
POLITECNICO DI TORINO
Master’s Degree in Mechatronic Engineering

Master’s Degree Thesis

Resilient Deep Neural Network for FPGA
space applications

Supervisors

Prof. LAVAGNO LUCIANO

Prof. CASU MARIO ROBERTO

Prof. LAZARESCU MIHAI TEODOR

Eng. MINNELLA FILIPPO

Candidate

LA CARPIA FRANCESCO

APRIL 2023/2024

Abstract

The effect of radiation on electronic devices can generate errors on various scales
that can be catastrophic. In space missions, satellite devices are often used to
collect numerous pieces of information on board before transmitting them to Earth.
The loss of this information would lead to a high waste of resources and the failure
of the entire space mission. The use of resilience techniques is aimed at preventing
such errors in a radiation-rich environment such as space. The adoption of machine
learning and artificial intelligence techniques in edge computing systems is growing
due to their efficiency, reduced latency and enhanced decision-making capabilities.
Going into more detail, FPGAs are dataflow accelerators that compute operations
in parallel, enabling the execution of numerous computations with low energy
consumption. Moreover, being programmable devices, it is possible to reconfigure
the device multiple times, ensuring high levels of flexibility. For the reasons just
mentioned, convolution operations present in many deep learning algorithms are a
perfect fit for such devices. The beginning of this study involved a thorough analysis
of the potential hazards that such an environment may pose to an FPGA platform,
with a specific focus on Single Event Upsets (SEUs). The manifestation of such
errors in SRAM-based FPGAs can lead to malfunctions at varying degrees, often
with consequences ranging from moderate to severe. The study then proceeded
to analyze the solutions most used to address these types of problems. Solutions
include system-level, structure-level, individual cell design of logic elements and
FPGA configuration netlist design: the most common methodologies are ECC,
TMR and partial or total reconfiguration of the configuration memory. Currently,
these solutions provide good resilience to errors caused by radiation. It is possible
to combine various techniques that exploit the intrinsic resilience of neural networks
with customized hardware and software solutions to maintain performance levels
unchanged. Following this preliminary analysis, it was possible to develop a ship
detection application using satellite images. The algorithm of choice for this task
is SSD, allowing real-time recognition of objects at varying scales by using custom-
designed default boxes (or prior boxes), which dimension depends on the sizes of the
objects to be identified. The network backbone was quantized using the Brevitas
framework with 8-bit quantization for weights and activations and 16-bit for biases.
Subsequently, I simulated in software the presence of bit-flip errors at feature maps
level, evaluating scenarios where errors result in catastrophic consequences in the
network’s inference. Error injection was performed using PyTorch Hook functions,
allowing access to intermediate modules of the network during the inference process.
This approach allows observation of differences in network performance based on the
type of bit being flipped (MSB or LSB). The thesis was conducted in collaboration

with AIKO, an emerging company that produces software technologies for space
applications.

ii

i

Table of Contents

List of Tables iv

List of Figures vi

1 Introduction 1
1.1 Basic Concepts on SRAM-Based FPGA 1
1.2 Space radiation effect on electronic devices 2

1.2.1 Cumulative effect . 3
1.2.2 Single Event Effect . 4

1.3 DNN convolutions in FPGAs . 6

2 SEU error correction and detection technique 9
2.1 Radiation mitigation technique . 9

2.1.1 System level . 10
2.1.2 Structure level . 13
2.1.3 Cell layout (RHBD) level . 13
2.1.4 Netlist design techniques . 14

2.2 DNN resilient techniques . 16

3 Application and dataset description 21
3.1 SSD algorithm . 22
3.2 MobileNetV2 network . 25
3.3 VGG16 network . 27
3.4 Quantization techniques . 30
3.5 Quantized MobileNetV2 network 32
3.6 Quantized VGG16 network . 35
3.7 Output predictions . 37
3.8 Network without training augmentation 40

4 Error injection technique 41
4.1 MobileNetV2 error injection technique 42

ii

4.2 VGG16 error injection technique . 46
4.3 Conclusions and future works . 52

A Training augmentation transforms 59

B MobileNetV2 68

C Quantized MobileNetV2 73

D VGG16 78

E Quantized VGG16 81

Bibliography 86

iii

List of Tables

4.1 Performance metrics for different percentages of bit-flip injection
within layer 0 for MobileNetV2 backbone 43

4.2 Performance metrics for different percentages of bit-flip injection
within layer 2 for MobileNetV2 backbone 44

4.3 Performance metrics for different percentages of bit-flip injection
within layer 6 for MobileNetV2 backbone 45

4.4 Performance metrics for different percentages of bit-flip injection
within layer 7 for MobileNetV2 backbone 46

4.5 Performance metrics for different percentages of bit-flip injection
within layer 13 for MobileNetV2 backbone 47

4.6 Performance metrics for different percentages of bit-flip injection
within layer 15 for MobileNetV2 backbone 48

4.7 Performance metrics for different percentages of bit-flip injection
within layer 18 for MobileNetV2 backbone 49

4.8 Performance metrics for different percentages of bit-flip injection
within layer extra 1 for MobileNetV2 backbone 50

4.9 Performance metrics for different percentages of bit-flip injection
within layer 0 for VGG16 backbone 51

4.10 Performance metrics for different percentages of bit-flip injection
within layer 4 for VGG16 backbone 52

4.11 Performance metrics for different percentages of bit-flip injection
within layer 8 for VGG16 backbone 53

4.12 Performance metrics for different percentages of bit-flip injection
within layer 10 for VGG16 backbone 54

4.13 Performance metrics for different percentages of bit-flip injection
within layer 12 for VGG16 backbone 55

4.14 Performance metrics for different percentages of bit-flip injection
within layer 14 for VGG16 backbone 56

4.15 Performance metrics for different percentages of bit-flip injection
within layer 18 for VGG16 backbone 57

iv

4.16 Performance metrics for different percentages of bit-flip injection
within layer extra 0 for VGG16 backbone 58

v

List of Figures

1.1 TID: a radiation, b electron–hole pair, c holes migration, d holes
trapping . 4

1.2 DDD: vacancy, divacancy, interstitial, Schottky and Frenkel defects 5
1.3 Charge accumulation and collection phase in a reverse-biased junc-

tion . 6
1.4 Input window generated from intermediate activation tensor 8
1.5 Line buffer used for input window operations 8

2.1 Internal scrubber architecture . 11
2.2 External scrubber architecture . 11
2.3 Hybrid scrubber architecture . 12
2.4 DMR architecture . 13
2.5 Checksum error detection mechanism 14
2.6 Local-TMR architecture . 15
2.7 Block TMR architecture . 15
2.8 Distributed-TMR architecture . 16
2.9 Distributed TMR architecture with feedback loop 16
2.10 Global-TMR architecture . 17
2.11 Fault-aware training process . 17
2.12 Fault-aware pruning process in a systolic array-based DNN hardware 18
2.13 Fault-aware mapping working principle 19
2.14 Range restriction layer insertion . 19
2.15 STMR mapping and majority vote 20

3.1 Example of the distribution of prior boxes over feature maps. 22
3.2 Prior bounding boxes along image borders 24
3.3 Random cropping, expansion and mirror transformation for data

augmentation of images. 24
3.4 Regression and classification loss. 25
3.5 Average loss, regression loss and classification loss over epochs with

MobileNetV2 backbone . 26

vi

3.6 Precision, recall and F1-score over epochs using MobileNetV2 back-
bone: Test1 . 27

3.7 Precision, recall and F1-score over epochs using MobileNetV2 back-
bone: Test2 . 27

3.8 Precision, recall and F1-score over epochs using MobileNetV2 back-
bone: Test3 . 28

3.9 Average loss, regression loss and classification loss over epochs with
VGG16 backbone . 29

3.10 Precision, recall and F1-score over epochs using VGG16 backbone:
Test1 . 29

3.11 Precision, recall and F1-score over epochs using VGG16 backbone:
Test2 . 30

3.12 Precision, recall and F1-score over epochs using VGG16 backbone:
Test3 . 30

3.13 Average loss, regression loss and classification loss over epochs with
quantized MobileNetV2 backbone 33

3.14 Precision, recall and F1-score over epochs after quantization using
MobileNetV2 backbone: Test1 . 33

3.15 Precision, recall and F1-score over epochs after quantization using
MobileNetV2 backbone: Test2 . 34

3.16 Precision, recall and F1-score over epochs after quantization using
MobileNetV2 backbone: Test3 . 34

3.17 Average loss, regression loss and classification loss over epochs with
quantized VGG16 backbone . 35

3.18 Precision, recall and F1-score over epochs after quantization using
VGG16 backbone: Test1 . 36

3.19 Precision, recall and F1-score over epochs after quantization using
VGG16 backbone: Test2 . 36

3.20 Precision, recall and F1-score over epochs after quantization using
VGG16 backbone: Test3 . 37

3.21 Prediction 1 . 38
3.22 Prediction 2 . 38
3.23 Prediction 3 . 38
3.24 Prediction 4 . 38
3.25 Prediction 5 . 39
3.26 Prediction 6 . 39
3.27 Prediction 7 . 39
3.28 Prediction 8 . 39

vii

Chapter 1

Introduction

The use of edge computing devices is continuously growing nowadays, thanks to
the ability to process quickly large amounts of data. FPGAs are programmable
devices that provide a high level of flexibility, high number of operations per second
and low energy consumption per operation.

Artificial intelligence has made embedded systems more efficient due to their
ability to use large amounts of data to make predictions efficiently, reducing latency
times and expanding the bandwidth through which data are processed. The
introduction of these types of technologies has significantly reduced costs, and as a
result, they are gaining increasing popularity.

The purpose of this study is to analyze the potential risks arising from the
radiation environment, to investigate the techniques used to prevent catastrophic
events, and to evaluate the resilience of deep neural networks to such issues.

The thesis was carried out in collaboration with AIKO, an emerging company
that produces software technologies for space applications. The study is organized
as follows: Chapter 1 analyzes the possible risks and errors that can occur in
electronics devices in case of exposure to radiation in space; Chapter 2 examines
the techniques currently used to correct or detect potential errors, with particular
focus on deep neural network ones; Chapter 3 explains the design of the application;
Chapter 4 analyzes the error injection technique.

1.1 Basic Concepts on SRAM-Based FPGA

There are various types of FPGA technologies, depending on their usage:

• EPROM, Flash memory technology: these devices support reprogramming
but for a finite number of time.

1

Introduction

• Antifuse technology: these devices can be programmed only once (OTP). They
act as an open circuit when manufactured: programming involves turning
them into a short circuit.

• Static RAM (SRAM) technology: they offer unlimited reprogramming capa-
bilities. SRAM-based FPGAs programmability is not maintained when the
device is powered off. Each antifuse is replaced with CMOS technology.

The third technology is the one that is most widely used in various applications due
to the ability to change the configuration of memory cells as desired. Furthermore,
it enables good computing performance and it is more cost-effective than other
devices. The architecture of an FPGA is divided into two parts:

• Processing System (PS):

– Processor. There can be one or more processors within the architecture.
– Processing susbsytems. Used to parallelize operations (i.e. vector proces-

sors).
– Cache Memory. Useful for achieving fast memory access.

• Programmable Logic (PL):

– IOBs: input and output pins of the device.
– CLBs: these blocks are composed of Flip-Flops (FFs) and Look-Up Tables

(LUTs). The combination of these two components enables the designer
to derive the required logic function from the input signals.

– Routing resources: these resources are used to connect CLBs to IOBs.
Typically, six pass transistors are utilized to establish interconnections
between CLBs. Interconnections can be programmed using simple 1-bit
SRAMs or single word or bit. GRM (Global Routing Matrix) represents
all interconnections between pass transistors within a routing logic node.

1.2 Space radiation effect on electronic devices
Primary cosmic rays originating from the Sun scatter upon interacting with gaseous
and other matter, producing secondary ionizing particles which both create the
space radiation environment. In addition, electrons and protons produced by solar
fusion and other novas and supernova travel towards Earth’s orbit by spreading
as the solar wind. Heavy ions then interact with Earth’s magnetic field to create
Van Allen Radiation belts, which contain trapped electrons in the outer belt and
protons in the inner belt. Solar Flares also generate solar energetic particles
(SEP), which mainly consist of protons, heavy ions and electrons. Finally, Galactic

2

Introduction

Cosmic rays (GCR) represent a significant portion of the total radiation particles,
contributing to overall radiation exposure[1]. Therefore, space vehicles and satellites
are continuously exposed to a radiation environment: this can lead to degradations
of component performance, but also to several malfunctions of electronic and
electrical systems. As a result, the lifespan of satellites is shortened, often resulting
in critical failures or complete destruction of the space vehicle. In 1994 Clemetine
satellite was used to collect images from the Moon and a near-Earth asteroid. The
on-board computer sent out a mistaken instruction which resulted into a failure
that made it imperative to stop the project. This fault was likely induced by a
disturbance arising from exposure to the space radiation environment (SEU). There
are different possible consequences that electronic devices could have in radiation
conditions [2][3][4][5]:

• CUMULATIVE EFFECT:

· Total Ionizing Dose (TID);
· Displacement damage defects (DDD).

• SINGLE EVENT EFFECT(SEE):

– SOFT ERRORS:
· Single Event Upset (SEU);
· Single Event Transient (SET).

– HARD ERRORS:
· Single Event BurnOut (SEBO);
· Single Event Gate Rupture (SEGR);
· Single Event Latchup (SEL).

1.2.1 Cumulative effect
TID TID mainly occurs due to long-term exposure to ionizing radiation, primarily
from particles trapped in the Van Allen belts. It measures the energy absorbed by
the device, with the Gray (GY) being the SI unit for radiation dose, where 1 GY
equals 100 rads. There are two possible effects of TID:

• Over time, ionizing radiation deposits energy in the oxide region of the MOS
transistor, leading to the creation of electron-hole pairs. Due to the low
probability of recombination, these pairs migrate within the electric field,
causing electrons to separate from the holes. This process results in structural
defects.

3

Introduction

Figure 1.1: TID: a radiation, b electron–hole pair, c holes migration, d holes
trapping

• It affects the mobility of the electrons in the conductive channel of MOS
transistors, with a consequent reduction of their Vth: this effect is due to the
presence of trapped charges in the SiO2 and Si/SiO2 interface.

DDD Intense radiation, such as protons or ions, moves silicon atoms from their
normal positions in the crystal structure. This effect happens only if the impact of
energy particles overtakes the displacement energy. The main types of defects are
vacancy, divacancy, interstitial, Schottky and Frenkel, shown in Figure 1.2. The
electrical properties of the component are changed, leading in a degradation of the
device performance.

1.2.2 Single Event Effect
A Single Event Effect (SEE) occurs when a single energetic particle generates
the presence of charge inside the device. The amount of energy that is conveyed
inside the material is defined as LET (linear energy transfer) and it is measured
in MeV/µm. LETth defines the maximum energy threshold until a fault is not
detected within the component. Errors can be classified into two categories:

• Soft errors: the radiation impact can generate a bit-flip inside a memory
cell, flip-flop, latch or register. This error is soft because the circuit is not

4

Introduction

Figure 1.2: DDD: vacancy, divacancy, interstitial, Schottky and Frenkel defects

permanently damaged by the ionizing emission. Some techniques can be
applied to prevent the occurrence of a catastrophic event.

• Hard errors: the impact of this kind of error can lead the device not to work
properly. In space applications, the probability of having a hard error increases
due to the presence of a radiation-rich setting.

SOFT ERRORS

SET Single event transient are errors which occur in combinational circuits.
These can result in a soft error if the spike voltage or current signal propagates in
a memory element.

SEU The reverse-biased junction is the most sensitive part of transistors. When
an ionizing radiation event happens, carriers are rapidly collected by the electric
field creating a large current or voltage transient at that node. The diffusion process
follows the collection phase. If the event occurs nearby the junction, the probability
that a soft error occurs in that node increases. SEU will occur when the charge
sensitivity overtakes a certain value Qcrit. There are different categories of SEU
errors:

• Single bit upset (SBU): the error generates a single bit-flip in the affected cell.

• Multiple bit upset (MBU): if the radiation energy is high, there could be more
cell bit-flips.

5

Introduction

Figure 1.3: Charge accumulation and collection phase in a reverse-biased junction

• Single event functional interrupt (SEFI): in this case a crucial control circuitry
area is affected from soft error, like joint test action group (JTAG) or Se-
lectMAP communication port. This implies the interruption of regular tasks
performed by the electronic device.

HARD ERRORS

SEL A collision with a particle can activate the parasitic bipolar transistors in
the complementary CMOS circuit between the well and substrate, leading to a
latch-up. The positive feedback loop in the bipolar junction transistor initiates
the spread of high current. The resulting latch-up event may be temporary or
permanent, depending on the intensity of the current generated.

SEBO A radiation emission can turn on real BJTs or parasitic BJT structures
in a MOSFET. This induces high current generation, as thermal failure in that
component section.

SEGR The dielectric region of transistors falls in local breakdown, leading to
overheating and destruction of the gate region. Holes from ionization rays increase
the electric field across the MOSFET gate oxide to its breakdown point. The
leakage current raises and generates thermal failure in the component.

1.3 DNN convolutions in FPGAs
In FPGA devices SEE could affect different region of the device:

• Routing logic: an upset of one of the SRAM cells used for defining the
configuration of a single node.

6

Introduction

• CLBs LUT: errors impact on the logic component useful to obtain a certain
circuit behavior.

• User memory: bit-flip in one of the SRAM cell dedicated for data storage.

• IOBs: I/O drivers will not behave as expected.

The application developed in this study leverages deep neural networks. Therefore,
the study aims to investigate how the presence of bit-flip errors can lead to
catastrophic errors in the network output, assessing the degradation of metrics
after error injection. The study focuses on analyzing potential errors within the
feature maps that the network might encounter during convolution operations. As
described in [6], the process of computing outputs in a neural network involves
defining three tasks:

• Computation task. These are the most resource-intensive tasks, aimed at
determining the outputs of each intermediate activation.

• Parameter task. This task ensures access to convolution parameters for the
computation task.

• Window buffer task. This task is essential for supplying the computation task
with formatted intermediate activations.

Parameters can be stored either in on-chip or off-chip memory, depending on the
memory capacity needed and the platform specifications. In the case of using
only on-chip memory, direct access to BRAM is possible, significantly reducing
latency and power consumption. Ideally, intermediate activations could be stored
in on-chip memory to minimize data access time and energy consumption. To
accurately evaluate the memory demand, it is crucial to consider the maximum
size among the intermediate tensors. However, this is not always feasible as their
sizes often surpass the capacity of on-chip memory. In the case study, activations
are presumed to be computed concurrently, assuming operation within a pipeline
architecture. Thus, computing the maximum size among intermediate tensors is
unnecessary. When activations, weights and biases are stored in off-chip memory,
direct access to them is facilitated through DMA, bypassing the CPU. Given an
intermediate activation tensor, only the relevant parameters needed for the input
window to execute the computational task pipeline are required. Therefore, it is
essential to store all the lines necessary to generate an input window (Figure 1.4),
with each window buffer sized to accommodate the required activations. When the
buffer reads an input activation, the previous input window is discarded. The size
of a convolution window needed for a convolution operation requires storing data
equivalent to fhi · fwi (filter dimension of the i-th layer). As the data for the input
window is not contiguous and cannot be directly addressed in the buffer, it is stored

7

Introduction

Figure 1.4: Input window generated from intermediate activation tensor

sequentially in a FIFO with only one read port available. To ensure the required
bandwidth, the FIFO must be divided into fhi · fwi parts, connected sequentially
as illustrated in Figure 1.5. For this reason, we will assume that radiation injection

Figure 1.5: Line buffer used for input window operations

will impact the line buffers of the pipeline.

