Filtering

● Supports filtering based on Layer 3 (IP) and Layer 4 (TCP/UDP) protocols over
IPv4 or IPv6.

6.2.8 Safety and Control Features

● Includes programmable safety watchdog timeout limits and the ability to control
the pulse per second (PPS) output signal.

28

6.2.9 MDIO Interface

● Provides an MDIO (Management Data Input/Output) clause 22 and clause 45
interface for the configuration and management of the PHY device.

6.2.10 Network Statistics and Management

● Supports network statistics with MAC management (RMON) counters.
● IEEE 1588 Support: Enables IEEE 1588 sub-nanoseconds support for precise

time protocol applications.
● Frame Preemption and MMC Counters: Supports frame preemption and

provides MMC (Management Counters) for tracking various aspects of MAC
operation.

6.3 Microcontroller DMA

The DMA (Direct Memory Access) controller within the S32K3xx microcontroller is a
sophisticated component designed to handle high-speed data transfers for network
communications, particularly Ethernet packets.

6.3.1 DMA Inclusions

Independent Transmit (Tx) and Receive (Rx) Engines:

● The Tx engine manages data transfers from system memory to the Media Transfer
Layer (MTL) interface.

● The Rx engine, conversely, facilitates data movement from the MTL interface to
the system memory.

● This design is optimised for packet-oriented data transfers, specifically for
Ethernet packets.

Control and Status Register (CSR) Space:

● Communication with the host system is conducted through CSR descriptor lists
and data buffers.

● This setup enables efficient management and transfer of data packets.

6.3.2 DMA Descriptors

6.3.2.1 Descriptor Lists and Channels

● The DMA supports up to two transmit and two receive descriptor lists, also known
as DMA channels.

● The base address for each list is set in the transmit and receive descriptor list
address registers.

29

6.3.2.2 Descriptor Ring Structure

● Descriptors are forward-linked, with the next descriptor always at a fixed offset
from the current one, controlled by the DMA_CH0_Control[DSL].

● The system uses the DMA Channel 0 Tx Descriptor Ring Length
(DMA_CH0_TxDesc_Ring_Length) and the DMA Channel 0 Rx Descriptor Ring
Length (DMA_CH0_RxDesc_Ring_Length) registers to program the number of
descriptors.

● After processing the last descriptor in a list, the DMA jumps back to the descriptor
in the list address register, creating a circular or ring structure for efficient
processing.

6.3.2.3 Efficient Data Movement
● DMA descriptors are designed for efficient data transfer with minimal intervention

from the host.
● The DMA controller can be programmed to issue interrupts in various situations,

like the completion of packet transmission and reception.

6.3.2.4 Descriptor Memory Allocation

● Descriptor lists reside in the application's physical memory address space.
● Each descriptor can point to a maximum of two buffers in the system memory,

allowing for flexible memory management and avoiding the need for contiguous
memory allocation.

6.3.3 Data Buffers

● Data buffers are located in the application’s physical memory space.
● Each buffer can contain an entire packet or a part of a packet, but cannot exceed

the size of a single packet.

6.3.4 Data and Buffer Status

● Buffers are dedicated solely to data storage.
● The status of each buffer is maintained within the descriptor, ensuring proper

tracking and management of the data.

6.3.5 Data Chaining and Packet Handling

● The concept of data chaining allows for packets that span multiple data buffers.
● However, a single descriptor cannot handle multiple packets.
● When an End Of Packet (EOP) signal is detected, the DMA controller moves to

the data buffer of the next packet, ensuring efficient and sequential processing of
network data.

30

6.3.6 DMA Controller Bus Burst Access

● When the AHB interface is configured for address-aligned beats, both the transmit
and receive DMA engines ensure that the first burst transfer initiated by the AHB
is less than or equal to the configured Programmable Burst Length (PBL) value.

● Subsequent beats start at an address aligned to this value.
● The DMA can align the address for beats up to size 16 (for PBL > 16) because it

does not support more than INCR16.

6.3.7 DMA Application Data Buffer Alignment

● There are no specific restrictions on the start address alignment for transmit and
receive data buffers. For example, in systems with 32-bit memory, the start address
for buffers can be aligned to any of the four bytes.

● However, DMA always initiates write transfers with an address aligned to the bus
width, and dummy data (old data) is present in the invalid byte lanes.

● This alignment is particularly relevant during the beginning or end of an Ethernet
packet transfer, and the software driver must discard the dummy bytes based on
the start address of the buffer and the size of the packet.

6.3.8 DMA Buffer Size Calculations

● The DMA does not update the size fields in the transmit and receive descriptors
but only the status fields (RDES and TDES).

● The driver is responsible for performing the size calculations.
● The transmit DMA transfers the exact number of bytes indicated by the buffer size

field of TDES2 to the MAC.
● For the received DMA, the amount of valid data in a buffer is indicated by the

buffer size fields in DMA Channel Rx Control (DMA_CH0_Rx_Control) minus
the data buffer pointer offset.

● The offset is zero when the data buffer pointer is aligned to the data bus width.
● For a descriptor marked as last, the buffer may not be full, and the driver must

compute the amount of valid data in this final buffer.

6.3.9 DMA Arbiter

The arbiter inside the DMA module performs the arbitration between the transmit and
receive channel accesses to the AHB master interface. Two types of arbitrations are
supported:

● Round-Robin: If DMA_Mode[DA] = 0, and both transmit and receive DMAs
simultaneously request access, the arbiter allocates the data bus in ratio sets defined
in DMA_Mode[PR].

● Fixed-Priority: If DMA_Mode[DA] = 1, the receive DMA is prioritised over the
transmit DMA for data access by default. If DMA_Mode[TXPR] = 1, the transmit
DMA is prioritised over the receive DMA as defined in the settings.

31

6.4 MTL Block

The Media Transfer Layer (MTL) in the S32K3xx microcontroller series plays a crucial
role in managing data flow between the system memory and the MAC (Media Access
Control) block. Here is a detailed account of the MTL, specifically focusing on the
transmit path, transmit control word, transmit operation, and the initialization flow:

6.4.1 MTL Overview

● Function: Provides a FIFO (First-In-First-Out) memory interface to buffer and
regulate packets between system memory and MAC.

● Data Transfer: Enables data transfer between the system clock and MAC clock
domains.

