
POLITECNICO DI TORINO
Master’s Degree in Mechatronic Engineering

Master’s Degree Thesis

Online Knowledge Distillation-Based
Neural Network Optimization Strategies:

Application to Long-Range Capacitive
Plate Indoor Positioning

Supervisors

Prof. Mihai T. LAZARESCU

Candidate

Feicheng ZHANG

March 2024

Summary

As the adoption of smart home technologies grows, so too does the need for accurate
and cost-effective indoor positioning solutions. High-precision systems traditionally
rely on beacons [1]. However, beacon-less alternatives [2], like visual positioning
through high-definition cameras, present challenges including inconvenience and
privacy concerns in residential settings. An emerging, viable solution is the use
of capacitive sensors [3]. They can sense [4, 5], identify [6, 7], and localize [8, 9,
10, 11] persons indoor, but their sensitivity decreases steeply with the distance.
In the case of long-range sensing, the technology is notably vulnerable to various
environmental influences, including electromagnetic and electrostatic interference,
humidity, and temperature fluctuations [12]. Regression neural networks used to
analyze variations in data from capacitive plates mounted on walls have been shown
to be both feasible and accurate for determining a person’s location [13, 14]. Yet,
the limited computational capacity of smart home embedded systems necessitates
efficient model compression without compromising performance.

This thesis explores knowledge distillation techniques, with a focus on online dis-
tillation, and offers a comparative analysis with the outcomes of offline distillation.
In the context of advancing indoor positioning technologies, particularly within
smart home environments, is made a comprehensive investigation into optimizing
neural network strategies through online knowledge distillation. The focus is on
leveraging long-range capacitive plate sensors for high-precision indoor positioning,
overcoming the limitations posed by the computational constraints of smart home
embedded systems. Through an innovative application of online distillation tech-
niques, the research explores the dynamic process of mutual learning between a
student model and a teacher model, revealing significant improvements in model
performance and efficiency.

Key Contributions and Findings
1. Paradigm Shift to Online Knowledge Distillation: Central to this

research is the exploration of online knowledge distillation, a method that
departs from traditional offline distillation by allowing concurrent learning and

ii

knowledge exchange between the teacher and student models. This underscores
the dynamic and interactive nature of learning processes in neural networks,
highlighting the potential for real-time performance enhancements and the
acquisition of more nuanced “domain-specific knowledge” that static methods
may overlook.

2. Innovative Optimization Strategies:
• Adaptive Weights Mechanism: The thesis introduces a novel adaptive

weights mechanism, crucial for balancing the influence of distilled knowl-
edge and inherent training data on the student model’s learning trajectory.
This mechanism dynamically adjusts the weights of distilled knowledge in
the loss function, optimizing the learning process based on the student
model’s progress and ensuring a balanced and effective knowledge transfer.

• Pre-Distillation Training: Another innovative strategy explored is
pre-distillation training, where the teacher model undergoes preliminary
training to stabilize and improve the quality of distilled knowledge. This
approach mitigates potential misleading guidance from untrained models
at the onset of training, enhancing the overall stability and effectiveness
of the distillation process.

• Co-Training Using Kalman Filter: The use of a Kalman filter to post-
process the output of the teacher model represents a significant advance.
Trained to model human walking dynamics and treating the teacher’s
output as observational noise, this method integrates prior knowledge
about human motion and enriches the distilled knowledge with information
about smoothness and other characteristics of human indoor trajectories.

Key Results
Through rigorous experimental validation, the research demonstrates that the use of
online distillation methods with a controller leads to smaller validation errors on the
validation set for both types of models compared to traditional methods (for TCN
and CPS models, the validation errors decreased by 14 % and 8 %, respectively).After
further tuning the value of η[7.1], the validation error was reduced by 35.1 % and
20 %,for TCN and CPS modelsr espectively, compared to the offline method. The
application of a Pre-training strategy further reduced the validation error on the
validation set by 4.8 %. Ultimately, by applying domain knowledge using a Kalman
filter, the optimized online distillation methods shown much improved generalization
capability on two completely new test sets compared to offline distillation, with test
errors reduced by 20 % and 9 % on the two new test sets, respectively. Finally, these
results highlight the effectiveness of these optimization strategies in enhancing the
generalization capabilities of the student model, which is a critical aspect for the

iii

practical application of indoor positioning systems.

Conclusion and Future Research Directions
This detailed exploration and the consequential findings of the thesis lay a robust
foundation for future work in the field of knowledge distillation, particularly
emphasizing the importance of dynamic learning processes and the integration of
prior knowledge for improving neural network models in complex applications such
as indoor positioning.

The potential of online knowledge distillation in enhancing neural network
models for indoor positioning applications has been demonstrated. The successful
integration of adaptive weights, pre-distillation training, and a Kalman filter
suggests benefits from further exploration of incorporating more diverse and accurate
domain knowledge and other optimization techniques to refine online distillation
methods for most applications.

iv

Acknowledgements

I wish to convey my heartfelt appreciation and deepest gratitude to all those
who have contributed significantly to the completion of my thesis. Their guidance,
support, and encouragement have been vital in my academic journey.

I would like to express my sincere gratitude to Professor Mihai Teodor Lazarescu,
my supervisor, for providing me with the opportunity to conduct this research
under his guidance and within his research group. His insight, encouragement, and
expertise have been invaluable to my studies and research.

I am deeply grateful to Giorgia Subbicini, my co-supervisor, for her unwavering
guidance, boundless patience, and willingness to share her vast knowledge through-
out the research process. Her insightful feedback and expertise were crucial in shap-
ing both my research journey and my professional growth.

v

Table of Contents

List of Tables ix

List of Figures x

Acronyms xiii

1 Introduction 1
1.1 Background . 1
1.2 Motivation . 1
1.3 Overview . 2

2 Machine Learning 3
2.1 Introduction . 3
2.2 Neural Networks . 3

2.2.1 Common Activation Functions in the Neuron 4
2.3 Supervised Learning . 6

2.3.1 Dataset . 6
2.3.2 Applications . 6
2.3.3 Challenges . 6

2.4 Unsupervised Learning . 6
2.4.1 Dataset . 6
2.4.2 Applications . 7
2.4.3 Challenges . 7

2.5 Comparison and Integration . 7
2.6 Model Evaluation . 8

3 Knowledge Distillation 10
3.1 Operation . 10
3.2 Application in Our Scenario . 13

3.2.1 Regularization Loss for Regression 14
3.2.2 Attentive Imitation Loss . 14

vii

3.3 From Offline to Online . 15
3.3.1 Deep Mutual Learning Algorithm 16

4 Experimental Environment and Configuration 21
4.1 Implementation of Sensors . 21
4.2 Environment Configuration . 22

5 Dataset Generation and Feature Selection 24
5.1 Dataset Generation . 24
5.2 Feature Selection . 25

6 Selected Neural Networks 27
6.1 General Considerations . 27
6.2 LSTM Neural Network . 27
6.3 Capsule Neural Network . 31

6.3.1 CapsNet Architecture . 31
6.3.2 Dynamic Routing Algorithm 32
6.3.3 Decoder for Digit Reconstruction 33

6.4 Temporal Convolutional Neural Network 34
6.5 Neural Network Selection . 36

7 Improvement of Online Distillation Effectiveness 38
7.1 Adaptive Weights . 38
7.2 Pre-Distillation Training . 44

7.2.1 Teacher pre-training for 50, 100, 150, and 200 epochs 46
7.2.2 Teacher and student models pre-train for 50, 100, 150, and

200 epochs . 46
7.2.3 Hypothesis and Verification 47
7.2.4 Overall Conclusion . 49

7.3 Domain Knowledge From Kalman Filter 50

8 Generalization Results 55

9 Conclusion 58

Bibliography 60

viii

List of Tables

3.1 Results of MDL experiments . 18

5.1 Example of capacitive sensors readings labelled with ground truth . 25

7.1 TCN Student vs. Teacher Structures 40
7.2 CPS Validation Errors of Different Settings 41
7.3 CPS Network Configuration . 42
7.4 Validation Errors of Different Settings 43
7.5 TCN Minimum Validation Errors for Various η Values 44
7.6 CPS Minimum Validation Errors for Various η Values 45
7.7 Minimum validation loss and the corresponding test loss from pre-

training teacher model . 47
7.8 Minimum validation loss and the corresponding test loss from pre-

training both teacher and student models 48
7.9 Validation and corresponding test losses when pre-training for 0, 2,

5 epochs . 48
7.10 Best Validation Error and Corresponding Test Error under Different

Conditions . 53

8.1 Test error (MSE) for different distillation methods on new test sets 56

ix

List of Figures

2.1 Typical Structure of NN . 4
2.2 K-Fold cross-validation on the training set 9

3.1 The generic teacher-student framework for knowledge distillation . . 10
3.2 The schematic illustrations of sources of response-based knowledge,

feature-based knowledge and relation-based 11
3.3 The generic response-based knowledge distillation 11
3.4 The specific architecture of the benchmark knowledge distillation . 12
3.5 The generic feature-based knowledge distillation 12
3.6 The generic instance relation-based knowledge 13
3.7 The specific architecture of the mutual learning 15
3.8 MDL effectiveness resisting white noise 19

4.1 Capacitance of a load mode capacitive sensor 21
4.2 Four capacitive sensors centered on the walls of a 3 m × 3 m virtual

room in the lab trace the position of a person moving in the space . 22
4.3 Virtual room used for movement tracking experiments and person

trajectory (split into segments for NN training, validation and testing) 23

5.1 Input sensor data discretization and windowing for neural network . 26

6.1 Architecture of LSTM . 28
6.2 Elements of LSTM . 28
6.3 Transforming 2D image into 3D tensor 29
6.4 Inner structure of ConvLSTM . 29
6.5 Encoding-forecasting ConvLSTM network for precipitation on now-

casting . 30
6.6 A simple CapsNet with 3 layers . 31
6.7 Decoder structure to reconstruct a digit from the DigitCaps layer

representation . 33
6.8 Overall Structure . 35
6.9 Residual Blocks . 35

x

6.10 Example of Residual Connection . 36

7.1 Schematic Diagram of Adaptive Weighting Framework 39
7.2 TCN ValLoss of Different Distillation Methods 41
7.3 CPS Validation Loss of different Distillation Method 43
7.4 TCN Validation Error under Different η 44
7.5 CPS Validation Error under Different η 45
7.6 Pre-training Teacher Network for 50, 100, 150, and 200 epochs . . . 46
7.7 Pre-training both teacher and student network for 50, 100, 150, and

200 epochs . 47
7.8 Prediction error in the first epoch 49
7.9 Experiments Results for Verification, pre-trained for 0, 2, 5 epochs . 50
7.10 Results From Optimized OnlineTraining and Offline Training 51
7.11 Schematic Diagram of Adaptive Weighting Framework With Kalman 52
7.12 Teacher Output vs Filtered Teacher Output X Coordinates 53
7.13 Teacher Output vs Filtered Teacher Output Y Coordinates 54
7.14 Results under different Kalman filter setting 54

8.1 Test error (MSE) from different distillation methods on new test sets 56
8.2 Improvement percentage in test error (MSE) referred to the offline

setting . 57

xi

Acronyms

ML
Machine Learning

NN
Neural Network

TCN
Temporal Convolutional Neural Network

CPS
Capsule Neural Network

MSE
Mean Squared Error

LSTM
Long Short-Term Memory Neural Network

AIL
Attentive Imitation Loss

MDL
Deep Mutual Learning

xiii

Chapter 1

Introduction

1.1 Background
As the adoption of smart home technologies grows, so too does the need for accurate
and cost-effective indoor positioning solutions. High-precision systems traditionally
rely on beacons; however, beacon-less alternatives, like visual positioning through
high-definition cameras, present challenges including inconvenience and privacy
concerns in residential settings. An emerging, viable solution is the use of long-range
capacitive sensors. Leveraging regression neural networks to analyze variations in
data from capacitive plates mounted on walls has been demonstrated to be both
feasible and highly precise for determining a person’s location. Yet, the limited
computational capacity of smart home embedded systems necessitates efficient
model compression without compromising performance.