8

Chapter 2

SEU error correction and
detection technique

2.1 Radiation mitigation technique
It is possible to implement countermeasures to mitigate catastrophic errors caused
by Single Event Upsets (SEUs) due to radiation. There are various solutions to
address such issues, which can be summarized on different levels [7]:

• System level.

– Reset: apply reset to “persistently flipped” memory elements.
– Reconfiguration.
– HW redundancy at system level.
– Time redundancy at system level.

• Structure level.

• Cell layout (RHBD) level.

• Netlist design level.

– EDAC: parity, checksums, Hamming codes.
– Fault masking: TMR.
– Deadlock free: FSM.

To guarantee radiation effect protection there are also some drawbacks/costs:

• More silicon area, less integration.

9

SEU error correction and detection technique

• Lower speed.

• More weight.

• Higher power consumption.

• Higher design complexity, longer development times.

• Export constraints dependencies.

• Higher technology prices (expensive components, tests and tools)

However, the cost of losing on-board experiments or the entire satellite is much
higher.

2.1.1 System level
RESET A radiation particle affects a specific cell within a logic element of the
component (CLBs). In such cases, it is preferable to apply a reset to the relevant
memory elements susceptible to this risk, allowing them to return to their original
values.

RECONFIGURATION The bitstream generated from the synthesis of an
FPGA establishes the configuration of logic gates, routing connections and other
internal components. The presence of a ionizing particle may lead to a bit-flip in
CRAM memory cells. For this reason, it is necessary to reconfigure the memory to
its original state using an internal or external backup memory resilient to radiation
[8]. There are two types of reconfiguration:

• Static Reconfiguration. The device is reconfigured only when powered on.
This type of reconfiguration is employed in long-term use applications, where
frequent changes are not necessary.

• Dynamic Reconfiguration. It involves modifying the device while it is op-
erational, ensuring uninterrupted system performance. This technique is
commonly referred to as scrubbing.

To prevent radiation from causing catastrophic errors, it is essential to employ the
second type of reconfiguration. The protocols facilitating reconfiguration are JTAG,
SelectMAP, ICAP or PCAP for Ultrascale or Ultrascale+ devices. Scrubbing can
be further classified in different ways:

• Scrubber circuitry location:

10

SEU error correction and detection technique

– Internal scrubbing. Scrubbing is performed using a controller that accesses
an external memory to read the golden values through a configuration
interface (Figure 2.1). This technique is employed to detect and correct
single or multiple bit-flip errors (SEC-DED).

Figure 2.1: Internal scrubber architecture

– External scrubbing. The controller is external to the SRAM-based FPGA.
External scrubbers have better performance than internal one. They
typically operate in blind or readback mode (Figure 2.2).

Figure 2.2: External scrubber architecture

– Hybrid scrubbers. They have both an external and an internal controller.
The second one corrects single bit-flip errors and detects multiple bit-flip
errors, while the external controller handles the correction process (Figure
2.3).

• Operation type:

– Blind scrubbing. Golden data is read from the radiation-resilient memory
and rewritten into CRAM after a certain interval of time.

– Readback scrubbing. Golden data and CRAM values are read by the
scrubber and compared through a controller using ECC. If different values
are detected, the original values are rewritten into the SRAM configuration
frame.

– Error-driven scrubbing. Reconfiguration starts when an error is detected.

11

SEU error correction and detection technique

Figure 2.3: Hybrid scrubber architecture

– Task-driven scrubbing. Reconfiguration occurs when critical tasks are
executed. This technique is used when minimizing performance impact
on the system is desired.

• Scrubber implementation:

– Hardware scrubbing.
– Software scrubbing.

• Scrubbing granularity:

– Partial reconfiguration (configuration memory frame or design modules).
– Total reconfiguration (device).

HW REDUNDANCY AT SYSTEM LEVEL To ensure continuos system
functionality, if one of the hardware components is damaged due to radiation,
a redundant component can take over and continue operations. This system
architecture is known as Dual Modular Redundancy (DMR), where the output of
two parallel blocks is compared (Figure 2.4). There are two primary types of DMR
systems:

• Active standby. Two blocks work in parallel, and their output signals are
compared using a comparator. When an error is detected in the main block,
the other module takes over.

• Cold standby. In this case, only one of the two blocks is active. The second is
activated only when an error is recognized in the primary block, recovering
data from the context. From an energy consumption perspective, this solution
is better than the previous one, but it requires a certain time interval to restore
the system’s functionality.

12

SEU error correction and detection technique

Figure 2.4: DMR architecture

TIME REDUNDANCY AT SYSTEM LEVEL In the event of radiation-
induced damage to a system block, the processor captures the information from
the memory write instruction but prevents it from being executed by bypassing the
memory write enable signal. Subsequently, the processor re-executes all instructions
from the last checkpoint. The Comparison and Retry (CR) mechanism compares
the address and data with those recorded from the first execution. If they match,
the main memory is updated, and the process continues. Otherwise, if a discrepancy
is detected, a fault is identified and a mismatch signal is triggered [9].

2.1.2 Structure level
In space applications, radiation shielding systems are often employed to reduce
the probability that soft and hard errors cause severe damage to the system. The
selection of the material is crucial, considering factors such as system weight, costs
and the level of protection these systems provide. Aluminum is a widely used
material that fully satisfies the requirements for such applications.

2.1.3 Cell layout (RHBD) level
This technique is employed to mitigate the sensitivity to Single Event Upsets (SEU)
in memory cells within programmable platforms. The design occurs at transistor
level within the logic gates of the FPGA. Various techniques are employed to prevent
bit-flips resulting from temporary charge overflows: most involve the introduction
of feedback loops between transistors and additional memory stages. The use of
these techniques is often directly implemented by vendors, simplifying the work for
IC designers (RHBP).

13

SEU error correction and detection technique

2.1.4 Netlist design techniques
PARITY It is possible to employ single-bit error correction techniques. The in-
troduction of a parity bit enables the recognition and correction of individual bit-flip
errors. The additional bit is positive or negative depending on the implementation.

HAMMING CODE It is a correction mechanism similar to the previous one,
which allows to identify the error position when a single bit-flip happens. Given k
bits used to represent a number, a predefined number of bits is added so that the
total number of bits is equal to n. The algorithm then introduces n − k control
bits. This approach enables the correction and detection of single errors, and with
the addition of another parity bit, it can detect double errors. Hence, it becomes a
SEC-DED algorithm.

CHECKSUM This method is used to validate the accuracy of data blocks.
Similar to the parity bit, the error position is not identified. Checks of this nature
can be performed both in software and hardware. The calculations for checksum
verification must be executed quickly and with minimal overhead [10][11].

Figure 2.5: Checksum error detection mechanism

TRIPLE MODULAR REDUNDANCY To improve resilience against Single
Event Upsets (SEU), TMR can mask the presence of bit-flip errors. When a fault
happens Triple Modular Redundancy (TMR) involves tripling the number of blocks
to ensure that a correct output is obtained [12]. This system can be implemented
on different scales, depending on the type of the triplicated logic block:

• Local-TMR: Only flip-flops constituting the registers are triplicated. The
majority voter is placed at the end of the structure (Figure 2.6).

14

SEU error correction and detection technique

Figure 2.6: Local-TMR architecture

• Block-TMR: Combinational logic or flip-flops are replicated (Figure 2.7).

Figure 2.7: Block TMR architecture

• Distributed-TMR: all functional logic is triplicated except for global routes:
clocks, resets and high-fanout enables (Figure 2.8). When using counters
an additional feedback loop is introduced. This allows a direct comparison
between the majority voter’s output and the input of the combinatorial logic.
It is useful to skip the resynchronization of the entire system to match the
other two signals (Figure 2.9).

• Global-TMR: the entire design is triplicated, including all global routes (Figure
2.10).

FSM The use of a Finite State Machine can be anticipated to ensure that the
system can recover to its original working state after the occurrence of a Single
Event Upset (SEU).

15

SEU error correction and detection technique

Figure 2.8: Distributed-TMR architecture

Figure 2.9: Distributed TMR architecture with feedback loop

2.2 DNN resilient techniques
In recent years, the use of artificial intelligence has become increasingly widespread
in various applications. Neural networks exhibit internal resilience due to various
factors:

• Weight Distribution. Neural networks learn from data and adjust their weights
during the training process. Since the weight distribution can be spread across
many neurons and many weights, a bit-flip error on a single pixel can have a
limited impact on the overall capacity of the network.

• Redundancy and Parallelism. Neural networks often contain multiple neurons
performing similar or parallel functions. This redundancy can contribute to

16

SEU error correction and detection technique

Figure 2.10: Global-TMR architecture

resilience, as an error in one neuron can be compensated for by the output of
nearby neurons or alternative paths in the network.

• Activation Function. The activation function used in neurons can introduce a
certain robustness. Activation functions like Rectified Linear Unit (ReLU) can
mitigate the impact of small errors, as they respond only to positive values
and ignore negative values.

Below are indicated the most commonly used resilience methodologies in applica-
tions based on neural networks [13].

FAULT-AWARE TRAINING During the training process, intentional errors
are introduced to enhance the network’s robustness and ensure correct output
generation. However, the applicability of this technique depends on the completeness
of the dataset being utilized. Moreover, the incurred overhead during error injection
can be substantial, particularly when dealing with a significant number of corrupted
chips [14].

Figure 2.11: Fault-aware training process

17

SEU error correction and detection technique

QUANTIZATED DNN As we said before, DNNs exhibit intrinsic resilience
to bit-flip errors. In [15], it has been demonstrated that using reduced-precision
parameters and activations enhances the network’s resistance to potential bit-flip
errors, reducing the bit error rate (BER) by approximately 50%. However, more
aggressive quantization may lead the network to sacrifice resilience and accuracy.

FAULT-AWARE PRUNING It has been proven that in the presence of
permanent errors arising from soft errors in the hardware architecture of DNN
accelerators, it is feasible to eliminate error-affected operations using specific
hardware design techniques. One such example involves reinforcing the MAC
operators in a systolic array-based DNN hardware. While this approach primarily
focuses on addressing local errors, it can be combined with fault-aware training for
superior performance. Nonetheless, the overall performance improvement achieved
through this combination may not be exceptionally high.

Figure 2.12: Fault-aware pruning process in a systolic array-based DNN hardware

FAULT-AWARE MAPPING This method proves effective in mitigating
the propagation of hardware errors during computations. It entails strategically
assigning computations with the most crucial parameter values, typically those
with higher magnitude weights, to MAC units susceptible to errors. In this way, the
drop in accuracy is minimized, especially when employed with fault-aware pruning
techniques [16].

RANGE RESTRICTION In the computation of a neural network’s output, the
presence of bit-flip errors at the level of parameters and intermediate activations can
lead to catastrophic outputs throughout the entire network. Therefore, it is crucial
to monitor, where possible, the outputs generated by intermediate activations
to ensure that convolution operations do not introduce errors. In the case of

18

SEU error correction and detection technique

Figure 2.13: Fault-aware mapping working principle

certain layers, it is feasible to assess the range of values within which intermediate
activations fall, either using statistical methods or by referring to the type of
activation employed. When one of the intermediate activations exhibits bit-flip
errors resulting in catastrophic outputs in the DNN, it becomes necessary to perform
an activation clipping operation. This prevents permanent errors in user memory
from propagating throughout the network. Various types of ranges can be chosen
to effectively reduce the overall interval of activations [17][18].

Figure 2.14: Range restriction layer insertion

RADIATION HARDENING This approach involves utilizing hardware com-
ponents that are more resistant to bit-flip errors, leading to the occurrence of errors
in memory cells due to radiation toward values to which DNNs are resilient (i.e.,
SRAM cells more frequently result in a ’0’ than a ’1’).

19

SEU error correction and detection technique

SELECTIVE TMR Another possible solution using DNN is Selective Triple
Modular Redundancy (STMR), implemented in software as described in the paper
[19]. This type of solution aims to reduce the number of triplications within the
network, creating a redundant system where the network is more sensitive to errors.
During execution, the system can dynamically select the correct response among
the three copies based on comparisons or voting mechanisms.

Figure 2.15: STMR mapping and majority vote

20

Chapter 3

Application and dataset
description

The application in use aims to detect objects within satellite images. It is assumed
that the images are captured by an onboard camera, which directly passes the input
images to the FPGA platform without involving the processor in data computations.
The algorithm employed for object detection is the Single Shot Multibox Detector
(SSD) method, capable of real-time object recognition, unlike algorithms such as
YOLO. The dataset under consideration consists of satellite images where objects
to be detected are ships. The dataset was created for image segmentation tasks
[20]. Initially, the dataset comprised 192,556 images, which could either contain or
not ships. Due to its large size training, validation and test datasets were initially
reduced by excluding images that do not contain objects, decreasing the total size
to 42,556 elements. Each image has a size of 768x768 pixels. Subsequently, the
dataset was further reduced for two reasons:

• The algorithm used requires the recognition of objects within the image and
their size must be sufficiently large to prevent the regression loss from diverging
during training.

• The dataset images contain objects with bounding boxes that were generated
incorrectly, especially for objects with dimensions of few pixels.

For these two reasons, the size of the total dataset was reduced by considering
only images with bounding boxes exceeding a certain threshold. The threshold
considered is set to 23 for both sides of a bounding box. This threshold allows the
recognition of ships with dimensions larger than 10 pixels. The total dataset now
consists of 28,715 images, with 24,670 used for training, 3,084 for validation, and
961 for testing. The test dataset has been divided into three parts:

21

Application and dataset description

• Test 1: 462 images. All images contain at least one object, useful to evaluate
the network’s performance in ship recognition.

• Test 2: 499 images. In this case, only a portion of the images actually contains
objects (95 in total). The remaining images are used to assess the network’s
performance in real-world scenarios, where a camera captures landscapes
without ships.

• Test 3: 961 images. A comprehensive test combining the datasets from the
previous two tests.

The image size has been reduced to 512x512 pixels to minimize the dimensions
of intermediate activations and consequently the parameters of the network (the
number of parameters in the classification and regression headers is significantly
reduced). This reduction ensures excellent performance even for very small objects.

3.1 SSD algorithm
The SSD algorithm [21] achieves real-time object recognition by using default
bounding boxes, also known as prior boxes. These prior boxes need to be carefully
designed for effective object recognition. The generated prior boxes are distributed
within intermediate activations. Specifically, the SSD algorithm can generate up
to a maximum of six default boxes for each pixel of the intermediate activation.
The default boxes are distributed only within the layers considered for extracting
object features, as depicted in Figure 3.1 .
The selection of layers for feature map extraction is complex and depends on the

Figure 3.1: Example of the distribution of prior boxes over feature maps.

dataset being used. Extracting low-level intermediate activations allows the capture

22

Application and dataset description

of finer features, like edges and textures, which are useful for precisely locating
objects. Extracting high-level intermediate activations captures more abstract and
complex concepts, such as the overall context of the image. The design of prior
box dimensions is customized and depends on the size of objects within the images
of the dataset being used. Typically, to enhance application performance, extra
convolutional layers are added to the base network to improve the extraction of
high-level information. The scale, denoted as s, is defined as the ratio of the size
between the considered feature map and the original image. For the design of prior
boxes, the following formula is used:

si = smin + smax − smin

m − 1 · i (3.1)

Where si is the scale of the prior box belonging to the i-th feature map, smin
and smax are the minimum and maximum scales of the prior boxes, and m is
the total number of feature maps from which information is extracted for object
recognition. The dimension of the prior boxes was slightly readapted to achieve
better performance.

1 SSDBoxSizes = c o l l e c t i o n s . namedtuple (’ SSDBoxSizes ’ , [’ min ’ , ’max ’])
2 SSDSpec = c o l l e c t i o n s . namedtuple (’ SSDSpec ’ , [’ feature_map_size ’ , ’

shr inkage ’ , ’ box_sizes ’ , ’ a spec t_ra t i o s ’])
3 spec s = [
4 SSDSpec (64 ,8 , SSDBoxSizes (15 , 41) , [2]) ,
5 SSDSpec (32 ,16 , SSDBoxSizes (41 , 92) , [2 , 3]) ,
6 SSDSpec (16 , 32 , SSDBoxSizes (92 , 166) , [2 , 3]) ,
7 SSDSpec (8 , 64 , SSDBoxSizes (166 , 239) , [2 , 3]) ,
8 SSDSpec (4 , 128 , SSDBoxSizes (239 , 313) , [2 , 3]) ,
9 SSDSpec (2 , 256 , SSDBoxSizes (313 , 460) , [2 , 3]) ,

10 SSDSpec (1 , 512 , SSDBoxSizes (460 , 534) , [2 , 3])]

It can also be demonstrated that using default boxes along the image borders as
shown in Figure 3.2 improves the network’s performance metrics.

The training phase is preceded by an augmentation stage, where a randomly
selected subset of the entire dataset undergoes transformations such as cropping,
expansion and normalization, as illustrated in Figure 3.3.

During the training phase, the algorithm assigns the prior boxes to a specific
class and reduces the relative distance (location) between the selected ground truth
bounding boxes and the predicted ones by shifting them within the feature maps.
Regression and classification losses are respectively used to calculate the position
and class of the identified object.
After the assignment phase, most of the prior boxes turn out to be negative. To

address this imbalance, only a portion of the total negative bounding boxes is
considered during training, in a 1:3 ratio. The prediction phase involves the use of

23

Application and dataset description

Figure 3.2: Prior bounding boxes along image borders

Figure 3.3: Random cropping, expansion and mirror transformation for data
augmentation of images.

classification and regression headers, which compute the probability of a detected
object belonging or not to a class and the position of the predicted bounding
boxes. To avoid having multiple bounding boxes for the same object, the algorithm

24

Application and dataset description

Figure 3.4: Regression and classification loss.

discards redundant boxes using the non-maximum suppression technique. The
metrics used to evaluate the network are:

• Precision: T P
T P +F P

Metric useful for evaluating how the network performs with
false positives, meaning objects erroneously detected.

• Recall: T P
T P +F N

Metric useful for assessing the model’s ability to identify all
objects of interest without overlooking any (avoiding false negatives).

• F1-score: 2·Precision·Recall
Precision+Recall Trade-off between precision and recall.

Since the application requires recognizing images with small objects, the size of the
prior boxes increases linearly along the extraction layers starting from 15 pixels.
The layers from which the feature maps are extracted were chosen to obtain both
low and high-level features. High-level features are extracted in the terminal part
of the network, particularly in extra layers. In this case, the performance metrics
of MobileNetV2 and VGG16 were analyzed and compared.

3.2 MobileNetV2 network
MobileNetV2 network is widely used in object detection contexts and embedded
applications. It is composed by the repetition of inverted residual modules. These
involve the use of separable convolutions, which are similar to standard convolutions

25

Application and dataset description

but allow for a significant reduction in parameters number and, consequently, on-
chip area [22]. A pre-trained MobileNetV2 network model is used in [23], enabling
users to employ the pre-trained weights to initialize the backbone and classification
and regression headers using Xavier initialization. Here are reported the network
initial specifications:

1 image_size = 512
2 image_mean = np . array ([1 2 7 , 127 , 127]) # RGB layout
3 image_std = 128 .0
4 i ou_thresho ld = 0.45
5 center_var iance = 0 .1
6 s i z e_var i ance = 0 .2
7 num_classes = 2

Training shown in Figure 3.5 was performed using a multistep scheduler, with a
learning rate of 10−3 for the first 20 epochs, 10−4 for the next ten, and finally
10−5 for another ten epochs. The training was conducted with a batch size of 16,
momentum of 0.9, and weight decay of 5 · 10−4.
Results from the performance evaluation metrics are depicted in Figure 3.6, Figure

Figure 3.5: Average loss, regression loss and classification loss over epochs with
MobileNetV2 backbone

3.7 and Figure 3.8. Precision and recall have values approximately equal to 76%
and 68%, respectively, in the first test, 58% and 59% in the second test and 73%
and 66% in the third test. The network thus exhibits excellent performance in
recognizing this type of objects.