● Data Paths: Has two distinct paths - transmit and receive paths.
● Communication: Interacts with the host through ATI (Application Transmit

Interface) on the transmit path and ARI (Application Receive Interface) on the
receive path.

6.4.2 Transmit Path

● Internal DMA Handling: Manages all transactions for the transmit path through
ATI, pushing Ethernet packets read from system memory to the corresponding
queue.

● Packet Transfer: An Ethernet packet is transferred to MAC when the queue
reaches its threshold in Threshold mode or if the complete packet is in the queue
in Store-and-Forward mode. The End Of Packet (EOP) status is then transferred
back to the internal DMA from MAC.

6.4.3 Transmit Control Word
The transmit control word contains essential control information for packet transmission,
provided through the ATI interface. It includes:

● Packet length (applicable if DCB is enabled with WFQ scheduling algorithm).
● CRC pad control.
● Source address insertion control.
● VLAN insertion and replacement control, along with VLAN tags for outer and

inner VLANs.
● TCP/IP checksum insertion control.
● One-step timestamping control correction.
● Transmit timestamp enable.

32

6.4.4 Transmit Operation Modes

● Threshold Mode: The default mode where data is forwarded to MAC as soon as
the number of bytes in the queue crosses a configured threshold level or when the
end of a packet is written before the threshold is reached.

● Store-and-Forward Mode: In this mode, MTL pops the packet out to MAC only
under certain conditions like when a complete packet is stored in the queue, the
transmit FIFO is almost full, or the ATI watermark becomes low. This mode allows
packet transmission even if the packet length is larger than the transmit queue size.

6.4.5 Initialization Flow

● Post-Reset State: MTL is ready to manage data flow between DMA and MAC
after a reset.

● Single-Transmit Queue Configuration: There are no specific initialization
requirements for enabling MTL.

● Multiple-Transmit Queue Configuration: Requires initialization of the queue
size for each of the queues by programming MTL_TxQ0_Operation_Mode[TQS]
corresponding to a transmit queue. The MAC block and internal DMA controllers
must also be initialized, with DMA controllers enabled through their respective
Control and Status Registers (CSRs).

6.4.6 MTL Receive Path

● Packet Reception: The MAC (Media Access Control) block sends packets to the
MTL receive module and pushes them into the receive queue.

● Queue Status Indication: MTL indicates the status or fill level of the queue to the
application or DMA (Direct Memory Access) under two scenarios:

● When the queue's fill level crosses the configured receive threshold, as set in
MTL_RxQ0_Operation_Mode[RTC].

● When the MTL receive module receives a complete packet in Store-and-Forward
mode.

● Queue Fill Level: MTL also communicates the fill level of the queue. This is
essential for the DMA to initiate preconfigured burst transfers to the AHB
(Advanced High-performance Bus) interface.

6.4.7 MTL Receive Operation

The detailed operation of the MTL in the receive path is as follows:

● Receiving Packets: The MAC sends data packets to the MTL receive module,
which are then queued for processing.

● Indicating Queue Status: MTL monitors and indicates the queue status (fill level)
based on two key operational modes:

33

● Threshold Mode: In this mode, MTL signals the application or DMA when the
amount of data in the queue reaches a predefined threshold level set in
MTL_RxQ0_Operation_Mode[RTC].

● Store-and-Forward Mode: Here, MTL waits until it receives a complete packet
before indicating the queue status. This mode ensures that only complete packets
are forwarded, improving data integrity.

● Queue Fill Level for DMA: The fill level of the queue is crucial for managing
DMA operations. MTL's indication of the queue fill level allows the DMA to
effectively plan and execute burst transfers to the AHB interface, optimizing data
transfer and system performance.

6.4.8 Threshold Mode

In the default Threshold mode, MTL reads data and signals its availability to the
application or DMA under two conditions:

● When the data bytes in the receive queue reach the amount set as the threshold in
MTL_RxQ0_Operation_Mode[RTC] and MTL_RxQ1_Operation_Mode[RTC].

● When a full packet of data is received into the queue.

6.4.9 Store-and-Forward Mode

● Functionality: In Store-and-Forward mode (activated when
MTL_RxQ0_Operation_Mode[RSF] = 1), the initial locations in the receive queue
are reserved for status words before the start of packet (SOP) is written.

● Packet Handling: A packet is read out only after it is completely written into the
receive queue. This mode ensures that only complete and valid packets are
processed and forwarded, enhancing data integrity.

● Error Packet Handling: All error packets are dropped if configured through
MTL_RxQ0_Operation_Mode[FEP], ensuring that only valid packets are read and
forwarded to the application.

6.5 MAC Block

The MAC (Media Access Control) in the S32K3xx microcontroller series supports both
the MII (Media Independent Interface) and RMII (Reduced Media Independent Interface)
PHY interfaces. It consists of three main components: MTI (MAC Transmit Interface),
MRI (MAC Receive Interface), and MCI (MAC Control Interface). Here is a detailed
overview of both MAC transmission and reception processes:

6.5.1 MAC Transmission Process

● Initiation of Transmission: The transmission process begins when the Media
Transfer Layer (MTL) pushes in data with the Start Of Packet (SOP) signal
asserted.

34

● Data Acceptance and Transmission: After the SOP signal is detected, the MAC
accepts the data and begins transmitting it to either the RMII or MII interface.

● Completion of Transmission: Upon receiving the End Of Packet (EOP) signal,
the MAC performs one of the following steps,

○ Completes the normal packet transmission and sends the transmission
status back to the MTL.

○ In cases of a normal collision (specifically in Half-Duplex mode), the MAC
sends retry requests during transmission until either the packet is
successfully transmitted or the maximum number of retry requests is
exhausted.

6.5.2 MAC Reception Process

● Detection of Frame Data: The MAC initiates the receive operation by detecting
a state-of-frame data on the RMII or MII interface.

● Preamble and SFD Stripping: It then strips the preamble and Start Frame
Delimiter (SFD) before processing the Ethernet packet.

● Address Filtering Management (AFM): The MAC's AFM checks the header
fields (Source Address - SA and Destination Address - DA) of the incoming packet
for filtering. It also verifies the Cyclic Redundancy Check (CRC) contained in the
packet's Frame Check Sequence (FCS) field.

● Storage of Received Packet: The MAC stores the received packet in a shallow
buffer until address filtering is completed.