1.2 Motivation
Knowledge distillation represents a pivotal model compression technique designed
to transfer the insights of a large, complex model (termed the “teacher model”) to
a smaller, simpler model (referred to as the “student model”), thereby enhancing
the performance of the latter while maintaining efficiency and a lightweight foot-
print. This methodology is particularly beneficial for applications requiring model
deployment in resource-constrained settings, such as mobile devices and embedded
systems. Typically conducted post the training of the teacher model, the process
begins with the training of a large, complex model using extensive data to achieve
high accuracy. Subsequently, the knowledge of the teacher model is extracted ei-
ther by employing its output (e.g., the output of the softmax layer) as a target or
by extracting certain features from the model’s intermediate layers. Finally, this

1

Introduction

knowledge is used to train a smaller, simpler model (the student model). The train-
ing of the student model relies not only on the original label data but also on the
outputs of the teacher model, enabling the student to learn subtle features and
probability distributions from the teacher. This approach, referred to as offline dis-
tillation, has its effectiveness and mechanisms well articulated in the literature.

However, a recent study [15] introduces an intriguing concept of training two
models of similar or differing scales simultaneously, employing a shared error
as part of the loss function. This shared error is computed in a manner nearly
identical to the distillation error used in offline distillation. Remarkably, in classic
image recognition tasks, the co-learning approach has demonstrated a significant
improvement in the accuracy of the smaller model compared to when it is trained
independently. This could be considered a form of online distillation, a method
that, although only experimentally validated in classification neural networks, has
shown promise. Given the proven applicability of offline distillation to regression
tasks, exploring the potential of this online approach warrants further investigation.

1.3 Overview
This thesis primarily revolves around the application of online distillation to specific
regression tasks, such as how to address numerical instability in online distillation
within regression tasks, how to configure the weight between distilled knowledge
and the model’s own loss, and how to apply some prior knowledge during the
training process to enhance the model’s performance.

The thesis is structured into several chapters as follows:

• Chapter 1 introduces the thesis and outlines the motivation behind the re-
search.

• Chapter 2 covers general concepts of ML and Neural Networks
• Chapter 3 presents the working mechanisms of knowledge distillation, along

with the necessary adjustments made to adapt it to our task, and the specific
implementation of online distillation.

• Chapter 4 introduces our experimental environment and configuration.
• Chapter 5 presents our dataset generation framework and feature selection.
• Chapter 6 details the architecture of our models, including a exposition of

their mechanisms and the rationale behind selection.
• Chapter 7 explores methods for improving the efficacy of online distillation

and modifications to the training process.
• Chapter 8 presents the experimental results and evaluates the efficacy of

proposed approachs.
• Chapter 9 concludes the thesis work and provides an outlook on future research

directions.

2

Chapter 2

Machine Learning

2.1 Introduction
Machine Learning (ML) aims at crafting algorithms capable of autonomously
identifying patterns within incoming data, bypassing the need for explicit coding
[16]. This capability enables ML algorithms to address a broad spectrum of complex
issues, including but not limited to, recognizing speech, processing natural language,
and identifying images. The foundational structure of ML approaches generally
consists of three essential elements: the input data, a learning algorithm, and a
subsequently trained model. The learning algorithm’s role is to educate the model
using the input data, empowering it to render predictions or decisions concerning
new data.

2.2 Neural Networks
Neural networks[17] are a subset of machine learning and are at the heart of deep
learning algorithms. Their name and structure are inspired by the human brain,
mimicking the way that biological neurons signal to one another.

At its simplest, a neural network consists of layers of nodes, or “neurons,” with
each layer designed to perform specific types of transformations on its inputs. These
transformations are determined by the strength of connections between neurons,
which are adjusted during training. The process of adjusting these connections is
known as “learning.” The typical structure as show in the Figure2.1

Neural networks are particularly powerful in handling complex tasks like image
and speech recognition, language translation, and playing complex games like Go
or Chess. This is because they can automatically and adaptively learn spatial
hierarchies of features from data, a task that is challenging with traditional machine
learning techniques.

3

Machine Learning

Figure 2.1: Typical Structure of NN [18]

The relationship between neural networks and machine learning is that neural
networks provide a powerful tool for machine learning tasks. While machine learning
is a broad field that encompasses various techniques for enabling machines to learn
from data, neural networks specifically refer to a set of algorithms inspired by the
structure and function of the brain’s neural networks. They can learn and model
complex relationships between inputs and outputs or patterns within data, making
them a cornerstone of many modern artificial intelligence (AI) applications.

2.2.1 Common Activation Functions in the Neuron
Activation functions are a fundamental aspect of neural networks, enabling these
models to capture complex and non-linear relationships within the data. By inte-
grating non-linear properties into the network, activation functions allow neural
networks to learn and perform tasks that are far beyond the capabilities of linear
models. The choice of activation function can significantly affect the performance
and convergence speed of a neural network. Below, we delve into some of the most
pivotal activation functions in neural network design:

• Sigmoid Function: The sigmoid activation function, also known as the logistic
function, is mathematically defined as σ(x) = 1

1+e−x . It maps any input value
to a range between 0 and 1, making it particularly useful for models where we

4

Machine Learning

need to interpret the output as a probability. Despite its historical popularity,
especially in binary classification problems, its usage has declined due to issues
such as vanishing gradients, where the function saturates at 0 or 1, leading to
extremely small gradients during backpropagation and hence slow training.

• Hyperbolic Tangent Function (tanh): The tanh function scales the output
of the sigmoid function to range between -1 and 1, defined as tanh(x) = ex−e−x

ex+e−x .
This centring of the output range around zero allows for higher efficiency in
learning, as it tends to make the mean of the activations closer to zero, and
thus helps in speeding up convergence. Like the sigmoid, it can suffer from
vanishing gradients for large positive or negative inputs.

• Rectified Linear Unit (ReLU) [19]: Defined as f(x) = max(0, x), ReLU
has become exceptionally popular due to its simplicity and efficiency. It
activates a neuron only if the input is positive and deactivates it otherwise.
This piecewise linear function helps to alleviate the vanishing gradient problem,
allowing models to learn faster and perform better. However, it is not without
its issues; the “dying ReLU” problem occurs when inputs are negative, and
neurons stop firing altogether, potentially causing portions of the network to
become inactive during training.

• Leaky Rectified Linear Unit (Leaky ReLU) [20]: To mitigate the dying
ReLU problem, Leaky ReLU introduces a small slope for negative values,
thereby allowing a small, non-zero gradient when the unit is not active.
Mathematically, it is defined as f(x) = x if x > 0, otherwise αx where α is a
small constant, such as 0.01. This adjustment ensures that all neurons have
the opportunity to activate, maintaining a gradient flow through the network
and improving the network’s capacity to learn.

• Softmax Function: The softmax function is crucial for multi-class classifica-
tion problems. It converts a vector of values into a probability distribution,
where each value’s exponentiated form is divided by the sum of exponenti-
ated values of all elements in the vector. For input vector xi, it is defined as

exiq
j

exj . The softmax function ensures that the output values are in the range
(0,1) and that they sum up to 1, making it possible to interpret the outputs
as probabilities. The softmax is typically applied in the output layer of a clas-
sifier, providing a clear, probabilistic output across multiple classes.

Understanding the intricacies of these activation functions is crucial for design-
ing effective neural network architectures. The choice of activation function can
dramatically influence the learning dynamics and performance of the network, mak-
ing it an essential consideration in the development of deep learning models.

5

Machine Learning

2.3 Supervised Learning
Supervised learning, a cornerstone of machine learning, employs labeled datasets
to train algorithms. In this paradigm, every training instance is paired with an
output label, serving as a guide for the algorithm to learn the mapping between
inputs and desired outputs. This method is instrumental in applications where the
prediction of precise outcomes is crucial.

2.3.1 Dataset
The dataset comprises input features along with corresponding target labels. For
instance, in a spam detection system, emails would be input features, and their
labels would be “spam” or “not spam.”

2.3.2 Applications
• Classification: This involves categorizing input data into predefined classes. A

quintessential example is a facial recognition system that identifies individuals
within images.

• Regression: Here, the goal is to predict a continuous quantity. Predicting
stock prices based on historical data exemplifies regression.

2.3.3 Challenges
A primary challenge in supervised learning is overfitting, where the model learns
the noise in the training data instead of the actual signal. Techniques like cross-
validation and regularization are employed to mitigate this issue.

2.4 Unsupervised Learning
Unsupervised learning explores data without preassigned labels, uncovering hidden
patterns and structures. It’s pivotal in scenarios where the underlying distributions
of data are unknown or when discovering intrinsic groupings within the data is the
goal.

2.4.1 Dataset
The dataset consists solely of input data without any associated labels. An example
could be a collection of customer shopping habits data, without any indication of
market segments.

6

Machine Learning

2.4.2 Applications
• Clustering: It aims to group a set of objects in such a way that objects in

the same group are more similar to each other than to those in other groups.
Market segmentation, where customers are grouped based on purchasing
behavior, is a classic example.

• Dimensionality Reduction: This process reduces the number of random
variables under consideration, by obtaining a set of principal variables. Tech-
niques like PCA (Principal Component Analysis) help in reducing the feature
space, thus simplifying models without a significant loss of information.

• Association Rule Learning: It discovers interesting relations between vari-
ables in large databases. An iconic example is the “beer and diapers” story
from market basket analysis, where purchases of diapers were found to be
associated with purchases of beers.

2.4.3 Challenges
Evaluating the effectiveness of an unsupervised learning model can be challenging
due to the absence of a clear benchmark or target. Moreover, determining the
optimal number of clusters in clustering problems or the right number of dimensions
to retain in dimensionality reduction requires heuristic approaches or domain
expertise.

2.5 Comparison and Integration
While supervised learning models excel at predictive tasks with clear objective
metrics for evaluation, unsupervised learning models thrive in exploratory data
analysis, revealing underlying patterns and associations without predetermined
labels. The choice between supervised and unsupervised learning depends on the
nature of the problem at hand, the type of data available, and the specific goals of
the analysis.

In practice, these two approaches are not mutually exclusive and can be combined
in what’s known as semi-supervised learning, where a small amount of labeled
data guides the learning process in a larger unlabeled dataset. Another approach
is reinforcement learning, where an agent learns to make decisions by performing
actions and receiving feedback from the environment.

In this work, we frame our regression problem within the context of supervised
learning.

7

Machine Learning

2.6 Model Evaluation
Model evaluation plays a pivotal role in Machine Learning (ML) by enabling the
assessment of a model’s effectiveness and its capacity to generalize to data it hasn’t
encountered before. This section delves into two prevalent strategies for evaluating
models: the single test method and cross-validation.

• The single test method is a straightforward strategy that involves dividing
the dataset into three segments: training, validation, and testing sets, usually
following a 70% (training), 10% (validation), and 20% (testing) split. The
training set is used to educate the model, the validation set assists in fine-
tuning hyperparameters and mitigating overfitting, and the testing set serves
to gauge the model’s efficacy. Although this method is straightforward and
computationally light, its reliability might waver with small or skewed datasets.

• Cross-validation stands out as a more comprehensive method, overcoming the
drawbacks of the single test method through its two primary formats: k-fold
cross-validation applied to the entire dataset or restricted to the training data
only.

