
POLITECNICO DI TORINO

Master’s Degree in Mechatronic Engineering

Master’s Degree Thesis

Development of an automated benchmark
for the analysis of Nav2 controllers

Supervisors

Prof. Marcello CHIABERGE

Eng. Antonio MARANGI

Candidate

Federica SCHENA

APRIL 2024

A Nonna Rita,
che è qui con me in questo giorno speciale.

i

Acknowledgements

I would like to thank my supervisors Eng. Antonio Marangi and Prof. Marcello
Chiaberge, because they believed in me and gave me the opportunity to challenge
myself, making my passion on robotics growing more and more.

Also, I wish to extend my special thanks to Eng. Andrea Bertaia Segato, Eng.
Simone Monteleone, Marta, Claudio, Alfredo and all of my colleagues that made
me feel welcome from the very first moment.

ii

Summary

Demographic trends highlight a significant absolute and relative increase in the
population segment aged over seventy-five, with substantial impacts, particularly
on the prevalence of many chronic degenerative conditions. Moreover, as stated by
the European Council in 2022, the 27% of population in EU over the age of 16 had
some form of disability.

The usage of smart wheelchairs has been introduced in order to allow people with
reduced mobility to move in public places in a safer and suitable way. Alba Robot
srl is a start-up based in Turin, which is developing a cutting-edge micro-mobility
platform named SEDIA (Seat Designed for Intelligent Autonomous). The aim
of this company is to transform people transportation providing a B2B platform
that combines the most innovative technologies, such as AI, IoT, Robotics and
Automotive by the usage of self-driving electric vehicles.
This product is composed of a hardware layer and a software layer. The autonomous
guide’s physical components, which basically consist in its sensors, actuators, mo-
tors and all the other sensory devices for environmental perception, are part of
the hardware layer. Instead, the software layer is characterized by all the robotic
system’s higher-level algorithms, decision making processes and real-time coordina-
tion. The autonomous navigation system integrated into the wheelchair is built on
top of ROS 2 and Nav2. In fact, the company exploits several plugins provided by
the meta-package Nav2, in order to customize its own applications or algorithms:
costmap layers, planners, controllers, behavior trees and behavior plugins.
Above all, the controllers are particularly crucial for the navigation task, because
the way in which the robot deal with this problem depends on them. Nav2 provides
4 different controller plugins: DWB, RPP, TEB and MPPI.

DWB controller is highly configurable through the use of plugins. It imple-
ments 3 different types of plugins: plugin-based critics that can be dynamically
reconfigured, reweighted and tuned, plugin-based trajectory generation techniques
and plugin implementations for common use.

iii

RPP controller implements a variant on the pure pursuit algorithm to track a
path, which is called Regulated Pure Pursuit Algorithm. It also implements the
basics behind the Adaptative Pure Pursuit Algorithm to vary lookahead distances
by current speed.

TEB controller implements the Time Elastic Band method, that locally opti-
mizes the robot’s trajectory with respect to trajectory execution time, separation
from obstacles and compliance with kynodynamic constraints at runtime.

MPPI controller is a predictive controller that implements the Model Predictive
Path Integral algorithm to track a path with adaptative collision avoidance. It
contains plugin-based critic functions to impact the behavior algorithm.

Each controller has noticeably different benefits and drawbacks that does not
allow a perfectly adaptable navigation to every possible condition The aim of this
paper is to provide an automatic benchmark that is capable of deeply analyze every
benefit and drawback of each controller, so that it is possible to acknowledge which
one is the best that perfectly deals with any task. The simulation tools that have
been used are Rviz and Gazebo, while the programming environment is Visual
Studio Code and the chosen programming language is Python.
The controllers have been tested in 5 different use cases, concerning simple naviga-
tion in an empty environment, obstacle avoidance, sharp bending and abortion of
impossible tasks. The analysis evaluates the kinematics of the robot, the smooth-
ness of the path, the capability of the local planner of following the global planner
path avoiding detour and of completing a task avoiding collisions. These parame-
ters have been obtained by observing each controller completing one task for 4 times.

In conclusion, the analysis shows that there is no controller working better than
the others, because each of them demonstrates remarkable qualities under some
conditions. This means that the controllers provided by Nav2 should be merged in
order to implement a new customized one.

iv

Table of Contents

List of Tables viii

List of Figures ix

Acronyms xv

1 State of the Art 4
1.1 Navigation fundamental concepts 4

1.1.1 Localization . 5
1.1.2 Path Planning . 5
1.1.3 Obstacle avoidance . 6

1.2 ROS . 7
1.2.1 Communication patterns . 8
1.2.2 Middleware Architecture . 10
1.2.3 Lifecycle nodes and bonds 11

1.3 Behaviour Trees . 14
1.4 Nav2 . 15

1.4.1 Navigation Servers . 17
1.4.2 State Estimation . 19
1.4.3 Environmental representation 20
1.4.4 Waypoint Follower . 21

2 Objective of the Thesis 22
2.1 Alba Robot . 22
2.2 Hardware Layer . 23
2.3 Software Layer . 24

2.3.1 Navigation plugins . 25
2.4 The Problem . 26

3 Method 27
3.1 Nav2 controller plugins . 27

vi

3.1.1 DWB . 27
3.1.2 RPP . 31
3.1.3 TEB . 38
3.1.4 MPPI . 43

3.2 Settings of the analysis . 52
3.3 Code implementation . 56

4 Obtained results 65
4.1 Empty World simulation . 65

4.1.1 Observations . 73
4.2 Static Obstacles simulation . 73

4.2.1 Observations . 83
4.3 One Obstacle Simulation . 84

4.3.1 Observations . 93
4.4 Restricted Area Simulation . 94

4.4.1 Small Restricted area . 94
4.4.2 Large Restricted Area Simulation 101
4.4.3 Observations . 108

5 Conclusion 110

Bibliography 113

vii

List of Tables

4.1 Results of the simulation with the Empty World simulation 66
4.2 Results of the Static Obstacles simulation 74
4.3 Results of the One Obstacle simulation 85
4.4 Results of the Small Restricted Area simulation. 95
4.5 Results of the Large Restricted Area simulation 102

viii

List of Figures

1 Disability by sex and age . 2

1.1 Control scheme for mobile robots 6
1.2 ROS 2 architecture . 7
1.3 ROS 2 communication patterns . 8
1.4 ROS 2 topic communication pattern 9
1.5 ROS 2 service communication pattern 9
1.6 ROS2 action communication pattern 10
1.7 Node lifecycle . 12
1.8 Graphical representation of a sequence node with N children 14
1.9 The node types of a BT . 14
1.10 Nav2 architecture . 15
1.11 Nav2 provided plugins . 18

2.1 SEDIA prototype model . 22
2.2 depth camera example . 24
2.3 LiDAR example . 24

3.1 Resulting search space . 29
3.2 Pure Pursuit Goal Point . 32
3.3 Pure Pursuit response . 33
3.4 Generic circle . 33
3.5 Sequences of configurations . 39
3.6 Polynomial approximation of constraints 40
3.7 Minimal distance between TEB and way point or obstacle 41
3.8 Control flow of TEB implementation 42
3.9 Velocity and obstacle objective function formulated as a hyper graph 43
3.10 Model Predictive Path Integral Control 51
3.11 Empty world simulation. 53
3.12 Static Obstacles simulation. 53
3.13 One Static Obstacle simulation. 54
3.14 Small restricted area simulation. 54

ix

3.15 Large restricted area simulation. 55

4.1 Empty World simulation. 65
4.2 Empty world map. 66
4.3 Difference between global planner and DWB in the Empty World

simulation. 67
4.4 Difference between global planner and RPP in the Empty World

simulation. 67
4.5 Difference between global planner and TEB in the Empty World

simulation. 68
4.6 Difference between global planner and MPPI in the Empty World

simulation. 68
4.7 Velocity, Acceleration and Jerk of DWB controller. 69
4.8 Velocity, Acceleration and Jerk of RPP controller. 69
4.9 Velocity, Acceleration and Jerk of TEB controller. 70
4.10 Velocity, Acceleration and Jerk of MPPI controller. 70
4.11 Energy expenditure and velocity of DWB. 71
4.12 Energy expenditure and velocity of RPP. 71
4.13 Energy expenditure and velocity of TEB. 72
4.14 Energy expenditure and velocity of MPPI. 72
4.15 Static Obstacles world simulation. 73
4.16 Static Obstacles world map. 74
4.17 Difference between global planner and DWB in the Static Obstacles

simulation. 75
4.18 Difference between global planner and RPP in the Static Obstacles

simulation. 75
4.19 Difference between global planner and TEB in the Static Obstacles

simulation. 76
4.20 Difference between global planner and MPPI in the Static Obstacles

simulation. 76
4.21 Angular velocity and Centripetal acceleration of DWB in the Static

Obstacles simulation. 77
4.22 Angular velocity and Centripetal acceleration of RPP in the Static

Obstacles simulation. 77
4.23 Angular velocity and Centripetal acceleration of TEB in the Static

Obstacles simulation. 78
4.24 Angular velocity and Centripetal acceleration of MPPI in the Static

Obstacles simulation. 78
4.25 Velocity, Acceleration and jerk of DWB in the Static Obstacles

simulation. 79

x

4.26 Velocity, Acceleration and jerk of RPP in the Static Obstacles simu-
lation. 79

4.27 Velocity, Acceleration and jerk of TEB in the Static Obstacles
simulation. 80

4.28 Velocity, Acceleration and jerk of MPPI in the Static Obstacles
simulation. 80

4.29 Energy expenditure and velocity of DWB in the Static Obstacles
simulation. 81

4.30 Energy expenditure and velocity of RPP in the Static Obstacles
simulation. 81

4.31 Energy expenditure and velocity of TEB in the Static Obstacles
simulation. 82

4.32 Energy expenditure and velocity of MPPI in the Static Obstacles
simulation. 82

4.33 Narrow passage in the Static Obstacles simulation. 83
4.34 One Obstacle simulation environment. 84
4.35 One Obstacle simulation map. 84
4.36 Difference between global planner and DWB in One Obstacle simu-

lation. 85
4.37 Difference between global planner and RPP in One Obstacle simulation. 86
4.38 Difference between global planner and TEB in One Obstacle simulation. 86
4.39 Difference between global planner and MPPI in One Obstacle simu-

lation. 87
4.40 Velocity, Acceleration and Jerk of DWB in the One Obstacle simulation. 87
4.41 Velocity, Acceleration and Jerk of RPP in the One Obstacle simulation. 88
4.42 Velocity, Acceleration and Jerk of TEB in the One Obstacle simulation. 88
4.43 Velocity, Acceleration and Jerk of MPPI in the One Obstacle simu-

lation. 89
4.44 Angular velocity and Centripetal acceleration of RPP in the One

Obstacle simulation. 89
4.45 Angular velocity and Centripetal acceleration of RPP in the One

Obstacle simulation. 90
4.46 Angular velocity and Centripetal acceleration of TEB in the One

Obstacle simulation. 90
4.47 Angular velocity and Centripetal acceleration of MPPI in the One

Obstacle simulation. 91
4.48 Velocity and energy expenditure of DWB in the One Obstacle simu-

lation. 91
4.49 Velocity and energy expenditure of RPP in the One Obstacle simu-

lation. 92

xi

4.50 Velocity and energy expenditure of TEB in the One Obstacle simu-
lation. 92

4.51 Velocity and energy expenditure of MPPI in the One Obstacle
simulation. 93

4.52 Small Restricted Area simulation environment. 94
4.53 Small Restricted Area simulation map. 94
4.54 Difference between global planned path and DWB in the Small

Restricted Area simulation. 95
4.55 Difference between global planned path and RPP in the Small

Restricted Area simulation. 96
4.56 Difference between global planned path and TEB in the Small

Restricted Area simulation. 96
4.57 Difference between global planned path and MPPI in the Small

Restricted Area simulation. 97
4.58 Velocity, acceleration and jerk of DWB in the Small Restricted Area

simulation. 97
4.59 Velocity, acceleration and jerk of RPP in the Small Restricted Area

simulation. 98
4.60 Velocity, acceleration and jerk of TEB in the Small Restricted Area

simulation. 98
4.61 Velocity, acceleration and jerk of MPPI in the Small Restricted Area

simulation. 99
4.62 Velocity and energy expenditure of DWB in the Small Restricted

Area simulation. 99
4.63 Velocity and energy expenditure of RPP in the Small Restricted

Area simulation. 100
4.64 Velocity and energy expenditure of TEB in the Small Restricted

Area simulation. 100
4.65 Velocity and energy expenditure of MPPI in the Small Restricted

Area simulation. 101
4.66 Large Restricted Area simulation environment. 101
4.67 Large Restricted Area simulation map. 102
4.68 Difference between global planned path and DWB in the Large

Restricted Area simulation. 103
4.69 Difference between global planned path and RPP in the Large

Restricted Area simulation. 103
4.70 Difference between global planned path and TEB in the Large

Restricted Area simulation. 104
4.71 Difference between global planned path and MPPI in the Large

Restricted Area simulation. 104

xii

4.72 Velocity, acceleration and jerk of DWB in the Large Restricted Area
simulation. 105

4.73 Velocity, acceleration and jerk of RPP in the Large Restricted Area
simulation. 105

4.74 Velocity, acceleration and jerk of TEB in the Large Restricted Area
simulation. 106

4.75 Velocity, acceleration and jerk of MPPI in the Large Restricted Area
simulation. 106

4.76 Velocity and energy expenditure of DWB in the Large Restricted
Area simulation. 107

4.77 Velocity and energy expenditure of RPP in the Large Restricted
Area simulation. 107

4.78 Velocity and energy expenditure of MPPI in the Large Restricted
Area simulation. 108

xiii

Acronyms

AI
Artificial Intelligence

AMCL
Adaptative Monte Carlo Localization

API
Application Programming Interface

APP
Adaptative Pure Pursuit

B2B
Business to Business

BLND
passenger is blind or has reduced vision

BT
Behaviour Tree

CEO
Chief Executive Officer

CPU
Central Processing Unit

DDS
Data Distribution Service

xv

DEAF
passenger is deaf or hard of hearing

DPNA
disabled passenger with intellectual or developmental disability needing assis-
tance

DWA
Dynamic Window Approach

EC
european community

EU
european union

Eurostat
Statistical Office of the European Union

G3M
Global Multimap Mission Manager

GPU
Graphic Processing Unit

HMI
Human-Machine Interface

HJB
Hamilton Jacobi Bellman

ID
Identification

IoT
Internet of Things

ISTAT
Istituto Nazionale di Statistica

xvi

LiDAR
Light Detection and Ranging

MIT
Massachusetts Institute of Technology

MPC
Model Predictive Control

MPPI
Model Predictive Path Integral

Nav2
Navigation for Autonomous Vehicle

PCB
printed circuit board

PP
Pure Pursuit

PRM
People with Reduced Mobility

RGB
Red, Green, Blue

RGBD
Red, Green, Blue, Depth

ROS
robot operating system

RPP
Regulated Pure Pursuit

srl
Società a Responsabilità Limitata

xvii

SLAM
Simultaneous Localization and Mapping

STVL
Spatio-Temporal Voxel Layer

TEB
Time Elastic Band

TF
Transformed

ToF
Time of Flight

WCHC
wheelchair required; passenger cannot walk any distance and will require the
aisle chair to board

WCHR
wheelchair assistance required passenger can walk short distance up or down
stairs

WCHS
wheelchair assistance required; passenger can walk short distance, but not up
or down stairs

XML
eXtensible Markup Language

xviii

Introduction

The concept of disability cannot be easily defined, since it encompasses a heteroge-
neous range of physical, cognitive, and sensory diversities and abilities.
Until few decades ago, disability was considered only in terms of intrinsic limits
of the individual and it was exclusively seen as a medical "issue" that required an
individual intervention.
The paradigm that has now been applied is called ’Social Model of Disability’. It
was created in the 80s in order to contrast the traditional medical model: according
to this, disability is the result of an interaction between the level of physical or
sensory or cognitive or mental limitation of the individual and the environment in
which they live. Therefore, disability is largely the result of social factors: if the
environment is not accessible or inclusive, disability increases.
In May 2001, the World Health Organization (WHO) approved the International
Classification of Functioning, Disability and Health (ICF) with the aim of inte-
grating both the medical and social models. Despite the fact that this is not a
condition exclusively associated to elder part of population, disability is predomi-
nantly observable in the over seventy-five age group, where chronicity, morbidity,
functional impairment, polypharmacy, and socio-health issues play a determining
role. Demographic trends highlight a significant absolute and relative increase in
the population segment aged over seventy-five (+25 %, equivalent to more than
1,400,000 individuals in the next 10 years), with substantial impacts, particularly on
the prevalence of many chronic degenerative conditions. Assisting non-self-sufficient
individuals, predominantly (though not exclusively) elderly, has thus become one of
the inadequately addressed social emergencies in our country, which is, incidentally,
one of the most long-lived in the world [1].
According to ISTAT, in Italy there are 3,100,000 people (5.2% of population) with
severe limitations in ordinary activities and half of them (1,500,000) are 75 years
old or older.
As stated by the European Council in 2022, the 27% of population in EU over
the age of 16 had some form of disability. According to Eurostat estimates, that
equals to 101 million people or one in four people adults in the EU. Moreover, the
countries that had the highest share of people with disabilities were Latvia (38.5%),

1

Introduction

Denmark (36.1%) and Portugal (34%). It is possible to notice that most people
with disability are over 65 years old and females[1].