● Dropping Packets Failing Address Filter: If a packet fails the address filter, the
AFM drops it.

6.6 Interrupts

The Ethernet Media Access Controller (EMAC) in the S32K3xx microcontroller series
incorporates a sophisticated interrupt system designed to efficiently handle various
network events and reduce CPU load. Here is a detailed account of the interrupt system:

6.6.1 Interrupt Coalescing

● Functionality: EMAC supports interrupt coalescing, which reduces the number of
interrupts generated by the module, thereby lowering CPU load.

● Interrupt Status Tracking: The MAC Interrupt Status (MAC_Interrupt_Status)
register captures various interrupt events. The generation of an interrupt is
contingent upon the corresponding interrupt enable field being set to 1, and is based
on the event status in the Status registers.

● Interrupt Mode (INTM) Field: This field determines whether the interrupt signal
is a level signal or a pulse signal.

35

6.6.2 Interrupt Requests

● Common Interrupts: The MAC Interrupt Enable (MAC_Interrupt_Enable)
register and the MAC Interrupt Status (MAC_Interrupt_Status) register are used
for common interrupts.

● MMC Receive Interrupts: These are controlled by the MMC Receive Interrupt
Mask (MMC_Rx_Interrupt_Mask) and the MMC Receive Interrupt
(MMC_Rx_Interrupt).

● MMC FPE Receive Interrupts: These are governed by the MMC FPE Receive
Interrupt Mask (MMC_FPE_Rx_Interrupt_Mask) and the MMC Receive Packet
Assembly Error Counter Interrupt Status (MMC_FPE_Rx_Interrupt).

● MTL Debug and EST Interrupts: Managed by the MTL Debug Control
(MTL_DBG_CTL), MTL Debug Status (MTL_DBG_STS), MTL EST Interrupt
Enable (MTL_EST_Intr_Enable), and MTL EST Status (MTL_EST_Status).

● MTL Rx Parser Interrupts: Controlled through the MTL Rx Parser Interrupt
Control Status (MTL_RXP_Interrupt_Control_Status).

6.6.3 DMA Channel Interrupts

● Per Channel Interrupts: Each receive channel has a dedicated interrupt
(sbd_perch_rx_intr_o), and the number of these interrupts corresponds to the
number of transmit/receive queues (max_dma_ch), which is 2.

● Common Interrupts: The sbd_intr_o common interrupt is a level signal that
activates when a corresponding interrupt event source is present in the DMA
Interrupt Status (DMA_Interrupt_Status) register. This register contains event
source fields corresponding to each DMA channel, the MAC transaction layer, and
MAC blocks.

6.6.4 Transfer Complete Interrupt Behaviour

● Interrupt Mode (INTM): When INTM is set to 1, the signals indicate the values
of the corresponding DMA_CH0_Status[RI] and DMA_CH0_Status[TI] fields
when these fields are set to 1. These signals are level signals that are cleared by
writing 1 to these fields. They do not assert when DMA_CH0_Status[RI] or
DMA_CH0_Status[TI] is 0.

This interrupt system, with its various components and functionalities, is integral to the
efficient and effective management of network events and data processing within the
EMAC of the S32K3xx microcontroller series. It ensures timely and appropriate responses
to network conditions, thereby optimizing the controller's performance and reliability.

6.7 External Module Signals

6.7.1 MII_RMII_TXCLK (Clock)

● Type: Input (I)

36

● Description
● In the MII (Media Independent Interface) configuration, this transmission

clock is provided by the external PHY (Physical Layer).
● The clock operates at a frequency of 25 MHz in 100 Mbps mode and at 2.5

MHz in 10 Mbps mode.
● All transmission signals generated by the MAC (Media Access Control)

are synchronized with this clock.
● This clock signal is essential for all PHY interfaces, ensuring proper timing

and synchronization for data transmission.

6.7.2 MII_RX_CLK (Clock)

● Type: Input (I)
● Description

● This clock is for the MII and RMII (Reduced Media Independent Interface)
interfaces, provided by the external PHY. The clock operates at 25 MHz in
100 Mbps mode and at 2.5 MHz in 10 Mbps mode. All MII receive signals
that MAC receives are synchronous to MII_RX_CLK.

6.7.3 EMAC_PPS[3:0] (Signals)

● Type: Input/Output (I/O)
● Description

● This group of signals is used as pulse per second in Output mode and as
media clock generation trigger in Input mode.

● They trigger input to the Device Under Test (DUT) to capture presentation
time.

● The signals can be defined as pulse or level signals based on the
presentation control value of MAC PPS Control (MAC_PPS_Control).

6.7.4 MII_RMII_TX_EN (Signal)

● Type: Output (O)
● Description

● This signal is driven by MAC and performs multiple functions depending
on the selected PHY interface.

● In MII mode, it indicates that valid data is being transmitted to the
phy_txd_o bus and is synchronous to MII_RMII_TX_CLK.

● In RMII mode, it indicates that valid data is being transmitted to the
phy_txd_o bus and is synchronous to MII_RMII_RX_CLK.

6.7.5 MII_RMII_TXD[3:0] (Signals)

● Type: Output (O)

37

● Description
● This is a group of transmit data signals driven by MAC.
● They perform multiple functions depending on the selected PHY interface.
● In MII mode, bits [3:0] provide the MII transmit data nibble, which is valid

only when the signal is high. It is synchronous to MII_RMII_TX_CLK.
● In RMII mode, bits [1:0] provide the RMII transmit data. The data is valid

only when the signal is high. It is synchronous to MII_RMII_TX_CLK.

6.7.6 MII_CRS (Signal)

● Type: Input (I)
● Description

● Valid only in MII (Media Independent Interface) mode.
● The PHY (Physical Layer) drives this signal high when the transmit or

receive medium is not idle and low when both mediums are idle.
● The signal is not synchronous to any clock.

6.7.7 MII_COL (Signal)

● Type: Input (I)
● Description

● Valid only in MII mode.
● The PHY drives this signal high when a collision is detected on the

medium.
● This signal is also not synchronous to any clock.

6.7.8 MII_RMII_RX_DV (Signal)

● Type: Input (I)
● Description

● Driven by the PHY.
● It performs multiple functions depending on the selected PHY interface.
● In MII mode, it indicates that the data on the MII_RXD bus is valid. It

remains high continuously from the first recovered byte or nibble of the
packet through the final recovered byte or nibble of the packet. It is
synchronous to MII_RX_CLK.