– In the first format, the dataset is partitioned into k equal parts. The model
undergoes training and evaluation k times, with each iteration using a
different part as the test set while the remaining parts form the training
set. This cycle ensures every data point is used in both training and
testing, yielding a thorough assessment of the model’s capabilities. The
results from each iteration are averaged to estimate the model’s overall
performance accurately.

– The second format implements k-fold cross-validation on the training
dataset(as show in the Figure 2.2) keeping a separate holdout set for the
final evaluation. This method mirrors the first in its execution but confines
the cross-validation to the training set, with the holdout set dedicated to
assessing performance on new data. While this approach is less prevalent,
it offers an extra layer of validation for specific scenarios, ensuring the
model’s performance is tested against completely unseen data.

8

Machine Learning

Figure 2.2: K-Fold cross-validation on the training set [21]

9

Chapter 3

Knowledge Distillation

3.1 Operation
Knowledge distillation is a technique used in machine learning to transfer knowledge
from a larger, more complex model (teacher) to a smaller, more efficient one
(student). This process aims to improve the performance of the student model while
maintaining or reducing computational resources. There are several approaches
to knowledge distillation, including generic response-based, feature-based, and
relation-based knowledge distillation.

Figure 3.1: The generic teacher-student framework for knowledge distillation [22]

• Generic Response-Based Knowledge Distillation: This is the most straight-
forward approach, where the student model learns to mimic the output (or
response) of the teacher model. The objective is to produce similar predic-
tions, effectively learning the teacher’s decision boundaries. This method often

10

Knowledge Distillation

Figure 3.2: The schematic illustrations of sources of response-based knowledge,
feature-based knowledge and relation-based [22]

involves softening the teacher’s outputs with a temperature parameter to pro-
vide more information about the class probability distribution.

Figure 3.3: The generic response-based knowledge distillation [22]

11

Knowledge Distillation

Figure 3.4: The specific architecture of the benchmark knowledge distillation [22]

• Feature-Based Knowledge Distillation: Instead of focusing on the final out-
put, feature-based knowledge distillation involves transferring intermediate
representations (features) learned by the teacher model to the student. The
rationale is that these intermediate features contain rich information about
the data that can help the student model learn better representations and
improve its performance. The student model is trained to minimize the differ-
ence between its own feature representations and those of the teacher.

Figure 3.5: The generic feature-based knowledge distillation [22]

• Relation-Based Knowledge Distillation: This approach takes knowledge distil-
lation a step further by focusing on the relationships between data points or
features within the data, as learned by the teacher model. It aims to teach the
student model to replicate these relationships or interactions, such as the sim-
ilarity between different data points. This method often involves constructing
a relational graph or using other techniques to model the data relationships
captured by the teacher, and then training the student model to mimic these.

12

Knowledge Distillation

Figure 3.6: The generic instance relation-based knowledge [22]

Each of these methods offers a different mechanism for leveraging the knowledge
encapsulated in a teacher model, with the goal of improving the efficiency and
performance of the student model in a more nuanced way than simply replicating
the final output.

3.2 Application in Our Scenario
In the context of our specific regression task, which lacks intermediary layers and
explicit relational structures, an intuitive and direct approach emerges as the most
suitable for our objectives: response-based knowledge distillation. This methodology
emphasizes the transfer of knowledge from a sophisticated, often cumbersome,
teacher model to a more compact and efficient student model by aligning the
student’s output predictions with those of the teacher. Response-based distillation
focuses solely on the final output responses of the models involved. This simplicity
aligns perfectly with our scenario, where the absence of intermediate layers or
explicit relationships between inputs eliminates the need for complex distillation
techniques that leverage such structures. By adopting response-based knowledge
distillation, we can efficiently capture the nuanced output behavior of the teacher
model, thereby endowing the student model with the ability to approximate the
regression task with a high degree of accuracy.

Given the current landscape where mainstream applications are predominantly
centered around recognition tasks, the mechanism of action for dark knowledge
based on soft labels is quite clear. However, in the domain of knowledge distillation,

13

Knowledge Distillation

experimental research on regression tasks is somewhat limited. Fortunately, the
paper [23] offers considerable insights, proposing several methods that have been
proven to be effective.

3.2.1 Regularization Loss for Regression
The regularization loss for regression tasks [23], aiming to minimize the prediction
error of the student model, is given by:

Lreg = 1
n

nØ
i=1

min
1
∥pS − pgt∥2, ∥pS − pT∥2

2
(3.1)

Here, Lreg is the regularization loss, pS and pT are the predictions of the student
and teacher models respectively, and pgt represents the ground truth. This formula
encourages the student model to closely follow the teacher’s predictions when they
are reliable.

3.2.2 Attentive Imitation Loss
In the distillation process for regression tasks, the quality of the distilled knowledge
is of paramount importance. This is because, in comparison to recognition tasks,
the form in which dark knowledge exists in regression tasks is more “uniform.” If
the distilled knowledge provided by the teacher model is of low quality, it can
significantly impact the effectiveness of knowledge distillation. Therefore, assessing
the quality of knowledge output by the teacher model is crucial in our scenario.

The attentive imitation loss [23], which adjusts the importance of the imitation
component based on the teacher’s performance, is formulated as

Lreg = 1
n

nØ
i=1

α∥pS − pgt∥2 + (1− α)Φi∥pS − pT∥2 (3.2)

Φi = 1− ∥pT − pgt∥2

η
(3.3)

where Φi is a weighting factor and η is a normalization parameter calculated as the
difference between the maximum and minimum errors of the teacher’s predictions
across the dataset.

The AIL mechanism employs a normalized Φ to assess the quality of distilled
knowledge during the training process. This assessment is based on the ratio of the
error in the teacher network’s current prediction to the “global” maximum error
observed in the teacher network, thereby determining the reference value of the
current distilled knowledge. This approach facilitates a smooth de-weighting of the
distillation process for the current iteration.

14

Knowledge Distillation

3.3 From Offline to Online
Typically, in the process of knowledge distillation, the teacher network is pre-
trained and its outputs are utilized as a form of dark knowledge for distillation
with a student network, which was our initial research direction. However, training
the student and teacher networks together and allowing them to mutually distill
knowledge from each other yielded better results in classic image classification
tasks, compared to the approach where the student network unilaterally receives
outputs from the teacher network for knowledge distillation. This method of jointly
training two models of different capacities and enabling mutual distillation between
them is referred as “Mutual Learning” [15]

DKL(P ||Q) =
Ø

x

P (x) log
A

P (x)
Q(x)

B
. (3.4)

Here, DKL(P ||Q) quantifies the divergence between the predicted probability
distributions P of network Θ1 and Q of network Θ2, facilitating the mutual learning
process by aligning their predictions [15]

LΘ1 = LC1 + λDKL(P2||P1). (3.5)

The total loss LΘ1 for network Θ1 combines its supervised learning loss LC1 with
the KL divergence to the predictions of network Θ2, weighted by λ, to guide Θ1
towards better generalization by learning from Θ2 [15]

LΘ2 = LC2 + λDKL(P1||P2). (3.6)

Figure 3.7: The specific architecture of the mutual learning [15]

Similarly, LΘ2 for network Θ2 merges its own supervised loss LC2 with the KL
divergence from Θ1’s predictions, allowing Θ2 to also benefit from the insights
gained by Θ1, thus embodying the essence of mutual learning.

15

Knowledge Distillation

3.3.1 Deep Mutual Learning Algorithm
The KL divergence between the two models, as formally described, represents the
distillation of errors using the distilled knowledge previously mentioned. Assuming
these two models comprise one larger and one smaller model, according to the
logic of this algorithm [15], the smaller model acquires distilled knowledge from the
results of the larger model, while the larger model also obtains distilled knowledge
from the smaller model to complete its iteration. This process allows both the larger
and smaller models to be trained together, rather than employing the conventional
approach of training and distilling knowledge from a pre-trained larger model to a
smaller model.

The Deep Mutual Learning (DML) algorithm, Algorithm 1, is devised to bol-
ster the performance of neural networks through a collaborative learning approach
amongst an ensemble of student networks. Contrary to the traditional teacher-
student paradigm where a pre-trained, larger model (teacher) facilitates the train-
ing of a smaller model (student), DML enables multiple student networks to con-
currently learn from each other.

Algorithm 1 Deep Mutual Learning
1: Input: Training set X, label set Y , learning rates γt

1, γt
2

2: Initialize: Models Θ1 and Θ2 to different initial conditions.
3: repeat
4: t = t + 1
5: Randomly sample data x from X.
6: 1: Update the predictions p1 and p2 of x by (1) for the current mini-batch
7: 2: Compute the stochastic gradient and update Θ1:
8: Θ1 ← Θ1 − γt

1
∂LΘ1
∂Θ1

9: 3: Update the predictions p1 and p2 of x by (1) for the current mini-batch
10: 4: Compute the stochastic gradient and update Θ2:
11: Θ2 ← Θ2 − γt

2
∂LΘ2
∂Θ2

12: until convergence

Algorithm input:

• Training set X: The dataset utilized for training.

• Label set Y : The corresponding labels for the training dataset.

• Learning rates γt
1 and γt

2: The learning rates for the models, which could vary
over time, indexed by t.

Algorithm initialization:

16

Knowledge Distillation

• Models Θ1 and Θ2: Two neural network models are initialized under different
starting conditions to ensure diversity in the learning perspectives from the
onset.

Algorithm Repeat Until Convergence:

1. Increment the time step by 1, progressing to the next iteration.

2. Randomly select data x from the training set X.

3. For the current mini-batch, compute the predictions p1 and p2 using step 1 in
the line 6, involving forward propagation through each model based on their
parameters at time t.

4. Compute the gradient of the combined loss function step 2 in the line 7 with
respect to Θ1 and update its parameters using this gradient and the learning
rate γt

1. This step promotes Θ1 not only to fit the training data but also to
align its predictions with those of Θ2.

5. Similar to step 3 in the line 9, recalculate predictions for the mini-batch to
reflect the updated parameters of Θ1.

6. Similarly, update Θ2 by computing the gradient of the combined loss function
step 4 in the line 10 with respect to Θ2 and using this gradient and the
learning rate γt

2. This ensures Θ2 also learns from both the label data and the
predictions of Θ1.

The steps are repeated until both models converge to a state where their parameters
cease to undergo significant changes, indicating that they have effectively learned
to predict the training data accurately while aligning their predictions as closely as
possible with each other.

The DML strategy fosters a collaborative learning environment by updating
each model based on its accuracy on the training data and its alignment with
the other model’s predictions. This mutual improvement process is distinct from
traditional distillation, as it allows both models to evolve and enhance together,
thereby uncovering insights that might be missed in isolation or from a fixed
teacher. The ultimate goal is to guide the models towards solutions that generalize
better to unseen data, facilitated by the collaborative exploration of a richer set of
hypotheses about the data.

From the experimental results in the Table 3.1, it can be observed that different
models, regardless of how they are paired, significantly improve their performance
after undergoing DML (Deep Mutual Learning) distillation. Moreover, their per-
formance is relatively better compared to the traditional 1 distills 2 method. So,
Mutual Deep Learning (MDL) is capable of facilitating the concurrent learning of

17

Knowledge Distillation

two models of the same architecture. However, the most significant improvements
are witnessed when a larger model and a smaller model learn together. Engaging
a smaller model in MDL with a similarly structured larger model can dramati-
cally enhance its performance, even surpassing the outcomes achieved by distilling
knowledge from a fully trained larger model into the smaller model.

Table 3.1: Results of MDL experiments [15]

Compared to conventional optimization techniques, Deep Mutual Learning
(DML) does not necessarily lead us to a superior or deeper minimum within the
training loss landscape. Rather, its strength lies in identifying a broader or more
dependable minimum, which offers enhanced generalization to test data and exhibits
greater robustness.