Figure 1: Disability by sex and age

Furthermore, people’s life expectancy is increasing throughout the world as a
result of improved living standards and medical advances. In the EU, life expectancy
at birth is projected to increase from 76.7 years in 2010 to 84.6 years in 2060 for
males and from 82.5 years in 2010 to 89.1 years in 2060 for females (EC 2012).
It is predicted that the EU population aged 65 and above will almost double by
2060, rising from 87.5 million in 2010 to 152.6 million (EC 2011). The natural
ageing process is accompanied by physiological changes which can have significant
consequences for mobility [2].
People using walkers, wheelchairs, and crutches or people dealing with debilitating
arthritis as well as hip and knee conditions may have difficulty navigating a home,
a neighbourhood, or a community. Lack of sidewalks, barriers to entranceways,
narrow hallways, the presence of steps, and busy streets can all make mobility more
difficult and less safe [3].
According to Regulation (EC) 1107/2006, "Person with disabilities and person
with reduced mobility" means any person who has a permanent or temporary

2

Introduction

physical, mental, intellectual or sensory impairment which, in interaction with
various barriers, may hinder their full and effective use of transport on an equal
basis with other passengers or whose mobility when using transport is reduced due
to age. Standards used to define different types of disabilities and corresponding
needs are:

• BLND: Visually impaired or blind persons

• WCHR: Passengers who cannot walk long distances, but can go up and down
steps and move around independently

• WCHS: Passengers who cannot walk long distances and cannot go up and
down steps, but can move around inside a public transport independently

• WCHC: Completely immobile passengers, who are not self-sufficient inside a
public transport and need assistance at all times

• DEAF: People with hearing disabilities

• DPNA: People with mental or behavioural disabilities
The usage of smart wheelchairs has been introduced in order to allow people with
reduced mobility to move in public places in a safer and suitable way.
In Alba Robot’s mobility platform autonomy and artificial intelligence are integrated
to make people more independent and to provide public buildings (e.g. hospitals,
airports and museums) with new solutions for autonomous and assisted mobility.
Alba Robot wheelchairs are entirely produced by the company, starting from the
PCBs and electric circuit to the chassis. One of the most important parts is the
controller, which is used to make the robot able to navigate autonomously in
the space. The controllers that are already provided by the Nav2 ROS2 package
give different results depending on the environment: some are perfectly capable
of following prescribed paths but cannot avoid obstacles, while others have the
opposite behaviour. The main object of this thesis is to analyze in depth all of the
Nav2 controllers, in order to acknowledge every perks and drawbacks of each of
them in every condition.
The structure of this work will be the following:

• Chapter 1 defines the basic concepts of mobile robot navigation, Nav2
structure and tools;

• Chapter 2 explains more in details the objective of this project;

• Chapter 3 describes the method and the metrics that has been used to
analyse in a qualitative way the controllers already provided;

• Chapter 4 shows the obtained results and future implementation of the new
customized controller.

3

Chapter 1

State of the Art

1.1 Navigation fundamental concepts
Mobile robots can move autonomously, without human assistance. When a robot
uses an assisting perception system to decide for itself what has to be done to
complete a task, that robot is said to be autonomous. In order to coordinate all
of the components that make up the robot, it also requires a control system or
cognition unit.
Navigation, perception, cognition, and locomotion are the foundational domains of
mobile robotics:

• kinematics, dynamics, control theory, and mechanism comprehension are
necessary to solve locomotion difficulties;

• specialized domains including computer vision and sensor technology, as well
as signal processing, are involved in perception;

• the analysis of the input data from sensors and the corresponding action taken
to complete the tasks of the mobile robots are cognition responsibilities;

• navigation requires knowledge of planning algorithms, information theory,
and artificial intelligence

Navigation, indeed, is the most important aspect in the design of a mobile robot,
since it allows motion from one place to another in known or unknown environment,
considering the data given by sensors.
Mobile robot navigation consists in the following tasks:

• localization and mapping,

• path planning,

• obstacle avoidance

4

State of the Art

1.1.1 Localization
Localization plays a fundamental role, since it allows to know the robot’s absolute
position as well as the its relative position with respect to the target. Moreover, it
is essential for the design of the map of the world, which make the robot able to
plan a path, recover its position and detect if it has reached the target location.
Engineers and researchers have elaborated a diversity of systems, sensors and meth-
ods for mobile robot positioning, such as: odometry, inertial navigation, magnetic
compasses, active beacons, global positioning systems, landmark navigation and
model matching. Another important aspect of localization that has to be mentioned
is the accuracy of the map representation, because it must meet the accuracy of
the data returned by the robot’s sensors. Map representation methods are various,
but the most commonly used are: probabilistic map-based localization, Markov
localization and Monte Carlo localization.

1.1.2 Path Planning
The aim of path planning is finding the best path that allows the robot to reach
the target position from an initial configuration without collisions, neglecting the
temporal evolution of motion. Velocities and acceleration are not considered. It
defines only one aspect of trajectory planning, which is more completed. As a
matter of fact, it calculates the force inputs u(t) to move the actuators in such a
way that the robot can follow the computed trajectory q(t). Path planning and
trajectory planning are included in the motion planning, which is a much vaster
concept. There are several different algorithms that can solve the motion planning,
which have as main object finding a solution, that is, a feasible path. Over time,
they have been complemented by optimization techniques that have sought to
minimize the distance traveled by the mobile robot. The earliest work on robot
planning was carried out in the late 1960s and early 1970s. Although, the first
techniques presented some problems (e.g. too much memory needed to analyze the
workspace, the existence of local minima in the potential field that could lead the
planner to be trapped in those).
The most used ones are the heuristic planners:

• A*, which searches all the possible paths to the target and chooses the one
with the smallest cost (shortest time, time distance travelled, etc.);

• Greedy search, that looks for the locally optimal choice at each stage in
order to obtain the global optimum. It is clear that this kind of algorithm
cannot provide the best solution, but only a very good approximation of it in
the quickest time;

5

State of the Art

• Dijkstra’s algorithm, that searches the shortest path between nodes of a
graph (roadmaps, discrete workspace, etc);

• D*, which defines a path starting from the target and working back to the
start using a method that is similar to Dijkstra’s one.

These algorithms have been modified, focusing on the optimization of several
parameters, such as time needed (related to productivity), jerk (related to the
quality of work, accuracy and equipment maintenance), energy consumption
and motor effort (both related to savings).

1.1.3 Obstacle avoidance
A good motion planner must be capable of detecting collisions, between the robot
and an obstacle into the environment, and avoiding it, stopping the robot or
changing its trajectory. Obstacle avoidance algorithms are based on obstacle
detection and obstacle avoidance itself [4]. They can be:

• map-based, characterized by the usage of geometric or topological models of
the environment. By knowing its own current position in each moment, the
robot can calculate distances, that is detecting collisions;

• mapless-based, which doesn’t make use of any model, but relies only on the
system of sensors of the robot to observe the environment.

The Figure 1.1 [5] summarizes all of the main concepts that compose mobile
robotics.

Figure 1.1: Control scheme for mobile robots

6

State of the Art

1.2 ROS

The Robot Operating System (ROS) is a set of software libraries and tools for
building robot applications, created in 2007 by the robotics incubator Willow
Garage [6]. Since it has been designed by researchers for researchers, it lacked of
some features needed for the development of robust commercial robots [7]. In order
to face this problem, ROS2 has been introduced, while pursuing its legacy of a
broad ecosystem of distributed, community driven projects [8]. It addresses long-
standing tasks concerning security, embedded and real-time support and operating
in challenging networking environments.
The software ecosystem is divided into three categories:

• middleware: also known as the plumbing, it handles message parsers and
network APIs to facilitate communication between components.

• algorithms: ROS2 provides various algorithms generally used when defining
robotics applications, such as perception, SLAM, planning, etc.

• developer tools: ROS2 includes a suite of command line and graphical tools
for configuration, launch, introspection, visualization, debugging, simulation
and logging. There is also a large suite of tools for source management, build
processes, and distribution.

Figure 1.2: ROS 2 architecture

7

State of the Art

1.2.1 Communication patterns
The ROS 2 API provide access to communication patterns: notably topics, services
and actions, which are organized under the concept of node. ROS 2 also provides
APIs for parameters, timers, launch and other auxiliary tools which can be used to
design a robotic system.

Figure 1.3: ROS 2 communication patterns

Topic

Topics are an asynchronous message passing framework. ROS 2 provides the same
publish-subscribe functionality: it is based on the interaction between two actors
(publisher and subscriber). In details, the publisher is responsible of generating
and sending messages on a particular topic without knowing what is listening.
Messages can contain information, events or notification. The subscriber expresses
interest in receiving and sending messages related to a particular channel. Thus,
when the publisher sends a message on that topic, all interested subscribers
automatically receive the notification and can process the message accordingly.
Nevertheless, in ROS 2 this functionality focuses on using asynchronous messaging
to organize a system using strongly typed interfaces: the endpoints are organized
in a computational graph under the concept of a node. The node is an important
organizational unit which allows a user to reason about a complex system.

8

State of the Art

Figure 1.4: ROS 2 topic communication pattern

Services

ROS 2 also provides a pattern based on request-response, which is called service.
This type of communication provides easy data association, which can be useful
when ensuring the completeness or the receiving of a task. Moreover, ROS 2 allows
a service client’s process to not be blocked during a call. Services are organized
under a node for organization and introspection, allowing a subsystem’s interfaces
to appear together in system diagnostics.

Figure 1.5: ROS 2 service communication pattern

9

State of the Art

Actions

Actions are asynchronous, goal-oriented communication interfaces that can be
terminated and have a request, response, and periodic feedback. They are generally
used in long-running tasks, such as navigation or manipulation. Long tasks are
controlled by action servers, which are quite similar to canonical servers: a client
requests the completion of a task, although, its duration may be much longer.
It is possible to block all the other processes until the task is completed and to
occasionally check the state of the action through feedbacks.
Feedbacks and results can be collected, spinning the client node to process callback
groups, both synchronously, registering callbacks with the action of the client, or
asynchronously, requesting information from the shared future object.
The Figure 1.6 shows the scheme of an action on ROS 2.
Additionally, actions are non-blocking and organized under the node as well as
services.

Figure 1.6: ROS2 action communication pattern

1.2.2 Middleware Architecture

The architecture of ROS 2 consists of several abstraction layers distributed across
many decoupled packages. This architecture gives the possibility to have multiple
solutions for a single required functionality.

10

State of the Art

Abstraction Layers

During development, abstraction layers are often concealed behind the client
library, and developers need to be aware of them only in the case of exceptionally
application-specific requirements. For most users, there is simply the client libraries
to use. The primary communication APIs are accessible through the client libraries.
To be more idiomatic and to utilize language-specific features, they are customized
for each programming language. No matter how the system is divided up between
compute resources, whether they are on the same computer, in a separate process,
or even in a different process, communication remains unaffected. With only few
modifications to the source code, a user can distribute their application across
numerous computers and processes and even make advantage of cloud computing
resources. Over the internet, ROS 2 can establish a connection to cloud resources.
The client libraries rely on the rcl intermediate interface, which gives all of the
client libraries access to shared functionality. All of the client libraries use this
library written in C, however it is not necessary.
The essential communication interfaces are provided by the middleware abstraction
layer rmw (ROS MiddleWare). Users can select different middleware technologies
and rmw implementations according to a range of limitations such as software
license, performance, or supported platforms.
This abstraction layer provides flexibility to ROS 2, allowing it to change over with
minimal impact to the systems built on top of it.
The network interfaces (e.g. topics,services, actions) are defined by Message Types
using an Interface Description Language (IDL): ROS 2 uses .msg files or .idl files.

Architectural Node Patterns

ROS 2 provides a pattern for managing the lifecycle of nodes. They transition
through a state machine with Unconfigured, Inactive, Active and Finalized
states. This functionality is essential to coordinate various parts of the distributed
asynchronous system.
The machine or the process in which the node should be put depends on the way
in which it is used in the larger system. For example, nodes that are written as
components, can be allocated to any processes as a configuration.

1.2.3 Lifecycle nodes and bonds

Lifecycle nodes contain state machine transitions for bringing up and tearing down
of servers. This guarantees freedom to nodes developers on the management of life
cycle functionality.

11

State of the Art

Figure 1.7: Node lifecycle

As shown in Figure 1.7 [9], there four primary states:

• Unconfigured

• Inactive

• Active

• Finalized

It is possible to transition out of a primary state only when action from an external
supervisory process occurs.
There are also six transition states:

• Configuring

12

State of the Art

• CleaningUp

• ShuttingDown

• Activating

• Deactivating

• ErrorProcessing

In the transitions states logic will be executed to determine if transition is successful.
Success of failure are communicated via lifecycle management interface to lifecycle
management software.
The transitions that undergo supervisory processes are seven:

• Create

• Configure

• CleanUp

• Activate

• Deactivate

• Shutdown

• Destroy

At first, the started node is in unconfigured state: this means that it is processing
the node’s constructor, which does not contain any ROS networking setup or
parameters. By the launch of the system or lifecycle manager, the node’s state
must be transitioned to inactive. Now, it is possible to activate it: when in
this state, the node is fully setup to run. The configuration stage allow the set
up of ROS parameters, ROS networking interfaces and all dynamically allocated
memory. The activation stage activates ROS networking interfaces and make
all the states ready to process information. Finally, in order to set the node in
the finalized state, it is necessary to transition into the deactivating, cleaning
up and shutting down: networking interfaces are deactivated and stop processing,
deallocate memory, exit cleanly.

13

State of the Art

1.3 Behaviour Trees
Behavior trees have become more and more used in the robotic industry, replacing
the traditional Hierchical Functional State Machine. A behaviour tree is a
directed rooted tree where the internal nodes are called control flow nodes and leaf
nodes are called execution nodes [10]. It creates a more scalable and understandable
framework for defining applications characterized by multiple steps or states. Each
connected node is a child or a parent: a node without parents is the root, while
all the other nodes have one parent. The control flow nodes have at least one child.
As shown in Figure 1.8, generally the children are placed below the parents.

Figure 1.8: Graphical representation of a sequence node with N children

There are four types of control flow nodes:
• fallback

• sequence

• parallel

• decorator
The execution nodes, instead, are divided into two categories:

• action

• condition
All of the described nodes are explained in details in Figure 1.9.

Figure 1.9: The node types of a BT

14

State of the Art

A BT starts its execution from the root node, which sends ticks signals to the
children. If and only if a child receives a tick, a node is executed. The child returns
a Running status to the parent if its execution has not finished yet, a Success status
if it has achieved its goal, a Failure status otherwise.
Overall, the formal structure provided by behaviour trees is very useful in order to
create complex as well as verifiable systems.

1.4 Nav2
ROS 2 navigation stack metapackage Nav2 is a framework largely used for au-
tonomous navigation of robots. It creates customized and intelligent behaviour
using behaviour trees and coordinated independent modular servers: the servers
communicate with each other with a behaviour tree (BT) through a ROS interface
(such as an action server or service). It is possible for a robot to have various
different behaviour trees associated to the accomplishment of multiple types of
unique tasks. The structure of the this package is shown in Figure 1.10.

Figure 1.10: Nav2 architecture

The design took into account the requirements for robotics products needs:
safety, security, and determinism without loss of generality. Navigation2 is designed
on top of ROS 2 to handle functional safety standards and determinism. ROS
2 is built on Data Distribution Service (DDS) communication standard, which
is used in critical infrastructure such as aircraft, missile systems, and financial
systems. By utilizing DDS security features, ROS 2 enables users to safely transmit

15

State of the Art

information both within the robot and to cloud services without the need for a
dedicated network.
Furthermore, Managed Nodes—referred to as Lifecycle Nodes—are introduced in
ROS 2. A lifecycle node implements a server structure with distinct state transitions
from instantiation through destruction. This server is created when the program
is launched, however it waits for external stimulus before transitioning through a
deterministic bringup process. In case of shutdown or error, the server passes from
active to finalized state. All servers in Navigation2 make use of managed nodes for
deterministic program lifecycle management and memory allocations.
Navigation2 is also highly modular and easy to reconfigure and select at run-time,
in order to create a navigation system that can work with various robots in different
environments. It uses a behavior tree navigator and task-specific asynchronous
servers. Each server is a ROS 2 node hosting algorithms plugins, that are libraries
dynamically loaded at run-time.
The Behavior Tree Navigator activates and tracks progress of planner, controller
and recovery servers to facilitate navigation, by using a behavior tree to coordinate
the navigation tasks. It is possible to create customized navigation behavior by
modifying a behavior tree, stored as an XML. BTs are easily reconfigurable with
different control flow and condition node types, requiring no programming. A
recovery system is then created using BT action node statuses and control flow
nodes, in order to trigger unique response after the failure of a specific server.
Using ROS 2, the behavior tree nodes in the navigator can call long running
asynchronous servers in other processor cores. A navigation system can efficiently
use a much larger quantity of compute resources when multi-core processors are
used. To load BT node plugins, the Navigation2 BT navigator uses dynamic
libraries. This pattern allows the creation and loading of reusable primitive nodes
with a behavior tree XML at run-time without linking to the navigator itself.
Moreover, these nodes can call remote servers on other CPUs in any language with
ROS 2 client library support.
Each task-specific server is designed in order to host a ROS 2 server, environmental
model, and run-time selected algorithm plugin. They are modular, so that none or
many of them can run at the same time to compute actions.
The ROS 2 server is the entry-point for BT navigator nodes and handles cancellation,
preemption, or new information requests. These requests are forwarded to the
algorithm plugin to complete their task.
Behavior Trees are mostly used to model complex or multi-steps tasks, where
navigating to a position is actually a node of that larger task. The BT library used
in Nav2 is BehaviorTree.CPP.
Nav2 exploits various tools:

• Map Server loads and stores maps

16

State of the Art

• AMCL localizes the robot on the map

• Nav2 planner server plans a path from a starting point A to a generic point
B, avoiding obstacles

• Nav2 controller server controls the robot while following the trajectory

• Nav2 smoother smooths planned trajectories, in order to guarantee continu-
ity and feasibility

• Nav2 costmap 2D creates a costmap representation of the world using
sensors data

• Nav2 behavior trees and BT navigator build complex robot behaviour
through the usage of behaviour trees

• Nav2 recoveries when failures occur, it generates recovery behaviours

• Nav2 waypoint follower makes the robot following sequential waypoints

• Nav2 lifecycle manager manages servers’ lifecycle and watchdog

• Nav2 core consists of the plugins used by the user in order to customize
algorithms and behaviours

• Collision monitor detects imminent collisions or danger monitoring raw
sensors data

• Simple commander is Python API, which allows interaction with Nav2

• Velocity smoother smooths output velocities to guarantee dynamic feasibility
of commands

1.4.1 Navigation Servers
The action servers are four:

• The core of the navigation task consists in planners and controllers

• recoveries are used to make the system fault-tolerant: in such a way the
robot becomes capable of dealing with diverse forms of issues

• smoothers improve the quality of the planned paths

17

State of the Art

These action servers are used to host multiple algorithm plugins to complete various
task and the environmental representation used by those algorithms to compute
their output.
The planner, smoother and controller servers are configured at runtime, with the
names (aliases) and types (pluginlib names) of algorithm to use. These servers then
expose an action interface corresponding to their task. The action server is called
to process its task when the behaviour tree ticks the corresponding BT node. The
action server callback will call the chosen algorithm by its name, which corresponds
to a specific algorithm. On this way, the user is able to use classes of algorithms
that abstract the algorithm used in the BT.
In the behavior server, each of the behaviours is characterized by its name, while
each plugin will expose its own special action server. This is done because of the
wide variety of behaviour actions that may be created.
In addition to that, the behavior server contains a costmap subscriber to the local
costmap, which receives real-time updates from the controller server, in order to
compute its task. On this way, it is possible to avoide the creation of multiple
instances of the local costmap, which can be computationally expensive.
Since BT nodes are trivial plugins calling an action, it is possible to create multiple
new BT nodes in order to call different action servers with different action types.
All of these servers may be customized or replaced by the user. Each server contains
an environmental model relevant for their operation, a network interfaces to ROS 2,
and a set of algorithm plugins to be defined at run-time. Those pluings are shown
in Figure 1.11.