● In RMII mode, it contains the CRS and data valid information of the receive
interface. It is synchronous to MII_RMII_TX_CLK.

6.7.9 MII_RMII_RX_ER (Signal)

● Type: Input (I)
● Description

38

● In MII mode, indicates an error or carrier extension in the received packet
of the MII_RXD[3:0] bus. It is synchronous to MII_RX_CLK.

● Not used in RMII mode.

6.7.10 MII_RMII_RXD[3:0] (Signals)

● Type: Input (I)
● Description

● These are a group of data signals received from the PHY.
● In MII mode, bits [3:0] provide the MII receive data nibble, valid only

when the MII_RMII_RX_DV signals are high. They are synchronous to
MII_RX_CLK.

● In RMII mode, bits [1:0] provide the RMII receive data, valid only when
the MII_RMII_RX_DV signal is high. They are synchronous to
MII_RMII_TX_CLK.

6.7.11 MII_RMII_MDC

● Type: Output (O)
● Description

● MAC provides timing reference for MII_RMII_MDIO or MII through this
periodic clock.

● The application clock generates this clock through a clock divider
controlled by MAC_MDIO_Address[CR].

6.7.12 MII_RMII_MDIO (Signal)

● Type: Input/Output (I/O)
● Description

● MDIO uses this signal to transfer control and data information to PHY.

6.8 PHY Interfaces

The S32K344 microcontroller series supports the use of PHY (Physical Layer) interfaces,
providing essential communication capabilities for networking applications. Here's a
detailed overview of how the PHY interfaces are utilized in this module:

6.8.1 Supported Modes

6.8.1.1 RMII 10/100 Mbps Interface:
● The Reduced Media Independent Interface (RMII) operates at speeds of 10/100

Mbps.

39

● It is a more streamlined version of the MII interface, requiring fewer data lines for
operation.

6.8.1.2 MII 10/100 Mbps Interface:

● The Media Independent Interface (MII) also operates at 10/100 Mbps speeds.
● It is a standard interface used to connect a Fast Ethernet (i.e., 100 Mbps) MAC

block to a PHY chip.

6.8.2 Interface Selection

● Phy_intf_sel Input Signal: This signal determines which mode (RMII or MII) is
selected. The signal is sampled at reset.

● Configuration Registers: The MAC_Configuration[PS] and
MAC_Configuration[FES] registers are used to select the operating speed of the
chosen mode.

6.8.3 RMII Reference Clock

● The RMII reference clock, which operates at 50 MHz, can be fed to the IP
(Intellectual Property) either from an external source or internally from a Phase-
Locked Loop (PLL) on the System on Chip (SoC).

6.8.4 PHY Register Access

The module provides access to the PHY registers through the Station Management
Interface (SMA), a two-wire interface consisting of:

● MDC (Management Data Clock): A clock line for the MDIO interface.
● MDIO (Management Data Input/Output): A data line for bidirectional data

transfer with the PHY.
● Operating Frequency of MDC: According to the IEEE 802.3 specification, the

maximum operating frequency of MDC is 2.5 MHz. The system clock derives this
frequency using a divider.

● MDC Clock Frequency Configuration: The MAC_MDIO_Address[CR] register
programs the generation of different MDC clock frequencies.

7 Microcontroller Clocks and Port Configuration and Pin Assignments

This section outlines the process of various clock configurations, port configuration
settings and pin assignments applied to the S32K344 microcontroller as per requirements
of the Ethernet MAC (Media Access Controller) to enable ethernet communication.

In Ethernet applications, a precise clock configuration is essential for managing data
transmission rates and interfacing with PHY devices through RMII or MII interfaces. The
figures detail how the PLL (Phase-Locked Loop) is configured to generate the required

40

clock frequencies for the Ethernet MAC (Media Access Controller) to operate correctly
under IEEE 802.3 standards.

Figure 7.1: EMAC Clock Configuration 1

Figure 7.2: EMAC Clock Configuration 2

41

Figure 7.3: EMAC Clock Configuration 3

Various I/O ports on the S32K344 microcontroller were also configured to allow
interfacing with the Ethernet PHY and enable Ethernet functionality.

Figure 7.4: Port Configuration

Configurations such as pin assignments required to utilize Ethernet capabilities required
allocation of pins for RMII and MII data lines, for TX (transmit) and RX (receive) lines,
management data clocks (MDC), and management data input/output (MDIO) lines for
PHY configuration and status monitoring. These pin assignments are critical for ensuring
that the microcontroller can communicate effectively with the Ethernet PHY, manage data
transmission and reception, and maintain synchronization with network protocols.

42

Figure 7.5: Pin Assignments 1

Figure 7.6: Pin Assignments 2

This overall process is essential for configuring the S32K344 microcontroller for Ethernet
communication, with precise setup of clocks, ports, and pins for multiple peripherals.

8 Firmware Development

This section provides the detailed implementation of the firmware for the whole
architecture as described above including initializing of each important block as well as
important functions for receive and transmit operations.

8.1 Initializing ENET

This function is responsible for initializing the Ethernet controller. It performs several
critical setup tasks, including disabling the MPU (Memory Protection Unit) to allow the
Ethernet module access to the memory, setting up the transmit buffer protection

43

semaphore, and configuring the Ethernet controller with the appropriate settings for
operation (such as MII/RMII mode, buffer sizes, and MAC addresses).