To empirically substantiate this assertion, the authors conducted a focused
experiment employing the Market-1501 dataset alongside the MobileNet backbone
network. This investigation aimed to demonstrate DML’s efficacy in pinpointing a
minimum that is notably more robust, further validating the approach’s utility in
practical applications.

The authors compared the loss variations of the DML model and the standalone
model before and after adding Gaussian noise. From Figure 3.8(a) it’s evident
that the depth of the minima for both models is the same. However, after adding
Gaussian noise, we can see from Figure 3.8(b) and 3.8(c) that the training loss for
the standalone model increased significantly, while the DML model experienced
a smaller increase in training loss. This suggests that the DML model has found
a broader and more robust minimum which could better resist the noise, thereby

18

Knowledge Distillation

(a) Training loss (b) Loss change with noise

(c) Posterior certainty comparison

Figure 3.8: MDL effectiveness resisting white noise [15]

offering better generalization performance.
DML necessitates that each network aligns its probability estimates with those

of its counterpart. Should one network forecast a zero while its counterpart forecasts
a non-zero, the former incurs a significant penalty. However, when both models
concurrently err in their predictions, the penalty for this misstep diminishes.
Consequently, the value attributed to “similar” erroneous predictions—where both
networks falter—does not dwindle to zero. This mechanism potentially enhances the
models’ generalization capabilities and mitigates the risk of overfitting. Therefore,
DML aims for a more expansive minimum by synchronizing the mutual probabilities
of “reasonable” sub-optimal predictions, as opposed to indiscriminately imposing
severe penalties for incorrect classifications.

19

Knowledge Distillation

Inspired by the insights presented in [15], I ultimately transitioned from offline
distillation to an online distillation approach based on mutual distillation. Online
distillation entails that the student and teacher models engage in mutual distillation,
learning from each other by incorporating distilled knowledge as a component of the
loss function, thereby iteratively refining their own parameters. This paradigm shift
emphasizes a dynamic learning process where both models simultaneously evolve
through reciprocal feedback, enhancing their learning efficacy beyond unidirectional
knowledge transfer methods

LregS
= 1

n

nØ
i=1

α∥pS − pgt∥2 + (1− α)Φt∥pS − pT∥2 (3.7)

LregT
= 1

n

nØ
i=1

α∥pT − pgt∥2 + (1− α)Φs∥pS − pT∥2. (3.8)

20

Chapter 4

Experimental Environment
and Configuration

4.1 Implementation of Long-Distance Capacitive
Sensors for Indoor Human Monitoring

The cutting-edge implementation of long-distance capacitive sensors for indoor
personnel positioning hinges on a meticulously engineered design that pushes the
envelope of sensitivity and operational range, while deftly suppressing extraneous
noise.

Figure 4.1: Capacitance of a load mode capacitive sensor [3]

As illustrated in Figure 4.1, the system’s efficacy is anchored in its nuanced

21

Experimental Environment and Configuration

manipulation of the human body’s influence on electrical capacitance. The setup
intricately discerns variations across multiple capacitance components such as
Csg (sensor to ground), Cbg (body to ground), Cse (sensor to environment), and
Csb (sensor to body). These components are inherently susceptible to alterations
engendered by a person’s proximity to the sensor plate, which directly translates
to the modulation of the sensor’s electric field and the resultant capacitance.

4.2 Environment Configuration
The arranged experimental setup as delineated in this study, explicitly portrayed in
Figures 4.2 and 4.3, constitutes a sophisticated system designed for the unobtrusive
monitoring of indoor human activities. Within a controlled lab environment, a
virtual room spanning an area of 3 m × 3 m serves as the experimental arena. This
room is methodically equipped with four capacitive sensors, each positioned at the
midpoint of the room’s walls. These strategically located sensors are imperative
components that employ loading mode operations to capture and chronicle the
nuanced movements of an individual navigating within the delineated space. The
visualization provided in Figure 4.2 is crucial, as it elucidates the arrangement and
functioning of these sensors in real-time spatial tracking. The design integrates

Figure 4.2: Four capacitive sensors centered on the walls of a 3 m × 3 m virtual
room in the lab trace the position of a person moving in the space [13]

capacitive sensors with a specified dimension of 16 cm × 16 cm plates, which have
been fine-tuned to collect data thrice per second. This rapid collection frequency
ensures a dense and information-rich dataset, preparing the ground for in-depth
signal analysis and interpretation. A pivotal aspect of the setup is an ultrasonic
reference system consisting of four anchoring units, which complement the capacitive
sensors by offering a high-fidelity localization of a mobile tag, with a commendable
accuracy of ±2 cm at a sampling rate of 15 Hz. This dual system of data acquisition
is essential for validating the movement paths registered by the capacitive sensors,
as delineated in Figure 4.3.

22

Experimental Environment and Configuration

Figure 4.3: Virtual room used for movement tracking experiments and person
trajectory (split into segments for NN training, validation and testing) [13]

23

Chapter 5

Dataset Generation and
Feature Selection

5.1 Dataset Generation
In our experimental protocol, the computer captures readings from four distinct
capacitive sensors at a frequency of 3 Hz, after undergoing preliminary processing.
Simultaneously, it also acquires highly precise readings from an ultrasonic sensor
at the same frequency to serve as the ground truth. Our objective is to employ a
technique that utilizes the readings from the four capacitive plates to determine a
person’s coordinates within a 3 m × 3 m area with high precision. The system, which
inputs the capacitive values from the four plates and outputs x and y coordinates,
is highly nonlinear. Consequently, conventional system identification methods fail
to yield satisfactory results. Therefore, we have opted to employ a neural network
to model this system.

To train this network, we moved around within the 3 m × 3 m space carrying an
ultrasonic sensor beacon [24], collecting approximately 2000 data sets. Each data
set comprises the capacitive readings from the four sensors at different elevations,
along with the ultrasonic sensor readings as ground truth.

In the depiction provided by Figure 4.3, the experimental narrative unfolds
further with the introduction of a human participant, who is equipped with a
head-mounted mobile tag. This addition introduces an element of dynamism to the
experiment, as the participant’s locomotion within the virtual space is meticulously
documented through the capacitive sensor array and the ultrasound anchors, offering
a multi-faceted perspective on motion tracking.

The graphic representation in the figure’s lower section is especially telling,
as it intricately plots the participant’s trajectory through the room. This plot is
segmented into distinct phases—training, validation, and testing—each playing a

24

Dataset Generation and Feature Selection

pivotal role in the machine learning process applied to the neural networks.

Table 5.1: Example of capacitive sensors readings labelled with ground truth

Sensor 1 Sensor 2 Sensor 3 Sensor 4 X coordinate Y coordinate
(m) (m)

0.774 61 0.930 93 0.932 54 0.492 37 0.928 76 1.578 8
0.764 7 0.929 71 0.932 71 0.461 78 0.877 43 1.551 9
0.754 99 0.926 04 0.933 03 0.441 25 0.806 8 1.525 9

.

5.2 Feature Selection
In the experiments, it was found that obtaining comparatively accurate values from
single measurements taken solely from four capacitor plates proved challenging.
Given the continuous nature of human movement indoors, it is logical to consider
a continuous time series as input features. Therefore, we attempted to use the
measurements from the capacitor plate sensors over five time steps as input features,
with the ground truth of the central time step serving as the reference ground truth.
We refer to this continuous time series as “windows.” Experimental validation has
shown that optimal results are achievable using neural networks of any architecture
when the window is set to five time steps. Hence, in this paper, we utilize the
measurements from five time steps as input features.

Feature selection is a pivotal step in constructing neural network models for
indoor activity reconstruction. In the case study examined, as shown in Figure
5.1, sensor data is initially discretized at a frequency of 3 Hz into quartets of
samples S1, S2, S3, S4. This step is crucial to ensure the integrity of the time series
in the data, reflecting the nuanced changes in human dynamics. These quartets are
then chronologically concatenated, forming the feature set input into the neural
network. The way these features are structured not only takes into account the
information of individual samples but also considers the temporal relationships
between samples through a windowing method, which is particularly significant for
capturing patterns of human motion.

The feature selection process, as implemented, enables the neural network
to learn and extract valuable information from noisy sensor data. Especially in
dynamic and complex indoor environments, these carefully selected features assist
the network in better understanding and predicting human movement patterns.

25

Dataset Generation and Feature Selection

Figure 5.1: Sensor data (top-left) is discretized at 3 Hz in four-sample tuples S1,
. . . , S4, which are then concatenated in chronological order and input to the neural
network with appropriate windowing [13]

26

Chapter 6

Selected Neural Networks

6.1 General Considerations based on Feature Se-
lection and Specific Application Context

In the selection of an appropriate neural network model for regression tasks involving
continuous time series data as features, critical considerations include the model’s
capability to capture long-term dependencies and its computational complexity.
Time series data are characterized by their sequential nature, where the value
at a current point may be influenced by the values at multiple preceding points.
Therefore, the model must be able to understand and utilize these long-term
dependencies to make accurate predictions. Recurrent Neural Networks (RNN)
and its variants, such as Long Short-Term Memory networks (LSTM) and Gated
Recurrent Units (GRU), are naturally favored due to their intrinsic design to handle
such data. These models, with their recurrent connections, can process sequences of
arbitrary length, effectively capturing long-term dependencies within the time series.

However, the complexity of the neural network model is also a crucial considera-
tion. For embedded devices or environments with limited resources, the size of the
model and its computational demands can become limiting factors. While larger
networks may offer better performance, they also require more computational re-
sources and storage space. Thus, in these scenarios, finding or designing models
with higher computational efficiency becomes particularly important. Lightweight
network designs, such as simplified variants of LSTM, can reduce the number of
parameters and operations while maintaining model performance.

6.2 LSTM Neural Network
LSTM [25] networks, as a variant of RNNs, are designed to address the issue of long-
term dependencies, enabling the capture of information across extended temporal

27

Selected Neural Networks

intervals. This characteristic renders LSTMs highly effective in applications involv-
ing long sequence data, such as natural language processing, speech recognition, and
complex time series analysis. The capability of LSTMs to manage this arises from
their intricate gating mechanisms that selectively remember or forget information,
thereby maintaining a long-term state or context at each point in the sequence.

The Architecture of LSTM as shown in the Figure6.1 and 6.2

Figure 6.1: Architecture of LSTM

Figure 6.2: Elements of LSTM

• Neural Network Layer: A layer in a neural network used for learning.

• Pointwise Operation: Operations performed element-wise, such as element-
wise multiplication, addition, vector sum, etc.

• Vector Transfer: The movement of a vector in the direction indicated by an
arrow.

• Concatenate: Joining two vectors together end-to-end.

• Copy: Duplicating a vector into two copies.

The following is an explanation of an example of a weather forecasting task
from [25]:

28

Selected Neural Networks

1. Figure 6.3 shows the process of transforming a 2D image into a 3D tensor.
This is a typical preprocessing step in machine learning and deep learning for
handling image data. It often involves taking a 2D image with pixel values and
converting it into a 3D tensor, where the third dimension represents different
channels (like RGB channels in a color image) or sometimes different features
extracted from each pixel or patch. The ’P’ here indicates a single pixel or a
patch of pixels being transformed into a 3D structure with depth, which could
represent multiple features.

Figure 6.3: Transforming 2D image into 3D tensor

2. Figure 6.4 illustrates the inner structure of a ConvLSTM unit. ConvLSTM is
a type of recurrent neural network (RNN) that is well-suited for spatiotempo-
ral data because it can maintain spatial information through the use of convo-
lutional structures in both the input-to-state and state-to-state transitions. In
this figure, ‘Ht‘ and ‘Ct‘ represent the hidden state and cell state at time ‘t‘,
respectively. The ‘Xt‘ and ‘Xt+1‘ at the bottom represent the input at time
‘t‘ and time ‘t+1‘. The dashed arrows suggest the flow and transformation of
data through the ConvLSTM cell over time.