26

Application and dataset description

Figure 3.6: Precision, recall and F1-score over epochs using MobileNetV2 back-
bone: Test1

Figure 3.7: Precision, recall and F1-score over epochs using MobileNetV2 back-
bone: Test2

3.3 VGG16 network
VGG16 network is employed in lots of applications, particularly in tasks involving
image classification and object recognition. As in MobileNetV2, extra layers

27

Application and dataset description

Figure 3.8: Precision, recall and F1-score over epochs using MobileNetV2 back-
bone: Test3

are introduced to the network to extract features at different levels, including
convolutional layers, batch normalization layers, ReLU activations and max-pooling
layers to reduce image dimensions. Below are reported the network specifications:

1 image_size = 512
2 image_mean = np . array ([1 2 3 , 117 , 104]) # RGB layout
3 image_std = 1 .0
4 i ou_thresho ld = 0.45
5 center_var iance = 0 .1
6 s i z e_var i ance = 0 .2
7 num_classes = 2

During convolution steps inside the network it is essential to introduce batch
normalization layers to avoid gradient vanishing problems and assure a better
convergence of the loss function. No pre-trained network was used to initialize
the backbone parameters. Training shown in Figure 3.9 was executed using a
multistep scheduler, with a learning rate set at 10−3 for the initial 50 epochs, 10−4

for the subsequent ten, and finally, 10−5 for another ten epochs. The training
configuration included a batch size of 8, momentum of 0.9 and weight decay of
5 · 10−4. Given its increased depth compared to MobilenetV2, the VGG16 network
entails more convolutional steps before extracting feature maps crucial for classifying
and locating ships in images. For this reason, VGG16 network performance is
better than the previous backbone. The precision and recall values, as depicted in

28

Application and dataset description

Figure 3.9: Average loss, regression loss and classification loss over epochs with
VGG16 backbone

Figure 3.10: Precision, recall and F1-score over epochs using VGG16 backbone:
Test1

Figure 3.10, Figure 3.11 and Figure 3.12, are approximately 88% and 79% for the
first test, 76% and 59% for the second test and 87% and 76% for the third test,
respectively.

29

Application and dataset description

Figure 3.11: Precision, recall and F1-score over epochs using VGG16 backbone:
Test2

Figure 3.12: Precision, recall and F1-score over epochs using VGG16 backbone:
Test3

3.4 Quantization techniques
To save memory as much as possible, it is crucial to reduce the number of bits used
to represent parameters and activations. This process must be executed accurately

30

Application and dataset description

to avoid significant degradation in network performance. Lighter models offer the
following benefits:

• Smaller storage (Flash memory) size.

• Smaller download size, resulting in less time and download bandwidth.

• Less memory (RAM) usage, allowing more memory for other parts of an
application, potentially improving overall performance.

Various quantization techniques can be employed to reduce the binary representa-
tion:

• PTQ (Post-training quantization): it reduces the memory size of weights and
activations after training. As quantization is performed after training, appli-
cation performance may experience a more or less drastic decline depending
on the specific model used. It is divided into subgroups based on the desired
datatype, assuming starting with FP32 precision:

– FP16 PTQ: weights trained using FP32 are cast to FP16; activations
computed using FP16; minimal accuracy loss; 2x smaller size.

– Dynamic-Range PTQ: weights converted and stored as INT8 (requires
computing scalefactor and zeropoint). Input activations converted on the
fly from FP32 to INT8. Output activations stored as FP32. The model
executes operations that mix integer and float computation when available;
otherwise falls back to FP32 operation.

– Full Integer PTQ: it requires calibration to convert everything to INT8
(both activations and weights). The model executes with integer operations
only and conversion fails if the model has unsupported operations.

– Full Integer PTQ with FP32 fallback: similar to Full Integer PTQ but
allows falling back to FP32 operation when integer operations are not
available.

• QAT (Quantization-aware training): layers used during training are replaced
with quantized layers. Quantization error is considered during training, re-
sulting in less accuracy reduction compared to PTQ. However, this type of
quantization is challenging to implement in tools used for completing applica-
tion synthesis.

The chosen quantization type for the case study is QAT. Quantization was performed
using the Brevitas framework, which facilitates the straightforward replacement of

31

Application and dataset description

standard layers with quantized layers. This framework supports various function-
alities and produces quantized layers as output obtained from the convolution of
quantized layers. A correct quantized tensor is obtained using the formulation:

quantizedvalue = value

scalefactor + zeropoint

(3.2)

In this case, assuming zeropoint = 0 since the distribution range of weights and
activations is symmetric. The scalefactor is a conversion factor that manages the
transition between high-precision floating point representation during training and
low-precision quantized representation during inference. It allows the model to
perform operations with quantized values while maintaining relative precision. The
value of scalefactor is the same for the entire considered quantized tensor and is
equal to:

scalefactor = 1
Maxactivation

(3.3)

For this reason, as activations have different values depending on the considered
layer, each activation will have its scalefactor. Quantization was only applied to
the layers belonging to the application’s backbone, leaving the classification and
regression headers unchanged.

3.5 Quantized MobileNetV2 network
The structure of MobileNetV2 network has been modified by replacing the convolu-
tion layers and ReLU6 activations with quantized convolution layers and quantized
ReLU activations. The scalefactor used is an 8 bit fixed point datatype for weights
and input and output activations, while biases are quantized to 16 bits. This choice
provides a good balance between accuracy and memory usage. The computation
of the scalefactor is automatically done with Brevitas, which allows the tensor to
be returned with quantized formatting. The training shown in Figure 3.13 was
performed using a multistep scheduler, with a learning rate of 10−3 for the first
20 epochs, 10−4 for the next ten, and finally 10−5 for another ten epochs. The
training was conducted with a batch size of 16, momentum equal to 0.9, and weight
decay of 5 · 10−4. The metrics of the network remain more or less the same once it
has been quantized. The precision and recall values, as reported in Figure 3.14,
Figure 3.15 and Figure 3.16, are equal to 68% and 58% for the first test, 44% and
48% for the second test and 64% and 57% for the third test, respectively. The
total number of parameters and the memory space occupied by the backbone are
calculated using the formula:

Memory parameter = #PARAM(weights) × 1B

220 + #PARAM(biases) × 2B

220 (3.4)

32

Application and dataset description

Figure 3.13: Average loss, regression loss and classification loss over epochs with
quantized MobileNetV2 backbone

Figure 3.14: Precision, recall and F1-score over epochs after quantization using
MobileNetV2 backbone: Test1

Depending on the type of platform used, parameters will be stored in FPGA’s
BRAMs or in off-chip memory. For this type of application, FPGAs have much
larger on-chip memory than standard ones, so it is often unnecessary to resort
to external memory. The total number of parameters used for the backbone is

33

Application and dataset description

Figure 3.15: Precision, recall and F1-score over epochs after quantization using
MobileNetV2 backbone: Test2

Figure 3.16: Precision, recall and F1-score over epochs after quantization using
MobileNetV2 backbone: Test3

respectively 2,857,483 weights and 19,296 biases. The total memory occupied by the
backbone, using the Equation 3.4, amounts to 2.76 MB. In terms of computational
costs, the number of multiplication and accumulation operations required by the
network to produce outputs can be calculated. Specifically, considering only

34

Application and dataset description

convolution operations, assuming that batch normalization layers are merged with
convolution layers to preserve resources in terms of latency and operations executed,
the total count of computations in the case of the MobileNetV2 network amounts
to 1,747,217,728 MAC operations.

3.6 Quantized VGG16 network
The network structure has been modified by replacing the convolution layers, ReLU
activations and max-pooling layers with quantized convolution layers, quantized
ReLU activations and quantized max-pooling layers. The data type chosen for
both weights and biases matches that of the previous backbone. The calculation
of the scalefactor is automatically done with Brevitas, which allows the tensor to
be returned with quantized formatting. As depicted in Figure 3.17, the training
was performed using a multistep scheduler, with a learning rate of 10−3 for the
first 50 epochs, 10−4 for the next ten, and finally 10−5 for another ten epochs. The
training was conducted with a batch size of 8, momentum equal to 0.9, and weight
decay equal to 5 · 10−4. After the quantization, the performance metrics remain

Figure 3.17: Average loss, regression loss and classification loss over epochs with
quantized VGG16 backbone

more or less the same. As appears in Figure 3.18, Figure 3.19 and Figure 3.20,
precision and recall have values approximately equal to 86% and 75%, respectively,
in the first test, 73% and 59% in the second test and 84% and 73% in the third
test. For the total computation of network parameters, the VGG16 backbone
comprises 23,496,512 weights and 12,800 biases. This results in a memory footprint

35

Application and dataset description

Figure 3.18: Precision, recall and F1-score over epochs after quantization using
VGG16 backbone: Test1

Figure 3.19: Precision, recall and F1-score over epochs after quantization using
VGG16 backbone: Test2

of 22.4 MB. Dataflow accelerators are available to handle networks of this size for
such applications. If the platform cannot support the network, it would necessitate
the use of off-chip memory for storing both activations and parameters. The
total number of MAC (Multiply-Accumulate) operations performed in this case is

36

Application and dataset description

Figure 3.20: Precision, recall and F1-score over epochs after quantization using
VGG16 backbone: Test3

87,541,314,560.

3.7 Output predictions

In this section, the results after an example of inference are displayed using images.
The predicted bounding boxes are marked in red, while the ground truth bounding
boxes are marked in blue. Only output examples related to the inference of
the MobileNetV2 network are depicted in the following images. In Figure 3.21
the presence of wrong ground truth bounding boxes is noticeable, impacting the
network’s performance. This scenario is challenging for prediction, marked by the
occurrence of a false positive. The existence of inaccurate ground truth boxes
within the white circle is evident also in Figure 3.22. In this case, the image proves
to be a difficult instance of recognition, as there is a scenario with objects similar
to ships. The previously highlighted error affects prediction in Figure 3.23. The
application cannot recognize ships whose dimensions are below approximately 10
pixels (Figure 3.24). Large amounts of ships are correctly predicted, as shown in
Figure 3.25 and Figure 3.26. There are some false positive predictions (Figure 3.27,
Figure 3.28) in environments tough to discern. A similar discussion can be made
for the VGG16 network, which proves to be more accurate in the localization and
recognition of ships.

37

Application and dataset description

Figure 3.21: Prediction 1 Figure 3.22: Prediction 2

Figure 3.23: Prediction 3 Figure 3.24: Prediction 4

38

Application and dataset description

Figure 3.25: Prediction 5 Figure 3.26: Prediction 6

Figure 3.27: Prediction 7 Figure 3.28: Prediction 8

39

Application and dataset description

3.8 Network without training augmentation
Training augmentation is essential to ensure optimal performance for the network
under challenging conditions. In an application utilizing an onboard camera for
image detection, the ability to recognize objects in low-light and low-sharpness
conditions is indispensable. To assess the impact of training augmentation on the
backbone, the network was retrained, and its performance was re-evaluated. The
results on the test dataset are better without training augmentation, but in this
type of application, it is still necessary to consider it to ensure that objects that
are too small or not well illuminated are visible (such images are not included in
the test dataset). Considering the performance metrics of precision and recall, we
obtain for the first test values of 81% and 62%, for the second test 50% and 41%,
and for the third test 76% and 59% for the MobileNetV2 network. Regarding the
VGG16 network, the performance values are for the first test 88% and 79%, for the
second test 75% and 68% and for the third test 87% and 76%.

40

Chapter 4

Error injection technique

As previously mentioned, the influence of radiation-induced bit-flip errors within
FPGA platforms on intermediate activations and subsequent catastrophic per-
formance degradation is the focus of this case study. Error injection has been
specifically applied to intermediate activations, assuming that weights are safe-
guarded by error correction code (ECC) mechanisms within the FPGA memory
allocations. Considering the structure of a traditional DNN execution pipeline,
when a device is exposed to a radioactive particle resulting in a bit-flip error within
the line buffers responsible for computing intermediate outputs, the intensity of
the particles or their impact across multiple memory regions may lead to error
accumulation within an intermediate activation. This is because, during each clock
cycle, the pixels within the intermediate activations stored in the input window
registers are shifted by one position to execute a new convolution operation. Conse-
quently, an error occurring in a line buffer, if sustained over numerous convolution
operations, can affect multiple pixels within the activation. Therefore, it is crucial
to assess not only the impact of a single bit-flip error (often negligible) but also
the potential accumulation of bit-flip errors across multiple pixels. To execute
error injection, PyTorch Hook functions were employed. These functions offer
convenient access to internal neural network modules during both forward and
backward propagation phases, commonly utilized for debugging, gradient analysis
or dynamic modification of network behavior. Following a methodology similar
to that detailed in [24], Hook functions were used to manipulate intermediate
activations and introduce bit-flip errors. Bit-flip errors were injected into each
layer of each backbone, with a variable percentage ranging from 20% to 80% for
each bit. The choice of the pixel to be affected occurs randomly: the pixel is
incremented by a value equal to that of the bit affected by radiation. Referring to
Equation 3.2 and 3.3, it is possible to modify the value contained within a pixel of
an intermediate activation. This simulates the presence of a bit-flip, transitioning
from the initial value of 0 to 1. The opposite case has not been addressed, as

41

Error injection technique

both networks use the ReLU activation function, which eliminates the presence of
errors in case of negative values. Upon obtaining the complete model, the ensuing
output metrics were thoroughly evaluated to gauge the impact of bit-flip errors on
performance. The metrics were evaluated exclusively on the test dataset containing
at least one ship in each image (Test1). The degradation of performance in the
output will depend on the depth of the considered layer, the number of activation
pixels it contains and whether the layer is utilized to extract and generate the final
outputs. The deeper the layer, the more likely the error will propagate through the
convolutions and generate a negative output. It is feasible to illustrate, employing
tables, the response of the network under conditions of accumulating these kinds of
errors at the intermediate activation level. In this scenario, the metric to consider
is recall, as injecting such errors alters the network’s behavior, resulting in a failure
to recognize target objects and leading to an increase in false negatives. When
too many errors are injected into a layer, the network, being unaccustomed to pro-
cessing such intermediate activations, will generate significantly fewer predictions.
Consequently, the number of false positives will be notably reduced, resulting in
an improvement in precision values in certain cases.

4.1 MobileNetV2 error injection technique
It is feasible to assess how the performance of the network degrades or not for
each layer following the error injection. In MobileNetV2 the extraction layers used
are the second output within the inverted residual module of the sixth, thirteenth,
eighteenth layers and the additional extra layers added to the main architecture.
In this case, the Hook function was introduced at the end of the output of the
inverted residual module, before the final batch normalization layer. It is possible
to evaluate, bit by bit, how the network’s performance degrades on a single layer
in this regard.

LAYER 0 Layer 0 is the first layer encountered within the MobileNetV2 and
consists of a single convolutional layer. Starting from a size of 512x512, the image
is reduced to half its original dimensions with an increase in the number of output
channels. It is the layer with the highest number of pixels within the network,
amounting to 2,097,152 units. Consequently, the number of pixels where the error
is injected will also be higher. For this reason, the probability of the network’s
performance being degraded increases, as can be observed from Table 4.1.

LAYER 1-2-3-4-5 Layers 1, 2, 3, 4 and 5 are inverted residual layers. They
feature a significantly higher number of pixels within the activation compared to
the final layers. As mentioned earlier, extracting features from these layers allows

42

Error injection technique

Bit Metrics 20% bit-flip 40% bit-flip 60% bit-flip 80% bit-flip
injection injection injection injection

0
Precision 0.68854 0.68333 0.68917 0.68251

Recall 0.58068 0.57950 0.57714 0.57479
F1-score 0.63003 0.62715 0.62820 0.62404

1
Precision 0.68892 0.69546 0.69857 0.68882

Recall 0.57126 0.57832 0.57597 0.57361
F1-score 0.62459 0.63151 0.63137 0.62596

2
Precision 0.69640 0.70144 0.70246 0.70639

Recall 0.57008 0.57008 0.57008 0.57243
F1-score 0.62694 0.62897 0.62938 0.63240

3
Precision 0.71176 0.71879 0.71343 0.71299

Recall 0.57008 0.56301 0.56301 0.55594
F1-score 0.63309 0.63143 0.62936 0.62475

4
Precision 0.74877 0.75043 0.76672 0.76490

Recall 0.54063 0.50647 0.52650 0.52885
F1-score 0.62790 0.60478 0.62430 0.62534

5
Precision 0.77299 0.77973 0.79954 0.77446

Recall 0.46525 0.41696 0.41342 0.42873
F1-score 0.58088 0.54336 0.54503 0.55193

6
Precision 0.34393 0.79333 0.78467 0.80952

Recall 0.34393 0.28032 0.25323 0.26030
F1-score 0.48105 0.41427 0.38290 0.39393

7
Precision 0.81909 0.83193 0.83544 0.85507

Recall 0.19199 0.11660 0.07773 0.06949
F1-score 0.31106 0.20454 0.14224 0.12854

Table 4.1: Performance metrics for different percentages of bit-flip injection within
layer 0 for MobileNetV2 backbone

us to obtain low-level features. Based on the number of pixels within the layer,
we will have more or less catastrophic consequences on the output of the network.
In this case, layer 2, as shown in Table 4.2, exhibits the least internal resilience
among all, resulting in a catastrophic output starting from a modification of bit 5.

LAYER 6 Layer 6 is one of the input feature extraction layers used to determine
the size and location of the predicted bounding boxes. Starting from bit 6, the
network’s inference is altered to the extent that it drastically reduces the network’s
performance, as shown in Table 4.3.

43

Error injection technique

Bit Metrics 20% bit-flip 40% bit-flip 60% bit-flip 80% bit-flip
injection injection injection injection

0
Precision 0.68802 0.69219 0.69503 0.68144

Recall 0.58186 0.57479 0.57714 0.57950
F1-score 0.63050 0.62805 0.63063 0.62635

1
Precision 0.69943 0.69774 0.68627 0.68679

Recall 0.58186 0.57714 0.57597 0.57832
F1-score 0.63455 0.62699 0.62652 0.63110

2
Precision 0.70724 0.70930 0.72106 0.70562

Recall 0.57479 0.57479 0.57243 0.57597
F1-score 0.63417 0.63500 0.63821 0.63424

3
Precision 0.72291 0.73990 0.75040 0.74068

Recall 0.55005 0.53945 0.54534 0.53828
F1-score 0.62474 0.62397 0.63165 0.62346

4
Precision 0.77019 0.78336 0.76878 0.76806

Recall 0.50530 0.47703 0.46996 0.47585
F1-score 0.61024 0.59297 0.58333 0.58763

5
Precision 0.78830 0.68600 0.78902 0.82131

Recall 0.33333 0.23674 0.22025 0.30859
F1-score 0.46854 0.35201 0.34438 0.44863

6
Precision 0.78571 0.00117 0.00117 0.00235

Recall 0.03886 0.00117 0.00117 0.00235
F1-score 0.07407 0.00235 0.00235 0.00470

7
Precision 0.0 0.5 1.0 1.0

Recall 0.0 0.00117 0.00117 0.00235
F1-score 0.0 0.00235 0.00235 0.00470

Table 4.2: Performance metrics for different percentages of bit-flip injection within
layer 2 for MobileNetV2 backbone

LAYER 7-8-9-10-11-12 These layers facilitate the processing of the image to
extract middle-level features. The image size is further reduced while increasing
the number of channels. The earlier portion of the backbone remains unaffected
by errors, ensuring that some ships will still be recognized. Layer 7 exhibits lower
resilience within the series, starting to degrade the network’s performance from bit
5 (Table 4.4).