Std_ReturnType Enet_Init()

{

 Std_ReturnType xRet = E_OK;

 Enet_DMA_Init();

 Enet_MAC_Init();

 Enet_MTL_Init();

 return xRet;

}

8.2 Initializing DMA

This function initializes the DMA (Direct Memory Access) controller for the Ethernet
interface, which is used for efficient data transfer between memory and the Ethernet MAC
without involving the CPU for data movement, reducing the CPU load. It first initiates a
software reset of the DMA by setting a bit in the DMA_Mode register, and then waits for
the reset process to complete. Then, it configures the DMA System Bus mode for optimal
data transfers. This involves enabling address-aligned beats and mixed burst mode for
handling various burst lengths during data transfers. It also sets up individual DMA
channels for transmit and receive operations, including burst lengths and the number of
descriptors. And finally, it utilizes the EnetBuffersInit function to initialize and link the
transmit and receive buffer descriptors, also setting up tail pointers for the DMA to know
the end of the descriptor lists.

static void Enet_DMA_Init(void)

{

/*providing a software reset by set the 0 bit of DMA Mode register*/

 IP_EMAC-> DMA_Mode |= 0x1U;

/* initializing dma sysbus mode */

/* When the AHB interface is configured for address-aligned beats .The DMA can

only align the address for beats up to size 16 for the AHB interface because

it does not support

 more than INCR16.

 pg no 2936*/

#if (IP_EMAC-> DMA_Mode & 0x1U == 0x0U) /* wait for reset process*/

 IP_EMAC-> DMA_SysBus_Mode = 0x1000U /* enabling address aligned beats */

 |0x4000U; /* enabling mixed burst mode for burst length 16 or more*/

/* Check next 5 lines again for alignment */

 IP_EMAC-> DMA_CH0_Control &= 0xFFFEFFFFu /* disabling PBLx8 for set

burst length more than 16 */

44

 | 0x100000u; /*Set the DSL value

depending on the 128-bit to skip between two unchained descriptors

*/

 IP_EMAC-> DMA_CH0_Rx_Control |= 0x100000u; /* set receive burst

length 16 */

 IP_EMAC-> DMA_CH0_Tx_Control |= 0x100000u; /* set transfer burst

length 16 */

 IP_EMAC-> DMA_CH0_RxDesc_Ring_Length = 0x4U; /* 4 Rx descriptors */

 IP_EMAC-> DMA_CH0_TxDesc_Ring_Length = 0x4U; /* 4 Tx descriptors */

 EnetBuffersInit();

/* set TX/RX pointer to the first descriptor*/

uint32_t* Tail_Ptr_TX = (&EnetTxDescriptors_Normal[4] + sizeof(int)); /*

Tail pointer of TX , last descriptor + 32*/

uint32_t* Tail_Ptr_RX = (&EnetRxDescriptors_Normal[4] + sizeof(int)); /*

Tail pointer of RX , last descriptor + 32*/

/*Initialize the receive and transmit descriptor list address with the base

address of the transmit and receive descriptor. Also, program the transmit and

receive tail pointer registers that indicates DMA about the available

descriptors */

IP_EMAC-> DMA_CH0_TxDesc_Tail_Pointer = (uint32_t) (Tail_Ptr_TX &

0xFFFFFFFCu);

IP_EMAC-> DMA_CH0_RxDesc_Tail_Pointer = (uint32_t) (Tail_Ptr_RX &

0xFFFFFFFCu);

/* Programing the DMA_CH(0)_Interrupt_Enable as normal interrupt summary */

IP_EMAC-> DMA_CH0_Interrupt_Enable |= 0x00008000u;

/* to start the receive and transmit DMAs */

IP_EMAC-> DMA_CH0_Rx_Control |= 0x1u;

IP_EMAC-> DMA_CH0_Tx_Control |= 0x1u;

uint32 bit14 = IP_EMAC-> DMA_SysBus_Mode & 0x4000u; /* checking of mixed

burst mode enable if so disable fixed burst mode */

#if (bit14 == 0x4000u)

 IP_EMAC-> DMA_SysBus_Mode &= 0xFFFFFFFEu; /* disabling fixed burst mode*/

#endif

#endif

}

45

8.3 Initializing MTL registers

This function initializes the MTL (MAC Transmission Logic) registers, which is important
as the MTL is responsible for managing the queues for packet transmission and reception.
The MTL configuration ensures efficient data handling and flow control at the MAC layer.
The function sets the operation mode for the MTL, affecting how it handles transmit and
receive queues. It then configures the mapping between receive queues and DMA
channels, allowing for efficient packet routing based on destination addresses or filter
settings. Finally, the function sets up the transmit and receive queues, including enabling
store-and-forward modes (which ensure that a packet is stored entirely before forwarding)
and defining queue sizes. This final part of the setup ensures that the queues can handle
the intended volume of data traffic efficiently.

static void Enet_MTL_Init(void)

{

 /* Initializing MTL operation for multiple transit and receive queues */

 IP_EMAC-> MTL_Operation_Mode &= 0xFFFFFF99u;

 /* If this field is 1, it indicates that the packets received in queue 1

are routed to a particular DMA channel as decided in the MAC receiver based on

the DMA channel number programmed in the L3-L4 filter registers, or the

Ethernet DA address. */

 IP_EMAC-> MTL_RxQ_DMA_Map0 |= 0x00001010u; /* Queue 0 & Queue 1

Enabled for DA-based DMA Channel Selection*/

 IP_EMAC-> MTL_TxQ0_Operation_Mode |= 0x0000000Au /* Transmit Queue

Enable & Transfer store and forward mode is selected*/

 |= 0x000F0000u; /* allocate queue size

of 4096 (4K) bytes , each queue according to datasheet is of 256 bytes of

block so 16 queues*/

 IP_EMAC-> MTL_RxQ0_Operation_Mode |=0x00000020u /*Enable Receive

Queue Store and Forward */

 |= 0x00024000u /*6- Full minus 4 KB,

that is full 4KB Threshold for Deactivating Flow Control (in half-duplex and

full-duplex modes) see data sheet*/

 |= 0x00000010u /*it indicates that

all packets except the runt error packets are forwarded to the application or

DMA. */

 |= 0x00F00000u; /*Receive Queue Size

4K bytes */

}

8.4 Initializing MAC

The MAC initialization function is responsible for initializing the MAC (Media Access
Control) layer of the Ethernet interface. It configures the MAC address, packet filtering,

46

flow control, and interrupts settings. The device's MAC address is set up by enabling the
MAC address in the MAC_Address0_High register and setting the upper 16 bits of the
MAC address in this register. The MAC_Address0_Low register contains the lower 32
bits of the MAC address. Afterwards, the MAC packet filter settings are configured to
disable certain types of packet filtering, such as Hash or Perfect Filter and Source or
Destination Address Filter. This is done by modifying the MAC_Packet_Filter register.
The function also disables transmit flow control by adjusting the
MAC_Q0_Tx_Flow_Ctrl register. This setting affects how the MAC deals with outgoing
data flow, preventing it from overwhelming network peers. Finally, various MAC-related
interrupts (like PHY status changes, timestamp triggers, and frame transmission/reception
status) are enabled by setting bits in the MAC_Interrupt_Enable register.