Figure 6.4: Inner structure of ConvLSTM

29

Selected Neural Networks

3. Figure 6.5 presents an encoding-forecasting ConvLSTM network for precipi-
tation nowcasting. It consists of two parts: the encoding network, which pro-
cesses the input sequence and encodes it into a higher-level representation;
and the forecasting network, which uses the encoded representation to make
predictions about the future. The ’Copy’ labels indicate that the final state of
the encoding network is used as the initial state for the forecasting network.
This network architecture allows for sequential processing of spatial data and
is capable of making predictions about future frames, which is essential in
tasks such as weather forecasting.

Figure 6.5: Encoding-forecasting ConvLSTM network for precipitation on now-
casting

The overall theme of these figures is to represent the ConvLSTM network’s
ability to handle spatiotemporal sequences for tasks such as predicting future
rainfall intensity from radar image sequences. The figures are taken from a paper
likely discussing how to apply deep learning techniques to weather prediction,
specifically for predicting precipitation by learning from sequences of weather
radar images. However, when the features of interest encompass only short time
sequences, around five time steps of sensor readings—the advantages of LSTMs
become less pronounced. In such scenarios, the dependencies within the sequence
are relatively short-term, negating the need for complex gating mechanisms to
preserve long-term state information. Indeed, employing LSTMs in these contexts
may introduce unnecessary computational overhead and model complexity, which
is particularly disadvantageous in resource-constrained environments. For instance,
in embedded systems or real-time processing applications, computational efficiency
and response speed are crucial, and overly complex models can adversely impact
these performance metrics.

Given this context, despite the clear advantages of LSTM networks in handling
long sequence data, their complex structure and computational costs do not con-
stitute a justifiable choice for scenarios involving only short-term time sequences,
such as a few timesteps of sensor readings. Selecting a more appropriate model

30

Selected Neural Networks

architecture based on the specific requirements of the application scenario not only
enhances the model’s efficiency and utility but also ensures the effective use of re-
sources, thereby meeting performance requirements without incurring unnecessary
complexity and computational expense.

6.3 Capsule Neural Network
Capsule Neural Networks (CapsNets) are considered one of the potentially optimal
architectures within the realm of neural network technologies, particularly due to
their distinctive approach to handling input data when compared to traditional
Convolutional Neural Networks (CNNs). Unlike CNNs, which employ pooling layers
to reduce the spatial dimensions of the input data through downsampling, CapsNets
are designed to retain the hierarchical spatial relationships between the parts of
an object. This retention of spatial hierarchies is crucial because downsampling
inherently leads to a loss of information, which can be detrimental when the task
requires preserving intricate spatial relationships.

The Architecture of Capsule Neural Network as shown in the Figure 6.6 and 6.7.

Figure 6.6: A simple CapsNet with 3 layers [26]

6.3.1 CapsNet Architecture
The architecture CapsNet neural network is shown in Figure 6.6 and contains:

• Input Image: An image from the MNIST dataset representing a handwritten
digit.

• Convolutional Layer (ReLU Conv1): The initial layer applies 256 9 × 9
convolutional kernels with ReLU activations to detect local features.

• PrimaryCapsules: A convolutional capsule layer with 32 channels of 8D
capsules. Capsules represent combinations of features detected by the Conv1
layer. The vector’s length indicates the probability of feature presence.

31

Selected Neural Networks

• DigitCaps: Capsules in this layer represent the 10 possible digit classes. Each
capsule receives inputs from the PrimaryCapsules layer through a dynamic
routing mechanism, which depends on the agreement between the predicted
outputs and the actual inputs.

• Output: The activity vector’s length in the DigitCaps layer signifies the
presence probability of a digit, and its orientation represents the instantiation
parameters.

• Weight Matrix (Wij): A weight matrix transforms outputs from the Prima-
ryCapsules to predictions for the DigitCaps.

Algorithm 2 Routing algorithm [26]
1: procedure ROUTING(ûj|i, r, l)
2: for all capsule i in layer l and capsule j in layer (l + 1) : bij ← 0.
3: for r iterations do
4: for all capsule i in layer l : ci ← softmax(bi) ▷ softmax computes Eq. 3
5: for all capsule j in layer (l+1) : sj ←

q
i cijûj|i ▷ squash computes Eq. 1

6: for all capsule j in layer (l + 1) : vj ← squash(sj)
7: for all capsule i in layer l and capsule j in layer (l+1) : bij ← bij +ûj|i ·vj

8: return vj

9: end procedure

6.3.2 Dynamic Routing Algorithm
The dynamic routing algorithm, Algorithm 2, is pivotal for directing information
flow in Capsule Networks, facilitating effective representation of hierarchical data
relationships. Herein, we outline the algorithm’s procedure in a consolidated format:

1. Initialization: Logit values bij between capsules across layers are initialized
to zero, setting a neutral starting point for routing.

2. Iterative Routing: Through r iterations, the algorithm refines the coupling
coefficients, balancing between precision and computational demands.

3. Softmax Calculation: Normalizes coupling coefficients ci for each capsule
using softmax, ensuring that probabilities across potential parent capsules
sum to one.

4. Weighted Sum: Each capsule in layer (l + 1) computes its input as the
weighted sum of prediction vectors from the lower layer, with weights given
by the current routing preferences.

5. Squashing: Applies a non-linear squashing function to transform the total
input into output vectors, effectively encoding entity presence and properties.

32

Selected Neural Networks

6. Logit Update: Updates the logits bij based on the scalar product between
prediction vectors and actual outputs, reinforcing the routing based on predic-
tion agreement.

This routing mechanism allows for a dynamic, hierarchical representation of
data within Capsule Networks, enhancing their ability to parse and understand
complex inputs.

Figure 6.7: Decoder structure to reconstruct a digit from the DigitCaps layer
representation

6.3.3 Decoder for Digit Reconstruction
The Decoder for digit reconstruction shown in Figure 6.7 is made of:

• DigitCaps Layer: Serves as the starting point for the reconstruction of the
digit image.

• Masking: During training, vectors from all but the correct digit class are
masked.

• Decoder Network: Comprises three fully connected layers with ReLU acti-
vations (except the final Sigmoid layer) that reconstruct the digit image.

• Output: The reconstruction loss, or the squared difference between the
reconstructed image and the input, is minimized during training with the true
label serving as the reconstruction target.

The CapsNet architecture employs vector outputs from capsules to encode
instantiation parameters. This design enables the network to generalize effectively
to new viewpoints and achieve superior performance in tasks such as segmentation
and classification of overlapping digits.

Despite the larger scale of CapsNets compared to traditional CNNs, the complex-
ity of the chosen features does not necessitate a proportionally large increase in the

33

Selected Neural Networks

number of parameters. This is partly because the dynamic routing mechanism effi-
ciently utilizes the network’s capacity to focus on relevant spatial hierarchies with-
out needing to significantly increase the parameter count. As a result, the parameter
overhead remains within an acceptable range, making CapsNets a viable and poten-
tially superior alternative to CNNs for applications where the preservation of spatial
hierarchies and the avoidance of information loss through downsampling are critical.

6.4 Temporal Convolutional Neural Network
In the exploration of optimal neural network architectures for applications requiring
the analysis of sequential data, the Temporal Convolutional Network (TCN) model
emerges as a superior contender. Distinctively, the TCN architecture offers an
expanded receptive field compared to traditional Convolutional Neural Networks
(CNNs) while operating under an identical parameter budget. This extended
receptive field is instrumental in capturing the temporal dynamics and continuity
of human movement within indoor environments, a domain where the intricacies
of sequential data are paramount. Specifically, within the context of five temporal
steps, the TCN’s ability to integrate all pertinent information and features becomes
critically important, as it ensures a comprehensive understanding of the sequence’s
evolution over time.

The architecture of capsule neural network is shown in Figures 6.8, 6.9, and 6.10:

1. Overall Structure (Figure 6.8): The diagram shows a TCN where each
layer’s output has the same length as the input, ensuring there’s no leakage of
information from future to past. The layers are stacked vertically, and dilation
increases exponentially as you move up through the layers (d = 1, 2, 4, . . .),
allowing the network to have a very large receptive field without increasing
the depth significantly.

2. Residual Blocks (Figure 6.9): TCNs use residual blocks, which can contain
a branch leading out to a series of transformations F whose outputs are added
back to the block’s input. This setup helps in training deeper networks by
allowing layers to learn modifications to the identity mapping. Within a block,
there are dilated causal convolutions, non-linearity (ReLU), normalization
(weight normalization), and spatial dropout for regularization. An optional 1x1
convolution is included when the residual input and output dimensions differ.

3. Example of Residual Connection (Figure 6.10): The figure illustrates the
use of a residual connection in a TCN, where blue lines represent convolutional
filters in the residual function and the green line shows the identity mapping.
This design is essential to allow each layer of the network to look back at all
prior states, giving TCNs the ability to consider long-range dependencies.

34

Selected Neural Networks

Figure 6.8: Overall Structure [27]

Figure 6.9: Residual Blocks [27]

The TCN model’s efficiency and effectiveness are not solely confined to its en-
hanced receptive field. Another salient feature of the TCN is its suitability for de-
ployment on lightweight devices, a characteristic that is increasingly relevant in the

35

Selected Neural Networks

Figure 6.10: Example of Residual Connection [27]

era of mobile computing and Internet of Things (IoT) applications. This compati-
bility stems from the TCN’s architectural efficiency, which allows it to deliver high-
performance temporal data processing capabilities without necessitating the compu-
tational resources typically associated with more complex models. Consequently, the
TCN model stands out not only for its theoretical contributions to the field of neural
network architectures but also for its practical applicability in scenarios where com-
putational efficiency and the ability to capture temporal dependencies are crucial.

6.5 Neural Network Selection
Given the considerations outlined in the preceding sections, the selection of Capsule
Neural Networks (CapsNets) and Temporal Convolutional Networks (TCN) as the
preferred neural network architectures for our application context is founded on
their unique strengths and alignment with our specific requirements. The decision
to incorporate CapsNets is motivated by their exceptional ability to preserve the
hierarchical spatial relationships inherent in the input data. Unlike traditional
Convolutional Neural Networks (CNNs) that rely on pooling layers and consequently
risk information loss through downsampling, CapsNets employ a dynamic routing
mechanism that efficiently captures and maintains spatial hierarchies without a
significant increase in parameter count. This capability is particularly advantageous
for applications demanding the preservation of intricate spatial details, making
CapsNets a superior choice for scenarios where such preservation is critical to
achieving high accuracy and performance.

On the other hand, the Temporal Convolutional Network (TCN) model is selected

36

Selected Neural Networks

due to its expanded receptive field, which facilitates a deeper understanding of
temporal dynamics and continuity, especially in applications involving sequential
data. The TCN architecture’s ability to integrate information across multiple
time steps ensures a comprehensive analysis of sequences, a feature crucial for
tasks requiring the capture of long-term dependencies within time series data.
Furthermore, the TCN’s architectural efficiency renders it suitable for deployment
on lightweight devices, addressing the need for high-performance temporal data
processing in resource-constrained environments. This compatibility with lightweight
devices, combined with the TCN’s enhanced receptive field, positions it as an ideal
choice for applications that demand efficient and effective analysis of sequential data.