LAYER 13 Layer 13, similar to layer 6, is employed for feature extraction within
the network and the computation of its outputs. More catastrophic consequences
arise from bit-flips affecting the most significant bit, shown in Table 4.5.

44

Error injection technique

Bit Metrics 20% bit-flip 40% bit-flip 60% bit-flip 80% bit-flip
injection injection injection injection

0
Precision 0.69154 0.69014 0.68575 0.69252

Recall 0.57832 0.57714 0.57832 0.57832
F1-score 0.62989 0.62860 0.62747 0.63029

1
Precision 0.68715 0.69393 0.68917 0.69757

Recall 0.57950 0.57950 0.57714 0.57597
F1-score 0.62875 0.63157 0.62820 0.63096

2
Precision 0.69154 0.69559 0.69971 0.69884

Recall 0.57832 0.57597 0.57361 0.57126
F1-score 0.62989 0.63015 0.63042 0.62864

3
Precision 0.69491 0.70348 0.71279 0.73076

Recall 0.57950 0.57008 0.56419 0.55948
F1-score 0.63198 0.62979 0.62984 0.63375

4
Precision 0.70114 0.73219 0.74367 0.75953

Recall 0.57479 0.55712 0.55359 0.53945
F1-score 0.63171 0.63277 0.63470 0.63085

5
Precision 0.72515 0.75945 0.78269 0.82105

Recall 0.55005 0.52061 0.47938 0.45936
F1-score 0.62558 0.61774 0.59459 0.58912

6
Precision 0.70567 0.73096 0.69122 0.54166

Recall 0.46878 0.33922 0.23203 0.13780
F1-score 0.56334 0.46339 0.34744 0.21971

7
Precision 0.23183 0.03170 0.00757 0.00124

Recall 0.15783 0.01531 0.00235 0.00117
F1-score 0.18780 0.02065 0.00359 0.00120

Table 4.3: Performance metrics for different percentages of bit-flip injection within
layer 6 for MobileNetV2 backbone

LAYER 14-15-16-17 These types of layers are characterized by a high number
of output channels. The information within the convolutions becomes increasingly
high-level and is useful for recognizing the context in which the image is located.
The network does not undergo catastrophic deteriorations when affected by bit-flip
errors, as shown in Table 4.6 for layer 15.

LAYER 18 This is the last layer extracted from the backbone. It is characterized
by a very high number of output channels. It is important to recognize high-level
features. As for layers 14-15-16-17, there are no catastrophic consequences on the
output, regardless of the type of bit affected. Results are represented in Table 4.7

45

Error injection technique

Bit Metrics 20% bit-flip 40% bit-flip 60% bit-flip 80% bit-flip
injection injection injection injection

0
Precision 0.68845 0.69165 0.68767 0.69057

Recall 0.58303 0.57597 0.57832 0.57832
F1-score 0.63137 0.62853 0.62827 0.62948

1
Precision 0.69067 0.69295 0.69067 0.69503

Recall 0.57597 0.57950 0.57597 0.57714
F1-score 0.62813 0.63117 0.62813 0.63063

2
Precision 0.68980 0.69800 0.69797 0.70544

Recall 0.57361 0.57714 0.56890 0.56419
F1-score 0.62636 0.63185 0.62686 0.62696

3
Precision 0.69186 0.70764 0.72100 0.72785

Recall 0.57126 0.55594 0.54181 0.53239
F1-score 0.62580 0.62269 0.61869 0.61496

4
Precision 0.72429 0.71944 0.67689 0.63209

Recall 0.54770 0.49234 0.38987 0.30153
F1-score 0.62374 0.58461 0.49476 0.40829

5
Precision 0.68686 0.49333 0.46666 0.44791

Recall 0.40047 0.17432 0.15665 0.15194
F1-score 0.50595 0.25761 0.23456 0.22691

6
Precision 0.46428 0.46043 0.46043 0.46043

Recall 0.15312 0.15076 0.15076 0.15076
F1-score 0.23029 0.22715 0.22715 0.22715

7
Precision 0.46043 0.44755 0.45390 0.45714

Recall 0.15076 0.15076 0.15076 0.15076
F1-score 0.22715 0.22555 0.22634 0.22674

Table 4.4: Performance metrics for different percentages of bit-flip injection within
layer 7 for MobileNetV2 backbone

EXTRA LAYERS Extra layers do not significantly affect the network’s output
due to bit-flip errors, given the chosen prior boxes scale and dataset. Bit-flip
injection of extra layer 1 is depicted in Table 4.8.

4.2 VGG16 error injection technique
The VGG16 consists of 16 layers of convolutions and pooling, followed by three
fully connected layers. Convolutions use 3x3 kernels with a stride of 1, while
pooling employs 2x2 windows with a stride of 2. The initial convolutional layers
are simple, but as the network progresses, convolutions become deeper and more

46

Error injection technique

Bit Metrics 20% bit-flip 40% bit-flip 60% bit-flip 80% bit-flip
injection injection injection injection

0
Precision 0.68472 0.68333 0.68428 0.68611

Recall 0.58068 0.57950 0.57950 0.58186
F1-score 0.62842 0.62715 0.62755 0.62970

1
Precision 0.68421 0.68282 0.68333 0.68377

Recall 0.58186 0.58068 0.57950 0.58068
F1-score 0.62889 0.62762 0.62715 0.62802

2
Precision 0.68428 0.68282 0.68802 0.68384

Recall 0.57950 0.58068 0.58186 0.57832
F1-score 0.62755 0.62762 0.63050 0.62667

3
Precision 0.68333 0.68741 0.67812 0.67349

Recall 0.58539 0.58539 0.58068 0.58068
F1-score 0.62715 0.63231 0.62563 0.62365

4
Precision 0.68275 0.66088 0.64690 0.64993

Recall 0.58303 0.58303 0.57832 0.57950
F1-score 0.62897 0.61952 0.61069 0.61270

5
Precision 0.61209 0.51115 0.54566 0.61679

Recall 0.57243 0.56654 0.56301 0.55359
F1-score 0.59160 0.53743 0.55420 0.58348

6
Precision 0.27964 0.30123 0.40546 0.54765

Recall 0.55005 0.51590 0.45465 0.39929
F1-score 0.37078 0.38037 0.42865 0.46185

7
Precision 0.24485 0.28031 0.38421 0.41065

Recall 0.40636 0.20965 0.17196 0.15429
F1-score 0.30558 0.23989 0.23759 0.22431

Table 4.5: Performance metrics for different percentages of bit-flip injection within
layer 13 for MobileNetV2 backbone

complex. Within the network, feature can be extracted at low, medium, or high
levels depending on the dataset available. In the specific case of the SSD algorithm
and the considered network, extracting information from deeper layers involves
using more parameters for the classification and regression headers necessary to
compute the network’s outputs. This is because the final classification and regression
headers are responsible for placing prior boxes within the extraction feature maps.
Extracting features from very low-level layers would involve considering feature
maps with a high number of pixels and thus a large number of prior boxes to
consider. This would result in a significant overhead during training and inference.
However, considering lower-level feature maps still allows us to achieve a good level

47

Error injection technique

Bit Metrics 20% bit-flip 40% bit-flip 60% bit-flip 80% bit-flip
injection injection injection injection

0
Precision 0.68523 0.68523 0.68523 0.68619

Recall 0.57950 0.57950 0.57950 0.57950
F1-score 0.62795 0.62795 0.62795 0.62835

1
Precision 0.68238 0.68619 0.68523 0.68333

Recall 0.57950 0.57950 0.57950 0.57950
F1-score 0.62675 0.62835 0.62795 0.62715

2
Precision 0.68472 0.68282 0.68333 0.68428

Recall 0.58068 0.58068 0.57950 0.57950
F1-score 0.62842 0.62762 0.62715 0.62755

3
Precision 0.68377 0.68758 0.58068 0.67812

Recall 0.58068 0.58068 0.58068 0.58068
F1-score 0.62802 0.62962 0.62642 0.62563

4
Precision 0.68619 0.67582 0.66847 0.65211

Recall 0.57950 0.57950 0.58186 0.58068
F1-score 0.62835 0.62396 0.62216 0.61433

5
Precision 0.67582 0.63849 0.56597 0.46022

Recall 0.57950 0.57832 0.57597 0.57243
F1-score 0.62396 0.60692 0.57092 0.51023

6
Precision 0.60902 0.61558 0.63766 0.63418

Recall 0.57243 0.54888 0.52650 0.49823
F1-score 0.59016 0.58032 0.57677 0.55804

7
Precision 0.67069 0.66720 0.66720 0.66720

Recall 0.52296 0.48881 0.48881 0.48881
F1-score 0.58769 0.56424 0.56424 0.56424

Table 4.6: Performance metrics for different percentages of bit-flip injection within
layer 15 for MobileNetV2 backbone

of performance while saving computational resources as much as possible. Below is
a comprehensive analysis of how injecting errors into a layer generates catastrophic
behavior in the output.

LAYER 0 The first layer of the network results from a convolution operation
followed by the application of a ReLU activation function. The initial image size of
512x512 is reduced to its half. Additionally, it initiates an increase in the number
of channels, making the network denser gradually. An error at this level can
potentially lead to complete degradation of the network, especially in the case of a
bit-flip in the most significant bit (MSB). Results are illustrated in Table 4.9.

48

Error injection technique

Bit Metrics 20% bit-flip 40% bit-flip 60% bit-flip 80% bit-flip
injection injection injection injection

0
Precision 0.68333 0.68282 0.68282 0.68093

Recall 0.57950 0.58068 0.58068 0.58068
F1-score 0.62715 0.62762 0.62762 0.62682

1
Precision 0.68282 0.68093 0.67906 0.67534

Recall 0.58068 0.58068 0.58068 0.58068
F1-score 0.62762 0.62682 0.62603 0.62444

2
Precision 0.68093 0.58068 0.67578 0.65866

Recall 0.58068 0.58068 0.58186 0.58186
F1-score 0.62682 0.62642 0.62531 0.61788

3
Precision 0.67626 0.66756 0.58186 0.67582

Recall 0.58068 0.58186 0.58186 0.57950
F1-score 0.62484 0.62177 0.58186 0.62396

4
Precision 0.66397 0.49007 0.18326 0.07967

Recall 0.58186 0.58186 0.58303 0.58303
F1-score 0.62021 0.53204 0.27887 0.14018

5
Precision 0.58760 0.47439 0.45211 0.55455

Recall 0.58068 0.57832 0.57832 0.58068
F1-score 0.58412 0.52123 0.50749 0.56731

6
Precision 0.59754 0.63219 0.67760 0.69354

Recall 0.57361 0.56890 0.55948 0.55712
F1-score 0.58533 0.59888 0.61290 0.61789

7
Precision 0.64032 0.67633 0.66930 0.65560

Recall 0.55359 0.52179 0.49823 0.48881
F1-score 0.59380 0.58909 0.57123 0.56005

Table 4.7: Performance metrics for different percentages of bit-flip injection within
layer 18 for MobileNetV2 backbone

LAYER 1-2-3-4-5 These layers contain low-level information internally. The
number of pixels contained within these layers is very high, so injecting a high
percentage of bit-flip errors can greatly reduce the network’s performance, especially
for the first two most significant bits. The layer that experiences the most significant
performance drop in output is indeed the fourth layer, which has the highest number
of pixels, amounting to 8,388,608. Information about error injection is illustrated
in Table 4.10.

LAYER 6-7-8-9-10-11 These layers contain medium-low-level information. The
number of pixels gradually decreases due to a reduction in the image dimensions,

49

Error injection technique

Bit Metrics 20% bit-flip 40% bit-flip 60% bit-flip 80% bit-flip
injection injection injection injection

0
Precision 0.68523 0.68523 0.68523 0.68523

Recall 0.57950 0.57950 0.57950 0.57950
F1-score 0.62795 0.62795 0.62795 0.62795

1
Precision 0.68523 0.68523 0.68523 0.68523

Recall 0.57950 0.57950 0.57950 0.57950
F1-score 0.62795 0.62795 0.62795 0.62795

2
Precision 0.68523 0.68428 0.68523 0.68523

Recall 0.57950 0.57950 0.57950 0.57950
F1-score 0.62795 0.62795 0.62755 0.62795

3
Precision 0.68523 0.68523 0.68523 0.68523

Recall 0.57950 0.57950 0.57950 0.57950
F1-score 0.62795 0.62795 0.62795 0.62795

4
Precision 0.68523 0.68523 0.68523 0.68523

Recall 0.57950 0.57950 0.57950 0.57950
F1-score 0.62795 0.62795 0.62795 0.62795

5
Precision 0.68523 0.68523 0.68523 0.68523

Recall 0.57950 0.57950 0.57950 0.57950
F1-score 0.62795 0.62795 0.62795 0.62795

6
Precision 0.68523 0.68523 0.68523 0.68523

Recall 0.57950 0.57950 0.57950 0.57950
F1-score 0.62795 0.62795 0.62795 0.62795

7
Precision 0.68523 0.68523 0.68523 0.68523

Recall 0.57950 0.57950 0.57950 0.57950
F1-score 0.62795 0.62795 0.62795 0.62795

Table 4.8: Performance metrics for different percentages of bit-flip injection within
layer extra 1 for MobileNetV2 backbone

but with a consequent increase in the number of channels. As we approach the
extraction layers, injecting an error at this point means there is a higher probability
of generating an error in the output. For this reason, the internal resilience of these
intermediate activations is significantly reduced, to the point that even bit-flips of
bit 4 can have catastrophic consequences on the network’s output. Particularly,
the least resilient layers are layer 8 and layer 10, depicted in Table 4.11 and Table
4.11.

LAYER 12 Layer 12 is the first layer used for feature map extraction. For this
reason, an error injection starting from bit 3 can result in a significant reduction in

50

Error injection technique

Bit Metrics 20% bit-flip 40% bit-flip 60% bit-flip 80% bit-flip
injection injection injection injection

0
Precision 0.86314 0.86043 0.86314 0.86314

Recall 0.75029 0.74793 0.74676 0.74676
F1-score 0.80277 0.80025 0.79999 0.79999

1
Precision 0.85986 0.86160 0.85888 0.85850

Recall 0.74440 0.74793 0.74558 0.74322
F1-score 0.79797 0.80075 0.79823 0.79671

2
Precision 0.85869 0.86103 0.85948 0.86401

Recall 0.74440 0.74440 0.74204 0.74087
F1-score 0.79747 0.79848 0.79646 0.79771

3
Precision 0.85986 0.86301 0.87168 0.87430

Recall 0.74440 0.74204 0.73616 0.73733
F1-score 0.79797 0.79797 0.79821 0.8

4
Precision 0.86501 0.87114 0.87060 0.87926

Recall 0.73969 0.73262 0.72909 0.72909
F1-score 0.79746 0.79590 0.79358 0.79716

5
Precision 0.87119 0.87517 0.88629 0.88888

Recall 0.74087 0.72673 0.71613 0.69729
F1-score 0.80076 0.79407 0.79218 0.78151

6
Precision 0.87411 0.89681 0.90016 0.90243

Recall 0.72791 0.69611 0.65842 0.61012
F1-score 0.79434 0.78381 0.76054 0.72803

7
Precision 0.89767 0.91013 0.89970 0.98333

Recall 0.68197 0.56065 0.35924 0.13898
F1-score 0.77510 0.69387 0.51346 0.24355

Table 4.9: Performance metrics for different percentages of bit-flip injection within
layer 0 for VGG16 backbone

network performance. Results are displayed in Table 4.13

LAYER 13-14-15-16-17 These layers are crucial for extracting high-level fea-
tures. Injecting an error at this point will not affect the deeper backbone of the
network, so the ship detection up to layer 12 will not be impacted. Performance
only degrades slightly on these layers, mainly for layers 14 and 16 due to errors in
the last two most significant bits. Table 4.14 shows error injection for layer 14.

LAYER 18 This layer is the second feature map used for feature extraction in
the output. Similarly, considering the first two most significant bits, the network’s

51

Error injection technique

Bit Metrics 20% bit-flip 40% bit-flip 60% bit-flip 80% bit-flip
injection injection injection injection

0
Precision 0.86178 0.86178 0.86024 0.85964

Recall 0.74911 0.74911 0.74676 0.75029
F1-score 0.80151 0.80151 0.79949 0.80125

1
Precision 0.85772 0.86062 0.85733 0.85752

Recall 0.74558 0.74911 0.75029 0.75147
F1-score 0.79773 0.80100 0.80025 0.80100

2
Precision 0.85444 0.85234 0.85140 0.84574

Recall 0.74676 0.74793 0.74911 0.74911
F1-score 0.79698 0.79673 0.79699 0.79450

3
Precision 0.85234 0.83552 0.82490 0.82558

Recall 0.74793 0.74793 0.74911 0.75265
F1-score 0.79673 0.78931 0.78518 0.78743

4
Precision 0.83464 0.81241 0.81419 0.81712

Recall 0.74911 0.73969 0.74322 0.74204
F1-score 0.78957 0.77435 0.77709 0.77777

5
Precision 0.83679 0.83207 0.83619 0.82968

Recall 0.71260 0.64782 0.63133 0.62544
F1-score 0.76972 0.72847 0.71946 0.71323

6
Precision 0.88235 0.91701 0.89444 0.89673

Recall 0.45936 0.26030 0.18963 0.19434
F1-score 0.60418 0.40550 0.31292 0.31945

7
Precision 1.0 0.0 0.0 0.0

Recall 0.00117 0.0 0.0 0.0
F1-score 0.00235 0.0 0.0 0.0

Table 4.10: Performance metrics for different percentages of bit-flip injection
within layer 4 for VGG16 backbone

performance degrades significantly (Table 4.15).

LAYER EXTRA An error in this part of the network does not significantly
degrade the network’s output. Table 4.16 illustrates performance metrics for VGG16
backbone after bit-flip injection for layer extra 0.