static void Enet_MAC_Init(void)

{

 IP_EMAC -> MAC_Address0_High |= 0x80000000u /* Enables MAC address */

 |= 0x00010000u; /*DMA Channel Select, 1 channel */

/* 15-0 ADDRHI. Contains the upper 16 bits [47:32] of the first 6-byte

Destination MAC address */

 IP_EMAC -> MAC_Address0_Low /* Contains the lower 32 bits of the

first 6-byte MAC address */

 IP_EMAC -> MAC_Packet_Filter &= 0xFFFFFBFFu /* disable Hash Or Perfect

Filter and Source or destination Address Filter Enable */

 &= 0x7FFFFE00u; /* Disable Unicast,

multicast, broadcast, and control frames filter settings */

 IP_EMAC -> MAC_Q0_Tx_Flow_Ctrl &=0xFFFFFFFDu; /*Transmit Flow Control

disable */

/* Enable all intrupts together :PHY,Timestamp,Transmit Status,Receive

Status,Frame Preemption,MDIO Interrupt */

 IP_EMAC -> MAC_Interrupt_Enable |= 0x00064008u;

}

8.5 Setting ENET MAC Address

This important function sets the MAC (Media Access Control) address for the Ethernet
controller. This address is crucial for the protocol, acting as a unique identifier for the
device on the network. The function updates the Ethernet controller's PALR (Physical
Address Lower Register) and PAUR (Physical Address Upper Register) with the provided
MAC address.

void EnetSetMacAddress(const uint8_t * address)

{

 ENET->PALR = (((uint32_t) address[0]) << 24) |

 (((uint32_t) address[1]) << 16) |

47

 (((uint32_t) address[2]) << 8) |

 (((uint32_t) address[3]) << 0);

 ENET->PAUR = (((uint32_t) address[4]) << 24) |

 (((uint32_t) address[5]) << 16);

}

8.6 Enabling ENET

This function enables the Ethernet operation based on the link status and speed settings
provided by the PHY (Physical Layer). It configures the controller to match the link's
duplex and speed settings, ensuring that the Ethernet controller communicates correctly
over the network.

int EnetEnable(const MiimStatus_T * status)

{

 if (status->linkUp)

 {

 switch (status->mode.duplex)

 {

 case LinkDuplexHalf:

 ENET->RCR |= ENET_RCR_DRT_MASK;

 ENET->TCR &= ~ENET_TCR_FDEN_MASK;

 break;

 case LinkDuplexFull:

 ENET->RCR &= ~ENET_RCR_DRT_MASK;

 ENET->TCR |= ENET_TCR_FDEN_MASK;

 break;

 default:

 return EPERM;

 }

 switch (status->mode.speed)

 {

 case LinkSpeed10Mbps:

 ENET->RCR |= ENET_RCR_RMII_10T_MASK;

 break;

 case LinkSpeed100Mbps:

 ENET->RCR &= ~ENET_RCR_RMII_10T_MASK;

 break;

 default:

 return EPERM;

 }

 EnetSetup();

 return 0;

 }

 else

48

 {

 return EPERM;

 }

}

Disabling ENET
This function disables the Ethernet controller and is useful for power management or when
reconfiguring the network settings requires the Ethernet controller to be temporarily turned
off. It is written to ensure that no data transmission or reception occurs until the Ethernet
controller is explicitly re-enabled.

void EnetDisable()

{

 ENET->EIMR = 0; /* mask all interrupt sources */

 ENET->EIR = 0x7FFF8000; /* acknowledge any pending interrupts */

 ENET->ECR &= ~ENET_ECR_ETHEREN_MASK; /* disable the controller */

}

8.7 Data Transmission

There are two functions written to send data over the network, EnetGetTxBuffer and
EnetSendTxBuffer. EnetGetTxBuffer retrieves a pointer to the next available transmit
buffer where data can be written, and once the data is written into the buffer,
EnetSendTxBuffer is called to mark the buffer for transmission. These functions manage
the buffer descriptors, ensuring that data is correctly queued for sending out on the
network.

uint8_t * EnetGetTxBuffer()

{

 /* block if no buffers are available */

 xSemaphoreTake(EnetData.txSem, OS_WAIT_FOREVER);

 return EnetData.txBufferDescriptor[EnetData.nextTxBuffer].buffer;

}

void EnetSendTxBuffer(uint16_t len)

{

 /* setup the buffer descriptor for transmission */

 EnetData.txBufferDescriptor[EnetData.nextTxBuffer].length = len;

 EnetData.txBufferDescriptor[EnetData.nextTxBuffer].control |=

ENETTXBUF_CONTROL_R | ENETTXBUF_CONTROL_L;

 /* manage buffer wrap-around */

 EnetData.nextTxBuffer++;

 if (EnetData.nextTxBuffer>=ENET_TX_BUFFER_NUMBER)

 {

 EnetData.nextTxBuffer = 0;

49

 }

 /* indicate that the transmit descriptor ring has been updated */

 ENET->TDAR = ENET_TDAR_TDAR_MASK;

}

8.8 Data Reception

Two functions are created for data reception, EnetRecvAt and EnetFreeRxBuffer.
EnetRecvAt allows access to the received data at a specified offset within the current
receive buffer, while EnetFreeRxBuffer releases the receive buffer back to the pool,
making it available for future packets. Together, they manage the reception process,
allowing the application to process incoming data and then prepare the buffer for new data.

uint8_t * EnetRecvAt(uint16_t len)

{

 return &(EnetData.rxBufferDescriptor[EnetData.nextRxBuffer].buffer[len]);

}

void EnetFreeRxBuffer()

{

 /* free the buffer descriptor after reception */

 EnetData.rxBufferDescriptor[EnetData.nextRxBuffer].control |=

ENETRXBUF_CONTROL_E;

 /* indicate that the receive descriptor ring has been updated */

 ENET->RDAR = ENET_RDAR_RDAR_MASK;

 /* manage buffer wrap-around */

 EnetData.nextRxBuffer++;

 if (EnetData.nextRxBuffer>=ENET_RX_BUFFER_NUMBER)

 {

 EnetData.nextRxBuffer = 0;

 }

}

9 Firmware Testing in Loopback Mode

9.1 Loopback Mode

Loopback mode is a diagnostic feature implemented in various network devices to
facilitate testing and troubleshooting. This mode "loops" the transmitted signals back to
the receiver within the same device, and allows for the verification of the transmit and
receive paths of the device, ensuring that both are functioning correctly.