In summary, the selection of Capsule Neural Networks and Temporal Convolu-
tional Networks is predicated on their respective abilities to address the specific
challenges posed by our application scenario. CapsNets’ preservation of spatial hier-
archies without significant parameter overhead and TCNs’ enhanced receptive field
and computational efficiency align perfectly with our requirements for handling
intricate spatial relationships and efficiently processing sequential data. Together,
these architectures offer a synergistic solution that leverages the strengths of each
model to achieve superior performance and efficiency, justifying their selection as
the neural networks of choice for our application.

37

Chapter 7

Improvement of Online
Distillation Effectiveness

7.1 Adaptive Weights
In the exploration of methodologies to augment the efficacy of online distillation
techniques, inference from the mechanisms of DML and knowledge distillation,
using adaptive weights could be a feasible approach. This approach postulates that
the relative significance attributed to the Kullback-Leibler (KL) divergence loss in
networks of divergent architectures ought to dynamically vary in accordance with
the training phase.

Empirically, it is observed that networks of larger complexity, embodying a
more extensive parameter space, exhibit a swifter learning curve. This characteris-
tic necessitates an initial emphasis on the weight (w2) associated with the teacher
network’s contribution, predicated on its advanced learning capabilities. Conse-
quently, at the inception of the training regimen, a pronounced disparity between
the weights (w1 and w2) is advocated, with w2 significantly outweighing w1.

As the training progression approaches maturation, the student network assimi-
lates substantial insights from both the domain knowledge imparted by the teacher
and the foundational truth. This phase of the training suggests a recalibration of
the weights (w1 and w2) towards parity, reflecting the enhanced learning equilib-
rium between the student and teacher networks.

The iterative refinement of the student network, underpinned by a balanced
integration of domain knowledge and empirical data, potentially augments the
generalization capabilities of the teacher network. This reciprocal enhancement
serves to mitigate the propensity for overfitting, fostering a symbiotic advancement
in the distillation process. The deployment of an improved teacher network further
enriches the quality of domain knowledge, thereby catalyzing the student network’s

38

Improvement of Online Distillation Effectiveness

learning trajectory.
The equations governing the adaptive weights mechanism are formalized as

follows:

w1(t) = f (LC2(t− 1)) (7.1)
LΘ1 = LC1 + w1(t) ·DKL(p2 ∥ p1) (7.2)

w2(t) = f (LC1(t− 1)) (7.3)
LΘ2 = LC2 + w2(t) ·DKL(p1 ∥ p2) (7.4)

where LΘ1 and LΘ2 represent the loss functions for the student and teacher networks,
respectively. The terms LC1 and LC2 denote the conventional loss components,
while w1(t) and w2(t) are the time-varying weights assigned to the KL divergence
terms, reflective of the evolving learning dynamics.

This adaptive weighting framework (see Figure 7.1) posits a promising avenue
for empirical validation and exploration, particularly in the context of regression
tasks. The iterative adjustment of weights, in alignment with the training phase,
harbors the potential to significantly enhance performance metrics and learning
efficiency in online distillation methodologies. These are achieved by the controller
shown in the Figure 7.1, which continuously adjusts the weight of student and
teacher during the training process based on the training status of the student
model. The controller has a rolling cache to store the constantly updated training
errors of the student model, and calculates the mean and standard deviation of the
errors to assess the training situation of the student, as shown in Algorithm 3.

Figure 7.1: Schematic Diagram of Adaptive Weighting Framework

39

Improvement of Online Distillation Effectiveness

Algorithm 3 The mechanism of the controller
1: Initialize Caches with elements es

t for t = 1, 2, . . . , T
2: Compute the average ē = 1

N

qi
j=i−N ej over the last N elements

3: Compute the standard deviation σCaches =
ñ

1
T

qT
t=1(es

t − µCaches)2

4: Compute ws, wt = f(ē, σCaches) based on the average and standard deviation
5: return ws,wt

Then, based on the logic of this method, I conducted experiments on both CPS
and TCN networks under the TensorFlow environment to verify the feasibility and
effectiveness of this idea.

Experimental specifications for each setting:

• Train 100 times.
• Terminate a single training if the validation error does not decrease after 200

epochs.
• Maximum of 1500 epochs for each training.
• Output the best result, referring to the lowest validation error.

are shown in Table 7.1. The configurations for the Student and Teacher structures
in the Temporal Convolutional Network (TCN) experiments are shown in Table 7.1.
The size of of the teacher model are far greater than those of the student model, but
the student model has more parameters in its final fully connected layer compared
to the teacher model. This is to enhance the expressive capability of the student
model, compensating for its smaller size to a certain extent.

Table 7.1: TCN Student vs. Teacher Structures

Parameter Student Structure Teacher Structure

Hidden Layers 2 3
Number of Stacks 1 1
Number of Filters 8 16
Kernel Size 3 5
Dense Unit 16 8

The experimental results are shown in Figure 7.2 and reported in Table 7.2."Of-
fline" means training is conducted in the form of offline distillation, "online" means
training is conducted using the form of online distillation as defined in the previ-
ous Chapter 3, and "online with controller" means training is conducted using the
structure shown in Figure 7.1, employing a "controller" to dynamically control the
weights between the student model and the teacher model based on the training

40

Improvement of Online Distillation Effectiveness

process. While the minimal error was recorded in scenarios devoid of controller uti-
lization, specifically through the employment of static distillation and ground truth
error weights, it is conspicuously observed that the adoption of Adaptive Weights
facilitated the attainment of numerous lower validation errors. Given the stochas-
tic characteristics inherent in neural network training processes, it is reasonable
to infer that the online distillation methodology incorporating Adaptive Weights
consistently demonstrates superior efficacy in minimizing validation errors.

Figure 7.2: TCN ValLoss of Different Distillation Methods

Table 7.2: CPS Validation Errors of Different Settings

Setting Validation Error
(m2)

TCN offline 0.191
TCN online 0.164
TCN online with Controller 0.164

The configurations for the Student and Teacher structures in the Capsule Neural
Network (CPS) experiments are shown in Table 7.3.

The size of the teacher model are far greater than those of the student model,
but the student model has more parameters in its final fully connected layer and
bigger Kernel Size compared to the teacher model. This is to enhance the expressive
capability of the student model, compensating for its smaller size to a certain
extent, almost the same reason as TCN setting. In CPS networks, we stack not the

41

Improvement of Online Distillation Effectiveness

Table 7.3: CPS Network Configuration

Parameter Student NN Teacher NN

Routings 3 3
Dimension of capsule cps1 3 3
Dimension of capsule cps2 5 5
Number of capsules in cps1 7 12
Number of classes 3 3
Number of filters 16 16
Kernel size 3 2
Dense units 8 32

regular convolutional layers, but a type of Capsule (see Section 6.3 and Alorithm 2).
Capsules are a group of neurons whose activity vector represents the instantiation
parameters of a specific type of entity, such as an object or a part of an object.
The length of the activity vector is used to represent the probability that the entity
exists, and its orientation represents the instantiation parameters. Active capsules
at one level make predictions via transformation matrices for the instantiation
parameters of higher-level capsules. When multiple predictions agree, a higher-level
capsule becomes activated. Multiple capsules are stacked through specific structures
and hierarchies to form a multi-layer network,In the configuration of Table 7.3,2
capsules(cps1 and cps2) are stacked in both student and teacher models, teacher
model has a bigger size cps1.

The experimental results are shown in Figure 7.3 and Table 7.4 and are unex-
pectedly impressive."Offline" means training is conducted in the form of offline dis-
tillation, "online" means training is conducted using the form of online distillation
as defined in the previous Chapter 3, and "online with controller" means training
is conducted using the structure shown in Figure 7.1, employing a "controller" to
dynamically control the weights between the student model and the teacher model
based on the training process.At first, when I applied online distillation with fixed
weights, the outcomes were so disappointing that I doubted the usefulness of online
distillation for CPS networks. But, after introducing a controller, the CPS network
achieved the best results. Yet, given the CPS student model has 3,814 parame-
ters, and the TCN student has only 986 parameters, it’s difficult to definitively say
which model is better without first tuning the parameters.

During the training process, the most crucial parameter is the η value of
the Attentive Imitation Loss mentioned in Section 3.2, as this value serves as a
benchmark for assessing the quality of distilled knowledge. Throughout training,
we use it to calculate a normalized weight. If the discrepancy between the current
output and the ground truth is significant, it indicates that the output has low
referential value as distilled knowledge for another model, and therefore, the

42

Improvement of Online Distillation Effectiveness

Figure 7.3: CPS Validation Loss of different Distillation Method

Table 7.4: Validation Errors of Different Settings

Setting Validation Error
(m2)

CPS offline 0.162
CPS online 0.357
CPS online with Controller 0.149

distillation error should be down-weighted during parameter updates. In the offline
distillation process, since the teacher model is already trained, this value can be
derived from the maximum error output by the teacher model. However, in online
distillation, as both teacher and student models are untrained, the relative output
errors compared to the ground truth will be exceedingly large during training,
making a large denominator impractical for assessing distilled knowledge. This
situation renders the Attentive Imitation Loss mechanism ineffective. Consequently,
I conducted extensive experiments to find an optimal η value for TCN with the
results shown in Figure 7.4 and reported in Table 7.5 and for CPS with the results
shown in Figure 7.5 and reported in Table 7.6.

After some straightforward tuning in η it was found that the TCN model achieved
the optimal validation error of 0.124 m2 when η was set to 0.9. Meanwhile, the CPS
model obtained its best validation error of 0.13 m2 at η equal to 1.2. Considering
that the CPS student model has 3,814 parameters compared to the TCN student

43

Improvement of Online Distillation Effectiveness

Figure 7.4: TCN Validation Error under Different η

Table 7.5: TCN Minimum Validation Errors for Various η Values

η Min Validation Error
(m2)

0.7 0.229
0.8 0.167
0.9 0.124
1.0 0.185
1.1 0.139
1.2 0.153
1.3 0.184

model’s 986 parameters, it can be concluded that the TCN model is a more efficient
network for our scenario.

7.2 Pre-Distillation Training
In offline distillation, the teacher model is typically pre-trained, thereby ensuring the
quality of distilled knowledge and numerical stability during training. In contrast,
online distillation faces the challenge that both teacher and student models are
untrained at the outset. Consequently, the value of distilled knowledge as a reference
is relatively limited for both the student and teacher models in the initial phase of

44

Improvement of Online Distillation Effectiveness

Figure 7.5: CPS Validation Error under Different η

Table 7.6: CPS Minimum Validation Errors for Various η Values

η Min Validation Error
(m2)

0.7 0.292
0.8 0.272
0.9 0.165
1.0 0.158
1.1 0.146
1.2 0.130
1.3 0.165

training, and may even lead to potential misguidance.
Based on this hypothesis, I have decided to conduct two experiments. The first

experiment involves training the teacher model independently for several epochs
before incorporating the distilled knowledge into the loss function, to prevent
the teacher model from being “misled” by the student model, while the student
model continues to train as per its original scheme. The second experiment entails
independent training of both the student and teacher models for several epochs
before integrating distilled knowledge into their respective loss functions.

45

Improvement of Online Distillation Effectiveness

7.2.1 Teacher pre-training for 50, 100, 150, and 200 epochs
Experimental specifications for each setting:

• Train 100 times.
• Terminate a single training if the validation error does not decrease after 200

epochs.
• Maximum of 1500 epochs for each training.
• Output the best result, referring to the lowest validation error.

As shown in Figure 7.6 and Table 7.7, apart from the special case of pre-training by
100 epochs, pre-training more epochs typically leads to higher minimum validation
errors. However, if we look at the test errors for models that got the lowest validation
error, it seems like pre-training for 100 or 200 epochs might give models better
ability to generalize. But, it’s hard to make a clear conclusion from this.