4.3 Conclusions and future works
The discussion highlights how the presence of bit-flip errors can lead to catastrophic
performance degradation in a DNN-based object recognition application. Single

52

Error injection technique

Bit Metrics 20% bit-flip 40% bit-flip 60% bit-flip 80% bit-flip
injection injection injection injection

0
Precision 0.85967 0.86538 0.86301 0.86556

Recall 0.74322 0.74204 0.74204 0.74322
F1-score 0.79722 0.79898 0.79797 0.79974

1
Precision 0.86084 0.86556 0.86419 0.86164

Recall 0.74322 0.74322 0.74204 0.74087
F1-score 0.79772 0.79974 0.79847 0.79670

2
Precision 0.86084 0.86331 0.87023 0.86638

Recall 0.74322 0.72909 0.72673 0.72555
F1-score 0.79772 0.79054 0.79204 0.78974

3
Precision 0.87696 0.89805 0.89969 0.90186

Recall 0.72202 0.70553 0.68669 0.68197
F1-score 0.79198 0.79023 0.77889 0.77665

4
Precision 0.940740 0.939571 0.93849 0.93849

Recall 0.59835 0.56772 0.55712 0.55712
F1-score 0.73146 0.70778 0.69918 0.69918

5
Precision 0.96359 0.99203 0.99029 0.99074

Recall 0.46760 0.29328 0.24028 0.252061
F1-score 0.62965 0.45272 0.38672 0.40187

6
Precision 0.97368 1.0 1.0 1.0

Recall 0.08716 0.00588 0.00353 0.00353
F1-score 0.15999 0.01170 0.00704 0.00704

7
Precision 0.0 0.0 0.0 0.0

Recall 0.0 0.0 0.0 0.0
F1-score 0.0 0.0 0.0 0.0

Table 4.11: Performance metrics for different percentages of bit-flip injection
within layer 8 for VGG16 backbone

bit-flip errors can cause severe issues not only in user memory but also in the CRAM,
altering the platform’s logic and potentially resulting in critical consequences for
the entire system. The current best solutions for configuration memory include
redundancy modules (TMR), error recognition and correction modules (ECC
or SEC-DED) and partial static or dynamic reconfiguration. However, these
methodologies come with a high overhead in terms of on-chip area occupation,
making it beneficial to implement sustainable solutions for extreme applications
of this nature. It would be interesting to consider this aspect for future work.
As described in the preceding chapters, the study allows for a comparison of the
characteristics of two different backbones, assessing which one, in terms of memory

53

Error injection technique

Bit Metrics 20% bit-flip 40% bit-flip 60% bit-flip 80% bit-flip
injection injection injection injection

0
Precision 0.86084 0.86998 0.88135 0.88825

Recall 0.74322 0.74087 0.73498 0.73027
F1-score 0.79772 0.80025 0.80154 0.80155

1
Precision 0.86221 0.86842 0.87746 0.88904

Recall 0.74440 0.73851 0.73380 0.72673
F1-score 0.79898 0.79821 0.79923 0.79974

2
Precision 0.87257 0.89306 0.90694 0.91527

Recall 0.74204 0.72791 0.72320 0.71260
F1-score 0.80203 0.80207 0.80471 0.80132

3
Precision 0.88825 0.91376 0.93174 0.94256

Recall 0.73027 0.71142 0.69140 0.65724
F1-score 0.80155 0.8 0.79377 0.77446

4
Precision 0.91666 0.93781 0.95229 0.95739

Recall 0.71260 0.65724 0.58775 0.50294
F1-score 0.80185 0.77285 0.72687 0.65945

5
Precision 0.94097 0.96163 0.95104 1.0

Recall 0.65724 0.47232 0.16018 0.01884
F1-score 0.77392 0.63349 0.27419 0.03699

6
Precision 0.95433 0.76923 0.00117 0.0

Recall 0.49234 0.02355 0.00117 0.0
F1-score 0.64957 0.04571 0.00235 0.0

7
Precision 0.85714 0.0 0.0 0.0

Recall 0.02826 0.0 0.0 0.0
F1-score 0.05473 0.0 0.0 0.0

Table 4.12: Performance metrics for different percentages of bit-flip injection
within layer 10 for VGG16 backbone

saving and performance degradation, is better suited for this type of application. To
precisely evaluate which network undergoes the greatest performance degradation,
it is necessary to delve into the specifics of the application and understand which
layers for each backbone are most at risk of generating a significant degradation
in performance metrics. Regarding the MobileNetV2 network, the first extraction
layer is the sixth one. In case of bit-flip error accumulation in the initial layers, the
network’s performance is completely degraded, considering both bit 6 and bit 7.
If bit-flip errors accumulate after the sixth layer, the network can still recognize
some objects in the images. In this case, due to the application’s design, the recall
does not exceed values lower than 15% (a reduction of recall by approximately

54

Error injection technique

Bit Metrics 20% bit-flip 40% bit-flip 60% bit-flip 80% bit-flip
injection injection injection injection

0
Precision 0.87552 0.88904 0.72084 0.90433

Recall 0.73733 0.72673 0.72084 0.71260
F1-score 0.80051 0.79974 0.80052 0.79710

1
Precision 0.89177 0.90433 0.92187 0.93537

Recall 0.72791 0.71260 0.69493 0.68197
F1-score 0.80155 0.79710 0.79247 0.78882

2
Precision 0.90854 0.93821 0.94290 0.94821

Recall 0.71378 0.67962 0.64193 0.62544
F1-score 0.79947 0.78825 0.76384 0.75372

3
Precision 0.93944 0.95660 0.96653 0.96680

Recall 0.67608 0.62308 0.57832 0.54888
F1-score 0.78630 0.75463 0.72365 0.70022

4
Precision 0.95825 0.97881 0.97959 0.98165

Recall 0.62190 0.54416 0.50883 0.50412
F1-score 0.75428 0.69947 0.66976 0.66614

5
Precision 0.98218 0.98971 0.98694 0.98941

Recall 0.51943 0.45347 0.44522 0.44051
F1-score 0.67950 0.62197 0.61363 0.60961

6
Precision 1.0 1.0 1.0 1.0

Recall 0.34864 0.10836 0.07302 0.09893
F1-score 0.51703 0.19553 0.13611 0.18006

7
Precision 0.0 0.0 0.0 0.0

Recall 0.0 0.0 0.0 0.0
F1-score 0.0 0.0 0.0 0.0

Table 4.13: Performance metrics for different percentages of bit-flip injection
within layer 12 for VGG16 backbone

74% of the initial metrics). The second extraction layer is the thirteenth, so in
case of bit-flip error accumulation of the first two most significant bits in the
subsequent layers, the number of recognized objects will increase, reaching recall
values of around 49% (a reduction of recall by approximately 15% compared to
initial values). Finally, once the last layer within the backbone is extracted (layer
18), the performance remains very similar to the initial values, even in case of error
accumulation in the most significant bit. On the other hand, the VGG16 network,
having numerous convolutional layers and being deeper, allows for learning more
complex features. This inevitably leads to better distinguishing one object from
another and addressing more complex problems. Deeper networks also tend to

55

Error injection technique

Bit Metrics 20% bit-flip 40% bit-flip 60% bit-flip 80% bit-flip
injection injection injection injection

0
Precision 0.86160 0.86178 0.86178 0.86178

Recall 0.74793 0.74911 0.74911 0.74911
F1-score 0.80075 0.80151 0.80151 0.80151

1
Precision 0.86277 0.86493 0.86493 0.86867

Recall 0.74793 0.74676 0.74676 0.74793
F1-score 0.80126 0.80151 0.80151 0.80379

2
Precision 0.86258 0.86748 0.87004 0.87260

Recall 0.74676 0.74793 0.74911 0.75029
F1-score 0.80050 0.80328 0.80506 0.80683

3
Precision 0.86885 0.87260 0.87362 0.87845

Recall 0.74911 0.75029 0.74911 0.74911
F1-score 0.80455 0.80683 0.80659 0.80864

4
Precision 0.87140 0.87966 0.87988 0.88494

Recall 0.75029 0.74911 0.74204 0.73380
F1-score 0.80632 0.80916 0.80511 0.80231

5
Precision 0.88311 0.88260 0.88252 0.87519

Recall 0.72084 0.73498 0.70789 0.66077
F1-score 0.79377 0.80205 0.78562 0.75302

6
Precision 0.88169 0.87883 0.85792 0.82471

Recall 0.73733 0.67491 0.55477 0.43227
F1-score 0.80307 0.76349 0.67381 0.56723

7
Precision 0.87856 0.81384 0.75925 0.75776

Recall 0.69022 0.40164 0.28975 0.28739
F1-score 0.77308 0.53785 0.41943 0.41673

Table 4.14: Performance metrics for different percentages of bit-flip injection
within layer 14 for VGG16 backbone

generalize better on unseen data compared to shallower networks. This is due to
their ability to learn more generic data representations that can be applied to a
wider variety of examples. Digging deeper into the network’s performance, the
network completely degrades up to layer 12, in some cases even for error injections
in the last three most significant bits. In case of errors in subsequent feature maps,
the network achieves recall values of 29% for the MSB (a reduction of the metric by
approximately 61% of the initial metrics). The last extraction layer of the backbone
then allows further performance improvements, reaching values similar to those
expected in case of errors in the extra layers. From this analysis, a comprehensive
understanding of how the backbones behave in case of bit-flip error accumulation

56

Error injection technique

Bit Metrics 20% bit-flip 40% bit-flip 60% bit-flip 80% bit-flip
injection injection injection injection

0
Precision 0.86160 0.86376 0.86612 0.86867

Recall 0.74793 0.74676 0.74676 0.74793
F1-score 0.80075 0.80101 0.80202 0.80379

1
Precision 0.86376 0.86867 0.86867 0.86986

Recall 0.74676 0.74793 0.74793 0.74793
F1-score 0.80101 0.80379 0.80379 0.80430

2
Precision 0.86867 0.86986 0.87242 0.87327

Recall 0.74793 0.74793 0.74911 0.74676
F1-score 0.80379 0.80430 0.80608 0.80507

3
Precision 0.86867 0.87310 0.87430 0.875

Recall 0.74793 0.74558 0.73733 0.73380
F1-score 0.80379 0.80432 0.73733 0.79820

4
Precision 0.87707 0.87377 0.87392 0.70082

Recall 0.74793 0.73380 0.71849 0.70082
F1-score 0.80737 0.79769 0.78862 0.77828

5
Precision 0.87711 0.70082 0.87366 0.86816

Recall 0.73144 0.70082 0.67608 0.63604
F1-score 0.79768 0.77828 0.76228 0.73419

6
Precision 0.87536 0.86837 0.85370 0.82751

Recall 0.70318 0.63722 0.54299 0.44640
F1-score 0.77988 0.73505 0.66378 0.57995

7
Precision 0.86858 0.82826 0.36749 0.77714

Recall 0.63839 0.44876 0.36749 0.32037
F1-score 0.73591 0.58212 0.50363 0.45371

Table 4.15: Performance metrics for different percentages of bit-flip injection
within layer 18 for VGG16 backbone

can be obtained. The MobileNetV2 network maintains a high level of performance
despite having a much lower number of parameters compared to VGG16 (x12
smaller). Additionally, the computational cost of the MobileNetV2 network in
terms of MAC operations is about x50 lower than the VGG16 one. Therefore, the
choice of which network to use can be based on the required performance, the
available memory resources and the computational costs. However, resilience for
both backbones against this type of error can be improved by using techniques such
as fault-aware training, combined with ECC, TMR, and partial reconfiguration
techniques (scrubbing can also be performed for BRAMs, not only for configuration
memory). Selective TMR applications for layers most sensitive to these errors also

57

Error injection technique

Bit Metrics 20% bit-flip 40% bit-flip 60% bit-flip 80% bit-flip
injection injection injection injection

0
Precision 0.86178 0.86178 0.86178 0.86178

Recall 0.74911 0.74911 0.74911 0.74911
F1-score 0.80151 0.80151 0.80151 0.80151

1
Precision 0.86178 0.86178 0.86178 0.86295

Recall 0.74911 0.74911 0.74911 0.74911
F1-score 0.80151 0.80151 0.80151 0.80151

2
Precision 0.86178 0.86295 0.86295 0.86295

Recall 0.74911 0.74911 0.74911 0.74911
F1-score 0.80151 0.80201 0.80201 0.80201

3
Precision 0.86295 0.86295 0.86295 0.86295

Recall 0.74911 0.74911 0.74911 0.74911
F1-score 0.80201 0.80201 0.80201 0.80201

4
Precision 0.86295 0.86295 0.86295 0.86376

Recall 0.74911 0.74911 0.74911 0.74676
F1-score 0.80201 0.80201 0.80201 0.80101

5
Precision 0.86295 0.86376 0.86282 0.86225

Recall 0.74911 0.74676 0.74087 0.73733
F1-score 0.80201 0.80101 0.79721 0.79492

6
Precision 0.86413 0.86225 0.86033 0.85795

Recall 0.74911 0.73733 0.72555 0.71142
F1-score 0.80252 0.79492 0.78722 0.77784

7
Precision 0.86206 0.85775 0.85631 0.85419

Recall 0.73616 0.71024 0.69493 0.68315
F1-score 0.79415 0.77706 0.76723 0.75916

Table 4.16: Performance metrics for different percentages of bit-flip injection
within layer extra 0 for VGG16 backbone

appear interesting, as they can help limit bit-flip errors for the most sensitive layers.
The development of resilience techniques is also left as future work.

58

Appendix A

Training augmentation
transforms

1 de f i n t e r s e c t (box_a , box_b) :
2 max_xy = np . minimum(box_a [: , 2 :] , box_b [2 :])
3 min_xy = np . maximum(box_a [: , : 2] , box_b [: 2])
4 i n t e r = np . c l i p ((max_xy − min_xy) , a_min=0, a_max=np . i n f)
5 re turn i n t e r [: , 0] ∗ i n t e r [: , 1]
6

7 de f jaccard_numpy (box_a , box_b) :
8 i n t e r = i n t e r s e c t (box_a , box_b)
9 area_a = ((box_a [: , 2]−box_a [: , 0]) ∗

10 (box_a [: , 3]−box_a [: , 1])) # [A,B]
11 area_b = ((box_b[2] −box_b [0]) ∗
12 (box_b[3] −box_b [1])) # [A,B]
13 union = area_a + area_b − i n t e r
14 re turn i n t e r / union # [A,B]

1 c l a s s Custom_lambda_transform (ob j e c t) :
2 de f __init__(s e l f , s td) :
3 s e l f . s td=std
4

5 de f __call__(s e l f , image , boxes=None , l a b e l s=None) :
6 image /= s e l f . s td
7 re turn image . astype (np . f l o a t 3 2) , boxes , l a b e l s

59

Training augmentation transforms

1 c l a s s ConvertFromInts (ob j e c t) :
2 de f __call__(s e l f , image , boxes=None , l a b e l s=None) :
3 re turn image . astype (np . f l o a t 3 2) , boxes , l a b e l s

1 c l a s s SubtractMeans (ob j e c t) :
2 de f __init__(s e l f , mean) :
3 s e l f . mean = np . array (mean , dtype=np . f l o a t 3 2)
4

5 de f __call__(s e l f , image , boxes=None , l a b e l s=None) :
6 image = image . astype (np . f l o a t 3 2)
7 image −= s e l f . mean
8 re turn image . astype (np . f l o a t 3 2) , boxes , l a b e l s

1 c l a s s ToAbsoluteCoords (ob j e c t) :
2 de f __call__(s e l f , image , boxes=None , l a b e l s=None) :
3 height , width , channe l s = image . shape
4 boxes [: , 0] ∗= width
5 boxes [: , 2] ∗= width
6 boxes [: , 1] ∗= he ight
7 boxes [: , 3] ∗= he ight
8

9 re turn image , boxes , l a b e l s
10

11 c l a s s ToPercentCoords (ob j e c t) :
12 de f __call__(s e l f , image , boxes=None , l a b e l s=None) :
13 height , width , channe l s = image . shape
14 boxes [: , 0] /= width
15 boxes [: , 2] /= width
16 boxes [: , 1] /= he ight
17 boxes [: , 3] /= he ight
18

19 re turn image , boxes , l a b e l s

1 c l a s s Res i ze (ob j e c t) :
2 de f __init__(s e l f , s i z e=image_size) :
3 s e l f . s i z e = s i z e
4

5 de f __call__(s e l f , image , boxes=None , l a b e l s=None) :
6 image = cv2 . r e s i z e (image , (s e l f . s i z e ,
7 s e l f . s i z e))
8 re turn image , boxes , l a b e l s

60

Training augmentation transforms

1 c l a s s RandomSaturation (ob j e c t) :
2 de f __init__(s e l f , lower =0.5 , upper =1.5) :
3 s e l f . lower = lower
4 s e l f . upper = upper
5 a s s e r t s e l f . upper >= s e l f . lower , " c on t r a s t upper must be >=

lower . "
6 a s s e r t s e l f . lower >= 0 , " con t ra s t lower must be non−negat ive

. "
7

8 de f __call__(s e l f , image , boxes=None , l a b e l s=None) :
9 i f random . rand int (2) :

10 image [: , : , 1] ∗= random . uniform (s e l f . lower , s e l f . upper)
11

12 re turn image , boxes , l a b e l s

1 c l a s s RandomHue(ob j e c t) :
2 de f __init__(s e l f , d e l t a =18.0) :
3 a s s e r t d e l t a >= 0.0 and de l t a <= 360.0
4 s e l f . d e l t a = de l t a
5

6 de f __call__(s e l f , image , boxes=None , l a b e l s=None) :
7 i f random . rand int (2) :
8 image [: , : , 0] += random . uniform(− s e l f . de l ta , s e l f . d e l t a)
9 image [: , : , 0] [image [: , : , 0] > 3 6 0 . 0] −= 360.0

10 image [: , : , 0] [image [: , : , 0] < 0 . 0] += 360 .0
11 re turn image , boxes , l a b e l s

1 c l a s s RandomLightingNoise (ob j e c t) :
2 de f __init__(s e l f) :
3 s e l f . perms = ((0 , 1 , 2) , (0 , 2 , 1) ,
4 (1 , 0 , 2) , (1 , 2 , 0) ,
5 (2 , 0 , 1) , (2 , 1 , 0))
6

7 de f __call__(s e l f , image , boxes=None , l a b e l s=None) :
8 i f random . rand int (2) :
9 swap = s e l f . perms [random . rand int (l en (s e l f . perms))]

10 s h u f f l e = SwapChannels (swap) # s h u f f l e channe l s
11 image = s h u f f l e (image)
12 re turn image , boxes , l a b e l s

61

Training augmentation transforms

1 c l a s s ConvertColor (ob j e c t) :
2 de f __init__(s e l f , current , trans form) :
3 s e l f . t rans form = transform
4 s e l f . cur r ent = cur rent
5

6 de f __call__(s e l f , image , boxes=None , l a b e l s=None) :
7 i f s e l f . cu r r ent == ’BGR’ and s e l f . t rans form == ’HSV’ :
8 image = cv2 . cvtColor (image , cv2 .COLOR_BGR2HSV)
9 e l i f s e l f . cur rent == ’RGB’ and s e l f . t rans form == ’HSV’ :

10 image = cv2 . cvtColor (image , cv2 .COLOR_RGB2HSV)
11 e l i f s e l f . cur rent == ’BGR’ and s e l f . t rans form == ’RGB’ :
12 image = cv2 . cvtColor (image , cv2 .COLOR_BGR2RGB)
13 e l i f s e l f . cur rent == ’HSV’ and s e l f . t rans form == ’BGR’ :
14 image = cv2 . cvtColor (image , cv2 .COLOR_HSV2BGR)
15 e l i f s e l f . cur rent == ’HSV’ and s e l f . t rans form == "RGB" :
16 image = cv2 . cvtColor (image , cv2 .COLOR_HSV2RGB)
17 e l s e :
18 r a i s e NotImplementedError
19 re turn image , boxes , l a b e l s

1 c l a s s RandomContrast (ob j e c t) :
2 de f __init__(s e l f , lower =0.5 , upper =1.5) :
3 s e l f . lower = lower
4 s e l f . upper = upper
5 a s s e r t s e l f . upper >= s e l f . lower , " c on t r a s t upper must be >=

lower . "
6 a s s e r t s e l f . lower >= 0 , " con t ra s t lower must be non−negat ive

. "
7

8 # expect s f l o a t image
9 de f __call__(s e l f , image , boxes=None , l a b e l s=None) :

10 i f random . rand int (2) :
11 alpha = random . uniform (s e l f . lower , s e l f . upper)
12 image ∗= alpha
13 re turn image , boxes , l a b e l s

1 c l a s s RandomBrightness (ob j e c t) :
2 de f __init__(s e l f , d e l t a =32) :
3 a s s e r t d e l t a >= 0.0
4 a s s e r t d e l t a <= 255.0
5 s e l f . d e l t a = de l t a
6

7 de f __call__(s e l f , image , boxes=None , l a b e l s=None) :
8 i f random . rand int (2) :

62

Training augmentation transforms

9 de l t a = random . uniform(− s e l f . de l ta , s e l f . d e l t a)
10 image += de l t a
11 re turn image , boxes , l a b e l s

1 c l a s s ToCV2Image(ob j e c t) :
2 de f __call__(s e l f , tensor , boxes=None , l a b e l s=None) :
3 re turn tenso r . cpu () . numpy() . astype (np . f l o a t 3 2) . t ranspose ((1 ,

2 , 0)) , boxes , l a b e l s

1 c l a s s ToTensor (ob j e c t) :
2 de f __call__(s e l f , cvimage , boxes=None , l a b e l s=None) :
3 re turn torch . from_numpy(cvimage . astype (np . f l o a t 3 2)) . permute

(2 , 0 , 1) , boxes , l a b e l s

1 c l a s s RandomSampleCrop (ob j e c t) :
2

3 de f __init__(s e l f) :
4 s e l f . sample_options = (
5 # using e n t i r e o r i g i n a l input image
6 None ,
7 # sample a patch s . t . MIN jacca rd w/ obj in

. 1 , . 3 , . 4 , . 7 , . 9
8 (0 . 1 , None) ,
9 (0 . 3 , None) ,

10 (0 . 7 , None) ,
11 (0 . 9 , None) ,
12 # randomly sample a patch
13 (None , None) ,
14)
15 de f __call__(s e l f , image , boxes=None , l a b e l s=None) :
16 height , width , _ = image . shape
17 whi le True :
18 # randomly choose a mode
19 np . warnings . f i l t e r w a r n i n g s (’ ignore ’ , category=np .