Figure 1.11: Nav2 provided plugins

18

State of the Art

Planners and controllers

The task of the global planner is to compute the shortest route to a goal, while
the controller, also known as local planner in ROS 1, uses local information to
compute the best local path and control signals.
The planner has access to a global environmental representation and sensor data,
which are stored into its buffer. It can be written for several reasons, such as the
computation of the shortest path, of the complete coverage path, of path along
sparse or predefined routes, etc.
The controller, instead, can be written in order to follow a path, board an elevator,
interface with a tool, etc.

Behaviors

Recovery behaviors’ goal is to autonomously handle unknown or failure conditions.
For example, faults in the perception system could lead to an environmental
representation full of fake obstacles. In this case, the clear costmap recovery would
be triggered to allow the robot to move. Another significant example, that show
the importance of this server is when the robot is stuck due to dynamic obstacles
or poor control. In this case, instead, backing up or spinning in place, allow the
robot to move into free space.
Recovery behaviors are called from the leaves in the behavior tree and carried
out by recovery server. By convention, these behaviors are ordered from the most
conservative to the most aggressive actions.
Moreover, they can be specific to its subtree (e.g. global planner or controller) or
system level in the subtree that contains only recoveries in case of system failures.
The most used ones generally are: Clear Costmap, which is a recovery to clear
costmap layers in case of perception system failure, Spin, to clear out free space
and steer the robot away from possible failures (e.g. the robot perceives itself to be
too etrapped to back out), Wait, to wait in case of time-base obstacle (e.g. human
traffic or collecting more sensor data).

1.4.2 State Estimation
For state estimation, Navigation2 follows ROS transformation tree standard to
exploit many modern tools. This includes Robot Localization, which is a general
sensor fusion solution using Extended or Unscented Kalman Filters.
It is used to provide smoothed base odometry from N arbitrary sources, which
often includes wheel odometry, multiple IMUs and visual odometry algorithms.
The main transformations that need to be provided are two:

• map to odom, provided by a positioning system (localization, mapping,
SLAM)

19

State of the Art

• odom to base_link, provided by an odometry system

When making use of the rich positioning, odometry and SLAM projects available in
the Nav2 community, it is suggested to follow the REP 105 standard convention.
It says that a robot should have at least TF tree containing a full map -> odom ->
base_link -> [sensor frames]. TF2 is the time-invariant transformation library in
ROS 2, which is used to represent and obtain time synchronized transformations.
However, since locally filtered poses are not sufficient to account for integrated
odometric drift, a global localization solution is needed: it is the job of the
global positioning system to provide the map -> odom transformation, while the
odometry system provides the odom -> base_link transformation. Nav2 provides
two solutions for the global localization:

• AMCL, which is an implementation of the Adaptative Monte Carlo Localiza-
tion that uses a particle filter to localize a robot in a given occupancy grid
using omni-directional or differential motion models

• SLAM Toolbox, which is a configurable graph-based SLAM system using 2D
pose graphs and canonical scan matching to generate a map and serialized
files for multi-session mapping.

1.4.3 Environmental representation
The environmental representation is the way the robot perceives the workspace.
It is also the result of the combination of various algorithms and data sources in
a single space. This space is then used by controllers, planners and recoveries to
compute their tasks safely and efficiently. The current environmental representation
is a costmap: a regular 2D grid of cells containing a cost from unknown, free,
occupied or inflated cost. This costmap is then searched, in order to compute a
global plan, or sampled, to compute local control efforts.
Various costmap layers are implemented in order to allow a single costmap to be
coherently updated by a number of data sources and algorithms. Each layer can
extend or modify the costmap it inherits, then forward the new information to
planners and controllers.
The most used layers are generally: Static Layer, which uses the static map
provided by a SLAM pipeline or loaded from disk, and initialize occupancy informa-
tion, Inflation Layer, that inflates lethal obstacles in costmap with exponential
decay by convolving the collision footprint of the robot, Spatio-Temporal Voxel
Layer, that maintains temporal 3D sparse volumetric voxel grid that decays over
time via sensor models from the laser and RGBD cameras.
STVL maintains a 3D representation environment to project obstacles into the
planning space, even though the costmap is 2D. Also, this particular layer make

20

State of the Art

use of temporal-based measurement persistence to maintain an accurate view of
the world in the presence of dynamic obstacles. Moreover, Navigation2 provides
costmap filters to mark areas on maps with some additional features or behavioral
changes. They are implemented as plugins called "filters", as they are filtering a
costmap by spatial annotations marked on filter masks.
In order to make a filtered costmap and change robot’s behavior in annotated areas,
the filter plugin reads the data coming from the filter mask. This data is linearly
transformed into a feature map in a filter space. Having this transformed feature
map along with a map/costmap, any sensor data and current robot coordinate
filters can update the underlying costamp and change the behavior of the robot
depending on where it is.
The functionality that could be used to implement costmap filters are:

• keep-out/safety zones, where the robot will never enter

• speed restrictions areas, where the maximum speed of robots will be limited

• preferred lanes for robots moving in industrial environments and warehouse

These are two variations of the costmap in the Nav2 stack:

• global costmap, which is used for global planning, which consists in develop-
ing long-term plans for the entire environment. It combines everything that
has been perceived and stored by the robot from its previous visits, like the
static map, which generally contains immovable elements (e.g. walls).

• local costmap, which is used to plan locally and avoid obstacles. It represents
everything the robot can learn about the current position by sensors, like
visible walls or moving people.

1.4.4 Waypoint Follower
The Nav2 waypoint follower is a basic feature of a navigation system that make the
robot follow waypoints to reach multiple destinations. It includes a plugin interface
for specific task executors: this is very useful for completing specific tasks, such as
picking up a box, taking a picture, or waiting for user input.
It can be used as a sample application in an on-robot solution. Nonetheless, it can
be used for more complex scenarios: where the robot perform many complex tasks
in complete autonomy.
Neither approach is better than other, and the distinction is often very clear for a
given business case. According to the tasks the robot is completing, the environment,
and the available cloud resource, the choice between these two approaches has to
be made.

21

Chapter 2

Objective of the Thesis

2.1 Alba Robot
Alba Robot srl is a company based in Turin, specifically in the start-up incubator
of Politecnico di Torino I3P. It was founded in 2019 by Andrea Bertaia Segato, who
is the CEO, in response of an individual need: a brilliant woman named Alba at 90
years old lost her autonomy being forced to use a wheelchair due to knee arthritis.
The objective of this company is to change the way People with Reduced Mobil-
ity (PRM) move and improve their independence in every day life. In order to
accomplish this, the most innovative technologies, such as AI, IoT, Automotive
and Robotics, are combined in an end-to-end B2B micro-mobility platform using
self-driving electric vehicles with attractive Italian design.

Figure 2.1: SEDIA prototype model

22

Objective of the Thesis

Many trials are pending with other companies like International Airlines Group
and an archeological site in Middle East. Moreover, the vehicles have been pre-
sented during various events: Gitex in Dubai, Airport PRM Leadership Conference
in Paris, SMAU in Milan and Dubai Airshow.
Alba Robot is one of the first mover in the world thanks to its business model and
to the type of products and technologies that it is developing.
This paper focuses on the SEDIA (SEat Designed for Intelligent Autonomy) project,
which is a cutting-edge mobility platform developed by Alba Robot srl. It is a mi-
cromobility platform which transforms people transportation by using autonomous
vehicle fleets navigating in big facilities (e.g. airports, museums and hospitals).
The autonomous navigation system integrated into the wheelchair, built on top of
ROS 2 and Nav2, is characterized by the hardware architecture and the software
architecture.
The autonomous guide’s physical parts, such as its sensors, actuators, motors,
and other sensory technologies for environment perception, are all part of the
hardware layer. These hardware components regulate the motions of the guide
and gather information from the surroundings, giving the software layer the inputs
it needs to process and decide. However, the software architecture concentrates
on the robotic system’s higher-level algorithms, decision-making processes, and
real-time coordination, allowing the system to navigate autonomously. It covers
path planning, object recognition, obstacle avoidance, and other algorithms.
The team at Alba Robt is constanlty working on the development of the SEDIA
platform in order to enhance its functionality and performance. The most recent
technologies are being used in the platform’s development, as it will hopefully
become an essential tool for individuals with restricted movement.
The hardware and the software are designed in such a way they can work together
seamlessly: the software gives commands to the hardware based on its perception
of the environment.This enables the guide to navigate around various obstacles
and terrain types while adjusting in real time as necessary.

2.2 Hardware Layer
The aim of the hardware layer (low level) is gather information about the environ-
ment that surrounds the vehicle, in order to provide it to the software layer (high
level). Various sensors are utilized by the vehicle to do that:

• depth cameras: it uses pixels that are associated to the distance from the
camera (depth). Some cameras have both an RGB and depth system, which
allows the capture of pixels with all four values, named RGBD (Figure 2.2).
It exploits some useful technologies such as ToF and stereo vision.

• LiDAR: it is a ranging device, which measures the distance to a target. It

23

Objective of the Thesis

sends a short laser pulse and records the time lapse between outgoing light
pulse and the detection of the reflected (back-scattered) light pulse [11]. It
can create a detailed 3D map of the object or environment by repeating this
process multiple times (Figure 2.3).

Figure 2.2: depth camera example

Figure 2.3: LiDAR example

2.3 Software Layer
Since SEDIA must be able to navigate in small to large facilities with multiple
floors, it is needed to manage more than only one map. This feature used to be
problematic, because:

• maps are implicitly linked to one floor, hence managing multi floor facilities
implies the ability to manage multiple maps

• large maps are difficult to maintain since changing a part of it would inevitably
affect the remaining part

• large maps are more expensive from a computation point of view and for large
maps (e.g. greater than ∼ 8000 m2) navigation is no longer ensured

24

Objective of the Thesis

For these reasons, but not only, it is needed to add a multimap management system
to SEDIA.

2.3.1 Navigation plugins
This project uses some plugins that Nav2 provides in order to make users able to
create their own custom applications or algorithms with: costmap layer, planner,
controller, behavior tree, and behavior plugins [12].
As Behavior-Tree Navigator it is has been used the NavigateToPoseNavigator :
point-to-point navigation via a behavior tree action server.
The Costmap Layers used in the project are basically 3: Static Layer, which gets
static map and loads occupancy information into costmap, Inflation Layer, which
inflates lethal obstacles in costmap with exponential decay, Obstacle Layer that
maintains persistent 2D costmap from 2D laser scans with raycasting to clear free
space, and Denoise Layer, which filters the standalone obstacles or small obstacles
group induced by noise.
Sometimes, it is also used a Costmap Filter: Keepout Filter, that maintains
keep-out/safety zones and preferred lanes for moving, and Speed Filter, which limits
the maximum velocity of robot in speed restriction areas, and Binary Filter, that
enables binary (boolean) mask behavior to trigger actions.
It is also used a Smoother: Constrained Smoother, which optimizes multiple
criteria (e.g. smoothness, distance from obstacles) using a constraints problem
solver.
The used Behaviors are: Clear Costmap, that is a service that clears the given
costmap when wrong perception occurs or robot is stuck, Spin, which is a rotate
behavior of configurable angles to clear out free space and nudge the robot out of
potential local failures, Back Up, a back up behavior of configurable distance to
back out of a situation where the robot is stuck, and Wait, a wait behavior with
configurable time to wait in case of time based obstacle (e.g. human traffic).
The used Waypoint Task Executor is WaitAtWaypoint, which a plugin that executes
a wait behavior on waypoint arrivals.
As Goal Checker, the SimpleGoalChecker is used: a plugin that checks if the
robot is within the translational distance and rotational distance of goal. Instead,
as Progress Checker, it is used the SimpleProgressChecker : it checks if the robot
was able to make progress towards a goal moving a minimum distance in a given
time.
The currently used Planner for the project is SmacPlanner2D: it implements
the 2D A* using either 4 or 8 connected neighborhoods with smoother and multi-
resolution query. It supports differential, omnidirectional and legged robots.
The Controller that the company has used for years is TEB Controller, which
is a controller similar to a MPC. It is suitable for Ackermann, differential and

25

Objective of the Thesis

holonomic robots. However, since it is no more maintained, it is currently used
the MPPI Controller : a predictive MPC controller with modular and custom cost
functions that can accomplish many tasks. As well as the previous one, this is
suitable for differential, omnidirectional and Ackermann robots.

2.4 The Problem
With the configuration that has been described, it is definitely possible to obtain
a very good level of automation of the vehicle, but it is clear that the controllers
that are already provided by the Nav2 stack cannot cover all the possible scenarios.
For example, the MPPI controller allows the robot to move smoothly in an empty
environment, but when it approaches an obstacles, the distance between the two
becomes dangerously small.
The implementation of the autonomous navigation is not trivial per se, but one of
the biggest problem is the versatility that a controller should have in order to deal
with any situation. In order to face this problem, it is necessary to carefully analyze
each of the provided controller, so that it is possible to grasp every benefit and
drawback. In this paper it is shown the development of an automated benchmark
that take into account the robot of the company in 5 different use cases:

• navigation in an empty world

• navigation in a world with sparse static obstacles

• navigation in a world with one static obstacle, characterized by a sharp bend

• navigation in a restricted area

• navigation in a small restricted area

26

Chapter 3

Method

3.1 Nav2 controller plugins
This project has started studying all the controllers that Nav2 provides:

• DWB

• RPP

• TEB

• MPPI

3.1.1 DWB
The DWB controller is the successor to the base local planner and DWA controller
in ROS 1.
The DWA controller implements the Dynamic Window Approach [13] to local
robot navigation on a plane. This approach searches for the commands that
controls the robot directly in the space of velocities. However, in the first step of
the algorithm the space is reduced to the velocities that are reachable under the
dynamic constraints and safe with respect to the obstacles. In the second step
the velocity that maximizes the objective function is chosen from the remaining
velocities.
In other words, a single cycle of this algorithm can be described as follows:

• Search space: the search space of possible velocities is reduced in 3 steps:

a. Circular trajectories: only circular trajectories (curvatures) uniquely
determined by pairs (v, ω) of translational and rotational velocities are
taken into account by the dynamic window approach. This yields a
velocity search space that is two-dimensional.

27

Method

b. Admissible velocities: Because of the restriction to admissible velocities,
only safe trajectories are surely considered. A pair (v, ω) is considered
admissible if the robot is able to stop before it reaches the closest obstacle
to the corresponding curvature.

c. Dynamic Window: it restricts the admissible velocities to those that
can be reached within a short time interval given the limited accelerations
of the robot.

• Optimization: The objective function

G(v, ω) = σ(α · heading(v, ω) + β · dist(v, ω) + γ · vel(v, ω) (3.1)

is maximized. This function trades off the following aspects with respect to
current position and orientation of the robot:

a. Target heading: heading is a measure of progress towards the goal
location. It is maximal if the robot moves directly towards the target.

b. Clearance: dist is the distance to the closest obstacle on the trajectory.
The robot’s urge to avoid an object increases with its distance from it.

c. Velocity: vel is the forward velocity of the robot and supports fast
movements.

The σ function smoothes the weighted sum of these 3 components.