Figure 7.6: Pre-training Teacher Network for 50, 100, 150, and 200 epochs

7.2.2 Teacher and student models pre-train for 50, 100, 150,
and 200 epochs

As shown in the Figure 7.7 and Table 7.7, although the results are similar to the
first experiment, when both the student model and the teacher model are trained
independently for several epochs before distillation knowledge is incorporated
into their respective loss functions, the more epochs are trained, the worse the

46

Improvement of Online Distillation Effectiveness

Table 7.7: Minimum validation loss and the corresponding test loss from pre-
training teacher model

Epochs Min Validation Loss Corresponding Test Loss
(m2) (m2)

0 0.124 0.131
50 0.144 0.177

100 0.131 0.119
150 0.143 0.133
200 0.142 0.112

performance of the models. However, under the condition of training by 50 epochs,
a lower validation error was achieved compared to the condition of training by 0
epochs (no independent training).

Figure 7.7: Pre-training both teacher and student network for 50, 100, 150, and
200 epochs

7.2.3 Hypothesis and Verification
Hypothesis

When both the teacher model and the student model are trained by 50 epochs, the
lowest error actually decreases. Observing the errors in the training process, it is
noteworthy that when the student and teacher models are first trained independently
for 50 epochs, the previously mentioned problem of numerical instability during the
training process is improved while maintaining the “online” nature of distillation.

47

Improvement of Online Distillation Effectiveness

Table 7.8: Minimum validation loss and the corresponding test loss from pre-
training both teacher and student models

Epochs Minimum Validation Loss Corresponding Test Loss
(m2) (m2)

0 0.124 0.131
50 0.121 0.127

100 0.129 0.109
150 0.137 0.137
200 0.132 0.150

Experiments for Verification

Observations from Figure 7.8 indicate that after undergoing training for about
1 epoch (64 batches), both the student and teacher model prediction errors will
converge to an acceptable level ensuring that the teacher model and the student
model do not mislead each other. Considering that undergoing 50 epochs of pre-
training would largely affect the online “nature” of the training process, as shown in
Figure 7.8, after approximately 30 batches of training, the prediction error for the
majority of the student networks is within 0.6 m2. The teacher network, benefiting
from a larger search space, converges faster, and its error will be lower compared to
the student networks. The magnitude of this error is already on the same order as the
smallest prediction error obtained at the end of training. Given that both the teacher
model and the student model are essentially ready for distillation after about 1 epoch
of training. Therefore, I decided to experiment by training the teacher and student
models by 2 epochs and 5 epochs, respectively, and then compare the experimental
results. Because after training for 2 epochs (128 batches), the prediction results of
both the teacher and student models will be of reference value to each other.

As shown in the Figure 7.9 and Table 7.9, when both the student model and the
teacher model are pre-traineld by 2 epochs before incorporating distilled knowledge
into their respective loss functions, the lowest training error and corresponding test
error are simultaneously achieved.

Table 7.9: Validation and corresponding test losses when pre-training for 0, 2, 5
epochs

Epochs Minimum Validation Loss Corresponding Test Loss
(m2) (m2)

0 0.124 0.131
2 0.118 0.129
5 0.127 0.136

48

Improvement of Online Distillation Effectiveness

Figure 7.8: Prediction error in the first epoch

This observation leads to the conclusion that, without pre-train, the quality of
distilled knowledge is very poor in the initial epochs of training, as both teacher and
student models provide random inferences. This lowers much the quality of distilled
knowledge and has a negative impact on the overall training, resulting in a model
performance that is inferior to that achieved with a 2-epoch pre-train. On the other
hand, the reason why pre-training both models by 5 epochs results in worse outcomes
compared to other scenarios is that a longer pre-train may shift the training process
out of reach of the best achievable using online distillation. By the time distilled
knowledge is introduced into the training process, as shown in Figure 7.8, after
both the teacher network and the student network undergo two epochs of training
independently, their prediction errors will converge to an acceptable level, which
means that the two models can start effective distillation without misleading each
other. Thus the training is maintained almost entirely “online”.

7.2.4 Overall Conclusion
Results From Optimized Online Training and Offline Training has shown that online
distillation methods, enhanced with two novel mechanisms, Adaptive Weights and
Pre-Distillation Training, indeed achieve superior validation errors in regression

49

Improvement of Online Distillation Effectiveness

Figure 7.9: Experiments Results for Verification, pre-trained for 0, 2, 5 epochs

tasks compared to offline distillation methods, as shown in the 7.10. However, models
achieving optimal validation errors through these optimized online distillation
methods do not exhibit smaller test errors. Based on this, it is explored the
integration of some form of domain knowledge into the distillation error that may
enhance the model’s generalization ability.

7.3 Domain Knowledge From Kalman Filter
The noise and the relatively low sampling frequency of 3 Hz of long-distance
capacitive plate sensors and ultrasonic sensors used as ground truth, inevitably
lead to the loss of some information, such as the smoothness of the dynamic of
human indoor trajectories. This level of detail can hardly be captured through
position information from a low sampling rate. Considering that the essence of
knowledge distillation involves adding some meaningful, information-rich noise to
the loss function to allow models to learn “domain knowledge,” incorporating the
“prior knowledge” of the smoothness of human indoor trajectories into the distilled
knowledge becomes crucial.

A Kalman filter is a good option for this purpose. As shown in 7.11, the Kalman
filter is used to process the output of the teacher model to some extent restore the

50

Improvement of Online Distillation Effectiveness

Figure 7.10: Results From Optimized OnlineTraining and Offline Training

dynamics of human indoor positioning data. This is achievable by modeling human
walking dynamics as the dynamic model of the Kalman filter and treating the output
of the teacher network as observation noise. Consequently, this approach “fuses” the
characteristics of human movement indoors with the output of the teacher neural
network, presenting it as more “complete” and “reasonable” domain knowledge
to the student model. This method enhances training quality and improves the
model’s generalization capabilities.

To verify whether the Kalman filter could achieve the expected effect, I conducted
experiments with the results shown in Figure 7.12 and reported in Table 7.13.

To assess the efficacy of Kalman filters within the training regimen, various
deployment strategies of Kalman filters were explored. Given the inherent instability
in the output quality of Teacher networks at the nascent stages of training and the
pivotal role these initial stages play in the model’s training trajectory, a strategic
approach was adopted. This involved postponing the integration of Kalman filters
by 200 epochs and subsequently ceasing their application after the completion
of 200 epochs, thereby providing a nuanced examination of their impact on the
training process.

51

Improvement of Online Distillation Effectiveness

Figure 7.11: Schematic Diagram of Adaptive Weighting Framework With Kalman

Experimental specifications for each setting:

• Train 100 times.
• Terminate a single training if the validation error does not decrease after 200

epochs.
• Maximum of 1500 epochs for each training.
• Output the best result, referring to the lowest validation error.
• WithoutKalman: Distillation with the pure teacher prediction, without

Kalman filter application.
• KalmanLater: Distillation with the teacher prediction, then after 200 epochs,

distillation with the filtered teacher prediction using the Kalman filter.
• KalmanFirst: Distillation with the filtered teacher prediction using the

Kalman filter, then after 200 epochs, distillation with the pure teacher predic-
tion.

• WithKalman: Continuous distillation with the filtered teacher prediction
using the Kalman filter.

52

Improvement of Online Distillation Effectiveness

Figure 7.12: Teacher Output vs Filtered Teacher Output X Coordinates

• Results as show in the Table 7.10 and Figure 7.14

Table 7.10: Best Validation Error and Corresponding Test Error under Different
Conditions

Condition Best Validation Error Corresponding Test Error
(m2) (m2)

WithoutKalman 0.118 0.129
KalmanLater 0.149 0.140
KalmanFirst 0.148 0.109
WithKalman 0.148 0.095

The experimental results show that applying the Kalman filter to the outputs
of the teacher model does not minimize the validation error, but it seems to
substantially reduce the test error. This effect can be attributed to the filter’s
ability to prevent overfitting, thereby improving the model’s ability to generalize
to new data, assumption that will be tested next.

Furthermore, the Kalman filter was proven to effectively smooth the outputs
of the network, fulfilling its intended role. It successfully removed high-frequency
noise, which was inconsistent with the characteristics of human walking, confirming
the initial expectations.

53

Improvement of Online Distillation Effectiveness

Figure 7.13: Teacher Output vs Filtered Teacher Output Y Coordinates

Figure 7.14: Results under different Kalman filter setting

54

Chapter 8

Generalization Results

Through the exploration and research conducted in Chapter 7, by applying differ-
ent optimization strategies, new training logic, and structures within the online
distillation process, it is observed that the performance of the student model, as
measured by validation error, has indeed improved significantly. However, this im-
provement is not reflected in the training error.

Therefore, to validate the effectiveness of online distillation relative to offline
distillation, I test the models optimized in Chapter 7 on two entirely new test
sets, collected in similar experiments but in different days and environmental
conditions, to evaluate their generalization performance. This approach provides a
more effective and robust assessment.

Experimental specifications for each setting:

• Train 100 times.
• Terminate a single training if the validation error does not decrease after 200

epochs.
• Maximum of 1500 epochs for each training.
• Output the best result, referring to the lowest validation error.
• OnlineWithoutKalman: Distillation with the pure teacher prediction, with-

out Kalman filter application.
• OnlineKalmanLater: Distillation with the teacher prediction, then after 200

epochs, distillation with the filtered teacher prediction using the Kalman filter.
• OnlineKalmanFirst: Distillation with the filtered teacher prediction using

the Kalman filter, then after 200 epochs, distillation with the pure teacher
prediction.

• OnlineWithKalman: Continuous distillation with the filtered teacher pre-
diction using the Kalman filter.

• Offline: Original Offline Distillation Method.
• CapEXP2, CapEXP3: Two new Test Sets.

55

Generalization Results

Among all evaluated models for which the results are reported in Table 8.1, and
shown in Figure 8.1 and Figure 8.2, “OnlineKalmanGoLater” stands out for its
notable stability across various datasets and validation metrics. While it may not
always achieve the best performance in every single instance, its consistent results
across different datasets indicate a superior generalization capability. This makes
practical sense because the purpose of incorporating the Kalman filter into the
distillation process is to improve the model’s understanding of the dynamic aspects
of potential physical phenomena, and introducing the Kalman filter in the later
stages of distillation optimizes this improvement.

Table 8.1: Test error (MSE) for different distillation methods on new test sets

Configuration Data Set

CapEXP2 CapEXP3

MSE ΔMSE MSE ΔMSE
(m2) (%) (m2) (%)

Offline (baseline) 0.520 N/A 0.461 N/A

WithoutKalman 0.433 −16.7 0.595 29.1
OnlineWithKalman 0.549 5.58 0.488 5.86
OnlinKalmanGoFirst 0.460 −11.5 0.388 −15.8
OnlinKalmanGoLater 0.416 −20.0 0.420 −8.89

Figure 8.1: Test error (MSE) from different distillation methods on new test sets

56

Generalization Results

Figure 8.2: Improvement percentage in test error (MSE) referred to the offline
setting

This approach is expected to improve the quality of the model’s learning out-
comes. Such evidence supports the argument that an optimized online distillation
method can enhance model generalization performance.

57

Chapter 9

Conclusion

In the context of using long-range capacitive plate sensors for indoor positioning, this
work discusses the application of mutual learning in online knowledge distillation.
This method aims to achieve higher training quality and model performance than
offline distillation by allowing real-time mutual learning between student and teacher
networks through mutual distillation. The thesis explores mechanisms and new
methods for improving training quality and model performance, namely adaptive
weights, pre-distillation training, and the application of a Kalman filter, to optimize
the online distillation process and its generalization capabilities.

The research demonstrates that through adaptive weights, the weight of distilla-
tion knowledge in the loss functions of the student and teacher networks can be dy-
namically adjusted during the training phase based on the progress of the student
network’s learning. This adaptive approach facilitated more effective knowledge
transfer, significantly improving the validation error of the student network.