Vis ib leDeprecat ionWarning)
20 mode = random . cho i c e (s e l f . sample_options)
21 i f mode i s None:# or not boxes . any () :
22 re turn image , boxes , l a b e l s
23

24 min_iou , max_iou = mode
25 i f min_iou i s None :
26 min_iou = f l o a t (’− i n f ’)
27 i f max_iou i s None :

63

Training augmentation transforms

28 max_iou = f l o a t (’ i n f ’)
29

30 # max t r a i l s (50)
31 f o r _ in range (50) :
32 current_image = image
33 w = random . uniform (0 . 3 ∗ width , width)
34 h = random . uniform (0 . 3 ∗ height , he ight)
35 # aspect r a t i o c o n s t r a i n t b/ t . 5 & 2
36 i f h / w < 0 .5 or h / w > 2 :
37 cont inue
38 l e f t = random . uniform (width − w)
39 top = random . uniform (he ight − h)
40 # convert to i n t e g e r r e c t x1 , y1 , x2 , y2
41 r e c t = np . array ([i n t (l e f t) , i n t (top) , i n t (l e f t+w) ,

i n t (top+h)])
42 # c a l c u l a t e IoU (jacca rd over lap) b/ t the cropped and

gt boxes
43 over lap = jaccard_numpy (boxes , r e c t)
44 # i s min and max over lap c o n s t r a i n t s a t i s f i e d ? i f not

t ry again
45 i f over lap . min () < min_iou and max_iou < over lap . max

() :
46 cont inue
47 # cut the crop from the image
48 current_image = current_image [r e c t [1] : r e c t [3] , r e c t

[0] : r e c t [2] , :]
49 # keep over lap with gt box IF cente r in sampled patch
50 c e n t e r s = (boxes [: , : 2] + boxes [: , 2 :]) / 2 .0
51 # mask in a l l gt boxes that above and to the l e f t o f

c e n t e r s
52 m1 = (r e c t [0] < c e n t e r s [: , 0]) ∗ (r e c t [1] < c e n t e r s

[: , 1])
53 # mask in a l l gt boxes that under and to the r i g h t o f

c e n t e r s
54 m2 = (r e c t [2] > c e n t e r s [: , 0]) ∗ (r e c t [3] > c e n t e r s

[: , 1])
55 # mask in that both m1 and m2 are t rue
56 mask = m1 ∗ m2
57 # have any v a l i d boxes ? t ry again i f not
58 i f not mask . any () :
59 cont inue
60 # take only matching gt boxes
61 current_boxes = boxes [mask , :] . copy ()
62 # take only matching gt l a b e l s
63 cu r r en t_ labe l s = l a b e l s [mask]
64 # should we use the box l e f t and top corner or the

crop ’ s
65 current_boxes [: , : 2] = np . maximum(current_boxes

[: , : 2] , r e c t [: 2])

64

Training augmentation transforms

66 # adjus t to crop (by s u b s t r a c t i n g crop ’ s l e f t , top)
67 current_boxes [: , : 2] −= r e c t [: 2]
68 current_boxes [: , 2 :] = np . minimum(current_boxes [: ,

2 :] ,
69 r e c t [2 :])
70 # adjus t to crop (by s u b s t r a c t i n g crop ’ s l e f t , top)
71 current_boxes [: , 2 :] −= r e c t [: 2]
72 re turn current_image , current_boxes , cu r r en t_ labe l s

1 c l a s s Expand(ob j e c t) :
2 de f __init__(s e l f , mean) :
3 s e l f . mean = mean
4

5 de f __call__(s e l f , image , boxes , l a b e l s) :
6 i f random . rand int (2) :# or not boxes . any () :
7 re turn image , boxes , l a b e l s
8

9 height , width , depth = image . shape
10 r a t i o = random . uniform (1 , 4)
11 l e f t = random . uniform (0 , width∗ r a t i o − width)
12 top = random . uniform (0 , he ight ∗ r a t i o − he ight)
13 expand_image = np . z e ro s (
14 (i n t (he ight ∗ r a t i o) , i n t (width∗ r a t i o) , depth) ,
15 dtype=image . dtype)
16 expand_image [: , : , :] = s e l f . mean
17 expand_image [i n t (top) : i n t (top + he ight) ,
18 i n t (l e f t) : i n t (l e f t + width)] = image
19 image = expand_image
20 boxes = boxes . copy ()
21 boxes [: , : 2] += (i n t (l e f t) , i n t (top))
22 boxes [: , 2 :] += (i n t (l e f t) , i n t (top))
23

24 re turn image , boxes , l a b e l s

1 c l a s s RandomMirror (ob j e c t) :
2 de f __call__(s e l f , image , boxes , c l a s s e s) :
3 _, width , _ = image . shape
4 i f random . rand int (2) :#or not boxes . any () :
5 image = image [: , : : −1]
6 boxes = boxes . copy ()
7 boxes [: , 0 : : 2] = width − boxes [: , 2 : : −2]
8 re turn image , boxes , c l a s s e s

65

Training augmentation transforms

1 c l a s s SwapChannels (ob j e c t) :
2 " " " Transforms a t e n s o r i z e d image by swapping the channe l s in the

order
3 s p e c i f i e d in the swap tup l e .
4 Args :
5 swaps (i n t t r i p l e) : f i n a l order o f channe l s
6 eg : (2 , 1 , 0)
7 " " "
8

9 de f __init__(s e l f , swaps) :
10 s e l f . swaps = swaps
11

12 de f __call__(s e l f , image) :
13 " " "
14 Args :
15 image (Tensor) : image t enso r to be transformed
16 Return :
17 a tenso r with channe l s swapped accord ing to swap
18 " " "
19 # i f torch . i s_tensor (image) :
20 # image = image . data . cpu () . numpy()
21 # e l s e :
22 # image = np . array (image)
23 image = image [: , : , s e l f . swaps]
24 re turn image

1 c l a s s Photometr i cDistort (ob j e c t) :
2 de f __init__(s e l f) :
3 s e l f . pd = [
4 RandomContrast () , # RGB
5 ConvertColor (cur rent ="RGB" , trans form =’HSV’) , # HSV
6 RandomSaturation () , # HSV
7 RandomHue() , # HSV
8 ConvertColor (cur rent =’HSV’ , trans form =’RGB’) , # RGB
9 RandomContrast () # RGB

10]
11 s e l f . rand_brightness = RandomBrightness ()
12 s e l f . rand_l ight_noise = RandomLightingNoise ()
13

14 de f __call__(s e l f , image , boxes , l a b e l s) :
15 im = image . copy ()
16 im , boxes , l a b e l s = s e l f . rand_brightness (im , boxes , l a b e l s)
17 i f random . rand int (2) :# or not boxes . any () :
18 d i s t o r t = Compose (s e l f . pd [: −1])
19 e l s e :
20 d i s t o r t = Compose (s e l f . pd [1 :])

66

Training augmentation transforms

21 im , boxes , l a b e l s = d i s t o r t (im , boxes , l a b e l s)
22 re turn s e l f . rand_l ight_noise (im , boxes , l a b e l s)

Code implementation: [23].

67

Appendix B

MobileNetV2

Inverted residual module and MobileNetV2 definition:

1 de f conv_bn (inp , oup , s t r i d e) :
2 re turn nn . Sequent i a l (
3 nn . Conv2d (inp , oup , 3 , s t r i d e , 1 , b i a s=False) ,
4 nn . BatchNorm2d (oup) ,
5 nn . ReLU6(i n p l a c e=True)
6)

1 de f conv_1x1_bn (inp , oup) :
2 re turn nn . Sequent i a l (
3 nn . Conv2d (inp , oup , 1 , 1 , 0 , b i a s=False) ,
4 nn . BatchNorm2d (oup) ,
5 nn . ReLU6(i n p l a c e=True)
6)

1 c l a s s Inver t edRes idua l (nn . Module) :
2 de f __init__(s e l f , inp , oup , s t r i d e , expand_ratio) :
3 super (InvertedRes idua l , s e l f) . __init__ ()
4 s e l f . s t r i d e = s t r i d e
5 a s s e r t s t r i d e in [1 , 2]
6

7 hidden_dim = round (inp ∗ expand_ratio)
8 s e l f . use_res_connect = s e l f . s t r i d e == 1 and inp == oup
9

10 i f expand_ratio == 1 :
11 s e l f . conv = nn . Sequent i a l (
12 # dw

68

MobileNetV2

13 nn . Conv2d (hidden_dim , hidden_dim , 3 , s t r i d e , 1 ,
groups=hidden_dim , b i a s=False) ,

14 nn . BatchNorm2d (hidden_dim) ,
15 nn . ReLU6(i n p l a c e=True) ,
16 # pw−l i n e a r
17 nn . Conv2d (hidden_dim , oup , 1 , 1 , 0 , b i a s=False) ,
18 nn . BatchNorm2d (oup) ,
19)
20 e l s e :
21 s e l f . conv = nn . Sequent i a l (
22 # pw
23 nn . Conv2d (inp , hidden_dim , 1 , 1 , 0 , b i a s=False) ,
24 nn . BatchNorm2d (hidden_dim) ,
25 nn . ReLU6(i n p l a c e=True) ,
26 # dw
27 nn . Conv2d (hidden_dim , hidden_dim , 3 , s t r i d e , 1 ,

groups=hidden_dim , b i a s=False) ,
28 nn . BatchNorm2d (hidden_dim) ,
29 nn . ReLU6(i n p l a c e=True) ,
30 # pw−l i n e a r
31 nn . Conv2d (hidden_dim , oup , 1 , 1 , 0 , b i a s=False) ,
32 nn . BatchNorm2d (oup) ,
33)
34

35 de f forward (s e l f , x) :
36 i f s e l f . use_res_connect :
37 re turn x + s e l f . conv (x)
38 e l s e :
39 re turn s e l f . conv (x)

1 c l a s s MobileNetV2 (nn . Module) :
2 de f __init__(s e l f , n_class =2, input_s ize =512 , width_mult =1.0) :
3 super (MobileNetV2 , s e l f) . __init__ ()
4 block = Inver tedRes idua l
5 min_depth = 16
6 input_channel = 32
7 l a s t_channe l = 1280
8 i n t e r v e r t e d _ r e s i d u a l _ s e t t i n g = [
9 # t , c , n , s

10 [1 , 16 , 1 , 1] ,
11 [6 , 24 , 2 , 2] ,
12 [6 , 32 , 3 , 2] ,
13 [6 , 64 , 4 , 2] ,
14 [6 , 96 , 3 , 1] ,
15 [6 , 160 , 3 , 2] ,
16 [6 , 320 , 1 , 1] ,
17]

69

MobileNetV2

18

19 # bu i ld ing f i r s t l a y e r
20 a s s e r t input_s ize % 32 == 0
21 input_channel = i n t (input_channel ∗ width_mult) i f width_mult

>= 1.0 e l s e input_channel
22 s e l f . l a s t_channe l = i n t (las t_channe l ∗ width_mult) i f

width_mult > 1 .0 e l s e las t_channe l
23 s e l f . f e a t u r e s = [conv_bn (3 , input_channel , 2)]
24 # bu i ld ing inve r t ed r e s i d u a l b locks
25 f o r t , c , n , s in i n t e r v e r t e d _ r e s i d u a l _ s e t t i n g :
26 output_channel = max(i n t (c ∗ width_mult) , min_depth)
27 f o r i in range (n) :
28 i f i == 0 :
29 s e l f . f e a t u r e s . append (block (input_channel ,

output_channel , s , expand_ratio=t))
30 e l s e :
31 s e l f . f e a t u r e s . append (block (input_channel ,

output_channel , 1 , expand_ratio=t))
32 input_channel = output_channel
33 # bu i ld ing l a s t s e v e r a l l a y e r s
34 s e l f . f e a t u r e s . append (conv_1x1_bn (input_channel , s e l f .

l a s t_channe l))
35 # make i t nn . Sequent i a l
36 s e l f . f e a t u r e s = nn . Sequent i a l (∗ s e l f . f e a t u r e s)
37

38 # bu i ld ing c l a s s i f i e r
39 s e l f . c l a s s i f i e r = nn . Sequent i a l (
40 nn . Dropout (0 . 2) ,
41 nn . Linear (s e l f . last_channel , n_class) ,
42)
43

44 s e l f . _ i n i t i a l i z e _ w e i g h t s ()
45

46 de f forward (s e l f , x) :
47 x = s e l f . f e a t u r e s (x)
48 x = x . mean (3) . mean (2)
49 x = s e l f . c l a s s i f i e r (x)
50 re turn x
51

52 de f _ i n i t i a l i z e _ w e i g h t s (s e l f) :
53 f o r m in s e l f . modules () :
54 i f i s i n s t a n c e (m, nn . Conv2d) :
55 n = m. ke rne l_s i z e [0] ∗ m. ke rne l_s i z e [1] ∗ m.

out_channels
56 m. weight . data . normal_ (0 , math . s q r t (2 . / n))
57 i f m. b i a s i s not None :
58 m. b ia s . data . zero_ ()
59 e l i f i s i n s t a n c e (m, nn . BatchNorm2d) :
60 m. weight . data . f i l l _ (1)

70

MobileNetV2

61 m. b ia s . data . zero_ ()
62 e l i f i s i n s t a n c e (m, nn . Linear) :
63 n = m. weight . s i z e (1)
64 m. weight . data . normal_ (0 , 0 . 01)
65 m. b ia s . data . zero_ ()

Separable convolution and model generation:

1 de f SeperableConv2d (in_channels , out_channels , k e rne l_s i z e =1, s t r i d e
=1, padding=0, onnx_compatible=False) :

2 " " " Replace Conv2d with a depthwise Conv2d and Pointwise Conv2d .
3 " " "
4 ReLU = nn .ReLU i f onnx_compatible e l s e nn . ReLU6
5 re turn Sequent i a l (
6 Conv2d(in_channels=in_channels , out_channels=in_channels ,

k e rne l_s i z e=kerne l_s i ze ,
7 groups=in_channels , s t r i d e=s t r i d e , padding=padding) ,
8 BatchNorm2d (in_channels) ,
9 ReLU() ,

10 Conv2d(in_channels=in_channels , out_channels=out_channels ,
k e rne l_s i z e =1) ,

11)

1 de f create_mobi lenetv2_ssd_l i te (num_classes , width_mult =1.0 ,
use_batch_norm=True , onnx_compatible=False , i s _ t e s t=False) :

2 base_net = MobileNetV2 (width_mult=width_mult) . f e a t u r e s
3 source_layer_indexes = [
4 GraphPath (7 , ’ conv ’ , 3) ,
5 GraphPath (14 , ’ conv ’ , 3) , 19 ,
6]
7 ex t ra s = ModuleList ([
8 Inver t edRes idua l (1280 , 512 , s t r i d e =2, expand_ratio =0.2) ,
9 Inver t edRes idua l (512 , 256 , s t r i d e =2, expand_ratio =0.25) ,

10 Inver t edRes idua l (256 , 256 , s t r i d e =2, expand_ratio =0.5) ,
11 Inver t edRes idua l (256 , 64 , s t r i d e =2, expand_ratio =0.25)
12])
13 r eg re s s i on_header s = ModuleList ([
14 SeperableConv2d (in_channels=round (192 ∗ width_mult) ,

out_channels=4 ∗ 4 , k e rne l_s i z e =3, padding=1, onnx_compatible=False
) ,

15 SeperableConv2d (in_channels=round (576 ∗ width_mult) ,
out_channels=6 ∗ 4 ,

16 ke rne l_s i z e =3, padding=1, onnx_compatible=
False) ,

17 SeperableConv2d (in_channels =1280 , out_channels=6 ∗ 4 ,
k e rne l_s i z e =3, padding=1, onnx_compatible=False) ,

71

MobileNetV2

18 SeperableConv2d (in_channels =512 , out_channels=6 ∗ 4 ,
k e rne l_s i z e =3, padding=1, onnx_compatible=False) ,

19 SeperableConv2d (in_channels =256 , out_channels=6 ∗ 4 ,
k e rne l_s i z e =3, padding=1, onnx_compatible=False) ,

20 SeperableConv2d (in_channels =256 , out_channels=6 ∗ 4 ,
k e rne l_s i z e =3, padding=1, onnx_compatible=False) ,

21 Conv2d(in_channels =64, out_channels=6 ∗ 4 , k e rne l_s i z e =1) ,
22])
23 c l a s s i f i c a t i o n _ h e a d e r s = ModuleList ([
24 SeperableConv2d (in_channels=round (192 ∗ width_mult) ,

out_channels=4 ∗ num_classes , k e rne l_s i z e =3, padding=1) ,
25 SeperableConv2d (in_channels=round (576 ∗ width_mult) ,

out_channels=6 ∗ num_classes , k e rne l_s i z e =3, padding=1) ,
26 SeperableConv2d (in_channels =1280 , out_channels=6 ∗

num_classes , k e rne l_s i z e =3, padding=1) ,
27 SeperableConv2d (in_channels =512 , out_channels=6 ∗ num_classes

, k e rne l_s i z e =3, padding=1) ,
28 SeperableConv2d (in_channels =256 , out_channels=6 ∗ num_classes

, k e rne l_s i z e =3, padding=1) ,
29 SeperableConv2d (in_channels =256 , out_channels=6 ∗ num_classes

, k e rne l_s i z e =3, padding=1) ,
30 Conv2d(in_channels =64, out_channels=6 ∗ num_classes ,

k e rne l_s i z e =1) ,
31])
32

33 re turn SSD(num_classes , base_net , source_layer_indexes ,
34 extras , c l a s s i f i c a t i o n _ h e a d e r s , r egres s ion_headers ,

center_var iance , s i ze_var iance , i s _ t e s t=i s _ t e s t)

72

Appendix C

Quantized MobileNetV2

The application in this case is the same. Only backbone is changed:

1 de f quant_conv_bn (inp , oup , s t r i d e) :
2 re turn nn . Sequent i a l (
3 QConv2d(inp , oup , 3 , s t r i d e , 1 , b i a s=False , weight_quant =

Int8WeightPerTensorFixedPoint , bias_quant = Int16Bias , input_quant
= Int8ActPerTensorFixedPoint , output_quant =