50

In loopback mode, data packets sent by the transmitting part of the device are redirected
internally to the receiving part of the device. The Ethernet controller in the S32K344 board
is configured to activate loopback by configuring specific registers within the Ethernet
MAC (Media Access Controller).

9.2 Firmware Testing

The developed EMAC driver was tested for functionality and reliability using loopback
mode to verify the firmware's capability to handle Ethernet data packets.

9.2.1 Objectives of Loopback Testing

The primary objective of the loopback test was to validate the EMAC driver by sending
and receiving any data string, and a specific string was used - "Hello Haris Khan". This
test aimed to demonstrate the driver's ability to:

● Initialize the EMAC hardware into loopback mode.
● Transmit data packets from the microcontroller to the EMAC.
● Receive the transmitted data internally without external network involvement.
● Verify the integrity and content of the received data.

9.2.2 Test Setup

The test setup involved configuring the EMAC in hardware loopback mode, where packets
transmitted by the EMAC are internally routed back to the receiver. This setup eliminates
external factors that could affect the test, such as network congestion or physical layer
issues, allowing for focused testing of the driver and EMAC hardware.

Initialization: The microcontroller, hosting the EMAC driver, was initialized, and the
EMAC hardware was configured into loopback mode.

Data Preparation: A packet containing the string "Hello Haris Khan" was prepared for
transmission. This packet was structured according to Ethernet protocol standards,
including the necessary headers.

Transmission: The prepared packet was transmitted using the EMAC driver. The driver
writes the string into the TX Ring Data Buffer, which is present at the address
0x20430500.

51

Figure 9.1: Memory contents showing “Hello Haris Khan” in TX Ring Data Buffer in Hex

The TX Ring Data Buffer can also be viewed below in ASCII.

Figure 9.2: Memory contents showing “Hello Haris Khan” in TX Ring Data Buffer in ASCII

Reception: The EMAC hardware, still in loopback mode, receives the packet and sends it
to the RX Ring Data Buffer, present in memory at the address 0x20430700.

Verification: The received packet was inspected to verify that the data content matched
the transmitted string "Hello Haris Khan". This verification process involved comparing
the received data with the expected string at the memory level, ensuring that the packet
had been correctly transmitted and received without any alterations or loss.

9.2.3 Test Results

The loopback test was successful, with the "Hello Haris Khan" string being correctly
transmitted and received by the EMAC driver. The integrity of the data was confirmed by
inspecting the memory location of the RX Ring Data Buffer where the received packet
was stored.

Figure 9.3: Memory contents showing “Hello Haris Khan” in RX Ring Data Buffer in Hex

52

10 Conclusion

This thesis presents a comprehensive analysis and development of an Ethernet driver,
focusing on the S32K344 microcontroller, within the context of automotive Ethernet
applications. The S32K344, part of NXP's S32K3 family of microcontrollers, is designed
to meet the demanding requirements of automotive applications, offering enhanced
features for reliable communication and control. Our work has focused on exploiting these
capabilities to develop a robust Ethernet driver that supports high-speed data transmission
and reception, essential for modern automotive networks. This work is situated within the
broader effort to enhance vehicular networks' efficiency and reliability, critical for
supporting advanced features such as autonomous driving, infotainment systems, and
vehicle-to-everything (V2X) communications.

The development process involved a detailed examination of the Ethernet protocol as
implemented on the S32K344, ensuring that the driver is optimized for the
microcontroller's architecture and the specific needs of automotive Ethernet
communication. This entailed a rigorous analysis of the hardware and software interfaces,
the network stack, and the integration points with the microcontroller's peripherals and
processing units.

A critical part of our development and testing phase was the utilization of the driver in
loopback mode, which proved to be a pivotal step in validating the functionality and
reliability of the Ethernet communication. This mode allowed for the successful
transmission and reception of data, demonstrating the driver's capability to handle Ethernet
frames efficiently and accurately without the need for an external network. This testing
phase was instrumental in identifying and rectifying potential issues, ensuring a high level
of reliability and performance.

To further extend the applicability and robustness of our Ethernet driver, future work will
focus on more complex network configurations involving multiple ECUs. This will
involve the use of sophisticated testing tools like Vector CANoe, which will enable the
simulation and analysis of network behaviors, traffic patterns, and performance metrics in
a controlled environment. Such testing is crucial for validating the driver's performance in
real-world automotive network scenarios, where reliability and data integrity are
paramount.

The development and debugging of the Ethernet driver were significantly aided by the use
of a PE Micro board, which facilitated a hands-on approach to testing and verification.
This tool was invaluable for real-time debugging and for making iterative improvements
to the driver code, ensuring optimal performance and compatibility with the S32K344
microcontroller.

53

An essential aspect of this project was the alignment with the AUTOSAR software
architecture, particularly in developing the kernel and configuration for the Ethernet
driver. This adherence to AUTOSAR standards not only ensures that the driver is
compatible with a wide range of automotive software systems but also underscores the
importance of standardized approaches in the development of automotive software. By
integrating our Ethernet driver within the basic software layer of AUTOSAR, we have laid
a foundation for future enhancements and broader applicability in automotive networks.

In conclusion, this thesis has laid the groundwork for advanced Ethernet communication
in automotive applications, leveraging the capabilities of the S32K344 microcontroller. It
underscores the critical role of Ethernet in transforming automotive networks, paving the
way for more connected and intelligent vehicles.