Search space

Given that each curvature is uniquely determined by the velocity vector (vi, ωi),
the robot has to determine velocities (vi, ωi) (one for each of the n time intervals
between t0 and tn) in order to generate a trajectory to specified goal point for the
next n time intervals. The resulting trajectory must not intersect with any obstacle.
The search space for these vectors is exponential in the number of the considered
intervals.
In order to make the optimization feasible, the dynamic window approach take
into account only the first time interval and assumes that the velocities in the
remaining n-1 time intervals are constant. In other words. the accelerations are
assumed equal to 0 in [t1, tn]. It is possible to make these assumptions without
loss of generalities because:

• the reduced search space is two-dimensional and consequently tractable

• the search is repeated after each time interval

• if there are no new commands, velocities will remain constant

28

Method

Obstacles in the closer environment of the robot imposes restrictions on the
rotational and translational velocities. For instance, the maximal admissible speed
on curvature depends on the distance to the next obstacle on this curvature.
A velocity is considered admissible if the robot is able to stop before it reaches this
obstacle. Hence, the set of admissible velocities Va is defined as:

Va = {v, ω|
ñ

2 · dist(v, ω) · v̇b ∧ ω ≤
ñ

2 · dist(v, ω) · ω̇b} (3.2)

where dist(v,ω) represents the distance to the closest obstacle on the corresponding
curvature, for a given velocity (v,ω), v̇b and ω̇b represent the accelerations for
breakage.
Va is the set of velocities that allow the navigation of the robot avoiding collision
with an obstacle.
Moreover, the overall search space is reduced to the dynamic window, which contains
exclusively the velocities that can be reached within the next time interval, so
that the limited accelerations that the motors can exert can be taken into account.
Considering t as the time interval during which the accelerations v̇ and ω̇ will be
applied and (va,ωa) as the actual velocity, the dynamic window Vd is defined as:

Vd = {(v, ω)|vε[va − v̇ · t, va + v̇ · t] ∧ ωε[ωa − ω̇ · t, ωa + ω̇ · t]} (3.3)

It is possible to notice that the dynamic window is centered around the actual
velocity, while the extensions depend on the accelerations applicable by the motor.
All the curvatures that doesn’t belong to the dynamic window cannot be reached
within the next time interval and thus are not considered for the obstacle avoidance.
In the end, the resulting search space is obtained by the intersection of the restricted
areas: the space of possible velocities Vs, the space of admissible velocities Va and
the dynamic window Vd

Vf = Vs ∩ Va ∩ Vd. (3.4)

Figure 3.1: Resulting search space

29

Method

Maximization of the Objective Function

Once it has been determined the restricted search space Vr, it has to be chosen
a velocity belonging to it. At this point, the maximum of the objective function
(Equation 3.1) is computed over Vr to include the target heading, clearance and
velocity criteria. This is done by discretization of Vr.
The target heading measures the alignment of the robot with the target direction.
It is obtained by 180-θ, where θ is the angle of the target point relative to the
robot’s heading direction. It is computed for a predicted position of the robot,
because the direction changes with the different velocities.
It is possible to assume that the robot navigates with the selected velocity during
the next time interval, however, for a realistic measurement, the dynamics of the
rotation has to be taken into account. Thus, θ is computed at the position in which
the robot exerts maximal deceleration after the next interval.
The clearance (dist(v,ω) function) defines the distance to the closest obstacle
that intersects with the curvature. In case of no obstacles on the curvature, this
parameter is set to a large constant.
The progress of the robot on the corresponding trajectory is evaluated by the
function velocity(v,ω).
All these components of the objective function are normalized to [0,1].

Implementation

DWB controller was created in ROS 1 by David Lu at Locus Robotics as part of
the robot_navigation project. It was then ported in ROS 2 for use in Nav2 as
critic-based controller algorithm. It enhances the qualities of DWA by implementing
3 types of plugins: trajectory generator plugins, critic plugins and plugin
implementations for common use.
Trajectory Generator Plugins generate the set of possible trajectories that
should be evaluated by the critics. The output command velocity depends on the
trajectory with the highest score. The trajectory generators provided by Nav2 are:

• StandardTrajectoryGenerator

• LimitedAccelGenerator

Critic Plugins score the trajectories generated by the trajectory generator. The
chosen command velocity is determined by the sum of the scores of the variety of
plugins that could be loaded:

• BaseObstacle scores a trajectory based on where the path passes over the
costmap

30

Method

• ObstacleFootprint scores a trajectory based on verifying all points along
the robot’s footprint don’t touch an obstacle marked in the costmap

• GoalAlign scores a trajectory based on how well aligned trajectory is with
the goal pose

• GoalDist scores a trajectory based on how close the trajectory gets the robot
to the goal pose

• PathAlign scores a trajectory based on how well it is aligned to the path
provided by the global planner

• PathDist scores a trajectory based on how far it end up from the path provided
by the global planner

• PreferForward scores a trajectory that move the robot forwards more highly

• RotateToGoal, which only allows the rotation of the robot to the goal orien-
tation when it is close enough to the goal location

• Oscillation makes the robot able to avoid just moving backward and forwards

• Twirling prevents holonomic robots from spinning as they make their way to
the goal

3.1.2 RPP

RPP controller implements a variant on the Pure Pursuit Algorithm to track a
path.

PP

Considering a path P as an ordered list of points P={p0,p1,...,pn} where pi=(xi,yi)
∈ P, a local trajectory planner is a function f that defines the linear and angular
velocity to track a reference path Pt at time t.

(vt, wt) = f(Pt) (3.5)

It is introduced graphically in Figure 3.2 [14].

31

Method

Figure 3.2: Pure Pursuit Goal Point

At first, it determines the closest point pr on Pt to the robot position. The
lookahead point pl is then determined as the first pi at least L (lookahead distance)
away from pr. In formula:

dist(pi) =
ñ

(xr − xi)2 + (yr − yi)2pl = pi ∈ Pt,

dist(pi−1) < L

dist(pi) ≥ L
(3.6)

Knowing pl, it is possible to determine the curvature of the circle using simple
geometry. Thus, representing Pt in vehicle base coordinates, P ′

t , the curvature can
be represented as

K = 2y′
l

L2 (3.7)

where K is the path curvature required to drive the robot from its starting position
to the lookahead carrot, y′

l is the lateral coordinate of the lookahead point p′
l, and

L is the desired distance between pr and pl. At this point, the commands can be
sent to a robot controller. This process is then updated at the desired rate.
The velocity of travel vt and the distance L along the path used to select the
lookahead point pl are the crucial parameters of this path tracker. The lookahead
point pl is at distance L from the robot, tuned to achieve an acceptable trade-
off between oscillations centered around the path (shorter distances) and slower
convergence (longer distances).
The response of the pure pursuit tracker looks similar to the step response of a
second order dynamic system, and the value of L tends to act as a damping factor.

32

Method

Figure 3.3: Pure Pursuit response

Considering a circle of arbitrary curvature in Figure 3.4, which is a path of
constant curvature, it should obviously should have one lookahead distance that
can be used for path following.

Figure 3.4: Generic circle

It is possible to notice that an isosceles triangle within the circle has the
lookahead distance as the base extending from the starting point to the goal point,
while the sides are simply the radius of the circle. The lookahead distance that
can form this isosceles triangle will satisfy the conditions on the curvature and,
therefore, define the curvature of this circle. Clearly, many lookahead distances
ranging between 0 and 2r can satisfy them [15].
Nontheless, there are several drawbacks of this approach: the Pure Pursuit is known
to have overshoot or undershoot behaviors (which results in deviations) in high
curvature situations. This is a major issue only for smaller-scale applications (e.g.
industrial and consumer robots), but it does not particularly affect autonomous
driving applications because it typically has a minimum turning radius limit. Also,
it does not specify any translational specification criteria during execution. This
feature on one hand could be unsafe, because without described methods, almost
all known variants use a constant traslation velocity profile. On the hand, it can be
beneficial as it allows having a great deal of flexibility with different linear velocity
profiles.

33

Method

PP Variants

In order to increase path tracking stability, they have been proposed variants of this
algorithm by varying the computations of the lookahead point. MIT’s entry into the
DARPA Urban Challenge implemented the Adaptative Pure Pursuit (APP)
algorithm for lane following while varying the lookahead distances proportionally
to the translational velocity [16]. A mapping of lookahead distances to velocities is
required so that it is possible to obtain an acceptable trade-off between oscillation
and slower convergence to the path. In formula:

Lt = vtlt (3.8)

where Lt is the lookahead distance, vt is the translational velocity and lt is a
lookahead gain representing the amount of time to project vt forward.
Recently, a new variant has been created: it modifies the process of determining
the lookahead point, adjusting it off the path and containing a heuristic change to
the translational velocity to address the case of short-cutting during path track-
ing in substantial turns. However, this policy does not solve the problem facing
deployment of PP techniques to general mobile robotics applications, but only to
Ackermann vehicles.
Moreover, Pure Pursuit nor its variations account for dynamic effects of the vehicle,
because PP is geometrically derived, thus vehicle dynamics are not modeled in this
style of path tracking algorithm.

RPP

The Regulated Pure Pursuit algorithm was designed for service and industrial
mobile robots in real world by Shrijit Singh and Steve Macenski while at Samsung
Research as part of the Nav2 working group.
It provides methods for adapting robot’s translational velocity to current condi-
tions: regulation cost functions. They provide excellent performance in a range
of real-world mobile robot scenarios, derived from standard demands on lower-
ing robot velocities when maneuvering around sharp bends or in small spaces.
The regulated Pure Pursuit algorithm firstly determines pr and all prior points
{p0,...,pj} are permanently pruned from the stored path to prevent unnecessary
future transformations of obsolete data. Then, it transforms the input path Pt

{p0,...,pj ,|pr,...,pn} into the robot’s base coordinates frame P ′
t and prune it. On this

way, the curvature of the path can be obtained by 3.7. For every point pi where
dist(p′

r,p′
i) ≫ Lt, the modified path ({p′

r,...,p′
n}) is similarly pruned, because the

points are far enough away to never need to be taken into consideration at t. These
far path points continue to be held in the stored path for future iterations, until a

34

Method

new path is received.
At this point, RPP will utilize the same lookahead selection mechanics as Adapta-
tive Pure Pursuit formulated in Equation 3.8. This makes the lookahead distance
Lt proportional to the speed vt and a lookahead gain lt, so that longer distances
are used while moving faster. The lookahead point pl is chosen using this distance.
Interpolating between path points noticeably improve smoothness on sparse paths
(with 0.1 m - 1.0 m resolution) at autonomous vehicle speeds, however this does
not contribute much benefit at the service and industrial robot speeds using typical
grid map planning resolutions (0.025 m - 0.1 m).
Moreover, the desired linear velocity vt is still processed by the curvature and
proximity heuristics. Both heuristics are applied to linear velocity and then the
maximum of the two are taken.
The Curvature Heuristic is needed in order to slow the robot to v′

t during
sharp turns into partially observable environments (e.g. when entering or exiting
hallways and aisles commonly found in retail, warehouses, factories, schools and
shopping malls). This feature makes the navigation significantly safer when making
blind turns. This heuristic is applied to the linear velocity vt when the change
in curvature θ is above a minimum threshold Tθ. This minimal radius prevents
velocity scaling in small turns or path changes that do no require slowing. The
curvature velocity v′

t returned by this heuristic is selected as:

v′
t =

vt K > Tk,
vt

rmin K
K ≤ Tk

(3.9)

where rmin is the minimum turning radius to apply the heuristic. This formulation
reduces mathematically a simple error calculation between the minimum radius
and the radius of a circle represented by K.
The Proximity Heuristic is applied to the linear velocity vt when the robot
becomes in close proximity to dynamic obstacles or fixed infrastructure. This
heuristic slows the robot when in constrained environments where it has a high
probability to collide. The likelihood of collision is minimized reducing the speed
near fixed infrastructures, so that the impact of small path variations in tight spaces
is reduced. Lowering the speed of industrial and service robots in close proximity to
dynamic agents, like humans, is a common safety requirement - allowing a robot to
reactively stop faster to prevent potential injury. To adapt the response to different
systems, the heuristic’s linear formulation lowers the speed by the ratio dO/dprox

with a gain α. This linear heuristic, showed in Equation 3.10, has a broad range of
α which may be finely tuned by a system designer and derives from the well-used
Adaptative Pure Pursuit’s formulation.

v′
t =

vt
alpha dO

dprox
dO ≤ dprox

vt dO > dprox

(3.10)

35

Method

In Equation 3.10 dprox is the proximity distance to obstacles to apply the heuristic,
dO is the current distance to an obstacle, and α is a gain to scale the heuristic
function for aggressive behavior, with the requirement that α≤1.0. Higher values
of α reduce the velocity of the robot in proximity to obstacles more expeditiously.
The value of dprox should be chosen according to the system requirements of a
robot’s application for how close an obstacle can be before the robot begins slowing
its maximum velocity.
After velocity regulation, it can be determined the path curvature using Equation
3.5. The angular velocity is computed using the regulated velocity, not desired
linear velocity: this prevents consequential undershoot behavior relative to target
curvatures. Thus, the angular velocity can be calculated as:

ωt = v′
t K (3.11)

The final step of the algorithm is to check the path tracking command for current
or imminent collisions. A given angular velocity ωt and regulated linear velocity
v′

t can be projected forward in time, resulting in a circular arc. Points on the arc
are sampled at the grid map cell resolution forward for a set duration. Collision
checking is done based on a duration to collision (instead of to the lookahead
point), so that the robot is always, at minimum, a set duration from collision. At
slow speeds, it may not be sensible to collision check to a lookahead point tens
of meters, or hundreds of seconds, away. Instead, in restricted areas where the
current velocity commands might not be admissible a short distance—but long
time—away, a temporal schema enables precise manipulations.

Implementation

The implementation of this algorithm is in C++ and combines Pure Pursuit,
Adaptative Pure Pursuit and Regulated Pure Pursuit. Also, it is parameterized,
in order to enable each specific behavior. On this way, it is possible to quickly
evaluate and tune these features by simply changing a handful of parameters from
the available binaries.
The robot can also be configured to reduce its speed as it gets closer to the desired
goal pose. Because of this feature, the robot stops more gradually: the translational
velocity is lowered proportional to the remaining distance, up to a minimum viable
velocity to make progress, when the robot is close enough to the target.
This controller is suitable for use on all types of robots, such as differential, legged,
and Ackermann steering vehicles. When applied to omni-directional platforms, it
is not able to fully leverage the lateral movements of the base. The configuration
of this controller is done by tuning the following parameters:

• desired_linear_vel - the desired maximum linear velocity to use

36

Method

• lookahead_dist - the lookahead distance to use to find the lookahead point

• min_lookahead _dist - the minimum lookahead distance threshold when
using velocity scaled lookahead distances

• max_lookahead_dist - the maximum lookahead distance threshold when
using velocity scaled lookahead distances

• lookahead_time - the time to project the velocity by to find the velocity
scaled lookahead distance (lookahead gain)

• rotate_to_heading_angular_vel - if rotate to heading is used, this is the
angular velocity to use

• use_velocity_scaled_lookahead_dist - whether to use the velocity scaled
lookahead distances or constant lookahead_distance

• min_approach_linear_velocity - the minimum velocity threshold to apply
when approaching the goal

• use_collision_detection - whether to enable collision detection

• max_allowed_time_to_collision_up_to_carrot - the time to project a ve-
locity command to check for collisions when use_collision_detection is
true. It is limited to maximum distance of lookahead distance selected.

• use_regulated_linear_velocity_scaling - whether to use regulated fea-
tures for curvature

• use_cost_regulated_linear_velocity_scaling - whether to use the regu-
lated features for proximity to obstacles

• cost_scaling_dist - the minimum distance from an obstacle to trigger the
scaling of linear velocity, if use_cost_regulated_linear_velocity_scaling
is true. The value set should be smaller or equal to the inflation_radius
set in the inflation layer of costmap, since inflation is used to compute the
distance from obstacles

• cost_scaling_gain - A multiplier gain, which should be less or equal to 1.0,
used to further scale the speed when an obstacle is within cost_scaling_dist.
Lower values reduces speed more quickly.

• inflation_cost_scaling_factor - it should be exactly the same of the value
of the cost_scaling_factor set for the inflation layer in the local costmap

37

Method

• regulated_linear_scaling_min_radius - the turning radius for which the
regulation features are triggered

• regulated_linear_scaling_min_speed - the minimum speed for which the
regulated features can be send, to ensure process is still achievable even in
high cost spaces with high curvature.

• use_fixed_curvature_lookahead - enables fixed lookahead for curvature
detection

• curvature_lookahead_dist - distance to lookahead to determine curvature
for velocity regulation purposes. It is only used if use_fixed_curvature_lookahead
is enabled

• use_rotate_to_heading_min_angle - the difference in the path orientata-
tion and the starting robot orientation to trigger a rotation in place, if
use_rotate_to_heading is enabled

• max_angular_accel - maximum allowable angular acceleration while rotating
to heading, if enabled

• max_robot_pose_search_dist - maximum integrated distance along the path
to bound the search for the closest pose to the robot.This is set by default to
the maximum costmap extent, so it shouldn’t be set manually unless there
are loops within the local costmap

The used topics are lookahead_point and lookahead_arc.In the first, messages
of geometry_msgs/PointStamped type, defining the current lookahead point on
the path, are published. In the second, the nav_msgs/Path messages are published:
they define the drivable arc between the robot and the carrot. Arc length depends
on max_allowed_time_to_collision_up_to_carrot, forward simulating from the
robot pose at the commanded Twist by that time. In a collision state, the last
published arc will be the points leading up to, and including, the first point in
collision.