Int8ActPerTensorFixedPoint , return_quant_tensor=True) ,
4 nn . BatchNorm2d (oup) ,
5 QuantReLU(act_quant=CommonUintActQuant ,
6 bit_width =8,
7 per_channel_broadcastable_shape =(1 , oup , 1 , 1) ,
8 scal ing_stats_permute_dims =(1 , 0 , 2 , 3) ,
9 scal ing_per_output_channel=False ,

10 return_quant_tensor=True))

1 de f quant_conv_1x1_bn (inp , oup) :
2 re turn nn . Sequent i a l (
3 QConv2d(inp , oup , 1 , 1 , 0 , b i a s=False , weight_quant =

Int8WeightPerTensorFixedPoint , bias_quant = Int16Bias , input_quant
= Int8ActPerTensorFixedPoint , output_quant =

Int8ActPerTensorFixedPoint , return_quant_tensor=True) ,
4 nn . BatchNorm2d (oup) ,
5 QuantReLU(act_quant=CommonUintActQuant ,
6 bit_width =8,
7 per_channel_broadcastable_shape =(1 , oup , 1 , 1) ,
8 scal ing_stats_permute_dims =(1 , 0 , 2 , 3) ,
9 scal ing_per_output_channel=False ,

10 return_quant_tensor=True)
11)

73

Quantized MobileNetV2

1 c l a s s Inver t edRes idua l (nn . Module) :
2 de f __init__(s e l f , inp , oup , s t r i d e , expand_ratio) :
3 super (InvertedRes idua l , s e l f) . __init__ ()
4 s e l f . s t r i d e = s t r i d e
5 a s s e r t s t r i d e in [1 , 2]
6

7 hidden_dim = round (inp ∗ expand_ratio)
8 s e l f . use_res_connect = s e l f . s t r i d e == 1 and inp == oup
9

10 i f expand_ratio == 1 :
11 s e l f . conv = nn . Sequent i a l (
12 # dw
13 QConv2d(hidden_dim , hidden_dim , 3 , s t r i d e , 1 , groups=

hidden_dim , b i a s=False , weight_quant =
Int8WeightPerTensorFixedPoint , bias_quant = Int16Bias , input_quant
= Int8ActPerTensorFixedPoint , output_quant =

Int8ActPerTensorFixedPoint , return_quant_tensor=True) ,
14 nn . BatchNorm2d (hidden_dim) ,
15 QuantReLU(act_quant=CommonUintActQuant ,
16 bit_width =8,
17 per_channel_broadcastable_shape =(1 , hidden_dim , 1 , 1)

,
18 scal ing_stats_permute_dims =(1 , 0 , 2 , 3) ,
19 scal ing_per_output_channel=False ,
20 return_quant_tensor=True) ,
21 # pw−l i n e a r
22 QConv2d(hidden_dim , oup , 1 , 1 , 0 , b i a s=False ,

weight_quant = Int8WeightPerTensorFixedPoint , bias_quant =
Int16Bias , input_quant = Int8ActPerTensorFixedPoint , output_quant
= Int8ActPerTensorFixedPoint , return_quant_tensor=True) ,

23 nn . BatchNorm2d (oup) ,
24)
25 e l s e :
26 s e l f . conv = nn . Sequent i a l (
27 # pw
28 QConv2d(inp , hidden_dim , 1 , 1 , 0 , b i a s=False ,

weight_quant = Int8WeightPerTensorFixedPoint , bias_quant =
Int16Bias , input_quant = Int8ActPerTensorFixedPoint , output_quant
= Int8ActPerTensorFixedPoint , return_quant_tensor=True) ,

29 nn . BatchNorm2d (hidden_dim) ,
30 QuantReLU(act_quant=CommonUintActQuant ,
31 bit_width =8,
32 per_channel_broadcastable_shape =(1 , hidden_dim , 1 , 1)

,
33 scal ing_stats_permute_dims =(1 , 0 , 2 , 3) ,
34 scal ing_per_output_channel=False ,
35 return_quant_tensor=True) ,
36 # dw

74

Quantized MobileNetV2

37 QConv2d(hidden_dim , hidden_dim , 3 , s t r i d e , 1 , groups=
hidden_dim , b i a s=False , weight_quant =
Int8WeightPerTensorFixedPoint , bias_quant = Int16Bias , input_quant
= Int8ActPerTensorFixedPoint , output_quant =

Int8ActPerTensorFixedPoint , return_quant_tensor=True) ,
38 nn . BatchNorm2d (hidden_dim) ,
39 QuantReLU(act_quant=CommonUintActQuant ,
40 bit_width =8,
41 per_channel_broadcastable_shape =(1 , hidden_dim , 1 , 1)

,
42 scal ing_stats_permute_dims =(1 , 0 , 2 , 3) ,
43 scal ing_per_output_channel=False ,
44 return_quant_tensor=True) ,
45 # pw−l i n e a r
46 QConv2d(hidden_dim , oup , 1 , 1 , 0 , b i a s=False ,

weight_quant = Int8WeightPerTensorFixedPoint , bias_quant =
Int16Bias , input_quant = Int8ActPerTensorFixedPoint , output_quant
= Int8ActPerTensorFixedPoint , return_quant_tensor=True) ,

47 nn . BatchNorm2d (oup) ,
48)
49 de f forward (s e l f , x) :
50 i f s e l f . use_res_connect :
51 re turn x + s e l f . conv (x)
52 e l s e :
53 re turn s e l f . conv (x)

1 c l a s s MobileNetV2 (nn . Module) :
2 de f __init__(s e l f , n_class =2, input_s ize =512 , width_mult =1.0) :
3 super (MobileNetV2 , s e l f) . __init__ ()
4 block = Inver tedRes idua l
5 min_depth = 16
6 input_channel = 32
7 l a s t_channe l = 1280
8 i n t e r v e r t e d _ r e s i d u a l _ s e t t i n g = [
9 # t , c , n , s

10 [1 , 16 , 1 , 1] ,
11 [6 , 24 , 2 , 2] ,
12 [6 , 32 , 3 , 2] ,
13 [6 , 64 , 4 , 2] ,
14 [6 , 96 , 3 , 1] ,
15 [6 , 160 , 3 , 2] ,
16 [6 , 320 , 1 , 1] ,
17]
18

19 # bu i ld ing f i r s t l a y e r
20 a s s e r t input_s ize % 32 == 0

75

Quantized MobileNetV2

21 input_channel = i n t (input_channel ∗ width_mult) i f width_mult
>= 1.0 e l s e input_channel

22 s e l f . l a s t_channe l = i n t (las t_channe l ∗ width_mult) i f
width_mult > 1 .0 e l s e las t_channe l

23 s e l f . f e a t u r e s = [quant_conv_bn (3 , input_channel , 2)]
24 # bu i ld ing inve r t ed r e s i d u a l b locks
25 f o r t , c , n , s in i n t e r v e r t e d _ r e s i d u a l _ s e t t i n g :
26 output_channel = max(i n t (c ∗ width_mult) , min_depth)
27 f o r i in range (n) :
28 i f i == 0 :
29 s e l f . f e a t u r e s . append (block (input_channel ,

output_channel , s , expand_ratio=t))
30 e l s e :
31 s e l f . f e a t u r e s . append (block (input_channel ,

output_channel , 1 , expand_ratio=t))
32 input_channel = output_channel
33 # bu i ld ing l a s t s e v e r a l l a y e r s
34 s e l f . f e a t u r e s . append (quant_conv_1x1_bn (input_channel , s e l f .

l a s t_channe l))
35 # make i t nn . Sequent i a l
36 s e l f . f e a t u r e s = nn . Sequent i a l (∗ s e l f . f e a t u r e s)
37

38 # bu i ld ing c l a s s i f i e r
39 s e l f . c l a s s i f i e r = nn . Sequent i a l (
40 nn . Dropout (0 . 2) ,
41 nn . Linear (s e l f . last_channel , n_class) ,
42)
43

44 s e l f . _ i n i t i a l i z e _ w e i g h t s ()
45

46 de f forward (s e l f , x) :
47 x = s e l f . f e a t u r e s (x)
48 x = x . mean (3) . mean (2)
49 x = s e l f . c l a s s i f i e r (x)
50 re turn x
51

52 de f _ i n i t i a l i z e _ w e i g h t s (s e l f) :
53 f o r m in s e l f . modules () :
54 i f i s i n s t a n c e (m, QConv2d) :
55 n = m. ke rne l_s i z e [0] ∗ m. ke rne l_s i z e [1] ∗ m.

out_channels
56 m. weight . data . normal_ (0 , math . s q r t (2 . / n))
57 i f m. b i a s i s not None :
58 m. b ia s . data . zero_ ()
59 e l i f i s i n s t a n c e (m, nn . BatchNorm2d) :
60 m. weight . data . f i l l _ (1)
61 m. b ia s . data . zero_ ()
62 e l i f i s i n s t a n c e (m, nn . Linear) :
63 n = m. weight . s i z e (1)

76

Quantized MobileNetV2

64 m. weight . data . normal_ (0 , 0 . 01)
65 m. b ia s . data . zero_ ()

77

Appendix D

VGG16

VGG16 model architecture:

1 de f vgg (cfg , batch_norm=True) :
2 l a y e r s = []
3 in_channels = 3
4 f o r v in c f g :
5 i f v == ’M’ :
6 l a y e r s += [nn . MaxPool2d (ke rne l_s i z e =2, s t r i d e =2)]
7 e l i f v == ’C ’ :
8 l a y e r s += [nn . MaxPool2d (ke rne l_s i z e =2, s t r i d e =2,

ceil_mode=True)]
9 e l s e :

10 conv2d = nn . Conv2d (in_channels , v , k e rne l_s i z e =3, padding
=1)

11 i f batch_norm :
12 l a y e r s += [conv2d , nn . BatchNorm2d (v) , nn .ReLU(i n p l a c e

=True)]
13 e l s e :
14 l a y e r s += [conv2d , nn .ReLU(i n p l a c e=True)]
15 in_channels = v
16 pool5 = nn . MaxPool2d (ke rne l_s i z e =3, s t r i d e =1, padding=1)
17 conv6 = nn . Conv2d (512 , 1024 , k e rne l_s i z e =3, padding=6, d i l a t i o n

=6)
18 conv7 = nn . Conv2d (1024 , 1024 , k e rne l_s i z e =1)
19 l a y e r s += [pool5 , conv6 ,
20 nn .ReLU(i n p l a c e=True) , conv7 , nn .ReLU(i n p l a c e=True)]
21 re turn l a y e r s

78

VGG16

1 de f create_vgg_ssd (num_classes , i s _ t e s t=False) :
2 vgg_config = [6 4 , 64 , ’M’ , 128 , 128 , ’M’ , 256 , 256 , 256 , ’C’ ,

512 , 512 , 512 , ’M’ ,
3 512 , 512 , 512]
4 base_net = nn . ModuleList (vgg (vgg_config))
5 #_ i n i t i a l i z e _ w e i g h t s (base_net)
6 source_layer_indexes = [
7 33 ,
8 l en (base_net) ,
9]

10 ex t ra s = nn . ModuleList ([
11 nn . Sequent i a l (
12 nn . Conv2d (in_channels =1024 , out_channels =256 , k e rne l_s i z e

=1) ,
13 nn .ReLU() ,
14 nn . Conv2d (in_channels =256 , out_channels =512 , k e rne l_s i z e

=3, s t r i d e =2, padding=1) ,
15 nn .ReLU()
16) ,
17 nn . Sequent i a l (
18 nn . Conv2d (in_channels =512 , out_channels =128 , k e rne l_s i z e

=1) ,
19 nn .ReLU() ,
20 nn . Conv2d (in_channels =128 , out_channels =256 , k e rne l_s i z e

=3, s t r i d e =2, padding=1) ,
21 nn .ReLU()
22) ,
23 nn . Sequent i a l (
24 nn . Conv2d (in_channels =256 , out_channels =128 , k e rne l_s i z e

=1) ,
25 nn .ReLU() ,
26 nn . Conv2d (in_channels =128 , out_channels =256 , k e rne l_s i z e

=3, s t r i d e =2, padding=1) ,
27 nn .ReLU()
28) ,
29 nn . Sequent i a l (
30 nn . Conv2d (in_channels =256 , out_channels =128 , k e rne l_s i z e

=1) ,
31 nn .ReLU() ,
32 nn . Conv2d (in_channels =128 , out_channels =256 , k e rne l_s i z e

=3, s t r i d e =2,padding=1) ,
33 nn .ReLU()
34) ,
35 nn . Sequent i a l (
36 nn . Conv2d (in_channels =256 , out_channels =128 , k e rne l_s i z e

=1) ,
37 nn .ReLU() ,

79

VGG16

38 nn . Conv2d (in_channels =128 , out_channels =256 , k e rne l_s i z e
=4, padding=1) ,

39 nn .ReLU()
40)
41])
42

43 r eg re s s i on_header s = nn . ModuleList ([
44 nn . Conv2d (in_channels =512 , out_channels=4 ∗ 4 , k e rne l_s i z e =3,

padding=1) ,
45 nn . Conv2d (in_channels =1024 , out_channels=6 ∗ 4 , k e rne l_s i z e

=3, padding=1) ,
46 nn . Conv2d (in_channels =512 , out_channels=6 ∗ 4 , k e rne l_s i z e =3,

padding=1) ,
47 nn . Conv2d (in_channels =256 , out_channels=6 ∗ 4 , k e rne l_s i z e =3,

padding=1) ,
48 nn . Conv2d (in_channels =256 , out_channels=6 ∗ 4 , k e rne l_s i z e =3,

padding=1) ,
49 nn . Conv2d (in_channels =256 , out_channels=6 ∗ 4 , k e rne l_s i z e =3,

padding=1) ,
50 nn . Conv2d (in_channels =256 , out_channels=6 ∗ 4 , k e rne l_s i z e =1)

, # TODO: change to ke rne l_s i z e =1, padding=0?
51])
52

53 c l a s s i f i c a t i o n _ h e a d e r s = nn . ModuleList ([
54 nn . Conv2d (in_channels =512 , out_channels=4 ∗ num_classes ,

k e rne l_s i z e =3, padding=1) ,
55 nn . Conv2d (in_channels =1024 , out_channels=6 ∗ num_classes ,

k e rne l_s i z e =3, padding=1) ,
56 nn . Conv2d (in_channels =512 , out_channels=6 ∗ num_classes ,

k e rne l_s i z e =3, padding=1) ,
57 nn . Conv2d (in_channels =256 , out_channels=6 ∗ num_classes ,

k e rne l_s i z e =3, padding=1) ,
58 nn . Conv2d (in_channels =256 , out_channels=6 ∗ num_classes ,

k e rne l_s i z e =3, padding=1) ,
59 nn . Conv2d (in_channels =256 , out_channels=6 ∗ num_classes ,

k e rne l_s i z e =3, padding=1) ,
60 nn . Conv2d (in_channels =256 , out_channels=6 ∗ num_classes ,

k e rne l_s i z e =1) , # TODO: change to ke rne l_s i z e =1, padding=0?
61])
62

63 re turn SSD(num_classes , base_net , source_layer_indexes ,
64 extras , c l a s s i f i c a t i o n _ h e a d e r s , r egres s ion_headers ,

center_var iance , s i ze_var iance , i s _ t e s t=i s _ t e s t)

80

Appendix E

Quantized VGG16

1 de f vgg (cfg , batch_norm=True) :
2 l a y e r s = []
3 in_channels = 3
4 f o r v in c f g :
5 i f v == ’M’ :
6 l a y e r s += [QuantMaxPool2d (ke rne l_s i z e =2, s t r i d e =2,

return_quant_tensor=True)]
7 e l i f v == ’C ’ :
8 l a y e r s += [QuantMaxPool2d (ke rne l_s i z e =2, s t r i d e =2,

ceil_mode=True , return_quant_tensor=True)]
9 e l s e :

10 conv2d = QConv2d(in_channels , v , k e rne l_s i z e= 3 , padding=
1 , weight_quant = Int8WeightPerTensorFixedPoint , bias_quant =

Int16Bias , input_quant = Int8ActPerTensorFixedPoint , output_quant
= Int8ActPerTensorFixedPoint , return_quant_tensor=True)

11 #conv2d = nn . Conv2d (in_channels , v , k e rne l_s i z e =3,
padding=1)

12 i f batch_norm :
13 l a y e r s += [conv2d , nn . BatchNorm2d (v) , QuantReLU(

act_quant=CommonUintActQuant , bit_width =8,
per_channel_broadcastable_shape =(1 , v , 1 , 1) ,
scal ing_stats_permute_dims =(1 , 0 , 2 , 3) ,
scal ing_per_output_channel=False , return_quant_tensor=True ,
i n p l a c e=True)]

14 #l a y e r s += [conv2d , nn . BatchNorm2d (v) , nn .ReLU(
i n p l a c e=True)]

15 e l s e :

81

Quantized VGG16

16 l a y e r s += [conv2d , QuantReLU(act_quant=
CommonUintActQuant , bit_width =8, per_channel_broadcastable_shape
=(1 , v , 1 , 1) , scal ing_stats_permute_dims =(1 , 0 , 2 , 3) ,
scal ing_per_output_channel=False , return_quant_tensor=True ,
i n p l a c e=True)]

17 #l a y e r s += [conv2d , nn .ReLU(i n p l a c e=True)]
18 in_channels = v
19 pool5 = QuantMaxPool2d (ke rne l_s i z e =3, s t r i d e =1, padding=1,

return_quant_tensor=True)
20 conv6 = QConv2d(512 , 1024 , k e rne l_s i z e= 3 , padding= 6 , d i l a t i o n

=6, weight_quant = Int8WeightPerTensorFixedPoint , bias_quant =
Int16Bias , input_quant = Int8ActPerTensorFixedPoint , output_quant
= Int8ActPerTensorFixedPoint , return_quant_tensor=True)

21 conv7 = QConv2d(1024 , 1024 , k e rne l_s i z e= 1 , weight_quant =
Int8WeightPerTensorFixedPoint , bias_quant = Int16Bias , input_quant
= Int8ActPerTensorFixedPoint , output_quant =

Int8ActPerTensorFixedPoint , return_quant_tensor=True)
22 l a y e r s += [pool5 , conv6 , QuantReLU(act_quant=CommonUintActQuant ,

bit_width =8, per_channel_broadcastable_shape =(1 , 1024 , 1 , 1) ,
scal ing_stats_permute_dims =(1 , 0 , 2 , 3) ,
scal ing_per_output_channel=False , return_quant_tensor=True ,
i n p l a c e=True) , conv7 , QuantReLU(act_quant=CommonUintActQuant ,
bit_width =8, per_channel_broadcastable_shape =(1 , 1024 , 1 , 1) ,
scal ing_stats_permute_dims =(1 , 0 , 2 , 3) ,
scal ing_per_output_channel=False , return_quant_tensor=True ,
i n p l a c e=True)]

23 re turn l a y e r s

1 de f create_vgg_ssd (num_classes , i s _ t e s t=False) :
2 vgg_config = [6 4 , 64 , ’M’ , 128 , 128 , ’M’ , 256 , 256 , 256 , ’C’ ,

512 , 512 , 512 , ’M’ ,
3 512 , 512 , 512]
4 base_net = nn . ModuleList (vgg (vgg_config))
5

6 source_layer_indexes = [
7 33 ,
8 l en (base_net) ,
9]

10 ex t ra s = nn . ModuleList ([
11 nn . Sequent i a l (
12 QConv2d(1024 , 256 , k e rne l_s i z e= 1 , weight_quant =