	Acknowledgments
	Abstract
	1 Company Overview and Background
	1.1 Company History
	1.2 Company Vision
	1.3 Company Services
	1.3.1 Engineering Services
	1.3.2 Customized e-Motor Control
	1.3.3 Customized ECUs (Electronic Control Units)
	1.3.4 Customized Embedded Software
	1.3.5 Virtual Prototyping
	1.3.6 System on Chip (SoC) Design
	1.3.7 High Performance Automotive Computational Platforms
	1.3.8 EOL (End of Line) Testing

	2 Conventional Communication Protocols
	2.1 CAN - Controller Area Network
	2.2 LIN - Local Interconnect Network
	2.3 FlexRay
	2.4 MOST - Media Oriented Systems Transport
	2.5 Comparison with Automotive Ethernet

	3 Automotive Ethernet
	3.1 Introduction
	3.2 Historical and Technical Overview
	3.2.1 History of Ethernet Protocol
	3.2.2 The IEEE 802 Standard and Ethernet Layers
	3.2.3 Physical Layer (PL)
	3.2.4 Data Link Layer (MAC & LLC)
	3.2.5 Network and Transport Layers
	3.2.6 Ethernet Frame Structure

	4 Software Tools
	4.1 Visual Studio
	4.1.1 Key Features of Visual Studio in Embedded C Programming
	4.1.2 Advanced Debugging Tools
	4.1.3 IntelliSense and Code Analysis
	4.1.4 Cross-platform Development Capabilities
	4.1.5 Rich Libraries and APIs Access
	4.1.6 Vibrant Community and Consistent Support
	4.1.7 Customizability with Extensions

	4.2 S32 Design Studio IDE: An In-depth Overview
	4.2.1 Cross-Platform Compatibility
	4.2.2 Comprehensive Development Toolkit
	4.2.3 No-Cost Accessibility
	4.2.4 Integration with NXP's Ecosystem
	4.2.5 Embedded Software Development
	4.2.6 Compatibility with Multiple Compilers and Debuggers
	4.2.7 Specialized Tools for Advanced Projects

	4.3 Wire shark
	4.3.1 Key Details
	4.3.2 History
	4.3.3 Functionality
	4.3.4 Data Analysis
	4.3.5 VoIP Analysis and More
	4.3.6 Compatibility
	4.3.7 Security Considerations
	4.3.8 Color Coding

	5 Hardware
	5.1 S32K344 EVB
	5.1.1 Core
	5.1.2 Debug Interface
	5.1.3 Safety and Security Features
	5.1.4 Connectivity and Power
	5.1.5 Over-The-Air (OTA) Support
	5.1.6 Expansion Options
	5.1.7 CMSIS Drivers
	5.1.8 Key Ethernet Features
	5.1.8.1 Interface Support and Performance
	5.1.8.2 Precision Timing and Data Rate
	5.1.8.3 Memory and Storage Capacities

	5.1.9 Usage

	5.2 PE Micro Debugger
	5.2.1 Development and Debugging Tools
	5.2.2 Hardware Interfaces
	5.2.3 Flash Programming Solutions
	5.2.4 Custom PC Applications

	6 Ethernet Media Access Controller (EMAC) Architecture
	6.1 EMAC Core Features
	6.1.1 MII and RMII Interfaces Support
	6.1.2 Time-Sensitive Networking and AVB Support
	6.1.3 AMBA 2.0 Interface Compatibility

	6.2 EMAC Additional Features
	6.2.1 Automatic CRC and Pad Generation/Stripping
	6.2.2 CRC Checking Control
	6.2.3 Packet Gap Control
	6.2.4 Source Address Insertion or Replacement
	6.2.5 VLAN Tagging and Processing
	6.2.6 Packet Filtering and Address Filtering
	6.2.7 Layer 3 and Layer 4 Filtering
	6.2.8 Safety and Control Features
	6.2.9 MDIO Interface
	6.2.10 Network Statistics and Management

	6.3 Microcontroller DMA
	6.3.1 DMA Inclusions
	6.3.2 DMA Descriptors
	6.3.2.1 Descriptor Lists and Channels
	6.3.2.2 Descriptor Ring Structure
	6.3.2.3 Efficient Data Movement
	6.3.2.4 Descriptor Memory Allocation

	6.3.3 Data Buffers
	6.3.4 Data and Buffer Status
	6.3.5 Data Chaining and Packet Handling
	6.3.6 DMA Controller Bus Burst Access
	6.3.7 DMA Application Data Buffer Alignment
	6.3.8 DMA Buffer Size Calculations
	6.3.9 DMA Arbiter

	6.4 MTL Block
	6.4.1 MTL Overview
	6.4.2 Transmit Path
	6.4.3 Transmit Control Word
	6.4.4 Transmit Operation Modes
	6.4.5 Initialization Flow
	6.4.6 MTL Receive Path
	6.4.7 MTL Receive Operation
	6.4.8 Threshold Mode
	6.4.9 Store-and-Forward Mode

	6.5 MAC Block
	6.5.1 MAC Transmission Process
	6.5.2 MAC Reception Process

	6.6 Interrupts
	6.6.1 Interrupt Coalescing
	6.6.2 Interrupt Requests
	6.6.3 DMA Channel Interrupts
	6.6.4 Transfer Complete Interrupt Behaviour

	6.7 External Module Signals
	6.7.1 MII_RMII_TXCLK (Clock)
	6.7.2 MII_RX_CLK (Clock)
	6.7.3 EMAC_PPS[3:0] (Signals)
	6.7.4 MII_RMII_TX_EN (Signal)
	6.7.5 MII_RMII_TXD[3:0] (Signals)
	6.7.6 MII_CRS (Signal)
	6.7.7 MII_COL (Signal)
	6.7.8 MII_RMII_RX_DV (Signal)
	6.7.9 MII_RMII_RX_ER (Signal)
	6.7.10 MII_RMII_RXD[3:0] (Signals)
	6.7.11 MII_RMII_MDC
	6.7.12 MII_RMII_MDIO (Signal)

	6.8 PHY Interfaces
	6.8.1 Supported Modes
	6.8.1.1 RMII 10/100 Mbps Interface:
	6.8.1.2 MII 10/100 Mbps Interface:

	6.8.2 Interface Selection
	6.8.3 RMII Reference Clock
	6.8.4 PHY Register Access

	7 Microcontroller Clocks and Port Configuration and Pin Assignments
	8 Firmware Development
	8.1 Initializing ENET
	8.2 Initializing DMA
	8.3 Initializing MTL registers
	8.4 Initializing MAC
	8.5 Setting ENET MAC Address
	8.6 Enabling ENET
	8.7 Data Transmission
	8.8 Data Reception

	9 Firmware Testing in Loopback Mode
	9.1 Loopback Mode
	9.2 Firmware Testing
	9.2.1 Objectives of Loopback Testing
	9.2.2 Test Setup
	9.2.3 Test Results

	10 Conclusion