3.1.3 TEB
The TEB local planner is based on the method called Time Elastic Band, which
locally optimizes the robot’s trajectory with respect to trajectory execution time,
separation from obstacles and compliance with kinodynamic constraints at runtime
[17].
The classic "Elastic Band" is described in terms of a sequence of n intermediate
robot poses xi = (xi, yi, βi)T ∈ R2 × S1, in the following denoted as a configuration

38

Method

including position xi, yi and orientation βi of the robot in the related frame ({map}
Figure 3.5):

Q = {xi}i=0...n n ∈ N (3.12)

Figure 3.5: Sequences of configurations

The "Timed Elastic Band" (TEB) is augmented by the time intervals between
two consecutive configurations, resulting in a sequence of n-1 time differences ∆Ti:

τ = {∆Ti}i=0...n−1 (3.13)

Each time differences defines the time that the robot takes to transit from one
configuration to the next one in sequence. The TEB method is a tuple of both
sequences:

B := (Q, τ) (3.14)

The main goal is to adapt and optimize the TEB in terms of configurations as well
as time intervals, by a weighted multi-objective optimization in real-time:

f(B) =
Ø

k

γkfk (3.15)

B∗ = arg min
B

f(B) (3.16)

B∗ denotes the optimized TEB, f(B) denotes the objective function.
Many components of the objective function are local with respect to B, because
they only depend on a few number of consecutive configurations. This property
yields in a sparse system matrix, for which specialized fast and efficient large scale
numerical optimization methods are available (like Least-Squares).
The objective functions of the TEB belong to two types: constraints, such as
velocity and acceleration limits formulated in terms of penalty functions, and
objectives with respect to trajectory, such as shortest or fastest path or clearance

39

Method

from obstacles.
Sparse constrained optimization algorithms are not readily available in robotic
frameworks (e.g. ROS) in a freely usable implementation. Hence, for what concerns
the "Time Elastic Band" method, these constraints are formulated as obejctives
in terms of a piecewise continuous, differentiable cost function that penalizes the
violation of a constraint:

eΓ(x, xt, ϵ, S, n) ≃

(x−(xr−ϵ)
S

)n ifx > xr − ϵ

0 otherwise
(3.17)

where xr denotes the bound. S, n and ϵ affect the the accuracy of the approximation:
S defines the scaling, n the polynomial order and ϵ a small translation of the
approximation. For example in Figure 3.6 there are two different realizations of
Equation 3.17: Approximation 1 is obtained by setting n = 2,S = 0.1,ϵ = 0.1, while
Approximation 2 (which is noticeably the stronger approximation between the two)
by setting n = 2, S = 0.05 and ϵ = 0.1. Both of them approximates the constraint
xr = 0.4.

Figure 3.6: Polynomial approximation of constraints

The TEB takes into consideration avoiding static or dynamic obstacles as well
as reaching the intermediate way points of the original path at the same time. The
only difference between these two objective functions is that obstacles repel the
elastic band, while way points attract it. The objective function depends on the
minimal separation dmin,j between the TEB and the way point or obstacle zj.

40

Method

Figure 3.7: Minimal distance between TEB and way point or obstacle

In the case of way points, the distance is bounded from above by a maximal
target radius rpmax (Equation 3.18). Instead, in the case of obstacles it is bounded
from below by a minimal distance romin

(Equation 3.19.

fpath = eΓ(dmin,j, rpmax , ϵ, S, n) (3.18)

fob = eΓ(−dmin,j, −romin
, ϵ, S, n) (3.19)

The signs of the separation dmin,j and the bound romin
must be swapped in order

to realize a bounding from below.

Similar penalty function, as in the case of geometric constraints, is exploited
to define dynamic constraints on robot velocity and acceleration. The euclidean
or angular distance between two successive configurations xi, xi+1 and the time
interval ∆Ti for the transition between both poses are used in order to compute
the mean translational and rotational velocities.

vi ≃ 1
∆Ti

.....
A

xi+1 − xi

yi+1 − yi

B..... (3.20)

ωi ≃ βi+1 − βi

∆Ti

(3.21)

The euclidean distance approximates the true length of the circular path between
two consecutive poses accurately enough, because configurations are very close to
each other. Since the acceleration connects two successive mean velocities, three
consecutive configurations with two corresponding time intervals are taken into
consideration:

ai = 2(vi+1 − vi)
∆Ti + ∆Ti+1

(3.22)

where the three consecutive configurations are substituted by their two related
velocities.

41

Method

The rotational acceleration is computed in the same way as Equation 3.22,
taking into account angular velocities instead of the linear ones.

The classic elastic band method objective is obtaining the shortest path. Nonethe-
less, since this new approach takes into account temporal information, it is possible
to replace or combine the shortest path objective with the fastest path one. The
objective of the fastest path is easily achieved by:

fk = (
nØ

i=1
∆Ti)2 (3.23)

This objective leads to a fastest path in which the intermediate configurations are
uniformly separated in time rather than space.

Implementation

The control flow of the implemented TEB is shown in Figure 3.8.

Figure 3.8: Control flow of TEB implementation

In the initialization phase default timing information, adhering the dynamic
and kinematic constraints, are added to the initial path. On this way it becomes

42

Method

an initial trajectory.
At each iteration, new configurations are added or previous ones are deleted
dynamically by the algorithm, in order to adjust the spatial and temporal resolution
to the remaining trajectory length or planning horizon. A hysteresis is implemented
to avoid oscillations.
The optimization problem is then transformed into a hyper-graph and solved with
large scale optimization algorithms for sparse systems. The required hyper-graph is
characterized by an unlimited amount of connected nodes of one single edge. This
means that an edge can connect more than two nodes.
The TEB problem (Equation 3.15) can be transformed into a hyper-graph that has
configurations and time differences as nodes. The edges connecting them represent
the given objective functions fk or constraint functions (Figure 3.9).

Figure 3.9: Velocity and obstacle objective function formulated as a hyper graph

Figure 3.9 shows an example of hyper-graph with two configurations: one time
difference and a point-shaped obstacle. The mean velocity, which is related to the
euclidean distance between two configurations and the necessary navigation time,
is required by the velocity bounding objective function. As a result, it creates
an edge that links those B states. The obstacle requires one edge connected to
the nearest configuration. Since the obstacle node is fixed (double circle), its
parameters (position) are not affected by optimization algorithms.
Control variables v and ω can be computed to directly command the robot naviga-
tion system, only after verifying the optimized TEB.
The re-initialization step occurs before every new iteration, in order to check new
and changing way-points. It is particularly useful when way-points are received
after analyzing short-range camera or laser-scan data.

3.1.4 MPPI
MPPI is predictive controller (local trajectory planner) that implements the Model
Predictive Path Integral algorithm to track a path with adaptive collision

43

Method

avoidance.
The basis of this algorithm derives from a stochastic trajectory method, which is
characterized by the path integral control framework [18].

Stochastic Trajectory Optimization

Using random sampling of trajectories, path integral control offers a mathematically
solid methodology for developing optimal control algorithms. One of the most
useful features of the developed algorithms in the path integral framework is that
they require no derivatives of dynamics or cost. This makes the estimation of the
system dynamics and the design of cost function more flexible and robust.
The typical derivation of path integral control is based on an exponential transfor-
mation of the value function of the optimal control problem. It also requires that
only the actuated states are affected by the noise in the system. In such a way, it
is possible to transform the stochastic Hamilton-Jacobi-Bellman equation into a
linear partial differential equation, that can be eventually transformed into a path
integral, using the Feynman-Kaclemma. The resulting path integral takes the form
of an expectation over trajectories under the uncontrolled dynamics of the system,
which is then approximated using Monte-Carlo sampling to compute the control
for the current state.
However, it is possible to provide a new formulation which offers two benefits over
the standard path integral approach:

• it permits noise in both directly and indirectly actuated situations by relaxing
the condition between the noise and control authority

• rather than only providing a formula for the initial time, it explicitly gives
the optimal settings throughout the full time horizon

Considering stochastic dynamical systems with the state and controls at time t
denoted xt ∈ Rn and ut ∈ Rm, these dynamics are disturbed by the Brownian
motion dw ∈ Rp. Let u(·) : [t0, T] → Rm be the function mapping time to control
inputs, and the τ : [t0, T] → Rn be the trajectory of the system.
In the classical stochastic optimal control setting, the objective is finding a control
sequence u(·) such that:

u∗(·) = arg min
u(·)

EQ

C
ϕ(xT , T) +

Ú T

t0
L(xt, ut, t)dt

D
(3.24)

where the expectation is taken with respect to the dynamics: dx = F (xt, ut, t)dt +
B(xt, t)dw. The costs are considered to be composed of an arbitrary state-dependent
term and quadratic control cost:

L(xt, ut, t) = q(xt, t) + 1
2uT

t R(xt, t)ut (3.25)

44

Method

and dynamics which are affine in controls:

F (xt, ut, t) = f(xt, t) + G(xt, t)ut (3.26)

The controlled dynamics induce another probability measure on the space tra-
jectories, denoted as Q(u). Moreover, it needs to be computed a relative entropy
term between the uncontrolled distribution P and the controlled distribution Q(u).
It can be done by applying Girsanov’s theorem [19] 1:

DKL(Q(u)||P) = 1
2

Ú T

t0
uT

t G(xt, t)T Σ(xt, t)−1G(xt, t)utdt (3.27)

where Σ(xt, t) = B(xt, t)B(xt, t)T .
Assuming that the control cost matrix takes the form

R(xt, t) = λG(xt, t)T Σ(xt, t)−1G(xt, t) (3.28)

it is possible to set the following equation:

EQ(u)[S(τ)] + λDKL(Q||P) = EQ(u)

C
S(τ) + 1

2

Ú T

t0
uT

t R(xt, t)utdt

D
(3.29)

where λ ∈ R+, S(τ) is the state dependent cost-to-go term ϕ(xT , T) +
s T

t0
q(xt, t)dt.

Moreover, it is possible to derive the form of optimal probability measure Q∗

in terms of the Radon-Nykodym derivative 2 with respect to the uncontrolled
dynamics:

dQ∗

dP
=

exp(− 1
λ
S(τ)

EP

è
exp(− 1

λ
S(τ))

é (3.31)

1Let γ = {γt ∈ [0, T]} be a {F⊔} - predictable process such that EP
è
exp

1
1
2
s T

0 γ2
t dt
2é

< ∞.
There exist a measure Q on (Ω, F) such that:
G1. Q is equivalent to P

G2. dQ
dP = exp

è
−
s T

0 γtdWt − 1
2
s T

0 γ2
t dt
é

G3. The process W̃ =
)

W̃t : t ∈ [0, T]
*

definedasW̃t = Wt +
s t

0 γsds is a ({Ft},Q) - Brownian
motion.

2The Radon-Nikodym derivative defines the measure Q∗ by means of the equation

Q∗(A) =
Ú

A

dQ∗

dP
dP (3.30)

45

Method

Connecting the information theoretic notions of free energy, relative entropy and
classical optimal control theory, yields to a method for computing a control law
independet of the HJB-equation. In such a way, the minimization problem can be
solved by moving the probability distribution induced by the controller Q(u) as close
as possible to the optimal probability measure Q∗, defined by the Radon-Nikodym
derivative dQ∗

dP . Using the relative entropy between Q∗ and Q(u) as a notion of
distance:

u∗(·) = arg min
u(·)

DKL(Q∗||Q(u)) (3.32)

This formulation is very useful, because the optimal probability measure Q∗ takes
the form of a softmax [20] 3 function with temperature λ. If a trajectory has a low
cost, then dQ∗

dP has a high value. Hence, if a trajectory is drawn at random from
Q∗, it is likely to have a very low cost. If Q(u) is able to accurately approximate
Q∗, then appyling the controls u(·) to the system will have a high probability of
generating a low cost trajectory.
Now, it is possible to minimize the relative entropy between optimal distribution
Q∗ and the distribution induced by the controller Q(u). Applying the definition of
relative entropy:

DKL(Q∗||Q(u)) = EQ∗

C
log

A
dQ∗

dQ(u)

BD
(3.34)

It is necessary to find an expression for the Radon-Nikodym derivative dQ∗

dQ(u) , to
optimize this function:

Q∗

dQ(u) = dQ∗

dP
dP

dQ(u) (3.35)

At this point it is possible to apply Girsanov’s theorem to compute dP
dQ(u) :

dP
dQ(u) = exp(D(τ, u(·))) (3.36)

3The softmax function takes as input a vector z of K real numbers, and normalizes it into
a probability distribution consisting of K probabilities proportional to the exponentials of the
input numbers. For a vector z of K real numbers, the standard (unit) softmax function σ :
RK → (0,1)K , where K ≥ 1, is defined by the formula:

σ(z)i = eziqK
j=1 ezj

for i = 1, ..., K and z = (z1, ..., zK) ∈ RK (3.33)

In general, it can be used another base b > 0, instead of e. For example, b = eβ or b = e−β where
the reciprocal of β is sometimes referred to as the temperature.

46

Method

with
D(τ, u(·)) = −

Ú T

0
uT

t G(xt, t)T Σ(xt, t)−1B(xt, t)dw(0)

+ 1
2

Ú T

0
uT

t G(xt, t)T Σ(xt, t)−1G(xt, t)utdt

(3.37)

where dw(0) is a Brownian motion with respect to P (i.e. EP
ès t

0 dw(0)
é

= 0, ∀t).
Applying Equation 3.31:

DKL(Q∗||Q(u)) = EQ∗

C
log

A
exp(− 1

λ
S(τ)) exp(D(τ, u(·)))

EP[exp(− 1
λ
S(τ))]

BD
(3.38)

It could be re-written as

DKL(Q∗||Q(u)) = EQ∗

5
− 1

λ
S(τ) + D(τ, u(·)) − log

3
EP

5
exp

3
− 1

λ
S(τ)

4646
(3.39)

Since S(τ) does not depend on the controls u(·), it is possible to remove the first
and last terms from the minimization:

arg min
u(·)

DKL(Q∗||Q(u)) = arg min
u(·)

EQ∗ [D(τ, u(·))] (3.40)

The goal is to find the function u∗(·) that minimizes Equation 3.40. However,
considering only the class of step functions is enough because the control is obviously
applied in discrete times:

ut =

...
uj if j∆t ≤ t < (j + 1)∆t
...

(3.41)

where j = {0,1, ...N}. Applying this formulation to D(τ, u(·)):

D(τ, u(·)) = −
NØ

j=0
uT

j

Ú tj+1

tj

G(xt, t)dw(0) + 1
2uT

j

Ú tj+1

tj

H(xt, t)dtuj (3.42)

where

i. G(x, t) = G(x, t)T Σ(x, t)−1B(x, t)

ii. H(x, t) = G(x, t)T Σ(x, t)−1G(x, t)

iii. N = T/∆t

47

Method

Since uj does not depend on the trajectory, when the expectation operator is
applied, it is obtained EQ∗ [D(τ, u(·))] equal to:

EQ∗ [D(τ, u(·))] = −
NØ

j=0
uT

j EQ∗

CÚ tj+1

tj

G(xt, t)dw(0)
D

+
NØ

j=0

1
2uT

j EQ∗

CÚ tj+1

tj

H(xt, t)dt

D
uj

(3.43)

It is obvious that this formulation is convex with respect to each uj . This means
that, it is sufficient to take the gradient of Equation 3.43 with respect to uj, set it
equal to zero and solve it for uj, in order to find u∗

j . The result is:

u∗
j = EQ∗

CÚ tj+1

tj

H(xt, t)dw(0)
D

+
NØ

j=0

1
2uT

j EQ∗

CÚ tj+1

tj

G(xt, t)dw(0)
D

(3.44)

For small ∆t it is possible to approximate:Ú tj+1

tj

H(xt, t)dt ≈ H(xtj
, tj)∆t (3.45)

Ú tj+1

tj

G(xt, t)dw(0) ≈ G(xtj+1
tj

dw(0) (3.46)

This yields to:

u∗
j = 1

∆t
EQ∗ [H(xtj

, tj)]−1EQ∗

C
G(xtj

, tj)
Ú tj+1

tj

dw(0)
D

(3.47)

The sampling cannot be done from the Q∗ distribution, thus it is needed to change
the expectation in order to have it with respect to the uncontrolled dynamics P.

u∗
j = 1

∆t
EP

C
exp(− 1

λ
S(τ))H(xtj

, tj)
EP[exp(− 1

λ
S(τ))]

D
EP

exp(− 1
λ
S(τ))G(xtj

, tj)
s tj+1

tj
dw(0)

EP[exp(− 1
λ
S(τ))]

(3.48)

To approximate the controls, trajectories can be directly sampled from P.

Matrix formulation

Supposing the control matrix and diffusion matrix have the form:

G =
A

0
Gc

B
, B(xt) =

A
Ba(xt) 0

0 Bc

B
(3.49)

48

Method

In this specific case, there are no correlations between noise in the states that are
directly actuated either non-directly actuated, and the diffusion for the directly
actuated states is state-independent. Hence, the covariance matrix becomes:

Σ(x) =
A

Ba(x)Ba(x)T 0
0 BcB

T
c

B
(3.50)

The terms H(xtj
) and G(xt) are no longer state dependent, thus can be reduced to:

H = GT
c (BcB

T
c)−1Gc G = GT

c (BcB
T
c)−1Bc (3.51)

This means that the these matrices can be pulled out of the expectation, because
they are state-independent:

u∗
j = 1

∆t
H−1G

A
EP

CÚ tj+1

tj

exp(− 1
λ
S(τ))dw(0)

EP[exp(− 1
λ
S(τ))]

DB
(3.52)

Numerical Approximation

At this point, it is necessary to numerically approximate Equation 3.52. However,
they must be addressed two different problems:

1. re-writing the equation for sampling in discrete time

2. finding a way to perform importance sampling with Equation 3.52, because
the expectation is with respect to the uncontrolled dynamics

In discrete time the dynamics of the system is:

dxtj
= (f(xtj

, tj) + G(xtj
, tj)uj)∆t + B(xtj

, tj)ϵj

√
∆t (3.53)

where ϵj is a vector where each entry is a standard normal random variable.
Substituting ϵj

√
∆t:

u∗
j = 1

∆t
H−1G

Ep

exp(− 1
λ
S(τ))ϵj

ñ
∆j

Ep[exp(− 1
λ
S(τ))]

 (3.54)

where p is the probability distribution corresponding to the discrete time uncon-
trolled dynamics (i.e. Equation 3.53 with utj

set to zero). Instead of sampling from
p, it can be sampled from a different probability distribution qv

u, which corresponds
to sampling from the dynamics:

dxtj
= (f(xtj

, tj) + G(xtj
, tj)uj)∆t + BE(xtj

, tj)ϵj

√
∆t (3.55)

49

Method

where the new diffusion matrix is

BE(xt) =
A

Ba(xt) 0
0 νBc

B
(3.56)

with ν ≤ 1.
When sampling from this distribution, the designer gets to choose:

• the initial controls from which the sampling is centered about

• the magnitude of the exploration variance defined by ν

The likelihood ratio between the two distribution must be calculated in order
to sample from qv

u instead of p[21]. Inserting the likelihood ratio corresponds to
changing the running cost from q(xt, t) to:

q̃(xt, ut, ϵt, t) = q(xt, t) + 1
2uT

t Rut + λuT G ϵ√
∆t

+ 1
2λ(1 − ν−1) ϵT

√
∆t

BT
c (BcB

T
c)−1Bc

ϵ√
∆t

(3.57)

The first two terms are penalties for shifting the mean of the exploration away
from zero, instead the last term is a penalty for sampling from an over-aggressive
variance. Bc

ϵ√
∆t

is the effective change in the control input due to noise.
When sampling from a distribution with non-zero control input, the Equation 3.52
also changes. This happens because the random variable under consideration shifts
from the zero mean term Bcϵj

√
∆t to the non-zero mean term Gcu∆t + BEϵj

√
∆t.