Int8WeightPerTensorFixedPoint , bias_quant = Int16Bias , input_quant
= Int8ActPerTensorFixedPoint , output_quant =

Int8ActPerTensorFixedPoint) ,

82

Quantized VGG16

13 QuantReLU(act_quant=CommonUintActQuant , bit_width =8,
per_channel_broadcastable_shape =(1 , 256 , 1 , 1) ,
scal ing_stats_permute_dims =(1 , 0 , 2 , 3) ,
scal ing_per_output_channel=Fal se) ,

14 QConv2d(256 , 512 , k e rne l_s i z e =3, s t r i d e =2, padding=1,
weight_quant = Int8WeightPerTensorFixedPoint , bias_quant =
Int16Bias , input_quant = Int8ActPerTensorFixedPoint , output_quant
= Int8ActPerTensorFixedPoint) ,

15 QuantReLU(act_quant=CommonUintActQuant , bit_width =8,
per_channel_broadcastable_shape =(1 , 512 , 1 , 1) ,
scal ing_stats_permute_dims =(1 , 0 , 2 , 3) ,
scal ing_per_output_channel=False , return_quant_tensor=True)

16) ,
17 nn . Sequent i a l (
18 QConv2d(512 , 128 , k e rne l_s i z e= 1 , weight_quant =

Int8WeightPerTensorFixedPoint , bias_quant = Int16Bias , input_quant
= Int8ActPerTensorFixedPoint , output_quant =

Int8ActPerTensorFixedPoint) ,
19 QuantReLU(act_quant=CommonUintActQuant , bit_width =8,

per_channel_broadcastable_shape =(1 , 128 , 1 , 1) ,
scal ing_stats_permute_dims =(1 , 0 , 2 , 3) ,
scal ing_per_output_channel=Fal se) ,

20 QConv2d(128 , 256 , k e rne l_s i z e =3, s t r i d e =2, padding=1,
weight_quant = Int8WeightPerTensorFixedPoint , bias_quant =
Int16Bias , input_quant = Int8ActPerTensorFixedPoint , output_quant
= Int8ActPerTensorFixedPoint) ,

21 QuantReLU(act_quant=CommonUintActQuant , bit_width =8,
per_channel_broadcastable_shape =(1 , 256 , 1 , 1) ,
scal ing_stats_permute_dims =(1 , 0 , 2 , 3) ,
scal ing_per_output_channel=False , return_quant_tensor=True)

22) ,
23 nn . Sequent i a l (
24 QConv2d(256 , 128 , k e rne l_s i z e= 1 , weight_quant =

Int8WeightPerTensorFixedPoint , bias_quant = Int16Bias , input_quant
= Int8ActPerTensorFixedPoint , output_quant =

Int8ActPerTensorFixedPoint) ,
25 QuantReLU(act_quant=CommonUintActQuant , bit_width =8,

per_channel_broadcastable_shape =(1 , 128 , 1 , 1) ,
scal ing_stats_permute_dims =(1 , 0 , 2 , 3) ,
scal ing_per_output_channel=Fal se) ,

26 QConv2d(128 , 256 , k e rne l_s i z e =3, s t r i d e =2, padding=1,
weight_quant = Int8WeightPerTensorFixedPoint , bias_quant =
Int16Bias , input_quant = Int8ActPerTensorFixedPoint , output_quant
= Int8ActPerTensorFixedPoint) ,

27 QuantReLU(act_quant=CommonUintActQuant , bit_width =8,
per_channel_broadcastable_shape =(1 , 256 , 1 , 1) ,
scal ing_stats_permute_dims =(1 , 0 , 2 , 3) ,
scal ing_per_output_channel=False , return_quant_tensor=True)

28) ,

83

Quantized VGG16

29 nn . Sequent i a l (
30 QConv2d(256 , 128 , k e rne l_s i z e= 1 , weight_quant =

Int8WeightPerTensorFixedPoint , bias_quant = Int16Bias , input_quant
= Int8ActPerTensorFixedPoint , output_quant =

Int8ActPerTensorFixedPoint) ,
31 QuantReLU(act_quant=CommonUintActQuant , bit_width =8,

per_channel_broadcastable_shape =(1 , 128 , 1 , 1) ,
scal ing_stats_permute_dims =(1 , 0 , 2 , 3) ,
scal ing_per_output_channel=Fal se) ,

32 QConv2d(128 , 256 , k e rne l_s i z e =3, s t r i d e =2, padding=1,
weight_quant = Int8WeightPerTensorFixedPoint , bias_quant =
Int16Bias , input_quant = Int8ActPerTensorFixedPoint , output_quant
= Int8ActPerTensorFixedPoint) ,

33 QuantReLU(act_quant=CommonUintActQuant , bit_width =8,
per_channel_broadcastable_shape =(1 , 256 , 1 , 1) ,
scal ing_stats_permute_dims =(1 , 0 , 2 , 3) ,
scal ing_per_output_channel=False , return_quant_tensor=True)

34) ,
35 nn . Sequent i a l (
36 QConv2d(256 , 128 , k e rne l_s i z e= 1 , weight_quant =

Int8WeightPerTensorFixedPoint , bias_quant = Int16Bias , input_quant
= Int8ActPerTensorFixedPoint , output_quant =

Int8ActPerTensorFixedPoint) ,
37 QuantReLU(act_quant=CommonUintActQuant , bit_width =8,

per_channel_broadcastable_shape =(1 , 128 , 1 , 1) ,
scal ing_stats_permute_dims =(1 , 0 , 2 , 3) ,
scal ing_per_output_channel=Fal se) ,

38 QConv2d(128 , 256 , k e rne l_s i z e =4, padding=1, weight_quant
= Int8WeightPerTensorFixedPoint , bias_quant = Int16Bias ,
input_quant = Int8ActPerTensorFixedPoint , output_quant =
Int8ActPerTensorFixedPoint) ,

39 QuantReLU(act_quant=CommonUintActQuant , bit_width =8,
per_channel_broadcastable_shape =(1 , 256 , 1 , 1) ,
scal ing_stats_permute_dims =(1 , 0 , 2 , 3) ,
scal ing_per_output_channel=False , return_quant_tensor=True)

40)
41])
42 r eg re s s i on_header s = nn . ModuleList ([
43 nn . Conv2d (in_channels =512 , out_channels=4 ∗ 4 , k e rne l_s i z e =3,

padding=1) ,
44 nn . Conv2d (in_channels =1024 , out_channels=6 ∗ 4 , k e rne l_s i z e

=3, padding=1) ,
45 nn . Conv2d (in_channels =512 , out_channels=6 ∗ 4 , k e rne l_s i z e =3,

padding=1) ,
46 nn . Conv2d (in_channels =256 , out_channels=6 ∗ 4 , k e rne l_s i z e =3,

padding=1) ,
47 nn . Conv2d (in_channels =256 , out_channels=6 ∗ 4 , k e rne l_s i z e =3,

padding=1) ,

84

Quantized VGG16

48 nn . Conv2d (in_channels =256 , out_channels=6 ∗ 4 , k e rne l_s i z e =3,
padding=1) ,

49 nn . Conv2d (in_channels =256 , out_channels=6 ∗ 4 , k e rne l_s i z e =1)
, # TODO: change to ke rne l_s i z e =1, padding=0?

50])
51

52 c l a s s i f i c a t i o n _ h e a d e r s = nn . ModuleList ([
53 nn . Conv2d (in_channels =512 , out_channels=4 ∗ num_classes ,

k e rne l_s i z e =3, padding=1) ,
54 nn . Conv2d (in_channels =1024 , out_channels=6 ∗ num_classes ,

k e rne l_s i z e =3, padding=1) ,
55 nn . Conv2d (in_channels =512 , out_channels=6 ∗ num_classes ,

k e rne l_s i z e =3, padding=1) ,
56 nn . Conv2d (in_channels =256 , out_channels=6 ∗ num_classes ,

k e rne l_s i z e =3, padding=1) ,
57 nn . Conv2d (in_channels =256 , out_channels=6 ∗ num_classes ,

k e rne l_s i z e =3, padding=1) ,
58 nn . Conv2d (in_channels =256 , out_channels=6 ∗ num_classes ,

k e rne l_s i z e =3, padding=1) ,
59 nn . Conv2d (in_channels =256 , out_channels=6 ∗ num_classes ,

k e rne l_s i z e =1) , # TODO: change to ke rne l_s i z e =1, padding=0?
60])
61

62 re turn SSD(num_classes , base_net , source_layer_indexes ,
63 extras , c l a s s i f i c a t i o n _ h e a d e r s , r egres s ion_headers ,

center_var iance , s i ze_var iance , i s _ t e s t=i s _ t e s t)

85

Bibliography

[1] url: https://llis.nasa.gov/lesson/824 (cit. on p. 3).
[2] R.C. Baumann. «Radiation-induced soft errors in advanced semiconductor

technologies». In: IEEE Transactions on Device and Materials Reliability 5.3
(2005), pp. 305–316. doi: 10.1109/TDMR.2005.853449 (cit. on p. 3).

[3] R. N. Raphael, L. E. Seixas, Agord M. Pinto, S. A. Bascopé, L. T. Manera,
S. Finco, and S. P. Gimenez. «Overview about radiation–matter interaction
mechanisms and mitigation techniques». In: Proceedings of the 3rd Brazilian
Technology Symposium (Aug. 2018), pp. 223–238. doi: 10.1007/978-3-319-
93112-8_23 (cit. on p. 3).

[4] T.S. Nidhin, Anindya Bhattacharyya, R.P. Behera, T. Jayanthi, and K.
Velusamy. «Understanding radiation effects in SRAM-based field programmable
gate arrays for implementing instrumentation and control systems of nuclear
power plants». In: Nuclear Engineering and Technology 49.8 (Dec. 2017),
pp. 1589–1599. doi: 10.1016/j.net.2017.09.002 (cit. on p. 3).

[5] Filippo Minnella. «Protection and characterization of an open source soft
core against radiation effects». Apr. 2018. url: http://webthesis.biblio.
polito.it/7536/ (cit. on p. 3).

[6] Filippo Minnella, Teodoro Urso, Mihai T. Lazarescu, and Luciano Lavagno.
Design and Optimization of Residual Neural Network Accelerators for Low-
Power FPGAs Using High-Level Synthesis. 2023. arXiv: 2309.15631 [cs.AR]
(cit. on p. 7).

[7] techniques for radiation effects mitigation in ASICs and FPGAs. ESA Require-
ments and Standards Division ESTEC, P.O. Box 299, 2200 AG Noordwijk
The Netherlands, 2016 (cit. on p. 9).

[8] Krzysztof Marek Sielewicz. «Mitigation Methods Increasing Radiation Hard-
ness of the FPGA-Based Readout of the ALICE Inner Tracking System».
Presented 13 Nov 2018. Warsaw U., 2018. url: https://cds.cern.ch/
record/2643800 (cit. on p. 10).

86

https://llis.nasa.gov/lesson/824
https://doi.org/10.1109/TDMR.2005.853449
https://doi.org/10.1007/978-3-319-93112-8_23
https://doi.org/10.1007/978-3-319-93112-8_23
https://doi.org/10.1016/j.net.2017.09.002
http://webthesis.biblio.polito.it/7536/
http://webthesis.biblio.polito.it/7536/
https://arxiv.org/abs/2309.15631
https://cds.cern.ch/record/2643800
https://cds.cern.ch/record/2643800

BIBLIOGRAPHY

[9] Paulo R. C. Villa, Rodrigo Travessini, Fabian L. Vargas, and Eduardo A.
Bezerra. «Processor checkpoint recovery for transient faults in critical appli-
cations». In: 2018 IEEE 19th Latin-American Test Symposium (LATS). 2018,
pp. 1–6. doi: 10.1109/LATW.2018.8349674 (cit. on p. 13).

[10] Kai Zhao, Sheng Di, Sihuan Li, Xin Liang, Yujia Zhai, Jieyang Chen, Kaim-
ing Ouyang, Franck Cappello, and Zizhong Chen. «Algorithm-Based Fault
Tolerance for Convolutional Neural Networks». In: CoRR abs/2003.12203
(2020). arXiv: 2003.12203. url: https://arxiv.org/abs/2003.12203
(cit. on p. 14).

[11] Dionysios Filippas, Nikolaos Margomenos, Nikolaos Mitianoudis, Chrysosto-
mos Nicopoulos, and Giorgos Dimitrakopoulos. «Low-Cost Online Convolution
Checksum Checker». In: IEEE Transactions on Very Large Scale Integra-
tion (VLSI) Systems 30.2 (2022), pp. 201–212. doi: 10.1109/TVLSI.2021.
3119511 (cit. on p. 14).

[12] M. Lanuzza, P. Zicari, F. Frustaci, S. Perri, and P. Corsonello. «Exploiting
self-reconfiguration capability to improve SRAM-based FPGA robustness in
space and avionics applications». In: ACM Transactions on Reconfigurable
Technology and Systems 4.1 (Dec. 2010), pp. 1–22. doi: 10.1145/1857927.
1857935 (cit. on p. 14).

[13] Muhammad Abdullah Hanif and Muhammad Shafique. «Dependable Deep
Learning: Towards Cost-Efficient Resilience of Deep Neural Network Ac-
celerators against Soft Errors and Permanent Faults». In: 2020 IEEE 26th
International Symposium on On-Line Testing and Robust System Design
(IOLTS). 2020, pp. 1–4. doi: 10.1109/IOLTS50870.2020.9159734 (cit. on
p. 17).

[14] Ussama Zahid, Giulio Gambardella, Nicholas J. Fraser, Michaela Blott, and
Kees Vissers. FAT: Training Neural Networks for Reliable Inference Under
Hardware Faults. 2020. arXiv: 2011.05873 [cs.LG] (cit. on p. 17).

[15] R. T. Syed, M. Ulbricht, K. Piotrowski, and M. Krstic. «Fault Resilience
Analysis of Quantized Deep Neural Networks». In: 2021 IEEE 32nd Inter-
national Conference on Microelectronics (MIEL). 2021, pp. 275–279. doi:
10.1109/MIEL52794.2021.9569094 (cit. on p. 18).

[16] Dongyeob Shin, Wonseok Choi, Jongsun Park, and Swaroop Ghosh. «Sensitivity-
Based Error Resilient Techniques With Heterogeneous Multiply–Accumulate
Unit for Voltage Scalable Deep Neural Network Accelerators». In: IEEE
Journal on Emerging and Selected Topics in Circuits and Systems 9.3 (2019),
pp. 520–531. doi: 10.1109/JETCAS.2019.2933862 (cit. on p. 18).

87

https://doi.org/10.1109/LATW.2018.8349674
https://arxiv.org/abs/2003.12203
https://arxiv.org/abs/2003.12203
https://doi.org/10.1109/TVLSI.2021.3119511
https://doi.org/10.1109/TVLSI.2021.3119511
https://doi.org/10.1145/1857927.1857935
https://doi.org/10.1145/1857927.1857935
https://doi.org/10.1109/IOLTS50870.2020.9159734
https://arxiv.org/abs/2011.05873
https://doi.org/10.1109/MIEL52794.2021.9569094
https://doi.org/10.1109/JETCAS.2019.2933862

BIBLIOGRAPHY

[17] Florian Geissler, Syed Sha Qutub, Sayanta Roychowdhury, Ali Asgari Khoshouyeh,
Yang Peng, Akash Dhamasia, Ralf Graefe, Karthik Pattabiraman, and Michael
Paulitsch. «Towards a Safety Case for Hardware Fault Tolerance in Convo-
lutional Neural Networks Using Activation Range Supervision». In: CoRR
abs/2108.07019 (2021). arXiv: 2108.07019. url: https://arxiv.org/abs/
2108.07019 (cit. on p. 19).

[18] Zitao Chen, Guanpeng Li, and Karthik Pattabiraman. «Ranger: Boosting
Error Resilience of Deep Neural Networks through Range Restriction». In:
CoRR abs/2003.13874 (2020). arXiv: 2003.13874. url: https://arxiv.
org/abs/2003.13874 (cit. on p. 19).

[19] F. Libano, B. Wilson, J. Anderson, M. J. Wirthlin, C. Cazzaniga, C. Frost,
and P. Rech. «Selective Hardening for Neural Networks in FPGAs». In: IEEE
Transactions on Nuclear Science 66.1 (2019), pp. 216–222. doi: 10.1109/TNS.
2018.2884460 (cit. on p. 20).

[20] url: https://www.kaggle.com/c/airbus-ship-detection (cit. on p. 21).
[21] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott E.

Reed, Cheng-Yang Fu, and Alexander C. Berg. «SSD: Single Shot MultiBox
Detector». In: CoRR abs/1512.02325 (2015). arXiv: 1512.02325. url: http:
//arxiv.org/abs/1512.02325 (cit. on p. 22).

[22] Mark Sandler, Andrew G. Howard, Menglong Zhu, Andrey Zhmoginov,
and Liang-Chieh Chen. «Inverted Residuals and Linear Bottlenecks: Mo-
bile Networks for Classification, Detection and Segmentation». In: CoRR
abs/1801.04381 (2018). arXiv: 1801.04381. url: http://arxiv.org/abs/
1801.04381 (cit. on p. 26).

[23] Qfgaohao. Qfgaohao/pytorch-SSD: Mobilenetv1, mobilenetv2, VGG based
SSD/SSD-lite implementation in pytorch 1.0 / pytorch 0.4. out-of-box support
for retraining on open images dataset. ONNX and caffe2 support. experiment
ideas like coordconv. url: https://github.com/qfgaohao/pytorch-ssd?
tab=readme-ov-file (cit. on pp. 26, 67).

[24] A. Mahmoud, N. Aggarwal, A. Nobbe, J. R. S. Vicarte, S. V. Adve, C. W.
Fletcher, I. Frosio, and S. K. S. Hari. «PyTorchFI: A Runtime Perturbation
Tool for DNNs». In: 2020 50th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks Workshops (DSN-W). 2020, pp. 25–31
(cit. on p. 41).

88

https://arxiv.org/abs/2108.07019
https://arxiv.org/abs/2108.07019
https://arxiv.org/abs/2108.07019
https://arxiv.org/abs/2003.13874
https://arxiv.org/abs/2003.13874
https://arxiv.org/abs/2003.13874
https://doi.org/10.1109/TNS.2018.2884460
https://doi.org/10.1109/TNS.2018.2884460
https://www.kaggle.com/c/airbus-ship-detection
https://arxiv.org/abs/1512.02325
http://arxiv.org/abs/1512.02325
http://arxiv.org/abs/1512.02325
https://arxiv.org/abs/1801.04381
http://arxiv.org/abs/1801.04381
http://arxiv.org/abs/1801.04381
https://github.com/qfgaohao/pytorch-ssd?tab=readme-ov-file
https://github.com/qfgaohao/pytorch-ssd?tab=readme-ov-file

	List of Tables
	List of Figures
	Introduction
	Basic Concepts on SRAM-Based FPGA
	Space radiation effect on electronic devices
	Cumulative effect
	Single Event Effect

	DNN convolutions in FPGAs

	SEU error correction and detection technique
	Radiation mitigation technique
	System level
	Structure level
	Cell layout (RHBD) level
	Netlist design techniques

	DNN resilient techniques

	Application and dataset description
	SSD algorithm
	MobileNetV2 network
	VGG16 network
	Quantization techniques
	Quantized MobileNetV2 network
	Quantized VGG16 network
	Output predictions
	Network without training augmentation

	Error injection technique
	MobileNetV2 error injection technique
	VGG16 error injection technique
	Conclusions and future works

	Training augmentation transforms
	MobileNetV2
	Quantized MobileNetV2
	VGG16
	Quantized VGG16
	Bibliography