Furthermore, the thesis introduces pre-distillation training, where preliminary
independent training of the teacher (and in some cases, also the student) models is
conducted before the mutual distillation phase. This strategy is aimed at stabilizing
and improving the quality of distillation knowledge early in the training process, thus
avoiding the instability caused by untrained models that could lead to misleading
guidance.

Additionally, the application of the Kalman filter to process the output of the
teacher model was studied, aimed at restoring the “smoothness” of human indoor
movement that is often lost due to low sampling rates and sensor imperfections.
This approach was expected to enrich distillation knowledge with more accurate and
meaningful information, thereby enhancing the learning outcomes and generalization
capabilities of the student model.

These strategies and methods, when combined in the context of online distillation,
demonstrated improved model performance on new test sets compared to traditional
online distillation methods. The integration of adaptive weights, pre-distillation

58

Conclusion

training, and the Kalman filter showcased the potential to refine and optimize the
knowledge distillation process in complex applications such as indoor positioning
systems.

In our current exploration and research, we have only incorporated some infor-
mation about human motion patterns into knowledge distillation through a kine-
matic model based on Kalman filtering. This represents a very preliminary and
simple exploration. However, even through such exploratory methods, we have ob-
tained models that perform better on new datasets. Perhaps in future research, we
can seek to explore new methods that include real domain knowledge to achieve
better model performance.

59

Bibliography

[1] Faheem Zafari, Athanasios Gkelias, and Kin K. Leung. «A Survey of Indoor
Localization Systems and Technologies». In: IEEE Communications Surveys
and Tutorials 21.3 (2019), pp. 2568–2599 (cit. on p. ii).

[2] Tero Kivimäki, Timo Vuorela, Pekka Peltola, and Jukka Vanhala. «A Review
on Device-Free Passive Indoor Positioning Methods». In: International Journal
of Smart Home 8 (2014), pp. 71–94 (cit. on p. ii).

[3] Javed Iqbal, Mihai Teodor Lazarescu, Osama Bin Tariq, and Luciano Lavagno.
«Long range, high sensitivity, low noise capacitive sensor for tagless indoor
human localization». In: 2017 7th IEEE International Workshop on Advances
in Sensors and Interfaces (IWASI). IEEE. 2017, pp. 189–194 (cit. on pp. ii, 21).

[4] Andreas Braun, Reiner Wichert, Arjan Kuijper, and Dieter W. Fellner. «Ca-
pacitive proximity sensing in smart environments». In: J. Ambient Intell.
Smart Environ. 7 (2015), pp. 483–510 (cit. on p. ii).

[5] Tobias Grosse-Puppendahl, Christian Holz, Gabe Cohn, Raphael Wimmer,
Oskar Bechtold, Steve Hodges, Matthew S. Reynolds, and Joshua R. Smith.
«Finding Common Ground: A Survey of Capacitive Sensing in Human-
Computer Interaction». In: Proceedings of the 2017 CHI Conference on Hu-
man Factors in Computing Systems. ACM. 2017, pp. 3293–3315 (cit. on p. ii).

[6] Javed Iqbal, Arslan Arif, Osama Bin Tariq, Mihai Teodor Lazarescu, and
Luciano Lavagno. «A contactless sensor for human body identification using
RF absorption signatures». In: 2017 IEEE Sensors Applications Symposium
(SAS). IEEE. 2017, pp. 1–6 (cit. on p. ii).

[7] Javed Iqbal, Mihai Teodor Lazarescu, Osama Bin Tariq, Arslan Arif, and
Luciano Lavagno. «Capacitive Sensor for Tagless Remote Human Identification
Using Body Frequency Absorption Signatures». In: IEEE Transactions on
Instrumentation and Measurement 67.4 (2018), pp. 789–797 (cit. on p. ii).

60

BIBLIOGRAPHY

[8] Atika Arshad, Sheroz Khan, A. H. M. Zahirul Alam, Rumana Tasnim, Teddy S.
Gunawan, Robiah Ahmad, and Chandrasekharan Nataraj. «An activity moni-
toring system for senior citizens living independently using capacitive sensing
technique». In: 2016 IEEE International Instrumentation and Measurement
Technology Conference Proceedings. IEEE. 2016, pp. 1–6 (cit. on p. ii).

[9] Alireza Ramezani Akhmareh, Mihai Teodor Lazarescu, Osama Bin Tariq, and
Luciano Lavagno. «A Tagless Indoor Localization System Based on Capacitive
Sensing Technology». In: Sensors 16.9 (2016), p. 1448 (cit. on p. ii).

[10] Javed Iqbal, Mihai Teodor Lazarescu, Osama Bin Tariq, and Luciano Lavagno.
«Long range, high sensitivity, low noise capacitive sensor for tagless indoor
human localization». In: 2017 7th IEEE International Workshop on Advances
in Sensors and Interfaces (IWASI). IEEE. 2017, pp. 189–194 (cit. on p. ii).

[11] Javed Iqbal, Mihai Teodor Lazarescu, Arslan Arif, and Luciano Lavagno.
«High sensitivity, low noise front-end for long range capacitive sensors for
tagless indoor human localization». In: 2017 IEEE 3rd International Forum
on Research and Technologies for Society and Industry (RTSI). IEEE. 2017,
pp. 1–6 (cit. on p. ii).

[12] Raphael Wimmer, Matthias Kranz, Sebastian Boring, and Albrecht Schmidt.
«A Capacitive Sensing Toolkit for Pervasive Activity Detection and Recogni-
tion». In: Fifth Annual IEEE International Conference on Pervasive Comput-
ing and Communications (PerCom’07). IEEE. 2007, pp. 171–180 (cit. on p. ii).

[13] Osama Bin Tariq, Mihai Teodor Lazarescu, and Luciano Lavagno. «Neural
Networks for Indoor Human Activity Reconstructions». In: IEEE Sensors
Journal 20.22 (2020), pp. 13571–13584 (cit. on pp. ii, 22, 23, 26).

[14] Osama Bin Tariq, Mihai Teodor Lazarescu, and Luciano Lavagno. «Neural
network-based indoor tag-less localization using capacitive sensors». In: Ad-
junct Proceedings of the 2019 ACM International Joint Conference on Perva-
sive and Ubiquitous Computing and Proceedings of the 2019 ACM Interna-
tional Symposium on Wearable Computers. ACM. 2019, pp. 9–12 (cit. on p. ii).

[15] Ying Zhang, Tao Xiang, Huchuan Lu, and Timothy M. Hospedales. «Deep
Mutual Learning». In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). CVPR. 2018, pp. 4320–4328 (cit. on
pp. 2, 15, 16, 18–20).

[16] Ethem Alpaydin. Introduction to Machine Learning. Cambridge: MIT press,
2020 (cit. on p. 3).

[17] Matiur Rahman Minar and Jibon Naher. «Recent Advances in Deep Learning:
An Overview». In: ArXiv abs/1807.08169 (2018). url: https://api.semant
icscholar.org/CorpusID:49908818 (cit. on p. 3).

61

https://api.semanticscholar.org/CorpusID:49908818
https://api.semanticscholar.org/CorpusID:49908818

BIBLIOGRAPHY

[18] Thomas Epelbaum. «Deep learning: Technical introduction». In: ArXiv
abs/1709.01412 (2017). url: https://api.semanticscholar.org/CorpusI
D:43867975 (cit. on p. 4).

[19] Vinod Nair and Geoffrey E. Hinton. «Rectified Linear Units Improve Re-
stricted Boltzmann Machines». In: International Conference on Machine
Learning. IMLS. 2010 (cit. on p. 5).

[20] Yuandong Tian. «Student Specialization in Deep ReLU Networks With Finite
Width and Input Dimension». In: arXiv: Learning (2019). url: https://
api.semanticscholar.org/CorpusID:207863698 (cit. on p. 5).

[21] David E. Caughlin. Chapter 48 applying K-fold cross-validation to logistic
regression: R for HR: An introduction to human resource analytics using R.
url: https://rforhr.com/kfold.html (cit. on p. 9).

[22] Jianping Gou, Baosheng Yu, Stephen J. Maybank, and Dacheng Tao. «Knowl-
edge distillation: A survey». In: International Journal of Computer Vision
129.6 (2021), pp. 1789–1819 (cit. on pp. 10–13).

[23] Muhamad Risqi U. Saputra, Pedro PB De Gusmao, Yasin Almalioglu, Andrew
Markham, and Niki Trigoni. «Distilling knowledge from a deep pose regressor
network». In: Proceedings of the IEEE/CVF international conference on
computer vision (ICCV). ICCV. 2019, pp. 263–272 (cit. on p. 14).

[24] Faheem Ijaz, Hee Kwon Yang, Arbab Waheed Ahmad, and Chankil Lee.
«Indoor positioning: A review of indoor ultrasonic positioning systems». In:
2013 15th International Conference on Advanced Communications Technology
(ICACT). IEEE. 2013, pp. 1146–1150 (cit. on p. 24).

[25] Xingjian Shi, Zhourong Chen, Hao Wang, Dit-Yan Yeung, Wai-kin Wong,
and Wang-chun WOO. «Convolutional LSTM Network: A Machine Learning
Approach for Precipitation Nowcasting». In: Advances in Neural Information
Processing Systems (NIPS). NIPS. 2015, p. 28 (cit. on pp. 27, 28).

[26] Sara Sabour, Nicholas Frosst, and Geoffrey E Hinton. «Dynamic Routing
Between Capsules». In: Advances in Neural Information Processing Systems.
NIPS. 2017, p. 30 (cit. on pp. 31, 32).

[27] Shaojie Bai, J. Zico Kolter, and Vladlen Koltun. «An Empirical Evaluation of
Generic Convolutional and Recurrent Networks for Sequence Modeling». In:
ArXiv abs/1803.01271 (2018). url: https://api.semanticscholar.org/
CorpusID:4747877 (cit. on pp. 35, 36).

62

https://api.semanticscholar.org/CorpusID:43867975
https://api.semanticscholar.org/CorpusID:43867975
https://api.semanticscholar.org/CorpusID:207863698
https://api.semanticscholar.org/CorpusID:207863698
https://rforhr.com/kfold.html
https://api.semanticscholar.org/CorpusID:4747877
https://api.semanticscholar.org/CorpusID:4747877

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Background
	Motivation
	Overview

	Machine Learning
	Introduction
	Neural Networks
	Common Activation Functions in the Neuron

	Supervised Learning
	Dataset
	Applications
	Challenges

	Unsupervised Learning
	Dataset
	Applications
	Challenges

	Comparison and Integration
	Model Evaluation

	Knowledge Distillation
	Operation
	Application in Our Scenario
	Regularization Loss for Regression
	Attentive Imitation Loss

	From Offline to Online
	Deep Mutual Learning Algorithm

	Experimental Environment and Configuration
	Implementation of Sensors
	Environment Configuration

	Dataset Generation and Feature Selection
	Dataset Generation
	Feature Selection

	Selected Neural Networks
	General Considerations
	LSTM Neural Network
	Capsule Neural Network
	CapsNet Architecture
	Dynamic Routing Algorithm
	Decoder for Digit Reconstruction

	Temporal Convolutional Neural Network
	Neural Network Selection

	Improvement of Online Distillation Effectiveness
	Adaptive Weights
	Pre-Distillation Training
	Teacher pre-training for 50, 100, 150, and 200 epochs
	Teacher and student models pre-train for 50, 100, 150, and 200 epochs
	Hypothesis and Verification
	Overall Conclusion

	Domain Knowledge From Kalman Filter

	Generalization Results
	Conclusion
	Bibliography