Let S̃(τ) be:

S̃(τ) = ϕ(xT , T) +
NØ

j=0
q̃(xt, ut, ϵt, t)∆t (3.58)

On this way it is possible to obtain the resultant iterative update rule:

u∗
j = uj + H−1G

Eqν
u

 exp(− 1
λ
S̃(τ) ϵj√

∆t

Eqν
u

è
exp

1
− 1

λ
S̃(τ)

2é
 (3.59)

Approximating the term inside the parenthesis:

KØ
k=1

 exp
1
− 1

λ
S̃(τk)

2
ϵj,k√

∆tqK
k=1 exp(− 1

λ
S̃(τk))

 (3.60)

where trajectory τk is drawn from the sampling dynamics 3.55. The iterative update
rule can be seen as computing the new control based on a reward weighted average
over trajectories.

50

Method

Implementation

The MPPI predicitive controller has been created by Aleksei Budyakov, while
adapted and developed for Nav2 by Steve Macenski.
Equations 3.59 and 3.60 offer an iterative update law that can be applied in a
model predictive control setting. In this specific setting, optimization takes place
dynamically: after optimizing the trajectory, a single control input is executed
before re-optimization takes place. The path integral control derivation shown here
provides a formula for optimizing the sequence of controls, not just the current
time instance. This allows to warm start the optimization by reusing the portion
of the control sequence that has not yet been run. On this way, the performance of
the algorithm is enhanced, since, in general, only a limited number of iterations
can be performed per timestep for a complex system operating at a suitable control
frequency. The majority of the computation required for the path integral control
update rule can be done in parallel, which is another important feature of real-time.
The model predictive path integral control is shown in Figure 3.10.

Figure 3.10: Model Predictive Path Integral Control

The control implementation for Nav2 contains plugin-based critic functions to
impact the behavior of the algorithm:

• Constraint Critic

51

Method

• Goal Angle Critic

• Goal Critic

• Obstacles Critic

• Cost Critic

• Path Align Critic

• Path Angle Critic

• Prefer Forward Critic

• Twirling Critic

The most important features of this controller are:

• predictive MPC trajectory planner

• plugin-based critics can be easily swapped out, tuned or replaced by the user

• highly optimized CPU-only performance using vectorization and tensor opera-
tions

• support of a number of common motion models, including Ackermann, Differential-
Drive and Omni-Directional

• fallback mechanisms are included to handle soft-failures before escalating to
recover behaviors

• high unit test coverage, documentation and parameter guide

• easy extensibility to support modern search variants of MPPI

3.2 Settings of the analysis
At this point, they have been chosen the use cases and the performance indexes
that had to be analyzed.
They have been created 5 different simulation environments:

1. empty world, to evaluate simple navigation without external influence (Figure
3.11a and 3.11b)

2. world including sparse static obstacles, to evaluate collision avoidance
(Figure 3.12a and 3.12b)

52

Method

3. world including only one static obstacle, to evaluate smoothness in sharp
curves (Figure 3.13a and 3.13b)

4. restricted world, with obstacles close to the robot, to evaluate the
capability of the robot of immediate abortion of impossible tasks (Figure 3.14a
and 3.14b)

5. restricted world, with obstacles distant from the robot, to evaluate the
capability of the robot to manage impossible tasks (Figure 3.15a and 3.15b)

(a) Map pf the empty world. (b) Simulation environment of the empty world.

Figure 3.11: Empty world simulation.

(a) Map of the world with static obstacles. (b) Simulation environment with static obstacles.

Figure 3.12: Static Obstacles simulation.

53

Method

(a) Map of the world with only one
static obstacle.

(b) Simulation environment with only one static
obstacles.

Figure 3.13: One Static Obstacle simulation.

(a) Map of the world with small
restricted area.

(b) Simulation environment with small restricted area.

Figure 3.14: Small restricted area simulation.

54

Method

(a) Map of the world with large
restricted area.

(b) Simulation environment with large restricted area.

Figure 3.15: Large restricted area simulation.

Each simulation consisted in the robot’s execution of the same task repeated 4
times, in order to get average information on multiple occurrences. In such a way,
the analysis is more significant.
Moreover, it is possible to notice that in the last 2 use cases, the maps are empty,
despite the presence of obstacles in the simulation. This has been done in order to
test the controllers capability of generating paths without knowing a priori the map
of the simulation environment and without the usage of the obstacle and inflation
layers.
The chosen parameters for all the simulations are:

• Success rate - percentage of successful tasks over the total number of trials

• Average linear speed - average of robot’s speed on the x axis in m/s

• Average length of the path navigated by the robot in m

• Average time taken - average of time taken by the robot in order to
successfully reach the goal in s

• Average integrated jerk [22] - average of the jerk on x axis in m2/s6

• Maximum Centripetal Acceleration in m/s2

• Maximum velocity in m/s

• Maximum path error - maximum linear displacement between the global
planned path and local planned one in m

55

Method

• Minimum path error - minimum linear displacement between the global
planned path and local planned one in m

• Average path error - average linear displacement between the global planned
path and local planned one in m

• Average heading error and its standard deviation - average angular
displacement between the global planned path and local planned one in
degrees

• Average Energy Consumption [22] in J

For what concerns the simulation including obstacles, they have been also taken
into consideration the minimum distance from obstacles and its standard
deviation (in m).
Instead, the restricted area simulation analysis, included also the computation of
the minimum time for abortion (in s), which gives the time between the first
time the robot stops, trying to re-plan a new path, and the last time, when the
robot finally aborts the task.

3.3 Code implementation
The project is developed in Python and consists in:

• 2 files used for the launch of the simulations - tb3_simulation_only_launch.py
and controller_benchmark_bringup.py

• 1 file containing the tuned parameters - controller_benchmark.yaml

• 1 file containing the specifics on the starting and the target points and the
code saving data of the simulation (state of completion of the task, velocity of
the robot, the list of poses of the robot, costmaps and global path planned) -
metrics.py

• 1 file containing the code that processes data, in order to provide the parameters
chosen for the analysis - process_data.py

Each of the described files, except for tb3_simulation_only_launch.py, are
specifically implemented for each simulation, in order to better manage the shifting
from one use case to the other.
The computation of the parameters is described in the following section.

56

Method

Perfomance indexes

The success rate is basically computed dividing the number of successfully
completed tasks over the total number of task.

1 s t r (round (np . sum(t a s k s _ r e s u l t s [i]) / l en (t a s k s _ r e s u l t s) ∗100))+"%"

This formulation is repeated for the number of controllers taken into account.

The average linear speed is computed on this way:

1 de f getTaskAvgLinearSpeed (c o n t r o l l e r _ t w i s t s) :
2 l inear_x = []
3 f o r twist_stamped in c o n t r o l l e r _ t w i s t s :
4 l inear_x . append (twist_stamped . tw i s t . l i n e a r . x)
5 re turn np . average (l inear_x)

This function creates an array (linear_x), fills it with all the robot’s velocities
sampled during the simulation and then returns its average.

The average length of the path navigated by the robot is computed by
summing iteratively the square root of the sum of squares of the dispacements
along x and y axes.

1 de f getPathLength (path) :
2 path_length = 0
3 x_prev = path . poses [0] . pose . p o s i t i o n . x
4 y_prev = path . poses [0] . pose . p o s i t i o n . y
5 f o r i in range (1 , l en (path . poses)) :
6 x_curr = path . poses [i] . pose . p o s i t i o n . x
7 y_curr = path . poses [i] . pose . p o s i t i o n . y
8 path_length = path_length + math . s q r t ((x_curr−x_prev) ∗∗2 + (

y_curr−y_prev) ∗∗2)
9 x_prev = x_curr

10 y_prev = y_curr
11

12 re turn path_length

The average time taken is computed by doing the time difference between
the timestamps of the first and last poses

1 de f getTaskTimes (co n t r o l l e r_ po s e s) :
2

57

Method

3 re turn (c on t r o l l e r _p o s e s [−1] . header . stamp . nanosec /1 e09+
c on t r o l l e r_ po s e s [−1] . header . stamp . sec)−\

4 (c on t r o l l e r_ po s e s [0] . header . stamp . nanosec /1 e09+
c on t r o l l e r_ po s e s [0] . header . stamp . sec)

The maximum centripetal acceleration is computed along with the average
integrated jerk in the following method:

1 de f getContro l l e rMSJerks (c o n t r o l l e r _ t w i s t s , c o n t r o l l e r _p o s e s) :
2 l inear_x = []
3 l inear_y = []
4 angular_z = []
5 coordinates_x = []
6 coordinates_y = []
7 acc_cen t r i p e ta l = []
8

9 time_passed = 0 .0
10 f o r twist_stamped in c o n t r o l l e r _ t w i s t s :
11 l inear_x . append (twist_stamped . tw i s t . l i n e a r . x)
12 l inear_y . append (twist_stamped . tw i s t . l i n e a r . y)
13 angular_z . append (twist_stamped . tw i s t . angular . z)
14 time_passed+=twist_stamped . header . stamp . nanosec /1 e09+

twist_stamped . header . stamp . sec
15

16 f o r poses in co n t r o l l e r _p o s e s :
17 coordinates_x . append (poses . pose . p o s i t i o n . x)
18 coordinates_y . append (poses . pose . p o s i t i o n . y)
19

20 f o r i in range (l en (c o n t r o l l e r _p o s e s)) :
21 i f angular_z [i] < 0 :
22 angular_z [i] = abs (angular_z [i])
23 i f angular_z [i] > 1e −2:
24 r = l inear_x [i] / angular_z [i]
25 i f r > 1e −2:
26 acc_cen t r i p e ta l . append ((l inear_x [i]∗∗2) / r)
27 e l s e :
28 acc_cen t r i p e ta l . append (0 . 0)
29

30 end = c o n t r o l l e r _ t w i s t s [−1] . header . stamp . nanosec /1 e09+
c o n t r o l l e r _ t w i s t s [−1] . header . stamp . sec

31 s t a r t= c o n t r o l l e r _ t w i s t s [0] . header . stamp . nanosec /1 e09+
c o n t r o l l e r _ t w i s t s [0] . header . stamp . sec

32 dt = (end−s t a r t) / l en (c o n t r o l l e r _ t w i s t s)
33

34 # Dis c r e t e d e r i v a t i v e o f l i n e a r v e l o c i t y = l i n e a r a c c e l e r a t i o n
35 l i n ea r_acce l e ra t i on_x = np . d i f f (l inear_x , ax i s = 0) / dt
36

37 # Dis c r e t e d e r i v a t i v e o f l i n e a r a c c e l e r a t i o n = l i n e a r j e r k

58

Method

38 l inear_jerk_x = np . d i f f (l i nea r_acce l e ra t i on_x , ax i s =0) / dt
39

40 # Mean Squared j e r k Wininger , Kim, & Crae l i u s (2009)
41 ms_linear_jerk_x = 0 .0
42 f o r j e r k in l inear_jerk_x :
43 ms_linear_jerk_x += j e r k ∗∗2
44

45 i f l en (l inear_jerk_x) >0:
46 rmse_l inear_jerk = math . s q r t ((ms_linear_jerk_x) / l en (

l inear_jerk_x))
47 e l s e :
48 rmse_l inear_jerk = np . nan
49

50 acc = np . max(ac c_cen t r i p e ta l)
51

52 re turn rmse_linear_jerk , acc

In details, at first they have been created 5 different arrays containing respectively
samplings of the robot’s linear velocity along x axis, samplings of the robot’s
angular velocity along z axis, x coordinates of the robot’s poses, y coordinates of
the robot’s poses and samplings of the robot’s centripetal acceleration. After filling
the arrays, it has been computed the infinitesimal time period between a pose and
the following one, in order to differentiate the robot’s linear acceleration along x
axis, and, consequently, obtain the linear jerk along x axis. Finally, this method
returns the maximum centripetal acceleration and the root mean square of the
linear jerk of one controller executing only one task.

The maximum velocity is computed by the execution of this method:

1 de f getMaxVel (c o n t r o l l e r _ t w i s t s) :
2 l inear_x = []
3 f o r twist_stamped in c o n t r o l l e r _ t w i s t s :
4 l inear_x . append (twist_stamped . tw i s t . l i n e a r . x)
5

6 re turn np . max(l inear_x)

Hence, the computation is much similar to the one implemented for the definition
of the robot’s average speed. The only difference is that, obviously, it returns the
maximum sampled value of the robot’s linear velocity.

The path error and the heading error are computed by the same function:

1 de f getContro l l e rPathHeadingError (path , c on t r o l l e r_ po s e s) :
2

59

Method

3 x = []
4 y = []
5 q = []
6 # Getting x and y o f c o n t r o l l e r
7 f o r c o n t r o l l e r _ c o o r d i n a t e s in co n t r o l l e r _p o s e s :
8 x . append (c o n t r o l l e r _ c o o r d i n a t e s . pose . p o s i t i o n . x)
9 y . append (c o n t r o l l e r _ c o o r d i n a t e s . pose . p o s i t i o n . y)

10 q . append (c o n t r o l l e r _ c o o r d i n a t e s . pose . o r i e n t a t i o n)
11

12 xp = []
13 yp = []
14 qp = []
15 f o r path_poses in path . poses :
16 xp . append (path_poses . pose . p o s i t i o n . x)
17 yp . append (path_poses . pose . p o s i t i o n . y)
18 qp . append (path_poses . pose . o r i e n t a t i o n)
19

20 e r r = []
21 head = []
22

23 # f o r each po int along c o n t r o l l e r t r a j e c t o r y
24 f o r i in range (l en (xp)) :
25 d_min = 100 .0
26 # f o r each couple o f po in t s a long g l o b a l t r a j e c t o r y
27 f o r j in range (l en (x)) :
28

29 d = math . s q r t ((x [j]−xp [i]) ∗∗2+(y [j]−yp [i]) ∗∗2)
30

31 i f d < d_min :
32 d_min = d
33 jmin = j
34

35 [Xp,Yp, Zp] = QuatToEulerAngle (qp [i])
36 [Xc , Yc , Zc] = QuatToEulerAngle (q [jmin])
37

38 i f Zc < 0 :
39 Zc = Zc∗−1
40 i f Zp < 0 :
41 Zp = Zp∗−1
42

43 head . append (abs (Zc−Zp))
44 e r r . append (d_min)
45 e r r = e r r [: −4]
46

47 re turn (head , e r r)

Firstly, they have been filled 3 arrays, containing the coordinates and the quater-
nions (orientation) of the robot, and other 3 arrays, containing the coordinates
and the quaternions planned. Then, they have been initialized 2 arrays: the path

60

Method

error array and the heading error array. The first one is filled with the minimum
distance between the robot’s pose and the correspondent planned pose, while the
second one with the difference between the orientation of the robot in the same
pose and in the correspondent planned one. Moreover, it is possible to notice that
the last 4 path error values are neglected: it must be done because sometimes the
robot stops when the distance between itself and the target point is sufficiently
small.
Finally, the maximum, minimum and average values are computed in a for loop.
The average energy consumption is computed by this method:

1 de f getEnergy (c o n t r o l l e r _ t w i s t s , c on t r o l l e r_ po s e s) :
2 l inear_x = []
3 coordinates_x = []
4 coordinates_y = []
5 time_passed = 0 .0
6 f o r twist_stamped in c o n t r o l l e r _ t w i s t s :
7 l inear_x . append (twist_stamped . tw i s t . l i n e a r . x)
8 time_passed+=twist_stamped . header . stamp . nanosec /1 e09+

twist_stamped . header . stamp . sec
9

10 f o r poses in co n t r o l l e r _p o s e s :
11 coordinates_x . append (poses . pose . p o s i t i o n . x)
12 coordinates_y . append (poses . pose . p o s i t i o n . y)
13

14 end = c o n t r o l l e r _ t w i s t s [−1] . header . stamp . nanosec /1 e09+
c o n t r o l l e r _ t w i s t s [−1] . header . stamp . sec

15 s t a r t= c o n t r o l l e r _ t w i s t s [0] . header . stamp . nanosec /1 e09+
c o n t r o l l e r _ t w i s t s [0] . header . stamp . sec

16 dt = (end −s t a r t) / l en (c o n t r o l l e r _ t w i s t s)
17

18 energy = 0 .0
19 f o r i in range (l en (c o n t r o l l e r _p o s e s) −1) :
20 displacement_x = c on t r o l l e r _p o s e s [i +1] . pose . p o s i t i o n . x−

c on t r o l l e r_ po s e s [i] . pose . p o s i t i o n . x
21 displacement_y = c on t r o l l e r _p o s e s [i +1] . pose . p o s i t i o n . y−

c on t r o l l e r_ po s e s [i] . pose . p o s i t i o n . y
22 energy = energy + displacement_x ∗∗2/ dt + displacement_y ∗∗2/ dt

)
23

24 re turn energy

In details, after filling the arrays of the samplings of robot’s linear velocity, x
coordinates and y coordinates of its poses, and computing the infinitesimal time
period between a pose and the following one, the energy spent for making the robot
move by that time is computed. The computation consists in the execution of the
integral of the squares of the velocity along x and y axes. Since the simulations are

61

Method

obviously done in discrete time, this computation can be simplified by summing the
squares of the displacement along x and y axes over the infinitesimal time period.
Finally, this function returns the total energy expenditure of a controller executing
only one task by summing all these values.

The minimum distance from obstacles is computed on this way:

1 de f ge tObstac l eD i s tance s (tasks_local_costmaps ,
loca l_costmap_reso lut ion , tasks_control ler_local_costmaps_meta ,
tasks_poses) :

2

3 # Will conta in s minimum o b s t a c l e d i s t ance f o r each c o n t r o l l e r
4 cont ro l l e r s_obstac l e_d i s tances_min = []
5 contro l l e r s_min_obstac l e_dis tances_std = []
6 # f o r each task / nav igat i on
7

8 f o r task_local_costmaps , task_poses , task_local_costmaps_meta in
z ip (tasks_local_costmaps , tasks_poses ,
tasks_control ler_local_costmaps_meta) :

9 # f o r each c o n t r o l l e r
10 f o r contro l l e r_loca l_costmaps , cont ro l l e r_pose s ,

control ler_local_costmaps_meta in z ip (task_local_costmaps ,
task_poses , task_local_costmaps_meta) :

11 min_obst_dist = 1e10
12 # Will conta in h i s t o r y o f nea r e s t o b s t a c l e d i s t ance o f

the c o n t r o l l e r
13 # f o r t h i s task , used to compute man and std
14 contro l l e r_task_min_obstac le_dis tances = []
15

16 f o r local_costmap , pose , local_costmap_meta in z ip (
contro l l e r_loca l_costmaps , cont ro l l e r_pose s ,
control ler_local_costmaps_meta) :

17 # D e f i n i t i o n o f the o r i g i n o f each costmap
18 or ig in_x = local_costmap_meta . o r i g i n . p o s i t i o n . x
19 or ig in_y = local_costmap_meta . o r i g i n . p o s i t i o n . y
20

21 #D e f i n i t i o n o f the cur rent p o s i t i o n o f the robot
22 x_r = pose . pose . p o s i t i o n . x
23 y_r = pose . pose . p o s i t i o n . y
24

25 xmin = 0
26 ymin = 0
27

28 i f local_costmap . max()>FATAL_COST:
29 # Look f o r o b s t a c l e
30 obs tac l e s_ indexes = np . where (local_costmap>

FATAL_COST)

62

Method

31 obstac les_indexes_x = obs tac l e s_ indexe s [1]
32 obstac les_indexes_y = obs tac l e s_ indexe s [0]
33

34 iteration_minimum_distance = 1e10
35 f o r x , y in z ip (obstacles_indexes_x ,

obstac les_indexes_y) :
36

37 obs tac l e_d i s tance = math . s q r t ((x∗
l oca l_costmap_reso lut ion + or ig in_x − x_r) ∗∗2 + (y∗
l oca l_costmap_reso lut ion + or ig in_y − y_r) ∗∗2)

38

39 i f ob s tac l e_d i s tance <
iteration_minimum_distance :

40 iteration_minimum_distance =
obs tac l e_d i s tance

41

42 i f ob s tac l e_d i s tance < min_obst_dist :
43 min_obst_dist = obs tac l e_d i s tance
44

45 e l s e :
46 iteration_minimum_distance = np . nan
47 i f iteration_minimum_distance == 1e10 :
48 iteration_minimum_distance = np . nan
49

50 contro l l e r_task_min_obstac le_dis tances . append (
iteration_minimum_distance)

51 cont ro l l e r s_obstac l e_d i s tances_min . append (np . nanmin (
contro l l e r_task_min_obstac le_dis tances))

52 contro l l e r s_min_obstac l e_dis tances_std . append (np . nanstd (
contro l l e r_task_min_obstac le_dis tances))

53 i f (min_obst_dist == 1e10) :
54 min_obst_dist = np . nan
55

56 re turn contro l l e r s_obstac l e_di s tances_min ,
contro l l e r s_min_obstac l e_dis tances_std

This function computes, for each controller executing only one task, the minimum
distance between the robot and an obstacle in each local costmap. Basically, when
the maximum value of the local costmap is greater than 253 (FATAL_COST), they
have been saved all the indexes of the local costmap containing values greater
than FATAL_COST. Then, the specific position of the obstacle is determined by
multiplying the indexes times the resolution of the local costmap and summing
them to the coordinates of the origin of the local costmap. Finally, the distance is
computed doing the difference between the obstacle’s and robot’s positions.

The time for abortion is computed by this function:

63

Method

1 de f getMaxTimeAbortion (c o n t r o l l e r _ t w i s t s) :
2 l inear_x = []
3 angular_z = []
4 f o r twist_stamped in c o n t r o l l e r _ t w i s t s :
5 l inear_x . append (twist_stamped . tw i s t . l i n e a r . x)
6 angular_z . append (twist_stamped . tw i s t . angular . z)
7 cnt = 0
8 f o r i in range (l en (l inear_x) −1) :
9 i f l inear_x [i] == min (l inear_x) :

10 i f min (l inear_x) <0.5:
11 cnt += 1
12 i f cnt == 1 :
13 end = c o n t r o l l e r _ t w i s t s [−1] . header . stamp .

nanosec /1 e09+c o n t r o l l e r _ t w i s t s [−1] . header . stamp . sec
14 s t a r t= c o n t r o l l e r _ t w i s t s [i] . header . stamp .

nanosec /1 e09+c o n t r o l l e r _ t w i s t s [i] . header . stamp . sec
15 time_passed = end−s t a r t
16 e l i f min (l inear_x) ==0.5:
17 time_passed = 0 .0
18

19 re turn time_passed

where it has been calculated the time passed between the first time in which the
robot stops, trying to recalculate the path that has to be navigated, and the last
time, when the robot ends the execution of the task. This calculation returns 0
in the specific case of RPP controller, because it does not make the robot stops
before it reaches a pose that is close enough to the obstacle.

64

Chapter 4

Obtained results

4.1 Empty World simulation

Figure 4.1 and 4.2 show the robot in the simulation environment.

Figure 4.1: Empty World simulation.

65

Obtained results

Figure 4.2: Empty world map.

The simulation in the empty world provided the following results:

Performance indexes DWB RPP TEB MPPI
Success rate 100.00% 100.00% 100.00% 100.00%
Avg linear speed (m/s) 0.466/0.5 0.5/0.5 0.476/0.5 0.459/0.5
Avg path length (m) 7.238 7.231 7.247 7.236
Avg time taken (s) 15.498 14.512 15.14 15.66
Avg integrated x jerk (m2/s6) 1.811 0.393 1.445 0.834
Max velocity (m/s) 100.00% 100.00% 100.00% 100.00%
Max local planned path error (m) 0.062 0.063 0.051 0.061
Min local planned path error (m) 0.00 0.00 0.00 0.00
Avg local planned path error (m) 0.023 0.017 0.017 0.017
Avg heading error (°) 0.495 0.373 0.358 0.349
Std heading error (°) 0.005 0.001 0.023 0.025
Energy Consumption (J) 3.509 3.647 3.55 3.475

Table 4.1: Results of the simulation with the Empty World simulation

66

Obtained results

Figure 4.3: Difference between global planner and DWB in the Empty World
simulation.

Figure 4.4: Difference between global planner and RPP in the Empty World
simulation.

67

Obtained results

Figure 4.5: Difference between global planner and TEB in the Empty World
simulation.

Figure 4.6: Difference between global planner and MPPI in the Empty World
simulation.

68

Obtained results

Figure 4.7: Velocity, Acceleration and Jerk of DWB controller.

Figure 4.8: Velocity, Acceleration and Jerk of RPP controller.

69

Obtained results

Figure 4.9: Velocity, Acceleration and Jerk of TEB controller.

Figure 4.10: Velocity, Acceleration and Jerk of MPPI controller.

70

Obtained results

Figure 4.11: Energy expenditure and velocity of DWB.

Figure 4.12: Energy expenditure and velocity of RPP.

71

Obtained results

Figure 4.13: Energy expenditure and velocity of TEB.

Figure 4.14: Energy expenditure and velocity of MPPI.

72

Obtained results

4.1.1 Observations

It is possible to notice that the RPP controller is the fastest one: it reaches the
goal at maximum possible speed (0.5 m/s) spending less time than all the other
controllers and with the minimum error between the local and global planned path.

The energy consumption is quite similar to every controller, however the RPP
has a slightly higher value because it does not make the robot decelerate be-
fore reaching the target point. Instead, it suddenly stops, spending more energy
than the other controllers. The link between the average linear speed and the
energy expenditure is clear in Figure 4.11, Figure 4.12, Figure 4.13 and Figure 4.14:
the energy consumption decreases when the robot’s linear speed decreases gradually.

The DWB controller’s acceleration seems to significantly change in a very short
period of time, because the peaks in Figure 4.7 reaches the highest value above all
the controllers taken into account. Instead, MPPI and TEB controllers accelerate
and decelerate in a smoother way. However, the RPP, as expected, navigates with
the same maximum velocity through the whole path, until it reaches the goal at 0
m/s.

4.2 Static Obstacles simulation

Figure show the robot in the simulation environment with the static obstacles.

Figure 4.15: Static Obstacles world simulation.

73

Obtained results

Figure 4.16: Static Obstacles world map.

The results obtained by this simulations are shown the Table 4.2:

Controller DWB RPP TEB MPPI
Success rate 100.00% 100.00% 100.00% 100.00%
Avg linear speed (m/s) 0.482/0.5 0.494/0.5 0.479/0.5 0.475/0.5
Avg path length (m) 14.776 14.883 14.685 14.352
Avg time taken (s) 30.704 30.107 30.637 30.049
Min distance from obstacle (m) 0.646 0.636 0.622 0.571
Std distance from obstacle (m) 0.221 0.216 0.239 0.304
Avg integrated x jerk (m2/s6) 2.266 0.193 1.376 0.601
Max centripetal acceleration (m/s2) 0.242 0.215 0.172 0.149
Max velocity (m/s) 100.00% 100.00% 100.00% 100.00%
Max local planned path error (m) 0.115 0.074 0.137 0.741
Min local planned path error (m) 0.00 0.00 0.00 0.00
Avg local planned path error (m) 0.044 0.026 0.069 0.217
Avg heading error (°) 5.23 3.663 6.92 11.771
Std heading error (°) 0.019 0.024 0.053 1.48
Energy Consumption (J) 7.26 7.443 7.151 7.071

Table 4.2: Results of the Static Obstacles simulation

74

Obtained results

Figure 4.17: Difference between global planner and DWB in the Static Obstacles
simulation.

Figure 4.18: Difference between global planner and RPP in the Static Obstacles
simulation.

75

Obtained results

Figure 4.19: Difference between global planner and TEB in the Static Obstacles
simulation.

Figure 4.20: Difference between global planner and MPPI in the Static Obstacles
simulation.

76

Obtained results

Figure 4.21: Angular velocity and Centripetal acceleration of DWB in the Static
Obstacles simulation.

Figure 4.22: Angular velocity and Centripetal acceleration of RPP in the Static
Obstacles simulation.

77

Obtained results

Figure 4.23: Angular velocity and Centripetal acceleration of TEB in the Static
Obstacles simulation.

Figure 4.24: Angular velocity and Centripetal acceleration of MPPI in the Static
Obstacles simulation.

78

Obtained results

Figure 4.25: Velocity, Acceleration and jerk of DWB in the Static Obstacles
simulation.

Figure 4.26: Velocity, Acceleration and jerk of RPP in the Static Obstacles
simulation.

79

Obtained results

Figure 4.27: Velocity, Acceleration and jerk of TEB in the Static Obstacles
simulation.

Figure 4.28: Velocity, Acceleration and jerk of MPPI in the Static Obstacles
simulation.

80

Obtained results

Figure 4.29: Energy expenditure and velocity of DWB in the Static Obstacles
simulation.

Figure 4.30: Energy expenditure and velocity of RPP in the Static Obstacles
simulation.

81

Obtained results

Figure 4.31: Energy expenditure and velocity of TEB in the Static Obstacles
simulation.

Figure 4.32: Energy expenditure and velocity of MPPI in the Static Obstacles
simulation.

82

Obtained results

4.2.1 Observations

It is possible to notice that all of the controllers taken into account have completed
the task successfully. The time taken to complete the tasks and the length of the
navigated path are quite similar between one controller and the others, because on
one hand DWB and RPP controllers are faster but navigate longer paths, while on
the other hand TEB and MPPI are slower but cut corners in such a way that the
navigated path is smaller. Moreover, the minimum distances from obstacles are
similar as well, because of the presence of a narrow passage (Figure 4.33).

Figure 4.33: Narrow passage in the Static Obstacles simulation.

The difference between the local and the global planned path is noticeably higher
in the MPPI controller case, because it cuts the corners more than all the others
(Figure 4.20), navigating dangerously close to the obstacles. This does not allow a
fully smooth navigation.

Nonetheless, the DWB controller seems to be the less smooth above all the
controllers taken into account: as shown in Figure 4.21, it has the highest angular
velocity (0.55 rad/s), thus the highest centripetal acceleration, and the highest
peaks of linear jerk (Figure 4.25).

The TEB and MPPI have the lowest energy consumption, because they decrease
their speed more gradually than the others.

In conclusion, the TEB, despite its high maximum local planned path error, is
the controller that better deal with this specific situation. The RPP should not be
taken into account because of its high centripetal acceleration.

83

Obtained results

4.3 One Obstacle Simulation

Figure 4.34 and 4.35 show the robot in the simulation environment.

Figure 4.34: One Obstacle simulation environment.

Figure 4.35: One Obstacle simulation map.

The obtained results are shown in Table 4.3.

84

Obtained results

Controller DWB RPP TEB MPPI
Success rate 100.00% 100.00% 100.00% 100.00%
Avg linear speed (m/s) 0.478/0.5 0.495/0.5 0.479/0.5 0.471/0.5
Avg path length (m) 15.614 15.612 15.42 15.247
Avg time taken (s) 32.685 31.553 32.103 32.288
Min distance from obstacle (m) 0.909 0.916 0.734 0.604
Std distance from obstacle (m) 0.077 0.087 0.188 0.169
Avg integrated x jerk (m2/s6) 2.776 0.251 1.285 0.641
Max centripetal acceleration (m/s2) 0.242 0.235 0.198 0.185
Max velocity (m/s) 100.00% 100.00% 100.00% 100.00%
Max local planned path error (m) 0.07 0.056 0.254 0.377
Min local planned path error (m) 0.00 0.00 0.00 0.00
Avg local planned path error (m) 0.028 0.019 0.088 0.112
Avg heading error (°) 2.083 1.634 5.959 5.777
Std of heading error (°) 0.043 0.052 0.224 0.098
Energy Consumption (J) 7.608 7.807 7.517 7.424

Table 4.3: Results of the One Obstacle simulation

Figure 4.36: Difference between global planner and DWB in One Obstacle
simulation.

85

Obtained results

Figure 4.37: Difference between global planner and RPP in One Obstacle simula-
tion.

Figure 4.38: Difference between global planner and TEB in One Obstacle simula-
tion.

86

Obtained results

Figure 4.39: Difference between global planner and MPPI in One Obstacle
simulation.

Figure 4.40: Velocity, Acceleration and Jerk of DWB in the One Obstacle
simulation.

87

Obtained results

Figure 4.41: Velocity, Acceleration and Jerk of RPP in the One Obstacle simula-
tion.

Figure 4.42: Velocity, Acceleration and Jerk of TEB in the One Obstacle simula-
tion.

88

Obtained results

Figure 4.43: Velocity, Acceleration and Jerk of MPPI in the One Obstacle
simulation.

Figure 4.44: Angular velocity and Centripetal acceleration of RPP in the One
Obstacle simulation.

89

Obtained results

Figure 4.45: Angular velocity and Centripetal acceleration of RPP in the One
Obstacle simulation.

Figure 4.46: Angular velocity and Centripetal acceleration of TEB in the One
Obstacle simulation.

90

Obtained results

Figure 4.47: Angular velocity and Centripetal acceleration of MPPI in the One
Obstacle simulation.

Figure 4.48: Velocity and energy expenditure of DWB in the One Obstacle
simulation.

91

Obtained results

Figure 4.49: Velocity and energy expenditure of RPP in the One Obstacle
simulation.

Figure 4.50: Velocity and energy expenditure of TEB in the One Obstacle
simulation.

92

Obtained results

Figure 4.51: Velocity and energy expenditure of MPPI in the One Obstacle
simulation.

4.3.1 Observations
In Figure 4.35 it is possible to observe the presence of the Keepout Filter. It has
been used in order to better customize the chosen path that the robot had to
navigate, in particular it allowed the definition of a perfectly linear path.

All of the controllers have successfully completed the tasks at almost same speed
and in almost the same time: even though the DWB and the RPP have higher
speed and better follows the defined global planned path, the TEB and MPPI have
lower speed but cut corners, navigating smaller paths.
For what concerns the energy consumption, which is almost the same for each
controller, the TEB and the MPPI controllers have the lowest value.

However, one of the parameters that mostly put in evidence the difference of the
controllers’ behaviors is the smoothness. The MPPI, that navigates dangerously
close to the obstacle, has the lowest value of minimum distance from the obstacle.
DWB has the highest average integrated x jerk, because it significantly changes
its acceleration in very short periods of time when the robot approaches the sharp
curve on the defined path. Moreover, the DWB and the RPP controllers have the
highest centripetal acceleration.

93

Obtained results

In conclusion, the TEB controller better manages this specific situation.

4.4 Restricted Area Simulation

4.4.1 Small Restricted area

The Figure show the robot in the simulation environment.

Figure 4.52: Small Restricted Area simulation environment.

Figure 4.53: Small Restricted Area simulation map.

Table 4.4 displays the results obtained by the simulation.

94

Obtained results

Controller DWB RPP TEB MPPI
Success rate 0.00% 0.00% 0.00% 0.00%
Avg linear speed (m/s) 0.053/0.5 0.5/0.5 0.172/0.5 0.118/0.5
Avg path length (m) 0.655 0.286 0.616 0.547
Avg time taken (s) 12.462 0.597 6.151 5.358
Min distance from obstacle (m) 0.857 0.856 0.868 0.9
Std distance from obstacle (m) 0.073 0.104 0.105 0.085
Avg integrated x jerk (m2/s6) 3.3 0.00 12.727 5.49
Max velocity (m/s) 80.00% 100.00% 68.00% 59.00%
Max local planned path error (m) 7.923 8.294 8.547 8.266
Min local planned path error (m) 0.00 0.014 0.002 0.002
Avg heading error (°) 3.829 2.165 47.25 2.012
Std of heading error (°) 2.041 0.281 32.891 1.174
Energy Consumption (J) 0.126 0.165 0.1 0.086
Avg Time For Abortion (s) 7.596 0.00 2.456 2.384

Table 4.4: Results of the Small Restricted Area simulation.

Figure 4.54: Difference between global planned path and DWB in the Small
Restricted Area simulation.

95

Obtained results

Figure 4.55: Difference between global planned path and RPP in the Small
Restricted Area simulation.

Figure 4.56: Difference between global planned path and TEB in the Small
Restricted Area simulation.

96

Obtained results

Figure 4.57: Difference between global planned path and MPPI in the Small
Restricted Area simulation.

Figure 4.58: Velocity, acceleration and jerk of DWB in the Small Restricted Area
simulation.

97

Obtained results

Figure 4.59: Velocity, acceleration and jerk of RPP in the Small Restricted Area
simulation.

Figure 4.60: Velocity, acceleration and jerk of TEB in the Small Restricted Area
simulation.

98

Obtained results

Figure 4.61: Velocity, acceleration and jerk of MPPI in the Small Restricted Area
simulation.

Figure 4.62: Velocity and energy expenditure of DWB in the Small Restricted
Area simulation.

99

Obtained results

Figure 4.63: Velocity and energy expenditure of RPP in the Small Restricted
Area simulation.

Figure 4.64: Velocity and energy expenditure of TEB in the Small Restricted
Area simulation.

100

Obtained results

Figure 4.65: Velocity and energy expenditure of MPPI in the Small Restricted
Area simulation.

4.4.2 Large Restricted Area Simulation

The Figures 4.66 and 4.67 show the robot in the simulation environment.

Figure 4.66: Large Restricted Area simulation environment.

101

Obtained results

Figure 4.67: Large Restricted Area simulation map.

The results provided by the Large Restricted Area simulation are shown in
Table 4.5.

Controller DWB RPP TEB MPPI
Success rate 0.00% 0.00% 0.00% 0.00%
Avg linear speed (m/s) 0.209/0.5 0.5/0.5 0.341/0.5 0.317/0.5
Avg path length (m) 3.817 3.458 3.567 3.694
Avg time taken (s) 18.226 6.905 11.267 11.81
Min distance from obstacle (m) 0.944 1.326 1.24 1.071
Std distance from obstacle (m) 0.507 0.47 0.495 0.538
Avg integrated x jerk (m2/s6) 2.446 0.00 8.181 3.272
Max velocity (m/s) 100.00% 100.00% 100.00% 100.00%
Max local planned path error (m) 4.762 5.152 5.899 5.064
Min local planned path error (m) 0.00 0.00 0.00 0.00
Avg heading error (°) 8.036 0.622 32.148 2.265
Std of heading error (°) 6.218 0.076 23.411 1.075
Energy Consumption (J) 1.682 1.767 1.543 1.57
Avg Time For Abortion (s) 7.058 0.00 2.648 0.37

Table 4.5: Results of the Large Restricted Area simulation

102

Obtained results

Figure 4.68: Difference between global planned path and DWB in the Large
Restricted Area simulation.

Figure 4.69: Difference between global planned path and RPP in the Large
Restricted Area simulation.

103

Obtained results

Figure 4.70: Difference between global planned path and TEB in the Large
Restricted Area simulation.

Figure 4.71: Difference between global planned path and MPPI in the Large
Restricted Area simulation.

104

Obtained results

Figure 4.72: Velocity, acceleration and jerk of DWB in the Large Restricted Area
simulation.

Figure 4.73: Velocity, acceleration and jerk of RPP in the Large Restricted Area
simulation.

105

Obtained results

Figure 4.74: Velocity, acceleration and jerk of TEB in the Large Restricted Area
simulation.

Figure 4.75: Velocity, acceleration and jerk of MPPI in the Large Restricted Area
simulation.

106

Obtained results

Figure 4.76: Velocity and energy expenditure of DWB in the Large Restricted
Area simulation.

Figure 4.77: Velocity and energy expenditure of RPP in the Large Restricted
Area simulation.

107

Obtained results

Figure 4.78: Velocity and energy expenditure of MPPI in the Large Restricted
Area simulation.

4.4.3 Observations
The success rate is 0% for each controller, hence none of them successfully accom-
plished the tasks.
All of the controllers navigate at low speed, despite the RPP that navigates at the
maximum velocity (0.5 m/s).

The maximum planned path error represents the distance between the last
pose of the robot, where it aborts its task, and the actual goal. It is interesting
to notice that, overall, all the controllers return the same value, despite the av-
erage heading error: the TEB controller has the highest heading error, because,
when it is in close proximity to the obstacle, it makes pointless turns and tries
repeatedly to find a path that may allow the completion of the task (even though
it is not feasible). Also, this particular behavior is put in evidence by the fact
that the TEB controller has a relatively high average time taken and very high
average heading error, but small average time for abortion. Moreover, it has
the highest average integrated jerk, hence it is the less smooth controller. All
of these features make clear that it deals in the worst way with this specific situation.

It can be noticed that the DWB is the slowest above all the controllers and takes
more time to complete, as well as abort, the task. Also, it stops at the minimum

108

Obtained results

possible distance between the obstacle and the robot, because when it tries to re-
plan the path it decelerates a lot and slightly turns in close proximity of the obstacle.

The MPPI slowly navigates towards the obstacle until it reaches its minimum
distance from it. It behaves similarly to the DWB, but it takes much less time to
abort the impossible task and, while re-planning a new feasible path, it rotates less
nearby the obstacle.

Finally, the RPP navigates at maximum speed until the robot reaches the point
where the distance between itself and the obstacle is minimum. At that point the
robot’s speed will be 0 m/s. This means that this controller does not try to re-plan,
thus avoiding robot’s pointless rotations. This feature is cleared by the time spent
by the controller to abort the impossible task taken into account, that, in this case,
is 0 s.

In conclusion, the RPP manage better this condition.

109

Chapter 5

Conclusion

The automated benchmark that has been developed for this project is a tool that
may be useful not only to Alba Robot, but also for several other users exploiting
the controllers provided by Nav2. The developed code can precisely define the
characteristics of each controller, according to quantitative statistical data based
on multiple simulations.
For this project the controllers have been observed in 5 different situations (Empty
World, Static Obstacles, One Obstacle, Small and Large Restricted Areas) in order
to evaluate their smoothness, obstacle avoidance capability, path following capabil-
ity and kinematics. Thanks to the usage of Gazebo and Rviz, it has been possible
to carefully observe the behavior of the controllers. Moreover, the implemented
Python code allowed the execution of this accurate analysis in an automatic and
smart way.

The DWB controller seems to be the less smooth above all of the ones taken
into account, because it has the highest jerk and centripetal acceleration in every
use case. However, it follows the global planned path almost perfectly and avoid
obstacles keeping safe distances from them. It also deals quite well with impossible
tasks, because, when it goes in the close proximity of the constraint, it stops and
makes very small rotations on the current pose.

The RPP is the only controller that is able to reach the maximum velocity in
every condition. It has the best behavior in terms of path following: it has always
the minimum difference between the global and the local planned and the minimum
heading error. Moreover, it aborts impossible tasks in no-time, making the robot
just stop, without rotating, when it is close to the constraint. Nonetheless, it has
a high centripetal acceleration, which means that when making turns it does not
navigate smoothly.

110

Conclusion

The TEB is the best controller in terms of obstacle avoidance, because it cuts
corners but keeping safe distance from obstacles. Overall, it deals quite well with
all the use cases, except for the Restricted Area one, because it endlessly try to
generate new possibly feasible paths.

The MPPI controller avoid obstacles in the most dangerous way, because it
keeps less distance from them cutting corners more than any others. However,
it seems to be the smoothest above all the controllers taken into account, since
it always has the smallest maximum centripetal acceleration and average linear
jerk. Moreover, in case of impossible tasks, it makes the robot stop at very close
proximity to the constraint and slightly rotate nearby it. These rotations are even
smaller than the ones executed by the DWB.

In order to optimize the performance in these use cases, it is possible to improve
the tuning of each controller. However, the results obtained by this analysis provide
an interesting overview on each controller. This project, in fact, is the first step for
the creation of a brand-new customized controller, that will be able to perfectly
deal with any situation.
As demonstrated by the analysis, this new controller should merge the good
qualities of the ones that have been observed. In details, it is possible to create a
new plugins-based controller, which should include plugins concerning:

• constraints

• goal angle

• goal position

• costs on the costmap

• alignment with the path

• orientation of the robot on the path

• forward navigation preference

• avoidance of unnecessary twisting

• energy consumption

• sharp curves

• linear jerk

• maximum velocity

111

Conclusion

The customized controller should behave like the TEB, for what concerns obstacle
avoidance, the RPP, for path following and the MPPI, for smoothness.

112

Bibliography

[1] Camera dei deputati. La disabilità. June 2015. url: https://www.camera.
it/temiap/2015/06/15/OCD177-1390.pdf (cit. on p. 1).

[2] Shrestha, B.P., Millonig, A., Hounsell, and N.B. et al. «Review of Public
Transport Needs of Older People in European Context». In: 10 (Nov. 2016),
pp. 343–361 (cit. on p. 2).

[3] Rozafa Basha. «Disability and Public Space – Case Studies of Prishtina and
Prizren». In: International Journal of Contemporary Architecture ”The New
ARCH“ 2 (Dec. 2015), pp. 54–66. doi: 10.14621/tna.20150406 (cit. on
p. 2).

[4] Rubio F, Valero F, and Llopis-Albert C. «A review of mobile robots: Concepts,
methods, theoretical framework, and applications». In: International Journal
of Advanced Robotic Systems 16(2) (Apr. 2019) (cit. on p. 6).

[5] Matijevics, Istvn, Simon, and Janos. «Behavior Trees in Robotics and AI: An
Introduction». In: Aug. 2017. isbn: 9781138593732. doi: 10.1201/97804294
89105 (cit. on p. 6).

[6] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs, E. Berger,
R. Wheeler, and A. Ng. «ROS: an open-source Robot Operating System». In:
IEEE International Conference on Robotics and Automation Workshop on
Open Source Software. 2009 (cit. on p. 7).

[7] Steve Macenski, Alberto Soragna, Michael Carroll, and Zhenpeng Ge. «Impact
of ROS 2 Node Composition in Robotic Systems». In: IEEE Robotics and
Automation Letters 8.7 (2023), pp. 3996–4003. doi: 10.1109/LRA.2023.
3279614 (cit. on p. 7).

[8] Steven Macenski, Tully Foote, Brian Gerkey, Chris Lalancette, and William
Woodall. «Robot Operating System 2: Design, architecture, and uses in
the wild». In: Science Robotics 7.66 (2022), eabm6074. url: https://www.
science.org/doi/abs/10.1126/scirobotics.abm6074 (cit. on p. 7).

[9] Geoffrey Biggs and Tully Foote. Managed nodes. June 2015. url: https:
//design.ros2.org/articles/node_lifecycle.html (cit. on p. 12).

113

https://www.camera.it/temiap/2015/06/15/OCD177-1390.pdf
https://www.camera.it/temiap/2015/06/15/OCD177-1390.pdf
https://doi.org/10.14621/tna.20150406
https://doi.org/10.1201/9780429489105
https://doi.org/10.1201/9780429489105
https://doi.org/10.1109/LRA.2023.3279614
https://doi.org/10.1109/LRA.2023.3279614
https://www.science.org/doi/abs/10.1126/scirobotics.abm6074
https://www.science.org/doi/abs/10.1126/scirobotics.abm6074
https://design.ros2.org/articles/node_lifecycle.html
https://design.ros2.org/articles/node_lifecycle.html

BIBLIOGRAPHY

[10] Michele Colledanchise and Petter Ögren. «Improving Greenhouse’s Automa-
tion and Data Acquisition with Mobile Robot Controlled System via Wireless
Sensor Network». In: Dec. 2010. isbn: 978-953-307-321-7. doi: 10.5772/13401
(cit. on p. 14).

[11] Synopsys. What is LiDAR? url: https://www.synopsys.com/glossary/
what-is-lidar.html (cit. on p. 24).

[12] Nav2. Navigation Plugins. url: https://navigation.ros.org/plugins/
index.html (cit. on p. 25).

[13] D. Fox, W. Burgard, and S. Thrun. «The dynamic window approach to
collision avoidance». In: IEEE Robotics Automation Magazine 4.1 (1997),
pp. 23–33. doi: 10.1109/100.580977 (cit. on p. 27).

[14] Steve Macenski, Shrijit Singh, Francisco Martin, and Jonatan Gines. «Regu-
lated Pure Pursuit for Robot Path Tracking». In: Autonomous Robots (2023)
(cit. on p. 31).

[15] Coulter RC. «Implementation of the Pure Pursuit Path Tracking Algorithm».
In: (Jan. 1992) (cit. on p. 33).

[16] Campbell SF. «Steering control of an autonomous ground vehicle with ap-
plication to the DARPA Urban Challenge». In: International Journal of
Contemporary Architecture ”The New ARCH“ (2007) (cit. on p. 34).

[17] Christoph Roesmann, Wendelin Feiten, Thomas Woesch, Frank Hoffmann, and
Torsten Bertram. «Trajectory modification considering dynamic constraints
of autonomous robots». In: ROBOTIK 2012; 7th German Conference on
Robotics. 2012, pp. 1–6 (cit. on p. 38).

[18] Grady Williams, Paul Drews, Brian Goldfain, James M. Rehg, and Evangelos
A. Theodorou. «Aggressive driving with model predictive path integral con-
trol». In: 2016 IEEE International Conference on Robotics and Automation
(ICRA). 2016, pp. 1433–1440. doi: 10.1109/ICRA.2016.7487277 (cit. on
p. 44).

[19] Bent E. Sørenson. «FINANCIAL CALCULUS: AN INTRODUCTION TO
DERIVATIVE PRICING: Martin Baxter and Andrew Rennie, Cambridge
University Press, 1996». In: Econometric Theory 14.3 (1998), pp. 365–368.
doi: 10.1017/S0266466698143050 (cit. on p. 45).

[20] Wikipedia contributors. Softmax function — Wikipedia, The Free Encyclope-
dia. [Online; accessed 28-February-2024]. 2024. url: https://en.wikipedia.
org/w/index.php?title=Softmax_function&oldid=1206683487 (cit. on
p. 46).

114

https://doi.org/10.5772/13401
https://www.synopsys.com/glossary/what-is-lidar.html
https://www.synopsys.com/glossary/what-is-lidar.html
https://navigation.ros.org/plugins/index.html
https://navigation.ros.org/plugins/index.html
https://doi.org/10.1109/100.580977
https://doi.org/10.1109/ICRA.2016.7487277
https://doi.org/10.1017/S0266466698143050
https://en.wikipedia.org/w/index.php?title=Softmax_function&oldid=1206683487
https://en.wikipedia.org/w/index.php?title=Softmax_function&oldid=1206683487

BIBLIOGRAPHY

[21] Grady Williams, Andrew Aldrich, and Evangelos Theodorou. Model Predictive
Path Integral Control using Covariance Variable Importance Sampling. 2015.
arXiv: 1509.01149 [cs.SY] (cit. on p. 50).

[22] Abhijat Biswas, Allan Wang, Gustavo Silvera, Aaron Steinfeld, and Henny
Admoni. «SocNavBench: A Grounded Simulation Testing Framework for
Evaluating Social Navigation». In: J. Hum.-Robot Interact. 11.3 (July 2022).
doi: 10.1145/3476413. url: https://doi.org/10.1145/3476413 (cit. on
pp. 55, 56).

115

https://arxiv.org/abs/1509.01149
https://doi.org/10.1145/3476413
https://doi.org/10.1145/3476413

	List of Tables
	List of Figures
	Acronyms
	State of the Art
	Navigation fundamental concepts
	Localization
	Path Planning
	Obstacle avoidance

	ROS
	Communication patterns
	Middleware Architecture
	Lifecycle nodes and bonds

	Behaviour Trees
	Nav2
	Navigation Servers
	State Estimation
	Environmental representation
	Waypoint Follower

	Objective of the Thesis
	Alba Robot
	Hardware Layer
	Software Layer
	Navigation plugins

	The Problem

	Method
	Nav2 controller plugins
	DWB
	RPP
	TEB
	MPPI

	Settings of the analysis
	Code implementation

	Obtained results
	Empty World simulation
	Observations

	Static Obstacles simulation
	Observations

	One Obstacle Simulation
	Observations

	Restricted Area Simulation
	Small Restricted area
	Large Restricted Area Simulation
	Observations

	Conclusion
	Bibliography

